Online Unsupervised Event Detection in Wireless
Sensor Networks

Majid Bahrepour, Nirvana Meratnia, Paul J. M. Havinga

Pervasive Systems Group, University of Twente
P.O.Box 217, 7500 AE Enschede, the Netherlands

{m.bahrepour, n.meratnia, p.j.m.havinga}@utwente.nl

Abstract— Event detection applications of wireless sensor
networks (WSNs) highly rely on accurate and timely detection of
out of ordinary situations. Majority of the existing event
detection techniques designed for WSNs have focused on
detection of events with known patterns requiring a priori
knowledge about events being detected. In this paper, however,
we propose an online unsupervised event detection technique for
detection of unknown events. Traditional unsupervised learning
techniques cannot directly be applied in WSNs due to their high
computational and memory complexities. To this end, by
considering specific resource limitations of the WSNs we modify
the standard K-means algorithm in this paper and explore its
applicability for online and fast event detection in WSNs. For
performance evaluation, we investigate event detection accuracy,
false alarm, similarity calculation (using the Rand Index),
computational and memory complexity of the proposed
approach on two real datasets.

I. INTRODUCTION

Events have different meaning in different applications and
research domains. Generally speaking, event detection in
wireless sensor networks (WSNs) is the process of identifying
those sensor readings that do not conform to normal behavior
and model of data and indicate occurrence of an out of
ordinary situation.

Interest in event detection in wireless sensor networks is
increasing and many applications such as safety and security
[1], health and well-being [2], hazardous detection [3],
activity monitoring [4], and vehicle tracking [5] depend more
and more on fast and accurate detection of out of ordinary
situations. From the data processing point of view, there are
generally two main approaches to tackle the problem of event
detection in WSNSs, i.e., (i) to transmit raw sensor data to a
base station for centralized event detection, and (ii) to enable
event detection locally at each sensor node and report the
detection result to a base station or sink. One of the drawbacks
of the former approaches is rapid energy exhaustion of sensor
nodes due to continuous data transmissions, which in turn will
shorten the lifetime of the WSN. Additionally, since these
approaches often rely on availability of large amount of data
for accurate event detection, event detection and notification
process usually suffer from delays, which in turn make these
approaches not suitable for real-time applications. Approaches
of the latter case, on the other hand, offer the benefit of fast
and energy-efficient event detection due to local detection of
events while may suffer from low detection accuracy and lack
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of generality as the event detection is based on data of
individual sensor nodes with their limited perception [6].

The event detection itself can be performed using simple
comparisons against some threshold values or using
sophisticated machine learning techniques. While comparing
against threshold values has the advantage of having low
computation and communication complexity, it is limited in a
sense that it fails in detecting complex and multivariate events.
There are a number of machine learning and artificial
intelligent based event detection techniques in literature.
However, they are mostly supervised techniques and perform
well in detecting events with known patterns and semantics.

By targeting events with unknown patterns and signatures,
in this paper we focus on unsupervised learning techniques
and propose a modified version of K-means algorithm for fast
in-network unsupervised event detection in WSNs. The reason
to modify the standard K-means algorithm is to cope with the
problem of batch offline processing, which the standard K-
means algorithm is known for. The reason we explore use of
unsupervised learning techniques is their ability to detect
patterns that may not have been previously seen [7].

The rest of this paper is organized as follows: Section II
surveys the related work. An introduction to standard K-
means algorithm is presented in Section III. Our unsupervised
event detection approach is explained in Section IV. Analysis
of datasets we use in our performance evaluation is presented
in Section V, while Section VI reports the empirical results.
Finally Section VII summarizes the research and draws some
conclusions.

II. RELATED WORK

Classical research on event detection can be categorized
into research on (i) pattern matching for known events and (ii)
pattern recognition for unknown events. Supervised learning
techniques are often used for finding events that are similar to
predefined event signatures, while unsupervised learning
techniques are used for finding hidden patterns.

While many studies target supervised learning in WSN, to
the best of the authors’ knowledge, there are only a few
studies, which target unsupervised learning in WSNs and even
then they have not considered event detection as their core
application. For instance, authors of [8] propose a
combination of clustering technique and support vector
machine (SVM) to detect intrusions in WSNs. As proposed in
[9], self-organizing map (SOM) and genetic algorithm (GA)
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can be used for finding trust values in WSNs. Zhang et al.
propose an unsupervised centered quarter-sphere support
vector machine for outlier detection in WSNs [10].
Aggregation Tree is also proposed for unsupervised outlier
detection in WSNs [11]. Adaptive Resonance Theory (ART)
and Fuzzy-ART are proposed in [12] to classify
environmental data into clusters in an unsupervised fashion.

Supervised learning techniques have been widely used for
event detection in WSNs, examples include map-based [13],
probabilistic-based [14], K-nearest neighborhood-based (K-
NN), maximum likelihood-based, support vector machines-
based (SVM) [15], naive Bayes-based [16] [17] [18], feed
forward neural networks-based [16], distributed fuzzy engine-
based [19], voting graph neuron-based [20], and distributed
decision trees-based [21] techniques.

Figure 1 presents taxonomy of event detection techniques
designed for WSNs.
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Figure 1: Taxonomy of event detection techniques designed for WSNs

III. STANDARD K-MEANS ALGORITHM

The K-means algorithm is one of the basic unsupervised
learning algorithms that solve the well-known clustering
problem. The procedure follows an uncomplicated way of
classification of a given dataset through a certain number of
clusters (k clusters). The main idea of the standard K-means
algorithm is to define k centroids, one for each cluster and
then partition 7 observations into & clusters in such a way that
each observation belongs to the cluster with the smallest mean
values.

The term "K-means" was firstly used by James MacQueen
in 1967 [22]. The K-means algorithm performs the following
steps:

1. Placing K points into the space representing the center
of objects being clustered. These points represent
initial group means.

2. Assigning each object to the group that has the

smallest mean by using FEuclidean distance
d=Xxi_y)? .

3. Recalculating the positions of the K—means (center of
clusters) using Equation (1) after all objects are
assigned to clusters.

1
new Center; = ;Z X;

i

Equation (1)

4. Repeating Steps 2 and 3 for the rest of data.

The convergence of the algorithm is discussed in [23]

IV. A FAST UNSUPERVISED EVENT DETECTION APPROACH

Major drawbacks of the standard K-means algorithm for
being applied in WSNs include its batch and offline clustering
characteristics as well as high computational and memory
complexity. Therefore in what follows we explain how to
modify the algorithm to make it simpler and less
computationally exhaustive.

A. Modified K-means Algorithm

Our aim of modifying the standard K-means algorithm is to
lower down its time, memory, and computational complexity.
This in turn will lead to a simple classifier to be used for fast
event detection on resource limited wireless sensor nodes. To
do so, we follow the following steps:

1. The first k£ data are assigned to the first £ event
classes. By doing this the first K-means (first &
cluster centers) are created.

2. A tracking table is made to hold track of the
previously seen data in a compact form. The
tracking table contains % columns, each
representing one of the & clusters. In each column
the center of the clusters as well as the number of
populations within the respective clusters are
stored. Figure 2 illustrates how a tracking table
looks like.

3. The Manhattan distance between the k+/™ data
instance (the next coming data) and & means
(center of k clusters) is calculated based on
Equation 2 and the k+1” data is assigned to the
closest cluster.

m
d; = 2|xi—yl'|
i

Where, j=(1,2,..k), d; is distance to jth cluster
center, m is number of features (dimensions), x; is
the i™ dimension of the data, and yiis the center of
cluster j in /™ dimension.

4. The tracking table will be updated so that the
population of the assigned cluster is increased by
one. Consequently, the center of the clusters will
be updated based on Equation 3.

Equation (2)

o (P] X OldCenterj) + x;
Vi P+ 1

Equation (3)

Where, j=(1,2,..k), y; is j™ cluster center, m is number
of features (dimensions), x; is the i"™ dimension of the
data (i=1,2,..,m), and P;is population of j cluster.

5. Steps 3 and 4 will be repeated for all incoming
data instances.

Clusters

Cluster 1 Cluster 2 Cluster K

Centers <€4,1,€1,2--C1m> <€3,1,C22--Cam> <€ 1,Ch 25 Ckm™

Population Py Py P

Figure 2: Tracking table which holdis a track of previously seen data in a
compact form
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The proposed algorithm takes similar steps as the standard K-
means algorithm and its convergence is proofed as the
standard K-means [23].

V. DATA ANALYSIS

To do a cross validation of our proposed approach, we will
use two datasets. The first dataset is a real residential fire
dataset collected by the National Institute of Standards and
Technology (NIST) [3]. The second dataset used is a real
activity dataset of a healthy person performing standing, siting,
and walking activities collected by Medisch Spectrum Twente
(MST) [4].

The fire dataset contains 1400 data instances, 4 features
(temperature, ionization, photoelectric and CO), and 3 classes
(flaming fires, smoldering fires, and nuisance). Figure 3
illustrates the role of each feature in generation of different
classes (events).

The activity dataset contains 8330 data instances and 3
classes namely walking, sitting, and standing still. It also
contains four features ( ‘Z’ vector of gyroscope installed on
the right foot, ‘Y’ vector of accelerometer installed on trunk,
‘7’ vector of accelerometer installed on trunk, and ‘X’ vector
of accelerometer installed on left foot). Figure 4 shows the
role of each feature in generation of different classes (events).
As it can be seen from Figure 4, the activity data shows high
degree of overlaps between features in the generated classes,
which makes classifications of data difficult.
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Figure 3: Data distribution of fire dataset for four features: (a) temperature
sensor, (b) photoelectric (photo), (¢) ionization (ION), and (d) CO features.
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Figure 4: Data distribution of activity data set for four features: (a) ‘X” vector
of accelerometer installed on left foot, (b) ‘Z’ vector of accelerometer
installed on trunk, (c) Y’ vector of accelerometer installed on trunk, (d) ‘Z’
vector of gyroscope installed on the right foot

VI. EMPIRICAL RESULTS

To evaluate our fast unsupervised event detection
algorithm, the fire and activity datasets described in Section V
are used in a simulation environment developed in Matlab®.
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We compare our algorithm with the standard K-means
algorithm described in Section III. Additionally, we
investigate the effect of the distance function used in the
algorithm and compare performance of the algorithm using
Euclidean distance, Manhattan distance (Equation 2), and
Malahanobis distance (Equation 5).

d; = =0T 1 (u—x) Equation (5)
Where, d; (j=1,2,...,k) is Malahanobis distance between x to L,
p is /xm matrix holding mean values of a population for
distance calculation and m is the number of features, S is
covariance matrix and x is the data in m dimensional space.

For the performance evaluation, we consider five metrics,
ie., (i) event detection accuracy, (ii) false alarm, (iii)
similarity calculation (using the Rand Index), (iv)
computational complexity, and (v) memory complexity. Table
I and II present our simulation results in terms of detection
accuracy and false alarm for the two datasets.

TABLE I: PERFORMANCE EVALUATION IN TERMS OF DETECTION
ACCURACY AND FALSE ALARM FOR THE FIRE DATASET

Technique Detection False Alarm
Accuracy

Modified K-me.ans using Manhattan 87.16% 12.84%
distance

Modified K-mgans using Euclidean 87.85% 12.15%
distance

Modified K-means using o o
Malahanobis distance 72,71% 27.29%
Standard K-means 88,41% 11,59%

TABLE II: PERFORMANCE EVALUATION IN TERMS OF DETECTION
ACCURACY AND FALSE ALARM FOR THE ACTIVITY DATASET

Technique Detection False Alarm
Accuracy

Modified K-means using o o
Manhattan distance 48,65% 31,35%
Modified K-me.ans using Euclidean 5031% 49.69%

distance

Modified K-means using o o
Malahanobis distance 45,42% >4,38%
Standard K-means 51,32% 48,68%
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Figure 5: Detailed classification of the fire dataset where the first row is
Standard K-means, the second row is Modified K-means using Manhattan
distance, the third row is Modified K-means using Euclidean distance, and the
forth row is Modified K-means using Malahanobis distance

Standing Sitting Walking

Cluster 2- Sitting

Cluster 1- Standing Cluster 3- Walking

Cluster 1- Standing Cluster 2- Sitting Cluster 3- Walking

rest. The modified K-means algorithm using Malahanobis is
the least accurate one.

One can noticed that the owverlaps of each class shown in
Figures 5 and 6 indicate the false alarm rate of the
classification process.

Figures 5 and 6 present the event detection accuracy of the
K-means and our modified K-means algorithms more clearly
by showing percentages of the correctly classified data
(detection rate) as well as wrongly classified data(false alarm).

Similarity calculation shows how similar the clustering
results are with the actual values. This similarity can be
calculated using the Rand Index presented by Equation 6.
Table III reports the Rand Index values for the standard K-
means and our modified K-means algorithms techniques.

B TP +TN
" TP+TN+FP+FN

RI Equation (6)
Where, R/ is Rand Index (0<RI<I, 0 means no similarity and
1 shows 100% similarity), TP is true positive, TN is true
negative, FP is false positive and FN is false negative.

As Table III shows, similarity between clustering results
and actual values for the standard K-means and the proposed
approach using Manhattan and Euclidean distances is almost
the same.

TABLE III: THE RAND INDEX FOR STANDARD AND MODIFIED K-
MEANS EVENT DETECTION TECHNIQUES

Cluster 1- Standing |  Cluster 2- Sitting Cluster 3- Walking

Cluster 1- Standing

Cluster 2- Sitting Cluster 3- Walking

Techniques Fire dataset Activity dataset
Modified K-means
using Manhattan 91,44% 65,77%
distance
Modified K-means
using Euclidean 91,90% 65,77%
distance
Modified K-means
using Malahanobis 81,81% 63,62%
distance
Standard K-means 92.27% 67,54%
Another metric to consider is the computational

complexity. The most time consuming part of a clustering
algorithm is calculating the distance. We ran 100 time
distance calculation in an HP laptop with Intel Dual Core 2,5
GHz CPU with 4 GB RAM. The average running time of
distance calculation for each algorithm is reported in Table IV.
It can be seen that calculation of the Manhattan distance is the
fastest and calculation of the Malahanobis distance is the
slowest. In fact, calculation of the Manhattan distance is 1.44
times faster than calculation of the Euclidean distance and
95.44 faster than calculation of Malahanobis distance.

TABLE IV: AVERAGE RUNNING TIME OF THE DISTANCE
FUNCTIONS

Figure 6: Detailed classification of the activity dataset where the first row is
Standard K-means, the second row is Modified K-means using Manhattan
distance, the third row is Modified K-means using Euclidean distance, and the
forth row is Modified K-means using Malahanobis distance

As it can be seen from Table I and II in the first instance
all algorithms have almost the same detection accuracy.
However, standard K-means performs slightly better than the

Distance Measurement Average Running Time

Manhattan distance 2.6033e-006 sec.

Euclidean distance 3.7490e-006 sec.

Malahanobis distance 2.4845e-004 sec.

The last metric to consider is the memory complexity to
get an idea about how much memory is needed for executing
the algorithm. Table V reports the memory complexity of our
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modified K-means algorithm versus the standard K-means
algorithm in terms of Big O notation.

TABLE V: MEMORY COMPLEXITY OF THE MODIFIED K-
MEANS AND THE STANDARD K-MEANS ALGORITHMS

Standard K-means f(n) =0[(n+ k)m]

Proposed algorithm f(n) =0(m x k)

Where , n is total data, m is dimension of data (number of features)
and k is number of clusters (or classes)

It can be seen from Table V that for the standard K-means
algorithm we need to store &£ means (k cluster centers) and the
entire data instances in an m dimensional table inside the
memory. For our modified K-means algorithm, we only need
to keep the tracking table in memory which is a table of &£
columns and m rows, where k£ is number of classes and m is
number of features. Memory complexity of the propose
algorithm is independent of number of inputs and therefore
occupies less space in memory.

VIL CONCLUSION AND FUTURE WORK

In this paper, we propose a modified version of the K-
means algorithm for fast unsupervised event detection in
WSNs. The advantage of our unsupervised event detection
technique is its ability to detect unknown events in absence of
a priori knowledge about event semantic and signature. It is
also simple in terms of memory and computation complexity.

To evaluate the proposed approach, two real datasets are
used and the algorithms are compared in terms of detection
accuracy, false alarm rate, computational complexity and
memory complexity. The results of these evaluations show
that compared with the standard K-mean algorithm, our
modified K-means algorithm using Manhattan distance is the
faster and also requires lesser memory. The detection
accuracy of both algorithms, however, remains (almost) the
same.

In our future work, we will explore the possibility and
usefulness of making the modified K-means algorithm
distributed. This will be done with the idea of making the
algorithm more accurate and achieving a better load balancing
in the WSNs.
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