Chapter 1
Architecture specifications in CAaSH

Jan Kuper, Christiaan Baaij, Matthijs Kooijman, Marco Gerards
University of Twente, Dept. of Comp. Science, Enschede, The Netherlands
Email: j.kuper@Qutwente.nl

Abstract

This paper introduces CAaSH, a novel hardware specification environment,
by discussing several non-trivial examples. CAaSH is based on the functional
language Haskell, and exploits many of its powerful abstraction mechanisms
such as higher order functions, polymorphism, lambda abstraction, pattern
matching, type derivation. As a result, specifications in CAaSH are con-
cise and semantically clear, and simulations can be directly executed within
a Haskell evaluation environment. CAaSH generates synthesizable low-level
VHDL code by applying several transformation rules to a functional specifi-
cation of a digital circuit.

1.1 Introduction

A synchronous combinational digital circuit (without feedback) transforms
input signals into output signals. Each time such a circuit gets the same input
signals, it produces the same output signals, i.e., it behaves as a mathematical
function. Things become a bit more complicated when a circuit contains
memory elements, i.e., when the circuit has state, since a (mathematical)
function does not have state. Still, intuitively a circuit strongly refers to the
concept of function and several attempts have been made to develop hardware
description languages based on a functional language, see e.g. [2], [5]-[8].
Two of the most well-known of these are Lava (see [2]) and ForSyDe
(see [6]). These languages are domain specific embedded languages, and are
both defined in Haskell. In both languages a digital circuit is specified as a
function which operates on (possibly infinite) streams of values, where at the
same time a clock is represented in the stream: at each clock cycle one stream
element is processed. Furthermore, both Lava and ForSyDe model state by a

2 Authors Suppressed Due to Excessive Length

delay function which intuitively holds each stream element during one clock
cycle.

In ChaSH we take a different perspective. Instead of defining a domain
specific embedded language, CAaSH compiles specifications written in (an
extended subset of) plain Haskell itself. Furthermore, these specifications
do not work explicitly on streams of signals, but rather express a structural
description of a circuit. In order to model state, CAaSH considers a circuit as a
Mealy Machine, i.e., the function representing the behaviour of a circuit with
state has two argument: the (current) state s and the (tuple of) input signal(s)
i. The result of the function also consists of two things: the (new) state s’
and the output signal(s) o, i.e., the result is of the form (s, 0). Thus, CAaSH
assumes that the type of a function arch describing a hardware architecture,
i.e., the type of a circuit specification, is as follows:

arch :: State — Input — (State, Output)

for appropriate types State, Input, Output. Note that the function arch is a
binary function which is first applied to a state s and only then to an input
1. Thus, an application of arch to its arguments s and 7 is written as

arch s 1
and not as
arch (s,1)

which would be a more generally known form of an application of a binary
function arch. Though the second form is possible in CAaSH, the first way of
writing is advantageous for e.g. partial application. We will see an example
of partial application in section 1.3.3.

A second difference between the aforementioned languages and the method
described in this paper is how the clock is dealt with. For CAaSH the clock is
not explicitly expressed, instead it is assumed that a specification describes
the functionality performed during one clock cycle.

A third simplification in comparison to other functional HDL’s is found in
the way how to simulate a given specification. Since CAaSH specifications are
written in Haskell itself, simulation comes more or less for free. We only need
a function simulate, which is the same for every architecture specification of
the type of arch above. It is recursively defined as follows:

simulate f s (i:1s) = o: simulate f s is
where

(s;0)=fsi

In this definition, the argument f is the function that specifies a circuit, s
is the state, and ¢ : ¢s is the stream of input signals, with ¢ the first input

1 Architecture specifications in CAaSH 3

signal, and is the remaining stream of the input signals. In the where clause
the function f is applied to the state s and the first input signal ¢, which
results in the new state s’ and the output signal o.

Then the output stream consists of the output o, followed by the result
of the simulate function applied to the same hardware specification f, the
new state s’ and the remaining stream is of input signals. As mentioned
before, this approach expresses a Mealy machine (see Figure 1.1). Note that
the function simulatie is a higher order function because its first argument
f is a function itself.

i o
—> 7 —>
s s/

Fig. 1.1 Mealy machine

As a final feature of our approach we mention that several abstraction
mechanisms are automatically available, such as choice mechanisms, higher
order functions, polymorphism, lambda abstraction, and derivability of types.

On the other hand, some features of Haskell, such as dynamic data struc-
tures (lists, trees) and unlimited recursion do not have a direct counterpart
in hardware. However, when at compile time the maximum size of data struc-
tures, or the maximum number of recursions is known, hardware can in prin-
ciple be generated. In future, CAaSH will be extended with these possibilities.

The focus of this paper is to introduce CAaSH by discussing several ex-
amples, each illustrating some specific language constructs (section 1.3). The
examples are preceded by a description of a few special types and operations
that are needed for hardware descriptions (section 1.2). Because of lack of
space detailed evaluations fall outside the scope of this paper.

1.2 Preliminary remarks

In CAaSH the following constructions that are typically needed for hardware
specifications are pre-defined.
Hardware types

The two most elementary types are the types Bit and Bool. The first type
contains the values Low and High, the second the values True and False.

4 Authors Suppressed Due to Excessive Length

For integers the constructor Signed is available to indicate the number of
bits involved, as in: Signed 16, Signed 32, etc. There also is the constructor
Index: the type Inder 12 means that the integer values of this type fall in
the reange 0---12.

CXaSH recognizes vector types: Vector n a, where n is an integer (typically
of Indez-type) and a an already given type'. Naturally, this type denotes a
vector of n elements (with indexes 0---n—1) of type a. Assuming numbers of
type Signed 16, the expression V' [1,2,3,4] is an example of a value of type
Vector 4 (Signed 16).

User defined types

The designer can also define his own types, though in the present prototype of
CMaSH that possibility is limited to some special cases of so-called “algebraic
types”. We will discuss examples of this in Section 1.3.

Operations and functions

In C)AaSH several standard Haskell functions for lists have been redefined for
vectors. For example, the function init removes the last element of a vector,
whereas last returns the last element of a vector.

The operation > adds an element in front of a vector, and < adds an element
to the end of a vector. Likewise, the operations >, < shift an element into
a vector from the left, right, respectively, and move the other elements one
position to the right, left, respectively. Thus, where x > xs is one element
longer than the original vector zs, x> zs has the same length as xs.

Higher order functions such as map, zipWith, etc, which are standard in
Haskell, are redefined for vectors as well.

Compilation pipeline

The focus of this paper is on showing the usage of CAaSH in a series of
examples, but a few words on the compilation pipeline according to which
CMaSH proceeds are in place. During this compilation pipeline a ClaSH
specification is transformed in a number of steps into synthesizable VHDL.
The first step is performed by the Haskell compiler GHC which translates
the CAaSH specification into an intermediate language, called Core. This
result is then transformed by applying a set of rewrite rules into a normal
form, which is close to VHDL. The final step, translation of this normal

1 The notation Vector n a is a slightly simplified version of the notation used in CAaSH,
but that does not influence the rest of this paper.

1 Architecture specifications in CAaSH 5

form into VHDL, is now relatively simple (for details, see [1, 4]). In fact, the
rewriting process results in a Core expression that is very close to a netlist
format. The reason to choose for a translation into VHDL is the availability
of a well-developed toolchain for VHDL simulation and synthesis.

1.3 Examples

In section 1.3.1 we discuss a simple multiply-accumulate architecture, in sec-
tion 1.3.2 some variants of a fir filter are shown, in section 1.3.3 a simple cpu,
in section 1.3.4 a floating point reduction circuit.

1.3.1 Multiply-accumulate

The first example is a simple multiply-accumulate function mac (see Fig-
ure 1.2). The input consists of a sequence of pairs of integer numbers (z,y)
that have to be pairwise multiplied and accumulated in the state s, which in
this case consists of a single integer number:

mac acc (z,y) = (acc’, acc’)
where
acc’ = acc+xxy

acc

Fig. 1.2 Multiply-accumulate

The following is an example of a simulation?:

simulate mac 0 ((1,2),(3,4),(5,6)) = (2,14,44)

2 Actually, to let the simulation in Haskell end properly, the definition of simulate above
has to be extended with a clause for the empty input sequence in case the total input
sequence is finite.

6 Authors Suppressed Due to Excessive Length

Note that in the specification of mac above there is some polymorphism
present: it works for any type of value for which + and * exist. So, before
CAaSH can translate this definition into synthesizable VHDL, we have to fix
the type of mac. For example, we might define the type for mac as follows:

mac :: Signed 16 — (Signed 16, Signed 16) — (Signed 16, Signed 16)

i.e., the first argument (the state) is of type Signed 16 and the second argu-
ment (the input) is a pair of type (Signed 16, Signed 16). The result again
is a pair of type (Signed 16, Signed 16), of which the first is the new state,
and the second one is the output. That is to say, all values are integers of 16
bits long.

Remarks

This first example requires no special definitions or functions and the corre-
spondence between the specification of mac and Figure 1.2 is immediate.

1.3.2 Variants of a fir-filter

A finite impulse response (fir) filter calculates the dot product of two vectors,
i.e., it pairwise multiplies a vector of fixed constants (h;) with an equally long
substream of the input (z;), and then adds the results. Thus, the result y; of
a fir-filter at time ¢ is defined as follows:

n—1
ye=Y @ ixh; (1.1)
i=0

There are many implementations of a fir filter, we show three of them to
illustrate that their differences can be concisely expressed in the CAaSH def-
initions. In the context of this paper we assume that every clock cycle a new
input value arrives.

Variant 1

An Haskell definition which is equivalent with equation 1.1 is as follows (hs
is the vector of constants, xs is the substream of inputs, e stands for the dot
product of two vectors):

zs ® hs = foldr (+) 0 (zipWith () xs hs)

1 Architecture specifications in CAaSH 7

The function zipWith is a standard Haskell function which pairwise applies a
binary operation (here: multiplication) to the elements of two vectors (here:
xzs and hs).

The functions foldl, foldr are standard Haskell functions which accumu-
lates the elements in a vector by applying a binary operation to them (here:
addition), starting from an initial value (here: 0). Note that foldl accumu-
lates from left to right, whereas foldr accumulates from right to left, i.e., in
backward order through a vector.

The functions foldl, foldr, zipWith are higher order functions since they
take a binary operation as their first argument.

The direct implementation fir, is now specified in Haskell as follows (see
Figure 1.3):

firy (hs,us) x=((hs,us’), y)

where
us' = x> us
Yy =usehs

Thus, the state of the function fir; is a pair of two vectors: the fixed values
hs, and the vector us of stored input values that have to be kept in a sequence
of registers. Note that u; = x;—; and that the vector hs = (hs, ha, h1, hg) in
order to match the indexing of the h-values in definition 1.1.

Fig. 1.3 fir-filter, variant 1

The result of fir; consists of two things. First, it contains the new state
us’ which is created from the odl state us by shifting the input value z in
at the left (and thus discarding the “oldest” value in us). The hs-part of the
state remains unchanged. The second part of the result is the output value
1y, i.e., the dot product of the full sequence us and hs.

Clearly, the first register ug may be left out. In that case the output would
be

y = (x> us) e hs.

8 Authors Suppressed Due to Excessive Length

Also, the explicit mentioning of the initial value 0 is somewhat redundant.
By defining

zs ® hs = foldrl (4) (zipWith (%) xs hs)

the accumulation would start by adding the last two elements and then pro-
ceeding as before.

Variant 2

An alternative definition fir, of a fir-filter is shown in Figure 1.4 and defined
as follows:

firy (hs,vs) x = ((hs,tail vs'), head vs')
where
ws = map (\h = hxx) hs
vs' = zipWith (+) (vs<x) ws

The standard Haskell function map applies a function to all elements of a
vector. In this case that function is denoted by a lambda term which expresses
that the argument A is multiplied with z. Thus, by using map, all elements
in hs are multiplied with x. Next, the results of this are pairwise added to
the values in 0 + > ws, i.e., a zero prefixed to vs.

) O ® O
v (o peffe(el (e fmle (0]

Fig. 1.4 fir-filter, variant 2

Variant 3

Finally, a third definition firy goes as follows (see Figure 1.5):

1 Architecture specifications in CAaSH 9

firg (hs,us,vs) x= ((hs,tailus < +x,init vs'),last vs')
where
ws = zipWith (x) hs (us < +x)
vs' = zipWith (+) (04 > vs) ws

It should be clear by now how the zipWith functions take care of the pairwise
multiplication and addition. Note that with this last definition the input value
x should arrive every other clock cycle, and only every other clock cycle a
valid result is delivered.

Fig. 1.5 fir-filter, variant 3

Remarks

The variants of the fir-filters above exploit several standard higher order func-
tions (map, zipWith, foldll) which are translated by CAaSH to synthesizable
VHDL. Also A-abstraction is recognized by CAaSH, as can be seen in variant
2.

These features give a high abstraction level to the designs of the fir-filters
which makes the essential differences between these variants immediately
visible and analyzable, as a comparison of the above definitions shows.

Clearly, as with the multiply-accumulate example, the polymorphic char-
acter of these functions leave the concrete type of the fir-filters undecided, so
in order to specify concrete hardware, one still has to decide on the types of
the fir-filters. The types of fir,, firy, firs differ slightly, for example, the state
of firs is a tuple of three vectors, whereas for fir,, firy the state is a tuple
of two vectors. However, the pattern of the type definitions is the same for
all three variants, and coincides with the pattern of the general type of the
function arch as shown in Section 1.1.

Finally, note that the above definitions hold for any number of taps in the
fir-filters. This number is fully determined by the Vector type for the state
parameters chosen by the designer.

10 Authors Suppressed Due to Excessive Length

1.3.3 Higher order cpu

Next, we describe a higher order cpu, containing three function units fun 0,
fun 1, fun 2 (see Figure 1.6) each of which can perform a binary operation.
Every function unit has six data inputs (of type Signed 16), and two address
inputs (of type Index 5) that indicate which of the six data inputs are to be
used as operands for the binary operation that the function unit performs.
These six data inputs consist of one external input x, two fixed initialization
values (0 and 1), and the previous output of each of the three function units.
The output of the cpu as a whole is the previous output of fun 2. Function
units fun 1 and fun 2 can perform a fixed binary operation, whereas fun 0
has an additional input for an opcode to choose a binary operation out of a
few possibilities. Each function unit outputs its result into a register, i.e., the
state of the cpu is a vector of three Signed 16 values:

type CpuState = Vector 3 (Signed 16)
The type of the cpu as a whole can now be defined as (Opcode will be defined
later):

cpu :: CpuState
— (Signed 16, Opcode, Vector 3 (Index 5, Index 5))
— (CpuState, Signed 16)

cpu

YYY YYVYYYYY YYYYYYY YYYYYYY

opc

Y

fu 3

Y

|

Fig. 1.6 Higher order cpu

1 Architecture specifications in CAaSH 11

Every function unit can be defined by the following higher order function, fu,
which takes three arguments: the operation op that the function unit should
perform, the six inputs, and the address pair (ag, a1). It selects two inputs,
based on these addresses, and applies the given operation to them, returning
the result (“!” is the operation for vector-indexing):

fu op inputs (ag,a1) = op (inputslag) (inputslay)

Exploiting partial application we now define (assuming that the binary func-
tions add and mul already exist):

fun 1 = fu add

fun 2 = fu mul

Note that the types of these functions can be derived from the type of the cpu
function and their usage below, thus determining what component instanti-
ations are needed. For example, the function add should take two Signed 16
values and also deliver a Signed 16 value.

In order to define fun 0, the type Opcode and the function multiop that
chooses a specific operation given the opcode, are defined first. It is assumed
that the binary functions shift (where shift a b shifts a by the number of
bits indicated by b) and xor (for the bitwise xor) exist.

data Opcode = Shift | Xor | Equal

multiop Shift = shift
multiop Xor = xor
multiop Equal = \ab— if a==">0 then 1 else 0

Note that the result of multiop is a binary function from two Signed 16 values
into one Signed 16 value (hence, the if-then-else is needed since a == b is
a boolean). The type of multiop can be derived by the Haskell type system
from the context.

The definition of fun 0, which takes an opcode as additional argument,
is:

fun 0 ¢= fu (multiop c)

The complete definition of the function c¢pu now is (note that addrs contains
three address pairs):

12 Authors Suppressed Due to Excessive Length

cpu s (x, ope, addrs) = (s, out)

where
inputs = x+ > (0+ > (1+ > s))
s = V[fun 0 opc inputs (addrs!0)
, fun 1 inputs (addrs!l)
, fun 2 inputs (addrs!2)
]
out =last s

Due to space restrictions, Figure 1.6 does not show the internals of each func-
tion unit. We remark that CAaSH generates e.g. multiop as a subcomponent
of fun 0.

Remarks

In this example it is shown that also user defined higher order functions can
be compiled by CAaSH, in this case the function fu. Note that in using this
function, one may also exploit partial application, as in the definitions of
fun 0, fun 1, fun 2.

In this example it is also shown that the designer may define his own
enumeration types. As a final feature of CAaSH shown in this example we
mention pattern matching: the function multiop is defined by pattern match-
ing on the values of the type Opcode.

1.3.4 Floating point reduction circuit

The final example is a reduction circuit in which sequences of floating point
numbers are added. Numbers come in one per clock cycle, sequence after
sequence. When a sequence is finished, no further numbers belonging to that
sequence will arrive.

We assume a pipelined floating point adder which we will exploit as op-
timally as possible, numbers belonging to different sequences may be in the
pipeline at the same time. Only numbers belonging to the same sequence
should be added together, so in order to keep numbers belonging to different
sequences separated, they are labelled. This algorithm is introduced in [3]
where it is also proven that numbers indeed may come in one per clock cycle
without causing buffers to overflow.

The example shows that CAaSH can deal with architectures which consist
of several components, where each component has its own state and is defined
as a separate function.

1 Architecture specifications in CAaSH 13

TES

P
Sp
A A
a1 |as
, v
x L, r
- »
Yy
—» DS I c R >
i - <
SN rem Sel™ r Sr
AA A A
i1
12
new

Fig. 1.7 Reduction circuit

The input (z,4) (see Figure 1.7) consists of a number and its row index.
Since there will only be a limited number of rows “active” in the system,
a limited number of labels is needed to distinguish different rows from each
other. The discriminator component discr transforms the row index ¢ into
such a reduced label d after which the pair (z,d) enters the input compo-
nent inp (which has a fifo ¢ as internal state). The boolean signal newy says
whether a new row starts (hence, the discriminator needs internal memory
d), and is used by the partial result buffer res to decide whether position d
may be re-used for intermediate results of this new row. Both the memory
o in res and the number of labels used are big enough to be sure that the
row which had label d before is ready at the moment d is re-used. Finally,
the pipelined floating point adder adder (with internal state m) takes two
numbers ag,a; and outputs their sum several clock cycles later. Note that
the pipeline m need not be completely full, so a value s delivered by adder
may be undefined.

The central controller contr gathers the output s from adder, the corre-
sponding partial result r from res (or an undefined value in case there is no
corresponding previous result for the same row), and the first two elements
10,41 from inp (without going into detail we remark that ig is always valid,
whereas i1 may be undefined). Based on these inputs, contr decides which
values ag, a; will be input into adder, which value v’ will be given back to
res, and the number of values rem that will be used from inp (and thus have
to be removed from ¢). This is done according to the following rules (in order
of priority):

14

4.

5.

Authors Suppressed Due to Excessive Length

when s and the corresponding result r are both defined, then s and r
together enter adder,

when s and the first element iy from inp have the same label, then s and
ig enter adder,

when 4,41 are both defined and their labels are the same, then iy and i
enter adder,

when ig, 4, are both defined but their labels are different, then ig and 0
enter adder,

when none of the above applies, no number enters adder.

In addition, when a number s with label d comes out of adde but s will not
re-enter adder, s will be given to res for later use. Remember that every clock
cycle a new value x enters inp.

In the context of this paper we will only show the definitions of the con-

troller contr and of the full reduction circuit reducer. As seen above, there
are valid values, consisting of a number and a label, and there are invalid
values. We define the type RV alue for these values, containing a number of
type Float and a label of type Index 127:

data RValue = Valid Float (Index 4) | NotValid

Three functions are needed to deal with such values, defined as follows:

value (Valid x d) = x
bl (Validz d) = d
valid a = a/ = NotValid

The definition of the controller contr can now be formulated as follows (nv
and zero are shorthand for NotValid and Valid 0 0, respectively):

contr 0 (i07 ilv 5, T) = (’yv (a07 ai, rem, /’1/))

where

(ag, a1, rem,r") | valid s && wvalid r = (s,7,0,nv)
| valid s && bl s == 1bl iy = (s,10, 1, nv)
| valid il && bl io == [bl il = (io,i1,2,$)
| valid i, = (g, zero, 1, s)
| otherwise = (nv, nv, 0, s)

Note that the state parameter v does not change, i.e., v is empty. It is only
there to match the required global structure of the definition.

The guards (indicated by “|”, meaning “under the condition that”) in

this definition express the rules given above. Note that pattern match-
ing is exploited in the where-clause: values are given to the four elements
(ap, a1, rem,r’) at the same time.

The definition of the full reduction circuit now looks as follows:

1 Architecture specifications in CAaSH 15

reducer (8,¢,m,0,7) (x,4)= ((6",", 7", 0",v"), out)

¥, (ag, a1, rem,r")) = contr vy (ig, i1, S, 1)

where
(0", (newgq, d)) = discr § i
(M, (i0,11)) =inp ¢ (d, z, rem)
(7", s) = adder w (ap, ay)
(0", (r, out)) = res o (d, newgq, s,r’)
(

Note that loops shown in the picture correspond to loops in the code, for
example, ag is a result of contr and an argument for adder. At the same
time, s is a result of adder and an argument for contr. In hardware there
is no problem since these values come from memory elements. Also in the
Haskell simulation there is no problem because of lazy evaluation.

Remarks

This example shows that guards can be dealt with by CAaSH. It also shows
how to combine several components of an architecture together. However, to
make the simulation run and to let GHC do its job properly, for now we have
to mention the states of nested components in the signature of the combining
component.

This reduction circuit was also written and hand-optimized in VHDL by
the authors of [3]. Both the VHDL and the functional specification made the
same global design decisions and local optimizations. Though it is difficult to
compare the exact details of both specifications, the results of synthesizing
both were very close: clock speed (around 170 MHz) and area (around 4500
CLB slices & LUTs) were within 10% of each other.

1.4 Conclusions and future research

At the moment CAaSH is a working prototype which is able to translate all
the above examples into synthesizable VHDL. Work on several extensions
is in progress, such as adding (limited) recursion, dealing with multi-clock
domains, adding asynchronicity.

Also the formalism itself is topic of research, e.g., concerning formal proper-
ties of the reduction mechanism (confluence, termination), and its suitability
for transformational design and for proving equivalence of specifications.

Though preliminary results are promising, further experiments have to
be performed concerning a comparison with other HDL’s on topics such as
designer effort, readability and conciseness of code, as well as properties of
synthesized hardware such as clock speed, area, longest path, etc.

16 Authors Suppressed Due to Excessive Length

References

1. C.P.R. Baaij, CA\aSH — From Haskell to Hardware, Master Thesis, University of Twente,
2009.

2. P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, Lava: hardware design in Haskell,
in: Proceedings of the third ACM SIGPLAN international conference on Functional
programming, New York, USA, 1998, pp. 174-184.

3. ML.E.T. Gerards, J. Kuper, A.B.J. Kokkeler, E. Molenkamp, Streaming Reduction Cir-
cuit, in: Proceedings of the 12th EUROMICRO Conference on Digital System Design,
Architectures, Methods and Tools, Patras, Greece, 2009, pp. 287-292

4. M. Kooijman, Haskell as a Higher Order Structural Hardware Description Language,
Master Thesis, University of Twente, 2009.

5. J. Matthews, B. Cook, and J. Launchbury, Microprocessor specification in Hawk, in:
Proceedings of 1998 International Conference on Computer Languages, 1998, pp. 90-
101.

6. I. Sander, A. Jantsch, System Modeling and Transformational Design Refinement in
ForSyDe, in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2004, vol. 23, no. 1, pp. 17-32.

7. R. Sharp and O. Rasmussen, Using a language of functions and relations for VLSI spec-
ification, in: FPCA 95: Proceedings of the seventh international conference on Func-
tional programming languages and computer architecture, New York, NY, USA, 1995,
pp. 45-54.

8. M. Sheeran, uFP, a language for VLSI design, in: LFP 8/: Proceedings of the 198/
ACM Symposium on LISP and functional programming, New York, NY, USA, 1984,
pp. 104-112.

