
Are You Still There?
— A Lightweight Algorithm To Monitor Node Presence in Self-Configuring Networks —

Henrik Bohnenkampa, Johan Gortera, Jarno Guidib and Joost-Pieter Katoen∗,a,c

a University of Twente, 7500 AE Enschede, the Netherlands
b Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, the Netherlands

c RWTH Aachen University, 52056 Aachen, Germany

Abstract

This paper is concerned with the analysis and redesign
of a distributed algorithm to monitor the availability of
nodes in self-configuring networks. The simple scheme to
regularly probe a node—“are you still there?”—may eas-
ily lead to over- or underloading. The essence of the algo-
rithm is therefore to automatically adapt the probing fre-
quency. We show that a self-adaptive scheme to control
the probe load, originally proposed as an extension to the
UPnPTM (Universal Plug and Play) standard, leads to an
unfair treatment of nodes: some nodes probe fast while
others almost starve. An alternative distributed algorithm
is proposed that overcomes this problem and that tolerates
highly dynamic network topology changes. The algorithm
is very simple and can be implemented on large networks
of small computing devices such as mobile phones, PDAs,
and so on.

Keywords: discrete-event simulation, distributed al-
gorithms, formal specification, performability evaluation,
plug-and-play networks, self-configuring networks

1. Introduction

This paper is concerned with the membership manage-
ment of highly dynamic, self-configuring networks. In par-
ticular, we are concerned with the analysis of a distributed
algorithm [1] that is aimed to maintain (and to some ex-
tent disseminate) up-to-date information about the pres-
ence (or absence) of devices (also called nodes). That is
to say, the distributed algorithm allows for the monitor-
ing of the availability of a node by other nodes. Normally,
when a node goes off-line, it informs other nodes by send-
ing a bye-message, but if it suddenly becomes unavailable,
no such indication is sent, and the studied protocol comes
into play. An important requirement is that the absence

of nodes should be detected quickly (e.g., in the order of
one second) while avoiding to overload nodes. As the ba-
sic mechanism of the membership management algorithm
is to simply regularly check (i.e., probe) whether a node is
still present, we refer to it as the probe protocol. Related
protocols are failure detection and monitoring protocols.
For a survey we refer to [6].

In our setting there are two types of nodes, devices
and control points, and only the failure of a single type
of node is relevant (devices). The probe protocol consid-
ered in this paper shares many aspects with the newscast
computing approach [11]: it maintains up-to-date (mem-
bership) information in a self-organizing way, without any
central intervention, in a dynamically changing and large-
scale distributed environment. In particular, it continues to
operate properly without manual intervention under the—
according to varying patterns—joining and (un)intentional
leaving of devices.

This paper describes two probe protocols for member-
ship management and discusses analysis results obtained
by means of discrete-event simulation. The first protocol,
which we called the self-adapting probe protocol (SAPP),
was proposed in [1] and can be implemented as an (propri-
etary) extension of the UPnPTM (Universal Plug and Play)
standard. The second protocol is our contribution and over-
comes some of the problems of [1]. In the following, we
will call this protocol the device-controlled probe protocol
(DCPP).

The simplest scheme one could consider is to regu-
larly probe a device—“are you still there?”. This scheme,
however, easily leads to over- or underloading of devices.
The essence of both algorithms is therefore to automati-
cally adapt the probing frequency. We show that the self-
adaptive scheme of SAPP to control the probe load of a
probed device leads to an unfair treatment of control points
(CPs): some CPs probe fast while others almost starve.

The main contribution of this paper is, first, the analysis

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

of the SAPP [1], and second, our alternative DCPP algo-
rithm that overcomes the mentioned unfairness problem.
The simplicity of DCPPallows for the implementation on
large networks of small computing devices such as mobile
phones, PDAs, and so on.

The paper is organized as follows. Section 2 describes
the SAPP as proposed by Bodlaender et al. [1] and focuses
in particular on the self-adaptive scheme to regulate the
probe frequency. Section 3 discusses the analysis results
obtained by discrete-event simulations. Section 4 and 5 de-
scribe the alternative probe protocol DCPP and its analysis
results. Finally, Section 6 concludes.

2. The Self-Adaptive Probe Protocol

In this section we describe the self-adaptive probe pro-
tocol SAPP, as proposed in [1]. Two types of nodes are
distinguished: simple nodes (devices) and somewhat more
intelligent ones, called control points (CPs). The basic pro-
tocol mechanism is that a CP continuously probes a device
that in turn replies to the CP, if it is still present. The CP
adapts the probing frequency automatically in case a de-
vice tends to get over- or underloaded. The CPs are dy-
namically organized in an overlay network by letting the
device, on each probe, return the ids of the last two (dis-
tinct) processes that probed it. On detecting the absence
of a device, the CP uses this overlay network to inform all
CPs about the leave of the device rapidly. This informa-
tion dissemination phase of the protocol is not considered
in this paper.

Device behavior. A device maintains a probe-counter pc
that keeps track of the number of times the device has been
probed so far. On receipt of a probe, this counter is incre-
mented by the natural ∆, and a reply is sent to the probing
CP with as parameter the (just updated) value of pc. The
returned value of pc is used by CPs to estimate the load of
the device. Note that pc might have been increased also
due to probing of other CPs. Therefore it is not enough to
just send the value ∆ back to the currently probing CP. ∆
is device-dependent, and typically only known to the de-
vice. Its value may change during execution. A CP can
therefore not distill the actual probing frequency of a de-
vice, but only an estimate, which we call the experienced
probe load, denoted as Lexp. Lexp is computed from the
received values for pc.

The factor ∆ is used by a device to control its load. For
larger ∆, CPs consider the device to be more (or even over-
) loaded sooner, and will adjust (i.e., lower) their probing
frequency accordingly resulting in a lower probe-load at
the device. This works as follows. We assume a so-called
ideal probe load, denoted by Lideal , known to all CPs and

devices. Lideal is a reference constant only and must have
an high value. CPs use the relation between Lexp and
Lideal to adapt their ping frequency.

In addition, a device is assumed to have a private nomi-
nal probe load Lnom , representing the actual load, mea-
sured in probes per second, the device can or wants to
maintain during normal operation. Defining now ∆ �

�Lideal/Lnom�, enables the device to slow down the CPs
(assuming Lideal >> Lnom) as it informs the CPs that it
is a factor ∆ more “busy” than is really the case. This
allows the device to make sure that only a fraction of its
computational resources is used for answering probes and
can devote the rest of its resources to its primary tasks. If
the device finds that it is getting to many probes, it can,
say, double its value of ∆. As a consequence, the CPs will
consider the device more busy and adapt their respective
probing frequencies accordingly. The probe load of the de-
vice will, in this example, eventually drop to one half of
its previous value. Note that the optimal probe frequency
for a CP with k CPs in total is Lnom/k, but as neither k
nor Lnom are known to a CP, the adaptive mechanism de-
scribed below must take care of keeping the probing fre-
quencies of the CPs reasonably close to this optimum.

CP behavior. The behavior of a CP is more intricate.
The basic mechanism for communicating with a device is
a bounded retransmission protocol (à la [8]): a CP sends
a probe (“are you still there?”), and waits for a reply. In
absence of a reply during a certain timeout period, it re-
transmits the probe (cf. Fig. 1). Otherwise, the CP consid-
ers the reply as a notification of the presence of the device,
and continues its normal operation. Probes are retransmit-
ted maximally three times. If on none of the four probes a
reply is received, the CP considers the device to have left
the network. The protocol allows to distinguish between
the timeout value TOF after the first probe and the time-
out value TOS after the other (maximally three) probes.
Typically, TOS < TOF. The reason for different values is
that, if the first probe remains unanswered, the probability
that the device is really absent is already quite high. It is
therefore reasonable to send the three other probes in more
rapid succession, in order to shorten the time until absence
of the device is detected.

In all simulation studies in this paper TOF equals 0.022
(i.e., two times the round-trip delay of the considered net-
work + the maximal computation time of the device), and
TOS equals 0.021 (1 times round-trip delay + maximal
computation time of the device).

Adapting the probing frequency. Let us now consider
the mechanism for a CP to determine the probing fre-
quency of a device. A probe cycle starts with a probe and

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

TOS

TOF

Control Point Device

probe cycle

delay δ

pc := pc + ∆

reply (pc)

probe

probe

probe

reply (pc)

pc := pc + ∆

timeout

timeout

probe

Figure 1. Elementary protocol mechanism

ends with either a reply (a successful probe) or with a time-
out after three retransmissions of the probe (an unsuccess-
ful probe). Let δ be the delay between two consecutive
probe cycles. There is a minimal and maximal inter-probe-
cycle delay, i.e., a CP has to obey δmin � δ � δmax for
constants δmin and δmax with δmax >> δmin . The value of
δ is adapted to keep the probe load Lexp as perceived by a
CP “close to” the ideal probe load: 1

β
· Lideal � Lexp �

β ·Lideal for β > 1. Note that β is just a constant. Assume
the CP receives a reply on a probe with probe-count pc at
time t. (In case of a failed probe, the time at which the
retransmitted probe has been sent is taken.) The next re-
ply is received at time t′ > t, and let pc’ be its returned
probe-count. t′−t, thus, is the time delay between two
successive successful probes. The experienced probe load
is now given by Lexp = (pc’ − pc)/(t′ − t). The inter-
probe-cycle delay δ is adapted according to the following
scheme, where δ′ and δ refer to the new and current value
of δ, respectively:

δ′ =

min
(
αinc · δ, δmax

)
if Lexp > β·Lideal

max
(

1

αdec
· δ, δmin

)
if Lexp < 1

β
·Lideal

δ otherwise
(1)

where αinc > 1 and αdec > 1.
This scheme is justified as follows. In case the just per-

ceived probe load Lexp exceeds the maximal load, the de-
lay δ is extended (by a factor αinc > 1) with the aim to
reduce the load. As δ should not exceed the maximal de-
lay δmax , we obtain the first clause of the above formula.
This rule thus readjusts the probing frequency of a CP in
case the number of CPs (probing the device) suddenly in-
creases. If Lexp is too low, the delay is shortened in a sim-
ilar way while obeying δmin � δ. The second rule thus

readjusts the probing frequency of a CP in case the num-
ber of CPs (probing the device) suddenly decreases. In all
other cases, the load is between the maximal and minimal
load, and there is no need to adjust the delay. Note that the
maximal frequency at which a CP may probe a device—
given that the protocol is in a stabilized situation—is given
by min(1

δmin
, β·Lnom).

3. Modeling and Analysis

The SAPP has been modeled using MODEST, a mod-
eling formalism for stochastic and timed systems [3, 7].
MODEST is a formalism that is aimed to support (i) the
modular description of reactive system’s behavior while
covering both (ii) functional and (iii) non-functional sys-
tem aspects such as timing and quality-of-service con-
straints in a single specification. Elaborate descriptions of
the MODEST language can be found in [3, 7]. MODESTs
compositionality makes it usable in a wide range of dif-
ferent application areas, e.g., in [4] it is used to assess the
quality of schedules for a lacquer-production plant in the
presence of stochastic failures.

The entire model of the SAPP consists of the parallel
composition of a number of CPs, one device, and a network
process. We consider only one device since devices and
the respective connected CPs in range can be considered as
independent from other devices/CPs. Due to lack of space,
the models will not be described here. They are available
from [10].

Steady-state analysis. The MODEST models were sim-
ulated with the MÖBIUS tool [2, 9]. In order to obtain
insight into the protocol’s behavior we first carried out
a steady-state simulation using the batch-mean technique
and confidence interval 0.1 with a confidence level of 0.95.
The values for the parameters that determine the extent to
which to enlarge or shorten the delay δ between probe cy-
cles are given by [1]: αinc = 2 and αdec = 3

2
. Other im-

portant parameter values that were used for the steady-state
simulation were: β = 3

2
, Lideal = 106 and Lnom = 10

(yielding ∆ = 105), δmin = 0.02 and δmax = 10. Fur-
thermore, it has been assumed that there is a single device,
and k = 20, i.e., 20 CPs are continuously present. In a
stabilized situation, one would expect the CPs probing at
a frequency of Lnom/k = 0.5. To avoid buffer overruns,
the network buffer size has been fixed to 20,000 elements.
The network delay has been modeled as a uniform proba-
bilistic choice between three modes of operation: a slow,
a medium and a fast mode. We have experimented with
several other types of networks, and obtained similar phe-
nomena for all of them.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

The analysis focused on the probe frequency 1

δ
of the

CPs. The simulation revealed that indeed network buffer
overflow is a seldom phenomenon as the average buffer
length is very small (≈ 0.004). Surprisingly, however, the
mean delay of almost all CPs was about 10.0, whereas two
CPs had a delay of only 0.4. Both values are far away from
the optimal delay, k/Lnom = 2. Whereas the self-adaptive
mechanism should—surely in a static system situation—
lead to an equal spreading of the probe frequencies, this
is thus apparently not the case. Secondly, some CPs have
a high variance in their computed delays, whereas others
have only minimal variation. The most extreme case is a
CP with a mean delay of 8 and a variance of about 13.5.
Despite this abnormal behavior of the CPs, the device load
is quite good (i.e., it is near to Lnom = 10, and has a
low variance). These unexpected steady-state simulation
results motivated a set of more detailed simulations in or-
der to obtain a better insight into these phenomena.

Transient simulation. Various transient simulations
have been carried out that simulated the initial 20,000 sec-
onds of the SAPP. All studied configurations consist of a
single device and a number of CPs. Whereas for one or
two CPs the probe frequencies were balanced and exhibit
almost no variance as expected, for three CPs this is not
the case: Fig. 2 shows the probe frequencies of the 3 CPs
(y-axis) versus the elapsed time (x-axis). Note that after
a short initial phase, one CP is probing less and less fre-
quent, and is not recovering from this (undesired) situa-
tion. Another observation is that although the remaining
two CPs tend to “stabilize” their probing frequencies, there
remains to be a rather high variance in their frequencies.
Simulations of other scenarios with different numbers of
CP show similar behavior: some CPs probe rather fast,
whereas others are probing slower and slower, and do not
recover from this situation. Similarly, high variances in the
individual probe frequencies of a single CP occur. Fig. 3
shows for 7 arbitrary CPs out of a collection of 20 CPs how
their probing frequencies evolve over a short interval of 1
minute.

Fig. 4 shows the effect for two CPs that start in a config-
uration of 20 present CPs of which 18 suddenly leave at the
same time. Whereas in a static scenario with just two CPs,
their frequencies are equal, we see that in this dynamic sce-
nario, there is neither a load balance between the CPs nor
a low variance.

The above analysis revealed (at least) two undesired
phenomena: the variance in probing frequencies of (indi-
vidual and between) CPs may be extremely large, and CPs
can even be completely starving without the possibility to
recover from this situation. An important source of these
undesired phenomena is that the experienced probe load

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000

1/
de

la
y

(1
/s

ec
)

t (sec)

3 active Control Points (5h 33m 20s)
"cp_01_delay.txt"

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000

1/
de

la
y

(1
/s

ec
)

t (sec)

3 active Control Points (5h 33m 20s)
"cp_01_delay.txt"
"cp_02_delay.txt"

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000

1/
de

la
y

(1
/s

ec
)

t (sec)

3 active Control Points (5h 33m 20s)
"cp_01_delay.txt"
"cp_02_delay.txt"
"cp_03_delay.txt"

Figure 2. Probe frequencies for 3 CPs

 0

 2

 4

 6

 8

 10

 12

 14

 12300 12310 12320 12330 12340 12350 12360

1/
de

la
y

(1
/s

ec
)

t (sec)

Evolution of Delays over 1 Minute
"cp_01_delay.txt"
"cp_02_delay.txt"
"cp_07_delay.txt"
"cp_10_delay.txt"
"cp_12_delay.txt"
"cp_19_delay.txt"
"cp_20_delay.txt"

Figure 3. Probe frequencies for 7 (out of 20)
CPs for 1 minute

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000

1/
de

la
y

(1
/s

ec
)

t (sec)

20 CPs 18CPs leave, 2 CPs left

"cp_01_delay.txt"
"cp_02_delay.txt"

Figure 4. Suddenly 18 out of 20 CPs leave

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

Lexp of a CP may be misleading. In particular, a CP cannot
distinguish between many CPs that probe the same device
at medium rate, or a few CPs probing the device at high fre-
quency. In both cases, the device tends to be overloaded,
and the difference pc′ − pc is large, resulting in a lowering
of the CP’s probe frequency. Moreover, if the device load
drops below the threshold Lnom , the CPs with a higher
pinging frequency will detect this faster. Due to the greedy
nature of the protocol they will therefore increase their re-
spective probe frequencies, thus increasing the probe load
of the device. CPs with a low frequency are therefore with
high probability too late to get their share of the available
bandwidth. The SAPP as described here has therefore an
inherent fairness problem. These considerations form the
basis for the next protocol.

4. The Device-Controlled Probe Protocol

The protocol described in this section is intended to
overcome the fairness problem encountered just above.
Like before, there are two types of nodes (devices and CPs)
and the basic protocol mechanism is that CPs continuously
probe a device to check its presence. Instead of keeping
track of the number of times the device has been probed
so far, a device simply schedules when a probing CP is al-
lowed to probe it again. Therefore, we call this protocol
device-controlled (DCPP). The device replies to a probe
with a delay value indicating to the respective CP how long
it has to wait before it may probe again. To facilitate this
scheme, the device keeps track of the time instant at which
it wants to be probed again.

Device behavior. A device remembers the time in-
stant nt for which the last pinging CP has been sched-
uled to probe again. Initially, nt=0. On receipt of
a new probe from a CP at time t, this CP is sched-
uled to probe again at time nt ′>nt . nt ′ is computed as
nt ′= max{nt , t}+∆(nt , t). nt ′ is the time instant where
the pinging CP is scheduled for its next probe. A reply is
sent to the probing CP with as parameter the delay nt ′−t.
nt ′−t is the time the CP has to wait until is allowed to
probe again. ∆(nt , t) is a function determining the dealy
to the next probe. It is used to schedule the probing CPs
such that the device load is kept within proper limits. In
the following we define ∆(nt , t).

As in the adaptive protocol, we assume that the device
has a certain maximal probe load, Lnom which it is able or
willing to cope with. We define δmin = 1/Lnom . Addi-
tionally, we assume that all CPs do only want to ping with
a maximal frequency fmax . We define dmin = 1/fmax .
The following two constraints should be fulfilled in or-
der to keep the load of the device within proper lim-

its. Assume again that a probe has just arrived at time t.
Then: (i) ∆(nt , t) � δmin , which asserts that two con-
secutive probes are at least δmin time units apart, and (ii)
nt−t+∆(nt , t) � dmin , which states that the current CP
does not need to probe earlier than t+dmin again. Summa-
rizing, we have ∆(nt , t) � max{δmin , dmin−(nt−t)}.
In order to be as fast as possible without violating the
both constraints, we choose in the sequel ∆(nt , t) =
max{δmin , dmin−(nt−t)}. Note that the two require-
ments (i) and (ii) are exactly the constraints needed to keep
the probe load below Lnom , and to ensure that no CP has
to probe more often than it wants to.

CP behavior. The CP behavior is, compared to the
SAPP, much simpler. The CP shows the same behavior
with respect to the probing and re-probing of a device,
however, the delay between two probe cycles is now di-
rectly determined by the device. Each reply to a probe is
accompanied with a delay d, as computed by the device.
On receipt of such reply, the CP sets a timer and waits un-
til d time-units have passed before it initiates the next probe
cycle.

5. Analysis of DCPP

We have analyzed the DCPP, again with the MODEST-
MÖBIUS tool tandem. Due to its deterministic nature, the
protocol ensures that once a situation is reached where the
number of probing CPs does not change, the device has a
probe load of Lnom , and the probe frequency is nearly the
same for all CPs. Therefore, the protocol has a big advan-
tage over the adaptive protocol described in Section 2, and
is even computationally simpler.

In a dynamic scenario, where CPs join or leave the net-
work in a nondeterministic fashion, and perhaps even in
bursts, it is less obvious to determine whether the protocol
can meet its expectations. CPs that join the network and
start probing the device are unaware of the current schedule
laid out by the device. Their entrance will, therefore, dis-
turb the neat pattern of the probe schedule, yielding a (tem-
porarily) increase of the device’s load. Simulations have
been carried out to find out how the device load is affected
in a dynamic environment. These studies concentrated on
the average load and its variance. Consider a worst case
scenario, where the number of active CPs is uniformly cho-
sen from the set { 1, . . . , 60 }. This choice is repeated every
X time-units, where X is exponentially distributed with
rate 0.05. That is to say, with a mean of 20 seconds, the
number of active CPs will change. Packet losses are not
considered, i.e., every transmitted probe will eventually be
answered. The value of δmin has been set to 0.1, and dmin

equals 0.5. In this scenario, the mean load of a device in

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

steady-state is 9.7 probes/s, and the variance 20.0, yield-
ing a standard deviation of ≈ ±4.5. Statistically, the prob-

 0

 10

 20

 30

 40

 50

 60

 70

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800
 0

 10

 20

 30

 40

 50

 60

Time (sec)

Device Load

#Control Points

Figure 5. Load and #CPs over 30 min

ability of exceeding the nominal probe load is low. Fig. 5
depicts the device load and the number of CPs over an in-
terval of 30 minutes (1800 s). Despite the low variance,
the device load has some peaks, especially when many
CPs join the network simultaneously. However, the load
falls off very quickly again towards Lnom = 10 = 1/δmin

as the device rapidly incorporates the newcomers into the
current schedule. It is important to realize that this is a
worst-case scenario, and it makes the unrealistic assump-
tion that all probes in a burst will eventually be replied to
(no packet loss). In case of packet losses, however, which
will occur in bursts due to the limited capacity of devices,
the load caused by new CPs will spread better over time,
since some CPs will only receive a reply after some re-
probing. We can therefore expect that in practice the peaks
in the device load as they appear as spikes in Fig. 5 will be
a bit wider.

6. Concluding Remarks

Our analysis has shown that the self-adaptive probe pro-
tocol SAPP suffers from a fairness problem. Some CPs can
have low probing frequencies, whereas other CPs probe
very fast, and even have oscillating frequencies. Faster CPs
send more packets than really necessary and have a lot of
computation to do in order to adjust their frequencies. This
leads to a waste of computing resources and an increase
of power consumption, which for e.g., handheld devices is
most undesirable.

Our analysis has shown that DCPP does not suffer from
the fairness problem. Moreover, the protocol is capable of
keeping the load of a device within desirable limits, and—
due to its intrinsic simplicity—is amenable to implementa-

tion in small computing devices.
The analysis results have been obtained using the

MODEST/MÖBIUS tool suite. MODEST is a modeling
language with a formal semantics [7] expressed in terms
of (extended) labeled transition systems. The formality of
the language allows not only for the integration with other
formal analysis tools (such as model checkers), but, more
importantly, is essential to carry out semantically sound
simulation runs with MÖBIUS. This results in a trustwor-
thy analysis chain (one that can be validated by means
of the semantics). Standard simulation environments
are risky to use instead, because they have been found
to exhibit contradictory results (both quantitatively and
qualitatively, i.e., difference in behavior) even in simple
case studies [5].

Acknowledgment. The authors like to thank Lex Heerink
and Maarten Bodlaender, both of Philips Research, for
their comments on a draft of this paper.

References

[1] M. Bodlaender, J. Guidi and L. Heerink. Enhancing discov-
ery with liveness. In: IEEE Consumer Comm. and Netw.
Conf., IEEE CS Press, 2004.

[2] H. Bohnenkamp, T. Courtney, D. Daly, S. Derisavi, H. Her-
manns, J.-P. Katoen, V. Lam and W.H. Sanders. On inte-
grating the Möbius and MODEST modeling tools. DSN ’03,
pp. 671–672, 2003, IEEE CS Press.

[3] H. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P.
Katoen. MODEST: A compositional modeling formalism
for real-time and stochastic systems. CTIT Tech. Rep. 04-
46, 2004.

[4] H. Bohnenkamp, H. Hermanns, J. Klaren, A. Mader, and Y.
Usenko. Synthesis and stochastic assessment of schedules
for lacquer production. In QEST 2004, pages 28–37. IEEE
CS Press, Sep 2004.

[5] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of
MANET simulators. In ACM Work. Princ. Mobile Comp.,
pp. 38–43, 2002.

[6] G. Chockler, I. Keidar, and R. Vitenberg. Group communi-
cation specifications: A comprehensive study. ACM Com-
put. Surv, vol 33(4): pp. 427-469, 2001.

[7] P.R. D’Argenio, H. Hermanns, J.-P. Katoen and J. Klaren.
MODEST: A modelling language for stochastic timed sys-
tems. In: PAPM ’01, LNCS 2165: 87–104, 2001.

[8] P.R. D’Argenio, J.-P. Katoen, T.C. Ruys and G. Tretmans.
The bounded retransmission protocol must be on time! In
TACAS ’97, LNCS 1217: 416–431, 1997.

[9] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derasavi, J.
Doyle, W.H. Sanders and P. Webster. The MÖBIUS frame-
work and its implementation. IEEE Tr. on Softw. Eng.,
28(10):956–970, 2002.

[10] http://wwwhome.cs.utwente.nl/˜bohnenka/
liveness-model.tar.gz

[11] M. Jelasity, W. Kowalczyk and M. van Steen. Newscast
computing. Tech. Rep. IR-CS-006, Vrije Univ. Amsterdam,
2003.

Proceedings of the 2005 International Conference on Dependable Systems and Networks (DSN’05)

0-7695-2282-3/05 $20.00 © 2005 IEEE

