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Abstract. This paper surveys and relates the basic concepts of process
algebra and the modelling of continuous time Markov chains. It provides
basic introductions to both fields, where we also study the Markov chains
from an algebraic perspective, viz. that of Markov chain algebra. We
then proceed to study the interrelation of reactive processes and Markov
chains in this setting, and introduce the algebra of Interactive Markov
Chains as an orthogonal extension of both process and Markov chain
algebra. We conclude with comparing this approach to related (Marko-
vian) stochastic process algebras by analysing the algebraic principles
that they support.

1 Introduction

The construction of models for the performance and reliability analysis of sys-
tems is a difficult task that requires intelligence and experience. Due to the ever
increasing size and complexity of systems, such as e.g. embedded and distributed
systems, there is a growing need for powerful methods to master the related com-
plications of the modelling task. Performance models do not only become very
large, but because of the intricate interplay between (many) system components
they can also have a highly irregular structure that is very hard to understand
and control. Traditional performance models like Markov chains and queueing
networks are widely accepted as simple but effective models in different areas, yet
they lack the notion of hierarchical system (de)composition that has proved so
useful for conquering the complexity of systems in the domain of functional sys-
tem properties. The absence of such techniques seriously hampers the adequate
modelling of complicated modern systems.

A prominent example of a (class of) formalism(s) for the compositional, hier-
archical description and analysis of functional system behaviour is process alge-
bra [37,3,28]. It offers a mathematically well-elaborated framework for reasoning
about the structure and behaviour of reactive and distributed systems in a com-
positional way, including abstraction mechanisms that allow for the treatment
of system components as black boxes, encapsulating their internal structure.
Process algebras are typically equipped with a formally defined structured op-
erational semantics (SOS [51]) that maps process algebra terms onto labelled
transition systems in a compositional manner. Such labelled transition systems
consist of a set of states and a transition relation that describes how the system
evolves from one state to another. These transitions are labelled with action
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names that represent the (inter)actions that may cause the transitions to occur.
Such transition systems can be represented as directed edge-labelled graphs, with
the states as nodes of and the transitions as edges (labelled with action names).

The labelled transition model is very close to the usual representation of
Markov chains as transition systems or automata. Also there system states are
connected by directed transition arcs that are labelled. In the case of discrete
time Markov chains the labels are probabilities, and in the case of continuous
time Markov chains, which are the topic of this paper, the labels are the rates
that correspond to the exponential distributions that represent the stochastic
delays associated with the state transitions. This structural correspondence be-
tween the two models motivated the beginning of research in the early 1990’s on
stochastic process algebras [4,27,16], which sought to integrate performance mod-
elling with Markov chains with functional analysis, and to transfer the process
algebraic notions of (de)composition and hierarchy to Markov chain theory.

The fruitfulness of this approach to the specification and generation of
Markov chains has been demonstrated by a number results. In the stochastic
setting, bisimulation equivalence [40], a central notion of equivalence for com-
paring labelled transition systems, has been shown to coincide with lumpability, a
key concept for the aggregation of Markov chains [27]. Moreover, as bisimulation
can be shown to be preserved under system composition operators (algebraically:
bisimulation is a congruence), Markov chain aggregation can be carried out
compositionally, i.e. component-wise. Several (small to medium size) case stud-
ies have shown the practicality of this compositional approach, and important
progress has been made in exploiting the syntactic structure of specifications for
performance analysis purposes, see [26].

In this paper we aim (i) to give an introduction to the essentials of pro-
cess algebra that are needed for compositional performance modelling, (ii) to
introduce the process algebraic approach to Markovian performance modelling
using Interactive Markov Chain (IMC) algebra, and (iii) to survey the main al-
gebraic principles that underly related (Markovian) stochastic process algebras.
The paper is organised as follows. Section 2 introduces the concepts and fea-
tures of process algebras, while Section 3 introduces continuous time Markov
chains from an algebraic perspective. The algebra of interactive Markov chains
is discussed in Section 4. At the end, section 5 compares IMC and other existing
stochastic process algebra in terms of the algebraic principles that they support.
Section 6, finally, presents the conclusions of the paper.

2 Process Algebra

In this section we introduce a simple process algebraic framework that we will use
throughout our paper. Its purpose is to give an intuitive understanding of the key
ingredients of process algebra, and prepare for their use in the rest of the paper.
We start with the introduction of labelled transition systems, which constitute
a simple but powerful operational model for reactive behaviour. We show how
these transition systems can be constructed with the aid of three basic operators,
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viz. action-prefixing, choice, and recursive specification. Together, these opera-
tions give rise to a basic process algebra that can be used for the description
of sequential processes. We then extend this algebraic language to concurrent
processes with the aid of an operator for parallel composition, in combination
with an abstraction operator to control the scope of the interactions between
concurrent processes. It turns out that for many purposes the labelled transition
system model is too fine, i.e. there are many different transition systems that
display intuitively identical behaviour. This leads us to the definition of use-
ful behavioural equivalences over reactive behaviour, viz. the notions of strong
and weak bisimulation. Finally, we turn to an axiomatic presentation of process
algebra by discussing the axiom systems that are induced by the bisimulation
equivalences. For a fuller account of the material covered by this section, we refer
the reader to the extensive literature of process algebra, e.g. [3,40,5,10].

2.1 Labelled Transition Systems

State-transition diagrams, automata and similar models are widely used to de-
scribe the dynamic behaviour of systems. They consists of a set of states S
together with a representation of possible state changes. The latter is usually
given in the form of some relation (or function) over states, i.e. a subset of the
Cartesian product S×S. Intuitively, a pair of states (P,Q) is in this relation if it
is possible to change from state P to Q in a single step. Such transition relation
are often denoted with an arrow (e.g. −→), so that (P,Q) ∈ −→ can then be
conveniently rewritten, in infix notation, as P −→ Q, thus nicely representing
the possible state change between P and Q.

In the context of process algebras, transition systems appear in a specific
form, viz. that of labelled transition systems. Labelled transition systems form
a particular class where state changes are conditioned on occurrences of actions
drawn from an action set , or alphabet , A. A state change between P and Q here
entails the occurrence of a related action. Therefore, the transition relation −→
is a subset of S × A × S rather than a binary relation over just S. Again, it
will be convenient to denote (P, a, Q) ∈ −→, using a kind of mixfix notation,
as P

a−→ Q. Here the action appears as the label of the transition, whence the
term ‘labelled’ transition system.

Definition 1. A labelled transition system is a triple (S,A,−→), where

– S is a nonempty set of states,
– A is a set of actions, and
– −→ ⊂ S × A × S is a set of action labelled transitions.

In order to use labelled transition systems as an operational model of systems
it is common practice to identify a specific initial state P in the transition system
where operation starts. A transition system with an initial state is called a
process.

Definition 2. A process is a quadruple (S,A,−→, P ), where (S,A,−→) is a
labelled transition system and P ∈ S is the initial state.
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Fig. 1. Two processes.

Example 1. Figure 1 contains two examples of processes. In principle, states are
represented as circles labelled with identifiers from S. We adopt the convention,
however, to use state labels only if they are required for understanding. We use �
to denote the initial state. The first process, with initial state E1, is a simple one-
place buffer. It accepts data via the action in and releases them with the action
out. The right process is able to buffer two values, but with a slightly unusual
restriction. From its initial state E2 there is a choice between two transitions
that are both labelled with in. In the standard interpretation of process algebra
this represents a nondeterministic choice that is made as part of the execution
of the action in, i.e. the receipt of a first datum. The lower branch leads to the
usual behaviour of a two-place buffer, whereas after the upper branch no datum
can be released, i.e. no out can be executed, before two data have been accepted.

2.2 Basic Processes

Process algebra is a means to specify processes and to reason about them. To
achieve this we use an algebraic language, based on combinators , i.e. operators
that compose processes into new ones. The terms of the algebraic language,
the behaviour expressions , are interpreted as labelled transition systems with a
distinguished initial state, i.e. as processes in the sense of Definition 2. This is
done using so-called structural operational semantic rules. This semantic inter-
pretation induces equalities between different behaviour expression, yielding an
equational calculus for reasoning about processes.

We introduce the language by a simple BNF-style grammar. We assume as
given a countable set V of variables that are used to express repetitive behaviour,
and, as before, a set of actions A. We use a, b, . . . for elements of Aτ . We also
assume a distinguished element τ , representing internal (or silent , or hidden)
actions, and let Aτ denote the set A ∪ {τ}.

Definition 3. Let a ∈ Aτ and X ∈ V. We define the language PA as the set of
expressions given by the following grammar.

E ::= 0 | a.E | E + E | X | [X := E ]i
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[X := E ] is a shorthand notation for an arbitrary (finite) set of defining equa-
tions of the form [X1 := E1 , X2 := E2 , . . . , Xn := En] , or in vector notation,


X1

X2

...
Xn


 :=




E1

E2

...
En




with Xi ∈ V, and Ei complying to the above grammar.

We use E, E1, E2, F , . . . to range over arbitrary expressions of PA. The intuitive
meaning of the language constructs is as follows.

– The terminal symbol 0 describes a terminated behaviour that cannot engage
in any (inter)action.

– The expression a.E may interact on action a and afterwards behave as ex-
pression E. We shall say that E is action prefixed by a.

– The expression E + F combines two alternatives. It either exhibits the be-
haviour of expression E or the behaviour of expression F . The terminal
symbol + is called the choice operator. The choice between E and F is re-
solved in interaction with other processes on the initial actions of E and
F .

– The expression [X := E]i defines a behaviour in terms of the set [X := E]
of mutually recursive behaviour definitions . Its meaning is as follows:
[X := E]i behaves as Ei, where the behaviour of the recursion variables
is obtained by ‘unrolling’: wherever a behaviour Xj is reached, it is replaced
by (the behaviour of) its definition [X := E]j .

In the sequel, we restrict ourselves to expressions, where each occuring vari-
able Xj is bound by a defining equation Xj := . . . . Such expressions are called
closed expressions. An expression E ∈ PA is closed, if each variable Xj ∈ V ap-
pearing in E only appears inside the scope of a guarding defining equation set,
i.e. inside an expression [. . . , Xj := . . . , . . .]i . The set of closed expressions is
denoted PAc.

Example 2. An example of an expression that is not closed is in.[X1 := in.X2]1 .
The processes of Figure 1 can be specified as follows:

– E1 is defined by [X1 := in.out.X1]1
– E2 is defined by [X1 := in.X2 + in.in.out.X2 , X2 := in.out.X2 + out.X1]1

We formalise this intuitive interpretation by giving it an operational seman-
tics in terms of labelled transition systems. The style of definition that we use
goes back to Plotkin [51], and is usually referred to as structured operational
semantics (SOS), since it defines the operational interpretation of a behaviour
expression inductively over its syntactical structure.

We define a semantics for closed expressions of PA by mapping the complete
language PAc onto a universal transition system. The state space of this transi-
tion system is the set of all closed expressions according to Definition 3. Since
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a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

F
a−→ F ′

E + F
a−→ F ′

Ei{[X := E]i /Xi} a−→ E′

[X := E]i
a−→ E′

Table 1. Operational semantic rules for PAc.

each E ∈ PAc appears somewhere in this transition system the corresponding
semantics is determined by the state space reachable from this expression.

The first SOS-rules that we need are given in Table 1. The rules have the
format

B

C
A,

to express that if A holds, then B implies C , where A,B and C statements about
the existence of labelled state transitions. The notation E{F/X} is used to
represent the result of a simultaneous substitution of each occurrence of variable
X by expression F in expression E.

Definition 4. The universal transition system U is given by the triple
(PAc,A,−→), where −→ ⊂ PAc × A × PAc is the least relation satisfying the
operational rules in Table 1.

This definition provides a semantics for each element of E ∈ PAc, via the
fragment of −→ reachable from the state E in U . For a closed expression E, we
let Reach(E) denote the set of states reachable from E in the universal transition
relation U : Reach(E) = {E′ | (E,E′) ∈ T ∗} where T is the unlabelled transition
relation in U , i.e. T = {(F, F ′) ∈ PAc × PAc | ∃a ∈ A. F

a−→ F ′}.

Definition 5. The semantics of a closed behaviour expression E ∈ PAc is a
process (S,A,−→′, E), where S = Reach(E) and −→′ = −→ ∩(S × A × S).

Because of this definition we can adopt the fairly general convention of iden-
tifying a process with its initial state. Closed expressions are thus also called
processes.

Example 3. In order to prove that the process E1 of Figure 1 possesses an out-
going transition labelled with action in we apply the operational rules of Table
1 to construct the following derivation.

in.out.[X1 := in.out.X1]1
in−→ out.[X1 := in.out.X1]1

[X1 := in.out.X1]1
in−→ out.[X1 := in.out.X1]1
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2.3 Concurrency and Abstraction

Although basic process algebra suffices, at least in principle, for the description
of processes, it is too limited to be of great practical value. When specifying
and analysing reactive systems it will often be necessary to conceive of them as
the concurrent composition of a number of subprocesses. This can be the case
because parallelism is a natural feature of the given system, and we wish to
represent it. Or it may be that the properties of a system can be understood
better if its behaviour is decomposed into a number of smaller components. Many
realistic systems are so complicated, in fact, that they can only be understood
in terms of a concurrent composition of components.

A key ingredient of concurrency is the possibility for component processes to
interact. Processes interact to achieve a common goal, which means that they
somehow have to synchronise their activities, e.g. by exchanging data. Different
forms of process interaction have been studied in the literature of process algebra
[37,40,10,29]. Distinctive features are asynchronous vs. synchronous and binary
vs. multiparty interaction. For our purposes it will be convenient to use the syn-
chronous multiparty interaction as defined, for instance, in the ISO specification
language LOTOS [30,5].

We introduce a binary parallel composition operator that is indexed with the
set of actions that its component processes have to synchronise on. All other ac-
tions, i.e. those that are not in the index set of the composition operator, can be
performed independently of the other component process. The basic form of in-
teraction therefore is synchronisation on actions: the execution of a synchronised
action is a joint activity of all synchronising processes.

If P and Q are two processes, such synchronous parallel composition is de-
noted

P a1 . . . an Q

By varying the set of synchronising actions, parallel composition ranges from
full synchronisation, when the set comprises all the possible actions, to arbitrary
interleaving, when the set is the empty (in this case we use the concise notation
P Q). The intuition behind this operator is summarised by the following
informal properties:

– A state change of P a1 . . . an Q is possible if P may change to, say P ′, on
the occurrence of an action a that is not contained in {a1 . . . an}. The result
of the state change is P ′ a1 . . . an Q, since only P has changed state.

– Symmetrically, a state change of P a1 . . . an Q is also possible if Q may
change to some Q′, on the occurrence of an action a that is not contained in
{a1 . . . an}, resulting in P a1 . . . an Q′.

– In order to be able to interact on an action a contained in {a1 . . . an}, both
P and Q have to be able to perform a and thereby evolve to some P ′ and Q′.
If this condition is met P a1 . . . an Q may in a single step change state to
P ′ a1 . . . an Q′.

– No other transitions are possible for P a1 . . . an Q.
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P
a−→ P ′

P a1 . . . an Q
a−→ P ′ a1 . . . an Q

a �∈ {a1 . . . an}

Q
a−→ Q′

P a1 . . . an Q
a−→ P a1 . . . an Q′ a �∈ {a1 . . . an}

P
a−→ P ′ Q

a−→ Q′

P a1 . . . an Q
a−→ P ′ a1 . . . an Q′ a ∈ {a1 . . . an}

Table 2. Structural operational rules for parallel composition.

in

mid out

mid

out in

E5

E3 mid E5

in out

E4 mid E5

mid

E4E3
mid

Fig. 2. Parallel composition of two processes.

We extend PAc with the new operator by stipulating that if P and Q are
in PAc then P a1 . . . an Q is in PAc as well. We can now formalise the
above requirements as SOS-rules for the process P a1 . . . an Q. The first
three requirements are reflected in the three derivation rules of Table 2. The last
property is automatically fulfilled as the transition relation itself is defined as
the least relation satisfying the definition, i.e. it does not possess non-derivable
transitions.

In the third SOS-rule of Table 2 it can be seen that the result of synchroni-
sation on an action a is a transition of the composite behaviour again labelled
with the same action a. This choice (borrowed from [46,5]) is an essential ingre-
dient to enable so-called multiway synchronisation, where further processes may
synchronise with the a-labelled transition of the composition. This approach,
although fairly straightforward, is one of a number of alternatives to interaction
and synchronisation, e.g. see [39] for a discussion of this topic.
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P
a−→ P ′

hide a1 . . . an in P
a−→ hide a1 . . . an in P ′ a �∈ {a1 . . . an}

P
a−→ P ′

hide a1 . . . an in P
τ−→ hide a1 . . . an in P ′ a ∈ {a1 . . . an}

Table 3. Structural operational rules for abstraction.

Example 4. Figure 2 shows parallel composition of two processes E3 and E5.
Below these processes the resulting process E3 mid E5, obtained by applying
the rules of Table 2, is also depicted.

The concept of multiway synchronisation has proven convenient from a spec-
ification engineering point of view. It allows for a constraint-oriented style of
system specification, where processes add conditions on the occurrence of inter-
actions incrementally using concurrent composition, see e.g. [58]. However, with
the operators introduced so far, all actions that occur anywhere in a system spec-
ification remain available for further synchronisation with new processes. This is
undesirable, since most system design methods try to work with components as
black boxes, i.e. as functionality without internal structure. Such an approach
calls for mechanisms to abstract from internal aspects that are irrelevant at
higher design levels.

In process algebra the concept of abstraction must be dealt with in terms of
an operator, the abstraction operator . The key to this operator is a distinguished
action, usually named τ , that symbolises internal or hidden action, e.g. a state
change that does not depend on synchronisation with the environment. Actions
other than τ are called external or observable. For a given process P and actions
a1 . . . an abstraction or hiding of those actions simply renames them into the
internal action τ . We use

hide a1 . . . an in P

to denote this operation. Again, we extend PAc with a closure condition, viz. that
if P is in PAc then so is hide a1 . . . an in P . The semantics of the abstraction
operator are given by the operational rules in Table 3.

We would like to point out that in a concurrent composition internal actions
of one component process should be completely independent of those of the other.
Hence, synchronisation on internal actions is ruled out, i.e. τ cannot occur in
the index set {a1 . . . an} of a composition P a1 . . . an Q.

Example 5. In Figure 3 we have depicted the result of internalising the action
mid in the process E3 mid E5 by means of abstraction. The behaviour of the
resulting process behaves as a two place buffer composed out of two one-place
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out in

τ
in out

hide mid in E4 mid E5

hide mid in E3 mid E5

Fig. 3. Abstraction applied to composed processes.

buffers, E3 and E5. The first accepts data with action in. These are then passed
internally to process E5, which, in turn, can output them. E3 may accept a
second input, but before it can pass it on to E5 this process has to output the
input it accepted earlier.

2.4 Equivalence

An essential part of the development of process algebraic theory has been devoted
to the study of suitable notions of behavioural equivalence. Such equivalences
are induced by various notions of what constitutes process behaviour, different
processes being equivalent iff they display identical behaviour. This behaviour-
oriented (as opposed to state-oriented) point of view implies that the identity
of states cannot be relevant for distinguishing between processes, whereas the
labelling of transitions is. All common process algebraic equivalences share this
characteristic. Still, there exists an overwhelmingly rich collection of such equiva-
lences. Their variety is caused by the different intuitions about process behaviour.
R.J. van Glabbeek has extensively studied the different behavioural equivalences
[56,55]. They are classified according to the observational powers that an ob-
server or experimenter must have to distinguish between different processes. In
this paper we will confine ourselves to a particular, but very important class of
equivalences, the bisimulation relations. We will argue why this is a good class
of equivalences for our purposes, in this section and also later on, when proba-
bilities and probability distributions come into play. We start by considering the
so-called ’strong’ equivalence, where internal and external actions are treated
on an equal footing. After that we proceed with the ’weak’ equivalence, which
abstracts from internal transitions.

Strong equivalence. A labelled transition system can be seen as being essen-
tially an automaton, with its finiteness conditions removed and with only suc-
cess states. Therefore, the notion language equivalence of automata would seem
a natural candidate to be considered for the characterisation of process equiva-
lence. Two transition systems are language equivalent iff they accept the same
language, i.e. their (finite) execution traces determine the same set of finite se-
quences over Act. In the context of process algebra this relation is called trace
equivalence.
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E6

E2
out out

in in

in in

out out

in in

Fig. 4. Two processes with equivalent traces.

Notation. We use P
a1−→ a2−→ · · · an−→ P ′ to denote that there exist processes

P1, P2, . . . , Pn−1 such that P
a1−→ P1

a2−→ P2 · · ·Pn−1
an−→ P ′.

Definition 6. Let P and Q be processes. P and Q are strong trace equivalent,
written P ∼tr Q, if for all P ′ and Q′,

P
a1−→ a2−→ · · · an−→ P ′ if and only if Q

a1−→ a2−→ · · · an−→ Q′.

Example 6. Consider the process depicted in Figure 4. E6 describes the usual
two place buffer. E2 already appeared in Figure 1. Depending on the in branch
taken E2 may loose the possibility to output the first input before a second is
accepted. However, both processes are trace equivalent according to Definition
6.

This example gives some insight into the weaknesses of trace equivalence.
The process E2 is not always able to release an input after it has accepted one
whereas E6 always is. This is problematic if E2 is put in a context where an
output is required for synchronisation after every input, (with E1 of Figure 1,
for instance, synchronising on action out and in). E6 would be able to interact
on action out after action in has occurred, whereas E2 may not, thus forcing a
deadlock. In other words, trace equivalence does not preserve deadlocks.

The main reason why trace equivalence is suitable for automata theory, while
it does not fit with the process algebraic theory of processes, is the difference
between their models of interaction. Automata theory assumes complete control
of the automaton over its transitions. In the process algebraic view of processes
all observable actions are under the joint control of the process and its envi-
ronment. In this context automata can be seen as processes with only internal
actions (but not necessarily labelled with τ), or alternatively, as a process with
a completely cooperative environment, i.e. one that is always capable of syn-
chronising on the action of the automatons’ choice. The standard interaction
between process algebraic processes, however, assumes an interactive resolution
of choices, at least between observable transitions. This means that a process
cannot select a transition labelled with an observable action if this action is not
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Fig. 5. Two strongly bisimilar processes.

also enabled by the environment. If several such jointly enabled transitions exist,
then the choice is made nondeterministically.

In the presence of concurrent composition it is natural that two transition
systems should be equivalent if and only if they interact in the same way with
arbitrary environments. In view of the above, that means the way in which they
constrain the choices between different actions is relevant. This is also referred
to as the branching (time) structure of processes, as opposed to the linear (time)
structure of classical automata.

Milner and Park [40,47] have introduced the most important class of equiv-
alence relations that respect the branching structure of a process and therefore
are deadlock preserving. This is the class of bisimulation equivalences or bisimi-
larities. Two processes are bisimilar if they can simulate each other’s behaviour
step-by-step. This leads to an inductive definition of bisimulation, based on single
steps, that is simple but quite powerful.

Definition 7. A binary relation B on PAc is a strong bisimulation if (P,Q) ∈ B
implies for all a ∈ Aτ :

– P
a−→ P ′ implies Q

a−→ Q′ for some Q′ such that (P ′, Q′) ∈ B,
– Q

a−→ Q′ implies P
a−→ P ′ for some P ′ such that (P ′, Q′) ∈ B.

Two processes, P and Q, are strongly bisimilar, written P ∼ Q, if they are
contained in some strong bisimulation B,i.e. (P,Q) ∈ B.

Strong bisimilarity, therefore, is the union of all strong bisimulations, i.e.

∼=
⋃

{B | B is a strong bisimulation}
In words, the above definition says that two states in a transition system are

bisimilar if each has transitions labelled with the same actions as the other such
that the states after corresponding transitions are bisimilar again.

Example 7. Following Definition 7, the two processes E6 and E1 E1 depicted in
Figure 5 are bisimilar. To facilitate the inspection of this claim we have shaded
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strongly bisimilar states with the same pattern. Note that the right process
is obtained by composing in parallel two (one-place) buffers E1 without any
synchronisation. They behave like a two-place buffer E6 (in fact, they implement
a two-place bag, but because the data have no identity this is indistinguishable
from a buffer).

Strong bisimilarity gives us appropriate means to compare processes with
respect to their branching structure. Besides its intuitive content, it also has the
correct formal properties that allow for a smooth mathematical treatment.

Proposition 1. Strong bisimilarity is

– an equivalence relation on PAc.
– a strong bisimulation on PAc.
– the largest strong bisimulation on PAc.

The style of the definition of bisimulation is sometimes called coinductive,
since it borrows the concept of coinduction from category theory [31]. Roughly
speaking, a coinductive definition characterises the largest set satisfying an in-
ductive definition, whereas induction characterises the smallest such set.

Later, we will later also rely on an alternative characterisation of strong
bisimilarity, borrowed from [57], which defines ∼ as the union of equivalence
relations. It makes use of a (boolean) function γO : S×Aτ ×2S �→ {true, false}.
γO(P, a, C) is true iff P can evolve to a state contained in a set of states C by
interaction on a.

Definition 8.

γO(P, a, C) :=
{
true if there is P ′ ∈ C such that P a−→ P ′,
false otherwise.

With this definition, bisimilarity can be expressed as ’having the same pos-
sibilities to interact and make a transition into the same class of behaviours’
where these classes are, of course, classes of equivalent behaviour.

Lemma 1. An equivalence relation E on S is a strong bisimulation iff (P,Q) ∈ E
implies for all a ∈ Aτ and all equivalence classes C of E that

γO(P, a, C) =⇒ γO(Q, a, C).

Note that E is presupposed to be an equivalence relation in this definition, and
therefore is symmetric by assumption. Thus, we could equally well replace ’ =⇒ ’
by ’ ⇐⇒ ’ (or ’=’) in the above Lemma.

Example 8. If we use
���
���
���
���

���
���
���
���

to denote the set of states shaded like
��
��
��

��
��
��in Figure 5,

and similar with
���
���
���

���
���
���

and , then each of these sets is a class of an equivalence
relation E satisfying Lemma 1. In particular, we compute the following values for
each of the states in the respective class. All other combinations return false.

γO( , in,
���
���
���

���
���
���

) = true γO(
���
���
���
���, out, ) = true

γO(
���
���
���
���, in,

���
���
���
���

���
���
���
���

) = true γO(
��
��
��

��
��
��, out,

���
���
���

���
���
���

) = true
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Let us now turn our attention to another important property of bisimilarity.
Since we work in a setting with composition operators, we must investigate
whether ∼ induces a proper algebraic notion of equality. In particular, this means
that equality should be preserved under composition. In the above example, we
have seen that E6 and E1 E1 are bisimilar. They both describe the behaviour of
a buffer with two places. However, it is not yet clear whether we can use either
of them in a larger composition context and obtain again equivalent overall
behaviours. This is, of course, a highly desirable property, because it allows
normal equational reasoning, replacing a subterm by an equivalent one, without
affecting the resulting behaviour. What we need, in general, is the substitutivity
of an equivalence relation. In algebraic terms this means that we have to show
that ∼ is a congruence (relation) with respect to the operators.

Theorem 1. Strong bisimilarity is a congruence relation with respect to the
operators of PAc, i.e.

P1 ∼ P2 implies a.P1 ∼ a.P2

P1 ∼ P2 implies P1 + P3 ∼ P2 + P3,

P1 ∼ P2 implies P3 + P1 ∼ P3 + P2,

P1 ∼ P2 implies P1 a1 . . . an P3 ∼ P2 a1 . . . an P3,

P1 ∼ P2 implies P3 a1 . . . an P1 ∼ P3 a1 . . . an P2,

P1 ∼ P2 implies hide a1 . . . an in P1 ∼ hide a1 . . . an in P2 .

Strong bisimilarity shares this substitutivity property with other equiva-
lences, such as trace equivalence. On top of that, it respects the branching
structure of processes and therefore preserves deadlocks. Furthermore, it can
be defined coinductively. These properties are the main reasons why bisimilarity
is a central concept in the theory of process algebraic equivalences. It is easy to
define, has a simple proof technique, and is mathematically elegant.

Weak equivalences. So far we have only discussed equivalences that treat internal
actions exactly the same way as external actions. In particular, internal actions
have to be simulated stepwise to establish strong bisimilarity between two pro-
cesses. This is counterintuitive, because we ultimately mean to characterise the
behaviour of processes by means of their black box, i.e. observable, behaviour.
But as internal actions are not observable there seems to be no direct need to
be able to simulate each internal transition of an equivalent process.

Example 9. We have discussed before that a serial connection of two one-place
buffers as in hide mid in E3 mid E5 behaves like a two-place buffer. How-
ever, it is not possible to construct a strong bisimulation between this process
and E6 even though E6 appears as a canonical representation of a two place
buffer. The reason is that we have to (bi)simulate internal τ−→ transitions that
E6 does not possess (Figure 6).
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hide mid in E3 mid E6

Fig. 6. Not strongly bisimilar processes.

To abstract from internal moves it seems natural to ignore them as far as they
do not influence the observable behaviour of a process. To do so, we introduce
the notion of an observable step of a process, consisting of a single observable
action preceded and followed by an arbitrary finite number (including zero) of
internal steps [40]. This can be seen as deriving a ’weak’ transition relation,
denoted by =⇒, from the ’strong’ transition relation −→.

Definition 9. For internal actions, ε=⇒ is defined as the reflexive and transitive
closure τ−→∗

of the relation τ−→. External weak transitions are then obtained by
defining a=⇒ to denote ε=⇒ a−→ ε=⇒.

Note that a weak internal transition ε=⇒ is possible without actually per-
forming an internal action, because τ−→∗

contains the reflexive closure, i.e. the
possibility not to move at all. In contrast, a weak external transition a=⇒ must
contain exactly one transition a−→ preceded and followed by arbitrary (possibly
empty) sequences of internal moves. We use Aε to range over visible actions and
ε, i.e. Aε = A ∪ {ε}.

Example 10. For the processes E6 and hide mid in E3 mid E5 the weak
transition relation is represented by the arrows in Figure 7.

With this relation, weak trace equivalence and weak bisimilarity are obtained
by simply replacing strong by weak transitions in Definition 6 and Definition 7,
respectively. Since weak trace equivalence inherits the problems of its strong
counterpart, we are not interested in this relation here.

Definition 10. A binary relation B on PAc is a weak bisimulation if (P,Q) ∈ B
implies for all a ∈ Aε :

– P
a=⇒ P ′ implies Q

a=⇒ Q′ for some Q′ such that (P ′, Q′) ∈ B,
– Q

a=⇒ Q′ implies P
a=⇒ P ′ for some P ′ such that (P ′, Q′) ∈ B.

Two processes, P and Q, are weakly bisimilar, written P ≈ Q, if they are
contained in some weak bisimulation B.

Weak bisimilarity has the same basic properties as strong bisimilarity (cf.
Proposition 1).
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Proposition 2. Weak bisimilarity is

– an equivalence relation on PAc.
– a weak bisimulation on PAc.
– the largest weak bisimulation on PAc.

In addition it is a congruence relation for all operators, except for the choice
operator.

Lemma 2. Weak bisimilarity is a congruence with respect to prefix, parallel
composition and abstraction, but not with respect to choice.

In order to illustrate that ≈ is not a congruence with respect to choice we
consider the following counterexample [40]. By Definition of ≈ it is obvious that

τ.a.0 ≈ a.0

holds. Supposing that ≈ is a congruence with respect to choice, we can conclude
that

τ.a.0 + b.0︸ ︷︷ ︸
P

≈ a.0 + b.0︸ ︷︷ ︸
Q

must also hold. But in P there is a transition labelled τ to a.0. In other words,
P

ε=⇒ a.0. In order to satisfy Definiton 10, there need to be some Q′ with
Q

ε=⇒ Q′, satisfying a.0 ≈ Q′. But this is not the case. The only candidate for
Q′ – Q itself – obviously differs from a.0. Thus the assumed congruence property
turns out to be false.

The problem is that initial internal transitions need to be treated slightly
stronger. To heal this problem, we refine weak bisimilarity.

Definition 11. P and Q are weakly congruent, written P ≈c Q iff for all a ∈ Aτ

1. P
a−→ P ′ implies Q

ε=⇒ a−→ ε=⇒ Q for some Q′ with P ′ ≈ Q′,
2. Q

a−→ Q′ implies P
ε=⇒ a−→ ε=⇒ P ′ for some P ′ with P ′ ≈ Q′.

Weak congruence and weak bisimilarity only differ in the treatment of initial
internal steps of P and Q. Weak bisimilarity requires that an internal transi-
tion τ−→ is simulated by a weak transition ε=⇒, which includes the possibility
that no internal transition has to be carried out (cf. Definition 9). For initial
behaviours, weak congruence strengthens this requirement. It requires that an
internal transition τ−→ has to be matched by τ−→∗ τ−→ τ−→∗

, i.e. by at least on
internal transition τ−→.

Theorem 2. Weak congruence is substitutive with respect to the operators of
PAc, i.e.

P1 � P2 implies a.P1 � a.P2

P1 � P2 implies P1 + P3 � P2 + P3,

P1 � P2 implies P3 + P1 � P3 + P2,

P1 � P2 implies P1 a1 . . . an P3 � P2 a1 . . . an P3,

P1 � P2 implies P3 a1 . . . an P1 � P3 a1 . . . an P2,

P1 � P2 implies hide a1 . . . an in P1 � hide a1 . . . an in P2 .
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Fig. 7. Two weakly congruent processes.

Indeed, weak congruence is unique in the sense that it turns out to be the coarsest
congruence contained in weak bisimilarity, as a consequence of the following
lemma.

Lemma 3. E1 � E2 iff, for each E3 ∈ IMCc, E1+E3 ≈ E2+E3 and E3+E1 ≈
E3 + E2.

As a result, we have obtained two substitutive equivalence notions on PAc:
strong bisimilarity and weak congruence, a distinguished subset of weak bisimi-
larity. The interrelation between these equivalences is expressed in the following
lemma.

Lemma 4. ∼ ⊂ � ⊂ ≈.

Example 11. We have pointed out that the processes E6 and
hide mid in E3 mid E5 are not strongly bisimilar. But they are weakly
bisimilar according to Definition 10. To illustrate this, Figure 7 shows bisimilar
states shaded with the same pattern. A crucial aspect is that the weak internal
transition

���
���
���
���

ε=⇒
���
���
���
��� of the right process can be simulated by the left process

because ε=⇒ contains the reflexive closure.

This example shows that weak congruence is an appropriate notion to com-
pare the behaviour of components when internal actions are present. Further-
more, it is indeed a congruence, it is defined coinductively, and it preserves
observable deadlocks, i.e. the (in)capacity in a state to execute weak transitions
labelled by an observable action.

Nevertheless, weak congruence is not as undisputed among the vast number
of weak relations as strong bisimilarity is among the strong relations. Some,
e.g. van Glabbeek&Weijland [54] and Montanari&Sassone [41] point out that
weak bisimilarity is too coarse to preserve the precise branching structure of
a process. Others, like Darondeau [14], Valmari [53], de Nicola&Hennessy [44],
Parrow&Sjödin [48], Cleaveland&Natarjan [42], as well as Brinksma et al. [9]
define again coarser equivalences and argue that these relations characterise the
observable behaviour of processes better than � does.
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It may be worth to point out that it is desirable to have an equivalence notion
that is as coarse as possible, given the criteria for equivalent behaviour (in the
form of required preservation properties, for example). An equivalence that is
too fine will distinguish between too many processes, and therefore satisfy fewer
equations, making verification of certain systems more difficult, if not impossible.
From this point of view, (fair) testing equivalences seem to be the right choice
[10,49,35,44,42,9] – if one is interested in the preservation of observable dead-
locks. Essentially, each of the proposed relations is the coarsest in its category,
each corresponding to a natural scenario of what an observer is able to test.
However, we will not treat them here, basically they do not have coinductive
definitions, which we will need for our stochastic extensions later.

2.5 Algebra of Processes

The previous section has illustrated the usefulness of congruences, i.e. equiva-
lences that are substitutive with respect to the language operators. In the pres-
ence of such a congruence, it is interesting to investigate in which sense the
congruence can be characterised on PAc by a set of equational laws.

Example 12. An example of an equational law is the commutativity law E+F =
F +E. The intuitive meaning of this law is as follows: Whenever a pattern of the
form E+F can be found in an expression, it can be replaced by F +E. E and F
play the roles of meta variables and can be instantiated by arbitrary expressions
of PAc. In this way we may transform b.(a.0 + c.d.0) into b.(c.d.0 + a.0): We
instantiate E ≡ a.0 and F ≡ c.d.0 and afterwards substitute F + E for E + F .

Formally, an equational law is a pair of expressions of PAc connected with the
symbol ’=’ where either of the expressions, may contain some ’meta variables’
such as E, F , and so on. In technical terms, a law (or a set of laws) induces an
equivalence on PAc, or more precise a congruence, since we are allowed to replace
sub-expressions inside larger expressions, as in the above example.

The question arises in what sense such an induced congruence is related to
the congruences we have defined on the semantics of PAc, i.e. strong bisimilarity
and weak congruence. Indeed we are aiming to provide laws that are sound with
respect to, say, strong bisimilarity. A law is sound with respect to an equivalence,
if any application of the law does not alter the equivalence class of the expression.
The converse direction is called completeness. A set of laws is complete with
respect to an equivalence, if two expressions can be transformed into each other
by (iterative) application of laws whenever they are equivalent.

Example 13. The law 0 = 0 is sound for any equivalence relation on PAc. How-
ever, this law is, as it stands alone, far from providing a complete set of laws for
any nontrivial equivalence. On the other hand, a law E = F is complete for any
equivalence relation on PAc, but it is sound only for the trivial relation PAc×PAc

that equates all processes.
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(C) E + F = F + E
(A) (E + F ) + G = E + (F + G)
(I) E + E = E
(N) E + 0 = E

Table 4. Axioms for strong bisimilarity.

(C) E + F = F + E
(A) (E + F ) +G = E + (F + G)
(I) E + E = E
(N) E + 0 = E

(τ1) a.τ.E = a.E
(τ2) E + τ.E = τ.E
(τ3) a.(E + τ.F ) + a.F = a.(E + τ.F )

Table 5. Axioms for weak congruence.

So, our ultimate goal is to provide sets of laws that are sound as well as
complete with respect to strong bisimilarity, respectively weak congruence. We
shall say that such a set axiomatises the respective congruence. This is what
turns the set PAc into a true algebra.

To give a flavor of this algebraic view on PAc, Table 4 lists the main equational
laws axiomatising strong bisimilarity. The laws state that the choice operator
is commutative (C), associative (A), idempotent (I), and that 0 is the neutral
element of choice (N). There are four more laws needed to handle recursion and
we refer to [38] or [19] for a detailed explanation.

Turning our attention to weak congruence, Table 5 presents a set of laws that
form the core of an axiomatisation of weak congruence on PAc. The upper part of
these laws is literally copied from Table 4. This should not be surprising, because
strong bisimilarity is a subset of weak congruence (cf. Lemma 4) and therefore
every pair that can be proven to be strongly bisimilar has to be weakly congruent,
as well. This is a striking reason why the axiomatisation of weak congruence is
an extension of the axiomatisation of strong bisimilarity. The law (τ1) allows
one to skip (action guarded) internal steps. Law (τ2) and (τ3) expresses that
certain behaviours that are preceded by an internal step can happen instantly
provided a τ -guarded copy persists.

We shall now discuss the additional operators we have defined on PAc, ab-
straction and parallel composition. We present a set of additional laws, that
allow one to rewrite parallel composition, as well as abstraction into the basic
operators of PAc. Table 6 lists the necessary laws. Law (X) is usually called
the expansion law. It states that non-synchronising actions of components can
be simply interleaved. Either the left (aj /∈ {a . . . an}), or the right component
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(X)
X

aj .Pj a . . . an

X
bl.Ql =

X
aj /∈{a...an}

aj .(Pj a . . . an Q) +

X
bl /∈{a...an}

bl.(P a . . . an Ql) +

X
aj=bl∈{a...an}

aj .(Pj a . . . an Ql)

(H1) hide a . . . an in 0 = 0

(H2) hide a . . . an in a.P = a.hide a . . . an in P provided a /∈ {a . . . an}
(H3) hide a . . . an in a.P = τ.hide a . . . an in P provided a ∈ {a . . . an}
(H4) hide a . . . an in P + Q = hide a . . . an in P + hide a . . . an in Q

Table 6. Axioms for rewriting parallel composition and abstraction.

(bl /∈ {a . . . an}) performs a non-synchronising action. In case of synchronisation
(aj = bl ∈ {a . . . an}), both partner evolve further.

The laws (H1)− (H4) are very simple. They say that abstraction distributes
over termination, over choice and over action prefix, where, according to (H3)
action a is internalised if it appears in the set {a . . . an} of actions. With these
laws, parallel composition and abstraction can be shifted arbitrarily deep into
a specification, until either 0 or some variable X is reached. This is enough
to ensure completeness for a language that includes abstraction and parallel
composition (but where the use of recursion is restricted, see e.g. [19]).

This concludes our brief summary how bisimulation can be characterised
axiomatically. These axioms are particularly handy to reason about PAc in an
abstract fashion. One can capture the essence of the language just by agreeing
(or disagreeing) with a particular set of axioms. It is important to mention
that a highly influential strand of process algebra research (also known as the
Dutch school [1,3]) proceeds the other way round than the way we chose here.
This school presupposes a specific equational theory, and then investigates the
models and equivalences needed to match this theory. We will follow this way in
Section 4 when we introduce an algebra of Interactive Markov Chains.

3 Markov Models

Continuous time Markov chains (MCs) are a particular class of stochastic models
that forms a cornerstone of contemporary performance and dependability eval-
uation methodology [25,18]. This section reviews the main ingredients of MCs
from an algebraic perspective, i.e. we proceed similar to the preceding section.
After introducing Markov chains and their basic properties, we discuss a bisim-
ulation style equivalence on such chains, which is also known as lumpability. We
discuss equational properties of this equivalence by developing a small algebra
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of MCs, to illustrate the relation to standard process algebra. Broad background
material on Markov chains and their analysis can be found in [18].

3.1 Continuous Time Markov Chains

A continuous time Markov chain is a stochastic process {X(t) | t ∈ R} with
discrete state space satisfying the so called Markov property. This means that
the random variable X takes values of some discrete set S (the state space),
and the values of X vary continuously as time passes, satisfying that for
tn +∆t > tn > tn−1 > tn−2 > . . . > t0,

Prob{X(tn +∆t) = P ′ | X(tn) = P,X(tn−1) = Ptn−1 , . . . , X(t0) = Pt0}
= Prob{X(tn +∆t) = P ′ | X(tn) = P}
= Prob{X(∆t) = P ′ | X(0) = P}.
Thus, the fact that the process was in state Pn−1 at time tn−1, in state Pn−2

at time tn−2, and so on, up to the fact that it was in state P0 at time t0 is
completely irrelevant. The state X(tn) contains all relevant history information
to determine the random distribution on S at time tn+1. This probability is
independent of the actual time instant tn (or t′ or 0) of observation. Nevertheless
it does depend on the length of the time interval ∆t. It requires some limit
calculation to deduce that we are facing a linear dependence [34]. More precise,
for every pair of states P and P ′, there is some parameter λ such that (for small
∆t)

Prob{X(∆t) = P ′ | X(0) = P} = λ∆t + o(∆t)

where o(∆t) subsumes the probabilities to pass through intermediate states be-
tween P and P ′ during the interval ∆t. The quantity λ is thus a transition rate,
a nonnegative real value that scales how the (one step) transition probability be-
tween P and P ′ increases with time. Here, we have implicitly assumed that state
P is different from P ′. If, otherwise, state P and P ′ coincide, the probability to
stay in state P during an interval ∆t (and hence Prob{X(∆t) = P | X(0) = P})
decreases with time, starting from 1 if ∆t = 0. The corresponding transition rate
is thus a negative real value. It is implicitly determined by the increasing proba-
bility to leave state P ; that is, it is the negative sum of the respective transition
rates.

The probabilistic behaviour of a MC is completely described by the initial
state occupied at time 0 (or an initial probability distribution on S) and the
transition rates between distinct states. We therefore fix a MC by means of a
specific transition relation, P λ−→ P ′, defined on a state space S, together with
an initial state P .

Definition 12. A Markov transition system is a tuple (S, −→ ), where S is
a nonempty set of states, and −→ is a Markov transition relation, a subset
of S × R

+ × S. A Markov chain is a triple (S, −→ , P ), where (S, −→ ) is a
Markov transition system, and P ∈ S is the initial state.
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Fig. 8. Two Markov chains

Example 14. Figure 8 contains two examples of Markov chains, E30 and E31.

The time of staying in a particular state of S is a random variable, usually
called sojourn time. The sojourn time for any state of a MC is known to be expo-
nentially distributed. We highlight the following important properties enjoyed by
exponential distributions. Let D, D1, and D2 denote exponentially distributed
random variables.

(A) An exponential distribution Prob{D ≤ t} = 1 − e−λt is characterised by
a single parameter λ, a positive real value, usually referred to as the rate
of the distribution. The mean duration of this delay amounts to 1/λ time
units.

(B) The class of exponential distribution is the only class of memoryless contin-
uous probability distribution. The remaining delay after some time t0 has
elapsed is a random variable with the same distribution as the whole delay:

Prob{D ≤ t+ t0 | D > t0} = Prob{D ≤ t}. (1)

(C) The class of exponential distributions is closed under minimum, which is
exponentially distributed with the sum of the rates:

Prob{min(D1, D2) ≤ t} = 1 − e−(λ1+λ2)t (2)

if D1 (D2, respectively) is exponentially distributed with rate λ1 (λ2).
(D) The probability that D1 is smaller than D2 (and vice versa) can be directly

derived from the respective rates:

Prob{D1 < D2} =
λ1

λ1 + λ2
(3)

Prob{D2 < D1} =
λ2

λ1 + λ2
. (4)

(E) The continuous nature of exponential distributions ensures that the prob-
ability that both delays elapse at the same time instant is zero.

Property (C) explains why the sojourn time for a state s is exponentially dis-
tributed. Every transition s

λ−→ s′ leaving state s can be seen to have an
exponentially distributed random variable (with parameter λ) associated that
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governs when this transition may happen. A race is assumed to exist between
several transitions, i.e., they compete for a state change. The sojourn time in s
ends as soon as the first transition is ready to occur, inducing a state change.
Due to property (C) this sojourn time is exponentially distributed with the sum
of the rates of the transitions involved. Property (D) determines the probability
of a specific transition to win such a race.

3.2 Equivalence

Strong and weak bisimilarities, as introduced in Section 2, are central in the the-
ory of process algebraic equivalences. Apart from their theoretical importance,
a practical merit is the possibility of behaviour preserving state space aggrega-
tion. This is achieved by neglecting the identity of states in favour of equivalence
classes of states exhibiting identical behaviours. We follow the same spirit in the
context of Markov chains.

Strong equivalence. For a given chain, assume that we are only interested in
probabilities of equivalence classes of states with respect to some equivalence ∼
(that we are aiming to define) instead of probabilities of states. Any such equiv-
alence preserving view on a Markov chain gives rise to an aggregated stochastic
process X̃ = {X̃(t)|t ∈ T }. It can be defined on the state space S/∼, the set of
the equivalence classes with respect to ∼, by

Prob{X̃t = C} := Prob{X(t) ∈ C} for each C ∈ S/∼. (5)

X̃ is a discrete state space stochastic process, but it is not necessarily a MC.
However sufficient conditions exist such that X̃ is again a time homogeneous MC.
They impose restrictions on the shape of the sets C and are known as lumping
conditions, see [34]. We approach them from a different viewpoint, namely by
constraints on the equivalence ∼, similar to [11,27]. Anticipating the technical
details, we achieve that X̃ is a MC, if ∼ is a variant of bisimulation. The difficulty
is that we have to equate not only qualities but also quantities, for example
transition rates of moving from one state to an equivalence class. In contrast,
bisimilarity only talks about a (logical) quality: Either there is a move from a
state into a class possible or it is impossible, but tertium non datur.

The bridge to quantify strong bisimilarity is an alternative characterisation of
strong bisimilarity that we have mentioned as Lemma 1. To recall its essentials,
note that it uses a predicate γO : S × Aτ × 2S �→ {true, false} that is true iff
P can evolve to a state contained in a set of states C (by interaction on action
a). Bisimilarity then occurs as the union of all equivalence relations that equate
two states if they posses the same γO values (for each possible combination of
action a and equivalence class C).

We follow this style of definition but replace the predicate γO by a (nonneg-
ative) real-valued function γM : S × 2S �→ R

+, that calculates the cumulative
rate to reach a set of states C from a single state R:

γM(R,C) =
∑

{|λ|R λ−→ R′ and R′ ∈ C|}.



206 Ed Brinksma and Holger Hermanns

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

20.4

[E30]E
E30

2

2

0.2

0.2

0.8 0.8

Fig. 9. A Markov chain and its aggregated representative

In this definition we let
∑ {| . . . |} denote the sum of all elements in a multi-

set (of transition rates), where {| . . . |} delimits this multiset. The need for this
notational burden is best explained by means of an example.

Example 15. Considering Figure 8, the cumulative rate to reach any state in S
from state E30 is γM(E30, S) =

∑ {|0.2, 0.2|} which amounts to 0.4 due to our
definition.

We are now ready to lift bisimilarity to the setting of Markov chains.

Definition 13. For a given Markov chain (S, −→ , P ), an equivalence relation
E on S is a Markov bisimulation iff PEQ implies that for all equivalence classes
C of E it holds that

γM(P,C) ≤ γM(Q,C)

Two states P and Q are Markov bisimilar, written P ∼M Q, if (P,Q) is contained
in some Markov bisimulation E.

Thus ∼M is the union of all such equivalences. Indeed, it is itself a Markov
bisimulation and therefore the largest such relation (Note that as in Lemma 1
the relation E is presupposed to be an equivalence, and thus we could write ’=’
instead of ’≤’).

Definition 14. For a given Markov chain (S, −→ , P ) and a Markov bisimu-
lation E on S, define an aggregated chain (S/E , −→ E , [P ]E) where the Markov
transition relation −→ E is given by

[P ′]E
λ−→ E [Q′]E iff γM(P ′, [Q′]E) = λ.

Example 16. With the notation introduced in Chapter 2 each of the sets ,
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appearing in Figure 9 is a class of an equivalence relation
E on the state space of E30 satisfying Definition 13. In particular, we compute
the values
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) = 0.8

for the states in the respective classes, all other values of γM are zero. The
aggregated Markov chain [E30]E obtained by applying Definition 14 is depicted
on the right.
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Theorem 3. Let P be a Markov chain, describing the CTMC X and let E be a
Markov bisimulation on the state space of P . The aggregated chain PE describes
a homogeneous CTMC {X̃(t) | t ∈ R} such that for all equivalence classes C of
E,

Prob{X̃(t) = C} = Prob{X(t) ∈ C}.
Proof. The conditions imposed on a Markov bisimulation can be matched with
the definition of lumpability [34], see [27].

As a particular consequence, the stochastic process induced by factorising
with respect to a Markov bisimulation is again a MC.

As mentioned above this kind of aggregation is known as lumping. Lumping is
usually formulated with respect to a suitable partitioning of the state space. Here,
we have defined a suitability criterion in a coinductive way. Our partitioning
is obtained by means of a factorisation with respect to a bisimulation. This
coinductive definition can be exploited for an algorithmic computation of the
best possible lumping, see [24].

Weak equivalence. Hitherto we have studied only strong bisimilarity on Markov
chains. It seems to be equally worthwhile to investigate weak bisimilarity. For
this purpose, several questions have to be addressed.

First, what is the counterpart of a weak transition in terms of Markovian
transitions? In the non-stochastic setting we have used a weak transition relation
to successfully define weak bisimilarity. It has been based on the distinction
between internal actions (labelled τ) and external, observable actions. Such a
distinction is not obvious for Markovian chains, because there is no notion of
interaction with the external environment.

We may therefore refuse to think about weak relations on Markovian chains
at all. Alternatively we may decide that either none, or all of the Markovian
transitions are internal. In the former case, a weak Markovian bisimulation will
not differ from its strong counterpart, because there is no internal transition
that could be abstracted away. So, what about assuming that all Markovian
transitions are internal? The corresponding weak transition relation would then
combine sequences of Markovian transitions into a single ’weak’ transition, in the
same way as ε=⇒ combines sequences of τ−→ transitions. For instance, a sequence
P

λ−→ P ′ µ−→ P ′′ could be combined to a weak transition from P to P ′′ with
a parameter ν. This parameter subsumes the exponentially distributed sojourn
times in P and P ′, and it may, in general, be defined as a function φ(λ, µ).

Unfortunately, the sequence of two (or more) exponentially distributed delays
is no longer exponentially distributed. So, any particular choice of a function φ
will introduce (a possibly severe) error in the model. In other words, replacing
a sequence of Markovian transitions by a single weak Markovian transitions will
lead to a CTMC where it is impossible to reconstruct the stochastic behaviour
of the original chain. A result similar to Theorem 3 is thus not possible for any
kind of weak Markovian bisimulation. Approximate solutions to this problem
have been proposed, and we refer to [27] for a discussion of this topic.
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(λ).E
λ−→ E

E
λ−→ E′

E + F
λ−→ E′

F
λ−→ F ′

E + F
λ−→ F ′

Ei{[X := E]i /Xi} λ−→ E′

[X := E]i
λ−→ E′

Table 7. Operational semantic rules for MCc.

3.3 Algebra of Markov Chains

We now develop an algebraic view on Markov chains. To do so, we first define a
small, action less algebra, that allows us to generate Markov chains.

Definition 15. Let λ ∈ R+ and X ∈ V. We define the language MCc as the set
of closed expressions given by the following grammar.

E ::= 0 | (λ).E | E + E | X | [X := E ]i
The expression (λ).E, a delay prefixed expression, has the intuitive meaning that
a process (λ).P has to delay for some time before turning into the process P . The
amount of time needed to delay is determined by λ, which serves as a parameter
of an exponential distribution. In other words, the probability that (λ).P has to
wait less than t units of time before turning into process P equals 1 − eλt.

The semantics of MCc is depicted in Table 7, defining a Markov transition
relation −→ ⊂ MCc × R+ × MCc as the least multi-relation given by the rules.
A particular expression E then gives rise to a Markov chain with initial state E
and a discrete state space S, determined by the states reachable from E.

Note that, as before, an expressionE like (λ).E′+(µ).E′′ has two alternatives.
But different from Section 2 where the decision which alternative to take has
been nondeterministic this is not the case here. Instead, the decision is governed
by the probabilistic evolution of (λ).E′ and (µ).E′′, since a race is assumed to
exist between the different branches. The sojourn time of E, i.e. the time until
the state changes (to either E′ or E′′) is then exponentially distributed with
rate (λ+ µ). As a consequence of property (D) of exponential distributions, E′

(resp. E′′) will win the race with probability λ/λ+ µ (probability µ/λ+ µ).
In other words, imagine we want to add a probabilistic choice operator ⊕p

– that selects its left-hand side with probability p, and it’s right-hand side with
1−p. We could indeed do so easily, as long as it is guarded by some delay prefix.
We could define

(λ).(E′ ⊕p E′′) = ((1 − p)λ).E′ + (pλ).E′′ (6)

to manifest the probabilistic effect that the operator ’+’ has due to the race
condition.

This remark leads us to the algebraic properties of bisimilarity (or lumpa-
bility) in this context. From the above discussion, it is obvious that the laws in
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(C) E + F = F +E
(A) (E + F ) +G = E + (F + G)
(I ′) (λ).E + (µ).E = (λ + µ).E
(N) E + 0 = E

Table 8. Axioms for MC bisimilarity.

Table 4 cannot be valid in MCc without change. The idempotence law (I) clearly
contradicts the race condition we assume. Instead, a revised law (I ′) is needed
that reflects the minimum property (C) of exponential distributions. It is listed
in Table 8 together with the main equational laws characterising lumpability
[20].

4 Interactive Markov Chains

This section joins the models of the preceding two sections, continuous time
Markov chains and labelled transition system in an orthogonal fashion. It does
so by means of two types of prefixes. The action-prefixed expression a.P may
interact on action a and afterwards behave as expression E. The delay-prefixed
expression (λ).F has to delay for an exponentially distributed time according
to rate λ before turning into expression F . We first introduce the language
and discuss the equational properties we expect to hold for this language. Then
we match the equational theory with a corresponding operational definition (in
SOS style) and appropriate notions of semantic equivalences, based on strong
bisimulation and weak congruence.

4.1 Algebra of Interactive Markov Chains

Definition 16. Let a ∈ Aτ , λ ∈ R+, and X ∈ V. We define the language IMCc

as the set of closed expressions given by the following grammar.

E ::= 0 | a.E | (λ).E | E + E | X | [X := E ]i

Example 17. A simple example of an expression of IMCc is

a.(λ).(µ).a.(µ).0

Our intuition is as follows: The expression initially is ready to interact on action
a. Afterwards, it delays the next possible interaction on a by a sequence of
exponential delays, the first given by rate λ, the second given by rate µ. After a
second interaction on a it delays for another exponentially distributed duration,
before turning into the terminated expression.
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This small example of what we intend to do with IMCc does not cover all
possibilities. In general, we can combine delays and actions, such as in

a.P + (λ).Q

As a consequence, we have to develop an unambiguous view of the interplay of
actions and delays. To do so, we discuss the meaning of IMCc from an algebraic
perspective, by stating which expressions of IMCc can be equated with respect
to an intuitive notion of equality. It is important to observe that we have some
freedom with respect to what we consider to be intuitive, but there are also
constraints.

Strong bisimulation. First of all we intend to inherit the algebras PAc and IMCc

i.e., the laws we established earlier should remain valid. As a consequence, our
equational theory for strong bisimulation for IMC is based on the union of the
axioms listed in Table 4 and in Table 8. We could decide that this union is pre-
cisely covering all the cases we want to equate with a strong bisimulation. This
would mean that the meaning of a.P + (λ).Q has to be obtained somehow by
interpreting the class of all algebraically equivalent expressions, i.e. all expres-
sions into which it can be rewritten using the axioms. Here, we decide not to
follow this purely algebraic approach, but instead to add one further axiom that
corresponds to an operational intuition. This is the notion of maximal progress:
we assume that intuitively actions can happen as soon as possible. This means
that a behaviour such as a.P + (λ).Q will not be delayed at all if the action a
is instantaneously enabled. In this case, a.P + (λ).Q will behave just like a.P
(since the probability of the delay to finish is 1 − e−λ0 = 0). But how do we
know that action a is indeed enabled? We do not know this in general, because
the action may depend on some interaction with the environment which is de-
layed. But in the specific case where action a is the distinguished internal action
τ the environment cannot influence its occurrence, and therefore it can occur
instantaneously. Hence we can add an axiom

(P ) (λ).E + τ.F = τ.F

to our equational theory, reflecting our maximal progress assumption. This as-
sumption is often made in real-time process algebra [45,59,52,12].1

The resulting set of core axioms for strong bisimilarity on IMC is listed in
Table 9. All of them have appeared in the subalgebras of PAc and MCc, except for
(P ) and for the law (I ′′). The latter restricts the standard idempotence law (I)
(i.e., E +E = E) to action prefixed expressions, such that it is compatible with
(I ′). Recall that (I) contradicts the race condition assumed in the MC context,
and hence needs a refinement.

1 In the context of generalised stochastic Petri nets a similar assumption is present:
by definition, immediate transition are assumed to have a higher priority level than
Markov timed transitions [2].
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(C) E + F = F + E
(A) (E + F ) + G = E + (F + G)
(I ′) (λ).E + (µ).E = (λ + µ).E
(I ′′) a.E + a.E = a.E
(N) E + 0 = E

(P ) (λ).E + τ.F = τ.F

Table 9. Axioms for IMC strong bisimilarity.

(C) E + F = F +E
(A) (E + F ) + G = E + (F + G)
(I) a.E + a.E = a.E
(I ′) (λ).E + (µ).E = (λ + µ).E
(N) E + 0 = E

(P ) (λ).E + τ.F = τ.F

(τ1) a.τ.E = a.E
(τ1′) (λ).τ.E = (λ).E
(τ2) E + τ.E = τ.E
(τ3) a.(E + τ.F ) + a.F = a.(E + τ.F )

Table 10. Axioms for IMC weak congruence.

Weak congruence. Even though the axiom (P ) of strong bisimilarity involves
a specific treatment of internal actions, the axiom system in Table 9 does not
provide means to abstract from sequences of internal actions. Recall that Table 5
presents axioms (τ1)–(τ3) that reflect the power of weak congruence to eliminate
sequences of internal actions. A similar treatment of internal actions is desirable
for IMC, and we therefore postulate some axioms for a weak congruence on IMC.
The axioms are listed in Table 10. They extend the ones we have postulated
for strong bisimulation on IMC (because we want to preserve the equations of
strong bisimulation) with additional axioms that take care of internal actions.
The axioms (τ1)–(τ3) are known from the PAc context already, and axiom (τ1′)
is an obvious adaption of (τ1) to the delay prefixed case: if we can do an internal
move after some delay, we can also skip the internal move, but not the delay.

Studying the equational theory in Table 10 raises the question why axioms
(τ2) and (τ3) do not require a similar adaptation to the delay-prefix case as (τ1)
does. For (τ2), the answer is easy, because it is not specific for the action-prefix
case, it also covers the cases where E involves delay prefixes. But for (τ3) the
answer is more involved. The adapted candidate law

(τ3′) (λ).(E + τ.F ) + (λ).F = (λ).(E + τ.F )
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a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

F
a−→ F ′

E + F
a−→ F ′

Ei{[X := E]i /Xi} a−→ E′

[X := E]i
a−→ E′

(λ).E
λ−→ E

E
λ−→ E′ F � τ−→

E + F
λ−→ E′

E
λ−→ E′ F � τ−→

F + E
λ−→ E′

Ei{[X := E]i /Xi} λ−→ E′

[X := E]i
λ−→ E′

Table 11. Operational semantic rules for IMCc.

is not sound for IMC weak congruence, since on the left hand side, the time
needed before being able to behave as F is governed by an exponential distribu-
tion with rate 2λ, while the process on the right is slower, since it evolves into F
after a delay with a rate of only λ. The fact that law (τ3′) is invalid shades some
interesting light on our definition, and suggests a resemblance to the behavioural
equivalence known as branching bisimulation [54]. The interested reader is re-
ferred to [19] for a detailed discussion concerning this similiarity.

We conclude our an axiomatic view on IMC by pointing out that this per-
spective still has to be matched by an operational definition of the semantics
that matches these axioms – up to appropriate notions of equalities, which also
need to be defined.

4.2 Semantics

Interactive Markov Chains involve two types of prefixes. On the semantic level
this leads to a model with a twofold transition relation −→ and −→ . The
former represents action transitions, the latter represents Markov transitions.
This should not be surprising, since we strive for an orthogonal extension of PAc

and MCc.
To give a meaning to elements of IMCc we define an operational semantics

on the basis of the SOS-rules introduced for PAc (Table 2) and MCc (Table 7),
except for one change.

Definition 17. The action transition relation −→ ⊂ IMCc × Aτ × IMCc is the
least relation and the Markov transition relation −→ ⊂ IMCc × R

+ × IMCc is
the least multi relation given by the rules in Table 11, where E � τ−→ denotes that
there is no E′ ∈ IMCc such that E τ−→ E′.

Compared to the rules in Table 2 and, Table 7, two rules are now equipped
with negative premises of the form E � τ−→ meaning that no internal transition can
be performed by E. Only in this case, a Markov transition can happen in the
context of choice. This negative premise2 is used to encode maximal progress:
2 The use of a negative premise is not mandatory to make the above axiom system
sound. Alternatively, one can take the operational rules as the plain union of the ones
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An expression is only allowed to delay, if it has nothing internal to do instan-
taneously. Note that the additional negative premise is only influencing the be-
haviour of expressions that involve both delay prefixes and action prefixes. So, if
restricted to the sublanguages PAc and MCc, the operational semantics reduces
to the ones introduced in Table 2 and Table 7.

Example 18. The semantics of the process E65 defined by (2λ).(τ.0 + a.0) is
depicted in the upper left of Figure 10. As another example, the semantics of
the process E66 defined by [X1 := τ.X2 , X2 := τ.X1 + (2λ).(τ.0 + a, 0)]1 is de-
picted in the upper right of the figure.

4.3 Equivalence

We now investigate how equivalences on IMCc can be defined. Action transitions
and Markov transitions coexist in IMC. Meaningful equivalences for IMC should
thus reflect their coexistence. Strong and weak bisimilarities will therefore be
based on the respective notions for PAc and MCc. Additionally, the interrelation
of action and Markov transitions has to be captured as well, according to the
axioms we have postulated in Section 4.1.

Strong bisimulation. We introduce strong bisimilarity based on Definition 7 and
13.

Definition 18. An equivalence relation E on IMCc is a strong bisimulation iff
P E Q implies for all a ∈ Aτ

1. P
a−→ P ′ implies Q

a−→ Q′ for some Q′ with P ′ E Q′,
2. γM(P,C) ≤ γM(Q,C) for all equivalence classes C of E.
Two processes P and Q are strongly bisimilar (written P ∼ Q) if they are con-
tained in some strong bisimulation.

This definition amalgamates strong bisimilarity for PAc and for MCc. In order
to compare the stochastic timing behaviour, the cumulative rate function γM is
used, as motivated in Section 3.2. Formally speaking bisimilarity conservatively
extends [13] the respective notions on basic process algebra processes andMarkov
chains. This answers indeed why we have reused the symbol ∼, that has been
used in Section 2.4 already to denote strong bisimilarity on PAc.

We obtain the following desirable results:

for PAc and MCc, as done in [20]. In this case a more involved definition of strong
and weak bisimulation is needed that must now incorporate maximal progress. The
way we proceed here is sketched in [19, Sec. 6.1] and elaborated in [7]. The solution
is didactically more appealing, but has the drawback that divergence may imply
the awkward phenomeon of a time deadlock: If a state is on a cycle of internal
transitions, this implies that no Markov transition (indicating time progress) can be
derived, even though the system may return to this state via the internal steps ad
infinitum.
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Proposition 3. Strong bisimilarity is

– an equivalence relation on IMCc.
– a strong bisimulation on IMCc.
– the largest strong bisimulation on IMCc.

In addition, strong bisimulation turns out to be the desired notion of equivalence
relative to the equational theory we postulated.

Theorem 4. Strong bisimilarity is a congruence relation with respect to the
operators of PAc, and it satisfies the axioms in Table 9.

By adding additional laws to handle recursion the equational theory induced by
Table 9 can be shown to completey characterise strong bisimulation, see [19].

Weak congruence. Strong bisimilarity does not abstract from sequences of in-
ternal transitions like weak bisimilarity does (cf. Section 2.4). We will therefore
try to find a corresponding definition of a weak relation for IMC, that is, a weak
relation that complies to the axioms we have postulated in Table 10.

A few questions have to be addressed in order to define weak bisimulation
on IMC properly. While the treatment of action transitions can follow the lines
of Section 2.4, the treatment of Markov transitions in a weak bisimulation has
to be clarified. As remarked in Section 3.2 it is impossible to replace a sequence
of Markov transitions by a single Markov transition without affecting the prob-
ability distribution of the total delay. So, we are forced to demand that Markov
transitions have to be bisimulated in the strong sense, using function γM , even
for a weak bisimulation. However, we allow them to be preceded and followed
by arbitrary sequences of internal action transitions. These sequences are, ac-
cording to Definition 9 given by ε=⇒, the reflexive and transitive closure of τ−→.
To incorporate these sequences into the definition of weak bisimulation is a bit
involved technically. For strong bisimilarity, γM has been used to cumulate rates
of Markov transitions that directly lead from a state P into a specific equiva-
lence class C. We broaden this treatment in order to keep track of the impact
of internal transitions that follow a Markov transition: We cumulate all rates
of Markov transitions leading to states that can internally evolve into an ele-
ment of class C. For this purpose, we define the internal backward closure Cτ

as the set of processes that may internally evolve into an element of a set C, i.e.
Cτ = {P ′ | ∃P ∈ C : P ′ ε=⇒ P}.
Example 19. Concerning the IMC E67 in Figure 10, the internal backward clo-
sure
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The treatment of internal sequences preceding a Markov transitions can fol-
low the style of Definition 10. Thus, whenever there is a sequence of internal
transitions to some state P , the cumulative rate γ(P,Cτ ) should be taken into
account for comparison purposes. This requirement will be made more precise
in the following definition.



Process Algebra and Markov Chains 215

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

a

aa

ν

E68

ν

τ

τ

τ

2ν

E66

τ

τ

E67

E65

τ

2ν

a

ττ

τ

ν

τ

ν

Fig. 10. Some characteristic examples for weak bisimilarity.

Definition 19. An equivalence relation E on IMCc is a weak bisimulation iff
P E Q implies for all a ∈ Aε

1. P
a=⇒ P ′ implies Q

a=⇒ Q′ for some Q′ with P ′ E Q′,
2. P

ε=⇒ P ′ imply Q
ε=⇒ Q′ for some Q′ with γM(P ′, Cτ ) ≤ γM(Q′, Cτ ) for

all equivalence classes C of E.
Two processes P and Q are weakly bisimilar (written P ≈ Q) if they are con-
tained in some weak bisimulation.

We illustrate the distinguishing power of ≈ by means of some examples.

Example 20. E65 and E66 depicted in Figure 10 are equivalent even
though the precise argument is somewhat involved. We have for E65 that
γM( ,
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) = 2ν, as well as γM( ,
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���τ

) = 2ν. E66 has value 0 for both
classes, but this does not violate the conditions imposed by clause (2) of Defini-
tion 19. Instead, we have to find a state reachable via τ inside class satisfying

γM( ,
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) ≥ 2ν ≤ γM( ,
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). Indeed we get the values 2ν precisely for
the leftmost state reachable from E66, and hence clause (2) of Definition
19 is satisfied. On the other hand, also the rate of E66 has to be investigated.
We see that for E66, γM( ,
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) = 0 = γM( ,
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), which is at most the
values of E65. Note that in this reasoning, it is important that we do not demand
equality of cumulated rates in clause (2), but instead demand to find a matching
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state with at least (≤) the cumulated rates of the state we have to check. Hence
E65 ≈ E66.

The process E67 is equivalent to the former two, because γM( ,
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and γM( ,
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) = 2ν. In contrast, γM(
���
���
���

���
���
���,

���
���
���

���
���
���τ

) = ν whence we have that
E68 is not weakly bisimilar to the former three processes.

We get the following desirable properties of ≈ .

Proposition 4. Weak bisimilarity is

– an equivalence relation on IMCc.
– a weak bisimulation on IMCc.
– the largest weak bisimulation on IMCc.
– a congruence with respect to all operators of IMCc except the choice operator
’+’.

The fact that weak bisimilarity is not substitutive with respect to choice
is inherited from non-stochastic weak bisimilarity, cf. Section 2.4. In order to
rectify this situation we identify a specific congruence contained in ≈, along the
lines of Definition 11.

Definition 20. P and Q are weakly congruent, written P � Q, iff for all a ∈ Aτ

and all C ∈ IMCc/ ≈:
1. P

a−→ P ′ implies Q
ε=⇒ a−→ ε=⇒ Q for some Q′ with P ′ ≈ Q′,

2. Q
a−→ Q′ implies P

ε=⇒ a−→ ε=⇒ P ′ for some P ′ with P ′ ≈ Q′,
3. γM(P,C) = γM(Q,C),

Weak congruence strengthens the requirement of weak bisimilarity of initial
internal transitions in precisely the same way as in Definition 11. It requires
that an initial internal transition has to be matched by at least one internal
transition. This small change it is again sufficient to fix the congruence problem
with respect to choice: weak congruence is a proper substitutive relation with
respect to all language operators.

Theorem 5. Weak congruence is a congruence with respect to all operators of
IMCc, and it satisfies the axioms in Table 10.

By adding further laws the equational theory induced by Table 9 can be shown
to be sound and complete with respect to weak congruence on IMCc [19,7] .
Furthermore, weak congruence is the coarsest congruence contained in weak
bisimilarity, as a consequence of the following lemma (cf. Lemma 3).

Lemma 5. E1 � E2 iff, for each E3 ∈ IMCc, E1+E3 ≈ E2+E3 and E3+E1 ≈
E3 + E2.

As a result, we have obtained two substitutive equivalence notions on IMCc:
strong bisimilarity and weak congruence, a distinguished subset of weak bisimi-
larity. The interrelation between these equivalences is expressed in the following
lemma (cf. Lemma 4).
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P
λ−→ P ′ Q � τ−→

P a1 . . . an Q
λ−→ P ′ a1 . . . an Q

Q
λ−→ Q′ P � τ−→

P a1 . . . an Q
λ−→ P a1 . . . an Q′

P
λ−→ P ′

hide a1 . . . an in P � τ−→
hide a1 . . . an in P

λ−→ hide a1 . . . an in P ′

Table 12. Structural operational rules for parallel composition and abstraction.

Lemma 6. ∼ ⊂ � ⊂ ≈.

Summarizing, we have managed to integrate basic process algebra – where
strong bisimulation and weak congruence are reference notions – and Markov
chain algebra – where lumpability is central – in a single algebra. An obvious
next step now is to extend this algebraic core with the other operators from
process algebra to enable the concurrent composition of IMC expressions and
abstraction from observable actions.

4.4 Concurrency and Abstraction

The two operators for abstraction and parallel composition, cf. Section 4, can be
added to IMCc without disturbing any of the theory. We extend IMCc with these
operators by stipulating that if P and Q are in IMCc then P a1 . . . an Q and
hide a1 . . . an in P are is in IMCc as well. The semantics of these operators are
given by the operational rules in Table 2, Table 3, and Table 12.

According to this definition, action transitions are treated precisely as in the
PAc setting. Markov transitions −→ are only possible if maximal progress is
assured, which is incorporated via negative premises. Negative premises in such
rule schemata have to be treated carefully in general, since they may affect the
well-definedness of the induced transition relation [17]. In this case, however, it
is not difficult to show that the rule schemata are well-defined.

In the case of parallel composition, it should be noted that the Markovian
delay transitions are interleaved as if they were standard action transitions, in
particular without adjusting rates. This is a consequence of the memoryless
property (cf. property B on page 204), and one of the principal reasons why
exponential distributions fit so well to process algebra. In the following Section 5
we will elaborate on the appropriateness of this combination.

One of the consequences of this independent delaying is that the expansion
law (X) (cf. Table 6) can be extended in a rather straightforward way to Interac-
tive Markov Chains. Table 13 lists the resulting law, together with an additional
law for abstraction, that (together with the ones in Table 6) allow one to rewrite
parallel composition, as well as abstraction into the basic operators of IMCc.

Example 21. In order to exercise the modelling of concurrent behaviour with
IMC we consider two processes, E71 and E72, depicted in Figure 11. They are
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(X ′) P a . . . an Q =
X

(λi).(Pi a . . . an Q) +
X

aj /∈{a...an}
aj .(Pj a . . . an Q) +

Pz }| {
P

(λi).Pi+
P

aj .Pj

X
(µk).(P a . . . an Qk) +

X
bl /∈{a...an}

bl.(P a . . . an Ql) +

P
(µk).Qk+

P
bl.Ql| {z }

Q

X
aj=bl∈{a...an}

aj .(Pj a . . . an Ql)

(H2′) hide a . . . an in (λ).P = (λ).hide a . . . an in P

Table 13. Axioms for rewriting parallel composition and abstraction on IMCc.

ντ

λ

λ

ν

a

E72

ν a

λa

τλ

E71

λ λλ

E71 a E72

Fig. 11. Parallel composition of IMC.

defined by [X1 := (λ).a.τ.X1]1 , respectively [X1 := (ν).(λ).a.X1 )]1 . Their par-
allel composition E71 a E72 is depicted on the right of the figure. Note that
maximal progress enforces the τ -transition of E71 to take precedence over a delay
(with rate ν) of E72 prior to reeintering the initial state.

Figure 12 illustrates the semantics of (hide a in E71 a E72 ), a process
where all actions are internalised. In this figure, states shaded with equal patterns
are weakly congruent. The shading indicates that this process is weakly congru-
ent to a process E73 defined by [X1 := (ν).(2λ).(λ).X1 + (λ).(λ).(ν).X1 )]1 . This
is a small Markov chain depicted on the right of Figure 12. The fact that

(hide a in E71 a E72 ) � E73,

means that the concurrent execution of the Interactive Markov Chains E71 and
E72 can be concisely represented by the Markov chain E73. In other words, we
have generated a small Markov chain from the composition of two IMCs.

This is a very simple example showing howMarkov chains can be compositionally
specified with IMC. Subsequently, the model can be evaluated with standard
analysis techniques for Markov chains, cf. [18]. A much larger case study is
developed in [22], where a Markov chain model of 720 states is derived from
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Fig. 12. Compositional specification of a Markov chain.

an IMC specification of the plain old telephone system involving more than
107 states. To circumvent the state space explosion problem, the case study
makes heavy use of substitutivity (i.e., congruence) properties and algorithms
for simplifying (i.e., lumping) the state space (of components) according to weak
congruence. We refer to [19] for further reading on IMC.

5 Related Work: A Comparison of Algebraic Principles

As was already mentioned in the introduction a fair number of stochastic process
algebras have been developed during the last decade or so, IMC being one of
them. In this section we want to make a comparison between them. We will not
do so in terms of the complete formalisms, but will organise our discussion around
the potential resolution strategies for a number of issues that arise inevitably
when trying to combine well-known process algebraic principles with the features
of continuous time Markov chains. This will give, we hope, a more generic insight
into the (im)possibilities of the various approaches.

We will forego the challenge of defining an integrating semantical model for
the various formalisms for a deeper mathematical comparison of the various
constructs. Instead, we will try and make our comparison in terms of the various
algebraic principles, i.e. in terms of the sort of equational laws that are involved.
We think that this is the best level of abstraction to discuss the different options
and their consequences.

The three central questions that must be addressed when developing Marko-
vian process algebras are:

1. the meaning of choice
2. the meaning of concurrent composition
3. the meaning of synchronisation

We address these questions in the following sections. Our notational vehicle
will be slightly different from that of IMC, because the other stochastic process
algebras do not have the separation between actions and delays. We will therefore
have only one action-prefix construct, viz.
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(a, λ).B

meaning that action a may take place after an exponentially distributed delay
with rate λ, resulting in the behaviour specified by B. As we will also want to
discuss some aspects stochastic process algebra in a non-Markovian setting, we
also introduce the notation

(a, F ).B

where F is denotes a (general) distribution of the delay associated with a. We
allow F to be denoted by an expression over one or more stochastic variables
whose distributions are (implicitly) given, e.g. (a, X).B implies that a is delayed
with the distribution of X , and (a, f(X,Y )).B means that a is delayed with the
distribution defined by f(X,Y ) for given distributions of X and Y .

5.1 The Meaning of Choice

The choice or summation operator affects the branching structure of the transi-
tion system that is described: its SOS style semantics yields multiple outgoing
transitions from a state in the underlying transition system. In CTMCs such
outgoing transitions are interpreted as creating a race condition, i.e. they are
seen as processes that are competing for the fastest service according to their
distributions. As we have seen, for exponential distributions the time until the
first transition fires is again exponentially distributed, with a rate that is the
sum of the rates of the individual transitions.

It stands to reason that in a Markovian process algebra we should somehow
be able to add up the rates of all transitions with identical action labels. Indeed,
such transitions will all be in a race condition when the environment has enabled
the corresponding action. Using the probabilistic choice operator ⊕p introduced
in Section 3.3 we can write this down as an algebraic law, the race condition
principle (RCP):

(a, λ).B + (a, µ).C = (a, λ+ µ).(B ⊕ µ
λ+µ

C) (7)

Note that the right-hand side of the equation can be interpreted as a pro-
cess for which an a-transition with the combined rates leads to a superposition
state that, when it is reached, reduces instantaneously to one of its constituents
states. This occurs with a probability proportional to the relative weight of the
corresponding rate.

This principle can also be formalised for the non-Markovian case, where a
race condition between arbitrary continuous distributions takes place (e.g. as in
semi-Markov chains):

(a, X).B + (a, Y ).C = (a,min(X,Y )).(B ⊕P{Y <X} C) (8)
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The above laws make it clear that in a stochastic setting the choice operator
has to take the capacity of its arguments into account. This is even clearer
in the case of IMC, where the delay operator can be interpreted as a scalar
multiplication w.r.t. choice:

(λ).B + (µ).B = (λ+ µ).B (9)

This is in stark contrast to the usual interpretation of the choice operator
in process algebra, which could be referred to as structural , in the sense that
only of the arguments is chosen, and therefore there is no interference with
properties of the conflicting transitions. This leads to the idempotency law for
choice, which could be seen as a kind of ‘poor man’s choice’: choosing between
identical arguments is as good as no choice at all:

B +B = B (10)

The difference between the laws (7) and (10) is very important, as the choice
operator plays a crucial role in the formulation of other laws in process algebra,
the so-called expansion laws in particular. Below we will discuss the implications
that the capacitive interpretation of choice in the context of parallel composition.

It is possible to interpret (10) as a limit case of (7) by interpreting the former
as the behaviour for immediate transitions, cf. [27]. They can be thought of as
having an infinite rate ∞, with the property ∞+∞ = ∞. This approach makes
(10) compatible with (7) for actions for which this is a reasonable assumption
(e.g. τ -actions).

The process algebra EMPA [4] also wants to apply (10) to so-called passive
actions, actions that have no associated (finite) rates, but obtain them by syn-
chronising with non-passive actions. This, however, leads to complications, as
we will see below.

5.2 Concurrent Composition

The next operator that we consider is the parallel or concurrent composition of
processes. As we will consider the issue of synchronisation of actions separately,
here we concentrate on ‘pure’ interleaving, i.e. parallel composition without syn-
chronisation of actions between components.

To guide our discussion we consider the following, simple expansion law of
standard process algebra:

b.B c.C = b.(B c.C) + c.(b.B C) (11)

The first thing that we can observe is that for general distributions the in-
terleaving law does not hold, i.e.

(b, X).B (c, Y ).C �= (b,X).(B (c, Y ).C) + (c, Y ).((b, X).B C) (12)
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because the occurrence of b after c has taken time to occur generally has another
distribution than b occurring initially.

One way to deal with this complication is to restrict to exponential distri-
butions, i.e. the Markovian case. Because of the memoryless property of these
distributions, they are perfectly compatible with the interleaving law as distri-
butions are not affected by the conditional information that one action takes
place only after the occurrence of another. So we have

(b, λ).B (c, µ).C = (b, λ).(B (c, µ).C) + (c, µ).((b, λ).B C) (13)

showing again the perfect match of interleaving process algebra and continuous
time Markov chains, as was already evident from the elegant theory of IMC.

It is worthwhile to consider also ways out of the complications of (12), as for
many applications the assumption of memorylessness is too strong. One straight-
forward way is to complicate the interleaving law by adding the conditional
information that was missing. In this way we obtain:

(b, X).B (c, Y ).C = (b, X).(B (c, 〈Y − X |X < Y 〉).C) +
(c, Y ).((b, 〈X − Y |X > Y 〉).B C) (14)

where 〈Y − X |X < Y 〉 denotes the distribution of Y − X under the condition
that X < Y .

The disadvantage of this approach is that the formula complicates very
rapidly if more than two actions interleave with nested conditional distribu-
tions. This is unattractive, not only algebraically, but also in the sense that the
calculation of such complicated conditional distributions is computationally ex-
pensive, e.g. when doing simulations. Presumably because of this reasons this
approach has not been pursued in (non-Markovian) process algebra.

A second way out is provided by following the separation of concerns between
delay transitions and actions, as was also done in IMC. If this idea is combined
with the use of stochastic clocks to guard the occurrence of transitions, we can
formulate interleaving again in terms of an elegant algebraic law, even if one
considers the non-Markovian case. Let {X1, . . . , Xn}B mean that in the initial
state of B the clocks X1, . . . , Xn are set with random samples according to their
associated distributions overR+, after which they start counting down until they
expire (reach 0). Let (X → b) mean that b is delayed until X has expired. With
these additional stochastic clock operators we now get a new interleaving law,
viz.

{X,Y }(X → b).B (Y → c).C = (15)
{X,Y }((X → b).(B (Y → c).C) + (Y → c).((X → b).B C))

where we see that the guarded actions (X → b) and (Y → c) are interleaved,
but the clock setting {X,Y } is not. This approach to non-Markovian process
algebra is elaborated in [33].

A final approach that we wish to mention in connection with the interleaving
law in a stochastic context is to give up the law altogether. This idea belongs to
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the semantic school of the ‘true concurrency’, which insists that parallel compo-
sition is fundamentally different from interleaving and that the two should not
be equated. The causal dependencies on the left-hand and right-hand sides of the
interleaving law are different (b and c are independent versus b causes/precedes
c or vice versa) [36]. It is possible to extend so-called partial-order semantics for
process algebra with stochastic information to obtain suitable non-interleaving
semantical models for stochastic process algebras. We refer to [8,32] for further
reading.

5.3 Synchronisation

Probably the most intriguing question in the design of stochastic process algebra
is related to the synchronisation of stochastic actions of two concurrent system
components. If both actions are subject to stochastic delays, what should be the
stochastic delay of their synchronised occurrence?

Looking at this question in its simplest process algebraic form, we consider
standard process algebraic law

a.B a a.C = a.(B a C) (16)

and wonder what are reasonable functions ’∗’ that would make the corresponding
stochastic equation hold true:

(a, X).B a (a, Y ).C = (a, X ∗ Y ).(B a C) (17)

From a stochastic point of view, one may immediately think of various op-
erationalisations of ’∗’, such as the maximum of the distributions, or their con-
volution, minimum, average etc. Interestingly enough, however, the algebraic
properties of the involved operators already impose certain restrictions on ’∗’ by
themselves.

Let us consider the term ((a, X).B + (a, Y ).C) a (a, Z).D. The interplay
of choice and synchronisation allows us to derive:

((a, X).B + (a, Y ).C) a (a, Z).D = (by (8))
(a,min(X,Y )).(B ⊕P{X>Y } C) a (a, Z).D = (by (17))
(a,min(X,Y ) ∗ Z).((B ⊕P{X>Y } C) a D) = (distributing ⊕)

(a,min(X,Y ) ∗ Z).((B a D) ⊕P{X>Y } (C a D)) (18)

On the other hand, by assuming that we have a (classical) expansion law for
synchronisation of the form

((a, X).B + (a, Y ).C) a (a, Z).D = (19)
(a, X ∗ Z).(B a D) + (a, Y ∗ Z).(C a D)

we obtain by applying the RCE (8) to the right-hand side:

(a,min(X ∗ Z, Y ∗ Z)).((B a D) ⊕P{X∗Z>Y ∗Z} (C a D)) (20)
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By equating the terms of (18) and (20) we can conclude that synchronisation
with expansion in the context of RCE necessarily leads to the following two
requirements:

min(X,Y ) ∗ Z = min(X ∗ Z, Y ∗ Z) (21)
P{X < Y } = P{X ∗ Z < Y ∗ Z} (22)

In the face of these requirements, it is interesting to see how the main Marko-
vian process calculi have dealt with them.

PEPA. This stochastic process algebra [27] deals with the situation by rejecting
classical expansions like (19). To synthesise choice and synchronisation PEPA
takes its recourse to so-called apparent rates , which replace the original rates
when expanding. Interestingly enough, these rates can be obtained in a general
setting by combining RCE with (17) only:

((a, λ).B + (a, µ).C) a (a, ν).D = (by (7))
(a, λ+ µ).(B ⊕ µ

λ+µ
C) a (a, ν).D = (by (17))

(a, (λ+ µ) ∗ ν).((B a D) ⊕ µ
λ+µ

(C a D)) = (by (7))(
a,

λ

λ+ µ
((λ + µ) ∗ ν)

)
.(B a D) +

(
a,

µ

λ+ µ
((λ+ µ) ∗ ν)

)
.(C a D) (23)

The two rate parameters occurring in (23) correspond to Hillston’s apparent
rates. Note that here, however, they are actually independent of the particular
synchronisation function ’∗’ that is used. Hillston instantiates ’∗’ to theminimum
of rates (corresponding to the distribution of the slowest process): for ν greater
than λ+ µ we obtain:

((a, λ).B + (a, µ).C) a (a, ν).D = (a, λ).(B a D) + (a, µ).(C a D).

In the converse case that ν < λ+ µ we get:

((a, λ).B + (a, µ).C) a (a, ν).D =(
a,

λν

λ+ µ

)
.(B a D) +

(
a,

µν

λ+ µ

)
.(C a D).

TIPP. The requirements (21) and (22) can be reformulated for the Markovian
case in terms of rates, where we assume that ’∗’ is a function over rates , as they
uniquely determine exponential distributions. We get:

(λ + µ) ∗ ν = (λ ∗ ν) + (µ ∗ ν) (24)
λ

λ+ µ
=

λ ∗ ν

(λ+ µ) ∗ ν
(25)
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An obvious solution to fulfil these requirements is followed in the TIPP alge-
bra [23,21], where ’∗’ is interpreted as ordinary multiplication. Although this is a
very simple and computationally attractive solution for the synchronisation op-
erator, the operational intuition behind this choice is not at all obvious. There
is no useful stochastic interpretation of the multiplication of rates that corre-
sponds to some abstract mechanism for synchronisation. In TIPP, therefore, the
interpretation of ’∗’ is only motivated by its algebraic simplicity.

Buchholz, who essentially adopts this solution too [11], has given a sophisti-
cated twist to the idea to make it more acceptable. For each action a he stipulates
the existence of a systemwide (reference) rate µa. His action-prefix operators then
have the format (a, r).B where the rate of the associated transition is defined
as r.µa. In this way r defines the relative capacity of a component w.r.t. an ac-
tion occurrence. At synchronisation these relative capacities are multiplied, e.g.
(a, 2) ∗ (a, 0.5) = (a, 1).

Although, the multiplication idea in most of its forms remains questionable
as an operational interpretation of synchronisation, it is attractive from the point
of view of system decomposition. When we want to decompose a complicated
system into a set of simpler systems, then this may be useful from an analytical
point of view, even if its does not have a direct operational (or architectural)
interpretation. In much of the work centred around (Kronecker) product forms ,
this approach is therefore, often implicitly, followed [50,15].

EMPA. The stochastic process algebra EMPA [4] deals with synchronisation
by imposing some restrictions. It starts from an operational interpretation of
synchronisation, viz. that all synchronisations take place in a client/server model,
where several clients may request a service represented by synchronisation on a
given action and one server grants such requests. In such a setup it is reasonable
to assume that the server determines the rate of service, and that the clients are
‘passive’ in this respect.

Algebraically this can be modelled by assuming that all clients have infinite
rates ∞ (in principle they are willing to be served instantaneously), and that
synchronisation is interpreted as selecting the minimal rate (i.e. the rate of the
slowest process), which ultimately means selecting the rate of the server. In
formula’s we get:

∞ ∗ ∞ = ∞ (26)
λ ∗ ∞ = ∞ ∗ λ = λ (27)

Assuming at most one synchronising action carries a rate parameter different
from ∞, these properties are consistent with (24) and (25). In this way we obtain
expansion laws similar to (19):

((a, λ).B + (a, µ).C) a (a,∞).D = (a, λ).(B a C) + (a, µ).(B a C) (28)
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On the other hand, when applying this principle to multiple passive actions
the EMPA approach is not free of complications, as it is unclear how the rate
ν should be ‘distributed’ over the passive components. The naive solution with
classical expansion does not work here if one also insists on having the idempo-
tency law (10) for passive actions as EMPA does, e.g.

(a, λ).(B a C)
= (a,∞).B a (a, λ).C
= ((a,∞).B + (a,∞).B) a (a, λ).B
= ((a,∞).B a (a, λ).C + ((a,∞).B a (a, λ).C
= (a, λ).(B a C) + (a, λ).(B a C)
= (a, 2λ).(B a C)

The solution of this problem in the original definition of EMPA was defective;
its revision in a more recent definition [6] essentially boils down to the imposition
of certain syntactical requirements to avoid such situations.

IMC. Because of its separation between actions and delays IMC essentially
manages to avoid the complications with synchronisation of the other calculi.
Synchronising actions does not involve the synchronisation of delays, and delay
prefixes do not synchronise, but interleave. Consequently, a (rate) synchronisa-
tion function ‘∗’ is not needed.

By itself, however, this does not guarantee that the IMC approach provides
a natural model for synchronisation. To see that this is indeed the case, we
‘translate’ combined prefixes like (a, λ).B into their IMC counterparts of the
form (λ).a.B. If we now look at the induced form of (17) under this translation
we get:

(λ).a.B a (µ).a.C = (λ).(µ).a.(B a C) + (µ).(λ).a.(B a C) (29)

The right-hand side indicates that action a will take place after a delay of
(λ).(µ) or (µ).(λ), whichever is fastest. This is equivalent to a delay with the
distribution of the stochastic value that is the maximum of the two exponential
delays. This has a very natural operational interpretation: when synchronising
the delay is determined by the slowest synchronisation party. The Markovian
process algebras that combine actions and delays cannot handle this situation,
because the maximum of two exponential distributions is no longer an exponen-
tial distribution itself, and therefore falls outside the scope of the model. As in
IMC delays can be represented by combinations of exponential delay transitions,
it can accommodate such non-exponential distributions within its model. It can,
in fact, represent delays from the much larger class of phase-type distributions
[43], which can approximate general continuous distributions arbitrarily closely
(i.e. it is a dense subset of the set of continuous distributions).
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6 Conclusion

In this paper we have shown how continuous time Markov chain models can be
integrated in the process algebraic framework for the modelling and analysis of
reactive systems. To do so, we have reviewed the main ingredients of standard
process algebra and introduced the basic concepts of continuous time Markov
chains. We have observed how Markov chains can be interpreted as transition
systems that can be described by process algebraic means, yielding an algebra
of Markov chains.

The proces algebraic treatment of Markov chains immediately induces a com-
positional framework for their representationa and analysis. Syntactically, (large)
Markov chains can be represented as the concurrent composition of simpler
chains. Semantically, the stochastic version of strong bisimulation equivalence
captures exactly the lumpability criterion for Markov chains that is used to sim-
plify chains by the aggregation of equivalent states. As strong bisimilarity is a
congruence relation w.r.t. the process algebraic operators, such simplifications
can be carried out componentwise (or compositionally) in the algebraic frame-
work, which greatly improves the practical applicability of the method for large
chains.

As a next step we have shown that the algebra of Markov chains itself can be
merged successfully with a standard process algebra over actions. In particular
we have presented the algebra of Interactive Markov Chains (IMC), which can
be used to model systems that have two different types of transitions: Marko-
vian delays (represented by their rates), and actions (represented by their action
names). We have shown that in IMC we can define both a strong and a weak vari-
ant of stochastic bisimulation. Just like in the standard theory weak bisimilarity
is not a congruence w.r.t. the choice operator, but a suitable weak congruence
can be identified in the canonical way.

IMC provides a process algebraic framework for the integrated modelling
and analysis of both functional and (Markovian) performance aspects of reac-
tive systems. Markov chain models can be obtained from the integrated models
by abstraction of all observable system actions and subsequent simplification
modulo weak bisimulation. The latter can be done compositionally by applying
reduction modulo weak congruence componentwise. Of course, this may involve
the resolution of remaining nondeterminism.

In the last part of our survey we have compared IMC with a number of other
(Markovian) stochastic process algebra’s that have been developed with similar
goals. In contrast to IMC the other approaches do not have a separation between
action transitions and delays, but instead combine them into composite actions
of the form (a, λ), meaning that action a can occur only after an exponentially
distributed delay with rate λ. In many respects these algebras are quite compa-
rable to IMC. The main exception is the treatment of action synchronisation,
which in IMC is straightforward and follows standard process algebra. The other
approaches differ according to the different mechanisms by which the rates of
the synchronised actions are determined. In IMC delays are not synchronised
but interleaved, which for exponential distributions is equivalent to waiting for
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the longest delay. This seems an intuitively natural choice. Because of the sep-
aration between delays and actions the treatment of synchronisation in IMC is
quite elegant, and in our opinion the preferred approach when the maximal delay
interpretation of synchronisation applies.
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