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Abstract—This paper analyzes the influence of the antenna
orientation on the performance of Received Signal Strength (RSS)
based localization algorithms. Existing RSS-based localization
algorithms provide reliable results in environments with static
sources of error. This paper analyzes the performance of three
RSS-based algorithms in an environment with the antenna
orientation as a dynamic source of error. We first experimentally
verify that the antenna orientation has a large influence on the
received signal strength by performing an extensive amount of
measurements. As expected, these measurements show that the
signal strength may vary more than a factor five under different
antenna orientations. This paper shows that antenna orientations
may decrease the performance of optimally calibrated RSS-based
localization algorithms by as much as 32%, from 1.8 to 2.65

meter. In addition, it shows that improper calibration of the
antenna orientation may decrease the accuracy by 64%, from
1.9 to 3.1 meter.

I. INTRODUCTION

This paper focuses on localization in wireless networks. Lo-

calization in these networks describes the process of obtaining

a physical location in an automated manner using wireless

communication. Many wireless network applications rely on

location information to perform their tasks. Locations provide

context to the measured data (e.g. like measuring temperature);

localization can be a stand-alone application (e.g. asset track-

ing in a distribution center) or provides support to the network

service (e.g. routing). Today, such applications have evolved

into real-time location systems (RTLS) using a wide range of

wireless technologies. Many of these localization applications

are based on Received Signal Strength (RSS) measurements,

as RSS information is obtained without additional hardware

and energy costs. Other localization systems use techniques

like Time Difference Of Arrival (TDOA), Time Of Flight

(TOF), Ultra Wide Band (UWB) and Angle Of Arrival (AOA).

In general, these techniques are more accurate than RSS-

based localization, but require specialized hardware, more

processing, more communication and thus more energy (e.g.

[10]).

This paper focuses on RSS-based localization. It analyzes the

influence of the antenna orientation on the performance of

existing Received Signal Strength (RSS) based localization

algorithms ([3], [4] and [9]). Other examples that influence

the signal strength are reflections, obstacles, temperature

and humidity. Existing RSS-based localization algorithms use

propagation models to account for these influences. The per-

formance of these localization algorithms depend on how well

the propagation model is able to capture these environmental

influences. Figure 1 shows how existing RSS-based algorithms

calibrate the propagation model. The calibration takes place in

the “Calibrate nuisance parameters” phase. In this phase, the

propagation model is calibrated on the basis of the calibration

measurements. During the second phase, the “Localization”

phase, the position of the node is estimated, both on the basis

of the localization measurements as well as on the calibrated

propagation model. Hence, existing RSS-based localization

algorithms assume that the propagation model is calibrated

before the “Localization” phase. This implies that these RSS-

based algorithms provide the best results in environments with

static sources of error. In this paper, we analyze and focus on

the localization performance in environments with the antenna

orientation as the dynamic sources of error. Existing work on

calibration mainly focuses on:

• The difference between individual nodes (e.g. [5]). In-

dividual differences between nodes remain largely static

over time and can therefore be measured before localiza-

tion.

• Different sources of error that influence the optimal prop-

agation model settings as the antenna orientation (e.g.

[11] and [12]). However, these articles do not evaluate

any localization algorithms.

The main contributions of this work are:

• Quantify the influence of the antenna orientation on the

signal strength and the propagation model. Measurements

show that the signal strength may vary more than a factor

32 under different antenna orientations (16 dBm).

• Quantify the influence of dynamic antenna orientations on

the performance of existing RSS-based localization algo-

rithms. Measurements show that the antenna orientation

may decrease the performance of optimally calibrated
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Fig. 1. Existing Localization Approach
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Fig. 2. Measurement set-up

RSS-based localization algorithms by as much as 32%,

from 1.8 to 2.65 meter.

• Quantify the influence of improperly calibrated propaga-

tion models on the accuracy of existing RSS-based local-

ization algorithms. Measurements show that improperly

calibrated algorithms may decrease the performance by

as much as 64%, from 1.9 to 3.1 meter.

This paper is organized as follows. After a short overview of

existing RSS-based localization algorithms in Section II, we

present the localization and measurement set-up in Section III.

Section IV analyzes the influence of the antenna orientation

on the received signal strength and quantifies the resulting

changes in the propagation model. Section V analyzes the

influence of the antenna orientation on the performance of

existing RSS-based localization algorithms. Section VI sum-

marizes the results.

II. RELATED WORK

This section provides a short overview of existing RSS-

based localization methods. These localization methods are

fingerprinting, range-based and proximity-based localization.

• Fingerprinting:

Many RSS-based localization systems make use of fin-

gerprinting, first proposed by [3]. In the calibration phase,

the signal strength is measured from static infrastructure

nodes at several locations. The measurements, taken at

a particular position, represent the fingerprint of that

particular position. The localization area is thus divided

into a large set of positions and assigned fingerprints.

The stored fingerprints represent the parameters that are

calibrated in the calibration phase. The localization phase

consists of finding the closest match with the localization

measurements in the database of fingerprints. Fingerprint-

ing achieves a relatively high accuracy in static indoor

environments, as it copes with static sources of noise such

as walls that are common in indoor environments.

• Range-based Localization:

Range-based localization algorithms assume that the sig-

nal strength decay over distance follows a distribution

that is known a priori. This distribution is used for

converting one or several signal strength measurements

into distance estimates. These distributions often include

several parameters that try to capture the influence of the

environment which are calibrated in the calibration phase

(e.g. [4], [10] and [13]).

• Proximity-based Localization:

Proximity based localization algorithms assume that the

signal strength decays with increasing distance ([6], [8]

and [9]). The main difference with range-based algo-

rithms is that proximity-based localization only uses

the order of RSS measurements instead of converting

signal strength to distance estimates. The advantage of

proximity based localization algorithms is that they do

not require a calibration phase.

This paper evaluates one RSS-based Fingerprinting-, Range-

and Promixity-based localization algorithm under dynamic

antenna orientations.

III. LOCALIZATION AND MEASUREMENT SET-UP

This section first provides a formal description of the local-

ization problem. After the problem formulation, this section

provides a description of the measurement set-up. Consider a

wireless network that consists of N reference nodes and M

blind nodes:

• Reference nodes know their position in advance.

• Blind nodes do not know their location in advance.

This paper addresses the problem of positioning blind nodes

using signal strength measurements from several reference

nodes. We do not evaluate signal strength measurements



Fig. 3. Measurement environment Fig. 4. Two CC2430 radio’s

between blind nodes (like in [4] and [10]).

Figure 2 shows the measurement set-up used throughout this

paper. Here the nine triangles represent the reference node

locations; the crosses represent the blind node locations. The

measurements were conducted in an 15 × 15 meter open

indoor study environment with ten CC2430 radios ([15]). We

used nine CC2430 radios as reference nodes; these reference

nodes were static during and between the measurement rounds

(triangles). We used one CC2430 radio as blind node; this

blind node measured the RSS at 112 different locations

(crosses) to the reference nodes. The blind node measured 100
consecutive RSS measurements per frequency over a total of

38 frequencies and a bandwidth of 2408 . . . 2480 MHz. Figure

3 shows the indoor environment and Figure 4 shows two

CC2430 radios with casing. The reference nodes all had an

“omnidirectional” dipole antenna with a vertical orientation.

We performed two sets of measurement rounds on each

location in which the blind node had a vertical or a horizontal

antenna orientation (see Figure 4). The radios were placed

at the same height of two meters in order to minimize the

noise (e.g. [14]). All individual RSS measurements were sent

to a computer and logged for post-processing. The conditions

during the measurements were static (temperature, humidity,

no moving objects). Therefore, we consider this environment

as a static environment.

IV. CALIBRATION PROPAGATION MODEL

This section describes the calibration of the propagation

model on the basis of RSS measurements with different

antenna orientations. We use the Log-Normal Shadowing

Model (LNSM) for analyzing the signal strength over dis-

tance distribution. This model is widely used by RSS-based

localization algorithms (e.g. [4], [10] and [13]) and has shown

to be a reasonable representation of reality ([2]). The Log-

Normal Shadowing Model describes the signal strength decay

over distance that suffers from shadowing effects. This model

assumes that the received signal strength follows a log-normal

distribution. Both theoretical and measurement-based studies

support this assumption in indoor and outdoor environments

([2]). The following formula represents the Log-Normal Shad-

owing Model ([1]):

Pd = Pd0
− 10 · n · log

10
(

d

d0

) + XσdBm
(1)

Here:

• Pd represents the received signal strength in dBm at

distance d.

• Pd0
represents the received signal strength in dBm at

reference distance d0. In general distance d0 is relatively

small. For simplicity, we assume that distance d0 is 1
meter (see [2]). Pd0

depends on the transmission power

and the gain of the sending and receiving antenna. More-

over, it depends on the polarization of the received signal

relative to the orientation of the receiving antenna. This

basically means that Pd0
depends on the antenna orienta-

tion of the sender relative to the antenna orientation of the

receiver. Throughout this paper, we refer to this variable

by “Reference RSS”.

• n represents the Path Loss Exponent (PLE). The path

loss exponent represents the rate at which the path loss

increases with distance.

• σdBm represents the standard deviation of the received

signal strength due to shadowing effects and is invariant

with the distance ([2]). XσdBm
follows a zero-mean

normal distribution with standard deviation σdBm:

X ∼ N(0, σ2

dBm
) (2)
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Fig. 6. Error distribution, log-normal shadowing model

The Log-Normal Shadowing Model (LNSM) is basically a

scalar parametric model representing the electromagnetic field

intensities from emitting, reflecting and refracting media in the

so-called far-field zone. As long as those sources and media

do not move or change, the parameters can be determined

or calibrated using localization algorithms. In reality, emitters

have directional radiation patterns that are polarized perpen-

dicular to the direction of propagation. Media, including the

receiving antennas, are generally sensitive to the polarization

of the received signal strength. Hence, when the orientation

of the antennas of the blind nodes is changing, the received

signal strength changes. Hence, the Log-Normal Shadowing

model assumes that the angle between the reference and blind

node antenna remains equal.

Three major sources of error are multipath effects, shadowing

([1]) and hardware inaccuracies ([5]), assuming constant po-

larization effects. The multipath effect is usually minimized

by performing RSS measurements over a large frequency

bandwidth ([10]). The remaining errors are caused by the

attenuation of the signal due to obstructions (shadowing). In

our experimental set-up, we used line-of-sight measurements

to ensure that the major sources of error would be multipath

effects and hardware inaccuracies.

We performed two sets of measurement rounds on each

location in which the blind node had a vertical or a horizontal

antenna orientation. Figure 4 shows two nodes, one with a

horizontal and one with a vertical antenna orientation. A

sender/receiver pair with a vertical/vertical antenna orientation

maximizes the received signal strength; A sender/receiver pair

with perpendicular antenna orientations (vertical/horizontal)

minimizes the received signal strength. Figure 5 shows the

Log-Normal Shadowing Model fitting these real RSS measure-

ments. The red dots represent individual RSS measurements

with a vertical antenna orientation; the green dots represent

individual RSS measurements with a horizontal antenna orien-

tation. We distinguish three best fits that minimize the squared

residual between the measured and expected RSS using the

Log-Normal Shadowing Model, namely:

• The graph that fits the measurements made with a vertical

antenna orientation. The parameter values of this fit are:

{Pd0
= −21.6 dBm, n = 2.2, σdBm = 3.2 dBm}.

• The graph that fits the measurements made with a hori-

zontal antenna orientation. The parameter values of this

fit are: {Pd0
= −37.6 dBm, n = 1.5, σdBm = 3.4 dBm}.

• The graph that fits all measurements. The parameter

values of this fit are: {Pd0
= −29.6 dBm, n = 1.9,

σdBm = 5.9 dBm}.

The individual fits clearly show that even though we performed

RSS measurements over a frequency bandwidth of 74 MHz,

multipath effects are still significant sources of error.

Figure 6 shows the error distribution of the graph that fits

all measurements. Figure 6 clearly shows that the error dis-

tribution consists of two normal distributions. This is because

the graph that fits all measurements, fits two different Log-

Normal Shadowing models distinguished by the antenna orien-

tations. The measurements verify that the RSS is significantly

decreased by perpendicular antenna orientations, the reference

RSS (Pd0
) is decreased by a factor five (from −21.6 to −37.6).

Moreover, the measurements show that the path loss exponent

is decreased by 32% (from 2.2 to 1.5). We expect that this is

due to polarization effects.

V. PERFORMANCE OF LOCALIZATION ALGORITHMS

In this section we evaluate the performance of several

RSS-based localization algorithms by performing an extensive

amount of real measurements. Moreover, this section analyzes

to what extent the performance depends on the calibration

accuracy. We evaluate these algorithms in the set-up described

in Section III, and we use the parameter values for the Log-

Normal Shadowing Model calculated in Section IV. This
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Fig. 7. Calibration and Performance real measurements

section compares the following RSS-based localization algo-

rithms:

• Proximity-based localization algorithm: ECOLOCATION

([9], abbreviated by ECO). To our knowledge, ECOLO-

CATION provides the best performance of the RSS-based

proximity localization algorithms ([9]).

• Range-based localization algorithm: The Maximum Like-

lihood Estimator based on the Log-Normal Shadowing

model ([4], abbreviated by MLE). To our knowledge, [4]

provides the best results given the Log-Normal Shadow-

ing model (e.g. [4], [10] and [13]).

• Fingerprinting-based localization algorithm: RADAR

([3], abbreviated by RAD).

RADAR [3] put constraints on the position estimate, which

increases the performance. Therefore, we also put the same

constraints on the other localization algorithms in order to

make a fair comparison. Note that we picked one localization

algorithm per localization method described in Section II in

order to characterize the performance per localization method.

A. Calibration settings

We consider the following calibration settings:

• Optimal propagation model settings

These propagation model settings represent the real and

optimal propagation model settings that optimize the lo-

calization performance. The optimal propagation settings

are a function of the localization measurements.

• Calibrated propagation model settings

The calibrated propagation model settings represent the

propagation model settings that are used by the localiza-

tion algorithms. The calibrated propagation settings are a

function of the calibration measurements.

This means that the “Calibrated propagation model settings”

are equal to the “Optimal propagation model settings” when

the calibration measurements are equal to the localization

Abbreviation Localization measurements Calibration measurements

VER OPT VER VER
HOR OPT HOR HOR
VER BAD VER HOR
HOR BAD HOR VER
HOR/VER OPT HOR/VER HOR/VER

TABLE I
CALIBRATION APPROACHES

measurements. This section analyzes to what extent the per-

formance depends on the calibration accuracy by using dif-

ferent calibration/localization measurement pairs. This section

distinguishes between the same measurements as in Section

IV (see Figure 5), namely the measurements made with

a vertical/horizontal/vertical+horizontal blind node antenna

orientation. We refer to these measurements by respectively

“VER”,“HOR” and “HOR/VER”. On the basis of these mea-

surements, we distinguish between five calibration approaches

as given in Table I.

B. Performance

Figure 7 shows the performance of the three localization

algorithms associated with the five calibration approaches.

The vertical lines represent the calculated standard deviations.

Figure 7 shows that the performance of:

• ECO is independent of the localization/calibration mea-

surement pair. This is logical because ECO does not

require/use calibration measurements.

• MLE decreases with 63% with a badly calibrated propa-

gation model (∼ 1.9 to ∼ 3.1 meter).

• RAD decreases from ∼ 0 to ∼ 4.4 meter with a badly

calibrated propagation model. Moreover, RAD estimates

the real locations when the propagation model is opti-

mally calibrated (“VER OPT” and “HOR OPT”). This is



method Calibration Acc Static Acc Dynamic Acc

Fingerprinting - - + + -
Range-based - + -
Proximity + - -

TABLE II
LOCALIZATION METHODS

logical because there is one localization measurement per

blind node position per antenna orientation.

Figure 7 shows that the performance of ECO/MLE with

“VER OPT/VER BAD” is significantly better than “HOR

OPT/HOR BAD”. This is because the error is inherent to

the Log-Normal Shadowing model parameter settings. The

error increases linearly with the following ratio ([7]): Xσ

n
and

3.4

1.5
> 3.2

2.2
.

MLE and RAD outperform ECO with optimally calibrated

propagation models in environments with either a vertical or

horizontal antenna orientation. However, this performance gain

is decreased in an environment with both vertical and hori-

zontal antenna orientations. Hence, Figure 7 shows that ECO

provides similar results as MLE and RAD with “HOR/VER

OPT”. Moreover, ECO outperforms MLE and RAD when

they are badly calibrated, which clearly shows the strength

of ECO. Therefore, we expect that the performance of ECO

approximates the performance of optimally calibrated MLE

and RAD in a dynamic and thus more realistic environment.

Table II provides an overview of the performance of the

localization methods in relation to the following aspects:

• The Calibration Acc column represents to what extent the

performance depends on the calibration measurements.

• The Static Acc column represents how well the localiza-

tion method performs in environments with static sources

of noise.

• The Dynamic Acc column represents how well the local-

ization method performs in environments with dynamic

sources of noise.

The “+”/“-” represents that the localization method scores

good/bad on this aspect.

VI. CONCLUSION

In this study, we demonstrated that antenna orientation

has a large influence on the RSS and the performance of

existing RSS-based localization algorithms and methods by

analyzing an extensive amount of RSS measurements. This

large influence on received signal strengths is in line with the

well-known polarization effects of electromagnetic radiation

on media like antennas. We show that the calibration of the

propagation model has a large influence on the localization

performance. Optimally calibrated fingerprinting- and range-

based localization algorithms outperform proximity-based lo-

calization algorithms in an environment with one antenna

orientation. This is the other way around when the propagation

model is improperly calibrated. Moreover, proximity-based

localization algorithms provide similar results as optimally

calibrated fingerprinting- and range-based localization algo-

rithms in an environment with two different antenna orienta-

tions. The antenna orientation is one of many environmental

influences that influence the RSS and thus the localization

performance. Therefore, we expect that proximity-based lo-

calization algorithms provide similar results as optimally cali-

brated fingerprinting- and range-based localization algorithms

in more realistic environments with a variety of dynamic

sources of error.
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