
Set-Oriented Mining for Association Rules in Relational Databases

Maurice Houtsma*
University of Twente

the Netherlands
hou t sma@ t rc. nl

Abstract

We describe set-oriented algorithms for mining as-
sociation rules. Such algorithms imply performing
multiple joins and may appear to be inherently less
e sc i en t than special-purpose algorithms. W e develop
new algorithms that can be expressed as SQL queries,
and discuss optimization of these algorithms. Af-
ter analytical evaluation, an algorithm named S E T M
emerges as the algorithm of choice. Algorithm S E T M
uses only simple database primitives, viz., sorting and
merge-scan join. Algorithm S E T M is simple, fast,
and stable over the mnge of pammeter values. The
major contribution of this paper is that it shows that
at least some aspects of data mining can be cam’ed
out by using general query languages such as SQL,
mther than by developing specialized black box algo-
rithms. The set-oriented nature of Algorithm S E T M
facilitates the development of extensions.

1 Introduction

The competitiveness of companies is becoming in-
creasingly dependent on the quality of their decision
making. Hence, it is no wonder that companies often
try to learn from past transactions and decisions in
order to improve the quality of decisions taken in the
present or future. In order to support this process,
large amounts of data are collected and stored during
business operations. Later, these data are analyzed for
relevant information. This process is called data min-
ing [3 , 12, 18, 51 or knowledge discovery in databases
[8, 15,9, 111. Data mining is relevant to many different
types of businesses. As examples, retail stores obtain
profiles from customers and their buying patterns and

‘M. Houtsma’s research was made possible by a fellowship
of the Royal Netherlands Academy of Arts and Sciences; he i8

currently at Telematics Research Centre, P.O. Box 217, 7500
AE Enschede, the Netherlands

tA. Swami is currently at Silicon Graphics Computer Sys-
tems, 2011 N. Shoreline Blvd, Mountain View, CA 94043-1389

Arun Swamit
IBM Almaden Research Center

San Jose, CA 95120
aruns@sgi .com

supermarkets analyze their sales and the effect of ad-
vertising on sales. Such “targeted marketing” [6] is
becoming increasingly important.

Different aspects of data mining have been explored
in the literature. In classification, data units (tuples)
are grouped together based on some common char-
acteristics, and rules are generated to describe this
grouping. This has been done both in the context of
AI [16] and in the context of databases [2, 8, 51. Work
has been done to search for similar sequences or time
series [l]. New indexing schemes for facilitating data
mining in large archival databases are proposed in [17].
In finding association rules, one tries to discover fre-
quently occurring patterns within data units [14, 41.
Our interest is in the problem of finding association
rules. There has been a lot of work in rule discovery
that is related but not directly applicable, for example,
[7, 10, 13, 161.

Business applications deal with an uncontrolled real
world, where many rules will overlap in their com-
ponents and uncertainty is common [14]. Examples
of rules could be: “Most sales transactions in which
bread and butter are purchased, also include milk,” or
“Customers with kids are more likely to buy a particu-
lar brand of cereal if it includes baseball cards.” Work
on finding these kinds of rules has been done in AI for
some specific applications, (see [15] for an overview).
Although the work done in AI is usually very general,
the computational complexity of the proposed algo-
rithms is high, and the algorithms are feasible only
for small data sets (111. Performance is a problem
with these algorithms for the kind of applications we
consider, which involve mining large databases. In [12]
a small example is described of generating rules from
data, but the emphasis is more on architectural issues
than on performance and large data sets. In [4], the
problem of rule discovery is addressed in a database
context. The paper describes an algorithm for rule
discovery on a large data set. However, the algorithm
in [4] still has a tuple-oriented flavor (tuples are repre-
sented as strings, and the algorithm consists of string

25
1063-6382195 $4.00 0 1995 IEEE

manipulation operations) and is rather complex.
We develop efficient algorithms for mining associa-

tion rules from large datasets in relational databases.
This differentiates our work from much of the work
in AI. Problems of optimization of discovered rules,
subsumption, etc. are beyond the scope of this paper.
Retailing transactions are used in the examples in this
paper. However, the work is applicable to mining of
association rules from any domain.

We address rule discovery in database systems from
a set-oriented perspective. The motivations for a new
approach to this problem are several. A set-oriented
approach allows a clearer expression of what needs to
be done as opposed to specifying exactly how the o p
erations are carried out. The declarative nature of this
approach allows consideration of different ways to o p
timize the required operations. The experience that
has been gained in optimizing relational queries can
directly be applied here. Eventually, it should be pos-
sible to integrate rule discovery completely with the
database system. This would facilitate the use of the
large amounts of data that are currently stored on rela-
tional databases. The relational query optimizer can
then determine the most efficient way to obtain the
desired results. Finally, our set-oriented approach has
a small number of well-defined, simple concepts and
operations. This allows easy extensibility to handling
additional kinds of mining, e.g., relating association
rules to customer classes.

The structure of this paper is as follows. In Sec-
tion 2 we define the problem of set-oriented data min-
ing and give an initial sketch of our approach. In
Section 3 we present an initial set-oriented algorithm
expressed in SQL and analyze its performance. In
Section 4 we present a second set-oriented algorithm
expressed in SQL and analyze its performance. In
Section 4.4 we describe the latter algorithm (called
Algorithm SETM) in terms of simple database oper-
ations: sorting and merge-scan join. We also illustrate
the algorithm by means of a small example. Section 5
explains how rules are generated. In Section 6 we de-
scribe several experiments we did with an implemen-
tation of our algorithm on a large data set. Section 7
presents our conclusions.

2 Set-oriented mining

Consider the problem of finding association rules in
sales data. Typically, a retail store records informa-
tion for each customer transaction, where a customer
transaction involves the purchase of a variable num-
ber of items. We can store this information in a rela-

tional database system using a table with the following
schema: SALES(tmns-id, item). For each customer
transaction that takes place, tuples corresponding to
the items sold are inserted in SALES.

In order to find association rules, we need to scan
transactions for reoccurring patterns that occur often
enough to be of interest (this is made more precise
later). We use the term pattern to capture the concept
of itemset introduced in [4]. This is more in line with
existing terminology [15]. A pattern can be defined
as follows. If items A , B, and C frequently occur
together in a single customer transaction, this means
that the pattern A B C occurs often. This observation
might allow us to conclude (among other rules) the
association rule A A B * C '. Here, A B is called the
antecedent of the rule and C is called the consequent
of the rule. Usually, some constraints need to be met
before we conclude that an association rule holds. As
in [4], we define support for a pattern to be the ratio
of customer transactions supporting that pattern to
the total number of customer transactions. Also, the
confidence factor for a rule obtained from a pattern
is defined as the ratio of the support for the pattern
to the support for the antecedent of the rule. For the
rule A A B C , this would be IABCl/IABI, where
lABCl denotes the support for pattern ABC.

We are interested only in association rules where
the support for the pattern(s) involved in the rule is
greater than some minimum value called minimum
support. We also require that qualifying rules have
a confidence factor greater than some value. Pat-
terns can be generated in a straightforward fashion by
repeated joins with SALES. For instance, generating
all patterns of exactly two items, is expressed by the
following SQL query:

SELECT rl . trans- id , r l . i t e m , r2.item
FROM SALES r1, SALES r2
WHERE rl . trans- id = rz.trans-id AND

r l . i t e m <> r2.item

For each pair of items (z,y), we count the num-
ber of transaction-ids in order to find the number of
transactions supporting this pattern. All patterns of
exactly three items can now be obtained by joining
the result of the previous step again with SALES and
so on. The order in which items appear is not rele-
vant right now; (2 , y) is equivalent to (y, z) since both
pairs have the same support. Order only becomes im-
portant when generating the rules because confidence
factors can be different for different orders.

Causality is not necessarily implied. Also, the ordering of
A and B in the antecedent of the rule is arbitrary

26

This strategy is elaborated in Sections 3 and 4 and
expressed in terms of a set-oriented query language,
viz., SQL. The first expression that is generated natu-
rally leads to nested-loop based joins. A rough analy-
sis of its expected performance indicates that such an
implementation would perform very poorly. Conse-
quently, we generate an equivalent expression in SQL
that naturally leads to sort-merge based joins. A first
analysis shows it to be very promising, and we pursue
this implementation in the remainder of the paper.

We include the discussion of both SQL expressions
of our strategy, because we wish to emphasize the
methodology that we used in this research. Taking
a set-oriented approach does not immediately lead to
great results but it clearly helps in getting a good un-
derstanding of the problem. In our case, by first hav-
ing studied the nested-loop strategy, we were able to
develop the strategy based on sort-merge joins fairly
easily, by taking into consideration the ways a rela-
tional query optimizer deals with these types of (com-
plex) queries.

3 Using nested-loop joins

We discuss a formulation of our set-oriented data
mining strategy that naturally leads to nested-loop
based joins. We express the algorithm in SQL and
then analyze its expected performance.

3.1 Formulation

The customer transactions are available in the re-
lation SALES(tmns-id, item). Using this relation, we
first generate the counts for each item x, i.e., the num-
ber of transactions that support item x. We check that
the minimumsupport requirement is met and store the
result in relation Cl (item, count).

INSERT INTO C1
SELECT r1 .item, COUNT(*)
FROMSALES r1
GROUP BY r1.item
HAVING COUNT(*) >= :minaupport

The next step is to generate all patterns (2, y) and
check if they meet the minimumsupport criterion. For
a specific item A, this is easy to express. For example,
all patterns (A,y) can be generated using a self-join
of SALES, as shown below.

SELECT r1 .item, rz.item, COUNT(*)
FROM SALES r1, SALES r 2
WHERE rl.trans-id = rz.trans-id AND

r1 .item =‘A’ AND
rz.item <> ‘A’

GROUP BY rl.item, r2.item
HAVING COUNT(*) >= :minaupport

This kind of expression only generates patterns
with a specific item in the first position. The expres-
sion has to be generalized in order to generate arbi-
trary patterns. As stated earlier, the order of the items
in a pattern is not relevant at the time of generation.
The order is important only in the final rule generation
process. We take advantage of this fact by generating
patterns with the items in lexicographical order. For
instance, we generate AB, but we do not generate BA.
We generalize over all values of item having minimum
support, by using the following SQL expression to gen-
erate all lexicographically ordered patterns of length
k having minimum support.

INSERT INTO Ck
SELECT rl .item, . . . , Pk .item, COUNT(*)

WHERE rl.trans-id = . . . = rk.trans-id AND
FROM c k - 1 C , SALES r l , . . . , SALES rk

r1.item = c.item1 AND

rk-l.item = c.itemk-1 AND
rk.item > rk-l.item

GROUP BY rl.item, . .., rk.item
HAVING COUNT(*) >= :minaupport

Relation ck has schema (iteml, itemz, . . . , itemk,
count). All feasible rules are found by consecutively
generating all qualifying patterns from length 1 to k
until c k + l = {}. Since the items in the patterns are
lexicographically ordered, a single inequality test in
the SQL query is sufficient.

3.2 Analysis

We perform a simple analysis of the expected per-
formance of the strategy based on nested-loop joins.
Let us consider how a relational query optimizer could
optimize the final SQL expression in Section 3.1. For
efficient evaluation of the nested-loop joins, we need
two indexes on the table SALES: an index on (item,
tmns-id) and another index on (tmns-id). Given these
indexes, the query can be evaluated as follows:

1. Take a tuple c from Ck-1, and use the index on
(item, tmns-id) for rl to get qualifying tuples with
r1 .item = c.item1

27

2. For each of these tuples, use the index on (item,
trans-id) for 7-2 to get tuples that satisfy rz . i t em =
c.item2 and ra.trans-id = rl . trans-id

3. Similarly for relations r3, . . . , P k - 1 .

4. Finally, use the index on (trans-id) for r k to com-
pute rk.tranS-id = rk-l.trans-id and check the
remaining condition rk . i tem > rk- l . i t em.

5. The qualifying tuples are sorted on the item val-
ues and the count is used to check the minimum
support constraint.

Let us consider a hypothetical retailing database to
characterize the performance of this strategy. There
are 1000 different items that can be sold. The data
consists of 200,000 customer transactions. The aver-
age number of items sold in a transaction is 10. Thus,
the relation SALES contains about 2 million tuples.
To make the analysis tractable, we assume that the
items have approximately equal probability of being
sold (in the actual data set, the items are not sold
with equal probability). Hence, the chance of an item
appearing in a particular transaction is 1%. We will
assume the following characteristics for the database
system. Page size is 4 Kbytes, and each item and
transaction id is represented using 4 bytes (item val-
ues are represented by integers). Hence, each initial
tuple consists of 8 bytes.

Consider the B+-tree index on (item, trans-id).
Since all the data is contained in the index, we do
not need a pointer in the leaf page entries. Assuming
little overhead, we can store upto 500 entries in each
leaf page. The number of leaf pages in the B+-tree
index on (item, trans-id) is 2,000,000/500 w 4,000.
Assuming 4 bytes for a pointer, an index entry in
the non-leaf pages has a size of 12 bytes. Assum-
ing very little overhead, we can store about 333 key-
value/pointer pairs on a non-leaf index page. The fol-
lowing inequality holds for the number of levels L of
the index tree: 333L 2 1,000,000 > 333L-'; hence,
L = 3. The number of non-leaf pages in this index
is (1 + 4,000/333) = 14. Similar calculations for the
index on (trans-id) show that the number of leaf pages
is 2,000 and the number of non-leaf pages is 5. Since
the number of non-leaf pages is small, we can assume
that they reside in memory and are not fetched from
disk.

Let the minimum support desired be 1000 transac-
tions, i.e., 0.5% of the total number of transactions.
On the average, each item appears in about 1% of
the transactions. Assuming uniform probabilities, all
items qualify as having minimum support. Therefore,
the cardinality of C1 will be 1000.

To obtain C2, we take each tuple c from C1 and
access the index on (item, tmns-id). This requires
1% x 4,000 leaf page fetches, i.e, w 40 page fetches.
The result consists of about 2,000 transaction-ids
(1%). For each transaction-id we now have to access
the index on (tmns-id) resulting in 1 page fetch.

From this, we may conclude that the first step alone
will require about 1000 x (40 + 2000 x 1) !a 2,000,000
page fetches. Most of these page fetches are random.
A *random* page fetch costs about 20 ms. Hence, the
time for the first step alone is !a 40,000 seconds, which
is more than 11 hours!

Clearly, the implementation based on nested-loop
joins is very inefficient. However, one could consider
a different implementation for the same basic pattern
finding strategy, viz., sort-merge joins. We will con-
sider this strategy in the next section.

4 Using sort-merge joins

We now discuss the second formulation of our set-
oriented data mining strategy based on using sort-
merge joins. We again express the algorithm in SQL
and then analyze its expected performance.

4.1 Formulation

In the previous implementation, we would generate
intermediate relations R,(tmns-id, item1 , . . . , i t e m) ,
extract support information from these relations, and
then discard them. But what if, after each step, we
saved the last & that was generated? Furthermore,
let us save R, sorted on (trans-id, i t eml , . . . , i t e m) .
We could then generate all lexicographically ordered
patterns of length k using the following expression:

INSERT INTO RL
SELECT p . t rans - id ,p . i t eml , . . . , p . i t emk- l ,q . i t em

WHERE q.trans-id = p.trans-id AND
q.item > p.itemk-1

FROM Rk-1 p , SALES q

After generating all lexicographically ordered pat-
terns of length k in RL, we now have to generate counts
for those patterns in RL that meet the minimum s u p
port constraint. This can be done as follows.

INSERT INTO Ck
SELECT p.item1 , . . . ,p . i t emk, COUNT(*)
FROM RL p
GROUP BY p.item1 , . . . , p.itemk
HAVING COUNT(*) >= :minsupport

Before we go on to generate patterns of length k+ 1,
we first have to select the tuples from RI, that should
be extended, viz., those tuples that meet the minimum
support constraint. We also wish the resulting relation
to be sorted on (trans-id, iteml, . . ., itemk). This is
done as follows:

INSERT INTO Rk
SELECT p.trans-id, p.iteml, . . . ,p.itemk
FROM RI, p , Ck q
WHERE pitem1 = q.item1 AND

p.itemk = q.itemk
ORDER BY p.trans-id,p.iteml,. . . ,p.itemk

We can now repeat this process, until at some point
Rk = 0. Note that the sorting we did in the last step
is not really required. It does, however, enable an
efficient execution plan if the sort order of the relations
is tracked across iterations.

4.2 Example

We illustrate this strategy by means of an exam-
ple. The example database consists of 10 transactions
where each transaction has 3 items. We require a min-
imum support of 3O%, i.e., 3 transactions. The desired
confidence factor is 70%. The customer transactions
are shown in Figure 1 . For brevity, we have presented
the transactions as non-normalized tuples. The algo-
rithm, however, uses the tuple format described be-
fore; a subset of the corresponding relation is shown
too. The contents of the count relation C1 are also
shown in Figure 1.

RI, and Rk denote the R relations before and after
elimination of patterns that do not meet the minimum
support count. In the first iteration, R2 is generated
and sorted on items and C2 is generated from R2. We
show Ri , Rz and C2 in Figure 2.

In the next iteration, R3 is generated and sorted on
items and C3 is generated from R3. The contents of
Rh, R2 and C2 are as shown in Figure 3. The next
iteration will not generate any new tuples, and the
algorithm terminates.

4.3 Analysis

In the section the performance of the sort-merge
strategy is analyzed using the same data set as for the
nested-loop strategy.

The 1 / 0 complexity of the sort-merge strategy can
easily be expressed by a formula derived as follows.
Let llRkll denote the number of pages used to store

the relation in iteration k. In the worst case, apply-
ing the minimum support constraints does not elim-
inate any tuples from Rk. Assume that no patterns
of length n have the minimum support, i.e., the rela-
tion R,, is empty. We thus make (n - 1) passes, i.e.,
(n - 1) merge-scans requiring (n - 1) l l ~ l l l +cy:: l l ~ , 11
page accesses. The number of page accesses to store
the result of these merge-scans is R,. After each
merge-scan, the output is read again, sorted, and writ-
ten out to disk requiring 2 c y z . 11R,l1 page accesses.
(We assume R1 to be sorted, and the sort operations to
take place in pipelining mode.) No page accesses are
required for storing or retrieving Ci since it is usually
small enough to be kept in memory being the result
of an aggregation query. Therefore, the total number
of page accesses is bounded by:

n-I

Let us calculate the time to generate Cz as we did
for the nested-loops strategy. Let R3 be empty. Using
the same numbers as in Section 3.2, the cardinality of
R, is given by ('io) x 200,000. The size of a tuple from
R, is (i + 1) x 4 bytes. This gives us the following:
llRlll = 4,000 and llRzll = 27,000. The number of
page accesses is thus:

3 x 4,000 + 4 x 27,000 = 120,000

Reading and writing all the R, relations can be done
in a sequential fashion. We estimate the time for each
page access as 10 ms. Hence, the total time spent
on 1 / 0 operations is 1200 seconds or 10 minutes. In
comparison, the nested-loop strategy required more
than 11 hours.

This rough analysis shows that the implementation
based on sort-merge joins will be much more efficient
than the algorithm based on using nested-loop join
with indexes. We will therefore proceed with fur-
ther experimental evaluation of the algorithm based
on sort-merge joins.

4.4 Algorithm SETM

The sort-merge strategy is described in pseudocode
in Figure 4. We refer to it as Algorithm SETM. The
algorithm consists of a single loop, in which two sort
operations and one merge-scan join are performed.
The first sort is needed to implement the merge-scan
join that follows it. The second sort is used in order
to generate the support counts efficiently. Generat-
ing the counts involves a simple sequential scan over

29

t x i d 1 item I item 1 item t x i d
10
10
10
20
20
20
30
30
30
...

item
A
B
c
A
B
D
A
B
C
...

- -
C
D
C
D
G
G
H
F
F
F

10
20
30
40
50
60
70
80
90
99

A B
A B
A B
B C
A C
A D
A E
D E
D E
D E

F

t x i d
10
10
10
20
20
20
30
30
30
...

Figure 1: Customer transactions, corresponding relation, and relation C1

item1
A
A
B
A
A
B
A
A
B
. . .

item1
A
A
B
A
A
A
B
B
A
...

item2
B
C
C
B
D
D
B
C
C
. . .

item2
B
C
C
B
B
C
C
C
C
...

80 D
90 D

item1 item2
D E

item1 1 item2 I cnt 1

D F
E F

item3 cnt
F 3

t x i d
10
10
10
20
30
30
30
40
50
...

E F
E F
E F

Figure 2: Relations Ri, C2, and R2

Figure 3: Relation R$, C3 and R3

30

Rk. Deleting the tuples from Rk that do not meet
the minimum support, involves simple table look-ups
on relation c k . The c k relations are of interest to
us for rule generation. We have not included in this
algorithm the optimizations mentioned in Section 4.3.

k := 1;
sort R1 on item;
C1 := generate counts from R I ;
repeat

k := k + 1;
sort Rk-1 on trans-id, i teml, . . . , itemk-1;
RB := merge-scan Rk-1, R I ;
sort RL on i teml, . . . , itemk;
c k := generate counts from RL;
Rk := filter RB to retain supported patterns;

until Rk = {}

Figure 4: Outline of Algorithm SETM

5 Rule generation

We have omitted so far any discussion of how the
rules are generated from the count relations. The rule
generation algorithm is straightforward. For any pat-
tern of length k, we consider all possible combinations
of k - 1 items in the antecedent. The remaining item
not used in the combinations is in the consequent. For
each combination of antecedent and consequent, we
check if the confidence factor meets or exceeds the
minimum confidence factor desired. If the confidence
factor is high enough, the rule is written to output. In
order to check the confidence factor, we need the count
for the current pattern (available in the current count
relation C,) and the count for the pattern compris-
ing the antecedent (available by lookup in a previous
count relation Ci-1).

Let us consider the example from Section 4.4. The
minimumsupport is 30% (3 transactions) and the min-
imum confidence factor is 70%. After relation Cz is
obtained, the rules obtained are shown below. Rules
have been written in the form X j I , [c,s], where
X is the list of items in the antecedent of the rule,
I is the item in the consequent of the rule, s is the
support expressed as a percentage and c is the con-
fidence factor. Let us see how we obtain the rule
B A . The pattern A B is supported since its
support is 3 and the minimum support desired is 3.
The ratio IABI/IBI = 3/4 = 75% which is greater
than the minimum confidence factor of 70%. The ra-

tio IABI/IAI = 3/6 = 50% which is less than the min-
imum confidence factor of 70%. Hence, we do not
obtain the rule A B .

B ==> A , [75.0%, 30.011
C ==> A, 175.0%. 30.011
B ==> C , [75.0%, 30.011
C ==> B, [75.0%, 30.011
E ==> D, [75.0%, 30.0%1
F ==> D, [lOO.O%, 30.011
E ==> F, [75.0%, 30.011
F ==> E, [lOO.O%, 30.011

After the second iteration, relation C3 is available.
The rules generated from C, are:

D E ==> F, C30.01, lOO.OO%l
D F ==> E, C30.01, lOO.OO%l
E F =I> D, [30.0%, 100.00%1

6 Experiments

In previous sections we have described the new algo-
rithm and given some analysis to show that we expect
it to be efficient. We implemented the algorithm to
run in main memory and read a file of transactions.
The execution times given are for running the algo-
rithm on the IBM Risc/System 6000 350 with a clock
speed of 41.1 MHz. In [4], a data set was used that
consists of sales data obtained from a large retailing
company with a total of 46,873 customer transactions.
The experiments were conducted using this data set.

6.1 Variation of relation shes

We first study how the size of the R, (trans-id and
items) relation varies with each iteration of algorithm
S E T M . In Figure 5 we show the variation in the size
(in Kbytes) of R, with iteration i for the retailing data
set. Curves are shown for different values of minimum
support, where minimum support is varied from 0.1%
to 5%. The maximum size of the rules is 3, hence in
all cases lR41 = 0 (with 141 denoting the cardinality
of R,). Also, the starting relations are the same and
hence I R1 I = 115,568 in all cases.

If the minimum support is small enough (5 0.1%) ,
the size of relation R, can first increase and then de-
crease. But the general trend is that the size relation
R, decreases. For large values of minimum support,
IR,I decreases quite rapidly from the first iteration to
the second. This sharp decrease is delayed somewhat
for the smaller values of minimum support. Hence,
using small values of minimum support allows us to
obtain more rules. In general, it also allows us to

31

obtain rules with more items in the antecedent. For
example, if the minimum support is reduced to 0.05%,
we obtain rules with 3 items in the antecedent.

We expect the Ci (count) relations to be small
enough to fit in memory. We now study how the car-
dinality (ICil) of these relations varies with iteration
number. Figure 6 shows curves for different values 200
of minimum support. The values of lCil measure k
the number of item combinations that could garner e
enough support. We observe that for small values of c

*= 150
minimum support the value of lCil increases initially Q,

before decreasing with later iterations. Since lCil is a 5
measure of how many rules can possibly be generated, c
we again see the importance of handling small values -' 100 3
of minimum support in a timely fashion. The maxi- 5 c mum size of the rules is 3, hence in all cases IC41 = 0.
Also, the starting relations are the same and hence
IC1 I = 59 for all minimum support values.

6.2 Execution times

250

N

50

l8

Minimum Support
(%I
0.1

We measured the execution times of our set- 1 2 3 4
oriented algorithm SETM for various values of the Iteration Number
minimum support. We varied the minimum support
from 0.1% to 5%. The execution times are shown in
the following table.

Figure 5: Size of relation R;

Execution Time
(seconds)

6.90
0.5
1
2

5.30
4.64 I
4.22

400

I 5 I 3.97 I
I 1

- .. I .2 300
3 We see that algorithm SETM is very stable. The - c

execution time varies from 7 secs for 0.1% minimum *-

0 support to sz 4 secs for 5% minimum support. 2

7 Conclusions

y 200 c
3

8
In this paper, we have investigated a set-oriented 100

approach to mining association rules. We have shown
that by following a set-oriented methodology, we 60
arrived at a simple algorithm. The algorithm is 30

0 straightforward-basic steps are sorting and merge
scan join-and could be implemented easily in a re-
lational database system. The major contribution of
this paper is that it shows that at least some aspects
of data mining can be carried out by using general
query languages such as SQL, rather than by develop
ing specialized black box algorithms.

1 2 3 4
Iteration Number

Figure 6: Cardinality of Ci

32

The algorithm exhibits good performance and sta-
ble behavior, with execution time almost insensitive
to the chosen minimum support. For a real-life data
set, execution times are on the order of 4-7 seconds.
The simple and clean form of our algorithm makes it
easily extensible and facilitates integration into a (in-
teractive) data mining system. We are investigating
extending the algorithm in order to handle additional
kinds of mining, e.g., relating association rules to cus-
tomer classes.

Acknowledgements

We thank Rakesh Agrawal, Bobbie Cochrane, Bill
Cody and Hamid Pirahesh.

References

[l] R. Agrawal, C. Faloutsos, and A. Swami. Ef-
ficient Similarity Search In Sequence Databases.
In Proceedings of the Fourth International Con-
ference on Foundations of Data Organization and
Algorithms, pages 69-84. Springer-Verlag, Berlin,
October 1993. Lecture Notes in Computer Sci-
ence, V303.

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and
A. Swami. An Interval Classifier for Database
Mining Applications. In Proceedings of the Eigh-
teenth International Conference on Very Large
Data Bases, pages 560-573, Vancouver, August
1992.

[3] R. Agrawal, T . Imielinski, and A. Swami.
Database Mining: A Performance Perspective.
IEEE Tmnsactions on Knowledge and Data En-
gineering, 5(6):914-925, December 1993. Special
issue on Learning and Discovery in Knowledge-
Based Databases.

[4] R. Agrawal, T. Imielinski, and A. Swami. Mining
Association Rules Between Sets of Items in Large
Databases. In Proceedings of ACM-SIGMOD In-
ternational Conference on Management of Data,
pages 207-216, Washington, DC, June 1993.

[5] T . M. Anwar, H. W. Beck, and S. B. Navathe.
Knowledge Mining by Imprecise Querying: A
Classification-Based Approach. In IEEE 8th
International Conference on Data Engineering,
Phoenix, Arizona, 1992.

[6] David Shepard Associates, editor. The New Di-
rect Marketing. Business One Irwin, Homewood,
Illinois, 1990.

[7] P. Cheeseman. Autoclass: A Bayesian Classifica-
tion System. In 5th International Conference on
Machine Learning. Morgan Kaufman, June 1988.

[8] J . Han, Y. Cai, and N. Cercone. Knowledge Dis-
covery in Databases: An Attribute-Oriented A p
proach. In Proceedings of the Eighteenth Inter-
national Conference on Very Large Data Bases,
pages 547-559, Vancouver, August 1992.

[9] R. Krishnamurthy and T. Imielinski. Practitioner
Problems in Need of Database Research: Re-
search Directions in Knowledge Discovery. A CM-
SIGMOD Record, 20(3):76-78, September 1991.

[lo] P. Langley, H. Simon, G. Bradshaw, and
J. Zytkow, editors. Scientific Discovery: Com-
putational Explorations of the Creative Process.
MIT Press, 1987.

[ll] D. J . Lubinsky. Discovery from Databases: A
Review of AI and Statistical Techniques. In
IJCA 1-89 Workshop on Knowledge Discovery in
Databases, pages 204-218, 1989.

[12] R.S. Michalski, L. Kerschberg, K.A. Kaufman,
and J.S. Ribeiro. Mining for Knowledge in
Databases: The INLEN Architecture, Initial Im-
plementation, and First Results. Journal of In-
telligent Information Systems, 1:85-113, 1992.

[13] J. Pearl, editor. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufman, 1992.

[14] G. Piatetsky-Shapiro. Discovery, Analysis, and
Presentation of Strong Rules. In Knowledge Dis-
covery in Databases, pages 229-248. AAAI/MIT
Press, 1991.

[15] G. Piatetsky-Shapiro, editor. Knowledge Discov-
ery in Databases. AAAI/MIT Press, 1991.

[16] J. R. Quinlan. Induction of Decision Trees. Ma-
chine Learning, 1:81-106, 1986.

[17] P. Seshadri and A. Swami. Generalized Partial
Indexes. In Proceedings of IEEE Data Engineer-
ing Conference. IEEE Computer Society, March
1995.

[18] S. Tsur. Data Dredging. IEEE Database Engi-
neering Bulletin, 13(4):58-63, December 1990.

33

	A E
	D E
	D E
	D F

