Exploiting Rules and Processes for Increasing
Flexibility in Service Composition

Brahmananda Sapkota
Department of Electrical Engineering
Mathematics and Computer Science

University of Twente
The Netherlands

Abstract—Recent trends in the use of service oriented architec-
ture for designing, developing, managing, and using distributed
applications have resulted in an increasing number of inde-
pendently developed and physically distributed services. These
services can be discovered, selected and composed to develop new
applications and to meet emerging user requirements. Service
composition is generally defined on the basis of business processes
in which the underlying composition logic is guided by specifying
control and data flows through Web service interfaces. User
demands as well as the services themselves may change over
time, which leads to replacing or adjusting the composition logic
of previously defined processes. Coping with change is still one of
the fundamental problems in current process based composition
approaches. In this paper, we exploit declarative and imperative
design styles to achieve better flexibility in service composition.

I. INTRODUCTION

Modern enterprises document their business processes using
modeling tools in order to understand and guide manage
the execution of their business activities efficiently. Such
efforts may include cross-organizational business processes,
as enterprises often need to collaborate to provide solutions to
their customers which are not achievable by any of the enter-
prises alone. Software systems form an integral part of most
enterprises to support and realize these business processes.
One of the major challenges faced by enterprises is to cope
with changes and to maintain the alignment between business
processes and software support, while external developments
force them to introduce new business strategies, formulate
new business goals, reconsider requirements, and adopt new
technologies.

Enterprise Architecture (EA) has evolved as an established
discipline to handle the complexity of business processes
in relation to their software support, by providing concepts
and architectural frameworks [1], [2] that help to bridge
between concerns at business level and IT level. While EA
also aids to address change, the support for this is mainly at an
organizational or management level [3], not from a technical
perspective in terms of modeling and software architecture
styles.

Because of the changes that occur at different level, as
mentioned above, a technical solution that can flexibly support
these changes are required. Some of the these changes can
be addressed easily by designing the system in a declarative

Marten van Sinderen
Department of Electrical Engineering
Mathematics and Computer Science

University of Twente
The Netherlands

style while other changes can be addressed by designing
the system in an imperative style. We exploit declarative
and imperative design styles to achieve better flexibility in
service composition. We follow service oriented architecture
principles to establish interconnection between declarative and
imperative design styles when needed.

Service oriented architecture allows to encapsulate reusable
application functionality as loosely coupled composable soft-
ware services. It is being considered as a favourable paradigm
for architectural design and implementation of collaborative
distributed systems. In the scope of this paper, we assume that
service composition techniques for software systems could be
applied in the context of business services.

In service composition, services provided by various or-
ganisations can be connected to create composite services
through a process called service composition. One of the
important aspects of service composition is that it supports
reusability and hence significantly reduces development costs
and increases operational agility [4]. Service composition is
generally defined on the basis of business processes in which
the underlying composition logic is guided by specifying
control and data flows. The flow of control is normally guided
by the use of business rules to define constraints and influence
the way a service is composed.

While defining a composition logic, rules are used for
addressing frequently changing requirements and processes for
addressing fairly static requirements. The identification and
separation of processes and rules is done by the application
designer based on the problem specification, generally stated
as a set of requirements, provided by the domain expert.
Such separation is primarily aimed at identifying frequently
changing and fairly static requirements to reduce management
and implementation costs.

Current approaches specify the overall composition-logic in
business processes and business rules (e.g., decision rules) [5],
[6], [7]. A common practice is to use rules to specify fre-
quently changing requirements and to constrain control flows
embedded in the business processes. Embedding rules into a
process makes it difficult to adapt changing requirements and
keeping the rules consistent without changing the composition
logic [8], [9], [10]. Adaptation of changes may requires
updates in rules or redesign of processes which may lead

to remodification of composition logic. Such remodification
or updates increases the management as well as the imple-
mentation cost in proportion to the complexity of the system.
Moreover, interleaving processes and rules also makes their
reuse difficult.

One of the daunting challenges of service composition is
to deal with situations where changes in user preferences and
service behaviours are either context dependent or may not
be known at design time [11], [12]. These changes can occur
more frequently than expected at design time, making it more
difficult to adapt them to the composition logic. Designers,
however, are interested in methods and technologies that allow
them to reuse existing design parts into a new design. Such
a reusable design should be flexible enough such that any
future changes can be integrated easily into the existing design.
This indicates that the reusability and flexibility issues of
a design are proportional to the level of support available
for requirements evolution. Hence it is imperative to find an
approach that supports requirements evolution and allows to
deliver corresponding design solutions.

To provide support for adaptability, reusability and increased
flexibility, we aim at exploiting business processes and rules in
a loosely-coupled fashion. We provide a design solution that
allow independent changes of rules and composition processes
when needed. Allowing changes, updates or replacement of
rules at execution time, greatly simplifies tailorability or
personalised service composition. We also present a guiding
principles that help designers to choose between process-based
and rule-based approaches while modelling a service.

We present a simple reminder-application scenario from
the home-care domain for motivating the need of and for
illustrating the usability of the proposed approach. The home-
care domain was chosen because the requirements and their
preferences are unique per user [13]. These requirements could
also change making previously composed service insufficient
to meet their requirements. User requirements in this domain
are dependent on their medical conditions and preferences.
Both the medical conditions and preferences of the users,
however, would change due to ageing and related social
activities and status. This calls for a flexible solution to service
composition such that maximum reuse of existing composite
service can be made while delivering composite services to
meet user requirements.

The rest of the paper is structured as follows. An application
scenario is presented in Section II, showing the situation where
the proposed mechanisms will be useful. In Section IV-B,
guidelines for deciding whether to use processes or rules to
model different activities and services are presented. Design
solution to exploit business process and business rule is
presented in Section V. Section VI takes this further, illus-
trating how the proposed approach can be utilised in service
composition. Some of the relevant existing works are analysed
in Section VII, describing their strengths and weaknesses
in comparison to the work presented in this paper. Finally,
Section IX concludes this paper, outlining possible future work
and extensions.

II. APPLICATION SCENARIO

A flexible service composition approach is required in
situations where possible future changes in requirements are
not known a priori. We motivate this problem through the
following example scenario from the home-care application
domain.

John and Linda are a married couple. Despite having various
medical conditions that come with advanced age, they still
live independently in their private home. They are prescribed
to take different medicines at regular times. The times at
which John and Linda have to take medicine are different.
They both suffer from amnesia, and consequently they have
difficulty remembering when and what medicines to take. To
help them remember the right time to take right amount of
medicines, they need a a “medicine-reminder-and-dispenser”
service, which should provide personalised reminders and
control the release of right amount of right medicines.

The “medicine-reminder-and-dispenser” (MRD) service can
be realised as a composite service, i.e., through the orchestra-
tion of more basic services such as a “reminder” service and
a “dispenser” service. The reminder service sends a reminder
message to a subscribed user at the predefined times (specified
at subscription). The dispenser service enables the release
of medicines and also monitors whether the medicines have
actually been taken. If the medicine has not been taken within
a certain time interval (At), then the same reminder has to be
repeated. If the medicine has been taken, MRD service should
stop sending the same reminder.

Subscriber Reminder Process

N = Max. number of repetition
X = Waiting time

T = Scheduled time
M

= Message to deliver
D(M) = Destination of Message

Prepare
Subscription

Message

Dispenser

Ack
Receive Ack R Send Ack

O

Receive
Subscription

Subscription

Schedule Reminder
D

Remind

Receiver

Receive Message

Reminder

Send Reminder fe——— [
No

wait At time units

‘ Disable Repeat?

Yes

O

Fig. 1. Reminder Process in BPMN

The implementation details of the MRD service, having the
above mentioned behaviour, can be described using Business
Process Modeling Notation (BPMN) [14] as shown in Fig-
ure 1. The application as specified, sends the reminder message
every At time units unless an acknowledgement, indicating
that the medicine is taken, is received from the dispenser.

A commonly used alternative approach is the use of ECA
(Event-Condition-Action) rules. In this approach, a system

behaviour is defined as a set of rules that specify which action
to take when a certain event occurs. The behaviour of the
MRD service can be specified in ECA (roughly) as shown in
Listing 1.

RULE <MRDRule> [(medicineTime, patientID, timeOut)]

WHEN (currentTime == medicineTime)
IF (acknowledgement == false)
THEN sendReminder(patientID)
enableDispenser(patientID)
MRDRepeatRule(patientID, timeOut)

RULE <MRDRepeatRule> [(patientID, timeOut)]
WHEN (timer == timeQOut)

IF (acknowledgement == false)
THEN sendReminder(patientID)

Listing 1. ECA rule for MRD

There may be situations in which only the reminder and
dispenser services many not be sufficient to fulfill the user
requirements. John, for example, can simply ignore the re-
minder and not take his medicines. Such situations may need
to be considered as a hazard situation and an alarm may need
to be raised to seek external help (e.g., from a volunteer or a
professional). If such a change in situation occurs, the existing
solution shown in Figure 1 has to be changed to support new
requirements.

The functionality offered by the MRD service, therefore,
has to be extended with an “alarm” functionality provided
by an “alarm” service. If the acknowledgement has not been
received even after sending the reminder /N number of times,
we assume that the user has ignored the reminder. With this
assumption, the implementation details of the MRD service
with the new functionality is shown in Figure 2, where the
new parts are highlighted with light gray colour.

Subscriber Reminder Process

N = Max. number of repetition
X = Waiting time

T = Scheduled time
M
D

Prepare
Subscription

= Message to deliver
(M) = Destination of Message
Message

Schedule Reminder
. 0

Receive
Subscription

Dispenser

Remind

Reminder Receiver

Receive Message

Alarm Receiver

Receive Alarm L
Message

Reminder

l Ack

Receive Ack
No[J‘
wait At time units

N Send Ack
Disable Repeat?

Send Reminder

Release Medicine }

T

Reminded N Yes
times?

Yes
| '

Fig. 2. Reminder Process in BPMN with Alarm

By using rules, this additional functionality can be included
by adding a set of rules. The “alarm” functionality can be

included by including the ECA rule described in Listing 2
in the existing rule set. In this example, we only showed the
set of rules required to enable the required new functionality
because the new rules, unlike in process based approaches,
can simply be inserted in the rule repository.

RULE <MRDAlarmRule> [(receiverID, patientlD, reminderCount)]

WHEN (reminderCount >= N)
IF (acknowledgement == false)
THEN sendAlarm(receiverID, patientID)

Listing 2. ECA rule for MRD service with alarm

A. Motivation

In the previous section, we presented an application scenario
and identified a minimal set of services required to build a
MRD service. We further specified a composition logic, in
BPMN and ECA rules, illustrating how these services could
be used to build the required MRD service. With the help of
these examples, we motivate the work presented in this paper.
The aim is to find what problems arise if the functionalities
provided by an existing composite service has to be extended
to adapt new (future) requirements. We illustrated this situation
by introducing the requirement of “alarm” functionality from
the existing MRD service.

In process based approach, extension of functionalities pro-
vided by the MRD service with a new functionality (i.e, alarm
functionality), the existing processes, shown in Figures 1,
required its modification resulting in a new processes as shown
in 2. If the requirements are changing quite frequently, process
based approaches will be an inappropriate choice because
changing process specification is usually time consuming. This
is especially the case since a process requires a corresponding
change in the implementation which are quite expensive in
terms of maintenance and management costs. Moreover, as
the system becomes complex, identifying the right place where
new changes has to be adapted becomes a challenging task.

While the extension of functionality required new rules,
shown in Listing 2 was required in rule based approach,
modification of existing rules, shown in Listing 1 was not
necessary. In rule based approaches, new rules can be added
incrementally as the requirements changes which makes rule
based approaches modular. It can be argued that rule genera-
tion is a laborious task, however, it is easier to change them.
If a change has to be reflected in a process, it is required
to understand the whole process to decide which part of the
process has to be changed. Therefore, a rule based approach
is more flexible than a process based approach. However, as
the number of rules increase managing these rules becomes
an issue. In addition, unlike in process based approaches, it
is difficult to guide or control the flow of activities in rule
based approaches because sequence or data flows cannot be
specified explicitly. Thus it is necessary to find a mechanism
that can exploit complementary features of both process based
and rule based approaches to increase flexibility and maximise
reusability in a composition approach.

III. BACKGROUND

Generally accepted approaches to model or to specify
service composition are based on processes and rules. Process
based approaches focus on defining control and data flows
whereas rule based approaches focus on defining statements
that constrain or control functional behaviour. In this section,
we briefly introduce business processes and business rules
which are the underlying approaches and techniques used in
the work presented in this paper.

A. Process Based Approaches

Process based approaches specify a system and its behaviour
in terms of control and data flows. These approaches focus
on defining what sequence of activities/services is required
to satisfy a particular user requirement. Different formalisms
such as UML activity notation and business process modeling
notation (BPMN) are used in process based approached to
specify such a sequence.

In process based approaches, control flows are used is to
specify the sequence of execution of services. Transfer of in-
formation between services is specified using data flows. Since
the sequence of activities is the main focus in process based
approaches, control and data flows are specified explicitly.
Tasks that have to be performed are represented as activities,
if something happens then it is represented as an event, split
or merge of control flow is represented as gateways in process
based approaches. We use BPMN notations to denote these
concepts.

B. Rule Based Approaches

Rule based approaches specify a system and its behaviour
in terms of constraints, conditions and actions which are
usually represented as a set of rules [15]. Business rules can
be seen differently from different perspectives. In business
world, it is used to refer to directives which are intended
to guide or influence business behaviour. In technical world,
it is used to refer to reusable business logic which can be
expressed declaratively. However, business rules are primarily
intended for business world [16] and hence their ownership
and management and validation responsibilities also rests with
the business world.

Categorically, business rules can be either be seen as deriva-
tion, integrity, reaction and production rules [17]. Derivation
rules specify rules for deriving new information based on
existing information. Integrity rules specify constraints which
guide behaviour of the system. Reaction rules specify which
action to take while a certain event occurs under a certain
condition. Production rules specify what action to generate
when a certain condition holds. We use reaction rules and
express them in WS-ECA language.

IV. GUIDING PRINCIPLES

A system is designed based on the requirements expressed
by the system’s stakeholders. These requirements are captured,
analysed and expressed in terms of rules or processes by
the designer. Depending on the nature of the requirements, a

design may be rule-based at one level of design and process-
based at another level of the design. Moreover, both rules
and processes may be used side by side at the same level
because some requirements may be naturally expressed by
rules whereas the processes could be a suitable choice to
express other requirements. It is useful to know when to use
processes and when to use rules to make a design flexible
enough to support requirements evolution.

When aiming at system’s flexibility, it is difficult to indicate
what has to or can more conveniently be expressed in rules
and what in processes because of the presence of several
uncontrollable factors such as the future (evolving) needs and
preferences of the stakeholders. Nonetheless, it is possible to
draw a set of guidelines which can help in the identification of
the parts of the requirements which can be expressed in rules
and in processes such that an acceptable level of flexibility
can be achieved. Before outlining these guidelines, following
assumptions are made with respect to the involved activities.

A. Assumptions

Given a set of requirements, a system designer identifies a
number of services (i.e., parts of the system) required to fulfill
these requirements. These services have to be executed in a
coordinated way. The coordination between services have to
be defined such that the overall requirements can be fulfilled.
In doing so, we assume that the coordination between services
is defined in composition logic. The composition logic defines
how and under what conditions the services have to coordinate
such that the given set of requirements can be satisfied.

We also assume that the services represent a task in the
scope of this paper. The execution of a service, therefore,
may produce some data or information. These events and
information are utilised while defining a composition logic.

B. Selection Guidelines

Selection of an appropriate design tool for modeling such a
system depends on several characteristics associated with the
required behavioural and information aspects of the required
system. In the following we discuss about these characteristics
and provide selection guidelines. These guidelines are pro-
vided, building upon works presented in [18], to help designers
in deciding whether parts of requirements can be expressed
naturally in rules or in processes.

1) Dependency: 1t is required to preserve the dependency
between services, if the execution of a service depends on
the execution of another services while satisfying the require-
ments. If such requirement exists, it is necessary to execute
them in the order of their dependency.

Rule-based approaches do not provide mechanisms to spec-
ify the order of execution of rules which makes it difficult
to preserve dependency between services. Process-based ap-
proaches are suitable to model such dependency because they
provide explicit construct do specify the sequence of activities.
Dependency between services can be specified with the help of
control flow construct provided by process-based approaches.

2) Alternative Solution: For a given requirement, if a
service that satisfies the requirement cannot be executed, an
alternative services may need to be executed. If such a situation
exists, we need a mechanism which allows to specify these
alternative situations. This mechanism should also be able to
indicate which alternative solution can be used for a given
requirement and under what circumstances. The circumstances
that prevents from the execution of a service may result from
internal restriction of the service or from the requirement itself.

The service execution could be asynchronous or syn-
chronous. Since process based approaches allow to model
asynchronous execution, alternative service execution is rec-
ommended to be specified in processes. Using gateway con-
structs from process based approaches such situations can be
specified. The selection criteria between different services have
to be evaluated synchronously to make the selection decision.
Therefore, it is recommended to specify selection criteria in
rule as rule execution is synchronous.

3) Change frequency: It is possible that the requirements
may change with time. The degree at which the requirements
change can be high or low. It is necessary that the modelled
system is capable of handling such changes. To support
this characteristics, a mechanism is required which supports
modification of the requirements at ease.

The change in requirements may require the change in
behaviour of the system which may result in change in under-
lying implementation. If the degree of change is high, cost and
time involved in changing underlying implementation is also
high. In order to minimise such changes, it is recommended to
specify such requirements in rule based approach. Rule based
approaches allow to change or modify requirements easily at
lower cost. If the degree of change is low, these changes can
be planned and can be specified in process based approach.

V. PROCESS AND RULE INTEGRATION

Usually the extension of functionalities offered by services
causes the introduction of new gateways in a process-based
approach. In Figure 2, addition of an alarm functionality
required two more gateways, highlighted in gray colour, than
in the original process. The first one was to decide when to
raise an alarm and the other one was to decide when to stop the
whole process. In a rule-based approach, however, extension
of functionalities can be done by simply adding or removing
rules.

As shown by example snippets in Section II, rule-based
approaches are more flexible than process-based approaches.
In rule-based approaches, flexibility is achieved because the
rules are executed directly by the rule engine and hence
they can be added or removed when needed. Whereas in
process-based approaches, any addition or removal of activ-
ities requires changes in the existing process and hence the
underlying implementation.

As discussed in Section IV, some tasks can be expressed
more naturally in rules whereas it is more appropriate to
describe some other activities in processes. The composition

approaches are, therefore, influenced by such factors. Con-
sidering the assumptions presented in Section IV-A and the
selection guidelines given in Section I'V-B, a flexible approach
for service composition is proposed. In this approach, first we
separate between the part of the requirements which can be
specified in rule and and the parts which can be specified in
processes following the guidelines presented in IV-B. Second,
we identify the place of rule in the process and attach them
there as shown in Figure 3(a). In doing so, we focus on rules
that play role in the composition logic and not those internal
to the service. Finally, we externalise the rules as shown in
Figure 3(b) by introducing decision point activity to support
flexibility and reusability.

]

oG

(a) Process with internal rules (b) Process with externalised rules

Fig. 3. Design Stages

A decision point activity is like an activity in the BPMN
sense. The difference is that, instead of representing some
‘work’ is being done, it represents some ‘service’ is being
invoked. To distinguish a decision point activity from other
activities, we denote them as a rounded rectangle with a
line slant line on top right corner. We replace gateways
in processes by decision point activities to externalise rules
used to capture alternate activities and branching conditions.
Because a decision point activity replaces a gateway of process
based approaches, it allows multiple incoming and outgoing
control flows.

A. Decision Service

Since we externalise the rules using a decision point ac-
tivity, a mechanism is needed to establish a communication
between this activity and the externalised rules. To support
these communication, we use decision service to encapsulate
decision expressions that determine the decision. A decision
service can be invoked as web services [19] from the decision
point activity. It is worth noting that the decision service is
not used only for handling decision logic changes but also for
managing the changes that occur in the system.

Decision expressions, encapsulated in a decision service,
may refer to other decision services which again have deci-
sion expression or it may directly retrieve rules from a rule
repository R. If rules r1,72, ..., are used, for example, to
make a certain decision while performing an activity a, these
rules are grouped in a decision expression d. This results in
a hierarchical design structure as shown in Figure 4. This
hierarchical structure allows to separate rules from processes
supporting reuse of rules across an enterprise as opposed to
sharing only at the local process.It can also be argued that

the changes in decisions would influence or even change the
structure of the processes. We capture these structural changes,
if any, through the use of sub-processes.

Fig. 4. Reference hierarchy

By introducing decision service, we allow separation of
process, rules and decision expression. Since we aim at sup-
porting flexibility in terms of adapting changing requirements,
we externally store rules and decision expressions. Decision
expressions are introduced to allow reuse of rules across
processes. Since decision expressions evaluates to certain deci-
sion, decision expressions can also be reuse across processes.
Moreover, this separation allows to update processes, decisions
and rules independently from each other.

As we discussed, decision service is invoked from the
decision point activity when a certain decision has to be made.
To make a decision, decision service may need certain infor-
mation to evaluate the decision expression. While evaluating
the decision expression, received information may need to
be passed further to the rules, e.g, to substitute variables in
condition expressions.

The outcome of the decision should indicate which next
service has to be executed. This means that the outcome of
the decision service has to be associated to one (or more)
outgoing links of the decision point activity. For this purpose,
we annotate incoming and outgoing links of a decision point
activity with the names of their source and destination activi-
ties respectively. We then define the interface of the decision
service such that takes as input a set of tuple <(l;, a)>, and
provides a set of values (l,) as output, where l;,« and [,
represent incoming link, data coming from incoming link, and
outgoing link. In cases where there is no data associated with
incoming link, the decision service will take a set of (I;) as
its input.

VI. SERVICE COMPOSITION

One of the main features of service oriented architecture
is its support for functional adaptation (including extension)
of an application. The adaptation is supported by means of
composition, i.e., services providing different functionalities
can be composed to create/provide a new service. A service
composition is a mechanism for creating a customised service
through the aggregation of available services.

Service composition is not only concerned with the ag-
gregation of individual services to achieve new functionality,
but also to promote reuse of existing services and reduce
the overall development cost. Individual services that form
a part of composite service are invoked in a certain order

and following certain logic. If the functionalities of either the
constituent services or the composite service changes at a later
point in time these changes have to be adapted. To support the
requirements related to the adaptation of service capabilities,
we develop a composition logic following the techniques
discusses and developed in Section V. In the following, we
illustrate the usability of the proposed hierarchical approach
for composing a MRD service as required by the application
scenario described in Section II. In the following we focus on
the “remind” subprocess from Figure 1 as this is the only part
affected, in the given scenario, due the change in requirements.
Therefore, we do not consider other activities and assume that
the “remind” process receives reminder message at scheduled
time (defined at subscription).

Based on the scenario presented in Section II we identified
that the specific requirements that a MRD service has to
fulfill are: 1) to remind users to take medicine at right time,
2) to control the release of medicines, and 3) to repeat
reminder every At time units unless an acknowledgement is
not received.

We associate the task of controlling the release of medicine
to enabling the dispenser box, such that the user can press
the “release” button on the box to get get the medicine. We
assume that a dispenser box is fitted with such button. If
the release button is pressed, the dispenser box will send
an acknowledgement to MRD. This task is represented as
an activity “Receive Ack” and sending of the reminder is
represented as an activity “Send Reminder”. By sending a
reminder, dispenser box is also enabled, i.e., a reminder
informs the user that this is the time to take a medicine and
enables the dispenser box.

Following the guidelines presented in IV, we observed
that the repetition of activity “Send Reminder” depends on
activity “Receive Ack” because “Send Reminder” activity can
be repeated only if the acknowledgement is not received.
Therefore, a decision is required to determine whether to stop
or repeat the “Send Reminder” activity. This situation is shown
in Figure 5(a), where the decision point activity refers to a
decision identified as #d.

Remind Decision Service

Send

Reminder
l "

wait At
time units

‘

<ECARule name =*r_1"

xminsins = “http:/Awww.w3.0rg/2001/XMLSchema”
xmins = “http://www example.orglecal” >
<varizbles>
<variable name = “ack” />
<variable name = “return” />
<Nvariables>
<rule>
<event> stopReminder </event>
<condition> (ack == false) <condition/>
<action> return = false </action>

</rule:
</ECARule>

(a) Use of decision point activity (b) Decision service and rule

Fig. 5. Decision Point Activity, Decision Service and Rule

This decision evaluates a decision expression which is spec-
ified in terms of other decision expression or rules. A decision
expression is specified in the form of a logical formula and
encapsulate them in a service. For the purpose of deciding

whether to repeat the reminder to stop, we define the decision
expression d as d = r;, where r; is a rule and is specified
using WS-ECA syntax and semantics. In a decision expression
we allow to use logical operators OR, AND, and XOR. The
upper part in Figure 5(b) shows how decision expression are
defined and the lower part specified how rules are encoded in
WS-ECA.

The additional requirement of the changed situation in
the application scenario presented in Section II is to extend
the functionality of DRM as specified in 5 with the alarm
functionality. The condition to raise the alarm is that the user
does not take medicine even after sending the reminder N
number of times. As in the case of previous situation (i.e.,
situation without the need of alarm functionality), we represent
the task of raising alarm with ”"Raise Alarm” activity.

Following the guidelines presented in IV, we again ob-
served that requirements for the repetition of activity “Send
Reminder” is unchanged. However, the activity “Raise Alarm”
depends on the activity “Receive Ack” because “Raise Alarm”
activity can only be performed if the acknowledgement is
not received after sending N reminders. In addition, we have
additional choices: either repeat “Send Alarm” activity for N
number of times, perform “Raise Alarm” activity or stop the
process. Therefore, a decision is required to determine which
of these activities to perform and when. This new situation is
shown in Figure 6(a), where the decision point activity refers
to a decision identified as #d.

Remind

Decision Service

wait At time units

(a) Use of decision point activity (b) Decision service and rule

Fig. 6. Decision Point Activity, Decision Service and Rule

In the new situation, we need to decide when to repeat
“Send Reminder” activity and when to perform “Raise Alarm”
activity. We also need to decide on when to stop the whole
process. The process should stop either after the user takes the
medicine of the “Raise Alarm” activity has been performed.
Let d; = r; is the logical expression for making a decision on
when to repeat the “Send Reminder” activity and dy = 11 A\ 72
is the logical expression for making a decision on when to
perform “Raise Alarm” activity, then the decision expression
d referred from the decision point activity can be defined as
d = dy €p ds. Figure 6(b) shows how decision expressions can
be used from a decision expression. The examples of rules 7;
and 79 are not shown because they can be encoded similarly
as shown in Figure 5.

The example solutions presented in Figure 6 shows that the
proposed approach is flexibly supports adaptation of changing

requirements. It also illustrates how rules can be reused across
the process. In comparison to the purely process based or
purely rule based approach, the proposed solution is more
capable of separating the concerns and minimising the de-
pendency between process designer and rule experts. This
allows for adaptation of changing requirements at minimal cost
with respect to changes in composition specification as well
as their implementation. Instead of changing the composition
specification each time the requirements changes, it is possible
to change only the part of the specification affected by the
changes.

VII. RELATED WORKS

Use of process and rules interchangeably has already taken
the attention of both research and academia. Integration of
business processes and rules has been considered in litera-
ture [5], [71, [81, [12], [20], [21], [22], [23] in an attempt to
introduce flexibility in business process model.

A hybrid approach for web service composition is presented
in [5]. In this approach, business processes are used for
describing core part of the composition logic and the rules are
used for defining policy-sensitive aspects of the composition.
These rules and processes are kept separately to reduce com-
plexity and to increase adaptability. However, the integration of
these processes and rules for use at runtime is poorly specified.

Combination of SOA, BPEL and ontology is considered
in [12] to improve maintainability and achieve flexibility of
knowledge intensive business processes. The variable tasks are
described more abstractly and stored in task pool during design
time whereas their flow is defined during run time. Ontologies
and business rules are used for defining these abstract parts to
support selection of execution of tasks during rune time. The
link between business process and rules, however, is poorly
defined. In our approach, we provide mechanisms to define
such links clearly at required granularity.

The work presented in [7], propose an approach to cus-
tomise a business process to a particular case of usage. In
their work, authors utilise business rules and workflow patterns
to model variable parts of process flow to support dynamic
pattern composition. They focus on isolating the parts of
the process that are likely to change from the rest of the
process. Similar to the solution proposed in [12], a set of
workflow patterns is identified and implemented in business
rules. These rules are kept separately from the process but,
unlike our approach, concrete solution to incorporate those
isolated process parts is not defined properly.

An ECA-based framework to facilitate coordination be-
tween active devices interacting with each other in an ubig-
uitous environment is discussed in [20]. An XML-based
language is defined to specify reactive bahaviours of web
services as well as service interactions. The rules describing
a particular service are embedded into the device providing
such service. These rules are triggered by certain events and
the corresponding service is invoked. This approach considers
rule-based approach only which is difficult to manage if the
number of devices or the service increases.

Possibility for combining business rules with business pro-
cesses is also investigated in [10], [24]. In their work, authors
proposed rBPMN language by integration of BPMN and
R2ML at meta level. In particular, rule gateways are introduced
to replace normal gateways from BPMN. Through the rule
gateways business rules can be specified explicitly in the
business process. The level of flexibility, i.e., the reuse of rules
across processes, due to such integration is, however, poorly
specified.

A representational analysis of business process and busi-
ness rules is presented in [6] comparing their representation
capabilities. The paper concludes that neither processes-based
nor rule-based languages are complete in their own but their
combination is able to provide a better modelling power.

In [22], a “find and bind” mechanism for supporting dy-
namic binding of Web services to Web service flow instance at
run-time. This mechanism facilitates a policy-based selection
of Web services at run time to repair process instances. It
extends the existing process technologies and thus requires
upgrading of existing tools.

The work presented in [8] utilise rules for managing busi-
ness collaboration models which are developed following the
model driven approaches. In their approach, process specifica-
tions were generated using a composition engine which takes
process elements and rules as its inputs. The facts regarding
the process elements and their flows are described in rules.
The proposed approach, however, is not described in detail.

VIII. CONCLUSIONS AND FUTURE WORK

One of the appealing features of service composition is
its support for flexibility and reusability of existing services
while creating value-added services to satisfy user require-
ments. Users requirements may change more frequently than
anticipated as seen, for example, in healthcare domain. Current
approaches either do not provide support for adapting such
changes or the offered solutions are too restrictive in terms
of cost and time required for responding these change in
requirements.

In this paper, we proposed an approach for increasing
flexibility and decreasing implementation cost in service com-
position. We provide guidelines to identify which part of the
requirements can be expressed in process and which parts
can be expressed in rules. By identifying these parts, we
aim at minimising negative implications at different level of
abstractions and their implementations. Following a design
based approach, we introduced a decision point activity. We
externalise rules from processes and refer them from the
decision point activity. Since the rules are externalised, a
mechanism is needed to establish a communication between
this activity and the externalised rules. To support these com-
munication, we use decision service to encapsulate decision
expressions that determine the decision. A decision expression
can refer to other decision expression or access rules from the
rule repository. Through this mechanism we supported reuse
of rules across processes and offered higher level of flexibility
in support of requirements evolution and their adaptation.

The usability of the proposed approach is illustrated with
MRD application scenario, but we believe this approach can be
used in other application domains such as health information
systems and supply chain management. In the proposed ap-
proach we considered only the rules involved in a composition
logic and not the internal rules. It would be interesting to
see whether these rules has any implications in supporting
flexibility. We further aim at developing complex application
scenarios from other domain to investigate applicability of the
proposed approach in other domains. We are also implement-
ing the prototype to support execution of the cases shown in
this paper. We are further refining this work to experiment with
more complex examples where both decision logic and struc-
tural changes can occur simultaneously. Users’ requirements
and preferences can be more complex than those show in this
paper. The proposed approach should be able to respond to
these requirements and preferences in a flexible manner. We
aim at achieving this by separating user’s preferences from
functional requirements. Development of preference model is
considered as part of our future work. We are also going to
work on modifiability analysis and observe the effect of the
proposed work as the requirements evolve.

IX. ACKNOWLEDGEMENTS

This material is based upon works jointly supported by
the IOP GenCom U-Care project (http://ucare.ewi.utwente.nl)
funded by the Dutch Ministry of Economic Affairs under
contract IGC0816 and by the DySCoTec project funded by the
Center for Telematics and Information Technology (CTIT) of
the University of Twente.

REFERENCES

[1] R. V. McCarthy, “Toward a Unified Enterprise Architecture Framework:
an Analythical Evaluation,” Issues in Information Systems, vol. 7, no. 2,
pp. 14-17, 2006.

[2] H. Jonkers, M. M. Lankhorst, H. W. L. ter Doest, F. Arbab, H. Bosma,
and R. J. Wieringa, “Enterprise Architecture: Management tool and
Blueprint for the Organisation,” Information Systems Frontiers, vol. 8,
no. 2, pp. 63-66, 2006.

[3] M. Lankhorst et al., Enterprise Architecture at Work: Modelling, Com-
munication and Analysis. Springer, 2009.

[4] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The next
step in Web services,” Communications of the ACM, vol. 46, no. 10, pp.
29-34, 2003.

[5] A. Charfi and M. Mezini, “Hybrid Web Service Composition: Business
Processes Meet Business Rules,” in Proc. of the 2nd International
Conference on Service Oriented Computing, 2004, pp. 30-38.

[6] M. zur Muehlen, M. Indulska, and G. Kamp, “Business Process and
Business Rule Modeling: A Representational Analysis,” in Proc. of
Workshop on Vocabularies, Ontologies, and Rules for the Enterprise,
2007, pp. 1-8.

[7]1 T. van Eijndhoven, M.-E. Iacob, and M. L. Ponisio, “Achieving business
process flexibility with business rules,” in Proc. of the 12th International
IEEE Enterprise Distributed Object Computing Conference, 2008, pp.
95-104.

[8] B. Orriens and J. Yang, “A Rule Driven Approach for Developing
Adaptive Service Oriented Business Collaboration,” in Proc. of IEEE
International Conference on Services Computing, 2006, pp. 182—189.

[9] T. Graml, R. Bracht, and M. Spies, “Patterns of Business Rules to Enable
Agile Business Processes,” Enterprise Information Systems, vol. 2, no. 4,
pp. 385-402, 2008.

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

M. Milanovié, D. GaSevi¢, and G. Wagner, “Combining Rules and
Activities for Modeling Service-Based Business Processes,” in Proc.
of the 2008 12th Enterprise Distributed Object Computing Conference
Workshops, 2008, pp. 11-22.

M. Cilia and A. P. Buchmann, “An Active Functionality Service for
E-Business Applications,” ACM SIGMOD Record, vol. 31, no. 1, pp.
24-30, 2002.

D. Feldkamp and N. Singh, “Making BPEL flexible,” Association for the
Advancement of Artificial Intelligence (www.aaai.org), Technical Report
SS-08-01, 2008.

F. Wang and K. J. Turner, “Towards Personalised Home Care Systems,”
in Proc. of the 1st International Conference on PErvasive Technologies
Related to Assistive Environments, 2008, pp. 1-7.

S. A. White, “Introduction to BPMN,” Object Management Group
(OMG), Tech. Rep., 2004.

D. Hay and K. A. Healy, “Defining Business Rules ~ What Are They
Really?” The Business Rules Group, Final Report Revision 1.3, 2000.
B. R. Group, “The Business Rules Manifesto,” 2003, available online at:
http://www.businessrulesgroup.org/brmanifesto.htm (Last seen on Feb,
2010).

G. Wagner, C. V. Damasio, and G. Antoniou, “Towards a general
web rule language,” International Journal of Web Engineering and
Technology, vol. 2, no. 2/3, pp. 181-206, 2005.

[18]

(19]

[20]

[21]

[22]

(23]

[24]

M. zur Muehlen, M. Indulska, and K. Kittel, “Towards Integrated
Modeling of Business Processes and Business Rules,” in Proc. of the
19th Australasian Conference on Information Systems, 2008, pp. 690—
697.

G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services Concepts,
Architectures and Applications. Springer, 2004.

J.-Y. Jung, J. Park, S.-K. Han, and K. Lee, “An ECA-based framework
for decentralized coordination of ubiquitous web services,” Information
and Software Technology, vol. 49, no. 11-12, pp. 1141-1161, 2007.

S. Demeyer, T. D. Meijler, O. Nierstrasz, and P. Steyaert, “Design
Guidelines for ‘Tailorable’ Frameworks,” Communications of the ACM,
vol. 40, no. 10, pp. 60-64, 1997.

D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and
A. Buchmann, “Extending BPEL for Run Time Adaptability,” in Proc.
of the 2005 Nineth IEEE International EDOC Enterprise Computing
Conference, 2005, pp. 15-26.

F. Corradini, A. Plzonetti, and O. Riganelli, “Bsuiness Rules in e-
Government Applications,” Electronic Journal of e-Government, vol. 7,
no. 1, pp. 45-54, 2000.

M. Milanovi¢ and D. Gasevié, “Towards a Language for Rule-enhanced
Business Process Modeling,” in Proc. of the 2009 IEEE Enterprise
Distributed Object Computing Conference, 2009, pp. 64-73.

