Modular and Composable Extensions to Smalltalk using Composition Filters

L. Bergmans, B. Tekinerdogan & M. Aksit

Modular and Composable Extensions to Smalltalk
using Composition Filters

Lodewijk Bergmans, Bedir Tekinergan & Mehmet Akit

TRESE Project, Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands.
email: { aksit | bedir | bergmans }@cs.utwente.nl
www server: http://wwwtrese.cs.utwente.nl

Abstract — current and future trends in computer sciencerequire extensionsto Smalltalk. Rather than
arguing for particular language mechanisms to deal with specific requirements, in thigosition paper we
want to make a casefor two requirements that Smalltalk extensionsshould fulfill. The first is that the
extensionsmust be integrated with Smalltalk without violating its basic object model. The secondre-
quirement is that extensionsshould allow for defining objectsthat are still adaptable, extensibleand re-
usable,and in particular do not causeinheritance anomalies.We proposethe composition filters model
as a framework for language extensionsthat fulfills thesecriteria. Its applicability to solving various

modeling problems is briefly illustrated.

1. Motivation and approach

Despite the severe competition in the language market,
Smalltalk remainsas one of the major playersamongcom-
mercial object-orientedanguagesThis may be attributedto
Smalltalk’s purenesss an object-orientedanguagejts rich
programmingenvironmentand its portability. To be able to
continuewith this successhowever,Smalltalkhasto evolve
to copewith the trendsin moderncomputingand software
development.

1.1 Context

To give anindicationof the kind of issuesthat modernpro-
gramming languagesmust deal with, we mention a few
trends in computing and application development:

¢ an increasinginterestin embeddedsystems,which re-
quires dealing with real-time issues and synctmation.

+ distribution of applications across a network (e.g. based
CORBA); asa resultmechanismgor concurrencycontrol,
various communicationprotocols,distributedtransactions
etc. are required.

+ separatespecificationof workflow and work procedures,
independent from the application code.

+ systemshaveto adaptdynamically to changingcircum-
stances.

It is importantto notethat moresuchissuesare likely to ap-

pear,eitherdueto advancements1 computing,or to the re-

quirementsof specific applicationdomains.In other words,
this list is open-ended.

1.2 Extending Smalltalk

To give animpressionof the kind of extensionghatwe have

in mind, we list a number of them:

+ synchronization of concurrent activities

real-time constraint specifications

atomic transactions

tailorable message passing semantics

objects representingcommunication protocols, so that

these can be abstracted and reused

separate and explicit control flow specifications

+ dynamicallyadaptablgmultiple) inheritanceand deleg-
tion.

* & o o

<>

Note that eachof theseextensionsdealswith one specific
aspect of computation.

A big questionto be answeredirst is: do we really need to

extend the language?Can we not deal with theseissues
througha library approach“Extendinga languagefor every
new featurethat is desiredhasprovenquite problematic,as
e.g.C++ demonstratesWe will briefly discusswhen exten-

sions are required.

The basic object-orientedmodel [Wegner87] suffers from

severalmodelingdeficiencies(seee.g.[Aksit 92b]). Most of

these problems are due to flaet thatobject-orientednodels
are not capableof expressingcertainaspectf applications
in a reusable way. The questionis thusnot only whetherthe

language caexpressanaspeciat all. But alsoto whatextent
it is possibleto add new aspectsto objects,and to extend
and/or reuse suclbjects.

As an example,considerthe synchronizationof concurrent
threads.Smalltalk offers a semaphoreclassthat allows for

embeddingsemaphoreperationswithin the bodiesof met-

ods. However, it has been explained in the literature
[Matsuoka93][Bergman®4b] that this approach towards
synchronizationdoes not behave properly when trying to

reuse and extend classeswith synchronization.The term

inheritance anomaly hasbeencoinedto designatethe prob-

lem that programmerareforcedto do superfluousoverriding
of inherited methods.An interestingproperty of the inheti-

tanceanomalyis thatit is causedby the specificsof the ob-

ject model (as adopted by a programminglege).

Our experiencehas shownthat many improvementsto the
object-orientednodelarerequiredin orderto be ableto deal
with modelingproblems[Aksit 92b]. We havedevelopedhe
language-independenbmposition filters model asa generic
approach to oveome these.

1.3 Requirements for extensions

We formalize four objectivesthat should be fulfilled when

making extensions to Smalltalk:

1. Smalltalkmustbe rich enoughto expressaspectsuchas
synchronization, real-time specifications, control flow
specifications, etcetera.

Modular and Composable Extensions to Smalltalk using Composition Filters

L. Bergmans, B. Tekinerdogan & M. Aksit

2. The adoptedlanguage mechanismsmust be uniformly
integrated with Smalltalk’s object model.

3. It mustbe possibleto freely combineseveralindependent
aspectsnto a single object,wheneverthis combinationis
semantically meaningful.

4. Objectsthat are extendedwith the new aspectamust be
adaptableextensibleandreusablewithout causinginheri-
tance anomalies.

The composition-filtersobject model providesa mechanism
for addingan open-endedangeof aspectgso object models
without violating their basic mechanismsFurthermore,it
allows for independenspecificationof theseaspectsandthe
composability of objects.

2. The composition filters extension

In orderto meetthe requirementdor the extensionsve have
extendedthe conventionalOO model with the conceptof
compositionfilters (CFs). The compositionfilters model is
based on the following assumptions:

+ The object-orientednodel as definedby current methods
and languageshas many useful featuresand thereforeit
must be kept as an abstraction mechahism

+ To solvethe modelingproblemsfor different aspectsthe
object model must be enhanced.

+ Sincemorethanone problemcan be experiencedor the
sameobject,enhancementsiustbe specifiedindependent
from each other;

+ Extensionshaveto be specifiedat the interfaceof objects,
preferably in a consistent and declarativenna.

In the following sectionswe will give an overview of the
compositionfilters modelandthe integrationof composition
filters with Smalltalk.

2.1 An overview of the composition-filters model

The compositionfilters modelis a modularextensionto the
conventionalobjectmodelas adoptede.g. by Smalltalk. The
behaviorof a Smalltalkobjectcanbe modified andenhanced
throughthe manipulationof incomingandoutgoingmessages
only. To achievethis, the Smalltalkobjectis surroundedy a
layer called the interface part. The resulting model and its
components are shown kigure 1

The most significant componentsn the CF model are the
input filters andoutput filters. A singlefilter specifiesa pa-
ticular manipulationof messagesVarious filter types are
available.The filters togethercomposethe behaviorof the
object,possiblyin termsof otherobjects.Theseotherobjects
can be either internal objects or external objects. Internal
objectsare encapsulateavithin the compositionfilter object
whereasexternal objects remain outside the composition
filters object,suchasglobalsor sharedobjects.The behavior
of the objectis a compositionof the behaviorof its internal
and external objects.

In addition,—part of— the behaviorof the objectwill be im-
plementedby the Smalltalk object, which is thereforealso
referred to as the implementation part. Onittterfaceof the

1 GradyBoochhasevenarguedin [Booch96] that object-
orientationas an abstractionparadigmis hereto stayin-
definitely..

Smalltalk objectappeartwo typesof methods:normal meh-
ods and condition methods. The normal methodsmay be
invoked throughmessagesf the filters of the object allow
this. Condition methodsare essentiallyBooleanexpressions
that provide information about the state of the object. The
condition methodsare usedby the filters to decidehow to
manipulatemessagesAs an example,a specific filter may
reject messageshasedon their propertiesor basedon the
state of the object.

received
messages
Input Filters
interface part
h N
\ +

%ondiﬂon methods
methods

Internals A

instance Sz

variables

/7
Smalitalk cbject Outout Filters

sent messages

Figure 1. The components of the composition-filters model.

2.2 The principle of message filtering

We will explainthe basicmechanisnof messagdiltering by

compositionfilters with the aidof Figure 2. The discussion
focuseson input filters, but outputfilters work in exactlythe

samemanner.The main differenceis that outputfilters deal

with sent messages instead of receivedsaiges.

n[a (ariving messages]A =

of &l
A =
m() 7
filter type \0
| v
\

_ fiter pattemn

. P rejected messages

(messoge does not match)
(message continues to next fitter)
@ (messcge matches)
(Mmessage is modified,
continues fo next filter)
% (messcge matches)

‘)\)) (messcge is dispatched)

Figure 2. An intuitive schema of message filtering.

To understandhe schemathe following should be kept in
mind: filters aredefinedin an orderedset.A messagé¢hatis
received by an object is first reified, i.e. a first-class represe
tation of the messagés created. The reified messagéiasto

2 Compositionfilters thus apply a form of messageeflec-
tion [Ferber 89].

Modular and Composable Extensions to Smalltalk using Composition Filters

L. Bergmans, B. Tekinerdogan & M. Aksit

passthefilters in the set,until it is discardedor canbe dis-
patched.Dispatching meansthat the messages activated
again, for example to start tliegecutionof a methodbody, or
to be delegated to another object. Each filteraitimeraccept
or reject a messageThe semanticsassociatedvith accep-
tance or rejection depend on the type of the filter.

Figure 2 visualizesthe processingof messagesy threefil-
ters,A, B andC. An objectcanreceivea variety of messages,
in the figure exemplifiedby m(), n(), o) andp(). All received
messagesire subjectto manipulationby the successivdil-
ters. Different typesof filter existfor differentmanipulations
on messagesEachfilter tries to matchmessagebasedon a
specific pattern.A commonsyntaxis usedby all filters for
definingthesepatterns The matchingprocesscanbe defined
in termsof messagegroperties,but may also dependon the
current state of the object.

We follow themessagen() asit passeshroughthefilters. In
Figure 2, messagen() doesnot matchwith the patternde-
fined by filter(A). Thus,the messagés rejected by this filter.
In the example the rejectedmessageas simply passedn to
the next filter.

The messagavill thenbe evaluatedy filter (B). The pattern
thatis definedby this filter matcheswith the messageThis
is referredto asacceptance of the messagéy thefilter. This
initiates a particularaction, that dependson the filter type:
the messagenay be manipulatecand modified. In the exam-
ple of filter (B), the messagéds modified (designatedn the
figure by its changedshapeandcolor), andthenpassedn to
the next filter.

For the lastfilter in the example filter (C), the patternalso
matcheghe messageThe acceptancef the messagén this
casecauseghe messagedo be dispatchedfor exampleto a
local methodof the object. The messagétself containsin-
formation that determineshow it should be dispatched(i.e.
the target object and the messagecsely

In general everyfilter setshouldcontaina filter that causes

ing problemswe outline the solutionthat canbe providedby
adding one or more filters to a Smalltalk object.

3.1 Multiple views

Not all operationgprovidedby anobjectshouldbe accessible
to eachobjectthat usesits services.Thereforeit is desirable
to define interfacesfor an object that differentiate between
clients, thatis, betweenthe senderf a messagef-or exan-
ple, a public mailbox should make a distinction betweena
postman and others, since everybody is allotequlit a letter
in it, but only a postmanis allowedto empty the mailbox.
Interfacesmay alsochangedependingon the internal stateof
the object; for example,the mailbox cannotbe opened-not
even by the postman— while it is locked.

We have coined the term multiple views in [Aksit 92a] to
designatethis problem. In a conventional object-oriented
languagesuchas Smalltalk, multiple views canonly be red-
ized by inserting explicit checksin all the methodsof an
object. The resulting mixing of concernscausesproblems
when tying to reuse and extend objects with multiple views.

An Error filter allows for ‘preconditions’on messagesased
on boththe propertiesof the messaggsuchasthe identity of
the sender)andthe stateof the object.Views are definedby
conditionmethods,andthe Error filter definesthe mapping
from the views to setsof messagesSeveralviews can be
combined or added later in subclasses.

3.2 Dynamic inheritance and delegation

Dynamicinheritanceor delegatiormeanghatthe inheritance
hierarchy(delegationstructure)is not fixed, but that an ob-
ject canspecifya setof superclasse@lelegatedbjects)from
which it may possiblyinherit (delegateto) [Aksit 92a]. Dy-
namicinheritanceor delegationcanbe neededf an applica-
tion mustbe able to adaptits behaviordue to: performance
reasonsor spacerequirementsdifferent clients or contexts,
or evento different hardware,as for examplein distributed
systems.

messages to be dispatched, as this is the only means to trigger

the executionof a method. For output filters, dispatching
meansthat the messagds submittedto the target object.

Notethatuponits receptionby the targetobject,the message
must first pass the input filters of the target object.

In summary, eachfilter specificationconsistsof a pattern
definition and dilter type. Messagesre matchedagainsthe
pattern,thenthe filter type determineghe actionto be per-
formed upon acceptancetrespectivelyrejection. For a more
detailed description of the composition filters model,refer
to [Bergmans94a], [Koopmans95], or various other papers
that eachdiscussa specific application of compositionfil-
terss.

3. Solving modeling problems with filters

In orderto provide a clear motivation for adoptingcompos$
tion filters, in this sectionwe briefly describea numberof
modeling problemswhich have beenexperiencedn several
practicalpilot projects[Aksit 92b]. For eachof thesemodd-

3 At http:/wwwtrese.cs.utwente nl/~sina a tutorial on the
composition filteranodelasadoptedby the programming
language Sina can be found.

By attachinga Dispatch filter to an object we can provide
dynamic inheritanceand/or delegation.The Dispatch filter
will forward receivedmessagedo different target objects,
dependingon resultsof condition methods.If the targetob-
ject is encapsulatedvithin the object itself, inheritanceis
simulated[Aksit 88]. If the targetobjectresidesoutsidethe
encapsulatiofoundaryof the receiverobject,this becomesa
delegatiormechanismSincethe Dispatch filter canforward
messageso different objects,multiple inheritanceand dele-
gation is supportedas well. The self pseudovariablds re-
tained as it islavays the original receiver of the message.

Conditionmethodscapturethe stateof an object, which may
changeat run-time. The results of condition methodsalso
affectthe dispatchingorocessandthusinheritanceand dele-
gation may change dynamically.

3.3 Coordinated behavior

Coordinatedbehavior can be encounteredfor examplein
distributed control systems,n which severaldistinct units,
suchas controlling algorithms, sensorsand actuators,must
work togetherin order to keep the controlled systemin a
consistent state.

Modular and Composable Extensions to Smalltalk using Composition Filters

L. Bergmans, B. Tekinerdogan & M. Aksit

The conventionallgect-oriented modeldo not provide high-

level mechanismgo abstractcoordinatedbehavior among
several objects since the messagepassing semanticsonly

involve two partnerobjectsand the messageommunication
is invisible at the applicationlevel. To implementcoord-

nated behavior, the coordination-relatedapplication code
must be spreadover severalobjectswhich meansthat the
applicationbecomesmore complex, lessreusable while its

interactionsemanticsare more difficult to understandyerify

and exforce.

The coordinatedbehaviorproblem[Aksit 93] can be solved
by attachinga Meta filter to the Smalltalk object. A Meta
filter capturesncomingmessageandforwardsthem asfirst
classobjectsto a so-calledabstract communication object
which implementsthe coordinatedbehavior. The abstract
communicationobject can be sharedby any numberof ob-
jectsto coordinateand manipulatetheir communication An
importantcharacteristicof this approachis thatit allows for
defining and reusing hierarchiesof abstractcommunication
objects.

3.4 Reuse versus synchronization constraints

In sectionl1.2 we alreadyintroducedthe problem of inheri-

tanceanomalieswhich frequently occurswhen adding syn-

chronizationconstraintsto objects. This problemmay occur
for instancewhen synchronizatiorcodeis mixed with appli-

cation code (i.e. embeddednside the method code). Then
changingthe synchronizatioris impossiblewithout affecting
the applicationcode. Another sourcefor inheritanceanomna-
lies comesfrom the lack of decomposabilityof synchronia-
tion specificationsn somelanguagesilt is thenhardto adda
new synchronizatiorconstraint,or to partly reuseor redefine
the synchronization specifiton in a subclass.

We can use a Wait filter to specify synchronizationcon-
straints while avoiding inheritance anomalies [Bergmans
94b]. The synchronizatiorconstraintconditionis then sped-
fied by conditionmethodsasan abstractiorof the stateof the
object.A Wait filter definesa mappingfrom theseconditions
to the messages$o which the synchronizationconstraintap-
plies. Reuseand extensionof (objectswith) synchronization
is passible, without unnecessary redefinitions.

3.5 Reuse versus real-time constraints

In real-timeenvironmentsat leastsomeof the classedn the
systemimpose real-time constraintsupon the execution of

methodsWhensuchclassesrereusedn otherapplications,
changego eitherthe applicationrequirementr to the real-
time constraint specificationsin subclassegnay result in

excessive redefinitionsf superclassewhereaghis would be
intuitively unnecessaryThis so calledreal-timespecification
anomaly can arise when real-time specificationsare mixed

with the application code, or when specificationsare not

polymorphic, i.e. they cannotbe used for more than one
method,or when independentlydefined but related specif-

cations are composed together.

A RealTime filter [Aksit 94] candefine or modify deadlines
aswell asotherschedulingattributesof an execution.This is
achievedby letting messagesarry schedulingattributed. At

4 At least conceptually;anotherview would be that the
scheduling attributes are associated with threads.

the interface of objects, RealTime filters can modify these
attributesfor selectedmessagesnd under selectedcircum-
stances(as controlled by condition methods). The filters
specify a mappingfrom the real-time constraintsto sets of
messages. The resulting decoupling enstirathe real-time
specification anomaly will not occur.

4. Composable extensions

In the previoussectionwe haveoutlineda rangeof common
modelingproblemsandgiven an indication how composition
filters canaddresgheseproblems.However,as indicatedin
section 1.3, an important requirementfor extensionsto
Smalltalk is that they are composable. This involves two
properties:

I. It shouldbe possibleto combinesolutionsto problems
suchassynchronizationdynamicinheritanceand deleg-
tion, real-time specifications,multiple views, etcetera
within a single object.

Il. It shouldbe possibleto composenew objectsfrom exig-
ing ones(e.g.throughmultiple inheritance)while retain-
ing the semantics of the composed objects.

The constraintthat mustbe fulfilled in both caseds thatthe

combined aspects do not interfere semantically.

Figure 3 illustratesan exampleof the compositionof syn-

chronizationand real-time constraintsalong an inheritance
hierarchy. The hierarchy consistsof 5 classeswhere each
class introduces one or more synchronizationconstraints
(symbolized by, [2],] & [4) or real-timeconstraintgsym-

bdized by®, @ & @).

+2 synchr. RT constr,
BoundedBuffer Al
+3] o
Crane [HHE
+4]
ProtectedCrane (2] 2] 4]
+08
RTCrone OEEE 98
+©
EmergencyRTCrane [EZE Q&6

Figure 3. An inheritance hierarchy illustrating the
composition of synchronization and real-time constraints

ClasseRTCrane and EmergencyRTCrane show that differ-
ent aspectsanbe composedvithin a singleobject. The hier-
archy also illustrates that the aspectscan be reusedand
extendedby composingan existing class definition with a
new subclassspecification.The topic of composingsyncho-
nizationconstraintswith real-timeconstraintsandthe poss-
bly resulting semanticconflicts are discussedin detail in
[Bergmans95]. This article also describesthe solutions of-
feredthroughthe applicationof the Wait and Real Time com-
position filters.

In generalwe cancombinearbitraryfilter specificationsn a
single object specification.However, the resulting compo$
tion shouldalsobe semanticallymeaningful;this dependn
the applicationcharacteristicsThe compositionfilters model

Modular and Composable Extensions to Smalltalk using Composition Filters

L. Bergmans, B. Tekinerdogan & M. Aksit

also supportsthe compositionof new objectsfrom existing
ones, thereby combining their respective charasties.

5. Conclusion

5.1 Implementation of composition filters

So far, we have developedand testedthe following imple-

mentations of the composition filters model:

+ An implementationof our researchlanguageSna, which
adoptscompositionfilters, on top of VisualWorks. This
includesthe implementation®f the Dispatch, Error, Wait
andMeta filters [Koopmans 95].

+ A prototypeimplementationcalled CFIST that addscom-
position filters specificationsto Smalltalk classes[Dijk
95].

+ A prototypeimplementationthat addscompositionfilters
specificationsto C++ [Glandrup 95]. Currently, this fea-
turesno C++ preprocessorndthereforeC++ messagén-
vocations must be replaced explicitly by macro calls.

The mostimportantimplementatiorissueis thereification of
messagesgach messagenvocation from and to an object
with filters mustbe capturedandreified. This is difficult to
achieve in a way that is both transparent and efficient.

The efficient implementationof messagefiltering still re-
mains a challenge;objects with compositionfilters can in

principle exhibit a very dynamicbehavior,for instancebased
onthe stateof the object.In general this would makeit very
difficult to create efficient code. However, an interesting
featureof compositionfilters is the declarativeapproachto-

wards their specification. This allows for reasoningabout
filter specificationsand makesit easy,for instance,to find

out which behavioris fixed and which behavioris variable.
Obviously, the fixed behaviorcanthen be optimizedeasily,
e.g. through inlining. For the variable behavior, dynamic
optimizationtechniques.g. as adoptedby SeLF [HOIzle 94]

[Chambers39] are required.

5.2 Related work

We mentionthe encapsulators framework [Pascoe36] as a
Smalltalk-basedepresentativef relatedwork. This frame-
work offers an approachthatis similar to the ideasmotiva-
ing the composition-filtersmodel: an applicationobject can
be surroundedwith a layer that interceptsmessageshat are
sentto the objectandthe repliesof thosemessagesThe en-
capsulatorsre specialobjectsthatimplementthis layer. An
encapsulatodefinesa pre-action thatis executeduponmes-
sagereception,and a post-actionthatis executedwhenthe
result of the message igturned.

The main differenceswith the composition-filtersmodel are
that the actionsin encapsulatorsare monolithic Smalltalk
methodimplementationsvith no further fixed structure.The
composition-filtersmodel aims at providing abstractionsto
managecomplexobjectbehaviorin sucha way thatthe com-
posability of aspects and objects is achieved.

Somedesignpatterns suchas Adapter, Decorator, Mediator
and Sate from [Gamma95] addresgssuesthat are also cov-
ered by someapplicationsof compositionfilters. However,
they cannotompletelyovercomethe inherentmodelingdiffi-
cultiesin the conventionalobject models.For example,de-

sign patternsoften imply cascadingf interfaceupdatesdue
to the aggregation-based nature of most patterns.

5.3 Future work

We are currently involved in addirmpmpositiorfilters to the
Orbix™ implementation of CORBA IDLandare considering
to extend the&davaprogramminganguagewith filters. Ontop
of our agendais the modificationof a Smalltalk virtual ma-
chinein orderto provide an efficient implementatiorof mes-
sage reification.

Furthermorewe intend to build a visual manipulationtool
for specifyingcompositionfilters. Due to the simple syntax
and the declarativenature of compositionfilters specifia-
tions, a very user-friendlyfilter specificationthrough visual
manipulationonly is feasible.As an extensionto e.g. Smal-
talk, the full powerof compositiorfilters would thenbecome
availablewithout the needfor any codingandadditionallan-
guage syntax. The visual programmingapproachalso fits
nicely with current state-of-the-artSmalltalk environments
such as Visual Age and the PARTS \Wlzench.

5.4 Summary

We will summarize the main points of this paper:

+ Whendesigningextensiondor expressingcertainaspects
in Smalltalk, we mustassurethat the extensionsare uni-
formly integratedwith Smalltalk’s object model, that all
aspectxanbe freely combined,andthat the extendedob-
jects remain adaptable, extensible and reusable.

+ We proposethe compositionfilters model as a modular
extension tdSmalltalk,leavingthe Smalltalkobjectmodel
unmodified.

+ The composition-filtersmodel offers reflection on mes-
sagesn a declarativeway andwith a consistennotation,
while providing open-endednesso thatit canbe applied
to a range of application-domainsThis model replaces
numerouslanguageconstructsthat would be requiredto
offer similar —but limited— functionality when extending
the language itself.

+ The compositionfilters model provides solutionsto a
rangeof modelingproblems.In section3 a numberof the
problems and the solution approach are described.

¢ The solutionsto these problems are composable,both
within a single object, and through the composition of
multiple objectsinto a single oned. This wasdiscussedn
sectiord.

+ Composition filters can be attachedaigjectsexpressedn
different languages,including C++ [Glandrup95] and
Smalltalk [Dijk 95]. An important property of this ap-
proachis thatan applicationcan be developedccompletely
in pure Smalltalk. Filters needonly be addedfor classes
thatneedadditionalexpressiorpowersuchasdynamicin-
heiritance, synchronization, etcetera.

We would like to concludewith the remarkthat the appli-
cability of compositionfilters has beenestablishedhrough
pilot studiesfor a rangeof applicationdomains,in particular
in the context of designing application frameworks (e.g.
[Tekinerdogarg4], [Vuijst 95]).

5 A demonstrationof the compositionfilters model that
illustratesthe compositionof multiple aspectss schel-
uled during OOPSLA ‘96.

Modular and Composable Extensions to Smalltalk using Composition Filters

L. Bergmans, B. Tekinerdogan & M. Aksit

References

[Aksit 88] M. Aksit and A. Tripathi, Data Abstraction
Mechanismsn Sina/ST,Proc.of the OOPSLA‘88 Confa-
ence, ACM SIGPLAN Notices, VoR3,No. 11, November
1988, pp. 265-275.

[Aksit 91] M. Aksit, J.W. Dijkstra and A. Tripathi, Atomic
Delegation: Object-oriented Transactions, IEEE Software,
Vol. 8, No. 2, March 1991, pp 84-92.

[Aksit 92a] M. Aksit, L. Bergmansand S. Vural, An Object-
Oriented Language-Database Integration Model: The
Composition-Filters Approach, Proc. of the ECOOP ‘92
Confeaence,LNCS 615, Springer-Verlag,1992, pp. 372-
395.

[Aksit 92b] M. Aksit andL. BergmansObstacles in Object-
Oriented Software Development, Proceeding®©OPSLA'92,
ACM SIGPLAN Notices,Vol. 27, No. 10, October1992,
pp. 341358

[Aksit 93] M. Aksit, K. Wakita, J. Bosch,L. Bergmansand
A. YonezawaAbstracting Object-Interactions Using Com-
position-Filters, In Object-based Distributed Processing,
R. Guerraoui,O. Nierstraszand M. Riveill (eds), LNCS
791, Springer-Verlag, 1993, pp 152-184.

[Aksit 94] M. Aksit, J. Bosch, W. v.d. Sterrenand L.
BergmansReal-Time Specification Inheritance Anomalies
and Real-Time Filters, Procof the ECOOP'94 Conference,
LNCS 821, Springer Verlag, July 1994, pp. 386-407.

[Bergmans94a] L. Bergmans,The Composition Filters Ob-
ject Modd, proceedings of the RICOT symposium
‘Enabling Objects for Industry’, June 30, 1994

[Bergmans94b] L. Bergmans.Composing Concurrent Ob-
jects, Ph.D.thesis,University of Twente, The Netherlands,
1994.

[Bergmans95] L. Bergmansand M. Aksit, Composing Syn-
chronization and Real-Time Constraints, University of
Twente,Memorandadnformatica95-41,(to be publishedin
Journalof Parallel and Distributed Computing September
1996), December 1995.

[Booch 96] G. Booch, The End of Objects and the Last Pro-
grammer, http://www rational.com/pat/tech_papers/tp47.html

[Chambers89] C. ChambersD. Ungar & E. Lee, An Effi-
cient Implementation of SELF, a Dynamically-Typed Ob-
ject-Oriented Language Based on Prototypes. Proc. of the
OOPSLA ‘89 Conference, ACM SIGPLAN Notices,
24(10), October 1989, pp. 49-70.

[Dijk 95] W. van Dijk and J. MordhorsCFIST, Composition
Filters in Smalltalk, GraduationReport, HIO Enschede,
The Netherlands, May 1995.

[Ferber89] J. Ferber, Computational Reflection in Class-
Based Object-Oriented Languages, ProceedingsOOPSLA
‘89, ACM SIGPLAN Notices, Vol. 24, No. 10, October
1989, pp. 317-326

[Gamma 95E. GammaR. Helm, R. Johnsor& J. Vlissides,
Design patterns. Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[Glandrup95] M. Glandrup,Extending C++ Using the Con-
cepts of Composition Filters, M.Sc. Thesis, University of
Twente, November 1995.

[Holzle 94] U.H0lzle, Adaptive Optimization for SELF: Rec-
onciling High Performance with Exploratory Program-
ming, Ph.D. thesis, Dept. of Computerscience,stanford
University, August 1994,

[Koopmans95] P. Koopmans.On the Definition and Imple-
mentation of the Sna/st Language, M.Sc. Thesis,Univer-
sity of Twente, The Netherlands, July 1995

[Matsuoka93] S. Matsuokaand A. Yonezawa,|nheritance
Anomaly in Object-Oriented Concurrent Programming
Languages, in Research Directions in Concurrent Object-
Oriented Programming, (eds.)G. Agha, P. Wegnerand A.
Yonezawa, MIT Press, April 1993, pp. 107-150

[Pascoe86] G.A. Pascoe Encapsulators: A New Software
Paradigm in Smalltalk-80, Proc. of the OOPSLA'86 Con-
ference ACM SIGPLAN Notices,Vol. 21, No. 11, Novem-
ber 1986, pp. 34846

[Tekinerdogan94] B. Tekinerdogan,The Design of an Ob-
ject-Oriented Framework for Atomic Transactions, Msc
thesis,University of Twente, Dept. of ComputerScience,
The Netherlands, 1994

[Vuijst 94] C. Vuijst, Design of an Object-Oriented Frame-
work for Image Algebra, Msc thesis,University of Twente,
Dept. of Computer Science, The Netherlands, 1994

[Wegner87] P. Wegner,Dimensions of Object-Based Lan-
guage Design, Proceeding®OPSLA'87, ACM SIGPLAN
Notices, Vol. 22, No. 12, December 1987, pp. 168-182

