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Abstract 
In a Model Driven Architecture (MDA) software development process, models are 

repeatedly transformed to other models in order to finally achieve a set of models with enough 
details to implement a system. Generally, there are multiple ways to transform one model into 
another model. Alternative target models differ in their quality properties and the selection of a 
particular model is determined on the basis of  specific requirements. Software engineers must 
be able to identify, compare and select the appropriate transformations within the given set of 
requirements. 

The current transformation languages used for describing and executing model 
transformations only provide means to specify the transformations but do not help to identify 
and select from the alternative transformations. 

In this paper we propose a process and a set of techniques for constructing a transformation 
space for a given transformation problem. The process uses a source model, its meta-model and 
the meta-model of the target as input and generates a transformation space. Every element in 
that space represents a transformation that produces a result that is an instance of the target 
meta-model. The requirements that must be fulfilled by the result are captured and represented 
in a quality model. 

We explain our approach using an illustrative example for transforming a platform 
independent model expressed in UML into platform specific models that represent XML 
schemas. A particular quality model of extensibility is presented in the paper. 

1 Introduction 

The core idea of the Model Driven Architecture (MDA) approach proposed by OMG [MM01] is 
to specify system functionality in a set of Platform Independent Models (PIMs), separately from the 
specification of the implementation of that functionality on a specific platform in Platform Specific 
Models (PSMs). According to the MDA approach, the software development process is driven by 
models organized within a four layers meta-modeling stack [OMG00] where the highest layer is 
fixed and known as Meta Object Facility (MOF), a self-defined meta-meta model. 

A key characteristic of the MDA is the notion of model transformations. A model transformation 
is a set of transformation rules and techniques operating on a source model to produce another 
model, the target model. In general, transformation rules relate the constructs in the source model to 
the constructs in the target model (see Figure 1). 

In Figure 1, the source and target models are situated in level M1 according to the MOF 
terminology and their source and target meta-models are in level M2. The source model MA is an 
instance of the source meta-model MMA and has to be transformed to a new model that is an 
instance of the target meta-model MMB. The two meta-models determine the possible 
transformations rules. 



 
Figure 1: Multiple alternative transformations for a given source model. 

 

Generally, for each construct of the source meta-model there are multiple constructs of the target 
meta-model to which it can be mapped. Assume that the construct MCA of the source meta-model 
MMA can be mapped to either of the two constructs MC1B and MC2B of the target meta-model 
MMB. This introduces alternative mappings for each instance of MCA in the source model MA. The 
figure shows one possible mapping in which the instance C1A is mapped to an instance of MC1B and 
the instance C2A is mapped to an instance of MC2B. Other combinations are generally possible and 
this results in multiple target models. 

The resulting target models may differ from each other in the quality properties they possess. For 
example, assume that the target model is implemented using an object-oriented language. Generally, 
various implementation alternatives exist. One implementation may entail inline code and therefore 
display a better performance than the implementation, which clearly separates code into distinct 
runtime objects. The latter implementation, however, may offer more adaptability. Software 
engineers have to compare and choose among the alternatives using the quality requirements. The 
diversity of quality requirements prevents the usage of a fixed set of transformation rules. For a 
concrete problem the software engineer must be able to identify the transformations that lead to a 
model with the desired quality properties. 

Unfortunately, the current transformation languages and techniques do not provide the means to 
identify alternative transformations and to compare them regarding specific quality characteristics of 
the resulting models. 

This paper uses a technique called Design Algebra to explicitly model a set of alternative 
transformations for the source model. This technique also allows the specification of quality 
properties of the target model. The quality properties are used as selection criteria among the 
alternatives. The approach described above is used to manage the transformations of domain models 
in UML into XML-Schema’s. 

This paper is organized as follows. Section 2 presents the example and explains the problems 
addressed in this paper. Section 3 describes the techniques for constructing transformation spaces 
and selecting alternatives from them. Section 4 discusses the applicability of these techniques in the 
context of the model transformations in MDA. Section 5 gives an overview of the related work and 
section 6 gives the conclusions. 

2 Problem Statement 

2.1 Transformation from a UML class model into XML schemas 

We show the presence of alternative model transformations by an example of transforming UML 
class diagrams into XML schemas. Figure 2 depicts the concepts in this case and is a concretion of 



the general picture depicted in Figure 1. The UML class model can be considered as the platform 
independent model and the XML-Schema as the platform specific model. 

 

 
Figure 2: Multiple alternative transformations for a given UML class model into XML schemas. 

 

In Figure 2 the source model is an UML class model and its meta-model is the UML meta-model 
[OMG01a]. The target meta-model is a XML Schema meta-model that can be derived from the 
XML Schema specification [TBM01]. The Class construct defined in the UML meta-model may be 
mapped, for example, to the Element declaration or Complex type definition construct in the XML 
Schema meta-model. Then, at level M1 there are two possibilities for mapping each class in the 
source model: either to an element declaration or to a complex type. These possibilities can be 
combined to alternative mappings that produce alternative XML schemas. 

As a case study for this transformation problem we consider a system that supports teachers in 
preparing examinations. Examinations consist of questionnaires answered by students. Figure 3 
shows an UML model of the questionnaires:  

 

 
Figure 3: Example source model: UML class diagram of examination questionnaires. 

 

Class Exam is used to represent examinations and contains zero or more exam items. Each exam 
item has exactly one question. There are two types of exam items: open and multiple-choice. In the 
open type, a student may give any answer. The multiple-choice type requires a student to select from 
a list of alternative answers. Class Content is used to describe the format of the questions and 
answers and can be expressed by any combination of text, image, audio, etc. 

This model can be implemented using different techniques. As an example, we assume that the 
examination documents are stored as XML documents and are validated by an XML schema. The 
schema is derived by transforming the model shown in Figure 3 to a target model that is an instance 



of the XML Schema meta-model. The actual schema expressed in XML syntax is derived from the 
target model. 

In our example, since new exam item types may be introduced as specializations of class 
ExamItem, the schema should be able to change in the future to incorporate these new exam items. 
Therefore, we aim at extensible schemas that will remain intact even if  new items are introduced. 

Section 2.2 describes the problems encountered in transforming UML models to XML schemas. 

2.2 Problems in transforming a UML Class Model into XML Schemas  

In order to transform the UML model in Figure 3 to an XML schema, we need to map every 
construct in the model, i.e. all classes, attributes and relationships to appropriate constructs available 
in the XML Schema meta-model. There is no standard XML Schema meta-model expressed 
according to MOF but some proposals already exist [OMG01b]. Also, the abstract schema data 
model from [TBM01] may be used. We can identify some transformations that produce alternative 
schemas. Fragments from three schemas are shown in Figure 4. They only show how classes 
ExamItem, Open and MultipleChoice are transformed. 

 
<element  name=’examItem’> 
  <complexType> 
     <sequence> 
       <choice> 
          <element name=’open’ type=’…’/> 
          <element name=’mutipleChoice’ type=’…’/> 
       </choice> 
       <element name=’question’ type=’…’/> 
     </sequence> 
  </complexType> 
</element> 
 

<element name=’examItem’ 
                type=’examItemType’/> 
 
<complexType name=’examItemType’> 
    ……………….. 
</complexType> 
 
<complexType name=’openType’> 
  <complexContent> 
      <extension base=’examItemType’> 
       ……. 
      </extension> 
  </complexContent> 
</complexType> 
 
<complexType name=’multipleChoiceType’> 
  <complexContent> 
      <extension base=’examItemType’> 
       ……. 
      </extension> 
  </complexContent> 
</complexType> 

<element name=’examItem’ 
                type=’examItemType’ 
                abstract=’true’/> 
 
<complexType name=’examItemType’> 
    ……………….. 
</complexType> 
 
<complexType name=’openType’> 
  <complexContent> 
      <extension base=’examItemType’> 
       ……. 
      </extension> 
  </complexContent> 
</complexType> 
 
<complexType name=’multipleChoiceType’> 
  <complexContent> 
      <extension base=’examItemType’> 
       ……. 
      </extension> 
  </complexContent> 
</complexType> 
 
<element name=’open’ 
                type=’openType’ 
                substitutionGroup=’examItem’/> 
 
<element name=’multipleChoice’ 
                type=’multipleChoiceType’ 
                substitutionGroup=’examItem’/> 

(a) (b) (c) 
Figure 4: Three alternative schemas derived from the exam model. 

 
In alternative (a) classes ExamItem, Open and MultipleChoice are transformed into complex 

types and elements of these types (the complex types for Open and MultipleChoice are not shown). 
The generalization relation between class ExamItem and its subclasses is mapped to containment 
between the corresponding elements. In alternative (b) ExamItem class is mapped to an element and 
a complex type while the two specialized classes Open and MultipleChoice are mapped to complex 
types derived by extension from the complex type of exam item. Alternative (c) is similar to 
alternative (b) but elements are declared for every class and they are organized in a substitution 
group. 

Figure 4 shows that even for simple source models transformed intuitively several correct target 
models exist. The first problem is to select from the alternatives. It is rarely the case that every 
alternative is a good solution. Usually some requirements must be fulfilled; in our example, the 
schemas must be extensible. Software engineers are often faced with such a problem but usually the 
process of comparing among the alternatives is more implicit than explicit. 



The second problem is that there is no support for the identification of alternative 
transformations. The transformation to the required schema may not be always trivial and obvious 
and then a systematic approach is required. 

3 Constructing and Utilizing Transformation Spaces 

In this section we describe a process and techniques for constructing and utilizing a set of 
alternative transformations for a given source model. The process uses a source model, its meta-
model and the meta-model of the target models as input and generates a transformation space for 
the source model, i.e. a set of alternative transformations for a given source model. (A 
transformation space is built with concepts similar to the concepts found in Design Algebra and used 
to build design spaces. In the context of Design Algebra a design space is a set of alternatives for a 
given design problem.)  

A transformation space is a multidimensional space spanning a number of independent 
dimensions. Each dimension is associated with a number of coordinates that form a coordinate set. 
Every element in the space represents a transformation that produces a model that is an instance of 
the target meta-model. Since a transformation space may be too large some operations are defined 
that help to reduce the space. The required quality characteristics of the target model are represented 
in a quality model. The concepts from the quality model are combined with the source model 
elements and indicate certain characteristics the target model must possess. In this paper we focus 
on the extensibility model as a quality model. We illustrate the process by applying it to the example 
from section 2. 

The process of constructing and utilizing a transformation space has 4 steps: 
Step1. Constructing Transformation Space. In this step a transformation space is constructed on a 
set of dimensions and a coordinate set for each dimension. The process of identifying dimensions 
and coordinate sets is described in section 3.1. 
Step 2. Reducing Transformation Space. Since a transformation space may be too large, operations 
for selection and exclusion are defined to reduce the space. These are explained in section 3.2. 
Step 3. Reducing Transformation Space on the basis of the Extensibility Model. In this step the 
software engineer expresses the quality properties of the result as a quality model, in this paper the 
model of extensibility. The software engineer decides on the extensibility properties of the 
constructs from the source model and combines this information with the transformation space. This 
makes him aware of the desired characteristics of the target model he aims at. Extensibility 
properties are used to further reduce the transformation space. This step is explained in section 3.3. 
Step 4. Refinement. Once the space has sufficiently been reduced, the alternatives can be generated. 
They do not represent a complete transformation and some additional tuning is required. The result 
of this step contains enough information for the specification of the transformation in a given 
language. This is described in section 3.4. 

3.1 Constructing Transformation Space 

The dimensions of a transformation space are determined from the constructs in the source 
model. A subset of the constructs in the source model is selected and one dimension is defined for 
each construct in that subset. Some constructs of the source model do not introduce dimensions. 
They may be skipped if the transformation alternatives for them are considered as unimportant for 
the target model. 

A construct from the source model used to define a given dimension is always an instance of a 
construct from the source meta-model. The coordinate set for that dimension is determined on the 
basis of the construct from the source meta-model. The set of possible target constructs from the 
target meta-model is determined for the source meta-model construct. Then this set is used to create 
the coordinate set for the dimension. 



A point in a transformation space represents an alternative transformation of the source model. 
For every source construct the target construct is determined as the coordinate of the point over the 
dimension corresponding to that source construct. 

We define two functions that will be used in this paper: dimensions(S) and 
coordinateSet(dimension, S). The first function returns the set of dimensions for a given 
space S and the second one returns the coordinate set for a given dimension in a given space S. 

A point in a transformation space S is formally represented as a tuple with components for every 
dimension and the coordinate in that dimension: 

(d1.cd1, d2.cd2,…, dn.cdn)        (1) 

where di is the name of the dimension and cdi is the coordinate of the point in that dimension. We 
have cdi ∈  coordinateSet(di, S) for i=1,…,n and space S. 

We will describe the process of constructing transformation space SExamSchema for the example 
model in Figure 3. We decide not to consider transformation alternatives for the attributes of the 
classes. Also, for the sake of brevity only classes Exam, ExamItem, Open and MultipleChoice are 
considered together with the relations among them. This simplification does not affect the 
illustration of the basic ideas behind the formalism we are describing. 

For each class and relation we define one dimension: 

dimensions(SExamSchema)=(Exam, ExamItem, Open, MultipleChoice, 
    Exam_ExamItem, ExamItem_MultiChoice, ExamItem_Question)   (2) 

In (2) Exam, ExamItem, Open, and MultipleChoice are dimensions derived from the classes 
with the same names, and Exam_ExamItem, ExamItem_Open and ExamItem_MultiChoice are 
dimensions derived from the relations that connect the classes used to form the name of the 
dimension. 

In our example the classes in the source model are instances of Class construct defined in the 
UML meta-model [OMG01a] and the relations are instances of Generalization and Association 
constructs respectively. Coordinate sets for the dimensions are determined on the basis of the target 
constructs defined in the target meta-model, in this example - the XML Schema meta-model. 

Despite the fact that there is no standard meta-model for XML Schemas, a set of constructs may 
be identified using the W3C Schema specification [TBM01]. We will use an XML Schema meta-
model defined with a set of components and a set of relations among them: 

XMLSchemaMetaModel = (C, R)        (3) 

where C is a set of components and R is a set of relations. The set C has the following elements: 

C = {CT, ST, E, A, AG, MG}        (4) 

The elements of C correspond to the XML Schema abstract data model components Complex 
Type Definition (CT), Simple Type Definition (ST), Element Declaration (E), Attribute Declaration 
(A), Attribute Group (AG) and Model Group Definition (MG). Complex Type and Element 
Declaration have a Boolean property abstract. It indicates whether the type or element is abstract. 
The other components defined in the XML Schema abstract data model such as particles, wildcards, 
and identity constraints are not included here. 

The set of relations R has the following elements: 

R = {Der, Subst, Cont, Ref}        (5) 

All relations are binary. Derivation (Der) corresponds either to extension or to restriction 
mechanisms over schema types as defined in the specifications. Substitution (Subst) relates two 
elements and corresponds to the element substitution mechanism. Containment (Cont) denotes 
participation of one component in the content model of another. Element-subelement relations and 
the way elements own their attributes are examples of containment. Reference (Ref) relation is 



based on the usage of elements or attributes of types ID and IDREF(S) in the content model of the 
related components. 

Apart from the components and relations a set of constraints may be defined that restricts the 
relations allowed between two components. Constraints are shown in Table 1. The columns and 
rows represent components. The table cells indicate the relations allowed between two of 
components. 
 

From\To CT ST E A MG AG 
CT Der, Cont, Ref Der, Cont Der, Cont, Ref Der, Cont Cont, Ref Cont, Ref 
ST  Der Der Der   
E Der, Cont, Ref Der, Cont Der, Cont, Ref, 

Subst 
Der, Cont Cont, Ref Cont, Ref 

A  Der Der Der   
MG Cont, Ref Cont Cont, Ref  Cont, Ref Ref 
AG Ref Cont Ref Cont Ref Cont, Ref 

Table 1: XML Schema Meta-model constraints on the relations between components1. 
 

Now we will identify the coordinate sets for the dimensions defined in (2). Assume that the 
software engineer decides that Class construct defined in the UML meta-model is mapped to one of 
the components defined in (4). Simple type (ST) can be excluded because it represents simple 
values. The same reasoning leads to the exclusion of attribute declaration (A) as a possible target. 
The remaining 4 components form a coordinate set that can be attached to the dimensions associated 
with the classes in the source model: 

coordinateSet(Exam, SExamSchema)={CT, E, MG, AG} 
coordinateSet(ExamItem, SExamSchema)={CT, E, MG, AG} 
coordinateSet(Open, SExamSchema)={CT, E, MG, AG} 
coordinateSet(MultipleChoice, SExamSchema)={CT, E, MG, AG}   (6) 

Assume now that the software engineer chooses the set R of XML Schema relations as a 
coordinate set for the dimensions defined for the relations in the source model. Also, XLink standard 
[DMO01] uses elements to encode relations and therefore element declaration is also considered as 
a possible coordinate. The following three coordinate sets are defined for the dimensions 
corresponding to the relations in the source model: 

coordinateSet(Exam_ExamItem, SExamSchema)={Der, Subst, Cont, Ref, E}  
coordinateSet(ExamItem_Open, SExamSchema)={Der, Subst, Cont, Ref, E} 
coordinateSet(ExamItem_MultiChoice,SExamSchema)={Der,Subst,Cont,Ref,E}  (7) 

 
Figure 5: Transformation Space with three dimensions corresponding to classes ExamItem and 

Open and the generalization relation between them. 

                                                 
1 Abbreviations: A=Attribute Declaration, AG=Attribute Group, Cont=Containment, CT=Complex Type Definition, 
Der=Derivation, E=Element Declaration, MG=Model Group Definition, Ref=Reference, ST=Simple Type Definition, 
Subst=Substitution 



Each point in the transformation space SExamSchema represents a transformation from the UML 
model in Figure 3 to an XML schema. An additional requirement is that the transformation must 
produce a schema that satisfies the constraints from Table 1. 

Figure 5 shows a graphical representation of a part of the space SExamSchema where only the 
dimensions for classes Open, ExamItem and the relation between them ExamItem_Open are shown 
together with the coordinates defined in (6) and (7). 

3.2 Reducing Transformation Spaces 

It is possible to generate all the alternatives in a transformation space and to compare them. 
However, the number of alternatives is usually large. The number of alternatives for a space S with 
n dimensions is calculated with the formula: 

numAlternatives(S)=numCoordinates(D1) *…* numCoordinates(Dn)  (8) 

Here numAlternatives and numCoordinates are functions defined over a space and a 
dimension from that space respectively. Di denotes a dimension in the space S. num 

Alternatives returns the number of alternatives in a space and numCoordinates returns the 
number of coordinates for a given dimension. 

The application of the formula (8) to the transformation space SExamSchema gives 4 * 4 * 4 * 4 * 5 * 
5 * 5= 32000 theoretically possible alternatives which is a large number, considering the fact that 
this is a simple source model of only 7 elements. Therefore it is unfeasible to generate the whole 
space of alternatives. Instead, the software engineer may reduce the space either by selecting or by 
excluding alternatives from the transformation space. 

Two operations for selection and exclusion from a space are defined: 

Select from S where <condition>       (9) 
Exclude from S where <condition>       (10) 

Operation Select selects from a given space S only the alternatives that satisfy the given 
condition, whereas the operation Exclude excludes from the space S the alternatives that satisfy the 
condition. 

In our example the software engineer may decide that the classes in the source model are to be 
mapped either to an element declaration (E) or to a complex type definition (CT). This can be 
specified as a selection from the transformation space SExamSchema: 

SReducedExamSchema1 = Select from SExamSchema where 
                <(ExamItem.E or ExamItem.CT) and  
                (Exam.E or Exam.CT) and  
          (Open.E or Open.CT) and  
          (MultipleChoice.E or MultipleChoice.CT)>   (11) 

The space may be further reduced by excluding some alternatives for the relations. Assume that the 
software engineer decides to exclude the coordinates Ref and E for the dimensions that represent 
relations in the source model: 

SReducedExamSchema2 = Exclude from SReducedExamSchema1 where 
                <(ExamItem_Open.Ref or ExamItem_Open.E) and 
                (ExamItem_MultiChoice.Ref or ExamItem_MultiChoice.E) 
             and (Exam_ExamItem.Ref or Exam_ExamItem.E)>  (12) 

After these operations the transformation space SReducedExamSchema2 contains 2 * 2 * 2 * 2 * 3 * 3 * 
3 = 432 alternatives. 

Figure 6a shows the space defined in Figure 5 after the selection operation and Figure 6b shows 
the same space after the exclusion operation. The dark shaded area shows the part that is excluded. 



 
Figure 6: Transformation Spaces after selection and exclusion operations. 

3.3 Reducing Transformation Space on the basis of Quality Properties 

The transformation space may be further reduced by considering the quality requirements that 
the target model must fulfill. In our example we aim at extensible schemas that preserve the content 
model of some schema components if new components are added as a result of extension of the 
source model. This indicates some quality properties that must be satisfied by the constructs in the 
target model. 

Quality properties are derived from a quality model. In our example, this is a model of 
extensibility. This model classifies constructs as either extensible or inextensible. This classification 
is used to form a coordinate set with two coordinates: (Exts, InExts). Here Exts indicates that a 
construct is extensible and InExts indicates that there is no explicit requirement for extensibility. A 
construct is extensible if the addition of certain components to the model is possible and does not 
cause changes in the construct.  

We define a new transformation space SExtensibleExam with the same set of dimensions as 
SReducedExamSchema2 and coordinate set (Exts, InExts) for each dimension. Assume that the 
software engineer decides to classify classes ExamItem and Exam as extensible and the rest of the 
constructs as inextensible. This means that if a new exam item type is added as a specialization of 
ExamItem, the content model of the corresponding target XML schema component remains 
unchanged and can still be reused by the specialization. Class Exam is considered extensible 
because the addition of a new exam item type must not affect the content model of the schema 
component to which Exam is mapped.  

Based on this decision a selection operation is used to reduce the space SExtensibleExam: 

SReducedExtensibleExam = Select from SExtensibleExam where 
                  <ExamItem.Exts and Exam.Exts and                                    
                   Open.InExts and MultipleChoice.InExts and 
                   ExamItem_Open.InExts and                                          
                   ExamItem_MultiChoice.InExts and 
                   Exam_ExamItem.InExts>      (13) 

The space SReducedExtensibleExam identifies extensible constructs from the source model. Now we 
aim at target models that guarantee the extensibility property of the resulting constructs. 
Extensibility properties are integrated into the transformation space SReducedExamSchema2 using 
operation merge defined over two transformation spaces. 

Operation merge has two transformation spaces S1 and S2 as arguments and returns a new space: 

Smerged=merge(S1, S2)         (14) 

where dimensions(Smerged)=dimensions(S1)=dimensions(S2). The coordinate set of a 
dimension d in Smerged is a Cartesian product defined in the following way: 

coordinateSet(d, Smerged)=coordinateSet(d, S1) × coordinateSet(d, S2)  

The points from Smerged are defined on the basis of the points from S1 and S2: 



Smerged={(d1.(p1’, p1’’),…,dn.(pn’, pn’’)) | di ∈  dimensions(Smerged), 
                pi’ ∈  coordinateSet(di, S1), pi’’ ∈  coordinateSet(di, S2), 
                (d1.p1’,…, dn.pn’) ∈  S1,(d1.p1’’,…, dn.pn’’) ∈  S2 for i=1,…,n}
  

Operation merge may be applied on the spaces SReducedExamSchema2 and SReducedExtensibleExam to 
create a transformation space for extensible exam schemas SExtensibleExamSchema: 

SExtensibleExamSchema = merge(SReducedExamSchema2, SReducedExtensibleExam)    (15) 

Now the software engineer has the quality properties explicitly represented and can use selection 
criteria based on them. In the process of space reduction various knowledge sources may be used, 
for instance, heuristic rules. In our example, we identify the problem of extensible schemas as the 
problem of containers with variable contents described in the XML Schema Best Practices [Cos03]. 
The solution proposed there may be summarized in the following heuristic rule: 

IF extensibility is required for a container class that aggregates other 
classes, which are specializations of a common general class, THEN 
  define an element (E) for the container class, 
  define an element (E) for  each specialized class, 
  define an abstract element (Eabstract=true) for the general class and 
  define substitution (Subst) between the general class element and each     
specialized element  
  OR 
  define an element (E) for the container class, 
  define an element (E) for the general class, 
  define complex type (CT) for each specialized class, 
  define an extension (Ext) between the type of the general class and the   
type of each specialized class.  

From this rule the software engineer may construct a condition used in a selection operation over 
SExtensibleExamSchema. The resulting space contains two alternatives shown in Table 2: 

 
N Exam ExamItem Open MultipleChoice ExamItem_Open ExamItem_MultiChoice Exam_ExamItem 
1 E E E E Subst Subst Cont 
2 E E CT CT Der Der Cont 

Table 2: Two Alternatives for Extensible Exam Schemas. 
 

It can be noticed that these alternatives are similar to alternatives (c) and (b) shown in Figure 4. 

3.4 Refinement 

This is the last step of the process for the construction and reduction of a transformation space. 
Once the space has sufficiently been reduced the software engineer may generate the alternatives 
explicitly. However, these alternatives are not complete transformations yet. Some additional details 
are required before the transformation can be specified and executed. For instance, the element 
declaration components always require a type to be defined. Substitution relations between element 
declarations imply derivation between the corresponding element types. In addition, in the example 
presented here it was decided not to include the attributes of the classes in the transformation space. 
Certain decisions must be taken as to how the attributes are to be mapped. 

4 Discussion 

We have presented techniques for the construction and reduction of transformation spaces for a 
given source model. In this section we evaluate the approach with respect to the complexity of the 
transformation spaces and the applicability of this technique in the context of model transformations 
as defined in MDA. 



Complexity of the transformation space. Although transformation spaces tend to be rather large 
even for simple models, they are purely conceptual. The software engineer does not need to generate 
the alternative transformations from a transformation space unless a number of reduction steps are 
applied and the size of the space is reduced sufficiently. The structure of a transformation space 
specified by dimensions and coordinate sets provides a framework to reason about the alternatives 
in general instead of per individual alternative. 

There is an analogy between the concepts of transformation space and relational schema used in 
relational databases. In the case of a relational schema, for example, the user does not have to deal 
with the concrete data set of the corresponding database, which is usually dynamic. Instead, the user 
specifies queries based on the structure of the relational schema. Similarly, the concept of a 
transformation space provides the means to specify the conditions to reduce and select alternatives 
from a transformation space. 

Apart from selection and exclusion, other techniques may be applied to reduce the complexity of 
a space. After the necessary reduction steps, the model may be decomposed into parts that are 
isolated from each other. In this case, alternatives from isolated parts do not influence each other. In 
the example presented here, we can assume that the content model of Alternative and Question is 
somehow encapsulated within the schema component. Then, the part of the source model comprised 
of classes Question, Alternative and Content and the relations among them may be treated separately 
from the rest of the model. We are currently investigating the applicability of this idea and the 
required operational support for this. 
Applicability of the technique in the context of MDA. Two types of models are specified in the 
context of MDA: PIMs and PSMs. Four categories of transformations are possible depending on the 
source and target models: PIM to PIM, PIM to PSM, PSM to PSM and PSM to PIM [MM01]. In 
general, the concept of transformation space may be applied in every one of these categories. The 
example described in section 3 presents a transformation from a PIM expressed in an UML class 
diagram to a PSM based on an XML Schema. 

In this paper, the coordinate sets are based on a one-to-one mapping from the constructs of the 
meta-model of a source to the constructs of the meta-model of the corresponding target. This 
approach, however, has to be extended if the constructs of a source model are mapped to several 
constructs of the corresponding target.  

5 Related Work 

The work presented here is an adaptation of a formalism called Design Algebra [AT02] used for 
the identification of design alternatives for a given design problem. From the perspective of model 
transformations Design Algebra supports the construction of a transformation space for models 
specified as platform independent software solutions. The target meta-model contains the constructs 
found in the traditional object-oriented languages. In this paper this technique is generalized to 
support transformations between arbitrary models in the context of MDA where the source and 
target models conform to given source and target meta-models that provide the information for 
construction of transformation spaces. 

The problem of deriving XML schemas from UML class models described in the example is 
addressed in [BGH00, Car01, EM01]. The authors identify the presence of multiple target schemas 
that differ in their quality characteristics. In [BGH00], generated schemas must ensure minimum 
data redundancy and maximum connectivity in the documents. This is achieved by a proper 
construction of the document hierarchy. Models are transformed by an algorithm based on 12 
heuristic rules. The method described in [EM01] also aims at producing schemas that ensure 
minimum data redundancy in the documents. The authors give a formal definition for the minimum 
data redundancy property named canonical normal form of XML documents (XNF). 

In these papers the problem of identifying the alternative transformations is not addressed. 
Instead, algorithms are defined that produce results with certain quality properties. We consider 



these contributions as complementary to our work. The knowledge they provide can be incorporated 
and applied during the reduction process. 

Our technique is also complementary to existing transformation languages and can precede the 
specification and execution of transformations. 

6 Conclusions 

Transformation between models is a key operation in the OMG’s MDA vision for software 
development. Generally one may adopt different but functionally equivalent target models for the 
same source model. Functionally equivalent target models, however, may differ from each other in 
the quality properties they possess. For example, one target model may be more extensible than the 
other target models. Since software engineers generally have to fulfill both functional and quality 
requirements, they should be able to identify and compare the quality properties of the functionally 
equivalent alternative target models for the same source model.  

In this paper we proposed a method for identifying a set of target models (the transformation 
space) for a given source model. This method requires a source model, its meta-model and the meta-
model of the target as input and generates a transformation space defined by the alternative target 
models as output. Reduction of transformation spaces is supported by selection and exclusion. These 
operations can be parameterized by the quality attributes and be supported by heuristic rules. In this 
way, the software engineer is able to select the desired target model from the transformation space. 
Currently, we are carrying out several case studies to evaluate the applicability of the method in 
different categories of model transformations. 
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