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Abstract 

LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be 
used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was de- 
veloped for the specification of object-oriented information systems, but contains sufficient fa- 
cilities for the specification of control to apply it to the specification of control-intensive systems 
as well. In this paper, the resuks of such an application are reported. The paper concludes with 
a discussion of the need for theorem-proving support and of the extensions that would be needed 
to be able to specify real-time properties. 

19.1 Introduction 

LCM 3.0 (Language for Conceptual Modeling version 3.0) is a formal language 

developed for the specification of  the external behavior of  data-intensive systems 

[9]. Examples of  data-intensive systems are business information systems and da- 

tabase systems. LCM is based on a combination of dynamic logic and process al- 

gebra, and contains features to specify control structures as well as data structures. 

LCM comes with a method for conceptual modeling (MCM), which provides a set 

of  heuristics to find models of  external system behavior, and for validating the 

quality of  these models [16] [ 17J. Methodologically, MCM is closely related to the 

Jackson System Development (JSD), which has been applied to the specification 

of  control-intensive systems [12]. Examples of  control-intensive systems are in- 
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dustrial process control systems and robot control systems. This paper is intended 
to show that LCM/MCM is suitable for the specification of control-intensive sys- 
tems as well. However, it will become clear from this paper that the utility of LCM/ 
MCM would be enhanced if automated support would be provided for reachability 
analysis of systems specified in LCM, and if LCM would be extended with con- 
structs to deal with real time and with exceptions such as device failure, it will be 
argued in this paper that safety analysis is a special case of reachability analysis. 

In section 19.2, MCM is explained by applying it to the development of a mod- 
el for the production cell control system. Section 19.3 introduces LCM 3.0, again 
using the production cell control system as running example. Section 19.5 discuss- 
es the lessons learned from this application, and section 19n6 concludes the paper 
with a list of topics for further work. 

19.2 Method for Conceptual Modeling (MCM) 

MCM is a method to produce formal and informal conceptual models of observa- 

ble system behavior. An important reason why MCM produces both formal and in- 
formal models is that MCM is designed with the aim of allowing both the 
possibility of formal verification of an implementation against a conceptual model, 
and of validation of the conceptual model against informal requirements that arise 
from discussions with the customer. The goal of verification is to show that a sys- 
tem specified in one way has the same behavior as a system specified in another 
way. The goal of validation is to show that a specification conforms to the inten- 
tions of the domain specialists. In other words, verification is concerned with the 

question whether we implement a system right, whereas validation is concerned 
with the question whether we model the fight system. 

Verification can proceed by fomaal proof or by testing; validation is essentially 
an informal affair, because the intentions of the domain specialists are themselves 
informal. In MCM in order to make formal verification possible, the conceptual 
model is specified in a formal language (LCM 3.0). In addition, in order to make 
validation possible, the model is specified informally, by means of diagrams and 
structured text. The informal presentation techniques have a precise correspond- 

ence with the formal specification. 

Another design aim of MCM is to integrate useful elements of existing meth- 
ods, ranging from Entity-Relationship modeling and Data Flow modeling to ob- 
ject-ofiented modeling techniques. One reason for this is that there should be 
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progress in system development methods. Inventing something new every five 

years does not constitute progress. Instead, we should take whatever is good from 

existing methods and try to improve on it. Another reason for this approach is that 
the acceptance of a method is likely to be increased when it uses techniques that 

are familiar to practitioners. This is incidentally an additional reason why formal 
and informal methods are combined in MCM: it enhances the usability of the for- 

mal method. 

MCM models a system as consisting of a collection of communicating objects. 
Each object has a local state and a local behavior. Objects communicate with each 

other by means of synchronous communication events. Objects are subject to in- 

tegrity constraints, which are static or dynamic constraints on allowable object 
states or behavior. Constraints may be local to one object or global to the entire 

system. In a data-intensive system, constraints represent business rules. In a con- 
trol-intensive system, they can be used to express safety constraints. 

When we model a data-intensive system in MCM, we first make a model of the 

universe of  discourse (UoD) of the system, which is the part of the world about 

which the system registers data. For example, in a model of a library database sys- 
tem, we would model the UoD as a set of objects such as DOCUMENT, MEMBER, 

RESERVATION and LOAN instances. A borrow event in the UoD would be a syn- 

chronous communication event that in one atomic state transition deletes a RES- 

ERVATION object and creates a LOAN object. UoD objects would be represented in 
the system by records, that act as surrogates for the corresponding UoD objects. 

The state of the surrogates is updated whenever the corresponding UoD objects 
change state. For example, the borrow event in the UoD would be registered by a 

database transaction, that deletes a RESERVATION record and creates a LOAN 

record in one atomic state transition. Thus, each database system transaction cor- 
responds to an event in the UoD, in which one or more UoD objects participate. 
Database systems are essentially registration systems. 

The basic idea to transfer and extend this to a method for modeling control sys- 

tems is to model the UoD as a set of communicating devices, each of which is rep- 

resented in the system by a device surrogate. In real-time methods, such a 
surrogate is often called a virtual device [11 ]. Devices communicate by participat- 
ing in a synchronous event. The control function of the system is provided by de- 
fining control objects in addition to the device objects. A control object does not 
correspond to a UoD object. It encapsulates device communications and enforces 
the required behavior of the devices. The problem of controlling devices in the 
UoD is thus reduced to the problem of defining the required synchronizations be- 
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tween the devices. This idea will become clear by the illustrations in the following 
paragraphs, taken from the production celt control system. 

19.2.1 The class model 

As explained above, one class is defined for each device in the UoD. It turned out 

to be convenient to define one class for each sensor device and for each actuator 

device. Examples of sensor object classes are TABLE__SWITGH, TABLE_POTMETER, 

and ARMI_POTMETER. Examples of actuator object classes are TABLE N MOTOR, 

TABLE V MOTOR and ARMI_MOTOR. Each object class has only one existing in- 

stance in the system. 

In addition to the device objects, control objects are defined, that enforce the 

required behavior of the devices. Corresponding to the modular structure of the 

production cell system, the control system contains the following control objects: 

TABLE_CONTROL, ARMI_CONTROL, ARM2_CONTROL, ROBOT_CONTROL, 
PRESS_CONTROL and CRANE_CONTROL. Agai'n, these are objects classes that 
each have exactly one existing instance. There are no control objects for the con- 

veyor belts, because it is assumed that they move continuously. This means that it 

is also assumed that the blanks are spaced on the feed belt with sufficient distance 
so that the robot and rotary table have the time to return to the positions in which 

they are ready to receive the next blank from the feed belt. 

The central component of models of data-intensive systems is a class diagram, 

which usually is some form of enhanced Entity-Relationship diagram. In the case 

of control-intensive systems, such a diagram is usually quite simple. Figure 1 
shows a fragment of the class diagram representing the table switch and and the 

table control object classes. 

A class is represented in Coad & Yourdon style [6] by a rectangle partitioned 

into three areas, listing, from top to bottom, the class name, names of attributes and 

predicates applicable to class instances, and names of events applicable to class in- 
stances. By convention, a predicate name starts with an upper-case letter and an 
attribute name consists only of lower-case letters. The TABLE_SWITCH object has 
three predicates, Exists, Table_lower_position and Table_upper_position, and two 
events, table_lower position and table_upper_position. No object in the model has 
attributes. 

Formally, the extension of a class is the set of all possible identifiers (oids) of 
the class instances. All predicates, attributes and events declared in the class are 
applied to oids. Each class has at least the Exists predicate, which is set to true 
when the object starts its existence and set to false when it ceases to exist. All in- 
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TABLE_SWITCH 

Exits 
Table_lower_position 
Table_upper_position 

Table_lower_position 
Table_upper_position 

TABLE_CONTROL 

Exits 

start 
blank_drops_on_table 
table_stops_high 
table_stops_low 
table_stops_unload 
table_stops_load 
move_arm1 to table 
remove_blran k_from_table 

Figure 1 Class diagram of the table switch and the table control 

tegrity constraints only concern existing class instances. The ability to create and 

delete objects is essential in data-intensive systems, but tends to be less important 
in control-intensive systems. In the production cell example, all classes have only 

one instance that eternally exists, and no object is ever created or deleted. One way 

to introduce objects that are dynamically created and deleted would be to model 
each incoming blank as an object. However, to express the parallelism between the 

different device and control objects, we must model these objects as separate proc- 

esses anyway. Defining a BLANK object class then does not add any information, 

even in the case that different blanks would require a different treatment by the 

production cell. (Different treatments of different kinds of blanks could be speci- 

fied by adding tests and choices to the specification of control object behavior.) 

Returning to the class specifications in Figure 1, the Table_lower_position pred- 
icate in the TABLE_SWITCH class is needed to be able to specify a safety constraint. 

MCM allows the specification of attributes of objects and of relationships be- 
tween them. A relationship can itself have attributes and behavior. In addition, 

there is a special is_a relationship, that expresses that one class is a subclass of an- 
other one, and that defines inheritance of attributes, behavior and constraints from 

the superclass to the subclass. In our production cell model, there are no attributes 

and no relationships and there is no taxonomic structure - -  or more accurately, the 
attributes, relationships and taxonomic structure that the actual devices and control 
objects have in the real world, are not represented in the model. Attributes and re- 

lationships are typically needed in data-intensive systems to be able to store the 
necessary data to answer queries. In control-intensive systems, all data needed to 
be able to perform the control function is usually present in the state of the object 
life cycles. 
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The events in the TABLE_SWITCH class are events generated by this sensor. As 

explained below, these events are forced by the TABLE_CONTROL object to syn- 

chronize with other events in the UoD, such as table_stop_v. All events in the 

TABLE_CONTROL class are synchronization events between events in the UoD. 

The life cycle model 

The behavior of an object is called an object life cycle in MCM and we will follow 

this practice here. Figure 2 shows two equivalent representations the life cycle of 

the table control object. The start event is a synchronization event between control 

objects that is needed because of different speeds with which the parts of the sys- 

tem move. When a blank drops on the table, the control object tells the table mo- 

tors to move upward and right, until the table reaches the top position and has the 

direction needed to be unloaded by arml.  It then tells arm1 to move to the table. 

When arml picks up the blank from the table, the table is moved downward and 

returned to its starting position. 

TABLE_CONTROL 

tart 
t 
) 

blank_d )ps_on_table  

f 
) 

table_stc s high table_stops to_unioad 

move  trml to table 

remov, blank_from_table 

table_sto~ _low II table_stops_to lead 

TABLE_CONTROL 

+ 

start 

blan on_table 

table_up~ ard & table_right 

table_upp ~r posit!on table_unload_direct ion 

table_ste v table_stop h 

send a ,1_forward & send robot_right 

armt_m l_on 
table_d ~nward & table lelt 

table Io~ direction table lower_position 
table_stc _='h--~ I I table_stop_v 

Figure 2 Life cycle of table control 
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The notation a II b for two events a and b stands for the process ab + ba (a 

choice between the sequential processes ab and ha). More in general, we can label 
an arrow in a life cycle diagram with a multiset of processes. A transition along 
that arrow is then equivalent to a parallel execution of the processes in this multi- 
set. These life cycle diagrams are also called recursive process graphs and are de- 

fined formally in [13]. 

On the right-hand side in figure 2, each event in the control life cycle has been 
replaced by the events that it synchronizes. The notation 

blank on table 
table_upward & table_right 

is a fancy way of writ ing blank on table & tableupward & table_right, used to 
express informally that blank on table triggers the other two events. This notation 

is similar to the well-known stimulus/response notation in Mealy machines [14]. 
The difference between stimulus and response is not represented in the formal 

specification; all that is represented is that certain events occur synchronously. 

Stimulus/response pairs have thus been modeled using Esterel's synchrony hy- 
pothesis, which says that the response to a stimulus occurs simultaneously with the 

stimulus [2][51. 

The communication structure of the model can be shown by means of context 

diagrams and by a transaction decomposition table. For each control object, we 
can draw a context diagram such as the one shown in Figure 3. 

Just like in data flow (DF) diagrams [22], the system of interest is drawn as a 
circle, and the systems with which it communicates are drawn as rectangles. These 

external objects are all devices (sensors or actuators). Note that the table control 

communicates with devices that are not part of the table, such as ARM1 MOTOR 

and ROBOT_MOTOR. This is to enforce synchronization between different parts of 

the production cell. Unlike DF diagram conventions, an arrow represents a syn- 
chronous communication rather than a flow of data, control, energy or material. No 

distinction is made between these different kinds of communications in the dia- 
gram. The direction of the arrow suggests initiative. A double-headed arrow rep- 

resents a continuous communication. Continuous communications must be 

translated by an event recognizer into the relevant discrete events. The behavior of 
the event recognizer can easily be specified by a life cycle (e.g. as a polling algo- 
rithm). 

A transaction decomposition table is a simple way to represent the decompo- 
sition of communications (called transactions) into their component events. Figure 
4 shows a fragment of the transaction decomposition table of the table control. 
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ROBOT_ 
MOTOR 

blank on table 
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Context diagram of the table control 

TABLE_CONTROL 

CELL1 

TABLE_SWITCH 

TABLE_V_MOTOR 

TABLEH_MOTOR 

TABLE_POTMETER 

ARMI_MOTOR 

ARMI_MAG 

ROBOT_MOTOR 

Figure 4 

start blank_drops_ 
ontable 

blankontable 

tablestops table_stops_ move_arm1_ removeblank 
high to_unload to table fromtable 

table_upper_ 
position 

tableupward table_stop v 

table_right 

table_downward 

table_stop_h table left 

table_unload_ 
direction 

arm1 forward 

arml_mag_on 

robot_right 

Part of the transaction decomposition table containing trans- 
actions of the table control object. The table control transaction omitted 

are table_stops low and table_stops_to_load 
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The leftmost column contains object classes, and the top row shows all trans- 

actions of the control object. Each transaction is a communication event involving 
two or more events in the life of device objects. Each column thus shows in the 
context of which other events a local event is executing, and each row shows what 

the local events of the objects of a class are. One local event may be part of more 

than one communication event. The empty column below the start event is ex- 
plained by the fact that the start event is a synchronization event between the dif- 

ferent control objects and not between the devices of the system. 

The control objects not only synchronize events in the life of sensors and ac- 

tuators, they also synchronize events among themselves, in other words, global 

control is distributed over the control objects. For example, the 
move_arml_to_table event in TABLE_CONTROL synchronizes the rotary table with 

ARM1 and ROBOT. Distributing these synchronization events over the different 

control objects makes the specification easier to understand but it makes it less re- 
usable. As an alternative, one could define a PRODUCTION_CELL_CONTROL ob- 

ject, to which global control events are allocated. The lower-level control objects 

such as TABLE_CONTROL would thereby make less assumptions about the context 

in which they are employed, and would therefore become more reusable in other 

contexts. 

19.3 Language for Conceptual Modeling (LCM 3.0) 

19.3.1 Syntax and intuitive semantics 

An LCM 3.0 specification consists of three components: 

�9 A value type specification that defines all abstract data types needed for 
the model, such as natural numbers or rationals, in an order-sorted condi- 
tional equational specification. The intended semantics of the value type 
specifications is initial. 

�9 A class specification that defines all object- and relationship classes in 
the model. 

A service specification that defines the system transactions. In a data-in- 
tensive system, these are registration events in which one or more system 
surrogates are updated because their corresponding UoD objects changed 
state. 
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In our model of the production cell control system, it turned out that the service 
specifications had to be enhanced to control object specifications, which have a life 

cycle that consists of system transactions. This does not involve a change in the 
underlying logic of the language, but it does require an extension of the syntactic 

sugar in which this logic is presented to the user~ 

For each object class to be defined in the class specification, the value type 

specifications must define an identifier sort, that provides all oids of the objects of 
that class. The identifier sort has the same name as the corresponding class. In the 
production cell example, the identifier sorts are the simplest sorts possible: they 

each contain only one constant as element. The identifiers of the table switch and 

table control objects are defined as shown in Figure 5. In data-intensive systems, 

there will in general by infinitely many identifiers of a class. 

begin value type TABLE_SWffCH 
functions 

ts : TABLE_SWITCH; 
end value type TABLE_SWITCH; 

begin value type TABLE_CONTROL 
functions 

tc : TABLE_CONTROL; 
end value type TABLE_CONTROL; 

Figure 5 Specification of two identifier sorts 

There are two kinds of class specifications in LCM 3.0, object class and rela- 
tionship class specifications. For each object class, there is a corresponding iden- 

tifier sort declaration of the same name. For each relationship class, the identifier 

sort is defined to be the cartesian product of the component identifier sorts. For ex- 
ample, if LOAN is a relationship class between DOCUMENT and MEMBER, then 

LOAN identifiers havethe form (d, m) ,  where d is a DOCUMENT identifier and m 
a MEMBER identifier. There are no relationship classes in the production cell ex- 

ample. 

The is_a relationship between classes can be defined by defining a partial order 
on identifier sorts. For example, in a library database, we may want to declare the 
subclass relationship BOOK _< DOCUMENT Semantically, this means that the class 
of book identifiers is a subset of the class of document identifiers. There is no sig- 
nificant taxonomic structure in the production cell (this is discussed in more detail 

in Section 19.5.) 

The TABLE_SWITCH and TABLE_CONTROL classes are specified in Figures 6 

and7. 
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begin object class TABLE_SWITCH 
predicates 

Exists initially true; 
Table_upper_position; 
Table_lower_position initially true; 

events 
table_lower_position; 
table_upper_position; 

life cycle 
TABLE_SWITCH = table_upper_position, table_lower_position. TABLE_SWITCH; 

axioms 
[table_upper_position(ts)] not Table_lower_position(ts); 
[table_lower_position(ts)] not Table_upper_position(ts); 

end object class TABLE_SWITCH; 

Figure 6 Specification of the TABLE_SWITCH object class 

For each class, attributes, predicates and events are declared. The 

TABLE_SWITCH object contains two predicates, which are both initialized to true. 

In general, the Exists predicate will be set to true for an identifier by a creation 

event and set to false by a deletion event. 

The production cell specification does not contain any attribute declarations. 

As an example of what an attribute declaration looks like, the following attribute 

of TABLE_CONTROL would count the number of blanks that has dropped on the 

table: 

attributes 
nr of blanks : NATURAL initially 0; 

An attribute is a unary function on the identifier sort of the class. Only the co- 

domain of the function is shown in the specification. Thus, nr of blanks is a func- 

tion TABLE_CONTROL --> NATURAL. 

The events applicable to the instances of the class are declared in the events 
section. Each event is a function with codomain EVENT and may have several ar- 

gument sorts. The first argument sort is not shown in the declaration, because it is 

always the identifier sort of the class. Thus, table_upper_position is a function 

TABLE_SWITCH ---> EVENT and blank_drops_on_table is a function 
TABLE_CONTROL x CELL1 x TABLE V MOTOR x TABLE H MOTOR --~ EVENT. 

All communication events are transactions of the control system with its envi- 
ronment, and they are declared as such in TABLE_CONTROL Their decomposition 
into local events is defined in the transaction decomposition section of the class 
specification where the transactions are specified. 
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begin object class TABLE_CONTROL 
predicates 

Exists initially true; 
transactions 

start; 
blank drops_on_table(CELL1, TABLE V MOTOR, TABLE H MOTOR); 
table_stops_high(TABLE_SWITCH, TABLE V MOTOR); 
tablestops_low(TABLE_SWITCH, TABLE V MOTOR); 
table stops_to_Ioad(TABLE_POTMETER, TABLE H MOTOR); 
table stops__to_unload(TABLE_POTMETER, TABLE H MOTOR); 
move_arm1 to table(ARMI_MOTOR, ROBOT_MOTOR); 
remove_blank_fromtable(TABLE H MOTOR, TABLE V MOTOR); 

transaction decompositions 
blank drops_on_table(c1, tv, th) = CELL1 .blank on table(c1) & 

TABLE V MOTOR.table_upward(tv)& 
TABLE H MOTOR.table_right(th); 

table stops_high(ts, tv) = TABLE_SWiTCH.table_uppeLposition(ts) & 
TABLE V MOTOR.table_stop_v(tv); 

table stops_low(ts, tv) = TABLE_SWlTCH.table_loweQposition(ts) & 
TABLE V MOTOR.table_stop~_v(tv); 

table stops_to_load(tp, th) = TABLE_POTMETER.table_load_direction(tp) & 
TABLE H MOTOR.table_stop_h(th); 

table_stops_to_unload(tp, th) = TABLE_POTMETER.table_unload_direction(tp) & 
TABLE H MOTOR.table_stop_h(th); 

move_arm1 to table(aim, rm) = ARMl_MOTOR.arml_forward(alm) & 
ROBOT_MOTOR.robot_right(rm); 

remove_blank_from_table(th, tv) = TABLE H MOTOR.table_left(th) & 
TABLE V MOTOR.table_downward(tv); 

ife cycle 
TABLE_CONTROL = start. 

blank_drops_on_table. 
(table_stops_high II table_stops_to_unload). 
move_arm1 to table. 
remove_blank_from_table. 
(table_stops_low II table_stops_to_load). 
TABLECONTROL; 

end object class TABLE_CONTROL; 

Figure 7 Specification of the TABLE_CONTROL object class 

The life cycle of the class instances is defined in a recursive process specifica- 

tion in the style of ACP [1]. The class name is used as main variable of  this spec- 

ification. The 8, operator in the transaction decomposition specification is the 

communication operator from ACE It is commutative and associative. If t = e 1 & 

e2, then t is considered to be different from e 1 and e 2, and the effect of t is the joint 

effect of that of  el and e 2. The process executed by the specified system is the par- 

allel composition of all object life cycles, in which all local events that are not 
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transactions are encapsulated (renamed to deadlock). The only events that can oc- 

cur, are transactions, whose effect is the same as the joint effect of the component 

events. 

A class specification may contain axioms in order-sorted dynamic logic with 

equality, that constrain the values of attributes, define the effect of the events on 

the attributes, and define event preconditions. All axioms are universally quanti- 

fied, but the quantifications are not shown in the example. Axioms must either be 

static integrity constraints, effect axioms, or precondition axioms. 

A static integrity constraint is a formula without modal operators. It is an in- 

variant of the state space of the system. An example of a static integrity constraint 

would be 

nr of blanks(t) < 1000; 

Safety constraints are all specified as static integrity constraints. 

An effect axiom has the form ~ ---> [c~]llt , where q~ and lit are conjunctions of at- 

oms of the form a = c or literals, and o~ is an event. The meaning of [~]~ is that 

after all possible executions of a,  w is true. 

A precondition axiom defines a necessary precondition of  success for an event 

and has the form {oOtrue ~ ~. The meaning of (o0q~ is that there is a possible ex- 

ecution of o~ that terminates and after which ~ is true. The meaning of (oOtrue is 

that there is a possible execution of a that terminates. The meaning of the precon- 

dition axiom (oOtrue --~ ~ is therefore that if we are in a state where there is a pos- 

sible execution of ~ that terminates, then currently, ~ is true. For all non-creation 

events, there are implicit preconditions of the form 

<table_lower_position(ts)>true ~ Exists(ts); 

That is, only existing objects can execute (non-creation) events. 

There are implicit frame axioms that define the non-effects of  an event, i.e. they 

say what attributes and predicates do not change during the event. 

19.3.2 Outline of declarative semantics 

The declarative semantics of a class specification consists of three parts, an ab- 
stract data type, process algebra and a Kripke structure (Fig. 8). 

Details on the declarative semantics of LCM specifications are given else- 
where [15][20]. Here, a brief outline is given of the basic ideas. 

The value specification part of an LCM specification consists of a data type 
specification, which is interpreted in an abstract data type A, and a process type 
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Figure 8 The structure of a model for LCM specifications 

specification, explained below. As stated before, the intended semantics of the val- 
ue type specification is the initial algebra semantics. This means that the abstract 
data type contains only data elements that can be named by closed terms in the 

specification, and that data elements are identified if and only if the closed terms 

denoting them can be proven equal in the value specification [7][10]. 

In addition to a value type specification, an LCM specification consists of class 
and transaction specifications. The class specification declares unary functions 

(called attributes) and unary predicates, both of which can be updated. The axioms 

of the specifications give static constraints on the attributes and predicates, and 

give effect and precondition axioms, that state how they are updated. These are in- 
terpreted in a Kripke structure K that consists of a set of possible worlds. All the 

possible worlds share the same domain, which is the abstract data type defined by 

the value specification. Different possible worlds may however assign a different 

interpretation to the attributes and predicates. 

The class and transaction specifications in an LCM specification also declare 
atomic events, that are combined into object life cycles. Formally, we have sorts 
EVENT and PROCESS with EVENT < PROCESS. The value specification defines 
process combinators as functions on PROCESS. For example, choice is a function 
declared with infix notation as 

+ : P R O C E S S  x P R O C E S S  --> P R O C E S S .  

The axioms for the process combinators are taken from ACP [1]. These decla- 
rations and axioms jointly form a process theory, which can be viewed as a speci- 
fication of a process type. The process type specification is interpreted in the 
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process algebra P of the model. The intended semantics is here the standard graph 

model of processes, slightly enhanced to include recursive process graphs [13]. 
The process algebra gives a meaning to processes independently of their effect on 
attributes and predicates. This means basically that P defines an equivalence rela- 

tion on processes, that formalizes an observational equivalence notion. For exam- 

ple, the terms e I + e 2 and e 2 + e~ are interpreted as the same process, because choice 
is commutative. 

To define the effect of events and terminating processes on the attributes and 

predicates in the Kripke structure, a function P is defined that for each event e in 
A, defines an accessibility relation 

p(e) _c PWx PW, 

where PW is the set of possible worlds in K. 9 is extended by structural induc- 

tion to terminating processes. There are many such functions 9 compatible with 
the axioms in the LCM specification. The intended semantics is that 9 assigns a 
minimal accessibility relation to e. In particular, 

" 9 assumes that the conjunction of the completed preconditions of each 
event is necessary and sufficient for the event to lead to a next world. The 

completed precondition of an event e is the conjunction of all precondi- 
tions of e listed in the specification, all static integrity constraints (i.e. 

nonmodal axioms) and a nonmodal formula that guarantees the e leads to 
a next possible state. 

�9 9(e) leads only to worlds that differ minimally from the current world. 

There are still many different formalizations of this minimal change semantics, 
some of which are computationally tractable. This is subject of current study [ 18]. 

19.3.3 Axioms and inference rules 

An axiom system that is complete for the loose semantics is given in [20]. A com- 
plete axiom system for the intended semantics given above is not yet known but in 

[19], we give a system that contains some of the needed frame axioms. To give an 
impression of the system, I list the modal logic axioms in Figure 9. 

The R axiom says that if two actions are equal in the process algebra, then they 
have the same effect on the attributes and predicates of objects. It corresponds with 
the congruence condition on the function 9 in the semantics and it makes the axi- 
omatization (without the frame axioms PosFr and NegFr) complete with respect to 
the loose semantics [20]. Axioms not listed above include first-order logic axioms, 



348 R o e l  W i e r i n g a  

(K) [e] ( qb --~/g) --~ ([e] 0 --~ [eltg) 

(R) 
V D  :: e 1 = e 2 

V D :: [el] ~ ~ [e21 

(Barcan) V x: s :: [e]r -4 [e]V x:s :: r for ~ Vat(e) 

(PosFr) 
V D :: P(t 1 .. . . .  tn) --> [elP(t I . . . . .  tn) 
where P is nonupdatable and t i contains only nonupdatable function symbols (i = I ..... n). 

(NegFr) 
V D :: --1P(t 1 ..... tn) --~ [e] --1P(t 1 ... . .  tn) 
where P is nonupdatable and t i contains only nonupdatable function symbols (i = 1 ..... n). 

r 

(N) 
[e]r 

F i g u r e  9 M o d a l  l og i c  a x i o m s  

ax ioms  for  substi tution and congruence,  equali ty ax ioms  and the usual  inference 

rules for  first-order logic. 

19.4 Verification of Safety and Liveness 

Safety  constraints  are easi ly formal ized  as static integri ty constraints  in LCM.  An  

example  o f  a safety constraint  is 

not Robot_zero_angle(rm) and 
not Arml_zero_extension(al m) and 
not Table_lower_position(ts) 

-> not (Blank on table(c1)and Arml_holds_blank(al)) 

Here,  rm identifies the robot  motor ,  a l m  the motor  o f  arm1,  ts the table switch, 

cl the photoelect r ic  cell that  signals whether  a b lank  has arr ived at the table, and 

a l  the magne t  o f  a r m l .  The  constraint  says that if  a r m l  comes  close to the table, 

then there must  not be  both  a b lank  on the table and a b lank  in a r m l .  Specif icat ion 

of  this constraint  requires  the addit ion o f  a number  o f  predicates  to the specifica- 

tion, and a n u m b e r  o f  effect  ax ioms  that  update  these predicates  at the appropr ia te  

events.  In order  to p rove  that  this constraint  is respected during any  poss ib le  be-  

havior  of  the system, it was  necessary  to add some  synchronizat ion  points.  This  is 

the reason why  the events  start and move arm1 to table are present  in the table 

control  life cycle.  Since there is current ly no automat ic  t heo rem-prove r  for  L C M ,  
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the constraints were proven manually. This could not be done as rigorous and de- 

tailed as would have been possible with the aid of a theorem-prover. 

The idea of the proof of safety is very simple. The safety constraint is an axiom 

that should be true in all states of the model (i.e. in all possible worlds of the 

Kripke structure). The system is a parallel composition of a number of cyclic proc- 

esses that in each of their transactions should respect the safety constraints. This is 
a classic integrity constraint verification problem known from databases: For each 

possible transaction, we should be able to prove that if the system currently satis- 

fies the constraint, then it satisfies the constraint after executing the transaction. 

For any given constraint, only a few transactions are able to violate a constraint, 

viz. those transactions that update a predicate or attribute that occurs in the con- 
straint. For example, only a few transactions update the safety constraint listed 

above, such as move_arm1 to table. The proof that these transactions do not cause 

violations of the safety constraints is an elementary (but tedious) application of the 
axioms outlined above. 

The specification makes a number of assumptions about the environment, that 

cannot currently be expressed in LCM. In general, it is assumed that the control 

system is ready to receive an event from its environment when it occurs. For ex- 

ample, it is assumed that the elevating rotary table is ready to receive the next 
blank when it arrives. This assumption cannot be expressed without constructs to 
specify and reason about real-time properties. 

The safety constraints are currently formulated in an overly restrictive way, 

and as a consequence, the synchronization points introduced in the current speci- 

fication cause an unnecessary reduction in concurrency between the movement of 

the parts of the production cell. This makes the system less efficient than it could 
be. 

One of the results of this experiment in formal specification is that it became 

clear that the designer needs a tool to explore the design space effectively and ef- 
ficiently. The tool should allow the designer to search for a specification that is op- 

timal according to a set of criteria. One such criterion is that the parts of the 
production cell should not collide. Another is that the speed with which a blank is 
put through the system is as high as is possible, given the constraints on the system. 
Putting this differently, what we need is a tool that allows the designer to translate 
assumptions about the speed with which blanks arrive at the elevating rotary table 
and the speed with which the parts of the production cell moves into an optimal 
design of the control system. Safety analysis is only one part of the capability of 
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such a tool. Real time analysis and, possibly, real space analysis (to reason about 
locations and speed) is another. 

We are currently designing a tool for reachability analysis, that allows the de- 
signer to evaluate the reachability properties of the specified system [8]. In gener- 
al, the system will be able to answer questions of the foml "Starting from a state 
satisfying 01, is there a sequence of transactions to a state satisfying ~2 such that 
the path satisfies constraints qb?". If there are such paths, the system should exhibit 
one of these and be able to show why it is compatible with the constraints. If there 
is no such path, the system should be able to explain why. Answering these queries 
requires theorem-proving as well as planning capability. We believe that such a 
system would aid the designer in the exploration of the design space in search of a 
system design that is safe as well as efficient. If a path of transactions is found that 

leads from an initial state to some desired state, it would allow the designer to 
present a constructive proof that a liveness property is satisfied by the system. 

In general, reachability queries are unsolvable, but since our specifications 
have a simple form, there is hope that we can solve some interesting subcases us- 
ing theorem-proving techniques. The techniques for finding a reachability 
(dis)proof borrows ideas from plan generation and theorem-proving in AI. To 
make the specification more amenable to these techniques, it is first translated into 
situation calculus, where for each updatable predicate, the events that can lead to 
its update, and the necessary and sufficient preconditions for each event, are listed. 
This is used to reason from the desired final state 02 to conditions ~ on an initial 
state that is compatible with the given conditions qb 1 on the initial state. A tableaux 

technique is used to find a model of the formula gt A 0~. A path from this model to 
the final state is then generated by applying the events in forward direction. There 
is a prototype implementation of this procedure in Prolog, using techniques from 

the Satchmo theorem prover [4118]. 

19.5 Discussion of the Specification 

19.5.1 Extending MCM to control-intensive systems 

The application of MCM to control-intensive systems required one change in the 
method. In data-intensive systems, all control is present in the UoD. Most data-in- 
tensive systems are registration systems: they merely register the events that occur 
in the UoD (and answer queries about the registered data). Consequently, the struc- 
ture of a model of system behavior of data-intensive systems is very simple: We 
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define a number of classes, one for each UoD object. Each UoD object may per- 

form events, and some of them perform communications. These events and com- 
munications are registered by the system. The system model is therefore a copy of 

the UoD model, with the difference that the events and communications of system 

objects are initiated by the events and communications of the corresponding UoD 

objects. 

Just as for registration systems, the transactions of the production cell control 

system correspond with transactions in the UoD. There are however two differenc- 

es between control systems and registration systems: 

�9 The initiative of the transaction may be with the control system as well as 

with objects in the UoD. Usually, a transaction is initiated by a device in 
the UoD. Because the control system enforces a synchronization with an- 

other device, the second device is then also forced to perform an event. 

�9 The transactions of the control system are encapsulated in a control ob- 

ject, which has its own life cycle, by which it enforces meaningful behav- 

ior on the objects in the UoD. 

No assumption is made about how many sensors or actuators participate in one 

transaction. In addition, we may specify different transactions to occur synchro- 

nously, so that several stimulus/response pairs may occur at the same time. 

These extensions to MCM do not require a change in the logic of LCM. They 

merely reflect a different use of this logic. Note that control objects are very similar 

to the interactive function processes of JSD [12]. 

19.5.2 Extending LCM to control-intensive systems 

LCM was found to be suitable for the specification of control-intensive systems. 

Some parts of the language were not used at all in this example. Thus, the specifi- 
cation uses mainly the constructs from ACE Attributes, relationships between ob- 
jects and taxonomic structures were not defined. In addition, object classification 

is not an issue in the production cell control system. However, the facilities of the 

language to specify these structures did not decrease the ease of use of the lan- 
guage for the specification of control structures. 

There are some obvious extensions to the language, which would make it more 
useful for the specification and validation of such systems: 

Real time constructs that allow one to specify timing properties of events 
and states of the system. For example, in the spirit of time Petri nets [3], 
we could label each transition e with an interval [tl, t2] that expresses that 
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e cannot be performed before time t 1 has elapsed from the moment that e 

is enabled, and must be performed before time t 2 has elapsed. This allows 
one to specify the time that a system must wait in a state as well as a time- 

out before which a certain event must occur. It also allows us to derive, 

by means of a teachability analysis, the maximum time needed for the 

production cell before it is ready to receive the next blank from the feed 

belt. 

�9 Exceptions such as device failures have not been expressed at all in the 
current model. This requires the specification of time-outs as well as, 

more generally, the occurrence of abnormal events and recovery from ab- 

normal behavior. 

As a first move towards the realization of these extensions to LCM, we have 

started a project that extends dynamic logic with real time and with deontic logic 

(the logic of actual and ideal behavior) [21]. 

19.5.3 Implementation 

The system has not been implemented in executable code. In the past, students 
have manually translated LCM specifications of database system behavior into 

SQL database schemas embedded into C, and into a persistent version of C++. The 

goal of these projects was to find out whether these translations could be done at 

all, and what could be preserved of the structure of the LCM specification. Verifi- 

cation of the implementation has' not been performed, but it is clear that the use of 

dynamic logic offers the possibility to verify whether transactions have been im- 

plemented correctly. Each transaction is a terminating program that should realize 
the effects as specified in the effect axioms of the LCM specification. This remains 

a topic for further research. 

19.5.4 Specification and verification effort 

The specification was found by first searching for an informal model, represented 
in a number of diagrams and accompanying (unstructured) notes and comments. 
The major tool to come to grips with the informal model turned out to be the event 
trace diagram (also called message sequence diagram in some methods), showing 
all local events in the objects of the system as well as the synchronizations between 
the processes. It took me three iterations to arrive at the current architecture of the 
control system (i.e. this is the fourth version of the system). Altogether, this took 
me about 12 hours, distributed over one week. By dry-running the system, I con- 
vinced myself that I had modeled a system that should be able to respect the safety 
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constraints. To increase my confidence, I specified a number of safety constraints 

formally and proved them manually. 

Having satisfied myself that I had found a stable model of a safe system, I 
wrote the formal specification, including the predicates that I discovered would be 
necessary for the formal proof of system safety. Excluding the crane specification, 
the result is about 8 pages and took about a day to write. Detailed proof of the safe- 
ty constraints, down to the most detailed propositional logic manipulations, was 
not performed because this requires a theorem-prover. 

Writing down the formal specification did not involve much creative work 
(other than inventing informative names for parts of the specification). What is 

sorely needed in this kind of clerical work is a workbench with intelligent text ed- 
iting facilities for the specification as well as graph editing facilities for the dia- 
grams, and the ability to cross-check the different parts of the formal and informal 
specification. Current research includes the incremental specification of such a 
workbench in LCM, and an implementation in C++. 

19.6 Conclusions 

With the minor extension of a construct to define control objects, LCM 3.0 is suit- 
able for the specification of control-intensive systems. However, it does not con- 
tain any facilities for the spec~cation of real-time properties that are usually 
important for control-intensive systems. Future work will therefore include exten- 
sion of the language and its logic with real-time constructs. Current work includes 
the design and implementation of workbench for building integrated formal and 
informal specifications and of a too[ for reachability analysis (without real time) of 
systems specified in LCM 3.0. 
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