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Abstract—Motivated by the high variation in transmission
rates for document transfer in the Internet and file down loads
from web servers, we study the buffer content in a queue with a
fluctuating service rate. The fluctuations are assumed to be driven
by an independent stochastic process. We allow the queue to be
overloaded in some of the server states. In all but a few special
cases, either exact analysis is not tractable, or the dependence of
system performance in terms of input parameters (such as the
traffic load) is hidden in complex or implicit characterizations.
Various asymptotic regimes have been considered to develop
insightful approximations. In particular, the so-called quasi-
stationary approximation has proven extremely useful under the
assumption of uniform stability. We refine the quasi-stationary
analysis to allow for temporary instability, by studying the
“effective system load” which captures the effect of accumulated
work during periods in which the queue is unstable.
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I. INTRODUCTION

Document transmissions in the Internet and file down loads

from web servers commonly experience high variation in

transmission rates, due to concurrence of other data traffic

flows [11]. In particular, in the context of TCP-driven traffic

flows, which are responsive to temporary network congestion,

the transmission time is highly affected by the presence of

other applications (e.g., voice, video, streaming data) that

rely on unresponsive transport protocols such as UDP. In the

queueing theory community, it has long been recognized that

service unreliability has a decisive effect on the perceived

performance [17]; this is known as Ross’ conjecture. For a

model similar to ours, with exponential durations of high and

low service rates, [10] confirm this conjecture.

There is a rich variety of models in which the available

service rate alternates between a positive value and complete

absence of service, including unreliable servers, server vaca-

tions and service failures [7], [19]. These models allow for

quite explicit and closed form solutions for many performance

measures or structural decomposition results [9]. The situation

changes completely when the service rate can vary between

several positive values. For the class of Markovian queueing

models with a G/M/1 structure, which gives rise to matrix-

geometric stationary measures, there are efficient solutions to

numerically determine these measures [13].

Various approaches have been developed to capture the

essential dependence of the system performance in terms of

parameters such as arrival rates, service rates, etc. One very

successful line of research was the analysis through time-scale

decomposition. In short, this approach consists of studying the

system performance in two limiting regimes. One extreme,

coined the fluid regime [5], in which the dynamics of the

modulating environment is sped up to infinity, which in case of

independent modulating processes, is equivalent to replacing

the server by one working at constant speed equal to the

original average speed. This approach in general tends to be

much too optimistic and the thus obtained performance may

not be approached even by far in the system with stochastic

variations. The other extreme, the “quasi-stationary” regime, is

obtained by assuming that capacity fluctuations are infinitely

slow compared to traffic dynamics. This approach tends to

be much too pessimistic and does not serve as a useful

approximation in general either. A further complication is

that the quasi-stationary limit has no sensible meaning if the

service rates are below the arrival rate for some states of the

environment.

Our work is strongly motivated by [11], who point out that

in practice uniform stability (i.e., assuming that the service

rate is larger than the arrival rate at all times) is not realistic.

The authors conclude that no sensible stationary analysis

can be done for such systems and focus on time dependent

performance of the system, using a time-acceleration technique

[14] similar to the time-decomposition mentioned above.

Another line of related literature concerns the investigation

of the time needed to recover from a temporary overload

situation [6], [16], [12]. These works focus on transient,

rather than stationary, analysis. Our approach is also related

to pointwise stationary fluid models, see for example [3].

The focus of our work is on the influence of the random

environment on an otherwise elementary queueing system

(a single server queue), whereas [3] study a more complex

network scenario without random environment.
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We study the buffer content in a queue with a fluctuating ser-

vice rate that depends on the state of an exogenous stochastic

process. This process can, for instance, model the number of

transfers of unresponsive data flows in the Internet. For some

states of the random environment the arrival rate of the queue

may be larger than the service rate. If these overload periods

are relatively long – compared with the time scale of the arrival

process – performance can be very poor, manifesting itself

in typically large queues and long delays, even if the load

is far below the average service capacity. From a practical

perspective, however, such a system can be thought of as being

nearly unstable. With this in mind, we aim at determining

the “effective” stability of the system, which incorporates

the adversarial effect of slow service rate fluctuations on

performance. We do so by complementing the quasi-stationary

limit with a fluid queue [18] – not to be confused with the

fluid limit – to capture the effect of accumulated work during

periods in which the queue is unstable. Our results rely on a

detailed analysis of the recovery time, i.e., the time needed to

recover from the excess load after a low rate period that may

include multiple stable periods.
The remainder of the paper is organized as follows. We first

describe various related models in Section 2 and subsequently

discuss the notion of effective load in Section 3. The quasi

stationary limit with temporary instability is the subject of

Section 4. We conclude in Section 5.

II. MODELS

We consider a queue with Poisson arrivals at rate λ and

exponentially distributed service requirements with mean 1.

The service rate process {μ(t), t ≥ 0} fluctuates over

time according to a stochastic process that is assumed to be

independent of all inter-arrival times and service requirements.

We will consider two cases: a Markov modulated service rate

process and a high-low service process with generally dis-

tributed times of high and low service rates. For all realizations

of the service rate process the sample paths are continuous and

differentiable almost everywhere, except on a countable set of

isolated points with measure 0.
For the Markov modulated queue, the service rate process

{μ(t), t ≥ 0} is modulated by an independent irreducible

Markovian background process {M(t), t ≥ 0} with state

space M = {0, 1, ...,m}, for some m ∈ N, and equilibrium

distribution πi, i ∈ M. When the background process is

in state i (i.e., if M(t) = i) the service rate at time t
is μ(t) = μi, i ∈ M. The states i ∈ M for which

ri := λ − μi > 0 are called the low service rate states for

which the instantaneous load λ/μi exceeds 1, and the queue

length has a positive drift. When ri < 0, the states i ∈ M
are called high service rate states, and the queue length has

a negative drift. It is convenient and not very restrictive to

assume ri �= 0. (Extension to the case with ri = 0 for one or

more states i requires additional notational burden and minor

technical details.) The usual stability condition for the queue
is

∑m
i=0 πiri < 0, which can be interpreted as the mean drift

of the queue being negative (e.g., see [18]).
A particularly convenient special case is obtained when

there is some k ≥ 0 so that ri ≡ a for all i ≤ k and ri ≡ b

a
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Fig. 1. Service rates in the alternating high-low model
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Fig. 2. A typical sample path of the queue-length process in the alternating
high-low model

for all i > k. For carefully selected rates of {M(t), t ≥ 0}
we then have a phase-type distribution for the high and low

service rate periods. This setting will allow for more explicit

analysis. A further special case is the on-off model for which

b = 0.

The high-low model will be used throughout to illustrate

our results. In that case we focus on a slightly different model

that allows for generally distributed periods of high and low

service rates. For the high-low model the service rate process

alternates between a high and a low value, see Figure 1. For a

given realization of the service rate process, we let {si, ti}i∈N

be the sequence of time points where the service rate switches

from the low service rate to the high service rate for the ith

time (time si) and the first epoch thereafter that it switches

back (time ti). We assume that 0 = s1 < t1 < s2 < t2 < s3 <
t3 < · · · , and let the time-dependent service rate be given by

μ(t) = a if t ∈ [si, ti), and μ(t) = b if t ∈ [ti, si+1), for some

i ∈ N and assume that a > λ > b ≥ 0. Let Ai = ti − si be

the length of the i-th interval in which the server works at the

higher rate a; and Bi = si+1−ti the i-th interval in which the

server works at the lower rate b. We assume that the sequences

{Ai}i and {Bi}i are two i.i.d. sequences, independent of each

other. Note that this last independence assumption need not be

satisfied by the above mentioned Markovian high-low model.

The usual (long-term) stability condition reads

λ <
EA

EA + EB
a +

EB

EA + EB
b. (1)
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We will be particularly interested in the case where λ is

large, such that a very large number of arrivals occur during the

typical durations of high rate and low rate periods. In Figure 2

we depict a typical realization of the queue length process for

the high-low model. The service rate starts off in the higher

value a and the process shows stationary behavior. As soon

as the service rate switches to the lower value b the queue

starts building up. The instantaneous load ρ(t) = λ/μ(t) then

exceeds the value 1, i.e., the queue is temporarily unstable. The

major trend is characterized by the linear drift λ− b, but due

to the randomness in the arrival and service processes (both

Poissonian) there are fluctuations around the linear trend. The

top of the curve corresponds to a time instant at which the

service process switches back to the high rate. With the linear

trend being negative (λ − a < 0), it takes a while for the

process to reach the level of the typical stationary behavior

under the high service rate. Roughly speaking, this recovery
period lasts until the linear trend hits the horizontal axis.

The main message of Figure 2 is that there are three types of

periods during which the queueing dynamics are intrinsically

different: (i) instability periods (when the service rate is low

and the queue builds up), (ii) recovery periods (when the

service rate is high, but the queue has not yet recovered from

an instability period), and (iii) quasi-stationarity (the queue

behaves as if the service rate is always high). These periods

will be characterized via their “effective” load. It is crucial to

note that some high rate periods may be too short to recover

from instability, i.e., a recovery period may be interrupted by

one or more instability periods.

III. EFFECTIVE LOAD

The effective load at time t captures the ability of the queue

to drain the workload built up until time t, and is defined as

(see [11]):

ρ∗(t) ≡ sup
0≤s<t

∫ t

s
λ(r)dr∫ t

s
μ(r)dr

= sup
0≤s<t

(t− s) · λ∫ t

s
μ(r)dr

. (2)

The effective load will be the basis in determining whether

at a given time the queue can be characterized via the

quasi-stationary limit. Note that, since the service rates μ(t)
constitute a random process, the effective load itself is a

random process. As we will see later, the distribution of ρ∗(t)
can be obtained from that of the workload in the associated

Markov modulated fluid queue with constant fluid arrival rate

λ and drain rate μ(t). We will say that the queue is effectively
unstable at time t when ρ∗(t) ≥ 1, and effectively stable at

time t when ρ∗(t) < 1.

As an illustration we have depicted the effective load in

Figure 3, for the alternating high-low model with high and

low periods of deterministic length 1, and with λ = 3
2 , a = 4,

b = 4
5 . The instantaneous load ρ(t) is 0.375 during high-rate

periods, and 1.875 during low-rate periods.

A. Markov modulated queue

For the Markov modulated queue the distribution of ρ∗ can

be obtained via the relation with a fluid queue as follows.
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Fig. 3. Example of the effective load function ρ∗(t) (marked with squares)
and the instantaneous load ρ(t) (solid step function).

Proposition 1: For the Markov modulated queue, for all

x > 0, t ≥ 0

P (ρ∗(t) > x) = P (Wx(t) > 0),

where Wx(t) is the fluid content at time t in the associated

Markov modulated fluid queue with arrival rate λ and service

rate xμ(t), that is the solution of

dWx(t)
dt

=
{

0 if Wx(t) = 0, λ < xμM(t)

λ− xμM(t), otherwise.

Proof From the definition of ρ∗(t) in (2) we observe that

the following are equivalent:

ρ∗(t) > x ⇔ ∃s ∈ [0, t) :
∫ t

s

λ(r)dr − x

∫ t

s

μ(r)dr > 0

⇔ sup
0≤s<t

{∫ t

s

λ(r)dr − x

∫ t

s

μ(r)dr

}
> 0

for x ∈ R+. The supremum can be interpreted as

a workload process, e.g., see [2]. In fact, Wx(t) =
sup0≤s<t

{∫ t

s
λ(r)dr − x

∫ t

s
μ(r)dr

}
is the fluid content pro-

cess at time t in the associated Markov modulated fluid queue

[1], [18], where we replace the Poisson arrivals and the service

times in the queue by fluid streams of rate λ (constant) and

xμ(t), respectively. More precisely, the content Wx(t) of the

fluid queue (note that this process depends on x) is regulated

by the background process M(t) ∈ M as specified by the

differential equation for Wx(t). �
Note that the fluid queue used in the proof and the original

queue share exactly the same realization of the service rate

process. The fluid queue, however, does not incorporate the

random fluctuations in the arrival and service processes. The

stability condition for the fluid queue is

m∑
i=0

πi(λ− xμi) < 0, (3)

which is the same as that for the original queue when x =
1. If (3) is satisfied, the stationary distribution of the fluid

queue exists and can be determined through spectral analysis,

see [18].

As a special case, allowing for closed-form expressions, we

consider the Markovian birth death high-low system, in which

the modulating Markov process {M(t), t ≥ 0} is a birth-death
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process with constant birth rates α and constant death rates

β > α, and service rates μ0 = b and μi = a > b for all i ≥ 1.

Note that the low-rate periods are exponentially distributed,

but the high-rate periods can be fitted to a distribution with

given first two moments. (High-rate periods are distributed as

the busy period in an M/M/1 queue with arrival rate α and

service rate β.) Also, the lengths of high-rate and low-rate

periods are mutually independent. (In this model the random

environment may represent a higher-priority queue that takes

away a fixed amount of capacity a− b when it is not empty.)

Scheinhardt [18, pp. 26–28] shows that the stationary fluid

content process Wx is given by

P(Wx > y) = p0;x · exp
{
−

(
α

λ− bx
− β

(a− b)x

)
y

}
,

for any y ≥ 0, where

p0;x =
1− α/β

(ax− λ)/((a− b)x)
.

For y = 0 we obtain the stationary distribution of the effective

load ρ∗ as:

P(ρ∗ > x) = P(Wx > 0) = p0;x,

provided that ax−λ
(a−b)x < α

β < 1, cf. [18].

In general, the distribution of the effective load can not

be obtained in closed form. Still, the effective load can be

expressed explicitly in terms of the service rate process for

the more general high-low model with general high-rate and

low-rate periods. This is the subject of the next subsection.

B. High-low model

In this section, we fix the sequence {si, ti}i∈N that deter-

mines the high-rate and low-rate periods.

Proposition 2: During the ith high-rate period, that is for

t ∈ [si, ti), i ≥ 2, we have

ρ∗(t) = sup
1≤j≤i−1

(t− tj)λ∫ t

tj
μ(r)dr

. (4)

During any low-rate period, t ∈ [ti, si+1), for i ≥ 1 we have

ρ∗(t) = λ
b .

Proof For t ∈ [si, ti), i ≥ 2, the supremum in the effective

load function (2) can be split into suprema of a partition over

s ∈ [sj , tj), s ∈ [tj , sj+1), j = 1, . . . , i− 1, and [si, t). Note

that

sup
s∈[sj ,tj)

(t− s)λ∫ t

s
μ(r)dr

=
(t− tj)λ∫ t

tj
μ(r)dr

, (5)

sup
s∈[tj ,sj+1)

(t− s)λ∫ t

s
μ(r)dr

=
(t− tj)λ∫ t

tj
μ(r)dr

, (6)

since
(t−s)λ� t
s

μ(r)dr
is strictly increasing on s ∈ [sj , tj) and

strictly decreasing on s ∈ [tj , sj+1). Observe further that the

expressions (5) and (6) are identical and lie in the interval

[λ
a , λ

b ], since b ≤ μ(t) ≤ a for all t > 0. The supremum over

[si, t) equals = λ
a , for t ∈ [si, ti), which leads to (4). For

low-rate periods we have ρ∗(t) = λ
b , due to μ(r) ≥ b for all

r > 0. �

Remark 1: If a > b > 0, then ρ∗(t) is continuous and finite

around t = si (i.e., at the beginning of a high-rate period), but

ρ∗(t) has a jump at t = ti (i.e., at the beginning of a low-rate

period).

The effective load is depicted in Figure 3. The effective

load and the instantaneous load coincide during low service

rate periods. The effective load at time t is strictly decreasing

in t during high-rate periods (starting from the value λ/b at

the beginning of a high-rate period). If the high-rate period is

sufficiently long (relative to λ, a, and b), then the effective load

drops below the value 1. The recovery time is the time needed

(since the end of the last low-rate period) for the effective load

to drop to 1. Heuristically speaking, we can say that the queue

“becomes stable” at the time epoch u such that ρ∗(u) = 1.

The supremum in equation (4) is achieved for a certain

index j∗, with j∗ ≤ i− 1. In general, if the high-rate periods

are “sufficiently long”, then the supremum is achieved for

j∗ = i− 1. In contrast, if the high-rate periods are too short,

the supremum is achieved at a lower index j∗ < i − 1. A

characterization of “how long” a high-rate period should be,

will be discussed next.

IV. THE QUASI-STATIONARY LIMIT FOR THE HIGH-LOW

MODEL

In this section we analyze instability during high-rate pe-

riods. To illustrate our goals, we first consider the on-off

model with exponentially distributed high rate periods. For this

model we use closed-form expressions that are available for

the queue-length distribution. Second, we consider the high-

low model with generally distributed high and low rate periods.

Finally, we specialize those results for the high-low model with

exponentially distributed high and low rate periods.

The discussion will center around a characterization of

the recovery period. We will think of the existence of these

recovery periods as a refinement of the usual definition of

stability. Particular attention will be given to the case with

exponential high-rate and low-rate periods, in which case

closed-form results can readily be obtained. Ultimately, we

will discuss the scaled version of the queue length in the quasi-

stationary regime.

A. The on-off model

In this section we study the buffer content in a high-low

queue when no service is available for some time periods

(off-periods). We refine the analysis of [15] which considers

the processor-sharing queue with service interruptions. In

particular, based on the explicit formulas from [15] we show

that the conditional queue-length distribution (given that the

server is turned on) is defective in the quasi-stationary limit.

Assume that the on-periods Ai, i ≥ 1, are iid exponentially

distributed with mean α−1, and the service rate during on-

periods is a. The off-periods Bi, i ≥ 1, are i.i.d. generally

distributed as the random variable B with distribution function

B(t) := P (B ≤ t) , t ≥ 0, k-th moment βk, and Laplace-

Stieltjes transform B̃(s) := Ee−sB , for Re s ≥ 0.

To investigate stability, we consider the fluid regime. To this

end, we apply the Uniform Acceleration technique [14]. The
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arrival and service rates are scaled linearly with a common

parameter η > 0, i.e., λ is replaced with ηλ and μ(t)
is replaced with ημ(t). The scaled queue-length process is

denoted by Qη(t), for all η > 0. Let (Qη, μ) denote the

limiting distribution of (Qη(t), μ(t)). From [15] we obtain

the following result.

Proposition 3: The joint distribution of (Qη, μ) has the

following conditional probability generating functions

E

[
zQη |μ = a

]
=

a− λ(1 + αβ1)
a− λ (1 + αβ1 · ϕB(z, ηλ)) z

, (7)

E

[
zQη |μ = 0

]
= ϕB(z, ηλ) · E

[
zQη |μ = a

]
, (8)

where

ϕB(z, ηλ) :=
1− B̃(ηλ(1− z))

β1ηλ (1− z)

is the pgf of the number of arrivals that occur according to a

Poisson process with rate ηλ, during the backward recurrence

time of an off-period. Furthermore

E [Qη|μ = a] =
λ

pON · a− λ
+

αβ2

2
pON · λ2

pON · a− λ
η,

(9)

E [Qη|μ = 0] = E [Qη|μ = a] + ηλ
β2

2β1
, (10)

where pON = 1
1+αβ1

is the long-run fraction of time that the

server is available.

Observe that the conditional mean queue-length (9) is linear

in the scaling parameter η and thus tends to infinity when the

scaling parameter η tends to infinity. Naturally, in the quasi-

stationary limit the mean queue-length during off-periods is

infinite even when the usual stability criterion (1) is satisfied.

(The conditional mean queue length distribution in the quasi-

stationary limit is defective.)

Proposition 4:

lim
η→∞ P (Qη = ∞|μ = a) =

λ

a− λ
αβ1. (11)

Proof Follows directly from the fact that

limη→∞ ϕB(z, ηλ) = 0, so that

lim
η→∞ E

[
zQη |μ = a

]
=

a− λ(1 + αβ1)
a− λz

. (12)

�
We can rewrite (12) as

λαβ1

a− λ
× 0 +

a− λ(1 + αβ1)
a− λ

× a− λ

a− λz
, (13)

which can be interpreted as follows. With probability λαβ1
a−λ the

queue length is infinite in the quasi-stationary limit. With the

complementary distribution, the queue length is distributed as

if the service rate is always a (i.e., as the queue length in the

M/M/1 with load λ/a).

Let us now consider the queue length during on-periods

after recovery to stability. In order to refine the quasi-stationary

limit, we scale the queue length. From the linearity of the mean

queue length in η we see that the proper scaling is Qη(t)/η.

We then have the following result.

Proposition 5: The conditional distribution of the scaled

queue length ( 1
η Qη | μ = a) in the quasi-stationary limiting

regime is given by

lim
η→∞ E

[
z

1
η Qη |μ = a

]
=

a− λ (1 + αβ1)

a− λ
(
1− α 1− �B(−λ ln z)

λ ln z

) .(14)

lim
η→∞ E

[
z

1
η Qη |μ = 0

]
=

1− B̃ (−λ ln z)
−λβ1 ln z

(15)

× a− λ (1 + αβ1)

a− λ
(
1− α 1− �B(−λ ln z)

λ ln z

) .

Furthermore

lim
η→∞ E

[
1
η
Qη|μ = a

]
=

αβ2

2
pON · λ2

pON · a− λ
(16)

lim
η→∞ E

[
1
η
Qη|μ = 0

]
=

αβ2

2
pON · λ2

pON · a− λ
+ λ

β2

2β1
.

(17)

Proof Follows from (7) and the fact that

lim
η→∞ϕB

(
z1/η, ηλ

)
=

1− B̃ (−λ ln z)
−λβ1 ln z

.

�
This result can be interpreted as follows. From (13) we know

that, in the limit, the non-scaled queue length during on-

periods is non-defective with probability
a−λ(1+αβ1)

a−λ . There-

fore, with that probability the scaled queue length during on-

periods equals 0. With the complementary probability λαβ1
a−λ ,

the queue length “did not recover from instability” during an

on-period. We therefore decompose (16) as

a− λ(1 + αβ1)
a− λ

× 0 +
λαβ1

a− λ
× β2

2β1

pON · λ(a− λ)
pON · a− λ

. (18)

Heuristically, we may say

lim
η→∞ E

[
1
η
Qη|μ = a but not yet recovered

]
(19)

=
β2

2β1

pON · λ(a− λ)
pON · a− λ

. (20)

This decomposition of the queue length during on-periods

can be done similarly for the entire distribution using the

expressions for the conditional pgfs.
Remark 2: The above explains why constant-rate approx-

imations for on-periods (high-rate periods) give poor results.

The error can be made arbitrarily large by either increasing the

second moment β2 of the off-periods or the scaling parameter

η.
Remark 3 (Discussion): The previous observations lead to

a notion of adjusted stability as a refinement of the usual

stability criterion (1). The fact that (Qη | μ = a) is defective

in the quasi-stationary limit is explained by the fact that Qη

explodes during an off-period when η →∞. Since the scaled

system Qη is stable in the long run, the system recovers from

the explosion during an on period. The queue becomes stable

again (i.e., Qη becomes finite) during an on-period if the on-

period length is “sufficiently long”. If the on-period length is

not sufficiently long, then, in the quasi-stationary regime, Qη

remains infinite during the on-period.
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B. The high-low model
In this section we further investigate the “recovery time”

and “adjusted stability” in the high-low model.
1) Recovery time: Suppose at the start of i-th high-rate

period (at time si) for some k ∈ {1, . . . , i − 1} we have

ρ∗(t−k ) < 1 and ρ∗(u) ≥ 1 for all u ∈ [tk, si), i.e., the time

tk is the most recent time where the effective load increased

beyond 1. Note that tk is always the start of a low-rate period.

Define the accumulated low-rate and high-rate period lengths

during the interval [tk, si) as

Tlow(tk, si) =
i−1∑
n=k

Bn, Thigh(tk, si) =
i−1∑
n=k

An+1,

with Thigh(tk, si) + Tlow(tk, si) = si− tk. Define the recovery
time R(tk, si) as the time needed (after time si) to reduce the

effective load below 1.
Remark 4: In the associated fluid queue, the period

Thigh(tk, si) is not long enough to remove the backlog ac-

cumulated in the period Tlow(tk, si), and R(tk, si) is the time

to drain the queue starting at si.
We now investigate under which conditions the system

becomes effectively stable during the i-th high-period Ai.
Proposition 6: Let the queue be effectively unstable during

the period [tk, si), k ≤ i− 1. The queue becomes effectively

stable during the i-th high-period, if and only if

λ− b

a− λ

i−1∑
j=k

Bj <
i−1∑
j=k

Aj+1. (21)

Proof If R(tk, si) ≥ Ai, the queue does not become

effectively stable. If R(tk, si) < Ai, then the effective load

drops below 1 during the i-th high-period, and it must be that

λ [Thigh(tk, si) + Tlow(tk, si)] + λR(tk, si)
= [a · Thigh(tk, si) + b · Tlow(tk, si)] + a ·R(tk, si),

so that

R(tk, si) =
λ− b

a− λ
Tlow(tk, si)− Thigh(tk, si) ≥ 0.

�
Remark 5: Note that the term (λ− b) in (21) is the growth

rate of the fluid queue during low-rate periods, and (a−λ) is

the (potential) decrease rate during high-rate periods.
The distribution of the number of high-rate periods needed

for recovery, N , is obtained as follows. Without loss of

generality, let k = 1, i.e., t1 is the most recent moment

when the system became effectively unstable. If {N = n},
for n ≥ 1, then each of the first n − 1 high-periods are not

long enough to stabilize the queue. As a consequence, N is

the first ladder epoch in the random walk

S0 = 0, Sn =
n∑

i=1

Vi, n = 1, 2, . . . , (22)

with Vi = Ai+1 − cBi and c = λ−b
a−λ , i.e.,

N = inf {n ≥ 1|Sn > 0} . (23)

Note that for special cases such as for exponentially distributed

Ai or exponentially distributed Bi the distribution of N can

be obtained in closed form.

0

10

20

0 20 40 60 80 100 120 140 160 180 200

H        L      H           L              H    L                      H

Fig. 4. A sample path of the scaled queue-length process 1
η
Qη(t), for η = 1,

in the high-low model with λ = 1, a = 2, b = 1
2
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Fig. 5. A sample path of the scaled queue-length process 1
η
Qη(t), for

η = 10, in the high-low model with λ = 1, a = 2, b = 1
2
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Fig. 6. A sample path of the scaled queue-length process 1
η
Qη(t), for

η = 100, in the high-low model with λ = 1, a = 2, b = 1
2

2) Adjusted stability: In Figures 4-6 we have depicted

three different realizations of the scaled queue-length process
1
η Qη(t), for η = 1, η = 10 and η = 100, respectively.

The realization for the high and low period lengths are the

same in Figures 4-6 for comparison purposes. The service

rate starts off in the higher value a = 2 and the process

shows stationary behavior, since the instantaneous load

ρ(t) is less than 1 during (the first) high rate period(s). As

soon as the service rate switches to the lower rate b = 1
2 ,

the queue starts building up. Whenever the service rate

switches back to the higher service rate, then the queue starts

decreasing again. The fluctuations around the linear trend get

smaller as η grows. From these figures, stationary behavior
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high                low        high         low    high   low             high

Scaled queue length process and adjusted stability

(multiple) low-high periods

unstable period
stable     (adjusted stability)

recovery time recovery time

Fig. 7. Scaled queue length process and recovery periods.

during high rate periods is observed when the queue has

decreased “sufficiently”. Ultimately, in the quasi-stationary

limit η → ∞, stationary behavior is observed when the

negative drift hits the horizontal axis, which is also the time

epoch where the buffer content in the associated fluid queue

becomes empty. In the figures we also observe that, in this

example, the second high rate period is too short to recover

from the excess load of the first low rate period. In contrast,

the third high rate period is sufficiently long to recover

from the excess load from the first two low rate periods.

(Heuristically, the queue becomes stable again during the

third high rate period.)

Figure 7 schematically represents the typical evolution of the

workload process for η →∞ after linear scaling, and specifies

the effectively instable, effectively stable, and recovery peri-

ods. Let πlow and πhigh be the fraction of time that the system

serves at low and high service rate, i.e., πlow = EB
EA+EB , and

πhigh = 1 − πlow. Let πstable and πunstable, denote the fractions

of time that the system is effectively stable and unstable,

respectively, and let πrecovery be the fraction of time that the

system is in a recovery period: πunstable = πlow + πrecovery,

πstable = πhigh−πrecovery. We may interpret πstable as a measure

for adjusted stability: instability is due to periods with a

positive drift, i.e., πlow, which would be a first measure for

instability. From a practical perspective, however, the system

is also unstable during recovery periods. We now determine

these fractions.

Proposition 7:

πstable =
EA− λ−b

a−λEB

EA + EB

πrecovery =
λ− b

a− λ
πlow

Proof Recall that N is the first ladder epoch of the

random walk {Sn}n, see (22). The first ladder height SN =∑N
i=1(Ai+1 − cBi) is exactly the time length that the queue

is stable within the total period
∑N

i=1(Ai+1 + Bi). Note

that the ladder epochs are regeneration points for the queue

length process. As a consequence, invoking renewal theory,

and Wald’s theorem,

πstable =
ESN

E
∑N

i=1(Ai+1 + Bi)

=
EA− λ−b

a−λEB

EA + EB
.

�

C. Recovery time and adjusted stability for exponential dis-
tributions of high and low service durations

In this section we specify the distribution of N when Ai and

Bi have exponential distributions with means 1/α and 1/β,

respectively. To simplify the formulas in this section, we set

c := λ−b
a−λ = 1. The distribution of N in the exponential case

is given by the following proposition taken from [4].

Proposition 8: Let p := (a−λ)EA
(a−λ)EA+(λ−b)EB . The distribu-

tion of the number of high-periods needed for recovery (re-

stabilizing the system) is given by

P (N = n) = Cn−1p
nqn−1, for n ≥ 1,

where

Cn =
1

n + 1

(
2n

n

)
=

(2n)!
n!(n + 1)!

are Catalan numbers. The pgf PN (z) = EzN is given by

PN (z) =
∞∑

n=1

zn
P (N = n) =

1−√1− 4pqz

2q
.

In particular, the probability that the queue length process

recovers from instability is PN (1) = 2p
1+|2p−1| = p∧q

q , where

p ∧ q = min{p, q}. Indeed, if p ≥ 1
2 then N is finite with

probability 1. However, if p = 1
2 then we have EN = ∞

(see Proposition 9; and also see relation with the symmetric

Bernoulli walk [8]). The next proposition summarizes the

mean and variance of N .

Proposition 9: The expected number of high-rate periods

needed for recovery is given by

EN =
EA

EA− λ−b
a−λEB

, if EA >
λ− b

a− λ
EB,

otherwise, if EA ≤ λ−b
a−λEB, then EN = ∞. In addition, the

variance is given by

VarN =
pq

(p− q)3
=

λ−b
a−λEAEB

(
EA + λ−b

a−λEB
)

(
EA− λ−b

a−λEB
)3 ,

which only depends on the means of the high and low periods.

Proof By induction on n it follows that:

dn

dzn
P (z) = n!Cn−1

pnqn−1

(1− 4pqz)(2n−1)/2
.

Then, use the fact that d
dz P (z)

∣∣
z=1

= EN and
d2

dz2 P (z)
∣∣∣
z=1

= EN(N − 1). �
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D. Scaling of the queue-length for the high-low model

We now extend the analysis to the high-low model. Here,

we focus on the case where the Ai and Bi have exponential

distributions with means 1/α and 1/β, respectively. The

stationary distribution of Qη is then known explicitly [13]:

P(Q = i; μ = j) = cjp
i + djq

i, (24)

for j ∈ {a, b}, where cj and dj are such that p and q are the

two roots within the unit disc of the following equations

cap(λ + a + α) = cap2a + caλ + cbpβ,

cbp(λ + b + β) = cbp
2b + cbλ + capα,

and

daq(λ + a + α) = daq2a + daλ + dbqβ,

dbq(λ + b + β) = dbq
2b + dbλ + daqα.

The precise form of these coefficients is not essential (they

are characterized through the solution to a cubic equation).

We are primarily interested in the queue length as η → ∞.

With standard algebra it follows that p and q tend to λ/a and

1 respectively. (Although p, q, cj and dj depend on η when

applying uniform acceleration, we will not reflect this in the

notation.) The corresponding constants then follow from the

equations above and we get after convenient rewriting:

lim
η→∞ P(Qη > x | μ = a) =

λ(α + β)− bα

aβ
+(

1− λ(α + β)− bα

aβ

) (
λ

a

)x

.

(25)

Naturally, we find limη→∞ P(Qη > x | μ = b) = 1 for all

x. The term
λ(α+β)−bα

aβ can be interpreted as the fraction of

high-rate service time that is needed for recovery. It can be

shown that this indeed coincides with the probability that the

associated fluid queue is non-empty.

If we scale the queue length with the parameter η, it can be

shown that

lim
η→∞ q

1
η =

β

b− λ
− α

λ− a
=: δ.

Substituting this into the distribution for Q we get

lim
η→∞ P(

1
η
Qη > x | μ = a) =

λ(α + β)− bα

aβ
δx,

and hence

lim
η→∞ P(

1
η
Qη > x | μ = b) = δx.

V. CONCLUSION AND EXTENSIONS

In this paper we considered the quasi-stationary regime for

a single server queue with service rate fluctuation driven by an

independent Markov process, where the arrival rate is allowed

to temporarily exceed the service rate. For the system with

service rate alternating between high and low rate, we have

discussed notions of effective load and adjusted stability that

allow us to characterize the fraction of the high service rate

period during which the queue is recovering from instability

due to the low service rate period. We have characterized the

distribution of the effective load via a related fluid queue, and

have obtained the distribution of the number of high service

periods required for recovery to stability. This allows us to

obtain the distribution of the number of customers during a

high service period.
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[12] M.T.S. Jonckheere, R. Núñez-Queija, and B.J. Prabhu. Performance
analysis of traffic surges in multi-class communication networks.
Proc. ITC 22, this volume.

[13] G. Latouche and V. Ramaswami. An Introduction to Matrix Analytic
Methods in Stochastic Modeling. Cambridge.

[14] W. Massey and W. Whitt. Uniform acceleration expansions for
Markov chains with time-varying rates. Annals of Applied Probability,
8(4):1130–1155, 1998.
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