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ABSTRACT.Cost saving and product improvement have always been important goals in the metal
forming industry. To achieve these goals, metal forming processes needto be optimised. During
the last decades, simulation software based on the Finite Element Method (FEM) has signifi-
cantly contributed to designing feasible processes more easily. More recently, the possibility of
coupling FEM to mathematical optimisation algorithms is offering a very promising opportu-
nity to designoptimal metal forming processes instead of onlyfeasibleones. However, which
optimisation algorithm to use is still not clear.

In this paper, an optimisation algorithm based on metamodelling techniques is proposed
for optimising metal forming processes. The algorithm incorporates nonlinear FEM simula-
tions which can be very time consuming to execute. As an illustration of its capabilities, the
proposed algorithm is applied to optimise the internal pressure and axial feeding load paths
of a hydroforming process. The product formed by the optimised process outperforms products
produced by other, arbitrarily selected load paths. These results indicatethe high potential of
the proposed algorithm for optimising metal forming processes using time consuming FEM
simulations.
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1. Introduction

During the last decades, Finite Element (FEM) simulations of metal forming pro-
cesses have become important tools for designing feasible production processes. In
more recent years, several authors recognised the potential of coupling FEM simula-
tions to mathematical optimisation algorithms to designoptimal metal forming pro-
cesses instead of onlyfeasibleones.

The basic concept of mathematical optimisation is presented in Figure 1. Basically,
it consists of two major phases: themodellingand thesolving of the optimisation
problem. The modelling phase consists of:

1. Selecting a number of design variables the user is allowedto adapt

2. Choosing an objective function, i.e. the optimisation aim

3. Taking into account possible constraints

These three items are closely related to each other as depicted in Figure 1. Both the
objective function and the constraints should be quantifiedby the design variables.
The objective function and constraints are also related to each other in the sense that
they are often exchangeable. Consider for example that we would like to make a metal
formed product and two relevant properties are the product quality and the costs. Then
two approaches can be followed: either the quality is maximised while putting a cer-
tain limit on the allowed production costs, or the costs could be minimised while en-
suring a certain minimum level of the product quality. In theformer case, the quality
is clearly the optimisation objective and the costs are constraints, whereas it is just the
other way around in the latter case.

Next to the modelling phase, mathematical optimisation’s second phase is solving
the optimisation problem. This comprises applying an optimisation algorithm to the
modelled optimisation problem. The arrows between the modelling and the solving
parts in Figure 1 denote that both phases cannot be seen separately from each other.
One should select the right optimisation algorithm for a certain modelled optimisation
problem and one should model the optimisation problem cleverly to adjust it to the
optimisation algorithm one is planning to apply. If the optimisation model does not
match the algorithm, it is likely that the optimisation problem is not solved efficiently
or cannot be solved at all [Pap00].

This paper focuses on the solving part of optimisation problems in metal forming
using time consuming nonlinear FEM simulations. One simulation can easily take
hours or even days to execute. It is important to keep this fact in mind when selecting
a suitable optimisation algorithm for metal forming processes.

One way of optimising metal forming processes is using classical iterative opti-
misation algorithms (Conjugate gradient, BFGS, etc. ), where each function evalua-
tion means running a FEM calculation, see e.g. [Kle03, Lin03, Nac01]. As mentioned
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Figure 1. The basic concept of mathematical optimisation: modellingand solving

above, in case of metal forming these FEM calculations can beextremely time con-
suming and need to be sequentially evaluated. Furthermore,many classical algorithms
require sensitivities, of which the efficient calculation is not straightforward for FEM
simulations. A third difficulty concerning iterative algorithms is the risk to be trapped
in local optima.

Alternatively, several authors have tried to overcome these disadvantages by apply-
ing genetic or evolutionary optimisation algorithms, see e.g. [Cas04, Fou05, Sch04].
Genetic and evolutionary algorithms look promising because of their tendency to find
the global optimum and the possibility for parallel computing. However, the rather
large number of function evaluations that is expected to be necessary using these al-
gorithms is regarded as a serious drawback [Emm02].

Yet another way of optimisation in combination with expensive function eval-
uations is using approximate optimisation algorithms, of which Response Surface
Methodology (RSM) is a well-known representative. RSM is based on fitting a low
order polynomial metamodel through response points, whichare obtained by running
FEM calculations for carefully chosen design variable settings and finally optimis-
ing this metamodel [Mye02]. Metamodels are sometimes also referred to as Response
Surface models or surrogate models. Allowing for parallel computing and lacking the
necessity for sensitivities, RSM is appealing to many authors in the field of metal
forming, see e.g. [Jan02, Jan05, Nac04].

Although the practical effectiveness of RSM has been frequently demonstrated,
statisticians claim that RSM, being developed for stochastic physical experiments, is
theoretically not applicable to deterministic computer experiments such as FEM: run-
ning a simulation twice with exactly the same input will generally result in exactly
the same answer. They propose the field of “Design and Analysis of Computer Ex-
periments” or DACE instead [Sac89a, Sac89b, San03]. DACE issimilar to RSM, but
interpolates a metamodel through the response points. Allowing for no error at the
response points, interpolation better suits the deterministic nature of computer exper-
iments. However, DACE is rarely used for metal forming problems, probably due to
its complex statistical nature and the lack of readily available software [San03].
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Figure 2. The principle of metamodelling

In this paper an optimisation algorithm incorporating bothRSM and DACE meta-
modelling techniques is proposed for metal forming. Section 2 introduces the basic
concept of metamodelling and provides a more detailed description of RSM and
DACE. The proposed optimisation algorithm is presented in Section 3 and the ap-
plicability to metal forming is demonstrated in Section 4 where it is applied to the
optimisation of a hydroforming process. Conclusions are presented in Section 5.

2. Metamodelling

The principle of metamodelling is presented in Figure 2 [Kle00]. The basic idea is
to evaluate a certain problem entity, in our case a metal forming process. This problem
entity can be modelled by some sort of a simulation model. Formetal forming, this
simulation model is usually a nonlinear Finite Element Model (FEM). These nonlinear
FEM calculations are very time consuming to evaluate. Therefore, ametamodelor a
model from a model[Sim01] is made, which can be quickly evaluated. An accurate
metamodel should be valid with respect to both the Finite Element Model and the
metal forming process and if it is, it forms a very useful substitute for both the process
and the FE model.

Kleijnen and Sargent distinguish four goals that can be served by metamodelling
[Kle00]: (i) Understanding the problem entity, (ii) Predicting values of the output or
response variable, (iii) Optimisation and (iv) Verification and Validation of prior qual-
itative knowledge on the simulation model with respect to the problem entity. For the
optimisation of metal forming processes, the primary interest lies in optimisation as a
metamodelling goal. However, the other goals additionallycome at no or low compu-
tational costs, which is seen as a major advantage of using metamodelling techniques
for optimisation purposes.
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In the next sections, two metamodelling techniques, Response Surface Method-
ology and Design and Analysis of Computer Experiments or Kriging, are shortly in-
troduced. Prior to fitting the metamodels, a Design Of Experiments (DOE) strategy
carefully selects a number of design variable settings for which FEM simulations are
being run. These simulations provide a number of response measurements.

2.1. Response Surface Methodology (RSM)

Starting with RSM, the response measurementsy are presented as the sum of a
lower order polynomial metamodel and a random error termε [Mye02]:

y = Xβ+ ε [1]

whereX is the design matrix containing the experimental design points andβ are the
regression coefficients obtained by least squares regression:

β̂ = (XTX)−1XTy [2]

Although Equation 1 seems to be a linear relation of the design variables, the design
matrixX can also incorporate terms that are nonlinear with respect to the design vari-
ables. Equation 1 should, however, be linear with respect tothe regression coefficients
[Mye02], which is clearly the case.

The metamodel is

ŷ = Xβ̂ [3]

Four possible shapes are commonly applied. They are in ascending complexity:

• linear

• linear + interaction

• pure quadratic or elliptic

• (full) quadratic

A second order RSM metamodel dependent on one design variable is shown in Figure
3(a). The cross marks represent the response measurements.

2.2. Design and Analysis of Computer Experiments (DACE)

DACE was proposed by Sacks et al. [Sac89a, Sac89b] to fit metamodels using de-
terministic computer experiments.Kriging is used to interpolate between the response
measurements. Using Kriging, the random error termε in Equation 1 is replaced by
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Figure 3. Metamodels based on (a) RSM and (b) DACE

a Gaussian random functionZ(x), which forces the metamodel to exactly go through
the measurement points:

ŷ = Xβ+Z(x) [4]

The first part of Equation 4 covers the global trend of the metamodel. The Gaussian
random functionZ, which accounts for the local deviation of the data from the trend
function, has zero mean, varianceσ2

z and covariance

cov(Z(x1),Z(x2)) = σ2
zR(x1−x2) [5]

whereR is the correlation function andx1 andx2 are two locations, which are deter-
mined by the design variable settings at these locations. For the proposed algorithm, a
Gaussian exponential correlation function is adopted:

R(ϑ,x1,x2) = exp−ϑ(x1−x2)
2

[6]

As opposed to other possibilities for the correlation function like e.g. cubic splines
and ordinary exponential functions, see e.g. [Koe96, Lop02b, Lop02a, San03], Gaus-
sian exponential functions are intuitively attractive because they are infinitely differ-
entiable. Moreover, Gaussian exponential functions are frequently used in literature
[San03] and have been found to give accurate results [Lop02a].

Assumek design variables are present. Then the total correlation function R de-
pends on thek one-dimensional correlation functionsRj as follows [Sac89a]:

R(x1−x2) =
k

∏
j=1

Rj (x1 j −x2 j) [7]

This implies that it is assumed that there is no relation between the different dimen-
sions. Adopting the Gaussian correlation function introduced in Equation 6, the total
correlation function becomes:

R(x1−x2) =
k

∏
j=1

exp−ϑ j (x1 j−x2 j )
2

[8]
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Thus, oneϑ is present for each design variable (each dimension).

Figure 3(b) presents a Kriging interpolation metamodel, which is fitted through
the same response measurements as the RSM metamodel in Figure 3(a). Note the
differences: the Kriging metamodel’s shape is more complexthan the second order
polynomial shape of the RSM metamodel. However, the Krigingmetamodel interpo-
lates through the response points, whereas the RSM metamodel allows for random
error. As was stated in the introduction, it is argued whether allowing for random error
is appropriate in case of deterministic computer experiments such as FEM.

3. A metamodel based optimisation algorithm for metal forming

The proposed metamodel based optimisation algorithm for the optimisation of
metal forming processes using time consuming FEM simulations is presented in Fig-
ure 4. Several steps mentioned in the figure are explained in the Sections 3.1 through
3.4. Section 3.5 contains a few words on the implementation of the algorithm.

Figure 4. A metamodel based optimisation algorithm for metal formingprocesses
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Figure 5. FEM as an input–throughput–response model

3.1. Modelling

The first step is to start with modelling the optimisation problem, i.e. quantifying
objective function and constraints and selecting the design variables. Regarding the
constraints, a distinction is made between explicit and implicit constraints. To explain
the difference, running a FEM simulation can be seen as an input-throughput-response
model such as the one depicted in Figure 5. Certain quantities are known beforehand:
there is no necessity to run a FEM calculation for evaluatingthem. The design vari-
ables are clear examples of these quantities and there can also be constraints that
explicitly depend on the design variables. These constraints are called explicit con-
straints. In case of metal forming explicit constraints arerelated to the undeformed
product, e.g. constraints on the initial shape of a blank.

Quantities that depend on the response require a FEM simulation for evaluating
them: they implicitly depend on the design variables. The objective function is gener-
ally such an implicit quantity and it is also possible to haveimplicit constraints. For
metal forming, implicit constraints are related to the deformed product, e.g. excessive
thinning is not allowed to exceed a specified limit.

It is stressed again that the modelling of an optimisation problem is formally not
part of an optimisation algorithm: the algorithm is solely amean for solving the op-
timisation model. Clever modelling and solving are both crucial for mathematically
optimising a problem as was already emphasised in the introduction.

3.2. Design Of Experiments (DOE)

When the optimisation problem has been modelled, Figure 4 shows that the first
step of the algorithm is to carefully select a number of design sites by a Design Of
Experiments (DOE) strategy. A spacefilling Latin HypercubeDesign (LHD) is a good
and popular DOE strategy for constructing metamodels from deterministic computer
experiments [McK79, San03] and has been selected for the optimisation of metal
forming processes.

However, when a metamodel is used for optimisation, it is important that the meta-
model gives accurate results in the neighbourhood of the optimum. Often, this opti-
mum will be constrained, i.e. lies on the boundary of the design space. Therefore, an
accurate prediction is needed on the boundary, which implies performing measure-
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Figure 6. (a) LHD + full factorial design (b) LHD + full factorial design including
explicit constraints

ments on that boundary. An LHD will generally provide designpoints in the interior
of the design space and not on the boundary. To compensate forthis lack of points
on the boundary, the LHD is combined with a full factorial design, which puts DOE
points right in the corners of the design space. This method was also proposed by Van
Beers et al. [vB04] and Kleijnen et al. [Kle04]. Figure 6(a) presents the LHD modified
with a full factorial design for a two dimensional rectangular design space.

Unfortunately, the design space will often not be rectangular when explicit con-
straints are present. In this case, the proposed algorithm will:

1. check which points of the LHD + full factorial design are non-feasible

2. skip the non-feasible points

3. replace the non-feasible points with new points

4. repeat the above procedure until all points are feasible

Replacing the non-feasible points is also done in a spacefilling way by selecting a
large number of sets of additional design points. The new setof points is the one for
which the minimum point to point distance is maximised. Thisso-calledmaximincri-
terion is used for both the initial DOE and for the case when the user wants to generate
additional experimental design points, for example for improving the accuracy of the
metamodels. The final DOE strategy incorporated in the proposed optimisation algo-
rithm is presented in Figure 6(b) for two design variables (x1 andx2) and two explicit
constraints (g1 andg2).
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3.3. Running the FEM simulations and fitting the metamodels

Subsequently, using the settings indicated by the DOE strategy, a number of FEM
calculations is run on parallel processors and the responsepoints (objective function
and implicit constraint values) are obtained. Following Figure 4, the next step is to fit
for each response seven metamodels:

1. A linear polynomial using RSM

2. A linear + interaction polynomial using RSM

3. A pure quadratic or elliptic polynomial using RSM

4. A full quadratic polynomial using RSM

5. A Kriging interpolation metamodel with a 0th order polynomial as a trend func-
tion

6. A Kriging interpolation metamodel with a 1st order polynomial as a trend func-
tion

7. A Kriging interpolation metamodel with a 2nd order polynomial as a trend func-
tion

3.4. Validation and optimisation

Metamodel validation based on cross validation (see e.g. [Mar03]) is used to select
the best metamodel for the observed response. Using cross validation, one leaves out
one, say theith, of the response measurements and fits the metamodel throughthe
remaining response measurements. The difference between the real valueyi and the
value predicted by the metamodel at this location ˆy−i is a measure for the accuracy of
the metamodel. One can repeat this procedure for all sayn measurement points and
calculate the cross validation Root Mean Squared Error (RMSECV):

RMSECV =

√

n

∑
i=1

(yi − ŷ−i)
2

n
[9]

As RMSECV approaches 0, the metamodel becomes more and more accurate.
Cross validation can also be visualised in a cross validation plot. An example of such a
plot is presented in Figure 7. If the measurements follow theline x= y, the metamodel
fits the data well.

For each response (objective function and implicit constraints) the metamodel out-
performing the other six metamodels is selected. These bestmetamodels for objective
function and implicit constraints are added to the explicitconstraints in the optimi-
sation model, which is subsequently optimised using a standard Sequential Quadratic
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Figure 7. A cross validation plot

Programming (SQP) algorithm, see for example [Haf92]. In case constraints or Krig-
ing metamodels are present in the final optimisation problem, there is a risk of ending
up in a local optimum. This problem is overcome by initialising the SQP algorithm
at multiple locations. This implies performing many function evaluations, but this is
hardly a problem since both RSM and DACE metamodels, being explicit mathemati-
cal functions, can be evaluated thousands of times within a second. The DOE points
are used as initial locations for the SQP algorithm.

The obtained approximate optimum is finally checked by running one last FEM
calculation with the approximated optimal settings of the design variables. The dif-
ference between the approximate objective function value and the real value of the
objective function calculated by the last FEM run is a measure for the accuracy of the
obtained optimum. If the user is not satisfied with this accuracy, the algorithm allows
for sequential improvement (e.g. zooming near the optimum)and repeating the pro-
cedure presented above until one is satisfied with the accuracy. Hence the proposed
algorithm incorporates all the advantages of sequential approximate optimisation al-
gorithms.
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3.5. Implementation

The optimisation algorithm presented in Figure 4 and the previous sections was
implemented in MATLAB and can be used in combination with anyFinite Element
code. For the fitting of the DACE/Kriging metamodels, use wasmade of the MATLAB
Kriging toolbox implemented by Lophaven, Nielsen and Søndergaard [Nie, Lop02b,
Lop02a].

4. A metal forming application

The optimisation algorithm introduced in the previous section is applied to a sim-
ple hydroforming process. The product to be hydroformed is presented in Figure 8(a).
Figure 8(b) presents the dimensions.

For metal forming, several groups of design variables can bedistinguished:

1. Geometrical parameters:

(a) Final product geometry

(b) Initial workpiece geometry

(c) Tool geometry

2. Material parameters

3. Process parameters

The group of geometrical parameters is divided further intovariables belonging to
the final, deformed product, e.g. product radii, thicknesses, etc., variables related to
the initial, underformed workpiece (blank shape, blank thickness, etc. and variables
related to the tool geometry (drawbeads, tool radii and so on). Examples of material
parameters are strain hardening coefficients, the initial yield stress or simply several
discrete materials in itself. The group of process parameters includes process forces,
pressures, tool displacements, friction coefficient, process temperature, etc.

For the simple metal forming example considered here, we areinterested in op-
timising the time variation of the internal pressurep and axial feedingu. These are
typically process parameters for the hydroforming process. A typical time dependent
load path for hydroforming is shown in Figure 8(c). The velocity of pressure increase
α is set to 10MPa/s during a total hydroforming time of 10s. Hence, three design
variables remain: the time when axial feeding startst1, the time when axial feeding
stopst2 and the total amount of axial feedingumax.

As an optimisation objective, it was chosen to minimise deviations from the initial
tube wall thickness. One implicit and one explicit constraint were formulated. The
implicit constraint ensures that the final product fills out the die nicely, the explicit
constraint makes sure that the time when axial feeding stopsis larger than the time
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Figure 8. (a) A simple hydroformed product; (b) Dimensions; (c) Typical load paths
for hydroforming

when it starts. Convergence problems of the FEM simulationshave been encountered
whent2 approachest1 and the amount of axial feeding is high (largeumax). Methods
to handle non converged simulations are lacking and is a fieldof open research. An
extra explicit constraint has been formulated to overcome the convergence problems.
The second explicit constraint makes the first explicit constraint redundant, as one can
see in the model of the optimisation problem:

min f (t1, t2,umax) =

∥

∥

∥

∥

h−h0

h0

∥

∥

∥

∥

2

s.t. gimpl = V ≤ 0

gexpl1 = t1− t2 ≤ 0

gexpl2 = umax−9(t2− t1) ≤ 0 [10]

0s ≤ t1 ≤ 5s
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Figure 9. (a) FE model of the initial tube; (b-e) Final product formed with several
arbitrary selected load paths; (f) Final product formed with optimised load paths

3s ≤ t2 ≤ 10s

0mm ≤ umax≤ 9mm

whereh is the final wall thickness in the hydroformed product,h0 is the wall thickness
of the initial tube andV is the volume between the final product and the die. If this
volume is larger than zero, there is a gap between the final product and the die and the
final shape of the product is not satisfactory.

The 2D FE model of the axisymmetric part is presented in Figure 9(a). The contact
between the product and the die is modelled by contact elements using a penalty for-
mulation. The calculations were performed on 16 parallel processors, which limited
the total time to the run time of one calculation, i.e. a couple of minutes for the 2D FE
model we are considering. Before the optimisation algorithm is applied, we will first
arbitrarily select some combinations of the design variables and investigate the effect
on the final product, the objective function and the implicitconstraint. Subsequently,
the algorithm is applied and the optimised results are compared to the results obtained
with the arbitrarily selected load paths.
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Product t1(s) t2(s) umax(mm) f gimpl

(a) – – – 0 –
(b) 0 0 0 1.39 -0.29
(c) 0 3 9 0.52 1.79
(d) 0 10 9 1.42 -0.34
(e) 4.8 6.2 7.7 1.37 32.64
(f) 0 2.5 8.3 0.37 -0.47

Table 1.Design variable settings and response values

Figures 9(b) through (e) present the final products deformedwith the arbitrarily
selected load paths. The design variable settings fort1, t2 andumax and the response
values for the objective functionf and the implicit constraintgimpl are presented in
Table 1. Note that product (a) is the initial undeformed product, which is seen as the
product with the perfect wall thickness distribution by theobjective function quantified
in Equation 10. For the perfect product, the objective function equals 0. Also note that
products (c) and (e) do not satisfy the implicit constraintgimpl, which can also clearly
be seen from Figures 9(c) and (e).

The metamodel based optimisation algorithm presented in Section 3 is now ap-
plied to optimise the wall thickness distribution. The DOE strategy introduced in Sec-
tion 3.2. was applied to generate 16 initial design variablesettings for which 16 FEM
calculations were performed with the in-house code DiekA. Subsequently, the four
Response Surfaces and three Kriging metamodels were fitted for both responses (the
objective function and the implicit constraint). Based on cross validation, a 0th or-
der Kriging metamodel appeared to be the most accurate metamodel for the objective
function. In a similar way, a 1st order Kriging metamodel was identified to be most
accurate for the implicit constraint. Both were included inthe optimisation problem,

Figure 10. (a) Metamodel of the objective function after batch 1; (b) Contour plot of
the objective function after batch 1
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# FEM t1(s) t2(s) umax fopt factual

16 0 3.0 7.9 0.66 0.47
32 0 1.5 7.9 0.37 —
48 0.8 2.5 9.0 -0.06 0.55
64 0 3.0 7.7 0.31 0.50
80 0 3.1 8.2 0.37 0.49
96 0 2.5 8.3 0.30 0.37

Table 2.Optima of the DoC after the 6 batches of 16 FEM calculations each

which was subsequently solved using the multistart SQP algorithm described in Sec-
tion 3.4.

Several local optima were observed; the global optimum was located at(t1, t2,umax)=
(0,3,7.9) and the corresponding objective function value was observed to be 0.66.
Figure 10(a) shows the approximate optimum located on the metamodel of the objec-
tive function. The metamodel is depicted dependent onx2 = t2 andx3 = umax at the
constant, optimal level oft1 = 0. Figure 10(b) presents a contour plot of the objec-
tive function and the constraints, where one can easily observe that the optimum is
constrained by the implicit constraint and the box constraint t2 ≥ 3.

To validate the optimum, a FEM calculation was performed with the optimal de-
sign variable settings. The actual objective function value was found to be 0.47. The
large difference between the approximate and the actual objective function values at
the approximate optimum motivates to sequentially improvethe results. Making use
of the metamodel visualised in Figure 10, it was decided to zoom in near the opti-
mum and to relax the box constraintt2 ≥ 3: it was replaced by the new box constraint
t2 ≥ 2.5.

Figure 11. (a) Metamodel of the objective function after batch 6; (b) Contour plot of
the objective function after batch 6
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Figure 12.Wall thickness distribution of several hydroformed products

In total, six batches of each 16 FEM calculations were performed. Each time, the
design space was reduced and/or shifted with the aim to fit accurate metamodels in
the vicinity of the optimum. The results of all batches are presented in Table 2.

Figure 11 presents the metamodel of the objective function as well as a contour plot
of the objective function after having run the sixth batch ofsimulations. The obtained
optimum(t1, t2,umax) = (0,2.5,8.3) is constrained by the box constraintt2 ≥ 2.5. A
final 97th FEM calculation was performed with the optimised design variable settings.
This calculation resulted in a real objective function value of 0.37, which is fairly close
to the approximate objective function value of 0.30. Although there is still a small
difference between the approximate and the actual value of the objective function, it
was decided to be satisfied with the approximate optimum obtained by the metamodel
based optimisation algorithm.

The optimised settings found by the proposed optimisation algorithm are presented
in Table 1 as product (f). The final shape of this product is shown in Figure 9(f). Figure
12 shows the wall thickness throughout the final product for all load paths. It can be
concluded from the Figures 9 and 12 and Table 1 that the product deformed with the
optimised load paths outperforms the other products formedwith arbitrary settings,
which demonstrates the good applicability of the proposed algorithm to metal forming.
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5. Conclusions

An optimisation algorithm based on metamodelling techniques is proposed for the
optimisation of metal forming using time consuming FEM calculations. It uses both
Response Surface Methodology and DACE (or Kriging) as metamodelling techniques.
As a Design Of Experiments strategy, a combination of a maximin spacefilling Latin
Hypercubes Design with a full factorial design was implemented, which takes into
account explicit constraints. Additionally, the algorithm incorporates cross validation
as a metamodel validation technique and uses a Sequential Quadratic Programming
algorithm for metamodel optimisation. To overcome the problem of ending up in a
local optimum, the SQP algorithm is initialised from every DOE point, which is very
time efficient since evaluating the metamodels can be done within a fraction of a sec-
ond. The proposed algorithm allows for sequential improvement of the metamodels to
obtain a more accurate optimum.

As an example case, the optimisation algorithm was applied to obtain the opti-
mised internal pressure and axial feeding load paths to minimise wall thickness varia-
tions in a simple hydroformed product. The product formed with optimised load paths
outperforms several products formed with arbitrarily chosen load paths, which demon-
strates the good applicability of metamodelling techniques to optimise metal forming
processes.
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