
Interaction systems design and the protocol- and middleware-centred
paradigms in distributed application development

João Paulo Almeida, Marten van Sinderen, Dick Quartel, Luís Ferreira Pires
{almeida, sinderen, quartel, pires}@cs.utwente.nl

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

Abstract
This paper aims at demonstrating the benefits and
importance of interaction systems design in the development
of distributed applications. We position interaction systems
design with respect to two paradigms that have influenced
the design of distributed applications: the middleware-
centred and the protocol-centred paradigm. We argue that
interaction systems that support application-level
interactions should be explicitly designed, using the
externally observable behaviour of the interaction system as
a starting point in interaction systems design. This practice
has two main benefits: to promote a systematic design
method, in which the correctness of the design of an
interaction system can be assessed against its service
specification; and, to shield the design of application parts
that use the interaction system from choices in the design of
the supporting interaction system.

1 Introduction
In recent years, there has been a predominant use of
middleware platforms in the development of distributed
applications. Typical design methods based on the re-use of
middleware platforms consist of partitioning an application
into application parts and defining the interconnection
aspects by defining interfaces between parts, e.g., by using
object-oriented techniques and abstracting from distribution
aspects.
As a consequence of this practice, designers have neglected
the role of interaction systems design in the development of
distributed applications, focusing on application part design
and failing to identify application interaction aspects
explicitly. The objective of this paper is to show the benefits
and importance of the explicit design of interaction systems
in the development of distributed applications, both when
reusing middleware platforms and when following a
protocol-centred approach to development.
The service concept has an important role in our approach.
A service is a design that defines the behaviour of a system
from an external perspective. We propose a design
trajectory that starts with the specification of the service of
an application interaction system. This practice has two
main benefits: to promote a systematic design method, in
which the correctness of the design of an interaction system
can be assessed against its service specification, and; to
shield the design of application parts from choices in the
design of the supporting interaction system.

This paper is further structured as follows: Section 2 defines
interaction systems and presents the service concept;
Sections 3 and 4 characterize the protocol-centred and the
middleware-centred paradigms respectively; Section 5
discusses the role of interaction systems design in both
paradigms, and Section 6 illustrates the use of an
application interaction system and its service specification
in a design trajectory. Finally, section 7 presents our
conclusions and outlines some future work.

2 Interaction Systems
A distributed system can be considered from two different
perspectives: an integrated and a distributed perspective.
The integrated perspective considers a system as a whole or
black box. This perspective only defines what function a
system performs for its environment. The distributed
perspective defines how this function is performed by an
internal structure in terms of system parts (which are also
systems) and their relationships.
We call the integrated perspective of a system a service
[11]. A service is a design that defines the observable
behaviour of a system in terms of the interactions that may
occur at the interfaces between the system and the
environment, and the relationships between these
interactions. A service does not disclose details of an
internal organization that may be given to implementations
of the system.
Since the concept of system is recursive, in the sense that a
system part is a system in itself, the service concept can be
applied recursively in system design. The recursive
application of the service concept allows a designer to
consider the behaviour of a system at different related
decomposition levels. In general, the number of
decomposition levels and the particular choices for
decomposition depend on particular system requirements
and objectives of a designer.
When interactions between system parts have to be
explicitly designed, the concept of interaction system is
introduced. An interaction system supports the set of related
interactions between two or more systems parts [7]. An
interaction system consists of parts of system parts and their
means of interaction, as depicted in Figure 2.

parts of
system parts

interaction
system

means of
interaction

Figure 2 Interaction system from a distributed

perspective

An interaction system is a system in itself, and therefore the
external behaviour of an interaction system can be defined
as a service, as depicted in Figure 3. The service
specification serves as a starting point for the design of an
interaction system that supports the service.

service

Figure 3 Interaction system from an integrated

perspective

Interaction systems that satisfy basic communication needs
between software components have been referred to as
connectors in the software architecture literature [1].

3 Protocol-centred paradigm
In the protocol-centred paradigm, user parts interact locally
with a service provider. A service provider consists of a
composition of protocol entities and a lower level service
provider, which interact in order to provide the required
service to user parts. The model of the system to be built
consists of user parts and, for each protocol layer, a
collection of protocol entities and a lower level service
provider. This model is depicted in Figure 4.

prot. ent. prot. ent. prot. ent.

lower level service provider

app.
part

app.
part

app.
part

user
part

user
part

user
part

service provider

Figure 4 System in the protocol-centred paradigm

The lower level service provides physical interconnection
and (reliable or unreliable) data transfer between protocol

entities. Lower level services can support arbitrarily
complex interaction patterns between the protocol entities,
varying from connectionless data transfer (e.g., ‘send and
pray’) to complex control facilities (e.g., handshaking with
three-party negotiation).
Protocol entities communicate with each other by
exchanging messages, often called Protocol Data Units
(PDUs), through a lower level service. PDUs define the
syntax and semantics for unambiguous understanding of the
information exchanged between protocol entities. The
behaviour of a protocol entity defines the service primitives
between this entity and the service users, the service
primitives between the protocol entity and the lower level
service, and the relationships between these primitives. The
protocol entities cooperate in order to provide the requested
service [6].
Protocols can be defined at various layers, from the physical
layer to the application layer. An application protocol
defines distributed interactions that directly support the
establishment of information values relevant to the
application service users [7].

4 Middleware-centred Paradigm
In the middleware-centred paradigm, system parts interact
through a limited set of interaction patterns offered by a
middleware platform. The model of a distributed application
to be built consists of the middleware platform and a
collection of interacting parts, often called objects or
components. This model is depicted in Figure 5.

comp.

Middleware

app.
part

app.
part

app.
part comp. comp.

Figure 5 system in the middleware-centred paradigm

There are several different types of middleware platforms,
each one offering different types of interaction patterns
between objects or components. The middleware-centred
paradigm can be further characterized according to the types
of interaction patterns supported by the platform. Examples
of these patterns are request/response, message passing and
message queues. Examples of available middleware
platforms are CORBA/CCM [4, 5], .NET [3] and Web
Services.
The middleware-centred paradigm promotes the reuse of the
middleware infrastructure, facilitating the development of
distributed applications. Furthermore, middleware
infrastructures provide facilities to define application-level
information attributes and to exchange values of these
attributes through the supported interaction patterns.

An interesting observation with respect to the middleware-
centred paradigm is that it is somehow dependent on the
protocol-centred paradigm: interactions between application
parts are supported by the middleware, which ‘transforms’
the interactions into (implicit) protocols, provides generic
services that are used to make the interactions distribution
transparent and internally uses a network infrastructure to
accomplish data transfer [8].
Design methods based on the re-use of middleware
platforms often consist of partitioning the application into
application parts and defining the interconnection aspects
by defining interfaces between parts (e.g., by using object-
oriented techniques and abstracting from distribution
aspects). The available constructs to build interfaces are
constrained by the interaction patterns supported by the
targeted platform. Examples of these constructs are
operation invocation, event sources and sinks, and message
queues. This structuring strategy emphasizes a
decomposition level in which the interaction systems
provided by the middleware platform are emphasized.
The predominance of this view implies that the choice of
interaction patterns provided by a particular middleware
platform directly influence the application structure. The
design of the application is therefore platform-specific, not
only in the sense that the design depends on particular
technological conventions adopted by the middleware
platform, but in the sense that the structure of the
application depends on the set of interaction patterns
provided.

5 Interaction Systems Design
Instead of defining the interconnection of application parts
directly in terms of a protocol or in terms of the interaction
systems provided by a middleware platform, it is possible to
identify application interaction systems that support
application-level interactions between application parts.
Figure 6 illustrates the view of an application where an
application interaction system is identified.

application
interaction
system interaction systems

provided by middleware
or protocol

Figure 6 Application interaction systems

Whether or not the design of application interaction systems
is considered explicitly depends on the application
requirements and on the objectives of the designer [7]. In

the following situations, interaction system design should be
considered:
• if the relation between system parts is complex. In this

case, proper attention should be given to the design of
the relation between system parts. This is possible if this
relation is made a separate object of design, i.e., if the
interaction system of the system parts is considered
separately. Consideration of the interaction system is
possible at different abstraction levels in order to cope
with the complexity of the relation. The interaction
system provided by the middleware plays an important
role at lower levels of abstraction.

• if it is easier to define a service than the behaviour of the
system parts that interact. This may be the case if the
functionality of the system parts is still in part unknown,
or if the system parts are relatively complex because it
must take account of the characteristics of the means of
interconnection between the system parts.

• if it is more likely that interactions are changed than just
the contributions to interactions by individual system
parts. This is the case if several different middleware
platforms are envisioned as alternatives to support the
interactions. An interaction mechanism can only be
replaced by another equivalent interaction mechanism if
the relevant characteristics of the mechanism are clearly
indicated in the design. This is naturally supported with
interaction system design.

• if explicit attention to design choices that concern the
effectiveness and efficiency of interactions is required.
In this case, QoS aspects that are influenced by
distribution aspects may be addressed separately with
interaction system design.

A starting point in the design of an application interaction
system is the specification of the application service,
capturing the succinct description of the required
application interaction system from an external perspective.
The design of the application interaction system may, in
principle, have any internal structure as long as it provides
the required service. For example, it may make direct use of
a data transport service as in a protocol approach.
Nevertheless, we observe that the middleware leverages the
reuse of a large building block that provides an
interoperability architecture across programming languages,
operating systems, network technologies and provides
facilities to define application-level information attributes.
Therefore, we argue that interaction systems provided by
the middleware should also be considered for building
application interaction systems.
A systematic interaction system design method based on the
protocol-centred paradigm consists of: (i) defining the
service to be supported in terms of the service primitives
that occur at service access points, and the relationships
between service primitives; and, (ii) decomposing this

service in terms of a structure of protocol entities and a
lower level service. This resulting structure, which we call a
protocol, has to be a correct implementation of the service.
This can be assessed formally, if both the service and
protocol are specified using some formal language.

floor-control service
subscribers

subscribers
Interactions:
request (ResourceId resid);
granted (ResourceId resid);
free (ResourceId resid);

A systematic interaction system design method based on the
middleware-centred paradigm consists of defining (i) the
service to be supported (as in the case for the protocol-
centred paradigm) and, (ii) decomposing this service in
terms of a structure of service components and the
interaction systems provided by a middleware platform.
This resulting structure has to be a correct implementation
of the service. Again, this can be assessed formally, if both
the service and its design (service components and
platform) are specified using some formal language.

Figure 7 The floor-control service

The service is specified in such a way that interaction
requirements between application parts are satisfied without
unnecessarily constraining implementation freedom. This
freedom includes the structure of the application interaction
system (the system that eventually supports the floor-
control service) and other technology aspects such as
operating systems and programming languages.

6 Example: Floor-control Service
In order to illustrate the use of an application interaction
system and its service specification in a design trajectory,
we introduce our running example, the floor-control
problem. In this example, several application parts share a
set of named resources. Each of these resources can only be
used by a single application part at a time, and hence
application parts have to coordinate their behaviours in
order to ensure that there is no concurrent use of a resource.
Subscribers are assumed to be cooperative, i.e., they will
not use the resources indefinitely. In addition, no pre-
emption of control over a resource is necessary.

6.2 Middleware-centred design
In order to demonstrate the benefits of the identification of
the service of the application interaction system, it is useful
to apply a typical middleware-centred design method to the
same floor-control problem.
In a typical middleware-centred design method, we would
have started by enumerating potential alternative solutions
based on the identification of application parts and
interfaces between these parts. The focus is on the design of
application parts structured with constructs provided by the
middleware platform.

6.1 Service Definition
We start with the definition of the floor-control service. The
service relates the following interactions: request,
granted and free. These interactions occur at the
interfaces between the floor-control service and the
subscribers. A result of the occurrence of each of these
interactions is the establishment of the resource
identification and the identification of the subscriber. The
latter is implied by the location where the interaction
occurs. The following relations between interactions are
informally identified:

This would lead to a number of alternative solutions for the
floor-control problem, of which we consider a few. These
solutions can be basically characterized as either
asymmetric or symmetric. In asymmetric solutions, an
application part plays the role of a controller, centralizing
the coordination of access to shared resources. Some other
application parts play the role of subscribers. In symmetric
solutions, there is no controller, and all application parts
have identical roles in the coordination. • Local constraint: the occurrence of granted follows

the occurrence of request (for a given resource
identification);

In this example, we assume a component middleware that
supports remote invocation. We identify the following
asymmetric solutions:

• Local constraint: the occurrence of free follows the
occurrence of granted (for a given resource
identification);

(i)Callback-based. The controller is a singleton component
that has an interface with a request_permission
operation. The parameters of this operation are the
identification of the requesting subscriber and the
identification of the resource. Subscribers invoke this
operation to register their intention to have access to a
particular resource. Eventually, when the resource is to be
granted to the subscriber, a grant operation on the
subscriber’s interface is invoked by the controller. When the
subscriber wants to release the resource, a free operation
of the controller’s interface is invoked. This solution is

• Remote constraint: a resource is only granted to one
subscriber at a time.

The floor-control service is illustrated in Figure 7.

illustrated in Figure 8, where the arrows depict invocation
dependencies.

Several alternative protocols are possible, such as:
• An asymmetric protocol similar to the callback-based

solution, as illustrated in Figure 11 (i). void grant(ResourceId); void request_permission(
SubscriberId subid,
ResourceId resid);

void free(SubscriberId subid);void grant(ResourceId);

void grant(ResourceId);

(i)

• An asymmetric protocol similar to the polling-based
solution, as illustrated in Figure 11 (ii).

• A symmetric protocol similar to the token-based
solution, as illustrated in Figure 11 (iii).

Figure 8 Callback-based floor-control

(ii)Polling-based. The subscribers poll the controller for a
certain resource by invoking the operation
is_available, which returns the Boolean value true
when the resource is available, and false otherwise.
When the subscriber wants to release the resource, the
operation free of the controller’s interface is invoked.
This solution is illustrated in Figure 9.

user part
(subscriber)

user part
(subscriber)

user part
(subscriber)

lower level service
(reliable datagram)

protocol
entity

protocol
entity

protocol
entity

user part
(subscriber)

user part
(subscriber)

lower level service
(reliable datagram)

subscriber
protocol

entity

subscriber
protocol

entity

controller
protocol

entity

(iii) PDU:
 pass(list of resid)

(i) PDUs:
request
(subid, resid)

 granted (resid)
 free (resid)
(ii) PDUs:
 is_available_req

(resid)
 is_available_resp

(bool)
 free (resid)

Floor-control service PDU exchange

subscriber
protocol

entity

user part
(subscriber)

send(
Location destination,
Octets payload);
receive(
Octets payload);

boolean is_available(
ResourceId resid);

void free(SubscriberId subid);

(ii)

Figure 11 Alternative solutions in the protocol-centred

paradigm
Figure 9 Polling-based floor-control 6.3 Discussion

We identify the following symmetric solution: The solutions we have presented for both the middleware-
and protocol-centred paradigms could be used as particular
implementations of the floor-control service, as shown in
Figure 12. These solutions introduce abstractions that are
bound to particular design solutions, such as the controller,
an abstraction that is not identified in the symmetric design.
In contrast, the floor-control service is a stable abstraction,
and shields subscribers from the particular way in which the
service is implemented; both with respect to premature
commitments to particular design solutions (callback-,
polling-, or token-based) and with respect to premature
commitments to a particular interaction pattern provided by
the infrastructure (either a middleware platform or a lower
level service provider).

(iii)Token-based. A list with the set of available resources
circulates among the subscribers. Each subscriber examines
the list with the set of identifiers of available resources,
removes the identifier of the resource desired and forwards
the list invoking an operation on the interface of the
following subscriber. When a subscriber wants to release a
resource, it inserts the resource identifier to be released in
the list. For the sake of simplicity, we assume the set of
subscribers is known a priori, so that we can ignore ring
management functionality. This solution is illustrated in
Figure 10.

(iii)

void pass(set<ResourceId>);

void pass(set<ResourceId>);

void pass(set<ResourceId>);

In analogy with the development of protocols, applying
directly the middleware paradigm for applications with
complex interaction requirements, yields similar results to
designing a protocol without considering the required
service explicitly. As has been pointed in [11], the
definition of services should precede or accompany, but
definitely not follow, the specification of protocols. The use
of the service concept leads to careful consideration of the
interaction problem being addressed. In terms of system
structure, the use of the service concept promotes an
appropriate application of the layering principle.

Figure 10 Token-based floor-control

6.3 Protocol-centred design
A protocol-centred design would be structured in terms of
protocol entities and a lower level service. For the sake of
this example, let us suppose we select a lower level service
that offers reliable transfer of a sequence of octets. The
protocol entities are responsible for encoding PDUs and
delivering these to the lower level service.

controller

floor-control service

subscriber subscriber

user part
(subscriber)

user part
(subscriber)

user part
(subscriber)

lower level service
(reliable datagram)

protocol
entity

protocol
entity

protocol
entity

Figure 12 Floor-control service as stable abstraction

7 Conclusions
We have argued the case for an increased role of interaction
system design in the development of distributed
applications. The focus on bottom-up development, using as
a starting point constructs provided by a middleware
platform has neglected the role of interaction system design
in the development of distributed applications. As a
consequence of this practice, designers tend to focus on
abstractions of particular design solutions, without
recognizing interaction aspects that remain stable.
With the appropriate use of service specifications as a
starting point for application interaction system design, it
becomes irrelevant for the design of application parts
whether the protocol-centred or middleware-centred
paradigm is followed in the design of the supporting
interaction system.
We presented our approach as a pure top-down design
trajectory for interaction systems, starting from service
definition to service design. However, this does not exclude
the use of bottom-up knowledge. Bottom-up experience is
what allows designers to re-use middleware infrastructures
and lower level services, and to find appropriate service
designs that implement the required service. Stable
abstractions for service design should be derived from
knowledge obtained from the solution space (as in a
synthesis-based design method [9]).
Cariou et al. [2] have recently explored the notion of
medium, which corresponds to our notion of application
interaction system, focussing on the use of UML to

represent such mediums. Our future research focuses on
extending and/or complementing UML with respect to the
representation of the service concept, in particular when
specifying complex application interaction systems.
Acknowledgements
This work is partly supported by the Telematica Instituut in
the context of the ArCo project (http://arco.ctit.utwente.nl/)
and by the European Commission in context of the MODA-
TEL IST project (http://www.modatel.org).
References
[1] R. J. Allen, and David Garlan, “A Formal Basis for
Architectural Connection”, ACM Transactions on Software
Engineering and Methodology, vol. 6, n. 3, July 1997, pp.
213-219.
[2] E. Cariou, A. Beugnard, J. M. Jézéquel: An Architecture
and a Process for Implementing Distributed Collaborations.
Proceedings Sixth International Conference on Enterprise
Distributed Object Computing, September 2002, Lausanne,
Switzerland, Sept. 2002, 132-143.
[3] Microsoft Corporation. Microsoft .NET Remoting: A
Technical Overview, July 2001, available at
http://msdn.microsoft.com/library/default.asp?url=/library/e
n-us/dndotnet/html/hawkremoting.asp
[4] Object Management Group. Common Object Request
Broker Architecture: Core Specification, Version 3.0, Dec.
2002.
[5] Object Management Group. CORBA Component Model,
v3.0. formal/02-06-65, July 2002.
[6] R. Sharp. Principles of protocol design. Prentice-Hall
International Series in Computer Science, Prentice-Hall,
Great Britain, 1994.
[7] M. van Sinderen. On the Design of Application
Protocols. Ph.D. Thesis. University of Twente, The
Netherlands, March, 1995, available at
http://www.cs.utwente.nl/~sinderen/publications/thesis.html
[8] M. van Sinderen and L. Ferreira Pires. Protocols versus
objects: can models for telecommunications and distributed
processing coexist? In Proceedings Sixth IEEE Computer
Society Workshop on Future Trends of Distributed
Computing Systems, October 1997, 8-13.
[9] B. Tekinerdogan. Synthesis-Based Software Architecture
Design. Ph.D. Thesis. University of Twente. March, 2000.
[10] C. A. Vissers, L. Ferreira Pires, D. A. Quartel, M. van
Sinderen. The Architectural Design of Distributed Systems,
Lecture Notes, University of Twente, Enschede, The
Netherlands, Nov. 2002.
[11] C.A. Vissers, L. Logrippo. The importance of the
service concept in the design of data communications
protocols. In Proceedings Fifth IFIP WG6.1 International
Conference on Protocol Specification, Testing and
Verification, June 1985, 3-17.

	Abstract
	1Introduction
	2Interaction Systems
	3Protocol-centred paradigm
	4Middleware-centred Paradigm
	5Interaction Systems Design
	6Example: Floor-control Service
	6.1Service Definition
	6.2Middleware-centred design
	6.3Protocol-centred design
	6.3Discussion

	7Conclusions
	
	
	References

