
Set-Oriented Mining for Association Rules in Relational Databases 

Maurice Houtsma* 
University of Twente 

the Netherlands 
hou t sma@ t rc. nl 

Abstract 

We describe set-oriented algorithms for mining as- 
sociation rules. Such algorithms imply performing 
multiple joins and may appear to be inherently less 
e sc i en t  than special-purpose algorithms. W e  develop 
new algorithms that can be expressed as SQL queries, 
and discuss optimization of these algorithms. Af- 
ter analytical evaluation, an algorithm named S E T M  
emerges as the algorithm of choice. Algorithm S E T M  
uses only simple database primitives, viz.,  sorting and 
merge-scan join. Algorithm S E T M  is simple, fast, 
and stable over the mnge of pammeter values. The 
major contribution of this paper is that it shows that 
at least some aspects of data mining can be cam’ed 
out by using general query languages such as SQL, 
mther than by developing specialized black box algo- 
rithms. The set-oriented nature of Algorithm S E T M  
facilitates the development of extensions. 

1 Introduction 

The competitiveness of companies is becoming in- 
creasingly dependent on the quality of their decision 
making. Hence, it is no wonder that companies often 
try to learn from past transactions and decisions in 
order to improve the quality of decisions taken in the 
present or future. In order to support this process, 
large amounts of data  are collected and stored during 
business operations. Later, these data  are analyzed for 
relevant information. This process is called data min- 
ing [3 ,  12, 18, 51 or knowledge discovery in databases 
[8, 15,9,  111. Data mining is relevant to many different 
types of businesses. As examples, retail stores obtain 
profiles from customers and their buying patterns and 
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supermarkets analyze their sales and the effect of ad- 
vertising on sales. Such “targeted marketing” [6] is 
becoming increasingly important. 

Different aspects of data mining have been explored 
in the literature. In classification, data  units (tuples) 
are grouped together based on some common char- 
acteristics, and rules are generated to  describe this 
grouping. This has been done both in the context of 
AI [16] and in the context of databases [2, 8, 51. Work 
has been done to search for similar sequences or time 
series [l]. New indexing schemes for facilitating data 
mining in large archival databases are proposed in [17]. 
In finding association rules, one tries to discover fre- 
quently occurring patterns within data  units [14, 41. 
Our interest is in the problem of finding association 
rules. There has been a lot of work in rule discovery 
that is related but not directly applicable, for example, 
[7, 10, 13, 161. 

Business applications deal with an uncontrolled real 
world, where many rules will overlap in their com- 
ponents and uncertainty is common [14]. Examples 
of rules could be: “Most sales transactions in which 
bread and butter are purchased, also include milk,” or 
“Customers with kids are more likely to buy a particu- 
lar brand of cereal if it includes baseball cards.” Work 
on finding these kinds of rules has been done in AI for 
some specific applications, (see [15] for an overview). 
Although the work done in AI is usually very general, 
the computational complexity of the proposed algo- 
rithms is high, and the algorithms are feasible only 
for small data  sets (111. Performance is a problem 
with these algorithms for the kind of applications we 
consider, which involve mining large databases. In [12] 
a small example is described of generating rules from 
data, but the emphasis is more on architectural issues 
than on performance and large data  sets. In [4], the 
problem of rule discovery is addressed in a database 
context. The paper describes an algorithm for rule 
discovery on a large data  set. However, the algorithm 
in [4] still has a tuple-oriented flavor (tuples are repre- 
sented as strings, and the algorithm consists of string 
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manipulation operations) and is rather complex. 
We develop efficient algorithms for mining associa- 

tion rules from large datasets in relational databases. 
This differentiates our work from much of the work 
in AI. Problems of optimization of discovered rules, 
subsumption, etc. are beyond the scope of this paper. 
Retailing transactions are used in the examples in this 
paper. However, the work is applicable to mining of 
association rules from any domain. 

We address rule discovery in database systems from 
a set-oriented perspective. The motivations for a new 
approach to this problem are several. A set-oriented 
approach allows a clearer expression of what needs to 
be done as opposed to specifying exactly how the o p  
erations are carried out. The declarative nature of this 
approach allows consideration of different ways to o p  
timize the required operations. The experience that 
has been gained in optimizing relational queries can 
directly be applied here. Eventually, it should be pos- 
sible to integrate rule discovery completely with the 
database system. This would facilitate the use of the 
large amounts of data that are currently stored on rela- 
tional databases. The relational query optimizer can 
then determine the most efficient way to obtain the 
desired results. Finally, our set-oriented approach has 
a small number of well-defined, simple concepts and 
operations. This allows easy extensibility to handling 
additional kinds of mining, e.g., relating association 
rules to customer classes. 

The structure of this paper is as follows. In Sec- 
tion 2 we define the problem of set-oriented data  min- 
ing and give an initial sketch of our approach. In 
Section 3 we present an initial set-oriented algorithm 
expressed in SQL and analyze its performance. In 
Section 4 we present a second set-oriented algorithm 
expressed in SQL and analyze its performance. In 
Section 4.4 we describe the latter algorithm (called 
Algorithm SETM) in terms of simple database oper- 
ations: sorting and merge-scan join. We also illustrate 
the algorithm by means of a small example. Section 5 
explains how rules are generated. In Section 6 we de- 
scribe several experiments we did with an implemen- 
tation of our algorithm on a large data set. Section 7 
presents our conclusions. 

2 Set-oriented mining 

Consider the problem of finding association rules in 
sales data. Typically, a retail store records informa- 
tion for each customer transaction, where a customer 
transaction involves the purchase of a variable num- 
ber of items. We can store this information in a rela- 

tional database system using a table with the following 
schema: SALES(tmns-id, item). For each customer 
transaction that takes place, tuples corresponding to 
the items sold are inserted in SALES. 

In order to find association rules, we need to  scan 
transactions for reoccurring patterns that occur often 
enough to be of interest (this is made more precise 
later). We use the term pattern to  capture the concept 
of itemset introduced in [4]. This is more in line with 
existing terminology [15]. A pattern can be defined 
as follows. If items A ,  B,  and C frequently occur 
together in a single customer transaction, this means 
that the pattern A B C  occurs often. This observation 
might allow us to conclude (among other rules) the 
association rule A A  B * C '. Here, A B  is called the 
antecedent of the rule and C is called the consequent 
of the rule. Usually, some constraints need to be met 
before we conclude that an association rule holds. As 
in [4], we define support for a pattern to be the ratio 
of customer transactions supporting that pattern to 
the total number of customer transactions. Also, the 
confidence factor for a rule obtained from a pattern 
is defined as the ratio of the support for the pattern 
to the support for the antecedent of the rule. For the 
rule A A B C ,  this would be IABCl/IABI, where 
lABCl denotes the support for pattern ABC. 

We are interested only in association rules where 
the support for the pattern(s) involved in the rule is 
greater than some minimum value called minimum 
support. We also require that qualifying rules have 
a confidence factor greater than some value. Pat- 
terns can be generated in a straightforward fashion by 
repeated joins with SALES. For instance, generating 
all patterns of exactly two items, is expressed by the 
following SQL query: 

SELECT rl . trans- id ,  r l . i t e m ,  r2.item 
FROM SALES r1, SALES r2 
WHERE rl . trans- id  = rz.trans-id AND 

r l . i t e m  <> r2.item 

For each pair of items (z,y), we count the num- 
ber of transaction-ids in order to find the number of 
transactions supporting this pattern. All patterns of 
exactly three items can now be obtained by joining 
the result of the previous step again with SALES and 
so on. The order in which items appear is not rele- 
vant right now; (2 ,  y) is equivalent to (y, z) since both 
pairs have the same support. Order only becomes im- 
portant when generating the rules because confidence 
factors can be different for different orders. 

Causality is not necessarily implied. Also, the ordering of 
A and B in the antecedent of the rule is arbitrary 
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This strategy is elaborated in Sections 3 and 4 and 
expressed in terms of a set-oriented query language, 
viz., SQL. The first expression that is generated natu- 
rally leads to nested-loop based joins. A rough analy- 
sis of its expected performance indicates that such an 
implementation would perform very poorly. Conse- 
quently, we generate an equivalent expression in SQL 
that naturally leads to sort-merge based joins. A first 
analysis shows it to be very promising, and we pursue 
this implementation in the remainder of the paper. 

We include the discussion of both SQL expressions 
of our strategy, because we wish to emphasize the 
methodology that we used in this research. Taking 
a set-oriented approach does not immediately lead to 
great results but it clearly helps in getting a good un- 
derstanding of the problem. In our case, by first hav- 
ing studied the nested-loop strategy, we were able to 
develop the strategy based on sort-merge joins fairly 
easily, by taking into consideration the ways a rela- 
tional query optimizer deals with these types of (com- 
plex) queries. 

3 Using nested-loop joins 

We discuss a formulation of our set-oriented data 
mining strategy that naturally leads to nested-loop 
based joins. We express the algorithm in SQL and 
then analyze its expected performance. 

3.1 Formulation 

The customer transactions are available in the re- 
lation SALES(tmns-id, item). Using this relation, we 
first generate the counts for each item x, i.e., the num- 
ber of transactions that support item x. We check that 
the minimumsupport requirement is met and store the 
result in relation Cl (item, count). 

INSERT INTO C1 
SELECT r1 .item, COUNT( *) 
FROMSALES r1 
GROUP BY r1.item 
HAVING COUNT(*) >= :minaupport 

The next step is to generate all patterns (2, y )  and 
check if they meet the minimumsupport criterion. For 
a specific item A, this is easy to express. For example, 
all patterns (A,y)  can be generated using a self-join 
of SALES, as shown below. 

SELECT r1 .item, rz.item, COUNT(*) 
FROM SALES r1, SALES r 2  
WHERE rl.trans-id = rz.trans-id AND 

r1 .item =‘A’ AND 
rz.item <> ‘A’ 

GROUP BY rl.item, r2.item 
HAVING COUNT(*) >= :minaupport 

This kind of expression only generates patterns 
with a specific item in the first position. The expres- 
sion has to be generalized in order to generate arbi- 
trary patterns. As stated earlier, the order of the items 
in a pattern is not relevant at the time of generation. 
The order is important only in the final rule generation 
process. We take advantage of this fact by generating 
patterns with the items in lexicographical order. For 
instance, we generate AB, but we do not generate BA. 
We generalize over all values of item having minimum 
support, by using the following SQL expression to gen- 
erate all lexicographically ordered patterns of length 
k having minimum support. 

INSERT INTO Ck 
SELECT rl .item, . . . , Pk .item, COUNT( *) 

WHERE rl.trans-id = . . . = rk.trans-id AND 
FROM c k - 1  C ,  SALES r l ,  . . . , SALES rk 

r1.item = c.item1 AND 

rk-l.item = c.itemk-1 AND 
rk.item > rk-l.item 

GROUP BY rl.item, . .., rk.item 
HAVING COUNT( *) >= :minaupport 

Relation ck has schema (iteml, itemz, . . . , itemk, 
count). All feasible rules are found by consecutively 
generating all qualifying patterns from length 1 to k 
until c k + l  = {}. Since the items in the patterns are 
lexicographically ordered, a single inequality test in 
the SQL query is sufficient. 

3.2 Analysis 

We perform a simple analysis of the expected per- 
formance of the strategy based on nested-loop joins. 
Let us consider how a relational query optimizer could 
optimize the final SQL expression in Section 3.1. For 
efficient evaluation of the nested-loop joins, we need 
two indexes on the table SALES: an index on (item, 
tmns-id) and another index on (tmns-id). Given these 
indexes, the query can be evaluated as follows: 

1. Take a tuple c from Ck-1, and use the index on 
(item, tmns-id) for rl to get qualifying tuples with 
r1 .item = c.item1 
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2. For each of these tuples, use the index on (item, 
trans-id) for 7-2 to get tuples that satisfy rz . i t em = 
c.item2 and ra.trans-id = rl . trans-id 

3. Similarly for relations r3, . .  . , P k - 1 .  

4. Finally, use the index on (trans-id) for r k  to  com- 
pute rk.tranS-id = rk-l.trans-id and check the 
remaining condition rk . i tem > rk- l . i t em.  

5. The qualifying tuples are sorted on the item val- 
ues and the count is used to check the minimum 
support constraint. 

Let us consider a hypothetical retailing database to 
characterize the performance of this strategy. There 
are 1000 different items that can be sold. The data 
consists of 200,000 customer transactions. The aver- 
age number of items sold in a transaction is 10. Thus, 
the relation SALES contains about 2 million tuples. 
To make the analysis tractable, we assume that the 
items have approximately equal probability of being 
sold (in the actual data  set, the items are not sold 
with equal probability). Hence, the chance of an item 
appearing in a particular transaction is 1%. We will 
assume the following characteristics for the database 
system. Page size is 4 Kbytes, and each item and 
transaction id is represented using 4 bytes (item val- 
ues are represented by integers). Hence, each initial 
tuple consists of 8 bytes. 

Consider the B+-tree index on (item, trans-id). 
Since all the data is contained in the index, we do 
not need a pointer in the leaf page entries. Assuming 
little overhead, we can store upto 500 entries in each 
leaf page. The number of leaf pages in the B+-tree 
index on (item, trans-id) is 2,000,000/500 w 4,000. 
Assuming 4 bytes for a pointer, an index entry in 
the non-leaf pages has a size of 12 bytes. Assum- 
ing very little overhead, we can store about 333 key- 
value/pointer pairs on a non-leaf index page. The fol- 
lowing inequality holds for the number of levels L of 
the index tree: 333L 2 1,000,000 > 333L-'; hence, 
L = 3. The number of non-leaf pages in this index 
is (1 + 4,000/333) = 14. Similar calculations for the 
index on (trans-id) show that the number of leaf pages 
is 2,000 and the number of non-leaf pages is 5. Since 
the number of non-leaf pages is small, we can assume 
that they reside in memory and are not fetched from 
disk. 

Let the minimum support desired be 1000 transac- 
tions, i.e., 0.5% of the total number of transactions. 
On the average, each item appears in about 1% of 
the transactions. Assuming uniform probabilities, all 
items qualify as having minimum support. Therefore, 
the cardinality of C1 will be 1000. 

To obtain C2, we take each tuple c from C1 and 
access the index on (item, tmns-id). This requires 
1% x 4,000 leaf page fetches, i.e, w 40 page fetches. 
The result consists of about 2,000 transaction-ids 
(1%). For each transaction-id we now have to access 
the index on (tmns-id) resulting in 1 page fetch. 

From this, we may conclude that the first step alone 
will require about 1000 x (40 + 2000 x 1) !a 2,000,000 
page fetches. Most of these page fetches are random. 
A *random* page fetch costs about 20 ms. Hence, the 
time for the first step alone is !a 40,000 seconds, which 
is more than 11 hours! 

Clearly, the implementation based on nested-loop 
joins is very inefficient. However, one could consider 
a different implementation for the same basic pattern 
finding strategy, viz., sort-merge joins. We will con- 
sider this strategy in the next section. 

4 Using sort-merge joins 

We now discuss the second formulation of our set- 
oriented data  mining strategy based on using sort- 
merge joins. We again express the algorithm in SQL 
and then analyze its expected performance. 

4.1 Formulation 

In the previous implementation, we would generate 
intermediate relations R,( tmns-id, item1 , . . . , i t e m )  , 
extract support information from these relations, and 
then discard them. But what if, after each step, we 
saved the last & that was generated? Furthermore, 
let us save R, sorted on (trans-id, i t eml ,  . . . , i t e m ) .  
We could then generate all lexicographically ordered 
patterns of length k using the following expression: 

INSERT INTO RL 
SELECT p . t rans - id ,p . i t eml , .  . . , p . i t emk- l ,q . i t em 

WHERE q.trans-id = p.trans-id AND 
q.item > p.itemk-1 

FROM Rk-1 p ,  SALES q 

After generating all lexicographically ordered pat- 
terns of length k in RL, we now have to generate counts 
for those patterns in RL that meet the minimum s u p  
port constraint. This can be done as follows. 

INSERT INTO Ck 
SELECT p.item1 , . .  . ,p . i t emk,  COUNT(*) 
FROM RL p 
GROUP BY p.item1 , . . . , p.itemk 
HAVING COUNT( *) >= :minsupport 



Before we go on to generate patterns of length k+ 1, 
we first have to select the tuples from RI, that should 
be extended, viz., those tuples that meet the minimum 
support constraint. We also wish the resulting relation 
to be sorted on (trans-id, iteml, . . ., itemk). This is 
done as follows: 

INSERT INTO Rk 
SELECT p.trans-id, p.iteml, . . . ,p.itemk 
FROM RI, p ,  Ck q 
WHERE pitem1 = q.item1 AND 

p.itemk = q.itemk 
ORDER BY p.trans-id,p.iteml,. . . ,p.itemk 

We can now repeat this process, until at some point 
Rk = 0. Note that the sorting we did in the last step 
is not really required. It does, however, enable an 
efficient execution plan if the sort order of the relations 
is tracked across iterations. 

4.2 Example 

We illustrate this strategy by means of an exam- 
ple. The example database consists of 10 transactions 
where each transaction has 3 items. We require a min- 
imum support of 3O%, i.e., 3 transactions. The desired 
confidence factor is 70%. The customer transactions 
are shown in Figure 1 .  For brevity, we have presented 
the transactions as non-normalized tuples. The algo- 
rithm, however, uses the tuple format described be- 
fore; a subset of the corresponding relation is shown 
too. The contents of the count relation C1 are also 
shown in Figure 1. 

RI, and Rk denote the R relations before and after 
elimination of patterns that do not meet the minimum 
support count. In the first iteration, R2 is generated 
and sorted on items and C2 is generated from R2. We 
show Ri ,  Rz and C2 in Figure 2. 

In the next iteration, R3 is generated and sorted on 
items and C3 is generated from R3. The contents of 
Rh, R2 and C2 are as shown in Figure 3. The next 
iteration will not generate any new tuples, and the 
algorithm terminates. 

4.3 Analysis 

In the section the performance of the sort-merge 
strategy is analyzed using the same data set as for the 
nested-loop strategy. 

The 1 / 0  complexity of the sort-merge strategy can 
easily be expressed by a formula derived as follows. 
Let llRkll denote the number of pages used to store 

the relation in iteration k. In the worst case, apply- 
ing the minimum support constraints does not elim- 
inate any tuples from Rk. Assume that no patterns 
of length n have the minimum support, i.e., the rela- 
tion R,, is empty. We thus make ( n  - 1) passes, i.e., 
( n -  1) merge-scans requiring (n  - 1) l l ~ l l l  +cy:: l l ~ ,  11 
page accesses. The number of page accesses to  store 
the result of these merge-scans is R,. After each 
merge-scan, the output is read again, sorted, and writ- 
ten out to disk requiring 2 c y z .  11R,l1 page accesses. 
(We assume R1 to be sorted, and the sort operations to 
take place in pipelining mode.) No page accesses are 
required for storing or retrieving Ci since it is usually 
small enough to be kept in memory being the result 
of an aggregation query. Therefore, the total number 
of page accesses is bounded by: 

n-I 

Let us calculate the time to  generate Cz as we did 
for the nested-loops strategy. Let R3 be empty. Using 
the same numbers as in Section 3.2, the cardinality of 
R, is given by ('io) x 200,000. The size of a tuple from 
R, is ( i  + 1) x 4 bytes. This gives us the following: 
llRlll = 4,000 and llRzll = 27,000. The number of 
page accesses is thus: 

3 x 4,000 + 4 x 27,000 = 120,000 

Reading and writing all the R, relations can be done 
in a sequential fashion. We estimate the time for each 
page access as 10 ms. Hence, the total time spent 
on 1 / 0  operations is 1200 seconds or 10 minutes. In 
comparison, the nested-loop strategy required more 
than 11 hours. 

This rough analysis shows that the implementation 
based on sort-merge joins will be much more efficient 
than the algorithm based on using nested-loop join 
with indexes. We will therefore proceed with fur- 
ther experimental evaluation of the algorithm based 
on sort-merge joins. 

4.4 Algorithm SETM 

The sort-merge strategy is described in pseudocode 
in Figure 4. We refer to it as Algorithm SETM. The 
algorithm consists of a single loop, in which two sort 
operations and one merge-scan join are performed. 
The first sort is needed to implement the merge-scan 
join that follows it. The second sort is used in order 
to generate the support counts efficiently. Generat- 
ing the counts involves a simple sequential scan over 
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Figure 1: Customer transactions, corresponding relation, and relation C1 
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Figure 2: Relations Ri, C2, and R2 

Figure 3: Relation R$, C3 and R3 

30 



Rk. Deleting the tuples from Rk that do not meet 
the minimum support, involves simple table look-ups 
on relation c k .  The c k  relations are of interest to 
us for rule generation. We have not included in this 
algorithm the optimizations mentioned in Section 4.3. 

k := 1; 
sort R1 on item; 
C1 := generate counts from R I ;  
repeat 

k := k + 1; 
sort Rk-1 on trans-id, i teml,  . . . , itemk-1; 
RB := merge-scan Rk-1, R I ;  
sort RL on i teml,  . . . , itemk; 
c k  := generate counts from RL; 
Rk := filter RB to retain supported patterns; 

until Rk = {}  

Figure 4: Outline of Algorithm SETM 

5 Rule generation 

We have omitted so far any discussion of how the 
rules are generated from the count relations. The rule 
generation algorithm is straightforward. For any pat- 
tern of length k, we consider all possible combinations 
of k - 1 items in the antecedent. The remaining item 
not used in the combinations is in the consequent. For 
each combination of antecedent and consequent, we 
check if the confidence factor meets or exceeds the 
minimum confidence factor desired. If the confidence 
factor is high enough, the rule is written to output. In 
order to check the confidence factor, we need the count 
for the current pattern (available in the current count 
relation C,) and the count for the pattern compris- 
ing the antecedent (available by lookup in a previous 
count relation Ci-1). 

Let us consider the example from Section 4.4. The 
minimumsupport is 30% (3 transactions) and the min- 
imum confidence factor is 70%. After relation Cz is 
obtained, the rules obtained are shown below. Rules 
have been written in the form X j I ,  [c,s], where 
X is the list of items in the antecedent of the rule, 
I is the item in the consequent of the rule, s is the 
support expressed as a percentage and c is the con- 
fidence factor. Let us see how we obtain the rule 
B A .  The pattern A B  is supported since its 
support is 3 and the minimum support desired is 3. 
The ratio IABI/IBI = 3/4 = 75% which is greater 
than the minimum confidence factor of 70%. The ra- 

tio IABI/IAI = 3/6 = 50% which is less than the min- 
imum confidence factor of 70%. Hence, we do not 
obtain the rule A B .  

B ==> A ,  [75.0%, 30.011 
C ==> A, 175.0%. 30.011 
B ==> C ,  [75.0%, 30.011 
C ==> B, [75.0%, 30.011 
E ==> D, [75.0%, 30.0%1 
F ==> D, [lOO.O%, 30.011 
E ==> F, [75.0%, 30.011 
F ==> E, [lOO.O%, 30.011 

After the second iteration, relation C3 is available. 
The rules generated from C, are: 

D E ==> F, C30.01, lOO.OO%l 
D F ==> E, C30.01, lOO.OO%l 
E F =I> D, [30.0%, 100.00%1 

6 Experiments 

In previous sections we have described the new algo- 
rithm and given some analysis to show that we expect 
it to be efficient. We implemented the algorithm to 
run in main memory and read a file of transactions. 
The execution times given are for running the algo- 
rithm on the IBM Risc/System 6000 350 with a clock 
speed of 41.1 MHz. In [4], a data  set was used that 
consists of sales data  obtained from a large retailing 
company with a total of 46,873 customer transactions. 
The experiments were conducted using this data set. 

6.1 Variation of relation shes 

We first study how the size of the R, (trans-id and 
items) relation varies with each iteration of algorithm 
S E T M .  In Figure 5 we show the variation in the size 
(in Kbytes) of R, with iteration i for the retailing data  
set. Curves are shown for different values of minimum 
support, where minimum support is varied from 0.1% 
to 5%. The maximum size of the rules is 3, hence in 
all cases lR41 = 0 (with 141 denoting the cardinality 
of R,). Also, the starting relations are the same and 
hence I R1 I = 115,568 in all cases. 

If the minimum support is small enough (5  0.1%) , 
the size of relation R, can first increase and then de- 
crease. But the general trend is that the size relation 
R, decreases. For large values of minimum support, 
IR,I decreases quite rapidly from the first iteration to 
the second. This sharp decrease is delayed somewhat 
for the smaller values of minimum support. Hence, 
using small values of minimum support allows us to 
obtain more rules. In general, it also allows us to 
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obtain rules with more items in the antecedent. For 
example, if the minimum support is reduced to 0.05%, 
we obtain rules with 3 items in the antecedent. 

We expect the Ci (count) relations to be small 
enough to fit in memory. We now study how the car- 
dinality (ICil) of these relations varies with iteration 
number. Figure 6 shows curves for different values 200 
of minimum support. The values of lCil measure k 
the number of item combinations that could garner e 
enough support. We observe that for small values of c 

*= 150 
minimum support the value of lCil increases initially Q, 

before decreasing with later iterations. Since lCil is a 5 
measure of how many rules can possibly be generated, c 
we again see the importance of handling small values -' 100 3 
of minimum support in a timely fashion. The maxi- 5 c mum size of the rules is 3, hence in all cases IC41 = 0. 
Also, the starting relations are the same and hence 
IC1 I = 59 for all minimum support values. 

6.2 Execution times 

250 

N 

50 

l8 

Minimum Support 
(%I 
0.1 

We measured the execution times of our set- 1 2 3 4 
oriented algorithm SETM for various values of the Iteration Number 
minimum support. We varied the minimum support 
from 0.1% to 5%. The execution times are shown in 
the following table. 

Figure 5: Size of relation R; 

Execution Time 
(seconds) 

6.90 
0.5 
1 
2 

5.30 
4.64 I 
4.22 

400 

I 5 I 3.97 I 
I 1 

- .. I .2 300 
3 We see that algorithm SETM is very stable. The - c 

execution time varies from 7 secs for 0.1% minimum *- 

0 support to sz 4 secs for 5% minimum support. 2 

7 Conclusions 

y 200 c 
3 

8 
In this paper, we have investigated a set-oriented 100 

approach to mining association rules. We have shown 
that by following a set-oriented methodology, we 60 
arrived at a simple algorithm. The algorithm is 30 

0 straightforward-basic steps are sorting and merge 
scan join-and could be implemented easily in a re- 
lational database system. The major contribution of 
this paper is that it shows that at least some aspects 
of data mining can be carried out by using general 
query languages such as SQL, rather than by develop 
ing specialized black box algorithms. 

1 2 3 4 
Iteration Number 

Figure 6: Cardinality of Ci 
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The algorithm exhibits good performance and sta- 
ble behavior, with execution time almost insensitive 
to the chosen minimum support. For a real-life data 
set, execution times are on the order of 4-7 seconds. 
The simple and clean form of our algorithm makes it 
easily extensible and facilitates integration into a (in- 
teractive) data  mining system. We are investigating 
extending the algorithm in order to  handle additional 
kinds of mining, e.g., relating association rules to cus- 
tomer classes. 
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