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Abstract- This paper reviews optical structures that utilize 

mechanism other than the traditional total internal reflection to 
(quasi-)guide light. Instead, they use the leaky defect-resonance 
mechanism. Structures with 2-D (i.e. channel waveguides) cross-
sections will be studied using a finite element method leaky 
mode solver. The results will be used to get insights into their 
properties and principles. Structures being studied include 
integrated-optical and fiber-optical leaky waveguides, among 
others are the buffered leaky waveguides, the ARROWs (anti-
resonant reflecting optical waveguides), and the photonic crystal 
fibers. Besides structures that guide light in solid materials, we 
will also discuss structures that guide light in an air core as well.  

 

I. INTRODUCTION 
This paper discusses structures that use different 

mechanism than the conventional total internal reflection 
(TIR) to “guide” [1] light. These structures include 
integrated-optical and fiber-optical leaky waveguides, like 
buffered leaky waveguides (i.e. waveguides made on a high 
index substrate by the help of a low index buffer layer) [2], 
ARROWs (anti-resonant reflecting optical waveguides) [3], 
and photonic crystal fibers (PCFs) [4]. Although in their 
practical forms, structures based on these working principles 
exhibit inherent confinement losses, they are particularly 
interesting as they offer several unique properties 
unattainable by the traditional TIR-based structures. In 
integrated optics, they can be fabricated using low-cost, 
widely available semiconductor wafers (which are usually of 
high refractive index) as substrates, together with the well-
developed processing technologies available for them, e.g. 
those used by the microelectronics industry. For optical fiber, 
they enable the use of only a single solid material, but open 
up a larger degree of freedoms in designing, since the 
properties of the waveguides can now be controlled by the 
size, shape, orientation, and arrangement of the 
microstructural air holes [5]. Most of the structures exhibit 
unusual dispersion properties, which can be utilized for 
specific applications. They also enable the quasi-guiding of 
light in an air or liquid core [6], which opens up various new 
applications regarding very localized light-gas [7], light-
liquid [8], or even light-particle interactions [9], both using 
fiber- or chip-based structures.  

 

 
(a) 

TEOS

Th-SiO2

Si substrate

Si3N4
60nm

750nm
6000nm

1.5um

 
(b)  (c) 

Fig. 1. (a). Light from a laser at the left is coupled and 
propagating in a straight waveguide using a low-index Si3N4 
core grown on a high-index Si substrate. The aimed cross-
section of the structure is shown in (b), while the SEM image 
of realized structure is shown in (c). This buffered leaky 
waveguide works without the TIR mechanism. TEOS = 
tetraethyl orthosilicate glass, Th-SiO2 = thermally oxidized 
SiO2. 

Fig. 1 shows an example of such structures fabricated at 
the Univ. Twente. Here, we pick up a rather simple structure 
called the buffered leaky waveguide. In this waveguide, light 
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propagates in a straight Si3N4 strip waveguide grown on a 
high-index silicon substrate. While the core of the waveguide 
was made of material with refractive index of 2, the substrate 
has refractive index of 3.5. Although the substrate refractive 
index is higher than that of the core, hence TIR is beyond the 
reach, such structure can guide light as demonstrated in Fig. 
1(a). 

We will discuss the principles, modeling, and applications 
of such structures. We will first discuss the principles of 
quasi-guiding light by leaky defect resonance, then the 
modeling method used for our works, and finally review 
various structures and apply the model to study them. 

 
II. QUASI-GUIDING LIGHT BY LEAKY DEFECT RESONANCE 
There are many ways to quasi-guide light beyond the TIR 

mechanism. Photonic crystal e.g. requires photonic band gap 
[10] induced by periodic structures that inhibits light within 
certain frequency range to propagate at that region, while 
creating defect at certain part of the crystal to allow light to 
propagate only at that particular region. However, since there 
is no infinite periodic structure in practical devices, there is 
no true photonic bandgap in practice. 

For certain microstructured waveguides like PCFs with 
solid core, the so called modified TIR [5] is usually 
considered as its working principle. In this model, the holey 
cladding is considered to have a lower equivalent refractive 
index than the solid core, and hence provides a similar light 
guiding mechanism as in the ordinary fiber. However, the 
holey cladding normally occupies only a small part of the 
whole cladding due to mechanical and fabrication-complexity 
reasons. A large part of the cladding, i.e. the outer cladding, 
is normally made of the same material as the core. Hence, 
there is no true TIR or index-guiding mechanism in this case. 

One model that we proposed to explain both of the above 
mentioned quasi-guiding of light is resonance [11]. 
Resonance is a condition where inhomogenities in the 
structure creates reflections which interfere constructively in 
a certain region called the core region. The inhomogenities 
can be considered as defects with respect to the homogeneous 
background. Hence, we term this quasi-guiding mechanism 
as defect resonance. Note that this mechanism is in principle 
the same as the one that governs the TIR-based waveguide. 
The difference is simply, here we don’t have TIR anymore. 
Consequently, the waveguide will now suffer from loss. This 
structural induced loss is known as the confinement loss. 
Hence, similar modeling methods which are usually used for 
TIR-based waveguides can be applied here, except now we 
have to employ boundary conditions which allow light to 
leak-out. The method will compute for the so-called leaky 
modes [12] of the structures. 

 
III. FEM MODELING OF QUASI-GUIDING LIGHT BY LEAKY 

DEFECT RESONANCE 
Lets consider longitudinally-invariant channel waveguide 

structures as shown in Fig. 2, which is composed of non-
magnetic anisotropic materials with diagonal permittivity 
tensors and exp(jωt) time dependence of the field, where ω is 

the angular frequency and t is the time. From Maxwell’s 
equations it is possible to derive a magnetic-field-based 
vectorial wave-equation,  

-1 2
r 0H k H  

 
,    (1) 

where r , H


, and ko are the material permittivity tensor, 
magnetic field strength, and freespace wavenumber, 
respectively. Using Eq. (1), it is possible to get a vectorial 
wave-equation expressed only in terms of the transverse 
components of the magnetic field as follows: 
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where x, and y are the transversal coordinate of the 
waveguide as shown in Fig. 2; neff, x , and y  are the modal 
effective index, partial derivative x  , and y  , 
respectively. Here, the permittivity tensor is 

2

2

2

0 0
0 0
0 0
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r yy

zz

n
n

n


 
 

  
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, (3) 

meaning that the crystal anisotropy principal axes coincide 
with the waveguide coordinate system as shown in Fig. 2. 

r
rk


O



 
Fig. 2. Coordinate systems used in modeling of channel 
structures. 

We will use the finite element method (FEM) to model the 
structure. Using the Galerkin procedure [13] and discretizing 
the computational domain into triangular elements leads to 
the following discretized weak formulation: 



Quasy-Guiding Light by Leaky Defect Resonance: Leaky but Very Useful | 61  
 

   1 1

e

2 2
zz zz

e e

y x y y x x x y y xn n
BoundaryElement

w H H dy w H H dx
 

       




  

    1 1
2 2
yy xx

e

x x x y y y x x y yn n

e

w H H dy w H H dx
 

       




   

   1 1

e

2 2
yy xx

int,e int,e

x x x y y y x x y yn n
InterfaceElement

w H H dy w H H dx
 

        
  
 
  

  

   1

e

2
zz

e

x y y x x y y xn
TriangularElement

w w H H


       

     2 2
yy xx

1 1
x x y y x x y yn n

w w H H         
 

   2 2 21 1

0 eff 02 2
yy xx

x x y y x x y y 0
n n

k n w H w H k w H w H dx dy      (4) 

with wx and wy denoting the weight functions, Ωe the area in 
each triangular element, Γint,e the line element at the interface 
between different materials, and Γe the line element at the 
computational boundaries. 

Approximating the fields using quadratic nodal-based basis 
functions 

3
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where  = x,y; while ,1i DN  and ,2i DN  denoting the quadratic 
1-D and 2-D basis functions, respectively with i denoting the 
local nodal points within the corresponding element; we can 
write the approximation to Eq. (4) into a sparse generalized 
eigenvalue equation as follows: 

    2
1 eff 2 0n H M M ,    (6) 

with column vector {H} representing the approximate Hx and 
Hy fields at nodal points, while {0} is a null vector. The 
matrices M1 and M2 are sparse and have the dimension of 
only 2N X 2N, with N denoting the number of nodal points. 
Eq. (6) can be solved using an eigenvalue solver to obtain the 
eigenvalues related to the modal indices (neff) and 
eigenvectors associated with the transverse components of 
the magnetic field of the corresponding modes. 

The derivatives of the fields occurring in the boundary 
term in Eq. (4) will be handled through a 1st-order BGT-like 
[14] transparent boundary conditions (TBC) to mimic the 
properties of the fields in the exterior domain properly. For 
this purpose, we use a vector radiation function 
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along the computational boundary Γ, which leads to a 1st-
order operator on the boundary fields as follows: 
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In Eqs. (7) and (8), r and θ are the polar coordinates of the 
cross-section whereby the center of the core of the waveguide 
has been taken as the origin, and kr,x and kr,y are the complex 
transverse wavenumbers associated with the x and y 
components of the field. Solving the wave-equation at the 
elementwise homogeneous anisotropic exterior domain leads 
to 2 2

r,x 0 xx effk k n n
 
   and 2 2

r,y 0 yy effk k n n
 
   with 

Re(kr)>0 associated with the outward leaking case (the leaky-
mode case) and Im(kr)<0 associated with evanescently 
decaying case (the guided-mode case). By neglecting the 
angular dependence of the field at each line element, a 
Dirichlet to Neumann (DtN) map 
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




       
 

  (10) 

can be obtained and used for approximating the derivative 
operators within the boundary terms of Eq. (4), hence 
allowing a proper truncation of the FEM mesh. In Eqs. (9) 
and (10), n denotes the normal direction, while the carret 
(“^”) symbol denotes unit vector.  

Note that, application of boundary conditions induces non-
linearity to the eigenvalue problem due to the appearance of 
neff (the eigenvalue itself) within the DtN. In this work, we 
have employed linearization by simple iteration technique to 
enable the use of linear eigenvalue solver and search only for 
eigenvalues (neff) of interest, i.e those related to low-loss, 
localized leaky modes within the expected effective index 
range. 

 
IV. REVIEW ON VARIOUS LEAKY WAVEGUIDES 

IV.1. Quasi-guiding Light in Solid-core Waveguides 
IV.1.1. Buffered Leaky Waveguides 

Optical waveguides made on a semiconductor substrate are 
widely used. They gain advantages from the wide availability 
of such substrates. Besides, they also share the well-
developed processing technologies being used also by other 
disciplines, like the well-established microelectronics 
industry. Among these are the waveguides made on the low-
cost silicon substrate. Unfortunately, the refractive index of 
this substrate is high, while materials which are compatible 
with this substrate and suitable for guiding light, like silicon 
oxynitride (SION), silicon nitride, silica, or silicon itself have 
lower or the same refractive index. A way to deal with this 
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circumstance is by putting another lower refractive index 
material between the waveguiding structures and the high-
index substrate as shown in Fig. 3. This so-called buffer layer 
acts as a buffer that isolates the light in the waveguiding 
structures from the substrate. Besides waveguides made on 
high-index substrates, the existence of a high-index 
component in the proximity of an ordinary waveguide also 
creates a buffered leaky waveguiding structure. Such 
situations occur in case of a prism-loaded waveguide [15], a 
waveguide tuned by high-index material overlaid on top of it, 
or an optical MEMS movement sensor [16]. In the last three 
cases, either air or index-matching oil can be regarded as the 
buffer layer. These structures are apparently leaky, as the 
light prefers to travel into the high-index substrate. However, 
as is already well known, if this layer is thick enough, the 
confinement loss of the structure can be small enough to 
allow functional integrated optical circuits to be built based 
on this approach [17]. 

 
Fig. 3. Examples of buffered leaky waveguides: (a). strip 
waveguide made on a high-index substrate and (b). an optical 
MEMS movement sensor. 
 

The silicon on insulator (SOI) waveguides are examples of 
buffered leaky waveguides. SOI waveguides are made on a 
thin Si core channel sitting on a SiO2 buried oxide (BOX) 
layer on top of a high-index silicon substrate. Recently, SOI 
is getting more popular, since the high refractive index of 
silicon enables the realization of nanometric photonic wire 
[18] which enables sharp bends. Hence, SOI technology is 
prospective for realization of complicated circuits on small 
wafer footprint. Moreover the device can be realized using 
industry-standard CMOS-compatible, deep-UV wafer-
stepping technologies. Researchers around the world are still 
working hard toward reduction of sidewall scattering loss in 
order to get a reasonable loss for functional devices. 

Fig. 4 illustrates a FEM model of a SOI strip waveguide 
[19]. The triangles denote the discretization mesh of the 
structure. Due to the structural symmetry, only half of the 
structure is required in the model by the application of 
symmetry boundary conditions [11]. We have taken finer 
mesh at around the core where the modal fields are stronger. 
By taking parameters from a commercial SOI wafer with 
BOX thickness tb = 2 μm, core thickness t = 220 nm, and core 
width of w = 700 nm, and by putting water as the upper 
cladding (which is of interest of sensing applications), and 
using the method described in Section III, we obtained 3 low-
loss leaky modes with profiles plotted in Fig. 5. Hereafter, the 
“q” letter in front of the mode label denotes “quasi” as modes 
in rectangular channel waveguides are vectorial (not truly 

linearly polarized). Table 1 shows that by reducing the width 
of the strip, the real part of the modal index getting lower, 
meaning that the modes become less confine (as shown in 
Fig. 6) and correspondingly the confinement loss gets higher. 
This fact can be used to tune the number of dominant modes. 
Since leaky waveguides are inherently multimoded [11], the 
highly leaky modes are automatically rejected during the 
mode solving iterations, and hence not shown here.  

 

 
 

Fig. 4. FEM model of a SOI waveguide. Due to the symmetry 
of the structure, only half of the structure is needed in FEM 
modeling. The triangular element discretization of the 
structure is shown. 

 
TABLE I 

DOMINANT MODES OF THE SOI WAVEGUIDES WITH VARIOUS STRIP WIDTH. 
THE STRIP THICKNESS AND BUFFER LAYER THICKNESS ARE AS IN THE TEXT. 
Strip 
width 
w 
(nm) 

q-TE00 q-TM00 q-TE10 
Re{neff} α  

dB/cm 
Re{neff} α 

dB/cm 
Re{neff} α 

dB/cm 

400 2.2001 8.02E-8 1.6315 1.57E-1 - - 

500 2.4312 7.7E-10 1.7124 1.38E-2 - - 

600 2.5573 7.35E-10 1.7733 2.62E-3 1.6338 9.11E-3 

700 2.6355 1.78E-11 1.8160 7.95E-4 1.9292 7.13E-6 
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(a) (b) 

 
(c) (d) 

 
(e)  (f) 

Fig. 5. The profile of dominant magnetic field component of 
modes (at the left column) and related transverse magnetic 
field vector (at the right column) of a SOI strip waveguide 
with core width w = 700nm, thickness t = 220nm, and buried 
silica buffer thickness tb = 2μm with water cladding at 
wavelength of 1.55μm. (a) & (b) q-TE00, (c) & (d) q-TM00, 
and (e) & (f) q-TE10 modes. 

 

  
 (a) (b) 

Fig. 6. Evolution of modal field of q-TM00 modes of SOI 
waveguide with strip width of (a). 400 nm and (b). 600nm. 
Wider strip will result in more confined mode which 
corresponds to lower confinement loss. 

 
IV.1.2. ARROWS 

 

 
Fig. 7. (a). A planar and (b) a rib ARROW where cladding 
bilayers operating in anti-resonant condition suppress the 
leakage of light from the waveguiding structure into the 
substrate. 

A more advanced way to reduce the leakage of energy 
from the waveguiding structures into the high-index substrate 
was proposed by Duguay et al. [3] by putting a high and a 
low refractive index cladding (bi)layers of well-chosen 
thicknesses between the waveguiding structures and the high-
index substrate as illustrated in Fig. 7. These cladding 
bilayers behave as Fabry-Perot (anti-)resonators operating in 
the anti-resonant condition, hence exhibiting a very high 
reflection for the mode of interest, and suppressing the energy 
leakage into the high index substrate. Based on the way they 
quasi-guide light, these structures are called the anti-resonant 
reflecting optical waveguides (ARROWs). The thicknesses of 
the cladding layers are designed such that the corresponding 
layers obey the anti-resonant condition for a transverse 
wavenumber as follows. 

 1
2,2 2t i ik d M      (11) 

where ,t ik and id  denote the transverse wavenumber and the 
thickness of cladding layer i, while M = 0,1,2,… denotes the 
order of the anti-resonance. It is clear that in the design, this 
anti-resonant condition is associated with one mode (usually 
the fundamental TE mode) of interest only through the 
transverse wavenumber. For other higher order modes, these 
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cladding layers are expected to operate not in the anti-
resonant condition, hence exhibiting low reflection and 
consequently, high confinement loss. However, some higher 
order modes may still operate in the anti-resonant condition 
in one of the layers but might be not in the other one; hence, 
their overall anti-resonant condition is not optimal, leading to 
higher loss than the fundamental mode. Therefore, there is 
loss discrimination between modes, which allows the 
ARROW to be regarded as effectively single-moded if the 
difference of losses between the mode of interest and the 
higher order modes are large enough. 

ARROWs have been widely used for various applications 
including sensors [20], splitters [21], spot-size converters 
[22], etc. Analytical approximate formulae for calculating the 
thickness of the anti-resonant layers and the losses of the 
fundamental mode [3], [23] are available and have been 
widely used, but will most likely be suitable only for planar 
structures. Hence, rigorous modeling as described in Section 
III of this chapter will be of importance for channel 
structures. Surprisingly, the concept of ARROWs, which is 
relatively simple, can be used to understand part of 
phenomena appearing in photonic bandgap fibers [24]. In 
addition to solid core ARROWs, recently hollow-core 
ARROWs have also been proposed [6]. These structures will 
be further discussed in Subsection IV.2.2 where low loss 
hollow core waveguides with rectangular core shape will be 
an issue. 
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Fig. 8. The structure, computational window, and mesh 
definition of the rib ARROW. 

 
As an example of an ARROW, we present the mode of a 

rib ARROW made by a double-heterostructure of III-V 
compound semiconductor. The structure and the mesh 
definition of the waveguide are depicted in Fig. 8. The 
refractive index of the GaAs, 5% AlGaAs, 20% AlGaAs, and 
air are 3.59, 3.555, 3.452, and 1, respectively. The 

thicknesses t1 to t5 are 1 μm, 1.1 μm, 0.4 μm, 1.6 μm, and 
0.95 μm, respectively. The width of the rib is w = 2.6 μm. 
The operating wavelength is λ = 1.064 μm. The high index 
substrate causes the waveguide to be leaky. Our computations 
were carried out using only half of the structure with the 
computational boundaries located at 1 μm below the 
substrate-lower-2nd-cladding interface, 0.25 μm above the top 
of the rib, and 2.6 μm to the right of the symmetry line. Fig. 9 
shows the mode profile of the real part of the dominant field 
of a few modes. For modes with sufficiently large loss, the 
wave-like tail that indicates leakage into the high-index 
substrate becomes more noticeable. 

 

 

 
(a) (b) 

  
(c) (d) 

Fig. 9. Mode profiles of the real part of dominant magnetic 
field component for leaky (a). q-TE00, (b). q-TE01, (c). q-
TE20, and (d). q-TE21 modes of the rib ARROW. 

 
IV.1.3. High-index-core Photonic Crystal Fibers 

Photonic crystal fibers (PCFs) are fibers with a cladding 
composed of microstructural inclusions running parallel with 
the propagation axis. In general, the microstructural features 
are voids (air holes), but in principle, either solid [25] or 
liquid [26] microstructural features can also be realized. Fig. 
10 illustrates some possible PCF structures. Since the idea 
originated from the use of 2-D photonic crystal to confine 
light within the core [5], they are popularly referred to as 
photonic crystal fibers. Unfortunately, later on the 
community realized, that not all of them work on the basis of 
the photonic band-gap principles. However, since the name 
was already widely used, people still keep the same name and 
add new names to distinguish specific classes of these fibers. 
Several alternate names have also been given by different 
research groups to these fibers; e.g. holey fibers, 
microstructured optical fibers, or crystal fibers. Despite of the 
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existence of these diversity of names, we will use the term 
high-index-core PCFs to denote the fibers working on the 
basis of the leaky defect resonance [27] principles (Fig. 
10.(a)-(c)) and photonic bandgap fibers (PBFs) to denote 
those based on the photonic bandgap principles (Fig. 10.(d)-
(f)). One specific type of the PBF, which uses coaxial Bragg 
reflectors in the cladding will be called as Bragg fiber (Fig. 
10.(f)). Meanwhile, the term PCF will be used as a universal 
name to denote all of them. The above terms are widely used 
by the community [5]. In general, high-index-core PCFs have 
a solid core, and PBFs have a hollow-core; but in principle, it 
is also possible to make a PBF with solid core or a leaky-
defect-resonance PCF with a non-solid core. 

 

(a) (b) (c)

(d) (e) (f)
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Fig. 10. Examples of cross-section of photonic crystal fibers 
with (a). high-index core with circular, (b). elliptical, and (c). 
annular-sector-shaped holes in the cladding; the photonic 
bandgap fibers with (d). circular and interstitial, (e). annular-
sector-shaped holes in the cladding, and (f). the Bragg fiber. 
 

Since the fabrication of the first PCF was demonstrated [4], 
they have attracted a lot of scientific and commercial 
interests. Since they allow the use of only a single solid 
material, they relieve the engineer from the restriction caused 
by thermal/mechanical incompatibility of different solid 
materials. However, they allow a new way to engineer the 
fiber through their geometrical parameters; where the size, 
shape, orientation, position, and arrangement of the 
microstructural features are manipulated to tailor their 
properties. This way of engineering apparently offers more 
degrees of freedom to the designer. Many new properties 
unattainable through ordinary fibers can be obtained by this 
class of fibers. These include fibers with properties like 
single-modedness over a wide wavelength range [28] while 
still offering a large mode field diameter [29], zero-dispersion 
wavelength down to the visible wavelength [30], ultra-flat 
and ultra-low dispersion [31] or highly negative-dispersion 
[32] at long-wavelength telecommunication window, fibers 
with relatively high [33] or low [35] non-linearity, fibers with 
high birefringence but low temperature-sensitivity [34], etc.  

The simple model that is widely used to explain the light 
“guiding” mechanism in the high-index-core PCF is the so-
called modified total internal reflection or the index-guiding 
model [5]. In this model, the presence of holes will lower the 
effective refractive index of the holey cladding, hence leads 
to an equivalent structure with a high-index core surrounded 
by a low-index cladding, which will guide light losslessly in a 
similar way as the ordinary fiber. However, the practical 
PCFs usually have limited size of the holey cladding section, 
which is surrounded by a large section of uniform high-index 
outer cladding. Apparently, this situation will lead to a leaky 
structure. Therefore, the term modified total internal 
reflection or index-guiding is not accurate [27]. Instead, we 
will refer their quasi-guiding mechanism to the resonance 
mechanism. Within this picture, we can consider the holey 
section of the cladding together with the core as a kind of 
defect in the background of a uniform high-index outer 
cladding, hence it can be considered simply as a resonance 
center, within which the light will be quasi-trapped. 
Therefore, we can simply call this quasi-guiding mechanism 
as a defect resonance. In the PCF, since there is no TIR 
(which would need a lower cladding than core index) and no 
perfect photonic band gap (which would need a periodic 
structure extending to infinity) to prevent the leakage of light 
from the resonant center, we will also observe the presence of 
leakage or confinement loss. This quasi-guiding mechanism 
can be applied to understand both the high-index-core PCF 
and the PBF. In the light of this notion, it is very intuitive to 
understand the existence of the ordinary-fiber-like core 
modes, cladding- and core-cladding resonance modes [36], 
and also the so-called surface modes [37] in the PBF. 

Fig. 11.(a) shows a commercial photonic crystal fiber type 
LMA-15 produced by NKT Photonics [38], while Fig. 11.(b) 
shows a FEM model of this fiber. Note that by taking 
advantage of the symmetry of the structure, only a quarter of 
the structure is sufficient in the model. Fig. 12 shows several 
dominant calculated modes of the fibers for wavelength of 
632.8 nm. Note that this wavelength is not usual in silica 
fiber applications as it is not located at low-loss windows of 
silica fiber. The interesting aspect of putting results at this 
wavelength here is simply because this wavelength is 
associated with He-Ne laser, which is available at most 
laboratory and the results shows that there are higher order 
modes with relatively low confinement loss [39] opposing to 
the factory’s claim [38] that this fiber is endlessly single-
mode. Hence it will be interesting to experimentally verify 
these contradictive hypotheses in the future. 
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Fig. 11. (a). A bare commercial PCF of type LMA-15 where 
the inset shows microstructured holes arranged around its 
core. Please compare the size of the fiber together with its 
plastic buffer of 405 μm diameter and an Indonesian coin. 
(b). The FEM model of the PCF which takes only a quarter of 
the structure. 
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(g)  (h) 

Fig. 12. Several dominant modes of a commercial PCF. (a) 
and (b) the q-HE11 mode, (c) & (d) the q-TE01 mode, (e) & (f) 
q-HE21 mode, and (g) & (h) q-TM01 mode. Left column: the 
dominant magnetic field component of the modes. Right 
column: the transverse magnetic field vectors. 

 
IV.2. Quasi-guiding Light in Hollow-core Waveguides 

During recent years, the interest in (quasi-)guiding light in 
hollow-core structures, is growing. Initially, their 
development was driven by the fact that glasses (or other 



Quasy-Guiding Light by Leaky Defect Resonance: Leaky but Very Useful | 67  
 

solid materials suitable for making the fiber) available at that 
moment, are not transparent in some wavelength range, 
especially in the UV and mid/far IR regions. Besides, the 
emergence of high power lasers for industrial and medical 
applications requires a waveguide with a high damage 
threshold for power delivery applications. These 
requirements lead to the development of the hollow fiber 
[40], [41], which is a fiber with a hollow core and reflective 
coating(s) at the inner wall. Thereafter, along with the 
development of the concept of guiding light with the photonic 
bandgap cladding [42], hollow-core fibers with more 
complicated cladding structures are developed [43]-[44]. 
Recently, similar concepts were also proposed for integrated 
optics by utilizing the ARROW and photonic-bandgap 
principles [8], [45]-[46]. Nowadays, the potential applications 
of hollow-core waveguides are not limited to exploiting the 
high-damage threshold of the hollow waveguides only, but 
include also high linearity, low loss, and low chromatic 
dispersion of air which forms the core. Besides, the 
possibility to fill the holes with gas, liquid, or even particles 
opens up new applications in the field of light-matter 
interactions. 

 
IV.2.1. Hollow-core Photonic Bandgap Fibers 

Basically, there are 2 groups of hollow-core fibers that 
utilize the photonic bandgap concept, which are the Bragg 
fibers and the holey-cladding PBFs. The Bragg fibers are as 
shown in Fig. 10.(f). They incorporate 1-D periodic 
concentric bilayers of alternating high and low refractive 
indices which form a Bragg reflector as cladding [42]. For 
wavelengths located within the bandgap of this 1-D photonic 
crystal, modes within the core can’t pass through the 
cladding, and hence are being trapped within the low-index 
core, which can be just a hollow core. A special type of 
Bragg fiber that uses an omni-directional reflector as cladding 
is known as the omni-guide fiber [47] which is widely used 
as flexible laser scalpel for modern surgery. Besides having 
the ability to guide light within the air core, the Bragg fibers 
are interesting since they exhibit lowest loss for TE01 mode 
[48], which is not the fundamental mode of the fiber. This 
property, which arises from the fact that TE reflection is 
higher than TM in thin film optics, makes this kind of fiber 
be particularly interesting since the TE (and also TM) modes 
in fibers are non-degenerate modes. By exploiting the 
Brewster angle phenomenon, it is possible to design fibers, 
which support only a single-mode, without polarization 
related degeneracy, and which are hence suitable to overcome 
the polarization mode dispersion (PMD) issues in high-speed 
fiber optic communications. 

The holey-cladding PBFs are fibers with a cladding 
composed of transverse periodic structure in such a way that 
modes located within the bandgap of this 2-D photonic 
crystal can’t pass through, hence will be trapped within the 
core (as the defect), which can be just an air core. Fig. 10.(d)-
(f) depicts some examples of these fibers. The first hollow-
core guidance by the 2-D photonic bandgap effect was 
demonstrated by Cregan et al. [43]. After that, various 
cladding structures have been proposed. Those, which exhibit 
promising results, are mostly with air holes of non-circular 
shapes in order to achieve the high air-filling fraction which 

is required to open a wide bandgap [49] on one hand and less 
surface modes on the other hand. Recently, an air core PBF 
with air holes in the cladding arranged in a circular 
arrangement has been demonstrated [44]. This fiber can be 
viewed as a marriage between the holey cladding PBF and 
the Bragg fiber. 

 

 
Fig. 13. The structure model used to represent the world’s 
first air-core PBF of Cregan. 

As most part of the light is concentrated within the hollow 
core, the effect of the material loss in these structures is 
small. Hence, these fibers were initially expected to be able to 
surpass the lowest-loss limit of the ordinary fiber [5]. 
However, it is not easy to achieve low structural loss, which 
is mainly dominated by the scattering due to the fabrication 
imperfection and the existence of the highly leaky surface 
modes, which anti-cross with the core modes [50] and 
introduce extra loss for some wavelength regions, even in the 
bandgap. Meanwhile, various interesting applications have 
been demonstrated for these types of fibers, e.g. guiding 
particles through the air core [9], gas absorption spectroscopy 
[7], high power [51] and short pulses [52] delivery, gas 
nonlinear optics [53], etc. 

In their practical forms, these fibers have a limited size of 
the periodic cladding structures. Most of them incorporate a 
large portion of uniform high index outer cladding in order to 
get good mechanical strength and size compatibility with the 
ordinary fiber. Hence, these fibers can also be considered as 
leaky structures which quasi-guide light simply by defect 
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resonance principles as demonstrated in following 
subsections. 

 

 
(a)  

 
(b) 

 
Fig. 14. The (a). major field component and (b). longitudinal 
component of time-averaged Poynting vector of HE11-like 
mode of the world’s first air-core PBF. 

 
IV.2.1.1. Air-core photonic bandgap fiber of Cregan 

The world’s first air-core PBF with 2-D photonic bandgap 
cladding demonstrated by Cregan et al. [43] has a rather 
complicated structure. We model the fiber with a simplified 
structure as shown by Fig. 13 [54], which includes the 
interstitial holes. Here, we have used the 1st-BGT-like TBC to 
truncate the structure at the fifth and half ring of holes and 
use only a quarter hexagon with side of 7Λ as our 
computational domain. Note that the TBC does not represent 
the periodic (non-uniform) exterior cladding, but instead 
assumes an element-wise homogeneous extension of the 
material, hence the computed leakage loss value might be not 
so meaningful. Fig. 14 shows the computed fundamental 
mode of the fiber which is qualitatively similar in profile as 
the one observed in the experiments of Cregan [43]. 
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Fig.  15. The air-core Bragg fiber. 

 
IV.2.1.2. Air-core Bragg fiber 

As an example of a Bragg fiber, we consider an air-core 
Bragg fiber with 17 coaxial Bragg layers of alternating high- 
and low-index materials, starting with the high-index material 
closest to the core and ending up with low-index material as 
the outermost cladding as shown in Fig.  15 [54]. 

The refractive indices of the high-index material nhi, the 
low-index material n lo, and the air-core are 4.6, 1.6, and 1, 
respectively for λ = 1.55 μm. The thicknesses of the high-
index layer thi and the low-index layer tlo are 0.22a and 0.78a, 
respectively, with period a = 0.434 μm. The radius of the air-
core is rcore = 13.02μm. This structure is the same as the one 
considered also by Johnson et al. [47], Basset and Argyros 
[48], and Zhi et al. [55]. 

Fig. 16 shows the modal field profiles of few dominant (i.e. 
those with low loss) modes of the structure, computed using a 
computational domain of a quarter circle with rb=17μm. 
Besides these modes, we also observed the existence of other 
modes, like the so-called surface modes, but their attenuation 
is higher than TE modes. Fig 16(a) shows that the profile of 
the dominant field component of HE11 mode is eccentric (see 
e.g. the elliptical shape of the contour plot and the existence 
of wing-like profile near the left and right inner wall of the 
Bragg layers). We believe that this phenomenon is induced 
by the vectorial character of the mode owing to the high 
index-contrast of the structure, where due to the orientation of 
the modal field vector, the left-right and top-bottom side of 
the Bragg layers are not felt to be the same. Of course, due to 
the symmetry of the structure, there also exists the degenerate 
pair of this mode, which is oriented in perpendicular 
direction. We note that similar field eccentricity was also 
observed by Hadley [56] and Johnson et al. [47]. 

An interesting property of Bragg fiber is that TE01 mode, 
which is not the fundamental mode, is the mode with lowest 
loss. This can be understood as the electric field of the TE 
mode is parallel with the surface of the Bragg layers, leading 
to TE-polarization analogy in a simplified planar 
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reflection/transmission picture. It is well known that TE-
polarized light exhibits higher reflection than TM-polarized 
light [6]. Therefore, the leakage loss of this TE mode is very 
low as it does not have TM-polarized component. Utilizing 
this fact, by carefully design the structure in order to have it 
operated in the Brewster condition, Basset and Argyros [48] 

proposed a way to enhance the single-mode single-
polarization properties of the Bragg fibers, which might be 
valuable for future telecommunication applications regarding 
to the issues of polarization mode dispersion effects. 
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Fig. 16. Mode profile of (a). HE11, (b). TE01, (c). TE02, and (d). TE03 modes of the Bragg fiber. 
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Fig. 17. Examples of cross-section of hollow-core integrated 
optical waveguides: (a). channel hollow-core waveguide 
made by wafer bonding, and (b). by the employment of a 
sacrificial layer. The reflective layer(s) are normally design 
by applying anti-resonant or omni-directional reflection 
principles. 

 
IV.2.2. Hollow-core Integrated Optical Waveguides 

Although quasi-guiding light in low-index core has been 
employed in integrated optics since a long time ago (see 
sections IV.1.1 and IV.1.2), the use of hollow core for 
integrated optics is still in its infancy at this moment. Some 
possible cross-sections for such structures are depicted in Fig. 
17. In general, these structures consist of a hollow core with 
reflective layer(s) at the inner wall. In the past, the reflective 
coating itself can be simply a metallic coating. Nowadays, 
they consist of dielectric bilayers, which are designed to give 
high reflection for the mode of interest (usually the 
fundamental mode), such that the power of this mode is 
trapped within the core. To get the expected high reflection, 
the ARROW principles and the omni-directional Bragg 
reflectors are used to design the bilayers.  

In 2001, Miura et al., demonstrated a hollow-core 
waveguiding in a metal coated groove made on a GaAs wafer 
[57]. Later on, the same group also demonstrated a hollow-
core slab waveguide integrated with other optical 
component(s) such as gratings [58]. Recently, more and more 
efforts have been put into air core channel integrated optical 
structures. Yin et al. employed a sacrificial layer to 
demonstrate hollow-core light guidance on a Si wafer as in 
Fig. 17(b). [45]. Campopiano et al. combined a large hollow-
core waveguide with a microfluidic system to construct a 
liquid refractometric sensor [8]. Recently, with the emerging 
of opto-fluidic systems [59]-[60], hollow-core waveguides 
are attracting more interests, since they open up many new 
applications like tunable optical devices [61], optical sensors 
[8] and integration of bio-electro-optical system into a lab-on-
a-chip [62]. 

 

 
Fig. 18. The proposed low leakage loss hollow-core 
integrated optical structure and its FEM model. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 19. The dominant component of the magnetic field for q-
TE00, q-TE10, and q-TE01 modes of the proposed waveguide 
exhibiting extremely low confinement loss for air-core 
integrated optical waveguide. 
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Up to now, there are mainly 2 fabrication methods being 
used to realize these structures, i.e. the wafer bonding 
techniques and the use of a sacrificial layer. Due to 
limitations of the fabrication technologies, the realized 
structures are usually not as complicated as the PBF. In 
general, the devices realized by some authors [8], [45] exhibit 
rather high confinement loss and are hence usable for a 
simple functionality only. However, once the advancement of 
the fabrication technologies enables the realization of more 
complicated structures, and low loss structures can be 
realized, we believe that this kind of structures would be very 
interesting, as they allow the integration of various 
functionalities into a compact chip. Regarding this issue, we 
proposed a hollow-core integrated optics structure [6] which 
shows 40 times (in dB scale) lower loss than the so far 
reported low loss air-core integrated optical waveguides by 
carefully selecting the materials. Fig. 18 and Fig. 19 show the 
structure and the dominant modes of waveguide respectively. 
Although we understand that it is still very difficult to realize 
the device by current state of the art microstructuring 
technologies, the material composition considerations that we 
proposed will seed optimism and be helpful for selection of 
proper materials in future hollow-core integrated optical 
waveguides design.  

 
V. CONCLUSIONS 

The quasi-guiding of light by leaky defect resonance 
principles are described. A finite element method modeling 
based on such principles by employing boundary conditions 
that allow leakage of light through the computational 
boundaries was developed and implemented. Several leaky 
channel waveguides were studied and reviewed through the 
model for its principles, applications, and prospect. 
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