
XIX. LCM and MCM
Specification of a Control System using Dynamic
Logic and Process Algebra

Roel Wieringa
Vrije Universiteit Amsterdam

Abstract

LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be
used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was de-
veloped for the specification of object-oriented information systems, but contains sufficient fa-
cilities for the specification of control to apply it to the specification of control-intensive systems
as well. In this paper, the resuks of such an application are reported. The paper concludes with
a discussion of the need for theorem-proving support and of the extensions that would be needed
to be able to specify real-time properties.

19.1 Introduction

LCM 3.0 (Language for Conceptual Modeling version 3.0) is a formal language

developed for the specification of the external behavior of data-intensive systems

[9]. Examples of data-intensive systems are business information systems and da-

tabase systems. LCM is based on a combination of dynamic logic and process al-

gebra, and contains features to specify control structures as well as data structures.

LCM comes with a method for conceptual modeling (MCM), which provides a set

of heuristics to find models of external system behavior, and for validating the

quality of these models [16] [17J. Methodologically, MCM is closely related to the

Jackson System Development (JSD), which has been applied to the specification

of control-intensive systems [12]. Examples of control-intensive systems are in-

334 Roel Wieringa

dustrial process control systems and robot control systems. This paper is intended
to show that LCM/MCM is suitable for the specification of control-intensive sys-
tems as well. However, it will become clear from this paper that the utility of LCM/
MCM would be enhanced if automated support would be provided for reachability
analysis of systems specified in LCM, and if LCM would be extended with con-
structs to deal with real time and with exceptions such as device failure, it will be
argued in this paper that safety analysis is a special case of reachability analysis.

In section 19.2, MCM is explained by applying it to the development of a mod-
el for the production cell control system. Section 19.3 introduces LCM 3.0, again
using the production cell control system as running example. Section 19.5 discuss-
es the lessons learned from this application, and section 19n6 concludes the paper
with a list of topics for further work.

19.2 Method for Conceptual Modeling (MCM)

MCM is a method to produce formal and informal conceptual models of observa-

ble system behavior. An important reason why MCM produces both formal and in-
formal models is that MCM is designed with the aim of allowing both the
possibility of formal verification of an implementation against a conceptual model,
and of validation of the conceptual model against informal requirements that arise
from discussions with the customer. The goal of verification is to show that a sys-
tem specified in one way has the same behavior as a system specified in another
way. The goal of validation is to show that a specification conforms to the inten-
tions of the domain specialists. In other words, verification is concerned with the

question whether we implement a system right, whereas validation is concerned
with the question whether we model the fight system.

Verification can proceed by fomaal proof or by testing; validation is essentially
an informal affair, because the intentions of the domain specialists are themselves
informal. In MCM in order to make formal verification possible, the conceptual
model is specified in a formal language (LCM 3.0). In addition, in order to make
validation possible, the model is specified informally, by means of diagrams and
structured text. The informal presentation techniques have a precise correspond-

ence with the formal specification.

Another design aim of MCM is to integrate useful elements of existing meth-
ods, ranging from Entity-Relationship modeling and Data Flow modeling to ob-
ject-ofiented modeling techniques. One reason for this is that there should be

LCM and MCM 335

progress in system development methods. Inventing something new every five

years does not constitute progress. Instead, we should take whatever is good from

existing methods and try to improve on it. Another reason for this approach is that
the acceptance of a method is likely to be increased when it uses techniques that

are familiar to practitioners. This is incidentally an additional reason why formal
and informal methods are combined in MCM: it enhances the usability of the for-

mal method.

MCM models a system as consisting of a collection of communicating objects.
Each object has a local state and a local behavior. Objects communicate with each

other by means of synchronous communication events. Objects are subject to in-

tegrity constraints, which are static or dynamic constraints on allowable object
states or behavior. Constraints may be local to one object or global to the entire

system. In a data-intensive system, constraints represent business rules. In a con-
trol-intensive system, they can be used to express safety constraints.

When we model a data-intensive system in MCM, we first make a model of the

universe of discourse (UoD) of the system, which is the part of the world about

which the system registers data. For example, in a model of a library database sys-
tem, we would model the UoD as a set of objects such as DOCUMENT, MEMBER,

RESERVATION and LOAN instances. A borrow event in the UoD would be a syn-

chronous communication event that in one atomic state transition deletes a RES-

ERVATION object and creates a LOAN object. UoD objects would be represented in
the system by records, that act as surrogates for the corresponding UoD objects.

The state of the surrogates is updated whenever the corresponding UoD objects
change state. For example, the borrow event in the UoD would be registered by a

database transaction, that deletes a RESERVATION record and creates a LOAN

record in one atomic state transition. Thus, each database system transaction cor-
responds to an event in the UoD, in which one or more UoD objects participate.
Database systems are essentially registration systems.

The basic idea to transfer and extend this to a method for modeling control sys-

tems is to model the UoD as a set of communicating devices, each of which is rep-

resented in the system by a device surrogate. In real-time methods, such a
surrogate is often called a virtual device [11]. Devices communicate by participat-
ing in a synchronous event. The control function of the system is provided by de-
fining control objects in addition to the device objects. A control object does not
correspond to a UoD object. It encapsulates device communications and enforces
the required behavior of the devices. The problem of controlling devices in the
UoD is thus reduced to the problem of defining the required synchronizations be-

336 Roel Wieringa

tween the devices. This idea will become clear by the illustrations in the following
paragraphs, taken from the production celt control system.

19.2.1 The class model

As explained above, one class is defined for each device in the UoD. It turned out

to be convenient to define one class for each sensor device and for each actuator

device. Examples of sensor object classes are TABLE__SWITGH, TABLE_POTMETER,

and ARMI_POTMETER. Examples of actuator object classes are TABLE N MOTOR,

TABLE V MOTOR and ARMI_MOTOR. Each object class has only one existing in-

stance in the system.

In addition to the device objects, control objects are defined, that enforce the

required behavior of the devices. Corresponding to the modular structure of the

production cell system, the control system contains the following control objects:

TABLE_CONTROL, ARMI_CONTROL, ARM2_CONTROL, ROBOT_CONTROL,
PRESS_CONTROL and CRANE_CONTROL. Agai'n, these are objects classes that
each have exactly one existing instance. There are no control objects for the con-

veyor belts, because it is assumed that they move continuously. This means that it

is also assumed that the blanks are spaced on the feed belt with sufficient distance
so that the robot and rotary table have the time to return to the positions in which

they are ready to receive the next blank from the feed belt.

The central component of models of data-intensive systems is a class diagram,

which usually is some form of enhanced Entity-Relationship diagram. In the case

of control-intensive systems, such a diagram is usually quite simple. Figure 1
shows a fragment of the class diagram representing the table switch and and the

table control object classes.

A class is represented in Coad & Yourdon style [6] by a rectangle partitioned

into three areas, listing, from top to bottom, the class name, names of attributes and

predicates applicable to class instances, and names of events applicable to class in-
stances. By convention, a predicate name starts with an upper-case letter and an
attribute name consists only of lower-case letters. The TABLE_SWITCH object has
three predicates, Exists, Table_lower_position and Table_upper_position, and two
events, table_lower position and table_upper_position. No object in the model has
attributes.

Formally, the extension of a class is the set of all possible identifiers (oids) of
the class instances. All predicates, attributes and events declared in the class are
applied to oids. Each class has at least the Exists predicate, which is set to true
when the object starts its existence and set to false when it ceases to exist. All in-

LCM and MCM 337

TABLE_SWITCH

Exits
Table_lower_position
Table_upper_position

Table_lower_position
Table_upper_position

TABLE_CONTROL

Exits

start
blank_drops_on_table
table_stops_high
table_stops_low
table_stops_unload
table_stops_load
move_arm1 to table
remove_blran k_from_table

Figure 1 Class diagram of the table switch and the table control

tegrity constraints only concern existing class instances. The ability to create and

delete objects is essential in data-intensive systems, but tends to be less important
in control-intensive systems. In the production cell example, all classes have only

one instance that eternally exists, and no object is ever created or deleted. One way

to introduce objects that are dynamically created and deleted would be to model
each incoming blank as an object. However, to express the parallelism between the

different device and control objects, we must model these objects as separate proc-

esses anyway. Defining a BLANK object class then does not add any information,

even in the case that different blanks would require a different treatment by the

production cell. (Different treatments of different kinds of blanks could be speci-

fied by adding tests and choices to the specification of control object behavior.)

Returning to the class specifications in Figure 1, the Table_lower_position pred-
icate in the TABLE_SWITCH class is needed to be able to specify a safety constraint.

MCM allows the specification of attributes of objects and of relationships be-
tween them. A relationship can itself have attributes and behavior. In addition,

there is a special is_a relationship, that expresses that one class is a subclass of an-
other one, and that defines inheritance of attributes, behavior and constraints from

the superclass to the subclass. In our production cell model, there are no attributes

and no relationships and there is no taxonomic structure - - or more accurately, the
attributes, relationships and taxonomic structure that the actual devices and control
objects have in the real world, are not represented in the model. Attributes and re-

lationships are typically needed in data-intensive systems to be able to store the
necessary data to answer queries. In control-intensive systems, all data needed to
be able to perform the control function is usually present in the state of the object
life cycles.

338 Roel Wieringa

The events in the TABLE_SWITCH class are events generated by this sensor. As

explained below, these events are forced by the TABLE_CONTROL object to syn-

chronize with other events in the UoD, such as table_stop_v. All events in the

TABLE_CONTROL class are synchronization events between events in the UoD.

The life cycle model

The behavior of an object is called an object life cycle in MCM and we will follow

this practice here. Figure 2 shows two equivalent representations the life cycle of

the table control object. The start event is a synchronization event between control

objects that is needed because of different speeds with which the parts of the sys-

tem move. When a blank drops on the table, the control object tells the table mo-

tors to move upward and right, until the table reaches the top position and has the

direction needed to be unloaded by arml. It then tells arm1 to move to the table.

When arml picks up the blank from the table, the table is moved downward and

returned to its starting position.

TABLE_CONTROL

tart
t
)

blank_d)ps_on_table

f
)

table_stc s high table_stops to_unioad

move trml to table

remov, blank_from_table

table_sto~ _low II table_stops_to lead

TABLE_CONTROL

+

start

blan on_table

table_up~ ard & table_right

table_upp ~r posit!on table_unload_direct ion

table_ste v table_stop h

send a ,1_forward & send robot_right

armt_m l_on
table_d ~nward & table lelt

table Io~ direction table lower_position
table_stc _='h--~ I I table_stop_v

Figure 2 Life cycle of table control

LCM and MCM 339

The notation a II b for two events a and b stands for the process ab + ba (a

choice between the sequential processes ab and ha). More in general, we can label
an arrow in a life cycle diagram with a multiset of processes. A transition along
that arrow is then equivalent to a parallel execution of the processes in this multi-
set. These life cycle diagrams are also called recursive process graphs and are de-

fined formally in [13].

On the right-hand side in figure 2, each event in the control life cycle has been
replaced by the events that it synchronizes. The notation

blank on table
table_upward & table_right

is a fancy way of writ ing blank on table & tableupward & table_right, used to
express informally that blank on table triggers the other two events. This notation

is similar to the well-known stimulus/response notation in Mealy machines [14].
The difference between stimulus and response is not represented in the formal

specification; all that is represented is that certain events occur synchronously.

Stimulus/response pairs have thus been modeled using Esterel's synchrony hy-
pothesis, which says that the response to a stimulus occurs simultaneously with the

stimulus [2][51.

The communication structure of the model can be shown by means of context

diagrams and by a transaction decomposition table. For each control object, we
can draw a context diagram such as the one shown in Figure 3.

Just like in data flow (DF) diagrams [22], the system of interest is drawn as a
circle, and the systems with which it communicates are drawn as rectangles. These

external objects are all devices (sensors or actuators). Note that the table control

communicates with devices that are not part of the table, such as ARM1 MOTOR

and ROBOT_MOTOR. This is to enforce synchronization between different parts of

the production cell. Unlike DF diagram conventions, an arrow represents a syn-
chronous communication rather than a flow of data, control, energy or material. No

distinction is made between these different kinds of communications in the dia-
gram. The direction of the arrow suggests initiative. A double-headed arrow rep-

resents a continuous communication. Continuous communications must be

translated by an event recognizer into the relevant discrete events. The behavior of
the event recognizer can easily be specified by a life cycle (e.g. as a polling algo-
rithm).

A transaction decomposition table is a simple way to represent the decompo-
sition of communications (called transactions) into their component events. Figure
4 shows a fragment of the transaction decomposition table of the table control.

340 Roel Wieringa

ARM1_
MOTOR

ROBOT_
MOTOR

blank on table

forward table_upper_position _~
- ~ / / / ~ ~ / / / table_lower position

t 1 table_upward
l T A B L E - C O N T R O ~ ~ - I

] . / table_right ~ " ~ - ~ I
. table stop h I

I table_ table_ - - '
i J load_ unload_

direction direction

I CELL_I

TABLE_
SWITCH

V_MOTOR]

H_MOTOR

Figure 3

I even-----~-~: < rotation TABLE POTMETER
recognizer i

Context diagram of the table control

TABLE_CONTROL

CELL1

TABLE_SWITCH

TABLE_V_MOTOR

TABLEH_MOTOR

TABLE_POTMETER

ARMI_MOTOR

ARMI_MAG

ROBOT_MOTOR

Figure 4

start blank_drops_
ontable

blankontable

tablestops table_stops_ move_arm1_ removeblank
high to_unload to table fromtable

table_upper_
position

tableupward table_stop v

table_right

table_downward

table_stop_h table left

table_unload_
direction

arm1 forward

arml_mag_on

robot_right

Part of the transaction decomposition table containing trans-
actions of the table control object. The table control transaction omitted

are table_stops low and table_stops_to_load

LCM and MCM 341

The leftmost column contains object classes, and the top row shows all trans-

actions of the control object. Each transaction is a communication event involving
two or more events in the life of device objects. Each column thus shows in the
context of which other events a local event is executing, and each row shows what

the local events of the objects of a class are. One local event may be part of more

than one communication event. The empty column below the start event is ex-
plained by the fact that the start event is a synchronization event between the dif-

ferent control objects and not between the devices of the system.

The control objects not only synchronize events in the life of sensors and ac-

tuators, they also synchronize events among themselves, in other words, global

control is distributed over the control objects. For example, the
move_arml_to_table event in TABLE_CONTROL synchronizes the rotary table with

ARM1 and ROBOT. Distributing these synchronization events over the different

control objects makes the specification easier to understand but it makes it less re-
usable. As an alternative, one could define a PRODUCTION_CELL_CONTROL ob-

ject, to which global control events are allocated. The lower-level control objects

such as TABLE_CONTROL would thereby make less assumptions about the context

in which they are employed, and would therefore become more reusable in other

contexts.

19.3 Language for Conceptual Modeling (LCM 3.0)

19.3.1 Syntax and intuitive semantics

An LCM 3.0 specification consists of three components:

�9 A value type specification that defines all abstract data types needed for
the model, such as natural numbers or rationals, in an order-sorted condi-
tional equational specification. The intended semantics of the value type
specifications is initial.

�9 A class specification that defines all object- and relationship classes in
the model.

A service specification that defines the system transactions. In a data-in-
tensive system, these are registration events in which one or more system
surrogates are updated because their corresponding UoD objects changed
state.

342 Roel Wieringa

In our model of the production cell control system, it turned out that the service
specifications had to be enhanced to control object specifications, which have a life

cycle that consists of system transactions. This does not involve a change in the
underlying logic of the language, but it does require an extension of the syntactic

sugar in which this logic is presented to the user~

For each object class to be defined in the class specification, the value type

specifications must define an identifier sort, that provides all oids of the objects of
that class. The identifier sort has the same name as the corresponding class. In the
production cell example, the identifier sorts are the simplest sorts possible: they

each contain only one constant as element. The identifiers of the table switch and

table control objects are defined as shown in Figure 5. In data-intensive systems,

there will in general by infinitely many identifiers of a class.

begin value type TABLE_SWffCH
functions

ts : TABLE_SWITCH;
end value type TABLE_SWITCH;

begin value type TABLE_CONTROL
functions

tc : TABLE_CONTROL;
end value type TABLE_CONTROL;

Figure 5 Specification of two identifier sorts

There are two kinds of class specifications in LCM 3.0, object class and rela-
tionship class specifications. For each object class, there is a corresponding iden-

tifier sort declaration of the same name. For each relationship class, the identifier

sort is defined to be the cartesian product of the component identifier sorts. For ex-
ample, if LOAN is a relationship class between DOCUMENT and MEMBER, then

LOAN identifiers havethe form (d, m) , where d is a DOCUMENT identifier and m
a MEMBER identifier. There are no relationship classes in the production cell ex-

ample.

The is_a relationship between classes can be defined by defining a partial order
on identifier sorts. For example, in a library database, we may want to declare the
subclass relationship BOOK _< DOCUMENT Semantically, this means that the class
of book identifiers is a subset of the class of document identifiers. There is no sig-
nificant taxonomic structure in the production cell (this is discussed in more detail

in Section 19.5.)

The TABLE_SWITCH and TABLE_CONTROL classes are specified in Figures 6

and7.

LCM and MCM 343

begin object class TABLE_SWITCH
predicates

Exists initially true;
Table_upper_position;
Table_lower_position initially true;

events
table_lower_position;
table_upper_position;

life cycle
TABLE_SWITCH = table_upper_position, table_lower_position. TABLE_SWITCH;

axioms
[table_upper_position(ts)] not Table_lower_position(ts);
[table_lower_position(ts)] not Table_upper_position(ts);

end object class TABLE_SWITCH;

Figure 6 Specification of the TABLE_SWITCH object class

For each class, attributes, predicates and events are declared. The

TABLE_SWITCH object contains two predicates, which are both initialized to true.

In general, the Exists predicate will be set to true for an identifier by a creation

event and set to false by a deletion event.

The production cell specification does not contain any attribute declarations.

As an example of what an attribute declaration looks like, the following attribute

of TABLE_CONTROL would count the number of blanks that has dropped on the

table:

attributes
nr of blanks : NATURAL initially 0;

An attribute is a unary function on the identifier sort of the class. Only the co-

domain of the function is shown in the specification. Thus, nr of blanks is a func-

tion TABLE_CONTROL --> NATURAL.

The events applicable to the instances of the class are declared in the events
section. Each event is a function with codomain EVENT and may have several ar-

gument sorts. The first argument sort is not shown in the declaration, because it is

always the identifier sort of the class. Thus, table_upper_position is a function

TABLE_SWITCH ---> EVENT and blank_drops_on_table is a function
TABLE_CONTROL x CELL1 x TABLE V MOTOR x TABLE H MOTOR --~ EVENT.

All communication events are transactions of the control system with its envi-
ronment, and they are declared as such in TABLE_CONTROL Their decomposition
into local events is defined in the transaction decomposition section of the class
specification where the transactions are specified.

344 Roel Wieringa

begin object class TABLE_CONTROL
predicates

Exists initially true;
transactions

start;
blank drops_on_table(CELL1, TABLE V MOTOR, TABLE H MOTOR);
table_stops_high(TABLE_SWITCH, TABLE V MOTOR);
tablestops_low(TABLE_SWITCH, TABLE V MOTOR);
table stops_to_Ioad(TABLE_POTMETER, TABLE H MOTOR);
table stops__to_unload(TABLE_POTMETER, TABLE H MOTOR);
move_arm1 to table(ARMI_MOTOR, ROBOT_MOTOR);
remove_blank_fromtable(TABLE H MOTOR, TABLE V MOTOR);

transaction decompositions
blank drops_on_table(c1, tv, th) = CELL1 .blank on table(c1) &

TABLE V MOTOR.table_upward(tv)&
TABLE H MOTOR.table_right(th);

table stops_high(ts, tv) = TABLE_SWiTCH.table_uppeLposition(ts) &
TABLE V MOTOR.table_stop_v(tv);

table stops_low(ts, tv) = TABLE_SWlTCH.table_loweQposition(ts) &
TABLE V MOTOR.table_stop~_v(tv);

table stops_to_load(tp, th) = TABLE_POTMETER.table_load_direction(tp) &
TABLE H MOTOR.table_stop_h(th);

table_stops_to_unload(tp, th) = TABLE_POTMETER.table_unload_direction(tp) &
TABLE H MOTOR.table_stop_h(th);

move_arm1 to table(aim, rm) = ARMl_MOTOR.arml_forward(alm) &
ROBOT_MOTOR.robot_right(rm);

remove_blank_from_table(th, tv) = TABLE H MOTOR.table_left(th) &
TABLE V MOTOR.table_downward(tv);

ife cycle
TABLE_CONTROL = start.

blank_drops_on_table.
(table_stops_high II table_stops_to_unload).
move_arm1 to table.
remove_blank_from_table.
(table_stops_low II table_stops_to_load).
TABLECONTROL;

end object class TABLE_CONTROL;

Figure 7 Specification of the TABLE_CONTROL object class

The life cycle of the class instances is defined in a recursive process specifica-

tion in the style of ACP [1]. The class name is used as main variable of this spec-

ification. The 8, operator in the transaction decomposition specification is the

communication operator from ACE It is commutative and associative. If t = e 1 &

e2, then t is considered to be different from e 1 and e 2, and the effect of t is the joint

effect of that of el and e 2. The process executed by the specified system is the par-

allel composition of all object life cycles, in which all local events that are not

LCM and MCM 345

transactions are encapsulated (renamed to deadlock). The only events that can oc-

cur, are transactions, whose effect is the same as the joint effect of the component

events.

A class specification may contain axioms in order-sorted dynamic logic with

equality, that constrain the values of attributes, define the effect of the events on

the attributes, and define event preconditions. All axioms are universally quanti-

fied, but the quantifications are not shown in the example. Axioms must either be

static integrity constraints, effect axioms, or precondition axioms.

A static integrity constraint is a formula without modal operators. It is an in-

variant of the state space of the system. An example of a static integrity constraint

would be

nr of blanks(t) < 1000;

Safety constraints are all specified as static integrity constraints.

An effect axiom has the form ~ ---> [c~]llt , where q~ and lit are conjunctions of at-

oms of the form a = c or literals, and o~ is an event. The meaning of [~]~ is that

after all possible executions of a, w is true.

A precondition axiom defines a necessary precondition of success for an event

and has the form {oOtrue ~ ~. The meaning of (o0q~ is that there is a possible ex-

ecution of o~ that terminates and after which ~ is true. The meaning of (oOtrue is

that there is a possible execution of a that terminates. The meaning of the precon-

dition axiom (oOtrue --~ ~ is therefore that if we are in a state where there is a pos-

sible execution of ~ that terminates, then currently, ~ is true. For all non-creation

events, there are implicit preconditions of the form

<table_lower_position(ts)>true ~ Exists(ts);

That is, only existing objects can execute (non-creation) events.

There are implicit frame axioms that define the non-effects of an event, i.e. they

say what attributes and predicates do not change during the event.

19.3.2 Outline of declarative semantics

The declarative semantics of a class specification consists of three parts, an ab-
stract data type, process algebra and a Kripke structure (Fig. 8).

Details on the declarative semantics of LCM specifications are given else-
where [15][20]. Here, a brief outline is given of the basic ideas.

The value specification part of an LCM specification consists of a data type
specification, which is interpreted in an abstract data type A, and a process type

346 Roel Wieringa

Figure 8 The structure of a model for LCM specifications

specification, explained below. As stated before, the intended semantics of the val-
ue type specification is the initial algebra semantics. This means that the abstract
data type contains only data elements that can be named by closed terms in the

specification, and that data elements are identified if and only if the closed terms

denoting them can be proven equal in the value specification [7][10].

In addition to a value type specification, an LCM specification consists of class
and transaction specifications. The class specification declares unary functions

(called attributes) and unary predicates, both of which can be updated. The axioms

of the specifications give static constraints on the attributes and predicates, and

give effect and precondition axioms, that state how they are updated. These are in-
terpreted in a Kripke structure K that consists of a set of possible worlds. All the

possible worlds share the same domain, which is the abstract data type defined by

the value specification. Different possible worlds may however assign a different

interpretation to the attributes and predicates.

The class and transaction specifications in an LCM specification also declare
atomic events, that are combined into object life cycles. Formally, we have sorts
EVENT and PROCESS with EVENT < PROCESS. The value specification defines
process combinators as functions on PROCESS. For example, choice is a function
declared with infix notation as

+ : P R O C E S S x P R O C E S S --> P R O C E S S .

The axioms for the process combinators are taken from ACP [1]. These decla-
rations and axioms jointly form a process theory, which can be viewed as a speci-
fication of a process type. The process type specification is interpreted in the

LCM and MCM 347

process algebra P of the model. The intended semantics is here the standard graph

model of processes, slightly enhanced to include recursive process graphs [13].
The process algebra gives a meaning to processes independently of their effect on
attributes and predicates. This means basically that P defines an equivalence rela-

tion on processes, that formalizes an observational equivalence notion. For exam-

ple, the terms e I + e 2 and e 2 + e~ are interpreted as the same process, because choice
is commutative.

To define the effect of events and terminating processes on the attributes and

predicates in the Kripke structure, a function P is defined that for each event e in
A, defines an accessibility relation

p(e) _c PWx PW,

where PW is the set of possible worlds in K. 9 is extended by structural induc-

tion to terminating processes. There are many such functions 9 compatible with
the axioms in the LCM specification. The intended semantics is that 9 assigns a
minimal accessibility relation to e. In particular,

" 9 assumes that the conjunction of the completed preconditions of each
event is necessary and sufficient for the event to lead to a next world. The

completed precondition of an event e is the conjunction of all precondi-
tions of e listed in the specification, all static integrity constraints (i.e.

nonmodal axioms) and a nonmodal formula that guarantees the e leads to
a next possible state.

�9 9(e) leads only to worlds that differ minimally from the current world.

There are still many different formalizations of this minimal change semantics,
some of which are computationally tractable. This is subject of current study [18].

19.3.3 Axioms and inference rules

An axiom system that is complete for the loose semantics is given in [20]. A com-
plete axiom system for the intended semantics given above is not yet known but in

[19], we give a system that contains some of the needed frame axioms. To give an
impression of the system, I list the modal logic axioms in Figure 9.

The R axiom says that if two actions are equal in the process algebra, then they
have the same effect on the attributes and predicates of objects. It corresponds with
the congruence condition on the function 9 in the semantics and it makes the axi-
omatization (without the frame axioms PosFr and NegFr) complete with respect to
the loose semantics [20]. Axioms not listed above include first-order logic axioms,

348 R o e l W i e r i n g a

(K) [e] (qb --~/g) --~ ([e] 0 --~ [eltg)

(R)
V D :: e 1 = e 2

V D :: [el] ~ ~ [e21

(Barcan) V x: s :: [e]r -4 [e]V x:s :: r for ~ Vat(e)

(PosFr)
V D :: P(t 1 tn) --> [elP(t I tn)
where P is nonupdatable and t i contains only nonupdatable function symbols (i = I n).

(NegFr)
V D :: --1P(t 1 tn) --~ [e] --1P(t 1 tn)
where P is nonupdatable and t i contains only nonupdatable function symbols (i = 1 n).

r

(N)
[e]r

F i g u r e 9 M o d a l l og i c a x i o m s

ax ioms for substi tution and congruence, equali ty ax ioms and the usual inference

rules for first-order logic.

19.4 Verification of Safety and Liveness

Safety constraints are easi ly formal ized as static integri ty constraints in LCM. An

example o f a safety constraint is

not Robot_zero_angle(rm) and
not Arml_zero_extension(al m) and
not Table_lower_position(ts)

-> not (Blank on table(c1)and Arml_holds_blank(al))

Here, rm identifies the robot motor , a l m the motor o f arm1, ts the table switch,

cl the photoelect r ic cell that signals whether a b lank has arr ived at the table, and

a l the magne t o f a r m l . The constraint says that if a r m l comes close to the table,

then there must not be both a b lank on the table and a b lank in a r m l . Specif icat ion

of this constraint requires the addit ion o f a number o f predicates to the specifica-

tion, and a n u m b e r o f effect ax ioms that update these predicates at the appropr ia te

events. In order to p rove that this constraint is respected during any poss ib le be-

havior of the system, it was necessary to add some synchronizat ion points. This is

the reason why the events start and move arm1 to table are present in the table

control life cycle. Since there is current ly no automat ic t heo rem-prove r for L C M ,

LCM and MCM 349

the constraints were proven manually. This could not be done as rigorous and de-

tailed as would have been possible with the aid of a theorem-prover.

The idea of the proof of safety is very simple. The safety constraint is an axiom

that should be true in all states of the model (i.e. in all possible worlds of the

Kripke structure). The system is a parallel composition of a number of cyclic proc-

esses that in each of their transactions should respect the safety constraints. This is
a classic integrity constraint verification problem known from databases: For each

possible transaction, we should be able to prove that if the system currently satis-

fies the constraint, then it satisfies the constraint after executing the transaction.

For any given constraint, only a few transactions are able to violate a constraint,

viz. those transactions that update a predicate or attribute that occurs in the con-
straint. For example, only a few transactions update the safety constraint listed

above, such as move_arm1 to table. The proof that these transactions do not cause

violations of the safety constraints is an elementary (but tedious) application of the
axioms outlined above.

The specification makes a number of assumptions about the environment, that

cannot currently be expressed in LCM. In general, it is assumed that the control

system is ready to receive an event from its environment when it occurs. For ex-

ample, it is assumed that the elevating rotary table is ready to receive the next
blank when it arrives. This assumption cannot be expressed without constructs to
specify and reason about real-time properties.

The safety constraints are currently formulated in an overly restrictive way,

and as a consequence, the synchronization points introduced in the current speci-

fication cause an unnecessary reduction in concurrency between the movement of

the parts of the production cell. This makes the system less efficient than it could
be.

One of the results of this experiment in formal specification is that it became

clear that the designer needs a tool to explore the design space effectively and ef-
ficiently. The tool should allow the designer to search for a specification that is op-

timal according to a set of criteria. One such criterion is that the parts of the
production cell should not collide. Another is that the speed with which a blank is
put through the system is as high as is possible, given the constraints on the system.
Putting this differently, what we need is a tool that allows the designer to translate
assumptions about the speed with which blanks arrive at the elevating rotary table
and the speed with which the parts of the production cell moves into an optimal
design of the control system. Safety analysis is only one part of the capability of

350 Roel Wieringa

such a tool. Real time analysis and, possibly, real space analysis (to reason about
locations and speed) is another.

We are currently designing a tool for reachability analysis, that allows the de-
signer to evaluate the reachability properties of the specified system [8]. In gener-
al, the system will be able to answer questions of the foml "Starting from a state
satisfying 01, is there a sequence of transactions to a state satisfying ~2 such that
the path satisfies constraints qb?". If there are such paths, the system should exhibit
one of these and be able to show why it is compatible with the constraints. If there
is no such path, the system should be able to explain why. Answering these queries
requires theorem-proving as well as planning capability. We believe that such a
system would aid the designer in the exploration of the design space in search of a
system design that is safe as well as efficient. If a path of transactions is found that

leads from an initial state to some desired state, it would allow the designer to
present a constructive proof that a liveness property is satisfied by the system.

In general, reachability queries are unsolvable, but since our specifications
have a simple form, there is hope that we can solve some interesting subcases us-
ing theorem-proving techniques. The techniques for finding a reachability
(dis)proof borrows ideas from plan generation and theorem-proving in AI. To
make the specification more amenable to these techniques, it is first translated into
situation calculus, where for each updatable predicate, the events that can lead to
its update, and the necessary and sufficient preconditions for each event, are listed.
This is used to reason from the desired final state 02 to conditions ~ on an initial
state that is compatible with the given conditions qb 1 on the initial state. A tableaux

technique is used to find a model of the formula gt A 0~. A path from this model to
the final state is then generated by applying the events in forward direction. There
is a prototype implementation of this procedure in Prolog, using techniques from

the Satchmo theorem prover [4118].

19.5 Discussion of the Specification

19.5.1 Extending MCM to control-intensive systems

The application of MCM to control-intensive systems required one change in the
method. In data-intensive systems, all control is present in the UoD. Most data-in-
tensive systems are registration systems: they merely register the events that occur
in the UoD (and answer queries about the registered data). Consequently, the struc-
ture of a model of system behavior of data-intensive systems is very simple: We

LCM and MCM 351

define a number of classes, one for each UoD object. Each UoD object may per-

form events, and some of them perform communications. These events and com-
munications are registered by the system. The system model is therefore a copy of

the UoD model, with the difference that the events and communications of system

objects are initiated by the events and communications of the corresponding UoD

objects.

Just as for registration systems, the transactions of the production cell control

system correspond with transactions in the UoD. There are however two differenc-

es between control systems and registration systems:

�9 The initiative of the transaction may be with the control system as well as

with objects in the UoD. Usually, a transaction is initiated by a device in
the UoD. Because the control system enforces a synchronization with an-

other device, the second device is then also forced to perform an event.

�9 The transactions of the control system are encapsulated in a control ob-

ject, which has its own life cycle, by which it enforces meaningful behav-

ior on the objects in the UoD.

No assumption is made about how many sensors or actuators participate in one

transaction. In addition, we may specify different transactions to occur synchro-

nously, so that several stimulus/response pairs may occur at the same time.

These extensions to MCM do not require a change in the logic of LCM. They

merely reflect a different use of this logic. Note that control objects are very similar

to the interactive function processes of JSD [12].

19.5.2 Extending LCM to control-intensive systems

LCM was found to be suitable for the specification of control-intensive systems.

Some parts of the language were not used at all in this example. Thus, the specifi-
cation uses mainly the constructs from ACE Attributes, relationships between ob-
jects and taxonomic structures were not defined. In addition, object classification

is not an issue in the production cell control system. However, the facilities of the

language to specify these structures did not decrease the ease of use of the lan-
guage for the specification of control structures.

There are some obvious extensions to the language, which would make it more
useful for the specification and validation of such systems:

Real time constructs that allow one to specify timing properties of events
and states of the system. For example, in the spirit of time Petri nets [3],
we could label each transition e with an interval [tl, t2] that expresses that

352 Roel Wieringa

e cannot be performed before time t 1 has elapsed from the moment that e

is enabled, and must be performed before time t 2 has elapsed. This allows
one to specify the time that a system must wait in a state as well as a time-

out before which a certain event must occur. It also allows us to derive,

by means of a teachability analysis, the maximum time needed for the

production cell before it is ready to receive the next blank from the feed

belt.

�9 Exceptions such as device failures have not been expressed at all in the
current model. This requires the specification of time-outs as well as,

more generally, the occurrence of abnormal events and recovery from ab-

normal behavior.

As a first move towards the realization of these extensions to LCM, we have

started a project that extends dynamic logic with real time and with deontic logic

(the logic of actual and ideal behavior) [21].

19.5.3 Implementation

The system has not been implemented in executable code. In the past, students
have manually translated LCM specifications of database system behavior into

SQL database schemas embedded into C, and into a persistent version of C++. The

goal of these projects was to find out whether these translations could be done at

all, and what could be preserved of the structure of the LCM specification. Verifi-

cation of the implementation has' not been performed, but it is clear that the use of

dynamic logic offers the possibility to verify whether transactions have been im-

plemented correctly. Each transaction is a terminating program that should realize
the effects as specified in the effect axioms of the LCM specification. This remains

a topic for further research.

19.5.4 Specification and verification effort

The specification was found by first searching for an informal model, represented
in a number of diagrams and accompanying (unstructured) notes and comments.
The major tool to come to grips with the informal model turned out to be the event
trace diagram (also called message sequence diagram in some methods), showing
all local events in the objects of the system as well as the synchronizations between
the processes. It took me three iterations to arrive at the current architecture of the
control system (i.e. this is the fourth version of the system). Altogether, this took
me about 12 hours, distributed over one week. By dry-running the system, I con-
vinced myself that I had modeled a system that should be able to respect the safety

LCM and MCM 353

constraints. To increase my confidence, I specified a number of safety constraints

formally and proved them manually.

Having satisfied myself that I had found a stable model of a safe system, I
wrote the formal specification, including the predicates that I discovered would be
necessary for the formal proof of system safety. Excluding the crane specification,
the result is about 8 pages and took about a day to write. Detailed proof of the safe-
ty constraints, down to the most detailed propositional logic manipulations, was
not performed because this requires a theorem-prover.

Writing down the formal specification did not involve much creative work
(other than inventing informative names for parts of the specification). What is

sorely needed in this kind of clerical work is a workbench with intelligent text ed-
iting facilities for the specification as well as graph editing facilities for the dia-
grams, and the ability to cross-check the different parts of the formal and informal
specification. Current research includes the incremental specification of such a
workbench in LCM, and an implementation in C++.

19.6 Conclusions

With the minor extension of a construct to define control objects, LCM 3.0 is suit-
able for the specification of control-intensive systems. However, it does not con-
tain any facilities for the spec~cation of real-time properties that are usually
important for control-intensive systems. Future work will therefore include exten-
sion of the language and its logic with real-time constructs. Current work includes
the design and implementation of workbench for building integrated formal and
informal specifications and of a too[for reachability analysis (without real time) of
systems specified in LCM 3.0.

Acknowledgements

This paper benefited from comments made by Remco Feenstra and Claus
Lewerentz on an earlier version.

354 Roel Wieringa

References

[1] J.C.M. Baeten and W.E Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[2] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design,
semantics, implementation. Science of Computer Programming, 19:87-152, 1992.

[3] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Transactions on Software Engineering, SE-17:259-273, March
1991.

[4] E Bry, H. Decker, and R. Manthey. A uniform approach to constraint satisfaction and
constraint satisfiability in deductive databases. In Proceedings of the International
Conference on Extending Database Technology (EDBT), pages 488-505, Venice, 1988.
Springer-Verlag.

[5] R. Budde. ESTEREL Applied to the case study production cell. In Case Study
"Production CeU', FZI-Publication 1/94, pages 51-75. Forschungszentrum Informatik
an der Universitgt Karlsruhe, 1994.

[6] E Coad and E. Yourdon. Object-OrientedAnalysis. Yourdon Press/Prentice-Hall, 1990,

[7] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations and Initial
Semantics. Springer, 1985. EATCS Monographs on Theoretical Computer Science,
Vol. 6.

[8] R.B. Feenstra and RJ. Wieringa. Validating database constraints and updates using
automated reasoning techniques. Submitted for publication.

[9] R.B. Feenstra and R.J. Wieringa. LCM 3.0: a language for describing conceptual
models. Technical Report IR-344, Faculty of Mathematics and Computer Science, Vrije
Universiteit, Amsterdam, December 1993.

[10] LA. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algehra approach to the
specification, correctness, and implementation of abstract data types, In R.T. Yeh, editor,
Current Trends in Programming Methodology, pages 80-149. Prentice-Hall, 1978.
Volume IV: Data Structuring,

[11] H, Gomaa, Software Design Methods for Concurrent and Real-Time Systems. Addison-
Wesley, 1993.

[121 M. Jackson. System Development. Prentice-Hall, 1983.

[13] RA. Spruit and R.J. Wieringa. Some finite-graph models for process algebra. In J.C.M.
Baeten and J.E Groote, editors, 2nd International Conference on Concurrency Theory
(CONCUR'91), pages 495-509, 1991.

[14] RT. Ward and S.J. Mellor. Structured Development for Real-Time Systems. Prentice-
Hall/Yourdon Press, 1985. Three volumes.

LCM and MCM 355

[15] R.J. Wieringa. A formalization of objects using equational dynamic logic. In C.
Delobel, M. Kifer, and Y. Masunaga, editors, 2rid International Conference on Deductive
and Object-OrientedDatabases (DOOD'91), pages 431-452. Springer, 1991. Lecture
Notes in Computer Science 566.

[16] R.J. Wieringa. A method for building and evaluating formal specifications of object-
oriented conceptual models of database systems (MCM). Technical Report IR-340,
Faculty of Mathematics and Computer Science, Vrije Universiteit, December 1993.

[17] R.J. Wieringa and R.B. Feenstra. The university library document circulation system
specified in LCM 3.0. Technical Report 1R-343, Faculty of Mathematics and Computer
Science, Vrije Universiteit, Amsterdam, December 1993.

[18] R.J. Wieringa and W. de Jonge. Object identifiers, keys, and surrogates. Theoretical and
Practical Aspects of Object Systems, To be published.

[19] R.J. Wieringa, W. de Jonge, and P.A. Spruit. Roles and dynamic subclasses: a modal
logic approach. In M. Tokoro and R. Pareschi, editors, Object-Oriented Programming,
8th European Conference (ECOOP'94), pages 32-59. Springer, 1994. Lecture Notes in
Computer Science 821. Extended version to be published in Theory and Practice of
Object Systems (TAPOS).

[20] R.J. Wieringa and J.-J.Ch. Meyer. Actors, actions, and initiative in normative system
specification. Annals of Mathematics and Artificial Intelligence, 7:289-346, 1993.

[21] R.J. Wieringa and J.-J.Ch. Meyer. DEIRDRE (deontie integrity rules, deadlines and real
time in databases). Faculty of Mathematics and Computer Science, Vrije Universiteit.,
1993.

[22] E. Yourdon. Modem Structured Analysis. Prentice-Hall, 1989.

