
3PAC: Enforcing Access Policies for Web Services

Jeroen van Bemmel1

(jbemmel@lucent.com)

Maarten Wegdam1,2

(wegdam@lucent.com)

Ko Lagerberg1

(lagerberg@lucent.com)

1Lucent Technologies, Bell Labs Advanced Technologies EMEA Twente
Capitool 5, 7521 PL Enschede, The Netherlands

2University of Twente, department of Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract

Web Services fail to deliver on the promise of
ubiquitous deployment and seamless
interoperability due to the lack of a uniform,
standards-based approach to all aspects of
security. In particular, the enforcement of
access policies in a Service Oriented
Architecture is not addressed adequately. We
present a novel approach to the distribution
and enforcement of credentials-based access
policies for Web Services (3PAC) which scales
well and can be implemented in existing
deployments.

Keywords: Web Services security, policy
enforcement, distributed access control

1. Introduction
Web Services technology is commonly used to
implement the Service Oriented Architecture
(SOA) paradigm which promises simple, fast,
and secure integration of systems and
applications. SOAP, WSDL and UDDI are all
widely supported XML-based open standards
that help to realize this, but these technologies
alone are not sufficient. In particular, security
is for the most part considered “out of scope”
in these standards, even though it is essential
for deployment on public networks such as the
Internet.

In this paper we address the issue of requestor
authentication and access control for Web
Services, in particular for the case where a
provider provides discovery and access control
for a set of services that are distributed across
multiple administrative domains. An example
of such a setting could be a telecom operator
that collaborates with several content providers
to offer bundled services to subscribers.

We attempt to answer the following research
questions:

1. Which kind of access policies are required
and/or can be implemented?

2. How can these policies be represented,
distributed and enforced?

3. How can this be implemented in a secure,
interoperable, efficient and scalable way?

The remainder of this paper is organized as
follows. Section 2 provides background
information on some aspects of Web Services
security and access control. Section 3 describes
our approach and a motivation for our choices.
Section 4 documents our experiences with the
implementation and validation of our ideas,
and section 5 concludes this paper and
identifies future work.

2. Background and concepts
Access control is defined as “the process of
limiting access to the resources of a system
only to authorized users, programs, processes,
or other systems (in a network)” [1]. In the
context of this paper we use this term to denote
all the checks and procedures performed to
determine if a received SOAP message should
be admitted for further processing. In
particular, this includes checking for
compliance with the access policy which may
require the use of particular security related
mechanisms, for example digital signatures.

A common distinction made in literature on
access control is based on the way the sender
or ‘subject’ of a request is identified or
classified. Schemes can be categorized as:

• Host-based access control

• Identity-based access control [3]

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

• Role-based access control [4], [5]

• Capability-based access control [6]

• Credentials-based access control [7]

• Hybrid forms

A detailed discussion on the merits and
perceived advantages / disadvantages of the
above schemes is out of scope of this paper.
The scheme we use is best characterized as
credentials-based access control, which (in our
system) is a combination of all of the above:
through authentication the identity of a
requester is established and associated with
one or more roles, typically in the form of
membership of some group. The applicable
policy is determined based on the combination
<identity, roles, target service> and credentials
are generated in the form of a signed token.
This token is a receiver-restricted capability to
access the target service, i.e. it should only be
used by the requestor. More details follow in
section 3.

2.1 Security threats
Web Services deployments are inherently
vulnerable for abuse by unauthorized parties,
especially in public networks such as the
Internet. General security threats, e.g. denial-
of-service attacks, are common for the
technology and out of scope for this paper.

The threats that are pertinent to the 3PAC
access control mechanism follow from the fact
that potentially sensitive information is passed
between the parties. The main threats are
eavesdropping, message replay, message
tampering, and man-in-the-middle attacks. The
chosen implementation addresses these issues,
as described in section 4.2.

2.2 Service discovery before access
A key characteristic of a Service Oriented
Architecture is that the constituting services
are loosely coupled. In practice, this means that
dependencies between services are resolved
during runtime using a suitable discovery
mechanism. For Web Services the most
common discovery mechanism in use is
Universal Description, Discovery and
Integration (UDDI). This OASIS standard is
widely support by many vendors. Other
alternatives exist (e.g. Liberty’s ID-WSF
Discovery service [8]) but we limit our

discussion to UDDI (in fact our architecture
does not depend on the particular discovery
protocol used).

We make a distinction between two phases: the
service discovery phase and the service access
phase. A service consumer in a SOA first
discovers a service and then accesses that
service zero or more times. Both phases
involve the exchange of SOAP messages, but
the distinction is important since – typically –
many more messages are exchanged during the
access phase. This observation is key to the
efficiency savings we realize: by performing
the bulk of access policy evaluations during
discovery, processing for each service access is
limited.

2.3 Nature / types of policy rules
An important consideration is the flexibility of
access control policies, in terms of “what can
be expressed”. We believe this design issue is
best addressed in light of practical
considerations: “What is really required?”

Input
parameters

PDP Policy
rules

Output
parameters

Request

Reply

Time = 9:30

PDP If (9:00<time<17:00)
Then

Policy := accept
Else

Policy := deny
Fi

Policy =
accept

Request

Reply

Figure 1 Policy rules with concrete example

Figure 1 illustrates the policy decision process:
a request containing a set of input parameters
is submitted to the policy decision point (PDP),
which evaluates its set of policy rules and
determines the outcome. A rule could for
example be that “requests are only admitted
between 9:00 and 17:00” (see figure).

We can classify policy rules in terms of
the nature of parameters they use. We
distinguish the following categories of
parameters:

• properties of the requestor

• properties of the target service

• properties of an individual request

• statistics (functions over past values
of properties, e.g. average load)

• environment settings or properties
(including current time / date)

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

The set of all these parameters constitutes the
context relevant for security. Using these
parameters we can construct policy rules that
are evaluated during service discovery and/or
service access. For this paper we are not
concerned with the syntax of policy rules, as
many examples already exist (e.g. an XML-
based syntax such as X-RBAC[2]). As stated
before, for efficiency reasons we prefer to
evaluate rules during discovery such that
service access checks are relatively simple and
fast. This can only be done for rules that do not
depend on inputs only available during service
access (for example: restrictions on particular
request parameter values or rules based on up-
to-date values of statistics). Such rules must be
evaluated for every request and are therefore
expensive in terms of required processing and
the resulting increase of delay.

Rules based on statistics require state
information to be maintained. Enforcement of
such rules may reduce scalability depending on
where in the architecture this information is
stored, how accurate and fresh it needs to be,
and whether it applies globally or only locally
(e.g. per service instance) . Note that the
mechanism used to collect and synchronise this
state is in principle independent of the policy,
although one may want to specify policies on
the maximum stale time of information (i.e.
policy-based caching).

3. The 3PAC architecture
We propose a novel architecture called 3PAC
(3rd party access control) based on delegation
of the computation intensive parts of access
control (authentication and initial
authorization) to a trusted third party. This
third party offers service discovery
functionality and performs authentication and
identity- or role-based access control. It then
generates signed credentials for use during
service access. Our approach bears some
similarities to Kerberos [12], some differences
are discussed in section 3.5.

�

�

�
����

�������	���������	���������	���������	����

����� �������
������ �	������	������	������	�����

����������������������������

�������	���

���
�����	����

����	����

�����������
 �!�������	���

"!����

������

#�����#�����#�����#���������

	��	���
	��	���
	��	���
	��	���

$��%��	��� ��	���

&��%��	��

'����(��

)����(��

�	(��	�!��

Figure 2 Access control using a token
obtained during discovery

Figure 2 illustrates the 3PAC logical
architecture and gives a high level overview of
the message flow. The light components
represent a standard Web Service deployment
as it is used today. The dark shaded
components are the proposed enhancements.
The system operates in two phases:

Phase 1 - Service Discovery
During service discovery the client obtains the
location of the service instance to be invoked.
In a Web Service context, the WS client
typically obtains a URL (or set of URLs) from
a UDDI registry through a lookup by service
name or identification1. The proposed
extensions perform the following functions (in
order):

• Authentication of the client performing the
discovery

• Lookup and execution of a discovery
policy

• Generation of a non-forgeable access
token containing the access policy

The resulting service discovery phase
corresponds to steps 1 to 4 in Figure 2.

The access token that the client receives in step
4 is used during each service access. The
functions related to policies are delegated to a
separate policy engine component (i.e., the
Policy Decision Point), which may or may not
be co-located with the registry (e.g. for
performance reasons co-located may be better,
but in multi-domain scenarios the policy
engine might belong to a different
administrative domain).

Phase 2 - Service Access
After service discovery the WS client can do
zero or more service requests, which we call
the service access phase. For each request the

1 More elaborate search criteria are possible.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Access Controller(AC) component verifies the
access token sent along (see Figure 2 step 5)
and applies the access policy contained therein.
As a result, service access may be denied or
restricted. The service access phase
corresponds to steps 5 to 8 in Figure 2.
Depending on the access policy embedded in
the token, the AC can consult a policy engine.

Clients are forced to follow this two-phased
approach in order to obtain an access token;
requests without token return an error response
or are simply discarded. This implies that in
our architecture clients must do discovery for
each 3PAC-protected service they use. Given
that dynamic discovery is already a common
element of a Service Oriented Architecture (to
achieve loose coupling and flexibility), we do
not consider this a drawback.

When the discovery service and the target
service belong to the same administrative
domain they can work together to define and
enforce a common access policy. In a multi-
domain setting (i.e. the target service is
operated by another third party and belongs to
a different administrative domain than the
discovery service) things become more
complicated, since the domains may have
different (or even conflicting) access policies.
We leave discussion on this issue out of scope
for this paper.

3.1 Revocation of granted access
tokens

Revocation is notoriously hard to implement in
a scalable way. Once a token has been signed
and sent to the requestor, the client can use it
until it expires. In systems that require
revocation functionality (see e.g. [9]) several
solutions are proposed, but ultimately the only
way to solve it is to make a ‘revocation check’
against a list of revocations, for every request.

In our 3PAC architecture revocation
can be supported on an ‘as-needed’ basis. That
is, the requirement to check for revocation can
be included as part of the access token. The
discovery server would keep a list of revocable
tokens issued, and include a URL to this
revocation-check service in the token. The
access controller then performs a query – but
only for requests that are marked to need it. In
addition, the discovery server might indicate a

period for which the check is valid, such that
the AC can cache the result. Of course the
limitation of this approach is that once a token
has been issued without revocation-check
constraint it cannot be revoked. We argue that
this revocation-as-needed is sufficient for
many systems in practice.

3.2 Trust in 3PAC
A trust model is a 3-tuple (I,A,R) where I
denotes the set of initial conditions, A
represents the assumptions (unverifiable
conditions) and R is the set of rules that
describe “who trusts whom for what if why”.
In 3PAC the initial condition is that each
access controller in the system has a set of
public keys corresponding to discovery
providers from whom it will accept tokens
containing an access control policy. The
assumptions made are common to most
systems (e.g. signatures cannot be forged,
private keys are not compromised). The set of
rules depends on the deployment setting
chosen, and may even be different per target
service (i.e. it can be specified as part of the
policy). In a typical scenario the AC trusts the
discovery component to assert the correct
subject and to provide the right access policy,
if the signature validates. The discovery
component in turn trusts the UsernameToken
to contain the proper username if the password
is found to be correct.

3.3 Supported policies and
information

The access token accomplishes two things: it
communicates the appropriate access policy,
and (optionally) additional information in the
form of assertions. A typical example is the
identity(name) of the third party accessing the
service, but in general any (static) properties
can be communicated.

3.4 Discussion
We discuss different aspects of our 3PAC
architecture that differentiate our solution:

Authentication and coarse-grained access
control during discovery
Authentication normally takes place after
discovery of a web interface, and before
service access [10]. Our architecture combines

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

discovery with authentication, thereby
allowing coarse-level access control based on
requester identity and on which service is
being discovered. In addition, we enable
policies in which we would return a URL to a
different service instance based on the
requester identity, e.g. for QoS differentiation.

Fine-grained access control during service
access
Our 3PAC architecture allows different fine-
grained access policies which are enforced
during service access. This includes policies
that restrict for a specific requestor: which (if
any) additional authentication is required,
which methods can be called, which values can
be used for parameters, what encryption is
required and for what period access to the
service is granted.

Tokens with embedded access policies
If access to a certain service is granted, the
requestor receives a token with an embedded
access policy to be applied for each access. By
embedding the access policy in the token, we
allow the Access Controllers - which enforce
these access policies - to be implemented in a
completely decentralized manner in which they
do not need to interact with other components
in the architecture. This results in a scalable
architecture. Some policies may require global
state, e.g., a policy to restrict the number of
invocation that a requestor can make. These
policies do require some form of interaction
between the different instances of the Access
Controllers, thus reducing scalability
somewhat. However, this aspect can be
controlled by choosing the appropriate policy
per service.

The policy can be embedded in the token either
by reference or by value. In the former case an
additional indirection is added, the token could
for example refer to one out of a set of policies
preconfigured at the access controller, or it
could contain a URL for the actual policy.
Benefits are that the size of the token (and
hence each service request) is reduced, and
revocation could then be done more easily. On
the other hand, preconfigured policies would
introduce issues with referential integrity and
would not be requestor specific, and URL
references would require additional remote
interaction (which could partly be alleviated
through caching). In fact, dereferencing such a
URL would require execution of some of the

same policy logic as done during discovery,
annihilating the benefit. A hybrid approach
would however be possible (i.e. refer to a
general, preconfigured policy at the access
controller and add requestor specific
constraints).

Multi-domain deployment and delegation
A web service can be deployed in a different
domain than the service registry. In this case
the web service may delegate authentication
and (part of) the access control enforcement to
the discovery domain. The AC can be
deployed in either the discovery or the target
service domain, and can be realized either as a
separate component or co-located with each
service.

Separation of concerns between application
logic and access policy enforcement
The access policy enforcement is fully
separated from the application logic, both on
the requestor and on the web service side. The
requestor side has to pass some form of
authentication credentials at discovery, and the
token during service usage. Depending
somewhat on the deployment environment, this
can be done by a system administrator without
code change. The AC takes care of the
enforcement of the policies on the web service
side, and can also be implemented without
requiring code changes to the web service. See
also the next section for more information on
implementation and deployment options.

Communication of requestor properties
Some service logic may depend on specific
properties of the subject, for example the type
of terminal a user is using to access the third
party service. Rather than performing a lookup
in some database for each request, such
information may be attached to the request and
is automatically protected from modification.

3.5 Comparison with Kerberos
Kerberos [12] is an authentication service used
in an open network computing environment, to
proof the identity of clients across an insecure
network. Extensions for authorization and
accounting purposes are described in [13]. By
itself Kerberos cannot be used in a Web
Services context, but several initiatives are
being undertaken to enable the use of Kerberos
security mechanisms. For example, WS-

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

Security defines a profile [14] to embed a
Kerberos ticket in a SOAP header.

In terms of [13] the 3PAC access token can be
seen as a restricted proxy (a service access
capability). Kerberos requires the use of an
additional authenticator per request to prevent
replay attacks (through eavesdropping). In our
solution we use existing, already widely
deployed ‘native’ web technology (HTTPS)
for this purpose. Besides this technological
difference the conceptual differences are that
this can be done selectively (per requestor /
target service based on some policy) and that it
is session based (as opposed to message
based), which enables performance gains for
series of requests. Furthermore, Kerberos does
not address integration with a discovery
service. New features we introduce are for
example the possibility to add a restriction that
tells the end-server to consult a given
authorization server for each request, and the
ability to include non-authorization related
requestor properties.

4. Prototyping
We have built a prototype to validate the 3PAC
approach and to do some initial performance
measurements. Where possible, standardized
SOAP extensions were used to implement the
3PAC functionality. In our implementation we
assume there is a trust relation between the
discovery component (UDDI registry/policy
engine) and the AC, and message integrity is
achieved using digital signatures.

4.1 Deployment environment
�

*���%�+,-

./	����,+�

"	0�!��$,+,�&�

#�����,��

1���.2(���#3��
�,+,��

Figure 3 Prototype deployment platform

The basic deployment environment consists of
a J2EE application server, web server and
SOAP engine. We use common open source
components for this Java™ environment, most
notably JBoss, Apache Tomcat, and Apache

Axis. On top of this base an open source UDDI
implementation called jUDDI is used to
implement standard UDDI v2.0 functionality.
OpenSAML 1.0.1 is used to wrap the access
token into a SAML [11] assertion. Finally, a
pre-release of Apache WSS4J is used to
provide WSS functionality. The platform
schematically looks like Figure 3.

transport
medium

Axis

request chain

response chain

C
lie

nt
ap

pl
ic

at
io

n

UDDI

Axis

request chain

response chain W
eb

Se
rv

ic
e

RADIUS

Figure 4 Prototype components

The complete prototype consists of four
components, as illustrated in Figure 4:

• a 3rd party client application to discover
and invoke a Web Service

• a UDDI registry that acts as a PDP and
constructs access tokens

• a RADIUS server to authenticate clients

• a target Web Service with an associated
PEP (the Access Controller which in our
prototype is co-located with the Web
Service)

The 3PAC functions are implemented using
Axis request/response handlers that process the
SOAP message headers. The additional
functionality is completely transparent for the
client, the UDDI registry and the Web Service,
which allows us to use standard components
and services without modifications (as long as
they are based on Axis).

4.2 Protocol
The protocol extensions for service discovery
and service access are based on the Web
Services Security standard (WSS) [15]. During
service discovery a WSS UsernameToken [16]
is added to a header in the UDDI request to
convey the client authentication credentials.
The access token that is generated by the
policy engine is wrapped in a SAML assertion
and added to the UDDI response as a signed
WSS SAML Token header [17]. The SAML
assertion is cached by the client and included

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

as a WSS SAML Token in subsequent
invocations of the target web service URL.
Upon reception of a SOAP request, the access
controller interprets the SAML Token, verifies
the digital signature, checks that the public key
corresponds to a trusted entity, and then
enforces the embedded policy.

The use of WSS and SAML Tokens resolves
most of the security issues as mentioned earlier
in section 2.1. For security considerations and
countermeasures to the security threats, see
[17].

4.3 Access Token
The XML-encoded access token contains all
conditions that apply for invoking the target
web service by the requesting client. The token
is implemented as an extension of the SAML
“Condition” element in a SAML assertion, for
example:

<Assertion AssertionID="..." ...>
<Conditions NotOnOrAfter="2005-01-13T09:03:18Z">

<PolicyCondition>
<policy xmlns="http://www.lucent.com/3PAC">

<appliesTo serviceId="MyService">
<URL>http://somehost.com/MyService</URL>

</appliesTo>
<partyId>3psp1</partyId>
<allowedMethods>methodA,methodB
</allowedMethods>

</policy>
</PolicyCondition>

</Conditions>
...
</Assertion>

4.4 Performance
The creation and enforcement of access control
policies obviously impacts the performance of
the Web Service infrastructure. We conducted
a number of measurements to estimate the
performance degradation caused by the
mechanism.

The measured scenario is a service discovery
followed by a Web Service method invocation.
To simplify the measurements, the client
application was authenticated locally by the
UDDI registry instead of using an (external)
RADIUS server.

The following measurements were performed:

1. Access control

2. 3rd party authentication

3. Creation of the access token wrapped in a
SAML assertion

4. Creation of a digital signature

5. Verification of the digital signature

6. Enforcement of the access policy

Step 1 is a baseline measurement for a service
discovery and method invocation without
access control, as it is commonly done today.
Steps 2, 3 and 4 are part of the discovery
phase. Steps 5 and 6 are part of the service
access phase.

To determine what parts of the mechanism
have the biggest influence on the performance,
the test run was executed multiple times. Each
time an additional function was switched on,
increasing the complexity and the overall
processing time. All components run on a
single desktop PC. The measurement results
are listed in Table 1.

Step duration (ms) total (ms)

1 n/a 220

2 77 297

3 48 345

4 305 650

5 59 709

6 6 715

Table 1 Performance measurement results
The listed times are client-perceived duration
of the scenario averaged over 100 separate
measurements on a Dell Precision 420 dual
Pentium® III 1GHz machine with 512MB of
memory, running Windows™ 2000 SP4 with
no significant background load.

As can be seen from the table, the average
processing time of the measured scenario
increases from 220 ms without access control
to 715 ms with all parts of the mechanism
enabled, i.e., an extra delay of about 500ms for
a combination of a discovery and one method
invocation.

Note that the mentioned times do not include
any network delays, and no attempts were
made to optimize any part of the code.
Furthermore the prototype currently only
supports the enforcement of relatively simple
policies. The processing time may increase
when more complex policies are supported.

Although the exact figures are not very
important (they will be different in a real
deployment), the results show that most of the
3PAC overhead can be attributed to service
discovery (430 ms). The creation of the digital
signature for the token is by far the most
expensive operation. In a typical usage
scenario, where the token is created once and

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

used multiple times, we consider this
acceptable.

5. Conclusion
In this paper we have presented a novel
approach to access control for Web Services,
which is one of the major issues that prohibits
deployment today. By resolving the static,
request-independent parts of the access policy
during service discovery and returning proof of
conformance to the client using a signed access
token, policy enforcement for each service
request can be done locally and hence
efficiently. As a result the per-request
processing overhead is relatively small. The
architecture does not prohibit the use of more
flexible request-time policies such as limiting
the maximum number of requests or revocation
of the access token, the cost of additional
processing and/or communication required for
such policies is only incurred for requests that
require this.

For future work we consider standardization
and extension of the model to include the user
of the third party service, such that properties
of this user can be used for identity federation
and privacy enforcement.

Acknowledgements
This work is part of the Freeband AWARENESS
project (http://awareness.freeband.nl). Freeband is
sponsored by the Dutch government under contract
BSIK 03025. We would like to thank Bharat Kumar
from Bell Labs research for his contributions and
suggestions.

6. References
[1] R. Agrawal et al, “Vinci: A service-oriented

architecture for rapid development of web
applications”, in WWW10 Hongkong, May 01

[2] R. Bhatti, E. Bertino and A. Ghafoor, “A Trust-
based Context-Aware Access Control Model
for Web-Services”, Proc. ICWS04 pp. 184-192

[3] L. Gong, “A secure identity-based capability
system”, Proceedings of the IEEE Symposium
on Security and Privacy, pages 56--63, 1989

[4] J.S. Park and R.S. Sandhu, “Role-based access
control on the web”, ACM Transactions on

Information System Security (volume 4 #1),
2001 pp 37-71

[5] R. S. Sandhu, et al. "Role-Based Access
Control Models", IEEE Computer 29(2): 38-
47, IEEE Press, 1996

[6] H. M. Levy. “Capability-Based Computer
System”,. Digital Press, 1984

[7] J. Biskup and S. Wortmann, “Towards a
credential-based implementation of compound
access control policies”, Proceedings of
SACMAT '04 pp 31-40

[8] Liberty ID-WSF Discovery protocol v1.1,
http://www.projectliberty.org/specs/liberty-
idwsf-disco-svc-v1.1.pdf

[9] L. Zhang, G. Ahn and B. Chu, “A rule-based
framework for role-based delegation and
revocation”, ACM Transactions on Inf. Syst.
Security, vol 6 no 3 2003 pp. 404-441

[10] M. N. Huhns and M. P. Singh, “Service
Oriented Computing: Key Concepts and
Principles”, IEEE Internet Computing, vol. 9,
no. 1, 2005, pp.75-81.

[11] Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML)
v1.1, OASIS Standard, 2003.

[12] B. Clifford Neuman and Theodore Ts'o,
“Kerberos: An Authentication Service for
Computer Networks”, IEEE Communications,
32(9):33-38. September 1994

[13] B. Clifford Neuman. Proxy-based authorization
and accounting for distributed systems, Proc. of
the 13th International Conference on DC
Systems, pp. 283-291, May 1993

[14] Web Services security Kerberos token profile,
http://www.oasis-
open.org/committees/download.php/1049/WSS
-Kerberos-03.pdf (visited 20/12/2004)

[15] Web Services Security: SOAP Message
Security 1.0, OASIS Standard, 2004.

[16] Web Services Security: UsernameToken
Profile 1.0, OASIS Standard, 2004.

[17] Web Services Security: SAML Token Profile
1.0, OASIS Standard, 2004.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

