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1 Introduction

Many applications that handle information on the internet would be completely
inadequate without the support of information retrieval technology. How would
we find information on the world wide web if there were no web search engines?
How would we manage our email without spam filtering? Much of the develop-
ment of information retrieval technology, such as web search engines and spam
filters, requires a combination of experimentation and theory. Experimentation
and rigorous empirical testing are needed to keep up with increasing volumes of
web pages and emails. Furthermore, experimentation and constant adaptation
of technology is needed in practice to counteract the effects of people that de-
liberately try to manipulate the technology, such as email spammers. However,
if experimentation is not guided by theory, engineering becomes trial and er-
ror. New problems and challenges for information retrieval come up constantly.
They cannot possibly be solved by trial and error alone. So, what is the theory
of information retrieval?

There is not one convincing answer to this question. There are many theo-
ries, here called formal models, and each model is helpful for the development of
some information retrieval tools, but not so helpful for the development others.
In order to understand information retrieval, it is essential to learn about these
retrieval models. In this chapter, some of the most important retrieval models
are gathered and explained in a tutorial style. But first, we will describe what
exactly it is that these models model.

1.1 Terminology

An information retrieval system is a software programme that stores and man-
ages information on documents, often textual documents but possibly multime-
dia. The system assists users in finding the information they need. It does not
explicitly return information or answer questions. Instead, it informs on the
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existence and location of documents that might contain the desired informa-
tion. Some suggested documents will, hopefully, satisfy the user’s information
need. These documents are called relevant documents. A perfect retrieval sys-
tem would retrieve only the relevant documents and no irrelevant documents.
However, perfect retrieval systems do not exist and will not exist, because search
statements are necessarily incomplete and relevance depends on the subjective
opinion of the user. In practice, two users may pose the same query to an in-
formation retrieval system and judge the relevance of the retrieved documents
differently: Some users will like the results, others will not.

There are three basic processes an information retrieval system has to sup-
port: the representation of the content of the documents, the representation
of the user’s information need, and the comparison of the two representations.
The processes are visualised in Figure 1. In the figure, squared boxes represent
data and rounded boxes represent processes.

Query

Documents

Retrieved documentsFeedback

Indexed documents

Information need

Matching

Query formulation Indexing

Figure 1: Information retrieval processes

Representing the documents is usually called the indexing process. The pro-
cess takes place off-line, that is, the end user of the information retrieval system
is not directly involved. The indexing process results in a representation of the
document. Often, full text retrieval systems use a rather trivial algorithm to
derive the index representations, for instance an algorithm that identifies words
in an English text and puts them to lower case. The indexing process may in-
clude the actual storage of the document in the system, but often documents are
only stored partly, for instance only the title and the abstract, plus information
about the actual location of the document.

Users do not search just for fun, they have a need for information. The
process of representing their information need is often referred to as the query
formulation process. The resulting representation is the query. In a broad
sense, query formulation might denote the complete interactive dialogue between
system and user, leading not only to a suitable query but possibly also to the
user better understanding his/her information need: This is denoted by the
feedback process in Figure 1.
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The comparison of the query against the document representations is called
the matching process. The matching process usually results in a ranked list of
documents. Users will walk down this document list in search of the information
they need. Ranked retrieval will hopefully put the relevant documents towards
the top of the ranked list, minimising the time the user has to invest in reading
the documents. Simple but effective ranking algorithms use the frequency distri-
bution of terms over documents, but also statistics over other information, such
as the number of hyperlinks that point to the document. Ranking algorithms
based on statistical approaches easily halve the time the user has to spend on
reading documents. The theory behind ranking algorithms is a crucial part of
information retrieval and the major theme of this chapter.

1.2 What is a model?

There are two good reasons for having models of information retrieval. The first
is that models guide research and provide the means for academic discussion.
The second reason is that models can serve as a blueprint to implement an
actual retrieval system.

Mathematical models are used in many scientific areas with the objective to
understand and reason about some behaviour or phenomenon in the real world.
One might for instance think of a model of our solar system that predicts the
position of the planets on a particular date, or one might think of a model of the
world climate that predicts the temperature given the atmospheric emissions of
greenhouse gases. A model of information retrieval predicts and explains what
a user will find relevant given the user query. The correctness of the model’s
predictions can be tested in a controlled experiment. In order to do predic-
tions and reach a better understanding of information retrieval, models should
be firmly grounded in intuitions, metaphors and some branch of mathematics.
Intuitions are important because they help to get a model accepted as reason-
able by the research community. Metaphors are important because they help
to explain the implications of a model to a bigger audience. For instance, by
comparing the earth’s atmosphere with a greenhouse, non-experts will under-
stand the implications of certain models of the atmosphere. Mathematics are
essential to formalise a model, to ensure consistency, and to make sure that it
can be implemented in a real system. As such, a model of information retrieval
serves as a blueprint which is used to implement an actual information retrieval
system.

1.3 Outline

The following sections will describe a total of eight models of information re-
trieval rather extensively. Many more models have been suggested in the infor-
mation retrieval literature, but the selection made in this chapter gives a com-
prehensive overview of the different types of modelling approaches. We start out
with two models that provide structured query languages but no means to rank
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the results in Section 2.1. Section 3 describes vector space approaches, Section
4 describes probabilistic approaches, and Section 5 concludes this chapter.

2 Exact match models

In this section, we will address two models of information retrieval that provide
exact matching, i.e, documents are either retrieved or not, but the retrieved
documents are not ranked.

2.1 The Boolean model

The Boolean model is the first model of information retrieval and probably also
the most criticised model. The model can be explained by thinking of a query
term as a unambiguous definition of a set of documents. For instance, the query
term economic simply defines the set of all documents that are indexed with
the term economic. Using the operators of George Boole’s mathematical logic,
query terms and their corresponding sets of documents can be combined to
form new sets of documents. Boole defined three basic operators, the logical
product called AND, the logical sum called OR and the logical difference called
NOT. Combining terms with the AND operator will define a document set that
is smaller than or equal to the document sets of any of the single terms. For
instance, the query social AND economic will produce the set of documents
that are indexed both with the term social and the term economic, i.e. the
intersection of both sets. Combining terms with the OR operator will define
a document set that is bigger than or equal to the document sets of any of
the single terms. So, the query social OR political will produce the set of
documents that are indexed with either the term social or the term political,
or both, i.e. the union of both sets. This is visualised in the Venn diagrams of
Figure 2 in which each set of documents is visualised by a disc. The intersections
of these discs and their complements divide the document collection into 8 non-
overlapping regions, the unions of which give 256 different Boolean combinations
of ‘social, political and economic documents’. In Figure 2, the retrieved sets are
visualised by the shaded areas.

An advantage of the Boolean model is that it gives (expert) users a sense
of control over the system. It is immediately clear why a document has been
retrieved given a query. If the resulting document set is either too small or
too big, it is directly clear which operators will produce respectively a bigger
or smaller set. For untrained users, the model has a number of clear disadvan-
tages. Its main disadvantage is that it does not provide a ranking of retrieved
documents. The model either retrieves a document or not, which might lead to
the system making rather frustrating decisions. For instance, the query social

AND worker AND union will of course not retrieve a document indexed with
party, birthday and cake, but will likewise not retrieve a document indexed
with social and worker that lacks the term union. Clearly, it is likely that the
latter document is more useful than the former, but the model has no means to
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Figure 2: Boolean combinations of sets visualised as Venn diagrams

make the distinction.

2.2 Region models

Regions models (Burkowski 1992; Clarke et al. 1995; Navarro and Baeza-Yates
1997; Jaakkola and Kilpelainen 1999) are extensions of the Boolean model that
reason about arbitrary parts of textual data, called segments, extents or regions.
Region models model a document collection as a linearized string of words. Any
sequence of consecutive words is called a region. Regions are identified by a start
position and an end position. Figure 3 shows a fragment from Shakespeare’s
Hamlet for which we numbered the word positions. The figure shows the region
that starts at word 103 and ends at word 131. The phrase “stand, and unfold
yourself” is defined by the region that starts on position 128 in the text, and
ends on position 131. Some regions might be predefined because they represent
a logical element in the text, for instance the line spoken by Bernardo which is
defined by region (122, 123).

Region systems are not restricted to retrieving documents. Depending on
the application, we might want to search for complete plays using some textual
queries, we might want to search for scenes referring to speakers, we might want
to retrieve speeches by some speaker, we might want to search for single lines
using quotations and referring to speakers, etc. When we think of the Boolean
model as operating on sets of documents where a document is represented by
a nominal identifier, we could think of a region model as operating on sets
of regions, where a region is represented by two ordinal identifiers: the start
position and the end position in the document collection. The Boolean operators
AND, OR and NOT might be defined on sets of regions in a straightforward way as set
intersection, set union and set complement. Region models use at least two more
operators: CONTAINING and CONTAINED BY. Systems that supports region queries
can process complex queries, such as the following that retrieves all lines in which
Hamlet says “farewell”: (<LINE> CONTAINING farewell) CONTAINED BY (<SPEECH>
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<ACT>

<TITLE>ACT103 I104</TITLE>

<SCENE>

<TITLE>SCENE105 I.106 Elsinore.107 A108 platform109 before110 the111 castle.112</TITLE>

<STGDIR>FRANCISCO113 at114 his115 post.116 Enter117 to118 him119 BERNARDO120</STGDIR>

<SPEECH>

<SPEAKER>BERNARDO121</SPEAKER>

<LINE>Who’s122 there?123</LINE>

</SPEECH>

<SPEECH>

<SPEAKER>FRANCISCO124</SPEAKER>

<LINE>Nay,125 answer126 me:127 stand,128 and129 unfold130 yourself.131</LINE>

.

.

.

Figure 3: Position numbering of example data

CONTAINING (<SPEAKER> CONTAINING Hamlet)).
There are several proposals of region models that differ slightly. For instance,

the model proposed by Burkowski (1992) implicitly distinguishes mark-up from
content. As above, the query <SPEECH> CONTAINING Hamlet retrieves all speeches
that contain the word ‘Hamlet’. In later publications Clarke et al. (1995) and
Jaakkola and Kilpelainen (1999) describe region models that do not distinguish
mark-up from content. In their system, the operator FOLLOWED BY is needed to
match opening and closing tags, so the query would be somewhat more verbose:
(<speech> FOLLOWED BY </speech>) CONTAINING Hamlet In some region models,
such as the model by Clarke et al. (1995) the query A AND B does not retrieve
the intersection of sets A and B, but instead retrieves the smallest regions that
contain a region from both set A and set B.

2.3 Discussion

The Boolean model is firmly grounded in mathematics and its intuitive use of
document sets provides a powerful way of reasoning about information retrieval.
The main disadvantage of the Boolean model and the region models is their
inability to rank documents. For most retrieval applications, ranking is of the
utmost importance and ranking extensions have been proposed of the Boolean
model (Salton, Fox and Wu 1983) as well as of region models (Mihajlovic 2006).
These extensions are based on models that take the need for ranking as their
starting point. The remaining sections of this chapter discuss these models of
ranked retrieval.

3 Vector space approaches

Peter Luhn was the first to suggest a statistical approach to searching informa-
tion (Luhn 1957). He suggested that in order to search a document collection,
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the user should first prepare a document that is similar to the documents needed.
The degree of similarity between the representation of the prepared document
and the representations of the documents in the collection is used to rank the
search results. Luhn formulated his similarity criterion as follows:

The more two representations agreed in given elements and their
distribution, the higher would be the probability of their representing
similar information.

Following Luhn’s similarity criterion, a promising first step is to count the num-
ber of elements that the query and the index representation of the document
share. If the document’s index representation is a vector ~d = (d1, d2, · · · , dm) of
which each component dk (1 ≤ k ≤ m) is associated with an index term; and
if the query is a similar vector ~q = (q1, q2, · · · , qm) of which the components are
associated with the same terms, then a straight-forward similarity measure is
the vector inner product:

score(~d, ~q) =
∑m

k=1 dk · qk (1)

If the vector has binary components, i.e. the value of the component is 1 if the
term occurs in the document or query and 0 if not, then the vector product
measures the number of shared terms. A more general representation would use
natural numbers or real numbers for the components of the vectors ~d and ~q.

3.1 The vector space model

Gerard Salton and his colleagues suggested a model based on Luhn’s similarity
criterion that has a stronger theoretical motivation (Salton and McGill 1983).
They considered the index representations and the query as vectors embedded
in a high dimensional Euclidean space, where each term is assigned a separate
dimension. The similarity measure is usually the cosine of the angle that sep-
arates the two vectors ~d and ~q. The cosine of an angle is 0 if the vectors are
orthogonal in the multidimensional space and 1 if the angle is 0 degrees. The
cosine formula is given by:

score(~d, ~q) =

∑m

k=1 dk · qk
√

∑m

k=1(dk)2 ·
√

∑m

k=1(qk)2
(2)

The metaphor of angles between vectors in a multidimensional space makes
it easy to explain the implications of the model to non-experts. Up to three
dimensions, one can easily visualise the document and query vectors. Figure
4 visualises an example document vector and an example query vector in the
space that is spanned by the three terms social, economic and political. The
intuitive geometric interpretation makes it relatively easy to apply the model
to new information retrieval problems. The vector space model guided research
in for instance automatic text categorisation and document clustering.

Measuring the cosine of the angle between vectors is equivalent with normal-
ising the vectors to unit length and taking the vector inner product. If index
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Figure 4: A query and document representation in the vector space model

representations and queries are properly normalised, then the vector product
measure of equation 1 does have a strong theoretical motivation. The formula
then becomes:

score(~d, ~q) =
∑m

k=1 n(dk) · n(qk) where n(vk) =
vk

√
∑m

k=1(vk)2
(3)

3.2 Positioning the query in vector space

Some rather ad-hoc, but quite successful retrieval algorithms are nicely grounded
in the vector space model if the vector lengths are normalised. An example is
the relevance feedback algorithm by Joseph Rocchio (Rocchio 1971). Rocchio
suggested the following algorithm for relevance feedback, where ~qold is the orig-

inal query, ~qnew is the revised query, ~d
(i)
rel (1 ≤ i ≤ r) is one of the r documents

the user selected as relevant, and ~d
(i)
nonrel (1 ≤ i ≤ n) is one of the n documents

the user selected as non-relevant.

~qnew = ~qold +
1

r

r
∑

i=1

~d
(i)
rel − 1

n

n
∑

i=1

~d
(i)
nonrel (4)

The normalised vectors of documents and queries can be viewed at as points
on a hypersphere at unit length from the origin. In equation 4, the first sum
calculates the centroid of the points of the known relevant documents on the
hypersphere. In the centroid, the angle with the known relevant documents is
minimised. The second sum calculates the centroid of the points of the known
non-relevant documents. Moving the query towards the centroid of the known
relevant documents and away from the centroid of the known non-relevant doc-
uments is guaranteed to improve retrieval performance.
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3.3 Term weighting and other caveats

The main disadvantage of the vector space model is that it does not in any way
define what the values of the vector components should be. The problem of as-
signing appropriate values to the vector components is known as term weighting.
Early experiments by Salton (1971) and Salton and Yang (1973) showed that
term weighting is not a trivial problem at all. They suggested so-called tf .idf
weights, a combination of term frequency tf , which is the number of occurrences
of a term in a document, and idf , the inverse document frequency, which is a
value inversely related to the document frequency df , which is the number of
documents that contain the term. Many modern weighting algorithms are ver-
sions of the family of tf .idf weighting algorithms. Salton’s original tf .idf weights
perform relatively poorly, in some cases worse than simple idf weighting. They
are defined as:

dk = qk = tf (k, d) · log
N

df(k)
(5)

where tf (k, d) is the number of occurrences of the term k in the document d,
df (k) is the number of documents containing k, and N is the total number of
documents in the collection. Another problem with the vector space model is
its implementation. The calculation of the cosine measure needs the values of
all vector components, but these are not available in an inverted file (See Chap-
ter 2 ??). In practice, the normalised values and the vector product algorithm
have to be used. Either the normalised weights have to be stored in the inverted
file, or the normalisation values have to be stored separately. Both are problem-
atic in case of incremental updates of the index: Adding a single new document
changes the document frequencies of terms that occur in the document, which
changes the vector lengths of every document that contains one or more of these
terms.

4 Probabilistic approaches

Several approaches that try to define term weighting more formally are based
on probability theory. The notion of the probability of something, for instance
the probability of relevance notated as P (R), is usually formalised through
the concept of an experiment, where an experiment is the process by which
an observation is made. The set of all possible outcomes of the experiment
is called the sample space. In the case of P (R) the sample space might be
{relevant, irrelevant}, and we might define the random variable R to take the
values {0, 1}, where 0= irrelevant and 1 = relevant.

Let’s define an experiment for which we take one document from the collec-
tion at random: If we know the number of relevant documents in the collection,
say 100 documents are relevant, and we know the total number of documents
in the collection, say 1 million, then the quotient of those two defines the prob-
ability of relevance P (R = 1) = 100/1,000,000 = 0.0001. Suppose furthermore
that P (Dk) is the probability that a document contains the term k with the
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sample space {0, 1}, (0 = the document does not contain term k, 1 = the docu-
ment contains term k), then we will use P (R, Dk) to denote the joint probability
distribution with outcomes {(0, 0), (0, 1), (1, 0) and (1, 1)}, and we will use
P (R|Dk) to denote the conditional probability distribution with outcomes {0,
1}. So, P (R=1|Dk =1) is the probability of relevance if we consider documents
that contain the term k.

Note that the notation P (. . .) is overloaded. Any time we are talking about
a different random variable or sample space, we are also talking about a different
measure P . So, one equation might refer to several probability measures, all
ambiguously referred to as P . Also note that random variables like D and T
might have different sample spaces in different models. For instance, D in the
probabilistic indexing model is a random variable denoting “this is the relevant
document”, that has as possible outcomes the identifiers of the documents in the
collection. However, D in the probabilistic retrieval model is a random variable
that has as possible outcomes all possible document descriptions, which in this
case are vectors with binary components dk that denote whether a document is
indexed by term k or not.

4.1 The probabilistic indexing model

As early as 1960, Bill Maron and Larry Kuhns (Maron and Kuhns 1960) defined
their probabilistic indexing model. Unlike Luhn, they did not target automatic
indexing by information retrieval systems. Manual indexing was still guiding
the field, so they suggested that a human indexer, who runs through the vari-
ous index terms T that possibly apply to a document D, assigns a probability
P (T |D) to a term given a document instead of making a yes/no decision for each
term. So, every document ends up with a set of possible index terms, weighted
by P (T |D), where P (T |D) is the probability that if a user wants information of
the kind contained in document D, he/she will formulate a query by using T .
Using Bayes’ rule, i.e.,

P (D|T ) =
P (T |D)P (D)

P (T )
, (6)

they then suggest to rank the documents by P (D|T ), that is, the probability
that the document D is relevant given that the user formulated a query by
using the term T . Note that P (T ) in the denominator of the right-hand side
is constant for any given query term T , and consequently documents might be
ranked by P (T |D)P (D) which is a quantity proportional to the value of P (D|T ).
In the formula, P (D) is the a-priori probability of relevance of document D.

Whereas P (T |D) is defined by the human indexer, Maron and Kunhs sug-
gest that P (D) can be defined by statistics on document usage, i.e., by the
quotient of the number of uses of document D by the total number of document
uses. So, their usage of the document prior P (D) can be seen as the very first
description of popularity ranking, which became important for internet search
(see Section 4.6). Interestingly, an estimate of P (T |D) might be obtained in
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a similar way by storing for each use of a document also the query term that
was entered to retrieve the document in the first place. Maron and Kuhns state
that “such a procedure would of course be extremely impractical”, but in fact,
such techniques – rank optimization using so-called click-through rates – are
now common in web search engines as well (Joachims et al. 2005). Probabilistic
indexing models were also studied by Fuhr (1989).

4.2 The probabilistic retrieval model

Whereas Maron and Kuhns introduced ranking by the probability of relevance,
it was Stephen Robertson who turned the idea into a principle. He formulated
the probability ranking principle, which he attributed to William Cooper, as
follows (Robertson 1977).

If a reference retrieval system’s response to each request is a ranking
of the documents in the collections in order of decreasing probabil-
ity of usefulness to the user who submitted the request, where the
probabilities are estimated as accurately as possible on the basis of
whatever data has been made available to the system for this pur-
pose, then the overall effectiveness of the system to its users will be
the best that is obtainable on the basis of that data.

This seems a rather trivial requirement indeed, since the objective of informa-
tion retrieval systems is defined in Section 1 as to “assist users in finding the
information they need”, but its implications might be very different from Luhn’s
similarity principle. Suppose a user enters a query containing a single term, for
instance the term social. If all documents that fulfill the user’s need were
known, it would be possible to divide the collection into 4 non-overlapping doc-
ument sets as visualised in the Venn diagram of Figure 5. The figure contains
additional information about the size of each of the non-overlapping sets. Sup-
pose, the collection in question has 10,000 documents, of which 1,000 contain
the word “social”. Furthermore, suppose that only 11 documents are relevant
to the query of which 1 contains the word “social”. If a document is taken
at random from the set of documents that are indexed with social, then the
probability of picking a relevant document is 1 / 1,000 = 0.0010. If a document
is taken at random from the set of documents that are not indexed with social,
then the probability of relevance is bigger: 10 / 9,000 = 0.0011. Based on this
evidence, the best performance is achieved if the system returns documents that
are not indexed with the query term social, that is, to present first the docu-
ments that are dissimilar to the query. Clearly, such a strategy violates Luhn’s
similarity criterion.

Stephen Robertson and Karen Spärck-Jones based their probabilistic re-
trieval model on this line of reasoning (Robertson and Spärck-Jones 1976). They
suggested to rank documents by P (R|D), that is the probability of relevance
R given the document’s content description D. Note that D is here a vector
of binary components, each component typically representing a term, whereas
in the previous section D was the “relevant document”. In the probabilistic

11



social RELEVANT
1

999 10
8,990

Figure 5: Venn diagram of the collection given the query term social

retrieval model the probability P (R|D) has to be interpreted as follows: there
might be several, say 10, documents that are represented by the same D. If
9 of them are relevant, then P (R|D) = 0.9. To make this work in practice,
we use Bayes’ rule on the probability odds P (R|D)/P (R|D), where R denotes
irrelevance. The odds allow us to ignore P (D) in the computation while still
providing a ranking by the probability of relevance. Additionally, we assume
independence between terms given relevance.

P (R|D)

P (R|D)
=

P (D|R)P (R)

P (D|R)P (R)
=

∏

k P (Dk|R)P (R)
∏

k P (Dk|R)P (R)
(7)

Here, Dk denotes the kth component (term) in the document vector. The
probabilities of the terms are defined as above from examples of relevant doc-
uments, that is, in Figure 5, the probability of social given relevance is 1/11.
A more convenient implementation of probabilistic retrieval uses the following
three order preserving transformations. First, the documents are ranked by
sums of logarithmic odds, instead of the odds themselves. Second, the a priori
odds of relevance P (R)/P (R) is ignored. Third, we subtract

∑

k log(P (Dk =
0|R)/P (Dk = 0|R)), i.e., the score of the empty document, from all document
scores. This way, the sum over all terms, which might be millions of terms, only
includes non-zero values for terms that are present in the document.

matching-score(D) =
∑

k ∈match-
ing terms

log
P (Dk =1|R)P (Dk =0|R)

P (Dk =1|R)P (Dk =0|R)
(8)

In practice, terms that are not in the query are also ignored in Equation 8.
Making full use of the probabilistic retrieval model requires two things: examples
of relevant documents and long queries. Relevant documents are needed to
compute P (Dk|R), that is, the probability that the document contains the term
k given relevance. Long queries are needed because the model only distinguishes
term presence and term absence in documents and as a consequence, the number
of distinct values of document scores is low for short queries. For a one-word
query, the number of distinct probabilities is two (either a document contains
the word or not), for a two-word query it is four (the document contains both
terms, or only the first term, or only the second, or neither), for a three-word
query it is eight, etc. Obviously, this makes the model inadequate for web
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search, for which no relevant documents are known beforehand and for which
queries are typically short. However, the model is helpful in for instance spam
filters. Spam filters accumulate many examples of relevant (no spam or ‘ham’)
and irrelevant (spam) documents over time. To decide if an incoming email is
spam or ham, the full text of the email can be used instead of a just few query
terms.

4.3 The 2-Poisson model

Bookstein and Swanson (1974) studied the problem of developing a set of statis-
tical rules for the purpose of identifying the index terms of a document. They
suggested that the number of occurrences tf of terms in documents could be
modelled by a mixture of two Poisson distributions as follows, where X is a
random variable for the number of occurrences.

P (X = tf ) = λ
e−µ1 (µ1)

tf

tf !
+ (1−λ)

e−µ2 (µ2)
tf

tf !
(9)

The model assumes that the documents were created by a random stream of
term occurrences. For each term, the collection can be divided into two subsets.
Documents in subset one treat a subject referred to by a term to a greater
extent than documents in subset two. This is represented by λ which is the
proportion of the documents that belong to subset one and by the Poisson
means µ1 and µ2 (µ1 ≥ µ2) which can be estimated from the mean number of
occurrences of the term in the respective subsets. For each term, the model needs
these three parameters, but unfortunately, it is unknown to which subset each
document belongs. The estimation of the three parameters should therefore
be done iteratively by applying e.g. the expectation maximisation algorithm
(Dempster et al. 1977) or alternatively by the method of moments as done by
Harter (1975).

If a document is taken at random from subset one, then the probability
of relevance of this document is assumed to be equal to, or higher than, the
probability of relevance of a document from subset two; because the probability
of relevance is assumed to be correlated with the extent to which a subject
referred to by a term is treated, and because µ1 ≥ µ2. Useful terms will make
a good distinction between relevant and non-relevant documents, that is, both
subsets will have very different Poisson means µ1 and µ2. Therefore, Harter
(1975) suggests the following measure of effectiveness of an index term that can
be used to rank the documents given a query.

z =
µ1 − µ2√
µ1 + µ2

(10)

The 2-Poisson model’s main advantage is that it does not need an addi-
tional term weighting algorithm to be implemented. In this respect, the model
contributed to the understanding of information retrieval and inspired some re-
searchers in developing new models as shown in the next section. The model’s
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biggest problem, however, is the estimation of the parameters. For each term
there are three unknown parameters that cannot be estimated directly from the
observed data. Furthermore, despite the model’s complexity, it still might not
fit the actual data if the term frequencies differ very much per document. Some
studies therefore examine the use of more than two Poisson functions, but this
makes the estimation problem even more intractable (Margulis 1993).

Robertson, van Rijsbergen, and Porter (1981) proposed to use the 2-Poisson
model to include the frequency of terms within documents in the probabilistic
model. Although the actual implementation of this model is cumbersome, it
inspired Stephen Robertson and Stephen Walker in developing the Okapi BM25
term weighting algorithm, which is still one of the best performing term weight-
ing algorithms (Robertson and Walker 1994; Spärck-Jones et al. 2000).

4.4 Bayesian network models

In 1991, Howard Turtle proposed the inference network model (Turtle and Croft
1991) which is formal in the sense that it is based on the Bayesian network mech-
anism (Metzler and Croft 2004). A Bayesian network is an acyclic directed
graph (a directed graph is acyclic if there is no directed path A → · · · → Z such
that A = Z) that encodes probabilistic dependency relationships between ran-
dom variables. The presentation of probability distributions as directed graphs,
makes it possible to analyse complex conditional independence assumptions by
following a graph theoretic approach. In practice, the inference network model is
comprised of four layers of nodes: document nodes, representation nodes, query
nodes and the information need node. Figure 1 shows a simplified inference net-
work model. All nodes in the network represent binary random variables with

Figure 6: A simplified inference network

values {0, 1}. To see how the model works in theory, it is instructive to look at a
subset of the nodes, for instance the nodes r2, q1, q3 and I, and ignore the other
nodes for the moment. By the chain rule of probability, the joint probability of
the nodes r2, q1, q3 and I is:

P (r2, q1, q3, I) = P (r2)P (q1|r2)P (q3|r2, q1)P (I|r2, q1, q3) (11)
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The directions of the arcs suggest the dependence relations between the random
variables. The event “information need is fulfilled” (I = 1) has two possible
causes: query node q1 is true, or query node q3 is true (remember we are ignoring
q2). The two query nodes in turn depend on the representation node r2. So,
the model makes the following conditional independence assumptions.

P (r2, q1, q3, I) = P (r2)P (q1|r2)P (q3|r2)P (I|q1, q3) (12)

On the right-hand side, the third probability measure is simplified because q1

and q3 are independent given their parent r2. The last part P (I|q1, q3) is sim-
plified because I is independent of r2 given its parents q1 and q3.

Straightforward use of the network is impractical if there are a large num-
ber of query nodes. The number of probabilities that have to be specified for
a node grows exponentially with its number of parents. For example, a net-
work with n query nodes requires the specification of 2n+1 possible values of
P (I|q1, q2, · · · , qn) for the information need node. For this reason, all network
layers need some form of approximation. Metzler and Croft (2004) describe
the following approximations: For the document layer they assume that only a
single document is observed at a time, and for every single document a separate
network is constructed for which the document layer is ignored. For the rep-
resentation layer of every network, the probability of the representation nodes
(which effectively are priors now, because the document layer is ignored) are
estimated by some retrieval model. Note that a representation node is usually
a single term, but it might also be a phrase. Finally, the query nodes and the
information need node are approximated by standard probability distributions
defined by so-called believe operators. These operators combine probability val-
ues from representation nodes and other query nodes in a fixed manner. If the
values of P (q1|r2), and P (q3|r2) are given by p1 and p2, then the calculation of
P (I|r2) might be done by operators like and, or, sum, and wsum.

Pand(I|r2) = p1 · p2

Por(I|r2) = 1 − ((1−p1)(1−p2))

Psum(I|r2) = (p1 + p2) / 2

Pwsum(I|r2) = w1 p1 + w2 p2

(13)

It can be shown that for these operators so-called link matrices exists, that is,
for each operator there exists a definition of for instance P (I|q1, q3) that can be
computed as shown in Equation 13. So, although the link matrix that belongs
to the operator may be huge, it does not exist in practice and its result can
be computed in linear time. One might argue though, that the approximations
on each network layer make it questionable if the approach still deserves to be
called a ‘Bayesian network model’.

4.5 Language models

Language models were applied to information retrieval by a number of re-
searchers in the late 1990’s (Ponte and Croft 1998; Hiemstra and Kraaij 1998;
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Miller et al. 1999). They originate from probabilistic models of language gen-
eration developed for automatic speech recognition systems in the early 1980’s
(see e.g. Rabiner 1990). Automatic speech recognition systems combine prob-
abilities of two distinct models: the acoustic model, and the language model.
The acoustic model might for instance produce the following candidate texts in
decreasing order of probability: “food born thing”, “good corn sing”, “mood
morning”, and “good morning”. Now, the language model would determine
that the phrase “good morning” is much more probable, i.e., it occurs more
frequently in English than the other phrases. When combined with the acoustic
model, the system is able to decide that “good morning” was the most likely
utterance, thereby increasing the system’s performance.

For information retrieval, language models are built for each document. By
following this approach, the language model of the book you are reading now
would assign an exceptionally high probability to the word “retrieval” indicating
that this book would be a good candidate for retrieval if the query contains
this word. Language models take the same starting point as the probabilistic
indexing model by Maron and Kuhns described in Section 4.1. That is, given
D – the document is relevant – the user will formulate a query by using a
term T with some probability P (T |D). The probability is defined by the text
of the documents: If a certain document consists of 100 words, and of those
the word “good” occurs twice, then the probability of “good” given that the
document is relevant is simply defined as 0.02. For queries with multiple words,
we assume that query words are generated independently from each other, i.e.,
the conditional probabilities of the terms T1, T2, · · · given the document are
multiplied:

P (T1, T2, · · · |D) =
∏

i

P (Ti|D) (14)

As a motivation for using the probability of the query given the document, one
might think of the following experiment. Suppose we ask one million monkeys
to pick a good three-word query for several documents. Each monkey will point
three times at random to each document. Whatever word the monkey points
to, will be the (next) word in the query. Suppose that 7 monkeys accidentally
pointed to the words “information”, “retrieval” and “model” for document 1,
and only 2 monkeys accidentally pointed to these words for document 2. Then,
document 1 would be a better document for the query “information retrieval
model” than document 2.

The above experiment assigns zero probability to words that do not occur
anywhere in the document, and because we multiply the probabilities of the
single words, it assigns zero probability to documents that do not contain all
of the words. For some applications this is not a problem. For instance for a
web search engine, queries are usually short and it will rarely happen that no
web page contains all query terms. For many other applications empty results
happen much more often, which might be problematic for the user. Therefore, a
technique called smoothing is applied: Smoothing assigns some non-zero proba-
bility to unseen events. One approach to smoothing takes a linear combination
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of P (Ti|D) and a background model P (Ti) as follows.

P (T1, · · · , Tn|D) =

n
∏

i=1

(λP (Ti|D) + (1−λ)P (Ti)) (15)

The background model P (Ti) might be defined by the probability of term occur-
rence in the collection, i.e., by the quotient of the total number of occurrences
in the collection divided by the length of the collection. In the equation, λ
is an unknown parameter that has to be set empirically. Linear interpolation
smoothing accounts for the fact that some query words do not seem to be related
to the relevance of documents at all. For instance in the query “capital of the
Netherlands”, the words “of” and “the” might be seen as words from the user’s
general English vocabulary, and not as words from the relevant document he/she
is looking for. In terms of the experiment above, a monkey would either pick
a word at random from the document with probability λ or the monkey would
pick a word at random from the entire collection. A more convenient implemen-
tation of the linear interpolation models can be achieved with order preserving
transformations that are similar to those for the probabilistic retrieval model
(see Equation 8). We multiply both sides of the equation by

∏

i(1−λ)P (Ti) and
take the logarithm, which leads to:

matching-score(d) =
∑

k ∈match-
ing terms

log(1 +
tf (k, d)

∑

t tf (t, d)
·
∑

t cf (t)

cf (k)
· λ

1−λ
) (16)

Here, P (Ti = ti) = cf (ti)/
∑

t cf (t), and cf (t) =
∑

d tf (t, d).
There are many approaches to smoothing, most pioneered for automatic

speech recognition (Chen and Goodman 1996). Another approach to smoothing
that is often used for information retrieval is so-called Dirichlet smoothing,
which is defined as (Zhai and Lafferty 2004):

P (T1 = t1, · · · , Tn = tn|D=d) =

n
∏

i=1

tf (ti, d) + µP (Ti = ti)

(
∑

t tf (t, d)) + µ
(17)

Here, µ is a real number µ ≥ 0. Dirichlet smoothing accounts for the fact that
documents are too small to reliably estimate a language model. Smoothing by
Equation 17 has a relatively big effect on small documents, but relatively small
effect on bigger documents.

The equations above define the probability of a query given a document, but
obviously, the system should rank by the probability of the documents given the
query. These two probabilities are related by Bayes’ rule as follows.

P (D|T1, T2, · · · , Tn) =
P (T1, T2, · · · , Tn|D)P (D)

P (T1, T2, · · · , Tn)
(18)

The left-hand side of Equation 18 cannot be used directly because the inde-
pendence assumption presented above assumes terms are independent given the
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document. So, in order to compute the probability of the document D given the
query, we need to multiply Equation 15 by P (D) and divide it by P (T1, · · · , Tn).
Again, as stated in the previous paragraph, the probabilities themselves are of
no interest, only the ranking of the document by the probabilities is. And
since P (T1, · · · , Tn) does not depend on the document, ranking the documents
by the numerator of the right-hand side of Equation 18 will rank them by the
probability given the query. This shows the importance of P (D), the marginal
probability, or prior probability of the document, i.e., it is the probability that
the document is relevant if we do not know the query (yet). For instance,
we might assume that long documents are more likely to be useful than short
documents. In web search, such so-called static rankings (see Section 4.6), are
commonly used. For instance, documents with many links pointing to them are
more likely to be relevant, as shown in the next section.

4.6 Google’s page rank model

When Sergey Brin and Lawrence Page launched the web search engine Google in
1998 (Brin and Page 1998), it had two features that distinguished it from other
web search engines: It had a simple no-nonsense search interface, and, it used
a radically different approach to rank the search results. Instead of returning
documents that closely match the query terms (i.e., by using any of the models
in the preceding sections), they aimed at returning high quality documents, i.e.,
documents from trusted sites. Google uses the hyperlink structure of the web
to determine the quality of a page, called page rank. Web pages that are linked
at from many places around the web are probably worth looking at: They must
be high quality pages. If pages that have links from other high quality web
pages, for instance DMOZ or Wikipedia1, then that is a further indication that
they are likely to be worth looking at. The page rank of a page d is defined
as P (D = d), i.e., the probability that d is relevant as used in the probabilistic
indexing model in Section 4.1 and as used in the language modelling approach
in Section 4.5. It is defined as:

P (D=d) = (1−λ)
1

#pages
+ λ

∑

i|i links to d

P (D= i)P (D=d|D= i) (19)

If we ignore (1−λ)/#pages for the moment, then the page rank P (D = d) is

recursively defined as the sum of the page ranks P (D = i) of all pages i that
link to d, multiplied by the probability P (D=d|D= i) of following a link from i
to d. One might think of the page rank as the probability that a random surfer
visits a page. Suppose we ask the monkeys from the previous chapter to surf the
web from a randomly chosen starting point i. Each monkey will now click on a
random hyperlink with the probability P (D = d|D = i) which is defined as one
divided by the number of links on page i. This monkey will end up in d. But
other monkeys might end up in d as well: Those that started on another page
that happens to link to d. After letting the monkeys surf a while, the highest

1see http://dmoz.org and http://wikipedia.org
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quality pages, i.e., the best connected pages, will have most monkeys that look
at it.

The above experiment has a similar problem with zero probabilities as the
language modelling approach. Some pages might have no links pointing to them,
so they will get a zero page rank. Others might not link to any other page, so
you cannot leave the page by following hyperlinks. The solution is also similar
to the zero probability problem in the language modelling approach: We smooth
the model by some background model, in this case the background is uniformly
distributed over all pages. With some unknown probability λ a link is followed,
but with probability 1 − λ a random page is selected, which is like a monkey
typing in a random (but valid) URL.

Pagerank is a so-called static ranking function, that is, it does not depend on
the query. It is computed once off-line at indexing time by iteratively calculating
the Pagerank of pages at time t + 1 from the Pageranks at calculated in a
previous interations at time t until they do not change significantly anymore.
Once the Pagerank of every page is calculated it can be used during querying.
One possible way to use Pagerank during querying is as follows: Select the
documents that contain all query terms (i.e., a Boolean AND query) and rank
those documents by their Pagerank. Interestingly, a simple algorithm like this
would not only be effective for web search, it can also be implemented very
efficiently (Richardson et al. 2006). In practice, web search engines like Google
use many more factors in their ranking than just Pagerank alone. In terms
of the probabilistic indexing model and the language modelling approaches,
static rankings are simply document priors, i.e., the a-priori probability of the
document being relevant, that should be combined with the probability of terms
given the document. Document priors can be easily combined with standard
language modelling probabilities and are as such powerful means to improve the
effectiveness of for instance queries for home pages in web search (Kraaij et al.
2002).

5 Summary and further reading

There is no such thing as a dominating model or theory of information retrieval,
unlike the situation in for instance the area of databases where the relational
model is the dominating database model. In information retrieval, some models
work for some applications, whereas others work for other applications. For
instance, the region models introduced in Section 2.2 have been designed to
search in semi-structured data; the vector space models in Section 3 are well-
suited for similarity search and relevance feedback in many (also non-textual)
situations if a good weighting function is available; the probabilistic retrieval
model of Section 4.2 might be a good choice if examples of relevant and non-
relevant documents are available; language models in Section 4.5 are helpful in
situations that require models of language similarity or document priors; and
the Pagerank model of Section 4.6 is often used in situations that need modelling
of more of less static relations between documents. This chapter describes these
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and other information retrieval models in a tutorial style in order to explain
the consequences of modelling assumptions. Once the reader is aware of the
consequences of modelling assumptions, he or she will be able to choose a model
of information retrieval that is adequate in new situations.

Whereas the citations in the text are helpful for background information
and for putting things in a historical context, we recommend the following
publications for people interested in a more in-depth treatment of information
retrieval models. A good starting point for the region models of Section 2.2
would be the overview article of Hiemstra and Baeza-Yates (2009). An in-depth
description of the vector space approaches of Section 3, including for instance
latent semantic indexing is given by Berry et al. (1999). The probabilistic
retrieval model of Section 4.2 and developments based on the model are well-
described by Spärck-Jones et al. (2000). De Campos et al. (2004) edited
a special issue on Bayesian networks for information retrieval as described in
Section 4.4. An excellent overview of statistical language models for information
retrieval is given by Zhai (2008). Finally, a good follow-up article on Google’s
Pagerank is given by Henzinger (2001).
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Exercises

1. In the Boolean model of Section 2.1, there are a large number of queries
that can be formulated with three query terms, for instance one OR two OR

three, or (one OR two) AND three, or possibly (one AND three) OR (two

AND three). Some of these queries, however, – for instance the last two
queries – return the same set of documents. How many different sets of
documents can be specified given 3 query terms? Explain your answer.

(a) 8

(b) 9

(c) 256

(d) unlimited

2. Given a query ~q and a document ~d in the vector space model of Section 3.1.
Suppose the similarity between ~q and ~d is 0.08. Suppose we interchange
the full contents of the document with the query, that is, all words from
~q go to ~d and all words from ~d go to ~q. What will now be the similarity
between ~q and ~d? Explain your answer.

(a) smaller than 0.08

(b) equal: 0.08

(c) bigger than 0.08

(d) it depends on the term weighting algorithm

3. In the vector approach of Section 3 that uses Equation 1 and tf.idf term
weighting, suppose we add some documents to the collection. Do the
weights of the terms in the documents that were indexed before change?
Explain your answer.

(a) no

(b) yes, it affects the tf’s of terms in other documents

(c) yes, it affects the idf’s of terms in other documents

(d) yes, it affects the tf’s and the idf’s of terms in other documents

4. In the vector space model using the cosine similariy of Equation 2 and
tf.idf term weighting, suppose we add some documents to the collection.
Do the weights of the terms in the documents that were indexed before
change? Explain your answer.

(a) no, other documents are unaffected

(b) yes, the same weights as in Question 3

(c) yes, more weights change than in Question 3, but not all

(d) yes, all weights in the index change
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5. In the probabilistic model of Section 4.2, two documents might get the
same score. How many different scores do we expect to get if we enter 3
query terms? Explain your answer.

(a) 8

(b) 9

(c) 256

(d) unlimited

6. For the probabilistic retrieval model of Section 4.2, suppose we query for
the word retrieval, and document D has more occurrences of retrieval than
document E. Which document will be ranked first? Explain your answer.

(a) D will be ranked before E

(b) E will be ranked before D

(c) it depends on the model’s implementation

(d) it depends on the lengths of D and E

7. In the language modeling approach of Section 4.5, suppose the model
does not use smoothing. In the case we query for the word retrieval, and
document D consisting of 100 words in total, contains 4 times the word
retrieval. What is P (T = retrieval |D)?

(a) smaller than 4/100 = 0.04

(b) equal to 4/100 = 0.04

(c) bigger than 4/100 = 0.04

(d) it depends on the term weighting algorithm

8. In the language modeling approach of Section 4.5, suppose we use a linear
combination of a document model and a collection model as in Equation
15. What happens if we take λ = 1? Explain your answer.

(a) all docucments get a probability > 0

(b) documents that contain at least one query term get a probability > 0

(c) only documents that contain all query terms get a probability > 0

(d) the system returns a randomly ranked list
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