
COMPOSING SOFTWARE FROM MULTIPLE CONCERNS:

A MODEL AND COMPOSITION ANOMALIES

Lodewijk M.J. Bergmans (lbergmans@acm.org)
Mehmet Aksit (aksit@cs.utwente.nl)

http://trese.cs.utwente.nl
TRESE GROUP – FACULTY OF COMPUTER SCIENCE, CENTRE FOR TELEMATICS AND INFORMATION TECHNOLOGY (CTIT)

UNIVERSITY OF TWENTE, P.O. BOX 217, 7500 AE, ENSCHEDE, THE NETHERLANDS

Abstract—Constructing software from components is
considered to be a key requirement for managing the
complexity of software. Separation of concerns makes
only sense if the realizations of these concerns can be
composed together effectively into a working program.
Various publications have shown that composability of
software is far from trivial and fails when components
express complex behavior such as constraints, synchroni-
zation and history-sensitiveness. We believe that to ad-
dress the composability problems, we need to understand
and define the situations where composition fails. To this
aim, in this paper we (a) introduce a general model of
multi-dimensional concern composition, and (b) define
so-called composition anomalies.

1. INTRODUCTION

In this paper we discuss software composition schemes: a
composition scheme is the conceptual model or mechanism
for composition in a computation model or programming
language. Composability is a key requirement for any lan-
guage or computation model that intends to address multi-
dimensional separation of concerns or aspect-oriented pro-
gramming1: separation of concerns/aspects makes only sense
if these can be composed together effectively into a working
program. In this paper we propose a general model of multi-
dimensional software, consisting of what we view as key in-
gredients for modeling such software.

However, the composability of software is far from trivial
(see e.g. [Bergmans 97, 99]), and fails in many cases. We
coin the term composition anomaly to describe a specific
problem that causes a composition scheme to fail. Section 2
introduces our software composition model and illustrates it
with a simple example. In section 3 the notion of composition
anomaly is explained and defined. We illustrate the problem
by mapping our example problem to an object-oriented im-
plementation. We conclude this paper in section 5.

1 The distinction between the two is mostly a matter of terminol-

ogy, but until now, aspect-oriented programming (AOP) as illus-
trated by AspectJTM has focused on mechanisms that support a
clear conceptual distinction between aspect- and base-level,
whereas multi-dimensional separation of concerns is generally
used in a more abstract and general way, e.g. including cross-
lifecycle concerns.

2. A MODEL OF SOFTWARE COMPOSITION

In this section we present a general model for studying and
reasoning about software composition. It relies on three fun-
damental observations about large and/or complex (software)
systems:

n Complex (software) systems are modeled and constructed
by merging a number of different dimensions, or views,
of the system: multiple dimensions of concerns [Tarr 99,
Bergmans 96a].

n Complex systems usually take the shape of hierarchic
systems; systems that are composed of interrelated sub-
systems, each of the latter being in turn hierarchic in
structure, until the lowest, atomic, level is reached
[Simon 96].

n A useful model of software enables one to reason about
the model instantiations. This requires the specification
of the semantics and properties of the basic building
blocks. Preferably, there exists well-defined models for
the relevant concerns.

The following subsections will deal with each one of these
observations, respectively:

2.1 MULTIPLE DIMENSIONS OF CONCERNS

For example in building architecture, one can distinguish
many concerns or views, such as the floor plan, construction
stability, heat characteristics, electrical wiring, plumbing,
andsoforth separately. These can be modeled and specified
largely independently, with a number of dependencies be-
tween them. The resulting building merges all these views.
We term this as multiple dimensions of concerns, which can
be visualized as follows:

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 2

concern-1

concern-2

concern-3

concern-4

concern-5

concern-6

concern-7

Figure 1. Multiple dimensions of concerns span a space
where each point denotes a specific combination of concerns.

Each concern dimension consists of a number of concern in-
stantiations. For example, a bounded buffer object may con-
sist of concerns from the dimensions data, behavior,
synchronization and memory management. For instance the
data dimension might consist of the concerns {storage, head,
tail}, and the synchronization dimension of the concerns
{EmptySync, FullSync}.

The crucial issue in multiple dimensions of concerns is that
in principle, all concerns in all concern dimensions may be
coupled to one or more other concerns from any concern di-
mensions1. In the buffer example, methods (instances of the
behavior concern) may refer to data concerns and memory
management concerns, synchronization concerns may refer to
methods.

Another way of visualizing the multiple dimensions of con-
cerns, which is easier for illustrating the dependencies is the
following layer-based model:

concern-1

concern-2

concern-3

Figure 2. A representation of multiple dimensions of con-
cerns as a set of typed graphs.

In the above figure, each layer represents one dimension of
concerns, each gray circle represents a concern instance. The
arrows show directed relations between the concerns. Various
kind of relations (i.e. types) are possible; in an object-
oriented setting, the relations may be for example inheritance,
aggregation or message connections. The concern instances
within a single dimension may, but need not have relations
between them.

The direction of the relations defines how a relation can be
specified: the relation can be specified completely on the tail
side, without affecting the specification of the concern where
the head of the relation points to.

1 For example in Aspect-Oriented Programming, one of the basic

assumptions is that all aspects (i.e. concern dimensions) apply to
the base level, never to each other [Bergmans 99 OOPSLAws].

We can simplify this layered representation by drawing eve-
rything in one space as a graph of typed nodes and typed re-
lations, e.g. as in the following figure (note that this is not an
equivalent of the above figure; for space reasons we have
reduced the number of nodes and relations):

Figure 3. A representation of multiple dimensions of
 concerns as a graph with typed nodes and relations.

2.2 HIERARCHICAL NESTING

It has been observed by many (e.g. [Simon 96]/Rechtin/..)
that complex systems are best constructed and modeled as
hierarchical systems; systems that are composed of interre-
lated subsystems. Each subsystem is again a composition of
hierarchically structured (sub-) subsystems, until the lowest,
atomic level. The fact that at each level the subsystems of a
system are interrelated and mutually dependent is fairly im-
portant; no interesting complex systems can be built from
fully independent, isolated subsystems.

We adopt the concept of hierarchically structured systems as
a means to create complex concerns composed from sub-
concerns. This is visualized in Figure 4 as respectively nest-
ing and a hierarchical tree:

Figure 4. Two visualizations of nested c.q. hierarchically
composed concerns.

The above visualizations do not show our interest in using
identical concerns in different nestings/compositions. This
could be modeled explicitly by allowing a lattice structure2

instead of a tree-structure: this allows several complex con-
cerns to refer to the same concern. This is less appealing as it
does not match our intuition of hierarchic systems well. The
alternative that we adopt for now is to allow duplicates of
concerns, a special relation between identical concerns could
make this explicit.

A wide range of decomposition strategies is possible. In
[Koopman 95], the following three strategies are identified:

n Based on structures: the form, or ‘what’.

n Based on behaviors: the function, or ‘how’.

n Based on goals: the desired/emergent design properties,
or ‘why’.

These categories roughly coincide with matter, processes,
and mental state as defined in [Chi 94] as the three basic on-
tologies for reasoning and learning, and with object, aspect,
and sequential decomposition as mentioned in the context of
general (non-CS) design decomposition in [Michelena 97].

2 Or: a directed, a-cyclic, rooted graph?

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 3

The main theme of [Koopman 95] is that each of the different
mixtures1 of the above three decomposition strategies has its
own advantages and disadvantages. In our case, the adopted
decomposition strategies would determine the concern di-
mensions of the nested concerns. We do not impose any con-
straints on the decomposition strategies; neither on the
number of strategies nor on the order in which they are to be
applied.

The dependencies between the concerns are modeled by the
same kind of relations that we discussed in section 2.2.

The aim of the hierarchical nesting (decomposition) is that it
gives us first-class abstractions to represent complex (i.e.
non-atomic) concerns. This is essential for constructing and
reusing complex subsystems.

2.3 MODELING CONCERNS

Now that we have presented the structural issues of our
model, it is important to consider the semantics of our basic
building blocks: the concerns. Until now we have used this
term in a very broad sense, but this prohibits the ability to do
any reasoning at all about our composition model. Therefore
it is essential to have well-defined models for representing
concerns.

During the last decade, we have developed various models
for expressing certain aspects such as synchronization and
real-time [Bergmans 96b]. For example, the synchronization
concern in [Bergmans 96b] was defined using the following
abstractions:
n Implicit state: references to and hooks within the context

of the synchronized component/software.
n Synchronization conditions: expressions that abstract the

context (state) in a way that is relevant for synchroniza-
tion.

n Synchronization condition mapping: determines the syn-
tax and semantics of synchronization condition specifi-
cations.

n Message accept sets: defines a set of operations that are
synchronized, i.e. blocked or free.

The important things about models for representing concerns
are: (a) the more structure, finer granularity and more re-
stricted semantics for the parts that specify a concern, the
easier it will be to make useful statements about the behavior
and composability of a set of concerns, and (b) that the cru-
cial properties that determine the composition characteristics
of the model lie in the flexibility of the mappings and the
ability to add or remove sub-components incrementally.

We have developed models for various concerns, such as
real-time, multiple views, coordinated behavior and error
handling. Ideally, we can define a canonical model, which is
suitable for appropriately modeling many different concerns.
In our research, the Composition Filters model has served
this purpose . See e.g. [Aksit 92, 93, 94][Bergmans 94, 96b]
for examples of the various concerns and the composition
filters model.

1 Although any arbitrary mixture is possible, the typical goal of a

design methodology is to structure the decomposition by sys-
tematically choosing the decomposition strategies.

2.4 THE COMBINED MODEL

Given the ingredients that have been described in sections
2.1, 2.2 and 2.3, we now show how these work together to
model the composition of software. We illustrate this with a
simple object-oriented example that composes multiple con-
cerns. For reasons of space and comprehensibility, we omit
any details on the internals of the concerns, as defined by the
canonical model.

Our example consists of two independent concerns: the first
is a console object, defining behavior to implement writing
text to the console, and reading text (key presses) from the
console. When modeling the writing and reading as separate
concerns, these belong clearly to a concern dimension for
behavior. The composition of these two concerns yields the
Console concern. One may argue that this concern belongs to
the behavior concern dimension as well, but in a more gen-
eral case, where it also composes other concerns such as the
state of the console, this can be modeled as belonging to a
separate concern dimension that we refer to as abstractions2.
The result is shown in Figure 5 below.

Console

read()write()

behavior

abstractions

Figure 5. A simple model of the Console.

To visualize these models, we draw graphs consisting of el-
lipses for nodes that represent concerns, and two types of
edges: the thick lines represent composition relations, with a
bullet at the end of the composed (nested) concern. Thin ar-
rows are used to represent other dependencies between con-
cerns. The direction of the arrow shows which concern
depends on the other concern that is pointed to. The relation
between concern dimensions and concerns can be shown by
the layering as adopted here, or by annotations (stereotypes)
for each concern.

2 Note that we do not present a methodology for identifying and

modeling multiple concerns, but only a model for describing a
given decomposition into concern dimensions and concerns.
Other ways of decomposing are equally valid and applicable.

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 4

lockingSync

Locker

lock() unlock()

state

sycnhronization

behavior

state

abstractions

<method>

Figure 6. A visualization of the Locker concern

In Figure 6 above, we show a slightly more complex example
of a Locker class: the purpose of this class is to be able to
’lock’ an object, i.e. blocking all incoming message invoca-
tions, and later ’unlock’ the object again. The blocking of
messages is a separate synchronization concern dimension. It
contains the concern lockingSync, which depends on the
state. To illustrate that various methods may depend on
(adopt) the lockingSync concern, we introduce a dummy con-
cern <method> which has a dependency upon the locking-
Sync. For maintaining the state (i.e. locked or unlocked) of
the Locker, we introduce a separate state concern, which be-
longs to the state concern dimension.

The main theme of this paper is composition of multi-
ple/complex concerns. We will now illustrate this through the
composition of Locker and Console. We simply show the
intuitive/conceptual idea of composition, regardless of avail-
able composition technology. The goal of the composition is
to yield a composed concern LockingConsole.

Plain, orthogonal composition of concerns without any inter-
action or dependencies between the two parts, albeit applica-
ble in a small number of cases, is a nobrainer. In this case we
are interested to apply the notion of locking upon (the meth-
ods of) Console. This naturally creates dependencies between
the two concerns (or rather, their subconcerns): we would
like the write() and read() behavior concerns within the Con-
sole concern to adopt the lockingSync concern within the
Locker. Figure 7 shows this example in a diagram.

Locker

lock() unlock()

Console

read()write()

state

lockingSync

sycnhronization

behavior

state

abstractions

Locking
Console

Figure 7. Visual representation of the composition of the
complex concerns Locker and Console.

One of the key issues of this example composition is that it
creates a composition of (concerns consisting of) multiple
concern dimensions: abstractions, state, behavior and syn-

chronization. We can view this as two levels of composition:
the first is to compose multiple concerns from multiple con-
cern dimensions into a single working abstraction, the second
is to compose complex abstractions, each covering multiple
concern dimensions (cf. the discussion of composability in
[Bergmans 97]).

3. COMPOSITION ANOMALIES

3.1 DEFINITION

An anomaly means: “deviation from the common rule; ir-
regularity” or “something different, abnormal, peculiar, or
not easily classified“ (Merriam-Webster). With composition
anomaly we refer to the cases where a conceptually sound
composition does not work out with a specific composition
scheme. In other words, a composition of two concerns that is
natural and logical at the conceptual level cannot be imple-
mented straight-forward with a particular composition
scheme.

Depending on the composition scheme, it may be possible,
though, to fix a composition deficiency with some patching
code. Although there is no fundamental problem with the
need for additional code, it turns out that this reduces main-
tainability in virtually all cases. This may manifest itself e.g.
by requiring code replication, or additional dependencies on
either implementations or interfaces.

The term composition anomaly has been derived from the
term inheritance anomaly, as was coined by Matsuoka et.al.
in [Matsuoka 90, 93] to denote the more specific case where
the embedding of synchronization code in classes caused se-
rious problems when trying to reuse and extend such code,
especially through inheritance mechanisms. In those cases, it
typically appeared that the problems could be patched by
overriding in a subclass substantial parts of the methods de-
fined by a superclass. We refer to [Matsuoka 90] and [Berg-
mans 94] for extensive analysis of these problems. One of the
important conclusions from this work was that these prob-
lems are language-dependent; i.e. they are related to the cho-
sen synchronization scheme, and its composition semantics.

3.2 AN EXAMPLE: LOCKINGCONSOLE

In Figure 7 the visual composition of concern Locking-
Console from two concerns, Locker and Console, was shown.
The figure illustrates that it only requires the definition of
some new relations to connect the synchronization concerns
to the methods of the console class. This is a perfectly sound
composition of two different behaviors –each consisting of
multiple concerns themselves– into a new, complex one.
However, if we try to do such a composition in, say, the ob-
ject-oriented model, it appears that this is not straightforward
at all, and actually exhibits a composition anomaly.

We show the classes Locker and Console by object-oriented
pseudo-code:
Class Locker // blocks method calls if locked
 isLocked:Boolean;
 lock() // lock all methods except unlock
 {self lockingSync(); isLocked:=true; …}
 unlock() // unlock all methods
 {isLocked:=false; …)
 lockingSync(); // implements method synchr.

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 5

 //for both locked & unlocked states
 //must be embedded at the start of methods
end;

Class Console // plain functionality
 write(s:String); // displays the string
 read():String; // reads from the input
 …
end;

Now assume that the synchronization is implemented with
semaphores or a monitor, or a similar mechanism; this means
that all methods that can be locked, must be enhanced with
synchronization code. This code is implemented separately in
method Locker::lockingSync(). When composing the
two classes, all methods that are to be locked, must insert this
code, i.c. a call to this code within the methods. The most
effective way to do this is by overriding the methods with
two ‘super calls’; this reuses the code from the respective
superclasses:

Class LockingConsole
 // compose through multiple inheritance:
 inherits Locker, Console;
 write(s:String)
 {Locker::lockingSync(); Console::write(s)}
 read()
 {Locker::lockingSync(); Console::read()}
end;

Although this example even does not replicate code, it in-
fringes the maintainability of the application since (a) the
composition requires overriding all methods of class Console
that are lockable, (b) the overridden methods depend on the
interface of the methods of Console, (c) all –future– methods
of class LockingConsole and both its subclasses must add the
call to lockingSync(), and (d) for all lockable methods that are
added to classes Console, Locker, or their superclasses, a new
redefinition must be added to class LockingConsole.

Locking
Console

Locker

lock() unlock()

Console

read()

state

lockingSync

sycnhronization

behavior

state

abstractions

write’() read’()

write()

Figure 8. A visualization of the OO implementation of Lock-
ingConsole; the gray parts are newly added.

Figure 8 shows this implementation of the composition, it
shows in particular that this composition scheme requires the
addition of the two new concerns write’() and read’(),
whereas the intended composition as shown in Figure 7 does
not require this. Note that an alternative of adding this con-
cern would be to add dependency relations from write() and
read() to lockingSync. Although this would discard the need
for adding the two new concerns write’() and read’(), it actu-
ally requires modifying the original definitions of write() and
read(), which is not acceptable either.

Summarizing, we can give the following definition of in-
heritance anomaly in terms of our composition model: an
anomaly occurs if a composition Cc of two or more concerns

requires (a) adding new concerns except for Cc, (b) modify-
ing concerns, or (c) adding new relations from any other con-
cern except Cc.

4. GOALS FOR COMPOSING CONCERNS

Our goal is to achieve the ability to construct and maintain
software incrementally. This means that for any give com-
plex piece of software, it should be possible to perform a set
of incremental transformations. However, we only need to
consider transformations that are logically sound: for exam-
ple, consider a data structure concern and a memory man-
agement concern that are tightly coupled. Assuming that it
conceptually makes no sense to remove the data structure
concern while demanding that the memory management con-
cern is unaffected, then there is no need to demand such a
transformation to be supported by the composition scheme.

We define the following list of simple transformation upon a
given model:
n Ability to add new concerns to a system with minimum

(zero) impact on existing concern specifications. Note
that this implies that the dependencies between the new
and existing concerns are to be specified without affect-
ing existing concerns.

n Ability to modify one or more concerns with minimum
(zero) impact on the rest of the system. Compare this to
the principle of encapsulation in object oriented pro-
gramming.

n Ability to remove concerns from a system with minimum
(zero) impact on the remaining concern specifications.
This assumes that there are no inherent dependencies
upon the removed concern. Naturally, this may affect the
dependency relations between the concerns.

n Ability to add a dependency between two or more con-
cerns without impact upon the concern(s) that is de-
pended on, and with minimum impact upon the
dependent concerns.

n Ability to modify a dependency between two or more
concerns without affecting the concerns that is depended
upon, and with minimum (or zero) impact upon the de-
pendents.

n Ability to remove a dependency between two or more
concerns without impact upon the concern(s) that is de-
pended on, and with minimum impact upon the depend-
ent concerns.

Note that for these transformations, we have not made any
assumptions about the internal model of the concerns;
adopting an internal model will lead to additional transfor-
mations and refinement of the descriptions above.

5. CONCLUSION & FUTURE WORK

In this paper we have presented the groundwork for further
analysis and better understanding of the issues in composing
software from multiple concerns. The model that we pre-
sented in section 2 is based on some basic assumptions (axi-
oms), which we have tried to motivate from experience and
literature on designing complex systems. In combination,

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 6

these lead to a model that in our opinion is suitable for rea-
soning about the composition of complex (software) systems.

The definition of composition anomalies in section 3 is a
generalization from the notion of inheritance anomaly in con-
current object-oriented programming. Its value lies in the
availability of a tool for reasoning about composability and
composability problems, especially if a formalization of the
model and anomaly definition is available.

The point of the goals that have been presented in section 4 is
to provide a foundation for reasoning about requirements for
composition schemes and comparing different composition
schemes.

As may be clear, the work presented in this paper is just the
beginning of much future (and some recent) work, we de-
scribe some of the issues:
n Formalization of the software composition model: this is

important for solid reasoning and definitions. We have
made first steps in this direction, adopting a model that is
similar to Harel’s work on higraphs [Harel 88].

n Formalization of anomalies: we are currently working on
the formalization of the composition anomalies, which
will at least give a precise answer to questions when an
anomaly is occurring or not.

n Modeling concerns & canonical model: we have some
ideas about this, which we are prototyping. It is our in-
tention to create specializations like composition filters, a
plain object-oriented model, and other recent composition
schemes.

n The previous item can serve for the definition of a com-
mon framework for analyzing and comparing various
composition schemes.

n We consider the list of transformations as a goal for
composability of multi-dimensional concerns; more spe-
cific requirements for composition schemes have to be
stated. We have outlined these e.g. in [Bergmans 00].

n Finally we want to be able to define better, more power-
ful and more composable composition schemes, based on
what we learned from the previous activities.

Acknowledgement
This research has been carried our partly in the context of the
AMIDST project, which is funded by the Telematics Insti-
tute.

REFERENCES

[Aksit 88] M. Aksit & A. Tripathi. Data Abstraction
Mechanisms in Sina/ST, Proc. of the OOPSLA ’88
Conference, ACM SIGPLAN Notices, Vol. 23, No. 11,
November 1988, pp. 265-275

[Aksit 92] M. Aksit, L. Bergmans and S. Vural. An Object-
Oriented Language-Database Integration Model: The
Composition-Filters Approach, Proc. of ECOOP ’92,
LNCS 615, Springer-Verlag, 1992, pp. 372-395

[Aksit 93] M. Aksit, K. Wakita, J. Bosch, L. Bergmans and
A. Yonezawa. Abstracting Object-Interactions Using
Composition-Filters, In Object-based Distributed
Processing, R. Guerraoui, O. Nierstrasz and M. Riveill
(eds), LNCS 791, Springer-Verlag, 1993, pp 152-184

[Aksit 94] M. Aksit, J. Bosch, W. v.d. Sterren and L.
Bergmans. Real-Time Specification Inheritance
Anomalies and Real-Time Filters, Proc. of ECOOP ’94,
LNCS 821, Springer Verlag, July 1994, pp. 386-407

[Aksit 99] M. Aksit, Object-Oriented Software Architectures,
post-graduate course for PAO-Informatica, course notes,
1999

[AspectJ 99] AspectJ Language Specification, XEROX
Corporation, URL: http://www.aspectj.org, 1999

[Bergmans 94] L. Bergmans. Composing Concurrent
Objects, Ph.D. thesis, University of Twente, The
Netherlands, 1994

[Bergmans 96a] L. Bergmans, Aspects of AOP: Scalability
and application to domain modelling, position paper for
the first ’Friends of AOP’ workshop, XEROX PARC,
Palo Alto, 1996

[Bergmans 96b] L. Bergmans & M. Aksit, Composing
Synchronization and Real-Time Constraints, Journal of
Parallel and Distributed Programming, September 1996

[Bergmans 97] L. Bergmans, An Introduction to
Composability, in the workshop report of the ECOOP’96
Workshop on Composability in Object-Oriented
Programming, in [Mühlhaüser 97], 1997

[Bergmans 99] L. Bergmans & M. Aksit, Analyzing Multi-
Dimensional Programming in AOP and Composition
Filters, position paper for the OOPSLA'99 Workshop on
Multi-Dimensional Separation of Concerns, 1999

[Bergmans 00] L. Bergmans & M. Aksit, Aspects &
Crosscutting in Layered Middleware Systems, position
paper for the workshop on Reflective Middleware, in
conjunction with Middleware 2000, 2000

[Booch 94] G. Booch, Object-Oriented Analysis & Design-
with Applications, 2nd edition, Benjamin/Cummings
Publishing Company, 1994

[Chi 94] M. Chi, J. Slotta, N. de Leeuw, From things to
processes: A theory of conceptual change for learning
science concepts. In Learning and Instructions, Vol. 4.,
pp. 27-43, Elsevier Science

 [D'Hondt 99] M. D'Hondt & Th. D'Hondt, Is Domain-
Knowledge an Aspect?, position paper for the ECOOP'99
Workshop on Aspect-Oriented Programming, to be
published in Springer-Verlag ECOOP workshop
proceedings, 1999

[Gamma 95] E. Gamma, R. Helm, R. Johnson and J.
Vlissides. Design patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[Harel 88] D. Harel, On Visual Formalisms, Communications
of the ACM, Vol. 31, No. 5, pp. 514-530, May 1988

[Harrison 93] W. Harrison & H. Ossher. Subject-oriented
programming (a critique of pure objects). In proceedings
of OOPSLA '93, September 1993.

[Kiczales 97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, J. Irwin, Aspect-
Oriented Programming. In proceedings of ECOOP '97,
Springer-Verlag LNCS 1241. June 1997.

[Koopman 95] P. Koopman, A Taxonomy of decomposition
Strategies based on Structures, Behaviors, and Goals, In
Design Theory & Methodology ’95, 1995

[Koopmans 95] P. Koopmans. On the Definition and
Implementation of the Sina/st Language, M.Sc. Thesis,
University of Twente, The Netherlands, July 1995

ANALYZING MULTI-DIMENSIONAL PROGRAMMING IN AOP AND COMPOSITION FILTERS

PAGE 7

[Lopes 98] C.V. Lopes & G. Kiczales, Recent Developments
in AspectJ, in Object-Oriented Technology-ECOOP’98
Workshop Reader, position paper for the Workshop on
Aspect-Oriented Programming, pp. 398-401, LNCS
1543, 1998

[Matsuoka 90] S. Matsuoka, K. Wakita & A. Yonezawa,
Synchronization Constraints with Inheritance: What is
Not Possible- So What is?, Tokyo University, Internal
Report, 1990

[Matsuoka 93] S. Matsuoka & A. Yonezawa, Inheritance
Anomaly in Object-Oriented Concurrent Programming
Languages, in Research Directions in Concurrent Object-
Oriented Programming, (eds.) G. Agha, P. Wegner & A.
Yonezawa, MIT Press, April 1993, pp. 107-150

[Michelena 97] N. Michelena & P. Papalambros, A
Hypergraph Framework for Optimal Model-Based
Decomposition of Design Problems, Computational
Optimization and Applications, Vol. 8, No.2, September
1997, pp. 173-196

[Simon 96] H.A. Simon, The Sciences of the Artificial, 3rd

edition, The MIT Press, Cambridge (MA), 1996.

[Tarr 99] P. Tarr, H. Ossher, W. Harrison & S.M. Sutton, Jr.
N Degrees of Separation: Multi-Dimensional Separation
of Concerns. In proceedings of ICSE 21, May, 1999.

