
Modular and Composable Extensions to Smalltalk using Composition Filters L. Bergmans, B. Tekinerdogan & M. Aksit

1

Modular and Composable Extensions to Smalltalk
using Composition Filters

Lodewijk Bergmans, Bedir Tekinerdoðan & Mehmet Akþit
TRESE Project, Department of Computer Science, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands.
email: { aksit | bedir | bergmans }@cs.utwente.nl

www server: http://wwwtrese.cs.utwente.nl

Abstract – current and future trends in computer science require extensions to Smalltalk. Rather than
arguing for particular language mechanisms to deal with specific requirements, in this position paper we
want to make a case for two requirements that Smalltalk extensions should fulfill. The first is that the
extensions must be integrated with Smalltalk without violating its basic object model. The second re-
quirement is that extensions should allow for defining objects that are still adaptable, extensible and re-
usable, and in particular do not cause inheritance anomalies. We propose the composition filters model
as a framework for language extensions that fulfills these criteria. Its applicability to solving various
modeling problems is briefly illustrated.

1. Motivation and approach
Despite the severe competition in the language market,
Smalltalk remains as one of the major players among com-
mercial object-oriented languages. This may be attributed to
Smalltalk’s pureness as an object-oriented language, its rich
programming environment and its portability. To be able to
continue with this success, however, Smalltalk has to evolve
to cope with the trends in modern computing and software
development.

1.1 Context

To give an indication of the kind of issues that modern pro-
gramming languages must deal with, we mention a few
trends in computing and application development:
♦ an increasing interest in embedded systems, which re-

quires dealing with real-time issues and synchronization.
♦ distribution of applications across a network (e.g. based on

CORBA); as a result mechanisms for concurrency control,
various communication protocols, distributed transactions
etc. are required.

♦ separate specification of workflow and work procedures,
independent from the application code.

♦ systems have to adapt dynamically to changing circum-
stances.

It is important to note that more such issues are likely to ap-
pear, either due to advancements in computing, or to the re-
quirements of specific application domains. In other words,
this list is open-ended.

1.2 Extending Smalltalk

To give an impression of the kind of extensions that we have
in mind, we list a number of them:
♦ synchronization of concurrent activities
♦ real-time constraint specifications
♦ atomic transactions
♦ tailorable message passing semantics
♦ objects representing communication protocols, so that

these can be abstracted and reused
♦ separate and explicit control flow specifications
♦ dynamically adaptable (multiple) inheritance and delega-

tion.

Note that each of these extensions deals with one specific
aspect of computation.

A big question to be answered first is: do we really need to
extend the language? Can we not deal with these issues
through a library approach? Extending a language for every
new feature that is desired has proven quite problematic, as
e.g. C++ demonstrates. We will briefly discuss when exten-
sions are required.

The basic object-oriented model [Wegner 87] suffers from
several modeling deficiencies (see e.g. [Aksit 92b]). Most of
these problems are due to the fact that object-oriented models
are not capable of expressing certain aspects of applications
in a reusable way. The question is thus not only whether the
language can express an aspect at all. But also to what extent
it is possible to add new aspects to objects, and to extend
and/or reuse such objects.

As an example, consider the synchronization of concurrent
threads. Smalltalk offers a semaphore class that allows for
embedding semaphore operations within the bodies of meth-
ods. However, it has been explained in the literature
[Matsuoka 93][Bergmans 94b] that this approach towards
synchronization does not behave properly when trying to
reuse and extend classes with synchronization. The term
inheritance anomaly has been coined to designate the prob-
lem that programmers are forced to do superfluous overriding
of inherited methods. An interesting property of the inheri-
tance anomaly is that it is caused by the specifics of the ob-
ject model (as adopted by a programming language).

Our experience has shown that many improvements to the
object-oriented model are required in order to be able to deal
with modeling problems [Aksit 92b]. We have developed the
language-independent composition filters model as a generic
approach to overcome these.

1.3 Requirements for extensions

We formalize four objectives that should be fulfilled when
making extensions to Smalltalk:
1. Smalltalk must be rich enough to express aspects such as

synchronization, real-time specifications, control flow
specifications, etcetera.

Modular and Composable Extensions to Smalltalk using Composition Filters L. Bergmans, B. Tekinerdogan & M. Aksit

2

2. The adopted language mechanisms must be uniformly
integrated with Smalltalk’s object model.

3. It must be possible to freely combine several independent
aspects into a single object, whenever this combination is
semantically meaningful.

4. Objects that are extended with the new aspects must be
adaptable, extensible and reusable without causing inheri-
tance anomalies.

The composition-filters object model provides a mechanism
for adding an open-ended range of aspects to object models
without violating their basic mechanisms. Furthermore, it
allows for independent specification of these aspects and the
composability of objects.

2. The composition filters extension
In order to meet the requirements for the extensions we have
extended the conventional OO model with the concept of
composition filters (CFs). The composition filters model is
based on the following assumptions:
♦ The object-oriented model as defined by current methods

and languages has many useful features and therefore it
must be kept as an abstraction mechanism1.

♦ To solve the modeling problems for different aspects, the
object model must be enhanced.

♦ Since more than one problem can be experienced for the
same object, enhancements must be specified independent
from each other;

♦ Extensions have to be specified at the interface of objects,
preferably in a consistent and declarative manner.

In the following sections we will give an overview of the
composition filters model and the integration of composition
filters with Smalltalk.

2.1 An overview of the composition-filters model

The composition filters model is a modular extension to the
conventional object model as adopted e.g. by Smalltalk. The
behavior of a Smalltalk object can be modified and enhanced
through the manipulation of incoming and outgoing messages
only. To achieve this, the Smalltalk object is surrounded by a
layer called the interface part. The resulting model and its
components are shown in Figure 1.

The most significant components in the CF model are the
input filters and output filters. A single filter specifies a par-
ticular manipulation of messages. Various filter types are
available. The filters together compose the behavior of the
object, possibly in terms of other objects. These other objects
can be either internal objects or external objects. Internal
objects are encapsulated within the composition filter object
whereas external objects remain outside the composition
filters object, such as globals or shared objects. The behavior
of the object is a composition of the behavior of its internal
and external objects.

In addition, –part of– the behavior of the object will be im-
plemented by the Smalltalk object, which is therefore also
referred to as the implementation part. On the interface of the

1 Grady Booch has even argued in [Booch 96] that object-

orientation as an abstraction paradigm is here to stay in-
definitely..

Smalltalk object appear two types of methods: normal meth-
ods and condition methods. The normal methods may be
invoked through messages, if the filters of the object allow
this. Condition methods are essentially Boolean expressions
that provide information about the state of the object. The
condition methods are used by the filters to decide how to
manipulate messages. As an example, a specific filter may
reject messages, based on their properties or based on the
state of the object.

Figure 1. The components of the composition-filters model.

2.2 The principle of message filtering

We will explain the basic mechanism of message filtering by
composition filters with the aid of Figure 2. The discussion
focuses on input filters, but output filters work in exactly the
same manner. The main difference is that output filters deal
with sent messages instead of received messages.

Figure 2. An intuitive schema of message filtering.

To understand the schema the following should be kept in
mind: filters are defined in an ordered set. A message that is
received by an object is first reified, i.e. a first-class represen-
tation of the message is created2. The reified message has to

2 Composition filters thus apply a form of message reflec-

tion [Ferber 89].

Modular and Composable Extensions to Smalltalk using Composition Filters L. Bergmans, B. Tekinerdogan & M. Aksit

3

pass the filters in the set, until it is discarded or can be dis-
patched. Dispatching means that the message is activated
again, for example to start the execution of a method body, or
to be delegated to another object. Each filter can either accept
or reject a message. The semantics associated with accep-
tance or rejection depend on the type of the filter.

Figure 2 visualizes the processing of messages by three fil-
ters, A, B and C. An object can receive a variety of messages,
in the figure exemplified by m(), n(), o() and p(). All received
messages are subject to manipulation by the successive fil-
ters. Different types of filter exist for different manipulations
on messages. Each filter tries to match messages based on a
specific pattern. A common syntax is used by all filters for
defining these patterns. The matching process can be defined
in terms of message properties, but may also depend on the
current state of the object.

We follow the message m() as it passes through the filters. In
Figure 2, message m() does not match with the pattern de-
fined by filter (A). Thus, the message is rejected by this filter.
In the example, the rejected message is simply passed on to
the next filter.

The message will then be evaluated by filter (B). The pattern
that is defined by this filter matches with the message. This
is referred to as acceptance of the message by the filter. This
initiates a particular action, that depends on the filter type:
the message may be manipulated and modified. In the exam-
ple of filter (B), the message is modified (designated in the
figure by its changed shape and color), and then passed on to
the next filter.

For the last filter in the example, filter (C), the pattern also
matches the message. The acceptance of the message in this
case causes the message to be dispatched, for example to a
local method of the object. The message itself contains in-
formation that determines how it should be dispatched (i.e.
the target object and the message selector).

In general, every filter set should contain a filter that causes
messages to be dispatched, as this is the only means to trigger
the execution of a method. For output filters, dispatching
means that the message is submitted to the target object.
Note that upon its reception by the target object, the message
must first pass the input filters of the target object.

In summary, each filter specification consists of a pattern
definition and a filter type. Messages are matched against the
pattern, then the filter type determines the action to be per-
formed upon acceptance, respectively rejection. For a more
detailed description of the composition filters model, we refer
to [Bergmans 94a], [Koopmans 95], or various other papers
that each discuss a specific application of composition fil-
ters3.

3. Solving modeling problems with filters
In order to provide a clear motivation for adopting composi-
tion filters, in this section we briefly describe a number of
modeling problems which have been experienced in several
practical pilot projects [Aksit 92b]. For each of these model-

3 At http://wwwtrese.cs.utwente.nl/~sina a tutorial on the

composition filters model as adopted by the programming
language Sina can be found.

ing problems, we outline the solution that can be provided by
adding one or more filters to a Smalltalk object.

3.1 Multiple views

Not all operations provided by an object should be accessible
to each object that uses its services. Therefore it is desirable
to define interfaces for an object that differentiate between
clients, that is, between the senders of a message. For exam-
ple, a public mailbox should make a distinction between a
postman and others, since everybody is allowed to put a letter
in it, but only a postman is allowed to empty the mailbox.
Interfaces may also change depending on the internal state of
the object; for example, the mailbox cannot be opened –not
even by the postman– while it is locked.

We have coined the term multiple views in [Aksit 92a] to
designate this problem. In a conventional object-oriented
language such as Smalltalk, multiple views can only be real-
ized by inserting explicit checks in all the methods of an
object. The resulting mixing of concerns causes problems
when trying to reuse and extend objects with multiple views.

An Error filter allows for ‘preconditions’ on messages, based
on both the properties of the message (such as the identity of
the sender) and the state of the object. Views are defined by
condition methods, and the Error filter defines the mapping
from the views to sets of messages. Several views can be
combined or added later in subclasses.

3.2 Dynamic inheritance and delegation

Dynamic inheritance or delegation means that the inheritance
hierarchy (delegation structure) is not fixed, but that an ob-
ject can specify a set of superclasses (delegated objects) from
which it may possibly inherit (delegate to) [Aksit 92a]. Dy-
namic inheritance or delegation can be needed if an applica-
tion must be able to adapt its behavior due to: performance
reasons or space requirements, different clients or contexts,
or even to different hardware, as for example in distributed
systems.

By attaching a Dispatch filter to an object we can provide
dynamic inheritance and/or delegation. The Dispatch filter
will forward received messages to different target objects,
depending on results of condition methods. If the target ob-
ject is encapsulated within the object itself, inheritance is
simulated [Aksit 88]. If the target object resides outside the
encapsulation boundary of the receiver object, this becomes a
delegation mechanism. Since the Dispatch filter can forward
messages to different objects, multiple inheritance and dele-
gation is supported as well. The self pseudovariable is re-
tained as it is always the original receiver of the message.

Condition methods capture the state of an object, which may
change at run-time. The results of condition methods also
affect the dispatching process, and thus inheritance and dele-
gation may change dynamically.

3.3 Coordinated behavior

Coordinated behavior can be encountered for example in
distributed control systems, in which several distinct units,
such as controlling algorithms, sensors and actuators, must
work together in order to keep the controlled system in a
consistent state.

Modular and Composable Extensions to Smalltalk using Composition Filters L. Bergmans, B. Tekinerdogan & M. Aksit

4

The conventional object-oriented models do not provide high-
level mechanisms to abstract coordinated behavior among
several objects since the message passing semantics only
involve two partner objects and the message communication
is invisible at the application level. To implement coordi-
nated behavior, the coordination-related application code
must be spread over several objects which means that the
application becomes more complex, less reusable, while its
interaction semantics are more difficult to understand, verify
and enforce.

The coordinated behavior problem [Aksit 93] can be solved
by attaching a Meta filter to the Smalltalk object. A Meta
filter captures incoming messages and forwards them as first
class objects to a so-called abstract communication object
which implements the coordinated behavior. The abstract
communication object can be shared by any number of ob-
jects to coordinate and manipulate their communication. An
important characteristic of this approach is that it allows for
defining and reusing hierarchies of abstract communication
objects.

3.4 Reuse versus synchronization constraints

In section 1.2 we already introduced the problem of inheri-
tance anomalies, which frequently occurs when adding syn-
chronization constraints to objects. This problem may occur
for instance when synchronization code is mixed with appli-
cation code (i.e. embedded inside the method code). Then
changing the synchronization is impossible without affecting
the application code. Another source for inheritance anoma-
lies comes from the lack of decomposability of synchroniza-
tion specifications in some languages. It is then hard to add a
new synchronization constraint, or to partly reuse or redefine
the synchronization specification in a subclass.

We can use a Wait filter to specify synchronization con-
straints while avoiding inheritance anomalies [Bergmans
94b]. The synchronization constraint condition is then speci-
fied by condition methods as an abstraction of the state of the
object. A Wait filter defines a mapping from these conditions
to the messages to which the synchronization constraint ap-
plies. Reuse and extension of (objects with) synchronization
is possible, without unnecessary redefinitions.

3.5 Reuse versus real-time constraints

In real-time environments, at least some of the classes in the
system impose real-time constraints upon the execution of
methods. When such classes are reused in other applications,
changes to either the application requirements or to the real-
time constraint specifications in subclasses may result in
excessive redefinitions of superclasses whereas this would be
intuitively unnecessary. This so called real-time specification
anomaly can arise when real-time specifications are mixed
with the application code, or when specifications are not
polymorphic, i.e. they cannot be used for more than one
method, or when independently defined but related specifi-
cations are composed together.

A RealTime filter [Aksit 94] can define or modify deadlines
as well as other scheduling attributes of an execution. This is
achieved by letting messages carry scheduling attributes4. At

4 At least conceptually; another view would be that the

scheduling attributes are associated with threads.

the interface of objects, RealTime filters can modify these
attributes for selected messages and under selected circum-
stances (as controlled by condition methods). The filters
specify a mapping from the real-time constraints to sets of
messages. The resulting decoupling ensures that the real-time
specification anomaly will not occur.

4. Composable extensions
In the previous section we have outlined a range of common
modeling problems and given an indication how composition
filters can address these problems. However, as indicated in
section 1.3, an important requirement for extensions to
Smalltalk is that they are composable. This involves two
properties:
I. It should be possible to combine solutions to problems

such as synchronization, dynamic inheritance and delega-
tion, real-time specifications, multiple views, etcetera
within a single object.

II. It should be possible to compose new objects from exist-
ing ones (e.g. through multiple inheritance) while retain-
ing the semantics of the composed objects.

The constraint that must be fulfilled in both cases is that the
combined aspects do not interfere semantically.

Figure 3 illustrates an example of the composition of syn-
chronization and real-time constraints along an inheritance
hierarchy. The hierarchy consists of 5 classes, where each
class introduces one or more synchronization constraints
(symbolized by 1, 2, 3 & 4) or real-time constraints (sym-
bolized by ¶, · & ¸).

Figure 3. An inheritance hierarchy illustrating the
composition of synchronization and real-time constraints

Classes RTCrane and EmergencyRTCrane show that differ-
ent aspects can be composed within a single object. The hier-
archy also illustrates that the aspects can be reused and
extended by composing an existing class definition with a
new subclass specification. The topic of composing synchro-
nization constraints with real-time constraints and the possi-
bly resulting semantic conflicts are discussed in detail in
[Bergmans 95]. This article also describes the solutions of-
fered through the application of the Wait and RealTime com-
position filters.

In general, we can combine arbitrary filter specifications in a
single object specification. However, the resulting composi-
tion should also be semantically meaningful; this depends on
the application characteristics. The composition filters model

Modular and Composable Extensions to Smalltalk using Composition Filters L. Bergmans, B. Tekinerdogan & M. Aksit

5

also supports the composition of new objects from existing
ones, thereby combining their respective characteristics.

5. Conclusion

5.1 Implementation of composition filters

So far, we have developed and tested the following imple-
mentations of the composition filters model:
♦ An implementation of our research language Sina, which

adopts composition filters, on top of VisualWorks. This
includes the implementations of the Dispatch, Error, Wait
and Meta filters [Koopmans 95].

♦ A prototype implementation called CFIST that adds com-
position filters specifications to Smalltalk classes [Dijk
95].

♦ A prototype implementation that adds composition filters
specifications to C++ [Glandrup 95]. Currently, this fea-
tures no C++ preprocessor, and therefore C++ message in-
vocations must be replaced explicitly by macro calls.

The most important implementation issue is the reification of
messages; each message invocation from and to an object
with filters must be captured and reified. This is difficult to
achieve in a way that is both transparent and efficient.

The efficient implementation of message filtering still re-
mains a challenge; objects with composition filters can in
principle exhibit a very dynamic behavior, for instance based
on the state of the object. In general, this would make it very
difficult to create efficient code. However, an interesting
feature of composition filters is the declarative approach to-
wards their specification. This allows for reasoning about
filter specifications and makes it easy, for instance, to find
out which behavior is fixed and which behavior is variable.
Obviously, the fixed behavior can then be optimized easily,
e.g. through inlining. For the variable behavior, dynamic
optimization techniques e.g. as adopted by SELF [Hölzle 94]
[Chambers 89] are required.

5.2 Related work

We mention the encapsulators framework [Pascoe 86] as a
Smalltalk-based representative of related work. This frame-
work offers an approach that is similar to the ideas motivat-
ing the composition-filters model: an application object can
be surrounded with a layer that intercepts messages that are
sent to the object and the replies of those messages. The en-
capsulators are special objects that implement this layer. An
encapsulator defines a pre-action, that is executed upon mes-
sage reception, and a post-action, that is executed when the
result of the message is returned.

The main differences with the composition-filters model are
that the actions in encapsulators are monolithic Smalltalk
method implementations with no further fixed structure. The
composition-filters model aims at providing abstractions to
manage complex object behavior in such a way that the com-
posability of aspects and objects is achieved.

Some design patterns, such as Adapter, Decorator, Mediator
and State from [Gamma 95] address issues that are also cov-
ered by some applications of composition filters. However,
they cannot completely overcome the inherent modeling diff i-
culties in the conventional object models. For example, de-

sign patterns often imply cascading of interface updates, due
to the aggregation-based nature of most patterns.

5.3 Future work

We are currently involved in adding composition filters to the
Orbix™ implementation of CORBA IDL, and are considering
to extend the Java programming language with filters. On top
of our agenda is the modification of a Smalltalk virtual ma-
chine in order to provide an efficient implementation of mes-
sage reification.

Furthermore, we intend to build a visual manipulation tool
for specifying composition filters. Due to the simple syntax
and the declarative nature of composition filters specifica-
tions, a very user-friendly filter specification through visual
manipulation only is feasible. As an extension to e.g. Small-
talk, the full power of composition filters would then become
available without the need for any coding and additional lan-
guage syntax. The visual programming approach also fits
nicely with current state-of-the-art Smalltalk environments
such as Visual Age and the PARTS Workbench.

5.4 Summary

We will summarize the main points of this paper:
♦ When designing extensions for expressing certain aspects

in Smalltalk, we must assure that the extensions are uni-
formly integrated with Smalltalk’s object model, that all
aspects can be freely combined, and that the extended ob-
jects remain adaptable, extensible and reusable.

♦ We propose the composition filters model as a modular
extension to Smalltalk, leaving the Smalltalk object model
unmodified.

♦ The composition-filters model offers reflection on mes-
sages in a declarative way and with a consistent notation,
while providing open-endedness so that it can be applied
to a range of application-domains. This model replaces
numerous language constructs that would be required to
offer similar –but limited– functionality when extending
the language itself.

♦ The composition filters model provides solutions to a
range of modeling problems. In section 3 a number of the
problems and the solution approach are described.

♦ The solutions to these problems are composable, both
within a single object, and through the composition of
multiple objects into a single one5. This was discussed in
section 4.

♦ Composition filters can be attached to objects expressed in
different languages, including C++ [Glandrup 95] and
Smalltalk [Dijk 95]. An important property of this ap-
proach is that an application can be developed completely
in pure Smalltalk. Filters need only be added for classes
that need additional expression power such as dynamic in-
heritance, synchronization, etcetera.

We would like to conclude with the remark that the appli-
cability of composition filters has been established through
pilot studies for a range of application domains, in particular
in the context of designing application frameworks (e.g.
[Tekinerdogan 94], [Vuijst 95]).

5 A demonstration of the composition filters model that

illustrates the composition of multiple aspects is sched-
uled during OOPSLA ‘96.

Modular and Composable Extensions to Smalltalk using Composition Filters L. Bergmans, B. Tekinerdogan & M. Aksit

6

References
[Aksit 88] M. Aksit and A. Tripathi, Data Abstraction

Mechanisms in Sina/ST, Proc. of the OOPSLA ‘88 Confer-
ence, ACM SIGPLAN Notices, Vol. 23, No. 11, November
1988, pp. 265-275.

[Aksit 91] M. Aksit, J.W. Dijkstra and A. Tripathi, Atomic
Delegation: Object-oriented Transactions, IEEE Software,
Vol. 8, No. 2, March 1991, pp 84-92.

[Aksit 92a] M. Aksit, L. Bergmans and S. Vural, An Object-
Oriented Language-Database Integration Model: The
Composition-Filters Approach, Proc. of the ECOOP ‘92
Conference, LNCS 615, Springer-Verlag, 1992, pp. 372-
395.

[Aksit 92b] M. Aksit and L. Bergmans, Obstacles in Object-
Oriented Software Development, Proceedings OOPSLA '92,
ACM SIGPLAN Notices, Vol. 27, No. 10, October 1992,
pp. 341-358

[Aksit 93] M. Aksit, K. Wakita, J. Bosch, L. Bergmans and
A. Yonezawa, Abstracting Object-Interactions Using Com-
position-Filters, In Object-based Distributed Processing,
R. Guerraoui, O. Nierstrasz and M. Riveill (eds), LNCS
791, Springer-Verlag, 1993, pp 152-184.

[Aksit 94] M. Aksit, J. Bosch, W. v.d. Sterren and L.
Bergmans, Real-Time Specification Inheritance Anomalies
and Real-Time Filters, Proc of the ECOOP ‘94 Conference,
LNCS 821, Springer Verlag, July 1994, pp. 386-407.

[Bergmans 94a] L. Bergmans, The Composition Filters Ob-
ject Model, proceedings of the RICOT symposium
‘Enabling Objects for Industry’, June 30, 1994

[Bergmans 94b] L. Bergmans. Composing Concurrent Ob-
jects, Ph.D. thesis, University of Twente, The Netherlands,
1994.

[Bergmans 95] L. Bergmans and M. Aksit, Composing Syn-
chronization and Real-Time Constraints, University of
Twente, Memoranda Informatica 95-41, (to be published in
Journal of Parallel and Distributed Computing September
1996), December 1995.

[Booch 96] G. Booch, The End of Objects and the Last Pro-
grammer, http://www.rational.com/pat/tech_papers/tp47.html

[Chambers 89] C. Chambers, D. Ungar & E. Lee, An Effi-
cient Implementation of SELF, a Dynamically-Typed Ob-
ject-Oriented Language Based on Prototypes. Proc. of the
OOPSLA ‘89 Conference, ACM SIGPLAN Notices,
24(10), October 1989, pp. 49-70.

[Dijk 95] W. van Dijk and J. Mordhorst, CFIST, Composition
Filters in Smalltalk, Graduation Report, HIO Enschede,
The Netherlands, May 1995.

[Ferber 89] J. Ferber, Computational Reflection in Class-
Based Object-Oriented Languages, Proceedings OOPSLA
'89, ACM SIGPLAN Notices, Vol. 24, No. 10, October
1989, pp. 317-326

[Gamma 95] E. Gamma, R. Helm, R. Johnson & J. Vlissides,
Design patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[Glandrup 95] M. Glandrup, Extending C++ Using the Con-
cepts of Composition Filters, M.Sc. Thesis, University of
Twente, November 1995.

[Hölzle 94] U. Hölzle, Adaptive Optimization for SELF: Rec-
onciling High Performance with Exploratory Program-
ming, Ph.D. thesis, Dept. of Computer science, stanford
University, August 1994.

[Koopmans 95] P. Koopmans. On the Definition and Imple-
mentation of the Sina/st Language, M.Sc. Thesis, Univer-
sity of Twente, The Netherlands, July 1995

[Matsuoka 93] S. Matsuoka and A. Yonezawa, Inheritance
Anomaly in Object-Oriented Concurrent Programming
Languages, in Research Directions in Concurrent Object-
Oriented Programming, (eds.) G. Agha, P. Wegner and A.
Yonezawa, MIT Press, April 1993, pp. 107-150

[Pascoe 86] G.A. Pascoe, Encapsulators: A New Software
Paradigm in Smalltalk-80, Proc. of the OOPSLA '86 Con-
ference, ACM SIGPLAN Notices, Vol. 21, No. 11, Novem-
ber 1986, pp. 341-346

[Tekinerdogan 94] B. Tekinerdogan, The Design of an Ob-
ject-Oriented Framework for Atomic Transactions, Msc
thesis, University of Twente, Dept. of Computer Science,
The Netherlands, 1994

[Vuijst 94] C. Vuijst, Design of an Object-Oriented Frame-
work for Image Algebra, Msc thesis, University of Twente,
Dept. of Computer Science, The Netherlands, 1994

[Wegner 87] P. Wegner, Dimensions of Object-Based Lan-
guage Design, Proceedings OOPSLA '87, ACM SIGPLAN
Notices, Vol. 22, No. 12, December 1987, pp. 168-182

