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Abstract

In this paper we discuss the role that deontic logic plays in the specification of information

systems, either because constraints on the systems directly concern norms or, and even more

importantly, system constraints are considered ideal but violable (so-called ‘soft’ constraints).

To overcome the traditional problems with deontic logic (the so-called paradoxes), we first state

the importance of distinguishing between ought-to-be and ought-to-do constraints and next

focus on the most severe paradox, the so-called Chisholm paradox, involving contrary-to-duty

norms. We present a multi-modal extension of standard deontic logic (SDL) to represent the

ought-to-be version of the Chisholm set properly. For the ought-to-do variant we employ a

reduction to dynamic logic, and show how the Chisholm set can be treated adequately in this

setting. Finally we discuss a way of integrating both ought-to-be and ought-to-do reasoning,

enabling one to draw conclusions from ought-to-be constraints to ought-to-do ones, and show

by an example the use(fulness) of this.

1. Introduction: Soft Constraints and Deontic Logic

1.1 Integrity Constraints for Information Systems

An information system is a system that stores data about a part of the real world called the

Universe of Discourse (UoD). In order to specify an information system, we must specify a

conceptual model of the UoD that fixes the meaning of the data in the information system. The

conceptual model is in fact a set of meaning conventions for the symbols manipulated by the

system. For example, a personnel information system stores data about the employees of a

company. The UoD of the system is the set of employees of the company and a conceptual

model of this set describes the properties of employees represented by the system. It is this

conceptual model that determines the meaning of the data; an interpretation of the data that goes

beyond the conceptual model may be valid but is not guarantied to be correct by the system.
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Traditionally, conceptual data models represented the types of entities that can exist in the UoD

and the relationships that can exist between these types of entities. With the advent of richer

specification languages for conceptual models, it becomes possible to specify various kinds of

actual and desirable properties of entities in the UoD. For example, predicate logic can be used

to specify that all employees are persons and that no employee can have a temporary and

permanent employment contract with the same employer at the same time. Temporal logic can be

used to specify that the age of a person can never decrease or that an employment contract will

eventually be terminated. These properties of the UoD are (hard) constraints on the system,

because they specify properties that the structure and behaviour of the data in the system must

have. If we assume, for the sake of the argument, that it is not possible that an employee violates

one of these properties, then a state or behaviour of the system that violates one of these

properties is wrong. Hence, any property known to be true of the UoD is a constraint that must

be satisfied by the information system. These properties are called integrity constraints for the

system.

In order to be able to reason about integrity constraints, it is useful to use logic as a specification

language for conceptual models. For example, order-sorted predicate logic can be used to

specify taxonomic structures, temporal logic can be used to specify temporal constraints,

dynamic logic to specify system transactions, etc. Once we have a logic specification of a

conceptual model, we can use the inference system of the logic to derive properties of the model

and we can validate the model by checking whether these properties do, as a matter of fact, hold

in the UoD.

Recently, it has been recognized that it is useful to be able to specify desirable properties of the

UoD, that may be violated by the UoD ([WMW89]). A popular example in this respect is the

UoD constraint that the salary of an employee never decreases. Other examples studied in the

literature include the UoD constraint that a book that is borrowed from a library should be

returned within three weeks and that a bank account should have a non-negative balance. All of

these properties may be violated by a UoD. This means that these properties must not be

translated into constraints on the system. Rather, the system must be able to represent violations

of these constraints. Representing these violations is precisely one of the functions of the

system. Nevertheless, it would be useful if the system would be able to represent these desirable

properties of the UoD and would be able to represent violations of these properties as

violations. We call such a desirable property of the UoD that is used in the specification of a

conceptual model a soft constraint, because the system must be able to represent and signal

violations of these constraints. The desire to specify soft constraints motivates the use of deontic

logic in the specification of conceptual models.
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1.2 Deontic logic and violations of constraints

Deontic logic is a logic to reason about ideal versus actual states or behaviour. These can be

expressed in the logic by means of operators for prohibition (F), permission (P) and obligation

(O). In deontic logic one can express that ideally constraints are complied to, but actually

violations may occur. Moreover, one has the ability to specify what should happen in case of a

violation (in order to restore integrity or take some other compensating action, for instance). As

such it is a very useful tool for the specification of ‘soft’ integrity constraints for computer

systems, and information systems in particular.

For instance, consider an information system (knowledge base) for a library. Specifying such a

system involves a lot of ‘soft’ constraints expressing ideal situations or behaviour of the agents

involved, which may be represented by formulas with deontic operators. For example, one may

use the following clause in a Library KB:

[(borrow(p, b)] O(return(p, b))≤3weeks

expressing the ‘soft’ (violable) constraint that when a person p borrows a book b, he should

return it within 3 weeks. Typically, since a library does not have any control over the borrower, it

is very well conceivable that the constraint is violated. In our particular logic we shall signal such

a situation of violation by means of a special propositional atom; e.g. in this particular case by
the atom Vreturn(p, b). This atom can then be employed by specifying a compensating action

such as paying a fine, e.g. as follows:

Vreturn(p, b) → O(pay(p, $2, b),

expressing that when a person fails to fulfil his obligation to return the borrowed book, he has to

pay a fine of $2.

Sometimes also database integrity constraints per se  are regarded as deontic (e.g. [Kwa93]):

DB ¥ O(IC)

stating that the database must satisfy (ideally satisfies) the integrity constraints IC. In effect this

approach treats every IC as a ‘soft’ constraint, the violation of which can be represented, so that,

when violated, integrity-recovering actions might be specified.

Recently deontic logic has indeed been taken up as a specification tool for a wide variety of

software systems, ranging from the specification of fault-tolerant behaviour for use in advanced
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software to electronic contracting systems for use in organisations, as well as integrity

constraints in databases and legal expert systems (cf. [MW93b], in particular [WM93]).

1.3 The Paradoxes of Deontic Logic

(Standard) deontic logic (SDL) is not without problems, however: it has been plagued by many

so-called paradoxes since its inception. These paradoxes signify more or less mismatches

between the formal deontic concepts and their everyday use. More specifically, the paradoxes in

deontic logic are logical expressions that are valid in a (or even most) well-known logical

system(s) for deontic reasoning, but which are counterintuitive in a common-sense reading (cf.

[Åqv84], Section II). Of course, matching theorems and intuitions is a general problem of

measuring a logic (or even more generally, a formal approach) against the purpose it was

devised for. (This is sometimes called the validation problem.) But it is remarkable that in the

realm of deontic logic these problems appear to be much more serious and persistent through

the years than in, for instance, other modal logics such as temporal and epistemic logics. Some

of these paradoxes appear and re-appear again in the literature for several decades now without

the community of researchers seemingly arriving at a consensus. What is even more surprising

is the relative simplicity of the paradoxes. Most of them can be explained to a complete layman

in deontic logic in a couple of minutes. Yet they have been haunting deontic logicians for many

years now. To mention some of the best known ones:

- Ross's Paradox: ought-to-mail-a-letter implies ought-to-mail-a-letter-or-burn-it.

- Free Choice Paradox: allowed-to-mail-a-letter implies allowed-to-mail-a-letter-or-burn-it.

- No Conflicting Obligations: ought implies permitted

- Good Samaritan Paradox: ought-to-help-Jones-who-is-robbed implies Jones-ought-to-be-

robbed

- Chisholm’s Paradox: ought-to-do-A, ought-to-do-(A-implies-B), not-A implies ought-to-do-

not-B and actually doing-not-A is inconsistent.

Not all paradoxes are considered equally serious. Of the small list above the contrary-to-duty-

imperatives such as Chisholm’s paradox are generally considered by far the most awkward and

even embarrassing by deontic logicians.

When (proposing to) using deontic logic for specification of concrete systems, these should be

dealt with one way or another, either by resolving the paradoxes or by explaining why they are

harmless in the context of application. Our claim in this paper is that all of the deontic paradoxes

in the literature are harmless, except for the ones concerning the so-called contrary-to-duty

(CTD) imperatives, such as the Chisholm paradox. Moreover, CTD imperatives are omnipresent

in daily life as well as in more technical circumstances. An instance of the Chisholm paradox

comprises the following assertions:

1. there should be no error.
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2. if there is an error, there should be a warning.

3. if there is no error, there should be no warning.

4. there is an error.

In SDL this set of assertions cannot be represented consistently (without one of the assertions

being redundant), while intuitively the set is both consistent and nonredundant. On the other

hand, it is absolutely imperative to be able to specify situations of this kind.

Another important claim in this paper is that because of their conceptual difference one should

distinguish between the notions of ought-to-be (‘Seinsollen’) and ought-to-do (‘Tunsollen’), to

the extent of using really different logics for these two notions. The former notion can be

employed to specify what should hold ideally in the states of a system (or, put in other words,

what the ideal states of the system are), while the latter notion can express the ideal behaviour of

a system.

So, when we try to solve the Chisholm paradox we first have to distinguish between ought-to-be

and ought-to-do versions of this paradox. In order to represent the ought-to-be version of the
Chisholm set properly we present a multi-modal extension S5O(n) of SDL. For solving the

ought-to-do variant we employ a reduction to dynamic logic, and show how the (ought-to-do

version of the) Chisholm set can be treated adequately in this setting. Although we advocate

distinguishing between logics for ought-to-be and ought-to-do reasoning, on the other hand we

claim that in practice one needs both forms and hence a way to deal with these in an integrated

framework. In Section 7 we discuss such a way of integrating both ought-to-be and ought-to-do

reasoning, enabling one to draw conclusions from ought-to-be constraints to ought-to-do ones,

and show the use(fulness) of this by an example.

2. Standard Deontic Logic (SDL)

One of the first systems for deontic logic that really was a serious attempt to capture deontic

reasoning was the now so-called “Old System” of Von Wright ([vW51]), of which a modal

(Kripke-style) version has become known as Standard Deontic Logic (SDL).

SDL consists of the following axioms and rules:

(KO) O(ϕ → ψ) → (Oϕ → Oψ)

(DO) ¬O⊥
(NO) ϕ / Oϕ
(P) Pϕ ↔ ¬O¬ϕ
(F) Fϕ ↔ O¬ϕ
(Taut) the tautologies of propositional logic (or just enough of them)
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(MP) ϕ, ϕ → ψ / ψ

Here ⊥ stands for falsum.

SDL has a Kripke-style modal semantics based on a set of possible worlds(, a truth assignment

function of primitive propositions per possible world) and an accessibility relation associated

with the O-modality (cf. e.g. [MW93a]). This accessibility relation points to “ideal” or

“perfect deontic alternatives” of the world under consideration. The crux behind this is that in

some possible world something (say ϕ) is obligated, if ϕ holds in all the perfect alternatives of

this world, as indicated by the accessibility relation.

So, formally these models have the following form: M = (S, π, RO), where S is the set of states,

π is a truth assignment function, and RO is the deontic accessibility relation, which are assumed

to be serial, i.e. for all s ∈ S there is a t ∈ S such that RO(s, t).

The operator O is interpreted by means of the relation RO: M, s ¥ Oϕ iff M, t ¥ ϕ for all t with

RO(s, t). The system SDL can be shown sound and complete with respect to validity in this

class of models via a standard argument. (The system SDL coincides with the system KD  in the

classification of Chellas [Che80].)

A few theorems of SDL:

(O∧) O(ϕ ∧ ψ) ↔ (Oϕ ∧ Oψ)

(P∧) P(ϕ ∧ ψ) → (Pϕ ∧ Pψ)

(F∧) (Fϕ ∨ Fψ) → F(ϕ ∧ ψ)

(O∨) (Oϕ ∨ Oψ) → O(ϕ ∨ ψ) 
(P∨) P(ϕ ∨ ψ) ↔ (Pϕ ∨ Pψ)

(F∨) F(ϕ ∨ ψ) ↔ (Fϕ ∧ Fψ)

(Cfl) ¬(Oϕ ∧ O¬ϕ)

3. The Paradoxes of Deontic Logic

The paradoxes of deontic logic are logical expressions (in some logical language) that are valid

in a (or even most, as is often the case) well-known logical system for deontic reasoning, but

which are counterintuitive in a common-sense reading. Of course, there is the general problem

of measuring a formal approach (logic) against the purpose it was devised for: do formal

theorems in the logic match the intuition? But in the realm of deontic logic this problem seems

to be more serious and persistent than in other (modal) logics such as temporal and epistemic

logic (although in epistemic logic there is, for instance, the problem of logical omniscience, see,

e.g., [MH95]).
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Traditionally, deontic logic has been proposed and used for reasoning about ethical and legal

aspects. This has resulted in a critical evaluation of the logic in its capacity of supposedly giving

an adequate representation and reasoning mechanism for these applications. Originally, also the

paradoxes were discovered and judged against this background. The question arises naturally

whether the paradoxes are equally problematic when deontic logic is used for the specification

of advanced information systems, e.g. knowledge based or intelligent systems where norms (or

rather normative versus nonnormative behaviour) play a role. We will argue that the computer

science (or AI) view may be different in at least two ways:

− it may offer a dynamic perspective, taking notions of action and time into (more explicit)

account.

− it may also offer a pragmatic perspective: computer science has a definite engineering aspect

and therefore computer scientists are interested in things that work (sufficiently) rather than

deep philosphical issues.

With respect to the former, computer science may really give some new insight and help the

traditional area of deontic logic by offering new interpretations and logics. We shall in fact our

ought-to-do logic on one of these in Section 6. With respect to the latter, we admit that computer

scientists will mainly help themselves, (ab?)using deontic logic the way they need, not being

bothered by old and profound questions. So, on the one hand, one has deontic logicians being

plagued by long-standing paradoxes without seemingly arriving at a consensus, while on the

other hand, one has computer scientists wanting to apply deontic logic to their field of interest.

What should be their attitude towards deontic logic, and the paradoxes in particular? Do these

present insurmountable problems for them, too? Let us first have a look at some of the most

infamous paradoxes from the literature.

3.1. Some Well-Known Paradoxes

The following is a list of the most well-known paradoxes from the deontic logic literature:

1. Empty normative system Oϕ (ϕ a tautology), e.g. O(ϕ ∨ ¬ϕ)

2. Ross’ paradox Oϕ → O(ϕ ∨ ψ)

3. No free choice permission (Pϕ ∨ Pψ) ↔ P(ϕ ∨ ψ)

4. Penitent’s paradox Fϕ → F(ϕ ∧ ψ)
5. Good Samaritan paradox ϕ → ψ ƒ Οϕ →Οψ

6. Chisholm’s paradox (Oϕ ∧ O(ϕ→ψ) ∧ (¬ϕ→O¬ψ) ∧ ¬ϕ) → ⊥
7. Forrester’s paradox of gentle murder (Fϕ ∧ (ϕ → Oψ) ∧ (ψ → ϕ) ∧ ϕ) ƒ ⊥

8. Conflicting obligations ¬(Oϕ ∧ O¬ϕ), or equivalently,

Oϕ → Pϕ
9. Derived obligation Oϕ → O(ψ → ϕ)
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Fψ → O(ψ → ϕ)

¬ϕ → (ϕ → Oψ)

10. Deontic detachment (Oϕ ∧ O(ϕ → ψ)) → Oψ
11. Kant’s ought implies can Oϕ → � ϕ

12. Epistemic obligation OKϕ → Oϕ

Remarks. 1. says that every tautology is obligated. This is by some authors (including Von

Wright [vW51]) viewed as an undesirable property of a deontic logic, since necessary and

therefore inevitable things cannot be obligated in a true sense. 2.’s strangeness is often

illustrated with an instance like “if one is obliged to mail a letter, one is obliged to mail the letter

or burn it.” This sounds paradoxical in ordinary language usage. 3. implies that if ϕ is

permitted but ψ is not, nevertheless “ ϕ  or ψ ” is permitted. This is sometimes felt as counter-

intuitive since “ϕ or ψ is permitted” suggests that one is free to choose either doing ϕ or doing

ψ. 4. is analogous to 3. It has as an instance that if someone is forbidden to do a crime, one is

also forbidden to do a crime and do penitence. 5. says that every logical consequence of

something that is obligated is obligated itself. This is amenable to debate, as in an instance like

“if Jones helps Smith who has been injured implies Smith has been injured, so if it is obliged

that Jones helps Smith who has been injured, it is obliged that Smith has been injured”. 6. is an

abstract version of the set “if you are obliged to go to a party; it is obliged that, if you go, you

tell you're coming; but if you do not go, you are obliged to not tell you’re coming; and, in fact,

you do not go to the party”. This is intuitively consistent, but inconsistent in SDL (see Section

3.2). 7.’s paradoxical nature is exemplified by the macabre instance: “one is forbidden to

murder; still, if one murders someone, one has to do it gently (i.e. one has to commit a gentle

murder); moreover, a gentle murder implies a murder; one murders someone”. This set is

inconsistent again in SDL, whereas it makes perfect (common) sense. 8. states that there is no

conflict of duties, which is manifestly not in line with daily-life situations. 9. are deontic versions

of the paradoxes of material implication in classical logic. 10. states that obligations are closed

under implication. This is controversial in the same sense as 5. with which it is strongly related.

11. states that only things (actions) that can be (done) might be obliged. This denies the

possibility to specify that one is really obligated to do the impossible. 12. is puzzling as shown

by the instance: “if you ought to know that your spouse is committing adultery, it ought to be

that your spouse is committing adultery.”

3.2 The Paradoxes in SDL

In SDL all paradoxes 1. - 10. are theorems. (We leave 11. and 12. out of our discussion since

they involve modalities, viz. knowledge and ontological possibility, which are not present in

SDL.) Moreover, it is worthwhile to note what axioms are responsible for them (discarding the

principles P and F, which are viewed in this context as mere abbreviations. Of course, one is also

free to tempt these as proper definitions of permission and prohibition.) Paradox 7 depends on
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(K), (N) and (D), while paradoxes 6 and 8 depend on (K) and (D). (K) and (N) are responsible

for the paradoxes 2, 3, 4, 5 and the first two of 9. The third one of 9. is even valid in

propositional logic. Paradox 1 is an immediate consequence of the necessity rule (N) and

paradox 10. is just a consequence of the modal axiom (K). So, apart from the paradoxes 6, 7

and 8, which can be avoided by denying the principle (D), the rest of the paradoxes are direct

and unavoidable consequences of viewing the obligation operator O as a (“normal” in the sense

of [Che80]) Kripke-style modality, which necessarily satisfies (K) and (N)! (Moreover, denying

principle (D) is also not done painlessly, since, historically, it is the very axiom in modal logic

that is associated with deontics!) Do we have to conclude from this that this is not a good

approach? Well, this depends on the situation at hand. In fact, we shall argue below that

sometimes it is not, but in other situations this style of semantics is sufficient in adequacy.

3.3 Contrary-to-Duty Imperatives

One of the most serious paradoxes in (standard) deontic logic involves the notion of contrary-

to-duty imperatives. These have to do with the specification of norms in case some other

norm(s) have already been violated. The best-known example is the one given by Chisholm

([Chi63]): consider the following statements in natural language:

(i) You ought to go to the party

(ii) If you go to the party, you ought to tell you’re coming

(iii) If you don’t go, you ought not to tell you’re coming

(iv) You don’t go to the party.

Intuitively, this set of statements is perfectly understandable and consistent, and none of the four

statements seems to be redundant in the set. However, if we try to represent this set in SDL, we

run into serious trouble. A more or less natural way to represent the Chisholm set in SDL is the

following:

(i') Op

(ii') O(p → q)

(iii') ¬p → O¬q

(iv') ¬p

In SDL this set (i') - (iv') is inconsistent, contrary to the intuitions about (i) - (iv):

In SDL we have as a theorem O(p → q) → (Op → Oq), which together with (ii') yields Oq. On

the other hand, (iii') and (iv') give O¬q. And in SDL Oq ∧ O¬q is inconsistent.

Note furthermore that it is not really coincidental that (ii) and (iii) are represented in a different

way (which may be questionable, of course). If we would, for instance, replace (iii') by
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(iii") O(¬p → ¬q)

we have that (iii") is derivable from (i') in SDL, which does no justice to the intuition that all of

(i) - (iv) are independent from each other. Similarly, if we would replace (ii') by (ii") p → Oq,

this statement (ii") would be derivable from (iv'), contrary to the intuitions concerning

independence.

4. A Diagnosis of the Problems

At least part of the problems arise from the following four confusions:

(i) confusion between ought-to-be and ought-to-do.

Since the inception of deontic logic there has been some confusion about the meaning of Oϕ, or

rather of the meaning of ϕ is this context: is it a description of a state-of-affairs or does it denote

an act(ion)? We will argue that if one views ϕ as an action description (i.e., one is interested in

so-called ought-to-do’s) viewing the O-modality as a modal operator in SDL-style is not

adequate, while for ought-to-be’s where ϕ denoted a state-of-affairs this might be adequate for

concrete applications. Here we may adhere to some form of pragmatics: we simply look at what

works in a given simple context without having any pretensions or claims about a logic of

norms, ethics or morality in general. In any case what is very important to notice is that in our

view this results in having distinct (and really different) logics for ought-to-be and ought-to-do.

(ii) confusion between the formal interpretation (of the logical operators ∧, ∨ and →,

for example) and the natural language (commonsense) reading of these.

 Here we have again a form of pragmatics: once we realise that the formal interpretation of the

operators used do not match the commonsense one, we just use them in their formal

interpretation without trying to solve the mismatch. The only thing one should be aware of if one

follows this line of action, is that one should be very careful when translating informal (natural

language-style) specifications into formal ones or vice versa.

(iii) confusion between ideality and actuality; and, in particular, an overestimation of

ideality and the notion of perfect alternative as it appears in the formal semantics. In

particular, norms can conflict in reality!

In formal terms: O⊥ is not equivalent with ⊥! (But, of course, in practice, when we encounter

conflicting duties, we must try and resolve these.) This is very much related to defeasible

(nonmonotonic) reasoning in AI research (cf. e.g. [Luk90], [MT93] as excellent introductions to
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the area of nonmonotonic reasoning; in [LHM95] the emphasis is on the dynamics of default

reasoning viewed from the stand-point of a reasoning agent. However, the dynamics of

reasoning is also studied in a more general context of complex reasoning patterns like in meta-

level reasoning architectures, cf. e.g. [HMT94]). In the subject of defeasible or nonmonotonic

reasoning one considers (sequences of) steps while having the disposal of incomplete and

overcomplete (inconsistent) information and “jumping to conclusions”. Here we encounter

dynamics in the epistemic state of the agent, like belief revision and truth (reason) maintenance.

Actually, this also plays a role when encountering normative information that is incomplete and

inconsistent. Historically some of the first work on defeasibility was done in the realm of

normative reasoning ([AM81]), where it is imperative to keep one’s duties straight in a situation

with inconsistent norms. One might speak of “duty maintenance” in this case. Recently, mainly

inspired by work done in AI on defeasibility over the last decade or so, there have been

developing a rapidly increasing interest in the defeasibility approach to deontic logic and legal

reasoning more in general (cf. e.g. [MW91a], [MW93a], [Rya93], [Hor93], [Pra93, 94],

[Jon93], [PS94], [vdT94]). Clearly, this topic has now been taken up very seriously by

researchers in the AI & Law Community, and it is to be expected that a lot of this line of

research will dominate deontic logic and reasoning about norms for the years to come.

(iv) confusion between normative notions necessary in general abstract contexts (such

as ethics) and those needed (and sufficient) for a concrete practical application.

When one is interested in the specification of concrete systems one can imagine to be interested

in different problems than one is analyzing deep philosophical problems. This appears also to

be the case when one is dealing with normative issues. Specifying normative systems, systems

in which norms play an important role, requires a more pragmatic view on matters pertaining to

reasoning about norms. It has now been recognized by several authors that deontic logic may be

useful for normative system specification, but which deontic logic is best suited for this

purpose? It appears to be the case that the most important role of the logic to be used is to

accommodate for the need to distinguish between ideal and actual behaviour of the system. So,

in the ought-to-be setting, we would use Oϕ to mean “ϕ is desirable” or “ideally ϕ is the case”

rather than “ϕ is obliged”. We would then have the possibility to specify what is to be done if

the actual behaviour deviates from the ideal or desirable one. This enables us to specify

adequately fault-tolerant behaviour of the software or system at hand. When Oϕ is read as

“ideally ϕ” even the standard system SDL or Anderson’s variant of this is useful: all

paradoxes but Chisholm’s lose their bite and become perfectly understandable and intuitive

properties of “ideality”. So in this case we need not bother too much about deep problems

(even changing the reading the O-operator slightly, as we please), and we may use SDL as a

logic for ought-to-be constraints. The only thing that remains to be done is to provide a

(pragmatic) solution of the Chisholm paradox, which we shall offer next.
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5. A Solution to the ‘Ought-to-Be’ Version of the Chisholm Paradox: S5O(n)

In the previous section we have seen that a natural representation of the Chisholm set in SDL

becomes inconsistent. The crux of the matter is that the inconsistency arises because of two

norms Oq and O¬q that together are inconsistent because of the D-axiom in SDL and, a fortiori

the fact that both norms are expressed by the same obligation operator O. We now propose to

extend SDL with multiple O-operators to overcome this problem (without resorting to much

more sophisticated things like dyadic deontic logic or conditional logic ([vW64], Chapter 10 of
[Che80])). To this end we introduce the logic S5O(n) which is has as modalities the universal

necessity operator ¿ and a number of distinct operators Oi which express obligation with

respect to a frame of reference i.

The system S5O(n) consists of the following axioms and rules (here �  is used to abbreviate

¬¿¬):

(K¿) ¿(ϕ → ψ) → (¿ϕ → ¿ψ)
(T¿) ¿ϕ → ϕ
(5¿) � ϕ → ¿� ϕ

(K i) Oi(ϕ → ψ) → (Oiϕ → Oiψ)
(Di) ¬Oi⊥
(Pi) Piϕ ↔ ¬Oi¬ϕ
(Fi) Fiϕ ↔ Oi¬ϕ
(⊇) ¿ϕ → Oiϕ

and the rules (Taut), (MP) and

(N¿) ϕ / ¿ϕ

Note that the rule

(Ni) ϕ / Oiϕ

is derivable.

(Kripke) Models for this system are of the form M = (S, π, R, {Ri | i = 1, ..., n}), where S is the

set of states, π is a truth assignment function, R = S × S is the (universal) possibility relation,
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and the Ri are the deontic accessibility relations, which are assumed to be serial. Note that in this

set-up it holds that Ri ⊆ R.

The operator ¿ is now interpreted by means of the relation R, and the operators Oi are

interpreted by the relation Ri. So, M, s ¥ ¿ϕ iff M, t ¥ ϕ for all t with R(s, t), and M, s ¥ Oiϕ iff
M, t ¥ ϕ for all t with Ri(s, t). The system S5O(n) can be shown sound and complete with

respect to validity in this class of models via a standard argument.

Note that the following are non-validities in this logic:
Oiϕ → OiOiϕ, ¬Oiϕ → Oi¬Oiϕ, Oiϕ → OjOiϕ, and ¬(Oiϕ ∧ Oj¬ϕ) (i≠j). The nonvalidity of

the last formula expresses that it is now indeed possible to represent contrary norms in a

consistent way, using distinct frames of reference, although within one frame of reference i the
formula Oiϕ ∧ Oi¬ϕ is still inconsistent.

The Chisholm set can now be consistently (and nonredundantly) be represented as:

(i") O1p

(ii") ¿(p → O2q)

(iii") ¿(¬p → O3¬q)

(iv") ¬p

Moreover, note that in this representation the strange incongruence between (ii") and {iii") has
disappeared. From this representation one can derive (iii") ¿(¬p → O3¬q) ⇒ ¬p → O3¬q

⇒(iv") O3¬q, and (ii") ¿(p → O2q) ⇒ O1(p → O2q) ⇒ O1p → O1O2q ⇒(i") O1O2q, which

gives a precise record of how the contrary norms come about (in frame 3, and in frame 2 via

frame 1 on the other hand) without being inconsistent.

6. Ought-to-Do: The Dynamic Perspective

As said before, computer science provides a dynamic perspective. Basically this is because in

this area one is interested in a way to compute (constructively) things, and since this process

generally takes time, this naturally involves changes of computer states over time. We can

distinguish at least the following three particular issues that are studied in computer science:

1. First and foremost computer science has to do with (computer) programs. Since its inception

computer science has to do with algorithms to achieve certain goals and computer programs

written in some computer language to enable one to execute these algorithms. These programs

contain statements or instructions to express what has to be done. In other words programs

express how certain actions involving (the hardware of) the computer should be performed. To

reason about programs, special logics have been developed such as Hoare’s logic and dynamic
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logic ([Hoa69], [Har79]). (Also temporal logic has been employed for this purpose (see e.g.

[Krö87], [MP92]). In some way one might view temporal logic as a dynamic logic in which one

abstracts away from the particular actions that take place, and only considers the flow of time

while executing a program. On the other hand, one might also view dynamic logic as a kind of

temporal logic where records are kept of what exactly happens in a time step.) In these logics it

is possible to express precisely what the effect is of the execution of (parts of) programs. One

can use them to reason about pre- and postconditions of (executions of) programs. Since

especially in dynamic logic this is done in a way that abstracts from the basic programming

actions, it is an easy and straight-forward step to abstract away from the particular application to

computer programs and consider general actions, whether they are supposed to be executed by

computers or by humans. In this way, dynamic logic may be viewed as a general logic for

reasoning about actions.

We ([Mey87, Mey88], [MWW89], [MWM89], [DM90], [WWMD91], [DMW94a,b],

[DMW96]) have employed this idea in order to get a deontic logic for ought-to-do (i.e. obliged

actions). We will sketch this approach below in section 5.1. Admittedly, also in the

philosophical literature on deontic logic there have been proposals to distinguish between

actions and assertions ([vW81], [Cas81], also cf. [Hil93]), but we believe that the explicit

connections with formalisms to reason about programs such as dynamic logic has made things

much more concrete. Interestingly, recent proposals for a philosophical theory of action as put

forward by Krister Segerberg (e.g. [Seg89]), are also strongly influenced by the dynamic logic

approach stemming from computer science and are very close in spirit to our approach.

2.  More generally, computer science is concerned with the study of processes. Processes might

be viewed as generalizations of executions of standard (sequential) programs, where also parallel

(and nondeterministic) execution is catered for. In fact, there is a whole branch of theoretical

computer science dealing with so-called process theory, which ranges from concurrency

semantics in which models for concurrent or parallel (nondeterministic) programming are

investigated (e.g. [Win82], [BM88], [vG90]) to process algebra, in which one tries to give an

algebraic calculus for this kind of programming ([Mil80], [BK86], [BW90]). In these algebraic

calculi (or process algebras, as they are usually called) one is actually interested in calculating

equivalences of processes on the basis of certain observational criteria: if two processes are

indistinguishable with respect to some observational criterion, they are regarded as equal, so that

one can reduce terms denoting complex processes to those representing simpler ones. This

appears to be very useful when considering correctness issues of these processes: by algebraic

calculation one aims at verifying certain properties of processes at hand such as protocols for

communication between ‘agents’ (computers or processors within a multi-processor computer

system).
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We employed the dynamic perspective in the sense of using dynamic logic over process

(algebraic) terms to treat the paradox of free choice permission. In [MW91], [WM91],

[WM93a] we used an algebraic approach on process terms to distinguish between two choice

operators representing free and imposed choice and obtained a framework (albeit complicated)

in which both could be used intertwined. Here we mixed techniques from process algebra (and

universal algebra) with dynamic logic to get a solution for this well-known problem in deontic

logic. (In [DMW94a, DMW96] we gave a less involved solution to this problem using another

(stronger) definition of permission together with admissible contexts for actions, but also here

dynamic logic is a crucial ingredient of the approach.)

6.1 A Logic of Ought-to-Do: a Deontic Logic Based on Dynamic Logic

PDeL, introduced in [Mey88],  is a version of dynamic logic especially tuned to use as ought-

to-do style deontic logic. It is based on the idea of Anderson’s reduction of ought-to-be style

deontic logic to alethic modal logic, but instead it reduces ought-to-do deontic logic to dynamic

logic ([Har79]). The basic idea is very simple: some action is forbidden if doing the action leads

to a state of violation. In a formula: Fα ↔def [α]V, where the dynamic logic formula [α]ϕ
denotes that execution / performance of the action α leads (necessarily) to a state (or states)

where ϕ holds, and V is a special atomic formula denoting violation. Formally, we say that the

meaning of action α is captured by an accessibility relation Rα ⊆ S × S associated with α,

where S is the set of possible worlds. This relation Rα describes exactly what possible moves

(state transitions) are induced by performance of the action α: Rα(s, t) says that from s one can

get into state t by performing α. (In concurrency semantics and process algebra this is often

specified by a so-called transition system which enables one to derive (all) transitions of the

kind s Ô α t, which in fact defines the relation Rα for all possible actions α.) Now the formal

meaning of the formula [α]ϕ is given by: [α]ϕ is true in a state (possible world) s iff all states t

with Rα(s, t) satisfy ϕ. This then provides the formal definition of the F-operator, as given

above.

The other deontic modalities are derivatives of F: permission is not-forbidden (Pα ↔ ¬Fα), and

obligation is forbidden-not-to (Oα ↔ Fα– ), where α–  has the meaning of “not-α”. The formal

semantics of this negated action is non-trivial, especially in case one considers composite

actions, cf. [Mey88], [WMW89], [DM90], [MW91], [WM93a]. In these papers we considered

connectives for composing non-atomic actions, such as ‘ ∪ ’ (choice, the dynamic analogue of

disjunction in a static setting), ‘&’ (parallel, the analogue of conjunction), ‘ –’ (non-

performance, the analogue of negation), and ‘;’ (sequential composition, which has no analogue

in a static setting). Without giving a formal semantics here (see the papers mentioned above for

that), the meaning of these are as follows: α1 ∪ α2 expresses a choice between α1 and α2

(this—roughly—corresponds to taking Rα1∪α2 as the set-theoretic union of Rα1 and Rα2),  α1

&  α2 a parallel performance of α1 and α2 (this amounts to more or less taking Rα1& α2 to be
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the intersection of Rα1 and Rα2), α
– (we will also often write −α)  the non-performance of α, as

stated above (it more or less amounts to taking R 
α to be some complement of Rα, but see also

the discussion below), and α1 ; α2 the performance of α1 followed by that of α2. For a full

account of the semantics of particularly negated actions we refer to [Mey88, DM90, DMW94a,

DMW96].

The logic PDeL now consists of the following axioms and rules:

(K[α])[α](ϕ → ψ) → ([α]ϕ → [α]ψ)

(;) [α ; β]ϕ ↔ [α][β]ϕ
(∪) [α ∪ β]ϕ ↔ ([α]ϕ ∧ [β]ϕ)
(&) [α]ϕ → [α & β]ϕ
(−;) [−(α ; β)]ϕ ↔ ([−α]ϕ ∧ [α][−β]ϕ)
(−∪) [−α]ϕ → [−(α ∪ β)]ϕ
(−& ) [−(α &  β)]ϕ ↔ ([−α]ϕ ∧ [−β]ϕ)
(F) Fα ↔ [α]V     

(P) Pα ↔ ¬Fα (↔ <α>¬V) 

(O) Oα ↔ F(−α) (↔ [−α]V)

This results in the following theorems concerning the deontic operators:

(O;) O(α ; β) ↔ (Oα ∧ [α]Oβ)
(P;) P(α ; β) ↔ <α>Pβ
(F;) F(α ; β) ↔ [α]Fβ
(O&) O(α & β) ↔ (Oα ∧ Oβ)
(P&) P(α & β) → (Pα ∧ Pβ)
(F&) (Fα ∨ Fβ) → F(α & β)

(O∪) (Oα ∨ Oβ) → O(α ∪ β) 
(P∪) P(α ∪ β) ↔ (Pα ∨ Pβ)
(F∪) F(α ∪ β) ↔ (Fα ∧ Fβ)

6.2 The Paradoxes in PDeL

A nice feature of PDeL is that most of the paradoxes appearing in SDL are either not

expressible or, if they are, not valid (cf. [Mey88], [MW93a]). To be more specific, if we

consider (dynamic variants of) the paradoxes 1 − 10 of section 2, we get:

1'. O(α ∪ α– ) not valid in PDeL

2'. Oα → O(α ∪ β) valid in PDeL



17

3'. (Pα ∨ Pβ) ↔ P(α ∨ β) valid in PDeL

4'. Fα → F(α &  β) valid in PDeL

5'. not expressible in PDeL

6'. Chisholm’s paradox: see the discussion in the next section.

7'. Forrester’s paradox of gentle murder: see the discussion in the next section.

8'. ¬(Oα ∧ Oα– ) not valid in PDeL

Oα → Pα not valid in PDeL

9'. the first two not expressible in PDeL
¬ϕ → (ϕ → Oα) valid in PDeL

10'. not expressible in PDeL

Thus we see that 1' and 8' are not valid in PDeL; we still are left with Ross’ paradox and the

related ones of free choice permission and the penitent 2' - 4') (However, many authors do not

really see them as paradoxes once one realizes the mismatch between the natural language

reading and the formal semantics of these expression, cf. section 6. Nevertheless, for readers

interested in attempts how to overcome even these paradoxes formally we refer to [Mey92],

[WM93a], [DMW94a], [DWW96].) We can say something sensible about contrary-to-duty

imperatives involved in the paradoxes of Chisholm’s and Forrester’s (see next subsection). The

third expression of 9' is valid as it is just an instance of propositional logic (and particularly the

paradox of the material implication) again. Finally, some words about the paradoxes of SDL

that not even have direct counterparts in PDeL (5', 9' (first two), 10'). It is perhaps slightly too

easy to just say these are not expressible, so there is no paradox any more. One might, for

instance, introduce a dynamic counterpart of the logical implication, as follows:

α » β

with as reading “action α involves action β”, and as formal semantics: Rα ⊆ Rβ: all states

reachable by doing action α are also reachable by doing action β. This means, of course, that all

results of action β are also results of action α, so that we have the following proposition:

PROPOSITION. α » β implies the validity of [β]ϕ → [α]ϕ for all assertions ϕ.

To give an informal example, “murdering someone gently” involves ”murdering someone”.

(Cf. the discussion of Forrester’s paradox in the next subsection.) We refer to PDeL extended

with the operator » as PDeL(»).

Now we can express dynamic counterparts of 5':
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5'. α » β ƒ Οα → Οβ. Whether this is a validity in PDeL(») depends on the

interpretation of the negated action α– . As we have discussed in e.g. [WM93] there is not an

obvious unique choice for this. A possible choice—which, by the way, we purposely did not

follow in our original paper [Mey88]—would be that the accessibility relation R 
α associated

with α–  is the set-theoretical complement of that (Rα) associated with α, i.e., R 
α =  (S × S) \ Rα,

where S is the set of all possible worlds. In this case we have that α » β implies β–  »

α– (since now α » β ⇔ Rα ⊆ Rβ ⇔ R ⊆ R ⇔ β– » α–) . In its turn this implies that under this

interpretation of negated action we have that 5' is a validity (since α » β ⇒ β–  » α–  ⇒ ¥ [α–

]V  → [β– ]V  ⇒ ¥ Οα→Οβ). Note, however, that this is only true in this particular interpretation

of –.

However, we have that the first two cases of 9' and that of 10' are still not expressible. Note that

the obvious attempts, viz. Oα → O(β » α), Fβ → O(β » α), and (Oα ∧ O(α » β)) → Oβ are

not well-formed in PDeL(»), since O(α1 » α2) is not (O should have an action as an argument).

So to deal with this we should really construct a hybrid logic of both ought-to-do and ought-to-

be operators. In Section 7 we shall discuss a proposal into this direction, which nevertheless will

not have the above formulas  as validities.

6.3 A Solution to the ‘Ought-to-Do’ Version of the Chisholm Paradox in PDeL

Here we like to show how the dynamic perspective and particularly PDeL can help us solve the

problems with the Chisholm set. To analyse the problem in PDeL we need to be a little more

specific about the order in which the actions take place. (This distinction does not really occur in

the SDL representation since here everything is formalized in a static way.) We can in fact

distinguish three versions of the Chisholm set. We here use rather abstract versions. See the

thesis of Tina Smith ([Smi94]) for some very nice daily-life instances.

1. The “forward”  version of the Chisholm set.

(1i) it is obligatory to do α
(1ii) if you do α, you have to do β afterwards (i.e., after α)

(1iii) if you don’t do α, you have to do non-β
(1iv) you don’t do α

This version is the easiest one to formalize in PDeL. We immediately can represent it as

follows:

(1i') Oα
(1ii') [α]Oβ
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(1iii') [α– ]Oβ– 

(Remark: the fourth premise of the set, which expresses that some action is actually performed,

cannot be represented in PDeL. In some sense, statements of actions in PDeL and the

underlying dynamic logic is of a hypothetical nature: “if one (would) perform the action, the

following holds”. The implication implicit in an formula [α]ϕ is therefore more like a

conditional in conditional logic. As such, it is not really important what actually happens. Here

and in the sequel we shall just ignore the fourth assertion in the formal representation.)

In PDeL one may derive from this representation that it holds that O(α ; β) ∧ [α– ](V∧Fβ), in

other words: it obligatory to perform the sequence α followed by β, and moreover, if α has not

been done, one is in a state of violation but nevertheless also forbidden to do β (see [Mey88]).

This is exactly as one would expect.

2. The “parallel”  version of the Chisholm set

(2i) it is obligatory to do α
(2ii) you have to do β while α is being done

(2iii) if you don’t do α, you have to do non-β
(2iv) you don’t do α

In fact, this version is very much related to another infamous paradox involving contrary-to-

duties, viz. Forrester’s. This is also known as the paradox of the gentle murderer:

(F1) One is forbidden to commit murder

(F2) Still, if one murders someone, one should do so gently

(F3) Jones murders someone.

In SDL this is a big problem again. There one would use a formalization like (using m for

committing murder and g for committing a murder gently):

(F1') Fm

(F2') m → Og

(F3') m

together with the implicit necessary truth

(F4') g → m
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Now we can derive: (F4':) g → m  ƒSDL  O(g → m)  ƒSDL  Og → Om, so that by (F3') and

(F2') we arrive at Om, which, apart from being quite absurd, is inconsistent (in SDL) with (F1')!

Castañeda dubbed Forrester’s paradox as the “deepest” in deontic logic ([Cas84]): the main

reason being that distinguishing between assertions and actions (“practitions”) did not help in

his approach to deal with it. He placed emphasis on the fact that there is an adverb (“aspect”),

viz. gently, involved. However, we believe that the problem is the simultaneity of actions: one

should be gentle (or rather act gently) while murdering (see also [Mey87]). if we would

consider a “forward” variant of Forrester’s set, we get something which is very easy to

formulate in PDeL:

e.g.

(a) You are forbidden to go

(b) Yet, if you go, you have to close the door afterwards

In PDeL, using obvious abbreviations:

(a') Fg

(b') [g]Oc

In fact, this is “one half” of the forward Chisholm set (viz. isomorphic to the set {(1i'), (1iii')},

since Fg is equivalent with Og– , so that taking α = g–  results in the aforementioned set). Now,

however, we have a parallel version, for which the above representation is erroneous. As we

stated in [Mey87], in some sense the Forrester paradox (but also the parallel version of the

Chisholm paradox) is the hardest to represent in PDeL. As was shown there the intuitive

representation

(F1") Fm it is forbidden to murder

(F2") O(m–   ∪ g) one ought to not-murder or murder gently

is not adequate either, since in PDeL the latter (which is equivalent with F(m & g– )) is derivable

from the first, which contradicts the intuition. But, as we indicated in [Mey87] too, there is an

easy way out by using multiple violation atoms (as we have also been using frequently in
subsequent papers). In short, assuming that we have a set {V i} i of distinct violation atoms and

using the abbreviations Fkα ↔def [α]Vk and Okα ↔def ¬Fkα we can now adequately represent

Forrester’s set as

(F1"') F1m

(F2"') F2(m & g– )
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which has as a desirable consequence [m & g– ](V1 ∧ V2), i.e., after murdering someone non-

gently one is guilty of two offences: having murdered someone and having been not gentle while
murdering. Note that ‘just’ murdering someone gets one into a state where V1 holds, while

murdering someone in a non-gentle way yields a state where V1 ∧ V2. One might thus view the

latter state as even less ideal than the former. In [DMW94b] we have elaborated on the notion of

(sub-)ideality. In that paper we went even a step further in analyzing the effect of actions on

violations by not only considering whether by performing an action a state results in a violation

state, but also whether the transition brought about by the action changes the state of violation.

We will not pursue this here.

Finally, in PDeL with multiple violations the parallel version of the Chisholm set can be

represented in a similar way as the Forrester one:
(2i') O1α one ought to do α

(2ii') F2(β–  & α) it is forbidden to do both α and non-β at the same time

(2iii') F3(β & α– ) it is forbidden to do both β and non-α at the same time

3. The “backward”  version of the Chisholm set. This is the original one, as formulated by

Chisholm:

(3i) it is obligatory to do α
(3ii) if you do α, you have to do β first (i.e., before α)

(3iii) if you don’t do α, you have to do non-β (first)

(3iv) you don’t do α

This is perhaps the more difficult one to express in PDeL, since PDeL does not contain an

operator of the kind “if you do α, you have to do β first ”. Surely again, if one would use the

same representation as for the forward version, one does not get the intended result, e.g. (2ii)

would be misrepresented. In [Mey87] it is argued that the best representation in PDeL is:

(3i') O1α one ought to do α

(3ii') F2(β–  ; α) it is forbidden to do non-β followed by α

(3iii') F3(β ; α– ) it is forbidden to do β followed by non-α

See [Mey87] for a more elaborate discussion on this representation. We admit that it would be

far nicer to have a representation closer to the natural language representation, but this would call

for a non-trivial extension of PDeL, in which one also can reason “backward” directly.
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We have seen how we can reason about ought-to-be and ought-to-do constraints in separate

logics. However, in the practice of system specification one naturally needs both notions

intermingled, so that an integrated logic for both these notions is called for.

7. An Integrated Logic of Ought-to-Be and Ought-to-Do Constraints

In [AMW93] we have proposed a unifying framework for reasoning about ought-to-be and

ought-to-do constraints. There we employed PDeL as in Section 6 for ought-to-do constraints

and Anderson’s reduction ([And58]) for ought-to-be constraints. Since in this paper we started

out from SDL with normal deontic modalities (which are not defined by a reduction to alethic

modal logic as in Anderson’s reduction) we have to do a little more work to integrate our logics

for ought-to-do and ought-to-be.

7.1 Anderson’s Reduction to Modal Alethic Logic Related to SDL

As mentioned before, Anderson [And58] reduced deontic modalities to alethic ones by

employing the special propositional atom V denoting ‘something bad’ or undesirable, which we
refer to as ‘violation’. In a logic with an S5-type (alethic) necessity operator ¿ we can define the

obligation operator O' by O' ϕ = ¿(¬ϕ → V), expressing that something is obligated iff it is

necessarily the case that the falsity of ϕ implies being in a state of violation. (Actually, Anderson

used the modal system KT as a basis, but we will use S5 instead.) Semantically, we employ
(simple) S5-models for the modality ¿: such a model consists of a non-empty set S of worlds

and a universal accessibility relation on S; in a world the formula ¿ϕ holds iff ϕ holds in all

worlds of S.

We now show that this idea is related to the standard definition of obligation in SDL (cf. also

Part IV of [Åqv84]). Recall that SDL-models are Kripke models M = (S, π, R), where S is a

non-empty set of possible worlds, π is a truth assignment function of the propositional atoms

per world, and R is an accessibility relation pointing at deontically ideal alternatives: R(s, t)

represents that the world t is a deontically ideal  alternative for s. In a world s ∈ S, the formula
Oϕ is said to hold iff ϕ holds in all deontically ideal alternatives of s: (M, s) ¥ Oϕ iff (M, t) ¥ ϕ

for all t with R(s, t).

We can reconcile Anderson’s approach with SDL if we consider the worlds where V does not

hold as ideal worlds, independent of the world where we are viewing from.

Define R(s, t) ⇔  (M, t) ¡ V.

Now we see: (M, s) ¥ Oϕ  ⇔
for all t : [R(s, t) ⇒ (M, t) ¥ ϕ]  ⇔
for all t : [(M, t) ¡ V ⇒ (M, t) ¥ ϕ]  ⇔
for all t : [(M, t) ¥ ¬V ⇒ (M, t) ¥ ϕ]  ⇔
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for all t : [(M, t) ¥ ¬V → ϕ]  ⇔
for all t : [(M, t) ¥ ¬ϕ → V]  ⇔
(M, s) ¥ ¿(¬ϕ → V)  ⇔
(M, s) ¥ O' ϕ

That is to say, if we take this definition of the relation R, the SDL-based obligation operator

coincides with Anderson’s operator.

Note that form this definition of R it follows immediately that the relation R is an equivalence

relation, so that the operator O (= O') satisfies the well-known S5-axioms as well:

¥ Oϕ → OOϕ and

¥ ¬Oϕ → O¬Oϕ

and in fact the stronger formulas ¥  Oϕ ↔ OOϕ and ¥ ¬Oϕ ↔ O¬Oϕ

So, actually what we get is what is called the system Deontic S5 by Chellas ([Che80]). As we

see from the validities above, nestings are trivial in Deontic S5. One way to look at this, is that if

one uses a system as Deontic S5 for obligations, one is not really interested in nested

obligations (since the commonsense idea of such nested obligations are unlikely to satisfy

properties like the above).

Furthermore, it also immediately apparent form the definition of R that R(s, t) does not depend
on the world s. In fact the set {t | R(s, t)} = {t | (M, t ) ¡ V}is a fixed set, the set of ideal worlds

(the set opt of optimal worlds in terms of Åqvist ([Åqv84])). This also has some further
consequences of nestings between the modal operators O and ¿: we have as validities:

¥  Oϕ ↔ ¿Oϕ and ¥ ¬Oϕ ↔ ¿¬Oϕ
¥  ¿ϕ ↔ O¿ϕ and ¥ ¬¿ϕ ↔ O¬¿ϕ

and, of course, we have that

¥  ¿ϕ → Oϕ

since the set of ideal worlds are a subset of the set of all possible worlds.

In fact, when we add (P) and (F) to express permission and prohibition in terms of obligation
again, we obtain an extension of S5O(1) from Section 5 (where we drop the subscript 1 from

the operators): besides the axioms and rules of that system
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(K¿) ¿(ϕ → ψ) → (¿ϕ → ¿ψ)
(T¿) ¿ϕ → ϕ
(5¿) � ϕ → ¿� ϕ

(KO) O(ϕ → ψ) → (Oϕ → Oψ)
(DO) ¬O⊥
(P) Pϕ ↔ ¬O¬ϕ
(F) Fϕ ↔ O¬ϕ

(⊇) ¿ϕ → Oϕ

and the rules (Taut), (MP) and

(N¿) ϕ / ¿ϕ

we have additionally:

(4O) Oϕ → OOϕ
(5O) ¬Oϕ → O¬Oϕ
(opt!) Oϕ →  ¿Oϕ

The axiom (opt!) expresses that there is actually only one (a unique) set of ideal or optimal

states, independent from the world one is looking from.

This system can be shown sound and complete with respect to the class of Kripke models we

have defined above. (It is in fact a special case of the system S5P in [MH95] and can also be

viewed as a subsystem of the system of Kraus & Lehmann for knowledge and belief for one

agent [KL86].) It can be shown that all the other validities we have listed above are derivable in
the system. (The system, however, still contains some redundancy: one can omit (4O) and (5O)

from the system without loss of inferential power. E.g. (4O) is derivable from (opt!) and (⊇).

We have nevertheless included (4O) and (5O) to expose the link with Deontic S5 explicitly.)

Whether the system S5O(1) is suitable for normative reasoning is again a matter of pragmatics.

Of course, (4O) and (5O) are highly implausible if one wants to interpret nested obligation in a

meaningful way. (This has been the traditional objection against Deontic S5, cf. [Che80].) On

the otehr hand, if one is simply not interested in these nested obligations this logic provides a

way of eliminating them in any expression, and the system becomes very useful indeed.
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7.2 Integrating S5O(n) with PDeL

The view unifying Anderson’s reduction with SDL as expounded above provides us with the

opportunity to give a natural integration of our ought-to-be and ought-to-do frameworks. For
the ought-to-do approach we employ multiple violation atoms Vi (in order to represent contrary-

to-duty constraints adequately). We now simply employ a multiple Vi-version of the logic above

for the ought-to-be part, which then amounts to using the system S5O(n) together with the

axioms:

(4i) Oiϕ → OiOiϕ
(5i) ¬Oiϕ → Oi¬Oiϕ
(opti!) Oiϕ →  ¿iOiϕ

The discussion of relating Anderson’s reduction to SDL generalizes easily to the case of
S5O(n) where multiple violation atoms and modalities are employed by defining Ri(s, t) ⇔  (M,

t) ¡ Vi. Now we can add the ought-to-do part of Section 6 without any difficulty:

(K[α])[α](ϕ → ψ) → ([α]ϕ → [α]ψ)

(;) [α ; β]ϕ ↔ [α][β]ϕ
(∪) [α ∪ β]ϕ ↔ ([α]ϕ ∧ [β]ϕ)
(&) [α]ϕ → [α & β]ϕ
(−;) [−(α ; β)]ϕ ↔ ([−α]ϕ ∧ [α][−β]ϕ)
(−∪) [−α]ϕ → [−(α ∪ β)]ϕ
(−& ) [−(α &  β)]ϕ ↔ ([−α]ϕ ∧ [−β]ϕ)
(Fi) Fiα ↔ [α]V i     

(Pi) Piα ↔ ¬Fiα (↔ <α>¬Vi) 

(Oi) Oiα ↔ Fi(−α) (↔ [−α]V i)

We finally mention that in this integrated logic the formulas as mentioned at the end of Section
6.2, i.e.  Oiα → Oi(β » α), Fiβ → Oi(β » α), and (Oiα ∧ Oi(α » β)) → Oiβ, are not valid,

which may be viewed as a desirable feature of this approach.

8. Applications

Library regulations are a popular source of examples for deontic logicians. We have specified

the rules for borrowing and returning documents from a library in an earlier paper [WMW89].

Jones [Jon90] points out that the Chisholm set appears in library regulations as follows. If p

identifies a person and d a document, then the following rules are quite common:

• p shall return d by date due.

• If p does not return d by data due, then disciplinary action shall be taken against p.
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• If p returns d by date due, then disciplinary action is not taken against p.

Other applications of deontic logic involve bank accounts. For example, we have shown that in a

combined logic of ought-to-be and ought-to-do such as the one in the previous section, it can be

proven that having a negative balance of a bank account (a forbidden state) implies the obligation

to deposit money (an obligated action) [AMW93, AMW96]. The popularity of examples like

these may be taken as evidence of the fact that deontic logicians have ample experience with

libraries and negative bank accounts. Although the examples are quite realistic (especially the

negative bank account), we here take another interesting case study, the specification of

procedures for overseas trade. We use an analysis of this case by Bons, Lee and Wagenaar

[BLW94] as point of departure. It turns out that the overseas trade procedures illustrate all three

variants of the Chisholm set that we identified above. In order to understand the example, we

must digress a little in overseas trade procedures. During this explanation, it will become clear

that deontics play an essential role in the specification of this procedure.

The problem with overseas trade is that the seller does not want to ship his goods before he is

paid but the buyer does not want to pay before he receives the goods. To get out of this

deadlock, buyer and seller each contact a bank in their own country, called the issuing bank and

corresponding bank, respectively.
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The buyer and seller negotiate a contract in which the buyer promises to buy goods from the

seller at a certain price and the seller promises to sell these goods at this price to the buyer. The

buyer then enters a contract with the issuing bank, which results in a letter of credit (LoC) in

which the buyer specifies which documents the seller must produce in evidence of his

performance according to contract. The LoC may be subject to further negotiations between the

buyer and seller. Once the LoC is produced, the seller is obliged to produce the documents

specified in the LoC, evidencing his performance according to the sales contract.

For the purpose of this example we consider a simplified trade procedure in which the LoC

determines that the seller must produce a bill of lading (BoL) as evidence of performance

according to contract. The seller receives the BoL from the carrier when he transfers the goods

to the carrier. There is only one copy of the BoL that is authentic; this copy is evidence of

ownership of the goods. The seller transfers the BoL to the corresponding bank, who pays the

seller for the goods. The corresponding bank sells the BoL to the issuing bank, who sells it to

the buyer. The buyer now uses the Bol as evidence of ownership in order to receive the goods

from the carrier.

In this situation we have a number of (ought-to-be) constraints that must be satisfied in order for

the procedure to work. We will show that these constraints entail ought-to-do constraints

specifying constraints on the actions executed in the procedure. For example, there is an (ought-

to-be) constraint which asserts that it ought to be the case that if the carrier C has the goods then

the seller S has the BoL:

O1(Has_Goods(C) → Has_BoL(S))

Here and in the sequel the letters C and S are used as identifiers of the carrier and seller,

respectively. A transfer from C to S will be denoted C2S and the reverse transfer is denoted

S2C, with the transferred item as parameter. Similar notations will also be used involving the

corresponding bank CB.

From the above ought-to-be constraint we can derive a related ought-to-do constraint, if we

assume some further obvious things like the fact that the seller's transferring the goods to the

carrier results in the carrier having the goods, i.e.,

[S2C(Goods)]Has_Goods(C)
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and the fact that if the carrier has no goods then after not transferring the goods by the seller to

the carrier the carrier still has no goods, viz.

¬Has_BoL(S) → [−C2S(BoL)]¬Has_BoL(S).

For we can now derive an ought-to-do constraint in our logic expressing that in a state where the

seller has no BoL it is forbidden that the seller transfers the goods to the carrier while the carrier
does not send the BoL to the seller: ¬Has_BoL(S) → F1(S2C(Goods) & −C2S(BoL)), as

follows:

O1(Has_Goods(C) → Has_BoL(S)) ƒ

¿(¬(Has_Goods(C) → Has_BoL(S)) → V1) ƒ

¿((Has_Goods(C) ∧ ¬Has_BoL(S)) → V1).

Thus, using this together with the above assumptions and axiom (&), we have that:

¬Has_BoL(S) → [S2C(Goods) & −C2S(BoL)] (Has_Goods(C) ∧ ¬Has_BoL(S)) ƒ

¬Has_BoL(S) → [S2C(Goods) & −C2S(BoL)] V1  ƒ

¬Has_BoL(S) → F1(S2C(Goods) & −C2S(BoL)) (1)

Likewise, from the assumptions

[C2S(BoL)]Has_BoL(S)

and

¬Has_Goods(C) → [−S2C(Goods)]¬Has_Goods(C))

one can show from the ought-to-be constraint O2(Has_BoL(S) → Has_Goods(C)) that

¬Has_Goods(C) → F2(C2S(BoL) & −S2C(Goods)) (2)

Together with an obligation that in some situation the seller should supply the goods to the
carrier O3(S2C(Goods)) (3)—as required in a contract, the constraints (1), (2) and (3) constitute

an instantiation of the parallel version of the Chisholm set, which proves again the importance of

this set in practice.

In fact, we can also easily derive instantiations of the other versions. For instance, from the

ought-to-be constraint that it should be so that if the seller S has got the money then the

corresponding bank CB has the BoL:
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O4(Has_Money(S) → Has_BoL(CB))

it follows—using similar assumptions as before such as

¬Has_BoL(CB) → [−S2CB(BoL)] ¬Has_BoL(CB))

and its consequence

¬Has_BoL(CB) → [CB2B(Money) & −S2CB(BoL)] ¬Has_BoL(CB))

—that it is forbidden that the seller gets the money from the corresponding bank without the

seller having sent the corresponding bank the BoL first: ¬Has_BoL(CB) →
F4(−S2CB(BoL);CB2S(Money)):

¬Has_BoL(CB) ⇒
[−S2CB(BoL)]¬Has_BoL(CB) ⇒ 
[−S2CB(BoL)][CB2S(Money) & −S2CB(BoL)](¬Has_BoL(CB) ∧ Has_Money(S)) ⇒
[−S2CB(BoL)][CB2S(Money) & −S2CB(BoL)]V4 ⇒
F4(−S2CB(BoL); (CB2S(Money) & −S2CB(BoL)))

Together with the ought-to-do constraint that can be derived in an analogous manner from the

ought-to-be constraint O5(Has_BoL(CB) → Has_Money(S)) (using similar additional

assumptions), viz ¬Has_Money(S) → F5((S2CB(BoL) & −CB2S(Money)); −CB2S(Money)),

and a constraint stating that there should be a transfer of money from the corresponding bank to

the seller, viz. O6(CB2S(Money)), we obtain a hybrid instantiation in between the parallel and

the backward Chisholm set. Moreover, if we assume additionally:

1. that in the action CB2S(Money) the non-performance of S2CB(BoL) is included, i.e. it holds

that CB2S(Money) » −S2CB(BoL) (we would have this if we would consider the action

only(CB2S(Money)) from [DMW94a, DMW96] rather than CB2S(Money) which we

normally endow with an open interpretation leaving open what happens concurrently with it),

and

2. likewise, S2CB(BoL) involves the non-performance of CB2S(Money), i.e.,

S2CB(BoL) » −CB2S(Money),
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we end up with the plain version of the backward Chisholm set, since in this case CB2S(Money)

& −S2CB(BoL) comes down to a mere CB2S(Money), and S2CB(BoL) & −CB2S(Money) to

just S2CB(BoL):

¬Has_BoL(CB) → F4(−S2CB(BoL); CB2S(Money))

¬Has_Money(S) → F5(S2CB(BoL); −CB2S(Money))

O6(CB2S(Money))

Furthermore, we can derive, assuming for simplicity that S2CB(BoL) » −CB2S(Money):

¬Has_Money(S) ∧ ¬Has_BoL(CB) ⇒
[S2CB(BoL)](Has_BoL(CB) ∧ ¬Has_Money(S))  ⇒
[S2CB(BoL)][−CB2S(Money)](Has_BoL(CB) ∧ ¬Has_Money(S)) ⇒
[S2CB(BoL)][−CB2S(Money)]V5 ⇒
[S2CB(BoL)]O5CB2S(Money)

Analogously, we can derive ¬Has_Money(S) ∧ ¬Has_BoL(CB) → [−S2CB(BoL)]        

O4(−CB2S(Money)), so that with a ought-to-be constraint O7(S2CB(BoL)) (effective after S’s

transferring goods to C, for example) we obtain an instance of the forward Chisholm set.

In passing we observe that it holds that from [S2CB(BoL)](Has_BoL(CB) ∧ ¬Has_Money(S)),

we obtain [S2CB(BoL)]V5 and thus F5S2CB(BoL), which means that even if it is obliged for

the seller to send the BoL to the corresponding bank on the grounds of the obligation

O7(S2CB(BoL)), it is nevertheless forbidden to stop just here without completing the

transaction (and do CB2S(Money))! Thus this provides an interesting example where we have

on the one hand an obligation to do an action α in order to execute a transaction α ; β, while on

the other hand doing (just) α is forbidden. In our framework we can express this consistently

by means of our multiple violation atoms without any difficulty. Note, by the way, that in this

example the assumption that S2CB(BoL) » −CB2S(Money) is crucial! If it is allowed that

S2CB(BoL) may also involve a concurrent transfer of money from CB to S doing just is (and

should) not be forbidden, of course.

9. Discussion and Conclusion

In this paper we have seen how deontic logic may be employed for specifying normative

integrity constraints for information systems. A key claim of our paper is that ought-to-be and

ought-to-do constraints follow different logics, but also that these logics can be integrated

enabling representing and reasoning about both types of constraints in one single framework. A

side issue, but nevertheless an important one as to the topic of this paper, is that in order to deal
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with problematic cases of representation, known from the philosophical literature, one may

adhere to a pragmatic view and use logics that are adequate for concrete situations though not

necessarily so in general: to specify concrete constraints for practical systems one need not

solve all profound problems that philosophy poses for the general abstract case!
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