
IEEE Region 10 Conference on Computer and Communication Systems, September 1990, Hong Kong

On Debugging in a Parallel System

J. Scholten and F. Sauer
University of Twente

Department of Informatics
P.O.B. 217

7500 AE Enschede
the Netherlands

Abstract

In this paper a description is given of a partly implemented
parallel debugger for the Twente University Multicomputer
(TUMULT). The system's basic method for exchange of data is
message passing. Experience has learned that most
programming errors in application software are made in calls to
the kernel and the interprocess communication. The debugger
is intended to be used for locating bugs at this level in the
application software. It is assumed that basic blocks of the
debuggee can be debugged using a traditional sequential
sourcelevel debugger.

Introduction

Despite the application of techniques to limit the numucr of
errors in software, it is impossible to prevent bugs in any
realistic software system. This is especially true for complex
parallel and distributed software. Debugging therefore is an
essential phase in the software development process. This is
proven valid in the TUMULT environment.
TUMULT is a project of the University of Twente in co-
operation with Dr. Neher Laboratories (PTT) and OcC
Nederland B.V. [7]. The current system is of the MIMD type.

The project focusses on the design of a distributed computer,
its realtime operating system, together with a hardware
architecture that supports the operating system, and software
tools, such as a preprocessor and a parallel highlevel debugger.
Centre of the system is the communication network developed
to fit the message passing communication. It provides for a
very fast communication link between nodes.
Programming such a system is difficult and errorprone. Not
only the usual problems related to designing software are
encountered, but the programmer also has to deal with
synchronization and communication between processes and
processors. All these problems make debugging tools for
parallel systems an interesting, but essential and complex issue.
In [14] an extensive bibliography can be found, containing
about 300 publications related to the topic.
The next chapters give an introduction to parallel debugging
and related problems, a short survey of TUMULT and a
description of the TUMULT debugger.

~41.

Distributed D e b u a

A distributed or parallel system consists of a collection of
processes working together to accomplish a task. Each process

is a deterministic program, able to execute separately from, and
concurrent with other processes. Because of this complexity
debugging such a system is far more difficult than debugging a
sequential program:

normal sequential debugging techniques, like tracing
and setting breakpoints, are mostly based on a program
counter and a process state. For a parallel debugger
these concepts need to be extended, since parallel
systems contain concurrent processes and thus have
more than one program counter and process state,
it is difficult to determine a system's global state at a
certain time because of communication delays between
nodes,
asynchronous distributed or parallel systems are
nondeterministic. Two or more executions of the same
program may yield different, but valid orderings of
events. Therefore, if an error occurs in the system it
may be difficult to reproduce it at a later time,
in a sequential program the behaviour is not altered by
changing the elapsed time between two successive
program instructions. Monitoring processes in a
distributed or parallel system alters its behaviour if a
process is stopped or slowed down. If a debugger
causes atypical computations (a typical computation is
one that could reasonably occur in absence of the
debugger), bugs which occur in normal execution of a
program might never be able to be reproduced while
under the debugger's control [2]. This is called the
probe effect [6],
in a parallel system much more information is available
that needs to be presented to the user. Therefore the
userinterface between system and programmer is more
complex.

Many debuggers described in the literature are event based: the
debugger monitors the system's behaviour by detecting certain
events, eg. message-send, message-receive, system-call, etc.
The main differences lay in the implementations, in the
ordering of events and the userinterface.
An interesting approach is behavioural abstraction [l], where
the programmer has to describe the system in terms of events.
The actual events during execution then are compared with the
description. Events are modelled using hierarchical
abstractions. Filtering and clustering are techniques to do so.
The monitor is the basis of event based debuggers. It consists
of a process that detects and collects events and sends them to
a global debugger. In Pilgrim [2] the monitor is called the
agent, in the Jade system [lo] observer. Other examples of
event based systems are Amoeba [3] and Bugnet [9].

CH2866-2/90/0000.264 $1.00 0 1990 IEEE 264

Monitors may be used in two ways. One way is during
execution of a program while debugging it. The other approach
is that events are recorded during execution for a later replay.
An example is Instant-Replay [12]. A major problem with
replay concems the ordering of events. Some sort of global
clock must be implemented to define a consistent ordering of
events in separate nodes in the system, because the debugger
must be able to replay the events in the right sequence.

The TUMULT Multicomputer

The objective of the TUMULT project is research in the field
of parallel architectures in general and in the field of
multicomputers in particular. A small family of modular
extendible systems has been designed, of which two are
operational now: TUMULT-6 and TUMULT- 15. A third
prototype, TUMULT-64, is still under development [8].
TUMULT-15 is a multiprocessor in which up to 15 nodes are
connected through an interprocessor communication network
(IPCN). The nodes in the system do not share one global
memory [20]. The basic method for the exchange of data is
message passing. Major characteristics of the IPCN are:

- it has a modular extendible ring structure,
- total capacity of the ring is 20 MBytes/sec. (worst

case), 40 MBytedsec. (typical),
all nodes may send or receive simultaneously, provided
the sum of all messages does not exceed the total ring
capacity. Most networks allow only one communication
at the same time, resulting in a rather high overhead in
time,

- when a link is established information is transferred at a
high rate by means of dma (typically 4 MBytedsec.).

Each node consists of a processing element (PE) belonging to
the Motorola M680XO family, with local memory and a
network interface, and may be extended with other processors,
a floating-point processor, memory or i/o. Because a standard
type local bus is used (VME bus) extensions are realized with
commercially available standard boards. Communication
between PE's in one node is based on the same primitives as
those used for communication between nodes. Memory
connected to the bus can be used as global memory for that
specific node. This can be dangerous, because communication
via global memory is not controlled by the IPC and may
interfere with normal communication. However, some
applications require global (shared) memory and TUMULTS
architecture does not forbid such utilisation. A PE configured
with more than one processor and with global memory may be
seen as a small TUMULT system (and is indeed in use as such
by some groups in our department).
The IPCN is completely transparent for the application: it
doesn't matter which IPCN is used; the communication
primitives offered by the system are the same for all IPCNs, be
it the fast ring or the slower VME-bus.
The hardware is controlled by a distributed realtime operating
system, the TUMULT executive, where each processor has its
own multitasking subsystem [13]. The TUMULT distributed
realtime operating system is written in Modula-2 [22] and has a
layered structure. See [Figure 11.
The most basic operations and objects are provided by the
kernel: scheduler, interrupt handling mechanism, threads, etc.
On top of the kernel is the IPC, the interprocess
communication [17]. It offers the functionality of mailboxes,
send and receive primitives and a primitive remote procedure
call. The filesystem layer offers a

-

transparant distributed filesystem. Each node has a local
manager (LOM). It receives, interprets and executes commands
from the global manager (GLOM) conceming the loading,
starting and execution of application processes, as well as the
collection of status information [21]. The GLOM, residing on
exactly one node, distributes processes over the nodes and
orders the LOM to execute them. Finally, the operating system
is separated from the application program by the application
programmer's interface (API). This API provides for a
language independent interface, so applications written in
several languages can make calls to the executive. For the
debugger the API is an important layer, because here the
debugger plugs into the system.
The IPC can transfer variable length records from any sending
thread to any receiving thread (a thread is a light-weight
process), for which mailboxes are used. Mailboxes are created
dynamically by processes. Communicating threads do not need
to know the physical location of each other, nor do they need to
know the location of the mailbox, all is taken care of by the
mailbox manager. Each mailbox has a unique dynamically
chosen global name and type of message that may be
transferred via this mailbox. Creation and disposal of a
mailbox are independent actions and may be performed by any
thread. Usually a mailbox will be created by a thread that
intends to communicate via this mailbox. Mailboxes can be
disposed of at any time [15].
Mailboxes contain an arbitrary number of buffers to store
messages temporarily. This allows sending threads ahead of
receiving threads until all buffers are filled. Communication
via a mailbox that contains buffers is asynchronous. If a
mailbox contains no buffers (zero buffers) the communication
via this mailbox is synchronous, i.e. a sending thread is delayed
until another thread performs a corresponding receive.
Before communication via a mailbox can take place the
mailbox has to be created. Once the mailbox exist, threads that
want to send messages to this mailbox (senders) and threads
that want to receive messages from this mailbox (receivers)
establish a communication channel by specifying an entrance
to the mailbox. In case of a sender this entrance is called a
sender port and in case of a receiver a receiver port.
Two types of communication can be distinguished, the uni-
directional and the bi-directional communication. In the uni-
directional communication, communicating threads are sender
and receiver threads. Sender threads can send messages (to a
mailbox) and receiver threads can receive messages (from a
mailbox).
In the bi-directional communication, communicating threads
are client and server threads. Client threads can send a request
message (to a mailbox) and wait (block) until the
corresponding reply message is received. Server threads can
receive a request message (from a mailbox) and, after having
served the request, retum a reply directly to the client.
To support both types of communication the IPC offers a
number of primitives which are divided into the following five
categories:
1. installation of a mailbox
InstallMailbox(

name,mailboxType,
typeSizel,typeSize2,
numberOfBuffers
) ;

that identifies the mailbox.
(* 'name' defines the unique global name

?L c

'mailboxType' defines the type of the
mailbox (uni-directional or bi-
directional) .
'typesizel' and 'typeSize2' define
the types of the messages that can be
transferred using this mailbox. In
case of a bi-directional mailbox
'typesizel' defines the message size
and 'typeSize2' defines the size of
the reply message.
InumberOfBuffers' defines the number
of messages that can be buffered by
the mailbox.
*)

2. connection to a mailbox
Connect (

mailboxName,portVar
) ;

installed mailbox.
'portVar' is the port variable that
has to be connected.
The type of 'portVar' must be one of
the predefined types 'SENDERPORT',
'CLIENTPORT', 'RECEIVEPORT' or
' SERVERPORT '
The type of 'portVar' determines the
type of connection.

(* 'mailboxName' defines the name of the

*I
3. actual communication
Send (

sendPort,message
) ;

receivePort,messageVar
) ;

RequestReply (
clientPort,request,replyVar
) ;

serverport, id, reply
) ;

Receive (

SendReply (

4. disconnection from a mailbox;
Disconnect (

portVar
) ;

5. disposal of a mailbox.
DisposeMailbox(

mailboxName
) ;

The TUMULT Debugger

This chapter will give an outline for the TUMULT debugger.
First of all the constraints for the debugger are mentioned.
Most are required to minimize the probe effect.
- Debugging must not require recompilation of the target

program,
the debugger must be independent from the kernel, so
there will be one kernel for both normal use and
running programs under the debugger's control,

-

- if possible, the monitor should be a part of the kernel. It
must be as fast as possible and give a minimum of
overhead.

Heart of the debugger is the record and replay section. In order
to get a proper ordering of events a global system time is
needed. [5] shows that logical clocks described by [ll] are not
suitable because they will implicitly order the events totally, in
which process information may get lost. The partial ordering
by the logical clocks of Fidge could be a solution, but they are
not very suited for the TUMULT system: since processes are
created and deleted dynamically, the number of processes is
not constant. Therefore the vector used for timestamping all
communication, in which each process has its own element, is
variable in length and can become quite long. Beside, every
time a process is created or deleted, this event must be
broadcasted so that every process can modify the Length of its
own vector. This will give a relative large communication
overhead.

A solution to the mentioned problems is the introduction of a
physical shared global clock. Now events are timestamped with
a time that is equal in all PES of the system. The ordering of
events is firm in that case. Timestamping can be done by the
monitor instead of by each process separately. Luckily,
implementing a global clock in TUMULT is not very complex.
The network is synchronous and already uses a global clock
running on a frequency of 10 MHz [16]. By adding an
addressable counter to the network interface the shared global
clock can be implemented.
Two kinds of monitor will handle the stream of events in the
system: the local event manager (LEM) and the global event
manager (GLEM). See [Figure 21. The naming is consistent
with the naming conventions in TUMULT: LOM and GLOM
(local and global manager), and LMM and GLMM (local and
global mailbox manager).
The LEM intercepts all calls to the application programmers
interface (API), and produces a raw stream of events. In this
context an event is any interesting action in a process that can
have an effect outside that process. In this context an event is
any interesting action in a process that can have an effect
outside that process. Because the GLEM may not be interested
in all events, or only be interested in certain sequences of
events, the events are filtered. The filter is programmable by
regular expressions, so the eventstream can be completely
customized depending on the needs of the user doing the debug
session. Events are recorded into event records, which have the
general form:

<category, location, time, attributes>

The operating system is divided into modules, each consisting
of data, procedures and functions. The category of the event is
defined by the procedure or function that is called and the
module this procedure or function resides. The attributes
consist of the parameters of the called procedure or function
and the function result. The number of the processing element
and the thread identification form the location. Since a call to
the operating system may cause the scheduler to block the
current process and to resume a waiting process, two
timestamps are recorded: one when entering the API and one
when returning. As a side effect these timestamps can be used
for performance measurements of the system. The complete

266

definition for the event record is:

c ModuleNumber,ProcedureNumber,
NodeNumber,Threadd,
BeforeTimeStamp AfterTimeStamp,

parameters,

local event managers are implemented. A slow serial link
between the frontend processor and the TUMULT system is
replaced by a fast SCSI communication link. The userinterface
is partly textual, partly graphical. The debugger is part of the
TUMULT environment and fully integrated in the system. It
uses the system's filesystem, database and userinterface.
The languages used to implement the debugger are Modula-2
and C. X Window System and OSFMotif are used for the
graphical userinterface.

(category)
(location)

(lime)

(attributes)

result
>

The GLEM functions as an interface between the TUMULT
system and a SUN workstation. It maintains a mailbox to
which all LEMs send their eventstreams. A SCSI interface
provides a very fast bi-directional communication link between
TUMULT and the workstation. The GLEM is situated on the
same node as the GLOM and GLMM to have access to all
system administration, in particular the names of threads and
mailboxes.
The main debugger is situated at the workstation. A major part
consists of routines to store, retrieve and manipulate recorded
events. [18] asserts that the relational model is an appropriate
formalism for structuring the information generated by a
distributed monitoring system. In TUMULT the embedded
database will be implemented by using existing libraries. This
database is part of the TUMULT environment and used non-
exclusively by the debugger.
Presenting the data to the user is not trivial. In the process of
debugging the amount of recorded data might become
extremely voluminous and not very comprehensive to the user.
Two main altematives exist to this problem: presenting data in
textual views or in graphical views. The first prototypes of the
debugger did employ line oriented terminals to display events.
Now a choice is made in favor for the graphical views, using
grouping as a means to reduce the amount of information
presented to the user. In Mona [lo] grouping is used as an
abstraction mechanism for graphical views. A group combines
a set of processes into a single icon, hiding all interaction
inside the group.

Conclusion

In this paper a distributed system (TUMULT) and its debugger
are presented. Main features of the debugger are: it is event
based, using a monitor for intercepting these events; record and
replay are the main debugging techniques; preprocessing of
events is done by programmable filters; the userinterface is
graphical, using grouping as the main abstraction mechanism.
Some notes have to be made on the application of monitors in
the system. The detection of events is an active process that
consumes time. This gives rise to serious implementation
contraints when used in realtime systems, as TUMULT.
Capturing events must not cause a decrease in the system's
realtime capabilities. For this reason only system calls are
considered to be events and no effort has been made to detect
interrupts. A solution to this drawback may be the noninvasive
architecture as described by [19]. Extra hardware is used to
detect events, without interfering in the system itself.
Research in the area of parallel debugging started in 1989.
Parts of the debugger are implemented now, other parts are still
topic of research. By now initial versions of the global and

Literature

Bates P.C., Wileden J.C.: "High level debugging of
distributed systems; The behavioural abstraction
approach", Journal of systems and software 3(4), 255-
264, (1983).
Cooper R.: "Pilgrim: a debugger for distributed
systems", Proc. of the 7th International Conference on
Distributed Computing Systems, 458-465, (1987).
Elshoff I.J.P.: "A distributed debugger for Amoeba",
ACM SIGPLAN Notices 24(1), 1-10, Jan. (1989).
Feng T.: "A survey of interconnection networks",
Computer, Dec. 1981, IEEE Computer Society Press.
Fidge C.J.: "Partial Orders for Parallel Debugging",
ACM SIGPLAN Notices, 24(1), 183-194, Jan. (1989).
Gait J.: "A Probe Effect in Concurrent Programs",
Software - Practice and Experience, Vol. 16, No. 3,
March (1986).

Jansen P.G., Smit G.J.M., Scholten J.: "A survey of
TUMULT, a real-time multi-processor system", Dept.
of Computer Science, Twente University of
Technology, the Netherlands, int. rep. no. INF-86-2,
(1986).
Jansen P.G. and Smit G.J.M.: "TUMULT-64, a realtime
multiprocessor system", Dept. of Computer Science,
Twente University of Technology, the Netherlands, int.
rep. no. INF-89-58, (1989).
Jones S.H. et all: "BugNet, a real time distributed
debugging system", Proc. of the 6th symposium on
reliability in distributed software and database systems,

Joyce J. et all: "Monitoring distributed systems", ACM
Transactions on Computer Systems, 5(2): 121-150,
May (1987).
Lamport L.: "Time, clocks and the ordering of events in
a distributed system", Communications of the ACM,

LeBlanc T.J. and Mellor-Crummey J.M.: "Debugging
parallel programs with Instant Replay", IEEE
Transactions on Computers, C-36(4): 47 1-482, April
1987.
Luttmer M.L.M., Jansen P.G.: "The TUMULT kemel",
Dept. of Computer Science, Twente University of
Technology, the Netherlands, int. rep. no. INF-87-15,
March 1987.
Pancake C.M. and Utter S.: "A bibliography of Parallel
Debugged', SIGPLAN Notices, Vol. 24, No. 11, pp

Ribbers H., Jansen P.G.: "Communication facilities of
Tumult, a tutorial" Dept. of Computer Science, Twente
University, The Netherlands, mem. inf-87-10, Feb.
1987.

pp 56-65, March (1987).

Vol. 21, pp 558-565, July 1978.

29-42, 1989.

26 7

Scholten J., Jansen P.G.: "TUMULT the Twente
University Multiprocessor", Proceedings of the IEEE
workshop on future trend of distributed computing
systems in the 90s, pp. 111-118, Hong Kong, Sept.
1988.
Sijbers A.: "A distributed File System for TUMULT",
M.Sc. Thesis, Dept. of Computer Science, Twente
University of Technology, the Netherlands, 1987.
Snodgrass R.: "Monitoring in a software development
environment: a relational approach", ACM
SIGSOFVSIGPLAN Software Engineering
Symposium on Practical Development Environments,
published in ACM SIGPLAN Notices 19(5): 124-131,
1984.

Tsai J.J.P., Fang K. and Chen H.: "A Noninvasive
Architecture to Monitor Real-Time Distributed
Systems", Computer, March 1990, IEEE Computer
Society Press.
Vuurboom R.: "Communication in a loosely-coupled
multiprocessor system: its architecture and
implementation", M.Sc. Thesis, Dept. of Computer
Science, University,of Twente, the Netherlands, 1984.
Wijnstra F.J.: "Design and implementation of a
command processor for TUMULT, M.Sc. Thesis,
Dept. of Computer Science, University of Twente, the
Netherlands, 1990.
Wirth N.: "Programming in Modula-2", Third corrected
edition, Springer Verlag, 1985.

A p p l i c a t i o n

A P I

L O M

F i l e s y s t e m

I P C

K e r n e l

A p p l i c a t i o n

A P I

G L O M

L O M

F i l e s y s t e m

I P C

K e r n e l

A p p l i c a t i o n

I---- F i l e s y s t e m

k--- K e r n e l

Figure 1: The TUMULT Executive

G l o b a l event m a n a g e r

Figure 2: The Event Managers

268

