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Abstract— Under-actuated robotic hands have multiple ap-
plications fields, like prosthetics and service robots. They are
interesting for their versatility, simple control and minimal
component usage. However, when external forces are applied
on the finger-tip, the mechanical structure of the finger might
not be able to resist them. In particular, only a subset of distur-
bance forces will meet finite compliance, while forces in other
directions impose null-space motions (infinite compliance).

Motivated by the observation that infinite compliance (i.e.
zero stiffness) can occur due to under-actuation, this paper
presents a geometric analysis of the finger-tip compliance of
an under-actuated robotic finger. The analysis also provides an
evaluation of the finger design, which determines the set of
disturbances that is resisted by finite compliance.

The analysis relies on the definition of proper metrics for the
joint-configuration space. Trivially, without damping, the mass
matrix is used as a metric. However, in the case of damping
(power losses), the physical meaningful metric to be used is
found to be the damping matrix.

Simulation experiments confirm the theoretical results.

I. INTRODUCTION

A new generation of full-service robots is being developed

for the domestic appliances market. Industry shifts towards

automated production of customized, small batch and short

life-cycle products [1]. And, also in prosthetics major break-

throughs are coming out [2]. In all of these application fields,

versatile robots are needed to execute a large range of varying

tasks in unstructured environments.

Many of these prospected tasks require to interact in

unstructured human environments and to deal with unknown

objects. A versatile end-effector, alike the human hand, is one

of the critical components for successfully developing this

new generation of robotic devices. Hence, dexterous robotic

hands that have human hand functionality and dimensions are

believed to be the required end-effectors. These dexterous

robotic hands should be able to grasp (ir)regular objects

(pinch and enveloping grasps) and to manipulate objects

and fingers (e.g. pre-shaping). Compromises on dimensions,

weights, complexity, reliability, functionality and costs com-

plicate the development of such robotic hands.

A novel minimal component biomimetic robotic finger

concept with variable compliance was introduced to alter

these complications [3]. The concept utilizes under-actuation

(inspired by [4] and [5]), which reduces both the number
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of heavy power actuators and the grasp control complexity,

while it improves versatility. Variable mechanical compliance

is added by antagonistic non-linear spring elements in the

driving tendons to further enhance task adaptability and grasp

robustness. Joint locks are used to restore full manipulability

for e.g. pre-shaping and gesturing. This human-inspired con-

cept is currently under investigation for versatile applications,

such as prosthetic hands.

The under-actuated driving mechanism results in a singular

transmission between the series elastic non-linear springs in

the tendons and the joints to be actuated. These singularities

complicate the compliance analysis of under-actuated fingers.

Nevertheless, thorough understanding of these properties is

crucial to utilize compliance in enhancing grasp robustness.

This paper aims to present compliance properties of under-

actuated robotic fingers and in particular the variable com-

pliance properties of the novel under-actuated robotic finger.

The paper is organized as follows. Section II summarizes

the model of the under-actuated finger presented in [3].

Section III analyzes the compliance properties of the under-

actuated finger. Then, Section IV complements the analysis

with a discussion on the choice of metrics and Section V

adds some design considerations. Presented theory is vali-

dated with simulation experiments in Section VI. The paper

finishes with conclusions and future work.

II. FINGER MODEL FOR COMPLIANCE ANALYSIS

Fig. 1 presents the model of the variable compliance

under-actuated robotic finger under investigation. The model

variables, as presented in Fig. 1 and used throughout the

paper, are listed below:

q: q ∈ Q ⊂ R
3 is the finger configuration (joint-

angles) on the configuration manifold Q.

q̇: q̇ ∈ TqQ is the time derivative of q, being elements

(vectors) of the tangent space of Q at q.

τ : τ ∈ T ∗

q Q are torques on the joints, being elements

(co-vectors) of the co-tangent space of Q at q.

s: s ∈ S ⊂ R
2 are the positions of the tendon.

ṡ: ṡ ∈ TsS are the time derivatives of s, being

elements (vectors) of the tangent space of S at s.

Fs: Fs ∈ T ∗

s S are the tendon forces, being elements

(co-vectors) of the co-tangent space T ∗

s S at s.

ℓ: ℓ ∈ L ⊂ R
2 are the elongations of the non-linear

elastic elements.

ℓ̇: ℓ̇ ∈ TℓL are the time derivatives of ℓ, being

elements (vectors) of the tangent space of L at ℓ.

Fℓ: Fℓ ∈ T ∗

ℓ L are the elastic forces equal to Fs.

We: We ∈ se∗(3)H(t) is the externally applied

wrench (generalized 6 d.o.f. force) on the finger-
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Fig. 1. Model of variable compliance under-actuated robotic finger. Input positions z are controlled by a position controller. Non-linear elastic elements
(denoted by N.L. with lengths ℓ1, ℓ2) are used in the series elastic antagonistic tendon drives. The tendons are routed about the idle pulleys with radii r1

and r2 and about the fixed pulley (fixed to distal phalanx, i.e. finger-tip) with radius r3. The lengths of the phalanges are captured in λi, i ∈ {1, 2, 3}.
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Fig. 2. Model variables; The three joint-angles q1, q2, q3 form a natural
coordinate base to span the configuration space Q.

tip (3rd phalanx). The wrench space se∗(3)H(t) =
T ∗

H(t)SE(3) is the co-tangent space of the group

of rigid transformations H(t), called SE(3), which

denotes the special Euclidian group, at rigid trans-

formation H(t) [6].

T : T ∈ se(3) is the twist (generalized 6 d.o.f. rigid

body motions) of the finger-tip. The twist space

se(3)H(t) = TH(t)SE(3) is the tangent space of

SE(3) at H(t) [6].

u: The inputs u ∈ TzZ represent the velocities in the

tangent space TzZ of the tendon actuation position

space Z ⊂ R
2 at z ∈ Z (i.e. u = ż).

Fig. 2 shows the listed variables as elements of different

spaces and their inter-relating mappings. The function fq :
Q → SE(3) maps the joint configuration into a rigid body

transformation for the finger-tip, while fs : Q → S maps the

joint configuration to the tendon positions. The three joint-

angles q1, q2, q3 span the bases of the configuration space Q,

which results in the following equation for fs(q):

fs(q) :

{

s1 = r1 · q1 + r2 · q2 + r3 · q3

s2 = −r1 · q1 − r2 · q2 − r3 · q3
. (1)

The differential mappings (Jacobians) of fq and fs relate

the tangent and co-tangent spaces in a dual manner. The

geometric Jacobian Jq(q), with short notation Jq := Jq(q),
defines the tangent map and dually the co-tangent map [6]:

Jq : TqQ → se(3) (T = Jq · q̇)
JT

q : se∗(3) → T ∗

q Q (τT = JT
q · WT

e )
. (2)

The actuation Jacobian Ja defines the (co-)tangent maps

between the finger configuration and tendon position spaces:

Ja : TqQ → TsS (ṡ = Ja · q̇)
JT

a : T ∗

s S → T ∗

q Q (τT = JT
a · FT

s )
. (3)

III. FINGER-TIP COMPLIANCE ANALYSIS

The finger-tip compliance matrix (Cf ) under investigation

defines the infinitesimal finger-tip displacement δT ∈ se(3)
(i.e. infinitesimal deformation twist) of the finger in response

to an externally applied infinitesimal wrench δWe ∈ se∗(3)
around an equilibrium:

δT = Cf · δWT
e , (4)

where δT = T ·dt = Jq ·δq and δq ∈ TqQ is an infinitesimal

joint displacement around an equilibrium configuration [7].

For the compliance analysis, the controller inputs remain

constant, i.e. u = 0. Note that, since the controller inputs u
are fixed at position z, the tendon positions s are equal to

the elongations ℓ of the elastic elements. In this case ṡ = ℓ̇,

such that from Eq. 3 it follows that ℓ̇ = Ja · q̇.

The analysis is divided into three parts. First, the finger-tip

compliance problem is solved by decomposing the configu-

ration space into two sub-spaces. Then, it is shown for which

wrenches the compliance remains finite. These insights also

reveal some design considerations. Finally, a proper choice

of metric for the decomposition is discussed.

A. Variable finger-tip compliance

Joint compliance matrix Cq is defined by δq = Cq ·
δτT , where δτ ∈ T ∗

q Q are the infinitesimal joint torques

around some equilibrium. Assuming existence of Cq, pre-

multiplication with Jq and substitution of δτT = JT
q · δWT

e

(Eq. 2) leads to δT = JqCqJ
T
q · δWT

e , such that

Cf = JqCqJ
T
q . (5)

The tangent mapping Ja is non-invertible due to under-

actuation. Hence, there is no trivial expression for the joint-

compliance Cq [3]. Alternatively, its inverse, the joint stiff-

ness Kq, defined through δτT = Kq · δq, was found to be

the pullback of ∂2Hℓ

∂ℓ2
(ℓ) for the map fs(q) [3];

Kq = JT
a ·

∂2Hℓ

∂ℓ2
(ℓ) · Ja, (6)
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Fig. 3. Visualization of coordinate change by ker(Ja). TqQ is decom-

posed into N and N⊥, s.t. TqQ = N⊕N⊥. Subspace N is the null-space
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and Hℓ is the energy storage function of the elastic elements

in the driving tendons.

To find an intuitive expression for K̃q that allows to

resolve the finger-tip compliance Cq, new coordinates q̃ are

chosen by defining a coordinate transformation R on TqQ:

δq = R · δq̃, (8)

where δq, δq̃ ∈ TqQ are expressed in different coor-

dinates; i.e. the original physical joint angle coordinates

q = (q1, q2, q3) and new coordinates q̃ = (q̃1, q̃2, q̃3). The

columns in R form the new set of base vectors that spans Q
expressed as vectors in the joint angle coordinates q. Dually,

R−T on T ∗

q Q gives δτ = R−T · δτ̃ .

This coordinate transformation results in a joint stiffness

K̃q in the new coordinates q̃:

K̃q = RT · Kq · R, (9)

such that δτ̃T = K̃q · δq̃. Hence,

δτT = R−T · K̃q · R
−1 · δq. (10)

B. Joint space decomposition

In order to choose a helpful coordinate transformation, the

following understanding is important. Some directions, δq ∈
ker Ja, project through Ja to zero displacement in ℓ̇, which

corresponds to zero stiffness. Other directions (δq /∈ ker Ja)

do impose a change in elongation in the elastic elements,

which reflects finite stiffness.

Hence, the mapping Ja is used to decompose TqQ into

subspace N and N⊥, such that TqQ = N ⊕ N⊥. This is

visualized in Fig. 3. Subspace N is the null-space of Ja:

N = ker Ja =: span (n1, n2) ,

while N⊥ = span(n⊥) is its reciprocal space. The vectors

n1, n2, n
⊥ ∈ TqQ are expressed in joint coordinates q.

Reciprocality in TqQ is defined by the weighted inner

product on TqQ being equal to zero. The weighted inner

product on TqQ is:

u < • >Mq
w = uT Mqw u,w ∈ TqQ,

where Mq is a metric on TqQ. Using this inner product

definition, n⊥ is found to be:

n⊥ = M−1
q · Im

(

JT
a

)

. (11)

Thus, R becomes

R =
(

n1 n2 n⊥
)

=
(

n1 n2 M−1
q v

)

, (12)

where v = Im
(

JT
a

)

∈ T ∗

q Q.

Expressing the infinitesimal finger displacement in the new

coordinates (δq̃) immediately shows whether there are null-

space motions or reciprocal motions:

δq̃null−space =





•
•
0



 ∈ N , δq̃reciprocal =





0
0
•



 ∈ N⊥,

where • represents some non-zero number.

Using the presented coordinate transformation R, K̃q is

found to be:

K̃q = RT · Kq · R

= RT · JT
a ·

∂2Hℓ

∂ℓ2
(ℓ) · Ja · R

=





0 0 0
0 0 0
0 0 β



 , (13)

with

β =

(

∂2Hℓ

∂ℓ21
(ℓ1) +

∂2Hℓ

∂ℓ22
(ℓ2)

)

·
(

vT M−1
q v

)2
, (14)

which clearly shows that stiffness is only reflected in the

reciprocal directions, which turns out to be β (Eq. 13).

Whereas, null-space motions experience zero stiffness

(Eq. 13), i.e. infinite compliance.

Interestingly, the stiffness is the sum of the parallel

linearized stiffnesses of the non-linear elastic elements in

the driving tendons multiplied by the square of a weighted

transmission. This is recognized as how generally stiffness is

reflected through transmissions. The weighting metric used

here is the dual metric of the metric Mq on TqQ, i.e. M−1
q

on the space of torques T ∗

q Q to which v belongs.

As noted, torques in the null-space directions will excite

infinite motions. With Eq. 13, the joint stiffness relation

(Eq. 10) becomes:

δτT = R−T





0 0 0
0 0 0
0 0 β



R−1 · δq.

Hence, for the joint compliance, which is inversely related

to Kq, the following is concluded:

Cq =

{

R · 1
β
· RT ∀δτT ∈ Im(JT

a )

∞ ∀δτT /∈ Im(JT
a )

, (15)

such that the finger-tip compliance (Eq. 5) becomes

Cf =

{

JqR · 1
β
· RT JT

q ∀JT
q δWT

e ∈ Im(JT
a )

∞ ∀JT
q δWT

e /∈ Im(JT
a )

, (16)
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Fig. 4. External wrench We applied at some contact point on finger-tip. Local coordinates Ψc are placed at the contact point. We maps to torques on
the joints. This mapping depends on geometric parameters: location of contact point (xc and yc) and lengths of the first two phalanges, λ1 and λ2.

which shows that for JT
q δWe that have elements in the null-

space of Ja, infinite twists δT will be induced, implying

infinite compliance. Hence only finite compliance exists for

a limited set of wrenches Wc:

Wc = {δWe ∈ se∗(3)|JT
q δWT

e ∈ Im(JT
a )}. (17)

Eq. 14 and Eq. 16 confirm that if the elastic elements are

non-linear, then the finger-tip compliance can be altered by

changing their lengths ℓ.

IV. PHYSICALLY CONSISTENT METRIC (Mq)

The previous section presented the finger-tip compliance

analysis. The specific choice of coordinate transformation R
on TqQ allows to decompose the joint space Q to describe

the finger-tip compliance Cf in Eq. 16. The new coordinates

q̃, span by base vectors n1, n2 and n⊥, split the space TqQ
into two parts, based on the kernel of the tangent mapping

Ja (N ) and its reciprocal space (N⊥), see Fig. 3.

The expression for Cf is given in Eq. 16, which depends

on the choice of metric Mq. Hence, the calculated value

of the compliance does change for different metrics. Of

course, in reality, only one compliance value exists. Thus,

to find physically meaningful compliance values, the correct

metric must be used. The correct metric defines a physically

meaningful measure for which nature tries to minimize, as

discussed in [8], [9].

In robotics, the dynamics are often described by (ignoring

gravity) M(q)q̈ + C(q, q̇)q̇ = τ , where M(q) is the mass

matrix and C(q, q̇) the Coriolis matrix and a damping term

is left out of the equations. For these systems, it turns out to

be trivial to use M(q) as the physically meaningful metric on

TqQ, since q̇T M(q)q̇ represents kinetic energy [9]. However,

it is not always trivial to find such a metric [9]. For the case

in which damping is modeled in the mechanism dynamics,

no metric was found in literature.

For the robotic finger, it was observed in simulation (as

modeled in [3]), that the metric Mq to be used appears to

be different for two cases: without and with damping on the

joints. Damping torques τb on the joints are modeled by:

τb =





b1 0 0
0 b2 0
0 0 b3



 · q̇ = B · q̇. (18)

The metric to be used is discussed for both cases:

1) Without damping: any external wrench δWe ∈ Wc

induces vibrations in the join motions q around an

infinitesimal displacement of the equilibrium configu-

ration δqe. In this case, δqe is analytically determined

by δqe = Cq · JT
q · δWT

e , with Cq described in Eq. 15

and the metric Mq = M(q), the mass matrix of the

finger dynamics. This coincides with [9].

2) With damping: any external wrench δWe ∈ Wc induces

a steady state infinitesimal displacement of the equilib-

rium configuration δqe. In this case, δqe is analytically

determined by δqe = Cq ·JT
q ·δWT

e , with Cq described

in Eq. 15 and the metric Mq = B, the damping matrix

of the finger dynamics (Eq. 18).

Note that damping B is a physically meaningful metric on

TqQ, since q̇T Bq̇ represents power loss due to damping in

the joints. Power losses are minimized by nature.

V. UNDER-ACTUATED FINGER DESIGN CONSIDERATIONS

Besides an expression for the finger-tip compliance, Sec-

tion III also indicated that finite compliance is only reflected

against a limited set of finger-tip wrenches, i.e. δWc (Eq. 17).

This section investigates which wrenches actually admit

δWe ∈ Wc and presents derived design considerations.

A. Finite Compliance Wrenches: δWc

Fig. 4 shows the kinematics of the situation under in-

vestigation. An external wrench We is applied at some

contact point on the finger-tip, parameterized by distances

xc and yc. Expressing We in local coordinates Ψc, gives:
cWe = (τx τy τz fx fy fz), where the first three

elements are moments about the coordinate axis of Ψc and

the remaining three elements represent a force, expressed as

vector in Ψc. All non-zero moments and forces in We are the

moments and forces that are transmitted through the contact

and will impose torques on the joints.

To find an expression for the joint torques, the coordinates

of We are changed to those in which the Jacobian mapping

(JT
q ) is expressed, e.g. the fixed world coordinate frame Ψ0,

by applying the adjoint mapping [6]:

0WT
e =

(

adHc
0

)T cWT
e .



With Eq. 2, the torques on the joints as a result of We at a

contact point (xc, yc) on the finger-tip are found to be:

τe = JT
q δWe

=













fysq3λ2 − fxcq3λ2 + fycq3sq2λ1 − fxyc

−fxcq3cq2λ1 + fxsq3sq2λ1

+fysq3cq2λ1 + fyxc + τz

fysq3λ2 − fxcq3λ2 + τz − fxyc + fyxc

τz − fxyc + fyxc













.

(19)

Hence, to have δWe ∈ Wc for a certain configuration q, it

must hold that τe ∈ Im(JT
a ).

B. Finger Design Trade-off

For the under-actuated finger under consideration, shown

in Fig. 1, this implies that the following design trade-off

equality must hold:

a ·





r1

r2

r3



 =













fysq3λ2 − fxcq3λ2 + fycq3sq2λ1 − fxyc

−fxcq3cq2λ1 + fxsq3sq2λ1

+fysq3cq2λ1 + fyxc + τz

fysq3λ2 − fxcq3λ2 + τz − fxyc + fyxc

τz − fxyc + fyxc













,

(20)

with a ∈ R some scalar multiplier, i.e. actuation force.

Hence, the design parameters λi (phalanx lengths) and ri

(pulley radii) together with the contact point (xc, yc) and

the applied contact forces (fx, fy, τz) all together determine

whether the applied force meets finite compliance. Note that

these forces are also forces that can be transmitted from the

actuators to the contact point. Clearly, designing the robotic

finger for a specific robotic hand involves considering which

forces (in which configurations) have to be generated and

need to be resisted with finite compliance.

As an example: suppose that for the targeted robotic

grasping task it is required to compliantly resist a external

force along the x axis of Ψ0 (i.e. cWe = (0, 0, 0, fx, 0, 0)
at the finger tip (yc = λ3, xc = 0) in a straight finger

configuration (q = 0). Then the design trade-off equality,

Eq. 20, becomes:

n ·





r1

r2

r3



 =





−(λ2 + λ3 + λ1)
−(λ2 + λ3)

−λ3



 · fx, (21)

which shows that the design must hold:

r1

λ2 + λ3 + λ1
=

r2

λ2 + λ3
=

r3

λ3
.

This general design analysis coincides with the equilibrium

point observations in [5]. After the design is fixed, in other

configurations, other contact points on the finger-tip and

other external wrenches are necessary to admit δWe ∈ Wc.

VI. VALIDATION BY SIMULATION

A. Method

The theoretical results of the previous section are proved

by simulation experiments. A dynamic model of the under-

actuated finger as sketched in Fig. 1 and 4 was created with
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Fig. 5. Case-1: No damping. Infinitesimal joint displacement δq due to
external disturbance δWe: simulated response [solid line] vs. analytically
determined response [dashed line], using metric: Mq = M(q).

the port-based simulation package 20-sim1. The following

design parameters were chosen: λ1 = λ2 = λ3 = 0.04
m, r1 = 0.01, r2 = 0.00666, r3 = 0.00333 m. For the

experiments, the non-linear elastic elements were simulated

with two linear springs with stiffnesses k1 = 100 N/m,

k2 = 10, 000 N/m.

In the simulation experiments an external infinitesimal

wrench δcWe = (0, 0, 0, 0.01, 0, 0) N is applied at xc =
0, yc = λ3 = 0.04 m on a straight finger configuration q = 0
rad., such that the design trade-off equality from the example,

Eq. 21, is satisfied. The external force δcWe is applied as

step-function, induced at t = 0.1 s.

The goal of the simulation experiments was to investigate

the infinitesimal equilibrium displacement δqe after applying

δcWe for different values of damping (b1, b2, b3), phalanx

masses (m1,m2,m3) and phalanx moments of inertia about

the out-of-plane axis in the center of mass of each phalanx

(Iz1, Iz2, Iz3). For each test-set is was verified whether

the experimentally determined δqe could be analytically

explained by using the metric Mq = M(q) or Mq = B.

Some representative simulation experiments are discussed.

For this set of results, the masses of the phalanges were

chosen to be m1 = 0.1,m2 = 0.4,m3 = 0.2 kg and

the moments of inertia Iz1 = 1e−5, Iz2 = 4e−5, Iz3 =
2e−5 kgm2. Representative means that equal results were

obtained for other parameter values and mass distributions.

Two distinct cases are investigated: no damping (case-1)and

with damping (case-2). Also varying compliance with non-

linear elastic elements is investigated.

B. Results

1) No-damping: Fig. 5 shows the response of the in-

finitesimal joint displacement for the case without damping

in the joints. The plot shows that the vibrations are exactly

symmetrically around the analytically determined δqe, which

confirms that the metric to be used should be the mass matrix

of the finger dynamics M(q).
2) Damping: Fig. 6 shows the response of the infinites-

imal joint displacement for the case with damping in the

1see http://www.20sim.com
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Fig. 6. Case-2: Damping (b1 = 0.001, b2 = 0.0001, b3 = 0.0001
Ns/m). Infinitesimal joint displacement δq: simulated response [solid line]
vs. analytically determined response [dashed line], using metric: Mq = B.
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Fig. 7. Case-2: Little Damping (b1 = 1e−5, b2 = 1e−6, b3 = 1e−4

Ns/m, δcWe = (0, 0, 0, 0.0001 N, 0, 0)). Infinitesimal joint displace-
ment δq: simulated [solid line] vs. analytically determined response, using
metric: Mq = B [dashed line] and Mq = M(q) [dashed-dotted line].

joints. The plot shows that the simulated joint displacements

exactly converge to the the analytically determined δq. This

confirms that the metric to be used, for this case, should be

the joint damping matrix of the finger B.

Also Fig. 7 confirms that even for small damping values

the metric to be used must be B. The figure also shows that

the mass matrix M(q) as a metric gives incorrect results.

Both cases also confirm that the design trade-off equality

from the example Eq. 21, is satisfied for the applied wrench,

such that equilibrium is truly reached.

C. Variable Compliance

The results so far have shown the existence of finite

compliance and confirmed the analytically determined com-

pliance. It was also experimentally tested and verified in

simulation that the compliance can be varied by changing

the input position z if non-linear elastic elements are used,

as shown in Fig. 1. Fig. 8 shows the simulation result for

no damping on the joints, using the metric M(q). In case of

damping on the joints, similar, but damped, responses were

observed which are analytically described through Mq = B.

The two identical non-linear elastic elements were mod-

eled by Fℓ = k · ℓ2, with k = 100 N/m and sufficient

pretension (z1 = z2 = 1 m) to prevent ℓ ≤ 0 m. The input

positions z1, z2 are driven in common mode and change in

two smooth steps from 1 to 3 to 5 m.

Fig. 8 shows that the frequency changes after each input

change, which confirms the variation of the compliance.
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Fig. 8. Changing position z alters compliance (No damping, δcWe =
(0, 0, 0, 0.0001 N, 0, 0)). Infinitesimal joint displacement δq: simulated
response [solid line] vs. analytically determined response [dashed line],
using metric: Mq = M(q).

Furthermore, it is confirmed that also for changing input

positions, the analytically determined δqe indeed corresponds

to the simulated response.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the analysis of the finger-tip compli-

ance of an under-actuated robotic finger, based on geometric

decomposition of the configuration space into a subspace of

null-space motions (infinite compliance) and its reciprocal

space of finite compliance displacements. For the decom-

position a physical meaningful metric was found for two

separate cases: dynamics with and without damping. The

compliance analysis was confirmed by simulation results for

both cases. Finally, the variability property of the compliance

was confirmed by simulation and shown to be in accordance

with the theoretical results. Additionally, a design trade off

was formulated to optimize the robotic design for external

wrenches which need to be altered with finite compliance.

In future work, the authors plan to validate the presented

results on a test-setup. Furthermore, the theoretical results

will be integrated into the design of an impedance controller.
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