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Abstract— Event detection applications of wireless sensor 

networks (WSNs) highly rely on accurate and timely detection of 
out of ordinary situations. Majority of the existing event 
detection techniques designed for WSNs have focused on 
detection of events with known patterns requiring a priori 
knowledge about events being detected. In this paper, however, 
we propose an online unsupervised event detection technique for 
detection of unknown events. Traditional unsupervised learning 
techniques cannot directly be applied in WSNs due to their high 
computational and memory complexities. To this end, by 
considering specific resource limitations of the WSNs we modify 
the standard K-means algorithm in this paper and explore its 
applicability for online and fast event detection in WSNs. For 
performance evaluation, we investigate event detection accuracy, 
false alarm, similarity calculation (using the Rand Index), 
computational and memory complexity of the proposed 
approach on two real datasets. 

I. INTRODUCTION 

Events have different meaning in different applications and 
research domains. Generally speaking, event detection in 
wireless sensor networks (WSNs) is the process of identifying 
those sensor readings that do not conform to normal behavior 
and model of data and indicate occurrence of an out of 
ordinary situation. 

Interest in event detection in wireless sensor networks is 
increasing and many applications such as safety and security 
[1],  health and well-being [2], hazardous detection [3], 
activity monitoring [4], and vehicle tracking [5] depend more 
and more on fast and accurate detection of out of ordinary 
situations. From the data processing point of view, there are 
generally two main approaches to tackle the problem of event 
detection in WSNs, i.e., (i) to transmit raw sensor data to a 
base station for centralized event detection, and (ii) to enable 
event detection locally at each sensor node and report the 
detection result to a base station or sink. One of the drawbacks 
of the former approaches is rapid energy exhaustion of sensor 
nodes due to continuous data transmissions, which in turn will 
shorten the lifetime of the WSN. Additionally, since these 
approaches often rely on availability of large amount of data 
for accurate event detection, event detection and notification 
process usually suffer from delays, which in turn make these 
approaches not suitable for real-time applications. Approaches 
of the latter case, on the other hand, offer the benefit of fast 
and energy-efficient event detection due to local detection of 
events while may suffer from low detection accuracy and lack 

of generality as the event detection is based on data of 
individual sensor nodes with their limited perception [6].  

The event detection itself can be performed using simple 
comparisons against some threshold values or using 
sophisticated machine learning techniques. While comparing 
against threshold values has the advantage of having low 
computation and communication complexity, it is limited in a 
sense that it fails in detecting complex and multivariate events. 
There are a number of machine learning and artificial 
intelligent based event detection techniques in literature. 
However, they are mostly supervised techniques and perform 
well in detecting events with known patterns and semantics.   

By targeting events with unknown patterns and signatures, 
in this paper we focus on unsupervised learning techniques 
and propose a modified version of K-means algorithm for fast 
in-network unsupervised event detection in WSNs. The reason 
to modify the standard K-means algorithm is to cope with the 
problem of batch offline processing, which the standard K-
means algorithm is known for. The reason we explore use of 
unsupervised learning techniques is their ability to detect 
patterns that may not have been previously seen [7]. 

The rest of this paper is organized as follows: Section II 
surveys the related work. An introduction to standard K-
means algorithm is presented in Section III. Our unsupervised 
event detection approach is explained in Section IV. Analysis 
of datasets we use in our performance evaluation is presented 
in Section V, while Section VI reports the empirical results.  
Finally Section VII summarizes the research and draws some 
conclusions.  

II. RELATED WORK 

Classical research on event detection can be categorized 
into research on (i) pattern matching for known events and (ii) 
pattern recognition for unknown events. Supervised learning 
techniques are often used for finding events that are similar to 
predefined event signatures, while unsupervised learning 
techniques are used for finding hidden patterns.  

While many studies target supervised learning in WSN, to 
the best of the authors’ knowledge, there are only a few 
studies, which target unsupervised learning in WSNs and even 
then they have not considered event detection as their core 
application. For instance, authors of [8] propose a 
combination of clustering technique and support vector 
machine (SVM) to detect intrusions in WSNs. As proposed in  
[9], self-organizing map (SOM) and genetic algorithm (GA) 
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modified K-means algorithm versus the standard K-means 
algorithm in terms of Big O notation. 

TABLE V:  MEMORY COMPLEXITY OF THE MODIFIED K-
MEANS AND THE STANDARD K-MEANS ALGORITHMS 

Standard K-means 
Proposed algorithm 

Where , n is total data, m is dimension of data (number of features) 
and k is number of clusters (or classes) 

 
It can be seen from Table V that for the standard K-means 

algorithm we need to store k means (k cluster centers) and the 
entire data instances in an m dimensional table inside the 
memory. For our modified K-means algorithm, we only need 
to keep the tracking table in memory which is a table of k 
columns and m rows, where k is number of classes and m is 
number of features.  Memory complexity of the propose 
algorithm is independent of number of inputs and therefore 
occupies less space in memory. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we propose a modified version of the K-
means algorithm for fast unsupervised event detection in 
WSNs. The advantage of our unsupervised event detection 
technique is its ability to detect unknown events in absence of 
a priori knowledge about event semantic and signature. It is 
also simple in terms of memory and computation complexity. 

To evaluate the proposed approach, two real datasets are 
used and the algorithms are compared in terms of detection 
accuracy, false alarm rate, computational complexity and 
memory complexity. The results of these evaluations show 
that compared with the standard K-mean algorithm, our 
modified K-means algorithm using Manhattan distance is the 
faster and also requires lesser memory. The detection 
accuracy of both algorithms, however, remains (almost) the 
same.  

In our future work, we will explore the possibility and 
usefulness of making the modified K-means algorithm 
distributed. This will be done with the idea of making the 
algorithm more accurate and achieving a better load balancing 
in the WSNs.  
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