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ABSTRACT.Cost saving and product improvement have always been importats ijahe metal
forming industry. To achieve these goals, metal forming processesmbedptimised. During
the last decades, simulation software based on the Finite Element Methdd) (/&S signifi-
cantly contributed to designing feasible processes more easily. Morethgdbie possibility of
coupling FEM to mathematical optimisation algorithms is offering a very promisipportu-
nity to designoptimal metal forming processes instead of oféasibleones. However, which
optimisation algorithm to use is still not clear.

In this paper, an optimisation algorithm based on metamodelling techniquespesed
for optimising metal forming processes. The algorithm incorporates narliREM simula-
tions which can be very time consuming to execute. As an illustration of itdititipa, the
proposed algorithm is applied to optimise the internal pressure and axidirfgdoad paths
of a hydroforming process. The product formed by the optimised gsamétperforms products
produced by other, arbitrarily selected load paths. These results indtbatbigh potential of
the proposed algorithm for optimising metal forming processes using timeuoding FEM
simulations.
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1. Introduction

During the last decades, Finite Element (FEM) simulatid®etal forming pro-
cesses have become important tools for designing feasibluption processes. In
more recent years, several authors recognised the pdtehtiaupling FEM simula-
tions to mathematical optimisation algorithms to desigtimal metal forming pro-
cesses instead of onfgasibleones.

The basic concept of mathematical optimisation is presintEigure 1. Basically,
it consists of two major phases: tmeodellingand thesolving of the optimisation
problem. The modelling phase consists of:

1. Selecting a number of design variables the user is alldwadapt
2. Choosing an objective function, i.e. the optimisatian ai

3. Taking into account possible constraints

These three items are closely related to each other as dépicFigure 1. Both the
objective function and the constraints should be quantifigdhe design variables.
The objective function and constraints are also relatechth ®ther in the sense that
they are often exchangeable. Consider for example that wéMike to make a metal
formed product and two relevant properties are the produgity and the costs. Then
two approaches can be followed: either the quality is mas@éahiwhile putting a cer-
tain limit on the allowed production costs, or the costs ddaé minimised while en-
suring a certain minimum level of the product quality. In fbemer case, the quality
is clearly the optimisation objective and the costs are traimts, whereas it is just the
other way around in the latter case.

Next to the modelling phase, mathematical optimisatioatsosd phase is solving
the optimisation problem. This comprises applying an ojg@tion algorithm to the
modelled optimisation problem. The arrows between the ifingeand the solving
parts in Figure 1 denote that both phases cannot be seeras#pdrom each other.
One should select the right optimisation algorithm for aaiermodelled optimisation
problem and one should model the optimisation problem digve adjust it to the
optimisation algorithm one is planning to apply. If the opisation model does not
match the algorithm, it is likely that the optimisation pletn is not solved efficiently
or cannot be solved at all [Pap00].

This paper focuses on the solving part of optimisation prots in metal forming
using time consuming nonlinear FEM simulations. One sititacan easily take
hours or even days to execute. It is important to keep thisfiamind when selecting
a suitable optimisation algorithm for metal forming proses

One way of optimising metal forming processes is using @atgerative opti-
misation algorithms (Conjugate gradient, BFGS, etc. ), netemch function evalua-
tion means running a FEM calculation, see e.g. [Kle03, Lji&c01]. As mentioned
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Figure 1. The basic concept of mathematical optimisation: mode#ing solving

above, in case of metal forming these FEM calculations cagxtremely time con-
suming and need to be sequentially evaluated. Furthermmaney classical algorithms
require sensitivities, of which the efficient calculati@miot straightforward for FEM
simulations. A third difficulty concerning iterative algthhms is the risk to be trapped
in local optima.

Alternatively, several authors have tried to overcomeditisadvantages by apply-
ing genetic or evolutionary optimisation algorithms, seg fCas04, Fou05, Sch04].
Genetic and evolutionary algorithms look promising beeaafgheir tendency to find
the global optimum and the possibility for parallel compgti However, the rather
large number of function evaluations that is expected todmessary using these al-
gorithms is regarded as a serious drawback [EmmO02].

Yet another way of optimisation in combination with expeesfunction eval-
uations is using approximate optimisation algorithms, dick Response Surface
Methodology (RSM) is a well-known representative. RSM isdzhon fitting a low
order polynomial metamodel through response points, waielobtained by running
FEM calculations for carefully chosen design variableisgst and finally optimis-
ing this metamodel [Mye02]. Metamodels are sometimes &ifeyned to as Response
Surface models or surrogate models. Allowing for parakkehputing and lacking the
necessity for sensitivities, RSM is appealing to many austhio the field of metal
forming, see e.g. [Jan02, Jan05, Nac04].

Although the practical effectiveness of RSM has been fratipyeglemonstrated,
statisticians claim that RSM, being developed for stodbgmtysical experiments, is
theoretically not applicable to deterministic computepexments such as FEM: run-
ning a simulation twice with exactly the same input will geadly result in exactly
the same answer. They propose the field of “Design and ArsabfsComputer Ex-
periments” or DACE instead [Sac89a, Sac89b, San03]. DAGHidar to RSM, but
interpolates a metamodel through the response pointswiktpfor no error at the
response points, interpolation better suits the detestigmature of computer exper-
iments. However, DACE is rarely used for metal forming pesb$, probably due to
its complex statistical nature and the lack of readily ald# software [San03].
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Figure 2. The principle of metamodelling

In this paper an optimisation algorithm incorporating b®M and DACE meta-
modelling techniques is proposed for metal forming. Sec#dntroduces the basic
concept of metamodelling and provides a more detailed geser of RSM and
DACE. The proposed optimisation algorithm is presentedenti®n 3 and the ap-
plicability to metal forming is demonstrated in Section 4es it is applied to the
optimisation of a hydroforming process. Conclusions aesented in Section 5.

2. Metamodelling

The principle of metamodelling is presented in Figure 2 i The basic idea is
to evaluate a certain problem entity, in our case a metalifaymrocess. This problem
entity can be modelled by some sort of a simulation model.nretal forming, this
simulation model is usually a nonlinear Finite Element M{&&M). These nonlinear
FEM calculations are very time consuming to evaluate. Tioeee ametamodebr a
model from a moddISim01] is made, which can be quickly evaluated. An accurate
metamodel should be valid with respect to both the Finiteriglet Model and the
metal forming process and if it is, it forms a very useful gitbse for both the process
and the FE model.

Kleijnen and Sargent distinguish four goals that can beeskeby metamodelling
[KleOQ]: (i) Understanding the problem entity, (ii) Pretligy values of the output or
response variable, (i) Optimisation and (iv) Verificatiand Validation of prior qual-
itative knowledge on the simulation model with respect ® phoblem entity. For the
optimisation of metal forming processes, the primary iegéties in optimisation as a
metamodelling goal. However, the other goals additionadiye at no or low compu-
tational costs, which is seen as a major advantage of usitgmoelelling techniques
for optimisation purposes.
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In the next sections, two metamodelling techniques, Resp&urface Method-
ology and Design and Analysis of Computer Experiments ogilig, are shortly in-
troduced. Prior to fitting the metamodels, a Design Of Experits (DOE) strategy
carefully selects a number of design variable settings tuiciwFEM simulations are
being run. These simulations provide a number of responssunements.

2.1.Response Surface Methodology (RSM)

Starting with RSM, the response measuremgnase presented as the sum of a
lower order polynomial metamodel and a random error tefMye02]:

y=XB+¢ [1]

whereX is the design matrix containing the experimental designgsandp are the
regression coefficients obtained by least squares regressi

B=(X"X)"XTy [2]

Although Equation 1 seems to be a linear relation of the degygiables, the design
matrix X can also incorporate terms that are nonlinear with respdabetdesign vari-
ables. Equation 1 should, however, be linear with respetietoegression coefficients
[Mye02], which is clearly the case.

The metamodel is
§=Xp [3]

Four possible shapes are commonly applied. They are in disgeoomplexity:

e linear
e linear + interaction
e pure quadratic or elliptic

e (full) quadratic

A second order RSM metamodel dependent on one design vaisadtiown in Figure
3(a). The cross marks represent the response measurements.

2.2.Design and Analysis of Computer Experiments (DACE)
DACE was proposed by Sacks et al. [Sac89a, Sac89b] to fit noetalsiusing de-

terministic computer experimentsriging is used to interpolate between the response
measurements. Using Kriging, the random error terim Equation 1 is replaced by
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Figure 3. Metamodels based on (a) RSM and (b) DACE

a Gaussian random functia{x), which forces the metamodel to exactly go through
the measurement points:

§ =XB+Z(x) [4]

The first part of Equation 4 covers the global trend of the met@el. The Gaussian
random functiorZ, which accounts for the local deviation of the data from tiead
function, has zero mean, variancgand covariance

cov(Z(x1),Z(xz)) = OZR (X1 — X2) [5]

whereR is the correlation function ankl, andx, are two locations, which are deter-
mined by the design variable settings at these locationghégroposed algorithm, a
Gaussian exponential correlation function is adopted:

R(9, %1, %) = exp d010)* [6]

As opposed to other possibilities for the correlation fiorctike e.g. cubic splines
and ordinary exponential functions, see e.g. [Koe96, LbopQ2p02a, San03], Gaus-
sian exponential functions are intuitively attractive dese they are infinitely differ-
entiable. Moreover, Gaussian exponential functions argquiently used in literature
[San03] and have been found to give accurate results [Ldp02a

Assumek design variables are present. Then the total correlatiootion R de-
pends on th& one-dimensional correlation functioRg as follows [Sac89al]:

k
R(x1 —X2) ﬂ (X1j —X2j) [7]

This implies that it is assumed that there is no relation betwthe different dimen-
sions. Adopting the Gaussian correlation function inticatliin Equation 6, the total
correlation function becomes:

R(X1 — Xo) |_| expYi0ai—%)? (8]
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Thus, onéd is present for each design variable (each dimension).

Figure 3(b) presents a Kriging interpolation metamodelicihis fitted through
the same response measurements as the RSM metamodel ie B{glr Note the
differences: the Kriging metamodel’s shape is more compiex the second order
polynomial shape of the RSM metamodel. However, the Krigimgdamodel interpo-
lates through the response points, whereas the RSM methmitmies for random
error. As was stated in the introduction, it is argued whedflewing for random error
is appropriate in case of deterministic computer expertmsuach as FEM.

3. A metamodel based optimisation algorithm for metal formng

The proposed metamodel based optimisation algorithm ferojftimisation of
metal forming processes using time consuming FEM simuiatis presented in Fig-
ure 4. Several steps mentioned in the figure are explaindwis¢ctions 3.1 through
3.4. Section 3.5 contains a few words on the implementatidineoalgorithm.

Modelling

Fit metamodels:
Polynomial regression (RSM)
Kriging interpolation (DACE)

| Validate metamodels |

Evaluate optimum
(FEM)

Sequential improvement

Accuracy OK?

Finished

' ‘

Figure 4. A metamodel based optimisation algorithm for metal fornpracesses
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Figure 5. FEM as an input—throughput—response model

3.1. Modelling

The first step is to start with modelling the optimisationkgem, i.e. quantifying
objective function and constraints and selecting the degégiables. Regarding the
constraints, a distinction is made between explicit andititgonstraints. To explain
the difference, running a FEM simulation can be seen as ant-thpoughput-response
model such as the one depicted in Figure 5. Certain quanétie known beforehand:
there is no necessity to run a FEM calculation for evaluatiregm. The design vari-
ables are clear examples of these quantities and there sarbalconstraints that
explicitly depend on the design variables. These conssraire called explicit con-
straints. In case of metal forming explicit constraints aalated to the undeformed
product, e.g. constraints on the initial shape of a blank.

Quantities that depend on the response require a FEM sionltr evaluating
them: they implicitly depend on the design variables. Thedlve function is gener-
ally such an implicit quantity and it is also possible to hawlicit constraints. For
metal forming, implicit constraints are related to the defed product, e.g. excessive
thinning is not allowed to exceed a specified limit.

It is stressed again that the modelling of an optimisatiabfam is formally not
part of an optimisation algorithm: the algorithm is solelynaan for solving the op-
timisation model. Clever modelling and solving are bothcalifor mathematically
optimising a problem as was already emphasised in the in¢taxh.

3.2. Design Of Experiments (DOE)

When the optimisation problem has been modelled, Figure wsliaat the first
step of the algorithm is to carefully select a number of desiges by a Design Of
Experiments (DOE) strategy. A spacefilling Latin Hyperclesign (LHD) is a good
and popular DOE strategy for constructing metamodels freterthinistic computer
experiments [McK79, San03] and has been selected for thenigption of metal
forming processes.

However, when a metamodel is used for optimisation, it isdrtgmt that the meta-
model gives accurate results in the neighbourhood of thienopt. Often, this opti-
mum will be constrained, i.e. lies on the boundary of theglespace. Therefore, an
accurate prediction is needed on the boundary, which imgleforming measure-
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Figure 6. (@) LHD + full factorial design (b) LHD + full factorial desig including
explicit constraints

ments on that boundary. An LHD will generally provide desggpints in the interior
of the design space and not on the boundary. To compensatieisdack of points
on the boundary, the LHD is combined with a full factorial id@s which puts DOE
points right in the corners of the design space. This metteslalso proposed by Van
Beers et al. [vB04] and Kleijnen et al. [Kle04]. Figure 6(a¢gents the LHD modified
with a full factorial design for a two dimensional rectarguliesign space.

Unfortunately, the design space will often not be rectamgulhen explicit con-
straints are present. In this case, the proposed algoritifim w

1. check which points of the LHD + full factorial design arenri@asible
2. skip the non-feasible points
3. replace the non-feasible points with new points

4. repeat the above procedure until all points are feasible

Replacing the non-feasible points is also done in a spdngfilay by selecting a
large number of sets of additional design points. The newefspbints is the one for
which the minimum point to point distance is maximised. Toscalledmaximincri-
terion is used for both the initial DOE and for the case wheruber wants to generate
additional experimental design points, for example forrioving the accuracy of the
metamodels. The final DOE strategy incorporated in the megoptimisation algo-
rithm is presented in Figure 6(b) for two design variablasapdxy) and two explicit
constraints@; andgy).
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3.3. Running the FEM simulations and fitting the metamodels

Subsequently, using the settings indicated by the DOEegfyab number of FEM
calculations is run on parallel processors and the respooisgs (objective function
and implicit constraint values) are obtained. Followingu¥e 4, the next step is to fit
for each response seven metamodels:

. Alinear polynomial using RSM

. Alinear + interaction polynomial using RSM

1
2
3. A pure quadratic or elliptic polynomial using RSM
4. A full quadratic polynomial using RSM

5

. A Kriging interpolation metamodel with &0order polynomial as a trend func-
tion

6. A Kriging interpolation metamodel with &%order polynomial as a trend func-
tion

7. AKriging interpolation metamodel with &2order polynomial as a trend func-
tion

3.4. Validation and optimisation

Metamodel validation based on cross validation (see e.grQ8]) is used to select
the best metamodel for the observed response. Using criidatien, one leaves out
one, say theé™, of the response measurements and fits the metamodel thtbegh
remaining response measurements. The difference betleardl valugy; and the
value predicted by the metamodel at this locatjoni$§ a measure for the accuracy of
the metamodel. One can repeat this procedure for alhsagasurement points and
calculate the cross validation Root Mean Squared Error (RM$

e i =)
RMSEcy = i;T [9]

As RMSEzy approaches 0, the metamodel becomes more and more accurate.
Cross validation can also be visualised in a cross validatiot. An example of such a
plot is presented in Figure 7. If the measurements followitteex = y, the metamodel
fits the data well.

For each response (objective function and implicit comstsathe metamodel out-
performing the other six metamodels is selected. Thesentetsimodels for objective
function and implicit constraints are added to the explcibstraints in the optimi-
sation model, which is subsequently optimised using a stah8equential Quadratic
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Figure 7. A cross validation plot

Programming (SQP) algorithm, see for example [Haf92]. lseceonstraints or Krig-
ing metamodels are present in the final optimisation probthaere is a risk of ending
up in a local optimum. This problem is overcome by initialgithe SQP algorithm
at multiple locations. This implies performing many fulctievaluations, but this is
hardly a problem since both RSM and DACE metamodels, beipicixmathemati-
cal functions, can be evaluated thousands of times with&cared. The DOE points
are used as initial locations for the SQP algorithm.

The obtained approximate optimum is finally checked by mgrine last FEM
calculation with the approximated optimal settings of tlesign variables. The dif-
ference between the approximate objective function vahdeethe real value of the
objective function calculated by the last FEM run is a measaor the accuracy of the
obtained optimum. If the user is not satisfied with this aacyrthe algorithm allows
for sequential improvement (e.g. zooming near the optimang) repeating the pro-
cedure presented above until one is satisfied with the acgurence the proposed
algorithm incorporates all the advantages of sequentiadcimate optimisation al-
gorithms.
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3.5. Implementation

The optimisation algorithm presented in Figure 4 and theipus sections was
implemented in MATLAB and can be used in combination with &iyite Element
code. For the fitting of the DACE/Kriging metamodels, use masle of the MATLAB
Kriging toolbox implemented by Lophaven, Nielsen and S@gaard [Nie, Lop02b,
Lop02a].

4. A metal forming application

The optimisation algorithm introduced in the previous &ecis applied to a sim-
ple hydroforming process. The product to be hydroformedésgnted in Figure 8(a).
Figure 8(b) presents the dimensions.

For metal forming, several groups of design variables catigterguished:

1. Geometrical parameters:

(a) Final product geometry
(b) Initial workpiece geometry
(c) Tool geometry

2. Material parameters

3. Process parameters

The group of geometrical parameters is divided further irgdables belonging to
the final, deformed product, e.g. product radii, thickness¢c., variables related to
the initial, underformed workpiece (blank shape, blankkhess, etc. and variables
related to the tool geometry (drawbeads, tool radii and JoExamples of material
parameters are strain hardening coefficients, the init@tystress or simply several
discrete materials in itself. The group of process pararaételudes process forces,
pressures, tool displacements, friction coefficient, pssdemperature, etc.

For the simple metal forming example considered here, wenéeeested in op-
timising the time variation of the internal pressysend axial feeding.. These are
typically process parameters for the hydroforming procAdypical time dependent
load path for hydroforming is shown in Figure 8(c). The vélpof pressure increase
a is set to 10MPgs during a total hydroforming time of 10s. Hence, three desig
variables remain: the time when axial feeding startshe time when axial feeding
stopst, and the total amount of axial feediing,ax.

As an optimisation objective, it was chosen to minimise dgoins from the initial
tube wall thickness. One implicit and one explicit consttavere formulated. The
implicit constraint ensures that the final product fills dug die nicely, the explicit
constraint makes sure that the time when axial feeding stolasger than the time
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©

Figure 8. (a) A simple hydroformed product; (b) Dimensions; (c) Tgpioad paths
for hydroforming

when it starts. Convergence problems of the FEM simulati@ve been encountered
whent, approaches, and the amount of axial feeding is high (langg.x). Methods
to handle non converged simulations are lacking and is a éietgpen research. An
extra explicit constraint has been formulated to overcdmeecbnvergence problems.
The second explicit constraint makes the first explicit t@ist redundant, as one can
see in the model of the optimisation problem:

minf (ty,t2, Unax) = Hhaoho )
st. gimp = V<0
Oexpiy = t1—1<0
Oexpl2 = Umax—9(ta—11) <0 [10]

O0s < t;<5s
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Figure 9. (a) FE model of the initial tube; (b-e) Final product formedthvseveral
arbitrary selected load paths; (f) Final product formed viiptimised load paths

3s < tb<10s

Omm Umax < 9mm

IN

whereh s the final wall thickness in the hydroformed produwtjs the wall thickness

of the initial tube and/ is the volume between the final product and the die. If this
volume is larger than zero, there is a gap between the findlpt@nd the die and the
final shape of the product is not satisfactory.

The 2D FE model of the axisymmetric part is presented in Ei@{a). The contact
between the product and the die is modelled by contact elesnusing a penalty for-
mulation. The calculations were performed on 16 paralletessors, which limited
the total time to the run time of one calculation, i.e. a ceugiminutes for the 2D FE
model we are considering. Before the optimisation algorith applied, we will first
arbitrarily select some combinations of the design vaeialaind investigate the effect
on the final product, the objective function and the implazihstraint. Subsequently,
the algorithm is applied and the optimised results are coetp@® the results obtained
with the arbitrarily selected load paths.
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| Product | t1(s) [ t2(s) | Umax(mm) | f | Gimpl |

@) S - 0 -
(b) 0| o 0 1.39 | -0.29
©) 0 | 3 9 052| 1.79
) 0 | 10 9 1.42] -0.34
) | 48 6.2 7.7 1.37 | 32.64
® 0 | 25 8.3 0.37 | -0.47

Table 1. Design variable settings and response values

Figures 9(b) through (e) present the final products deformigld the arbitrarily
selected load paths. The design variable setting$ fos andumay and the response
values for the objective functiof and the implicit constraingmp are presented in
Table 1. Note that product (a) is the initial undeformed piigdwhich is seen as the
product with the perfect wall thickness distribution by tigective function quantified
in Equation 10. For the perfect product, the objective fiomcequals 0. Also note that
products (c) and (e) do not satisfy the implicit constraip, which can also clearly
be seen from Figures 9(c) and (e).

The metamodel based optimisation algorithm presented dtid®e3 is now ap-
plied to optimise the wall thickness distribution. The DQEaggy introduced in Sec-
tion 3.2. was applied to generate 16 initial design variakltings for which 16 FEM
calculations were performed with the in-house code Dieké#bsgquently, the four
Response Surfaces and three Kriging metamodels were fittdubth responses (the
objective function and the implicit constraint). Based enss validation, a® or-
der Kriging metamodel appeared to be the most accurate rdtfor the objective
function. In a similar way, a® order Kriging metamodel was identified to be most
accurate for the implicit constraint. Both were includedtie optimisation problem,

Objective function (Fopt = 0.65891) Objective function (Fopt = 0.65891)

X3 (xopt = 7.9425)

05.] =
10 s

X3 (xopt = 7.9425) 02 X2 (xopt = 3)

(a) (b)

Figure 10. (a) Metamodel of the objective function after batch 1; (bh@ar plot of
the objective function after batch 1
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| # FEM | t1(s) | ta(s) | Umax | fopt | fac'(ual|
16 0 30| 79 | 0.66 | 0.47
32 0 15| 79| 037 | —
48 08 | 25| 9.0 | -0.06| 0.55
64 0 30| 7.7 | 031 | 0.50
80 0 31| 82 | 0.37 | 049
96 0 25| 83 | 0.30 | 0.37

Table 2. Optima of the DoC after the 6 batches of 16 FEM calculationshea

which was subsequently solved using the multistart SQFriéthgo described in Sec-
tion 3.4.

Several local optima were observed; the global optimum weetéd att, tz, Umax) =
(0,3,7.9) and the corresponding objective function value was obsetvee 066.
Figure 10(a) shows the approximate optimum located on titemmalel of the objec-
tive function. The metamodel is depicted dependenk.os t, andxs = umax at the
constant, optimal level aff = 0. Figure 10(b) presents a contour plot of the objec-
tive function and the constraints, where one can easilyrgbghat the optimum is
constrained by the implicit constraint and the box consttai> 3.

To validate the optimum, a FEM calculation was performedulile optimal de-
sign variable settings. The actual objective function gakas found to be 0.47. The
large difference between the approximate and the actuattig function values at
the approximate optimum motivates to sequentially impribveresults. Making use
of the metamodel visualised in Figure 10, it was decided tnzdn near the opti-
mum and to relax the box constratpt> 3: it was replaced by the new box constraint
tp > 2.5.

Objective function (Fopt = 0.3025) Obijective function (Fopt = 0.3025)

o
©
®
2]

=
&

X3 (xopt = 8,3193)
2 2

"3s 3 35
X2 (xopt = 2.5)

@ (®)

x3 (xopt = 8.3193) 75 25 X2 (xopt = 2.5)

Figure 11.(a) Metamodel of the objective function after batch 6; (bnh@ar plot of
the objective function after batch 6
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Figure 12. Wall thickness distribution of several hydroformed praguc

In total, six batches of each 16 FEM calculations were peréat. Each time, the
design space was reduced and/or shifted with the aim to fitrate metamodels in
the vicinity of the optimum. The results of all batches aresgnted in Table 2.

Figure 11 presents the metamodel of the objective funcBamedl as a contour plot
of the objective function after having run the sixth batchiofiulations. The obtained
optimum (t1,t2, Umax) = (0,2.5,8.3) is constrained by the box constratat> 2.5. A
final 97" FEM calculation was performed with the optimised desigrialse settings.
This calculation resulted in a real objective function eadii 0.37, which is fairly close
to the approximate objective function value of 0.30. Altgbuhere is still a small
difference between the approximate and the actual valueeobbjective function, it
was decided to be satisfied with the approximate optimunimdxeby the metamodel
based optimisation algorithm.

The optimised settings found by the proposed optimisatigoreihm are presented
in Table 1 as product (f). The final shape of this product isxshim Figure 9(f). Figure
12 shows the wall thickness throughout the final product fidoad paths. It can be
concluded from the Figures 9 and 12 and Table 1 that the ptatiiormed with the
optimised load paths outperforms the other products formidd arbitrary settings,
which demonstrates the good applicability of the proposgariihm to metal forming.
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5. Conclusions

An optimisation algorithm based on metamodelling techegjs proposed for the
optimisation of metal forming using time consuming FEM cédtions. It uses both
Response Surface Methodology and DACE (or Kriging) as metkaifing techniques.
As a Design Of Experiments strategy, a combination of a maxgpacefilling Latin
Hypercubes Design with a full factorial design was impletednwhich takes into
account explicit constraints. Additionally, the algorithincorporates cross validation
as a metamodel validation technique and uses a Sequentarflic Programming
algorithm for metamodel optimisation. To overcome the fEobof ending up in a
local optimum, the SQP algorithm is initialised from ever@P point, which is very
time efficient since evaluating the metamodels can be dotiénaa fraction of a sec-
ond. The proposed algorithm allows for sequential improsenof the metamodels to
obtain a more accurate optimum.

As an example case, the optimisation algorithm was appbeabtain the opti-
mised internal pressure and axial feeding load paths tonisei wall thickness varia-
tions in a simple hydroformed product. The product formethwptimised load paths
outperforms several products formed with arbitrarily eiomad paths, which demon-
strates the good applicability of metamodelling technggieeoptimise metal forming
processes.
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