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Chapter

Introduction

1.1 Preliminaries

1.1.1 Biometric verification

In biometric recognition systems, biometric samples (images of faces, finger-
prints, voices, gaits, etc.) of people are compared and classifiers (matchers)
indicate the level of similarity between any pair of samples by a score. If two
samples of the same person are compared, a genuine score is obtained. If a
comparison concerns samples of different people, the resulting score is called
an impostor score. The scope of this thesis is about biometric verification (also
known as authentication) in the sense that two biometric samples are com-
pared to find out if they originate from the same person or stem from different
people, without making any identity claim. Except when stated specifically,
the random variables genuine score Sgen and impostor score Siyp are assumed
to be continuous, taking values in the real line R = (—o00, 0o) with distribution
functions Fgen and Fiyp and density functions fgen and fimp, respectively.

1.1.1.1 Standard biometric verification

A standard biometric verification system that takes hard decisions, will decide
whether a matching score between two biometric samples is a genuine or an
impostor score via a threshold A chosen in advance. A score greater than or
equal to this threshold is classified as genuine score, while a score less than
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this threshold is classified as impostor score. Once this threshold has been
chosen, the system can make two different errors: accept an impostor score
as genuine score and reject a genuine score. The probability of accepting an
impostor score is called the False Acceptance Rate (FAR(A)) or False Match
Rate (FMR(A)) with threshold A, while the probability of rejecting a genuine
score is called the False Rejection Rate (FRR(A)) or False Non-Match Rate
(FNMR(A)). The complement of the FRR(A) is called the True Positive Rate
(TPR(A)) or True Match Rate (TMR(A)), which is defined as the probability
of accepting a genuine score as genuine score. Since every genuine score will
be either accepted or rejected by the system, we have TPR(A) = 1 —-FRR(A).
Theoretically, the FAR and the TPR can be computed as

FAR(A) =1 — Fimp(A) (1.1.1)
and
TPR(A) =1 — Fyen(A) (1.1.2)

for every threshold A. By varying A from —oo to 0o, we can plot the relation
between FAR and TPR as a curve known as the Receiver Operating Charac-
teristic (ROC) [1]. Mathematically, the function ROC : [0,1] — [0, 1] maps
FAR wvalues to the corresponding TPR values via relation

TPR, = ROC(a) = 1 — Fyen(Fy, 1 (1 — @) (1.1.3)

imp
for every FAR = « € [0, 1] where FI;; is the quantile function defined by
Fib(p) = supfe €R : Finp(a) <p}, Vpe[0,1]

imp

The following performance measures are often used in biometric verification
and will be used in Chapter 3.

e Area under ROC curve (AUC), i.e.,
1
AUC = / ROC(a)do. (1.1.4)
0

e Equal error rate EER: Let A* be the threshold value at which FAR(A*)
and FRR(A*) are equal. Then EER is defined as the common value

EER = FAR(A*) = FRR(A*). (1.1.5)

e Total error rate TER(A): The sum of the FAR(A) and the FRR(A). One
may also consider the half total error rate (HTER), which is one half of the
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TER, to keep the error value between 0 and 1, i.e.,
TER(A) = FAR(A) + FRR(A) and HTER(A) = TER(A)/2. (1.1.6)

o Weighted error rate WER(A): A weighted sum of the FAR(A) and the
FRR(A), i.e.,

WER3(A) = BFAR(A) + (1 — B)FRR(A), 8 € [0,1]. (1.1.7)

the weights are usually called cost of false acceptance and cost of false
rejection.

Here, A is the threshold to compute the FAR and FRR.

In practice, Fyen and Finp are replaced by their empirical versions based on
data. Let

Wi, W (1.1.8)
Bla"' 7Bnimp (119)

be i.i.d copies of Sgen and Simp, respectively. Then, all quantities given by
(1.1.1) - (1.1.7) can be estimated by replacing Fyen and Finp with their left-
continuous empirical distribution functions Fg;n and Fi;lp based on (1.1.8) and
(1.1.9), respectively. The left-continuous empirical distribution function based

on a sample X1,..., X, is defined by

. 1 &
Fy(2) =~ Y Lixicsy, VT ER (1.1.10)
=1

In particular, the empirical version of the ROC function (1.1.3) is shown to
be almost surely convergent to the true ROC [2].

1.1.1.2 Forensic biometric verification

In forensic science it is gradually accepted that, instead of giving a hard de-
cision whether a matching score is a genuine or impostor score, a biometric
system should give a soft decision, namely an evidential value in terms of a
likelihood ratio (LR); see [3]. The LR of a matching score s is defined as the
ratio between the densities of the genuine scores fgen and the impostor scores
fimp7 i.e.,

. fgen(s)

LR(s) = Fo(s)”

(1.1.11)
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The hypothesis that the matching score s is a genuine score is called the
hypothesis of the prosecutor and it is denoted by Hj,. Similarly, Hy denotes
the hypothesis of the defendant that the score is an impostor score. In forensic
scenarios, the score s is usually known as evidence and the hypotheses H, and
Hg are defined as two mutually exclusive hypotheses supporting whether or not
the suspect is the donor of the biometric trace. The LR(s) may be interpreted
roughly as the probability that the evidence is s given the hypothesis Hp,
divided by this probability given Hq. It is computed by a forensic scientist
and can be used to support the fact finder (judge/jury) in court to make an
objective decision. The Bayesian framework explains elegantly how LR(s)
supports the decision via

i . (1.1.12)

This means that the LR can be interpreted as a multiplicative factor to update
the prior odds in favor of H,, versus Hy (before the evidence s has been taken
into account) to the posterior odds (after the evidence has been taken into
account).

Not all matchers in biometric recognition will give a LR value as matching
score. Therefore, we need to transform such a matching score to its cor-
responding LR value; a process known as calibration, which uses definition
(1.1.11). Several methods of computing the LR from a biometric comparison
score have been proposed and evaluated in forensic scenarios. Briefly, there are
four common calibration methods: Kernel Density Estimation (KDE), Logis-
tic Regression (Logit), Histogram Binning (HB), and Pool Adjacent Violators
(PAV) methods; see [4,5] for a survey of these methods.

There are two types of measures for the reliability of calibration methods:
application-dependent [6,7] and application-independent [8-11] measures. Since
forensic scientists do not have access to the prior odds, this thesis will use the
application-independent ones. The two following performance measures will
be used in Chapter 4.

Cost of log likelihood ratio The cost of log likelihood ratio (Cy) is in-
troduced by Briimmer and du Preez [8] in the field of speaker recognition, is
based on a generalization of cost evaluation metrics, and is used in forensic
face scenarios in [12]. This measure is an expected cost

C = CuFAR + CrFRR
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for any value of the cost of false acceptance Ct, and the cost of false rejection
Ch; see [8] for a detailed explanation. Given genuine scores (1.1.8), which
correspond to the hypothesis of the prosecution, and impostor scores (1.1.9),
which correspond to the hypothesis of the defense, the cost of log likelihood
ratio Cy, is defined by

1 & 1
Chr = > logy [1+ —

Qngen i—1 WZ'
.
1 imp
+ T Z logs (1+ B;). (1.1.13)

To explain the name of this measure we note that the scores are interpretable
as LR values, more precisely as estimates of the LR and its inverse, and that
they are rewritten in terms of the logarithm of 1+LR. Interestingly, this metric
can be decomposed into a discrimination and calibration form via relation

Cyy = O 1 o, (1.1.14)
Here, H”;in and C’ﬁfl denote the discrimination and calibration loss, respec-
tively. Discrimination loss is the opposite of discrimination power (the abil-
ity of the system to distinguish between genuine and impostor scores). The
smaller the value of this quantity, the higher the discrimination power. The
Hf“ is defined as the minimum Cp, value based on given scores (1.1.8) and
(1.1.9), by preserving the discrimination power which is attained by the Pool-
Adjacent-Violators (PAV) algorithm as proved in [8]. Therefore, we will have
0< C’H“;in < 1, where 0 represents the perfect system, i.e., it always gives oo
for every genuine score and 0 for every impostor score, whereas 1 represents
the neutral system, i.e., it always gives LR = 1 for every score. We also have
0< Cﬁ?l < oo where 0 is for well-calibrated scores and grows without bound
if the scores are miscalibrated.

ECE plot The Empirical Cross Entropy (ECE) plot is a generalization of the
Chr for measuring the reliability of calibration with an information theoretical
interpretation [10]. The ECE is defined as the estimated value of the cross
entropy for all possible values of the evidence E:

o0

Hop(HIE) =~ 37 QU [~ a(elH)log, P(Hile)de,  (1.L15)
i€{p,d} -
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where P denotes the posterior probability using a forensic system, @ is a
distribution such that

Q(Hp|E) =1, if Hy is true
Q(Hq|E) =1, if Hq is true,

called the oracle distribution with density function gq. Note that this oracle
distribution represents the posterior probability if the judge already knew the
true hypotheses H}, and Hy. Therefore, the cross entropy Hgp(H|E) can be
interpreted as an additional information loss because it was expected that the
system computed @, not P. So, the ECE at log prior odds Ip € (—o0,00)
based on (1.1.8) and (1.1.9) can be computed as follows:

log, (1 +B; x elp) . (1.1.16)

Clearly Cy, = ECE(0) holds, which shows that the ECE generalizes the cost
of log likelihood ratio. Figure 1.1 is an example of the ECE plot of the linear
logistic regression when modelling gaussian mixture scores. The solid red
curve represents the performance of the calibration, the dashed blue curve is
the minimum ECE value under evaluation by preserving the discrimination
power which is attained by PAV transformation, and the dashed black curve
is the entropy of the neutral system without considering the evidence, i.e., all
LR values equal to 1. The difference between the solid red and dashed blue
curves is the calibration loss. We can see that the scores are miscalibrated for
log prior odds greater than 2 under the linear logistic regression method.

1.1.2 Likelihood-ratio-based biometric fusion

Suppose we have d matchers, with d > 1. A fusion strategy is a function
¥ : R — R that transforms a concatenated vector of d scores, which will just
be called ”score” for simplicity, to a scalar named a fused score. This process
is called score level fusion. Let Sgen and Siy,p denote the genuine and impostor
scores with distribution functions Fge, and Fiy,, that correspond to density
functions fgen and finp, respectively. We use the same notation as in Section
1.1.1, but now in bold face in order to emphasize that we are working in the
multivariate case.
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Example

o
©
T

- | R values
3 = = = After PAV
SR SEREEEEL R PPPPIO LR=1 always

o
o)
T

° I o °
> o (=2} ~
T T T T

e
W
T

Empirical cross—entropy

) R UGS SN (PR QN

-3 -2 -1
Prior log ; 0(odds)

Figure 1.1: ECE plot of linear logistic regression

There are three categories in score level fusion: transformation-based [13],
classifier-based [14], and density-based (henceforth called likelihood-ratio-based).

1. Transformation-based: the fusion strategy ¢ maps all components of the
vector of matching scores to a comparable domain and applying some sim-
ple rules such as sum, mean, max, med, etc.

2. Classifier-based fusion: the fusion strategy 1 acts as a classifier of the
vector of the matching scores to distinguish between genuine and impostor
scores.

3. likelihood ratio (LR)-based: the fusion strategy i) computes the LR as
defined by (1.1.11) for the multivariate case, i.e.,

f n S
LR(s), - 5) = SrenlS1 05 50)

. 1.1.17
1mp(317"' 73(1) ( )

for every score (s1,- -, $q).

The LR-based fusion strategy is theoretically optimal according to the Neyman-
Pearson lemma [15] in the sense that it gives the highest TPR at every FAR. In-
deed, some experimental results [16,17] show that it consistently performs well
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compared to the transformation-based and classifier-based. Moreover, the use
of the fused score of the LR-based fusion in forensic science is straightforward.
In practice, the distributions fzen, and fiy,p, are unknown and have to estimated
from data. Therefore, the performance of the LR-based fusion depends on
the accuracy of the LR computation. This classical problem in statistics can
be solved by parametric (e.g., normal distribution, Weibull distribution) and
nonparametric (e.g., histogram, kernel density estimation) models. However,
the choice of an appropriate parametric model is sometimes difficult while non-
parametric estimators suffer from the difficulty that they are sensitive to the
choice of the bandwidth or of other smoothing parameters, especially for our
multivariate case. Therefore, it is natural to approach our estimation problem
semiparametrically. Note that there are two types of data that will be used: a
training set for estimating the underlying parameters of a fusion strategy and
a disjoint set, which is called the testing set, for evaluating performance.

Gaussian copula approach Note that the scores contain two types of de-
pendence. The basic dependence is between two comparisons that involve at
least one common person. Even if these comparisons would be independent
(e.g. because there are no comparisons that concern the same person), the
different classifiers that attach a score to each comparison, may be dependent.
If we model the joint distribution of all scores by a (semiparametric) Gaussian
copula model, the resulting correlation matrix will be structured. It has many
zeros and many correlations have a common value. Estimation of these pa-
rameters is a problem in constrained semiparametric estimation, a topic that
we study in quite some generality in the Statistical Theory part of this thesis.
The Biometric Application part of it focusses on score level fusion and models
the dependence between classifiers also by semiparametric copula models.

1.1.3 Semiparametric copula model

A copula is a distribution function on the unit cube [0, 1]™, m > 2, of which
the marginals are uniformly distributed. A classical result of Sklar [18] relates
any continuous multivariate distribution function to a copula.
Theorem 1.1.1 (Sklar (1959)). Let m > 2, and suppose H is a distribu-
tion function on R™ with one dimensional continuous marginal distribution
functions Fy,--- , Fy,. Then there is a unique copula C so that

H(zi,...,zm) = C(Fi(z1),..., Fn(zm)) (1.1.18)
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for every (x1,...,xy) € R™.

The joint density function can be computed by taking the m-th derivative of
(1.1.18):

x [ filz:) (1.1.19)

where c¢ is the copula density and f; is the i-th marginal density for every
i=1,---,d.

Let
Xl - (Xl,ly e 7X17m)Ta . '7XTL == (X’n,lu e an,m)T

be i.i.d. copies of X = (X1,...,X;,)" ~ H. The key concept of the semipara-
metric copula model is the existence a parametric copula Cy, with § € © C R¥,
© open and k > 1, such that

U= U....Un) = (Fi(X1), ..., Ep(Xm)T ~ Cy.

Here, 6 is called parameter of interest and G = (Fi(-),..., Fn(-) is called
nuisance parameter. Mathematically, the model is written as

P={Pg : 0cOCR" G=(F(),...,Fu(-)) €G}. (1.1.20)

In practice, the marginal distribution functions are estimated by modified em-
pirical distribution functions

~ 1

n
i=1

and the parameter of interest 6 is estimated by the maximum-likelihood esti-
mator when their marginal distribution functions are replaced by their empir-
ical versions. The resulting estimator is known as pseudo-maximum likelihood
estimator (PMLE)

. 1 <& . .
0, = arg min — g log co (Fl(XU), .. ,Fm(Xmi)> ) (1.1.21)
n
i=1
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Table 1.1: Distribution function of m-variate parametric copula. ParDim indicates
the dimension of the copula parameter

Copula ParDim Distribution function
ind 0 Co(ut, ..., um) =", u
GC m(m —1)/2 Cr(ui, ... um) = Pr(® H(ur),..., 2 (un))
t m(m—1)/2+1 Cor(ut, - um) =ty r(t, (u1), .. 8, " (um))
Fr 1 Ci(u ) = —1Llog (1 4 Mz o Coui—l)
6 17'--7um - ] Og exp—9—1
Cl 1 Co(ut, ..., um) = (Z?;lui_e—l)_g
T
fCl 1 Co(ut, ... ,upm) = (Zﬁl(l — ;)"0 — 1) 0
2 -
Gu 1 Colut, ..., um) =exp |— (30 (—logu;)?)?
A -
fGU 1 Co(ut, ..., um) =e€xp |— (Zfil(— log(1 — ui))a)g

This estimator has been shown to be asymptotically normal in [19], i.e.,

\/ﬁ(én—a) — N(0,3) (1.1.22)
for some positive definite covariance matrix .

In this thesis, we will use the following parametric copulas: Independent copula
(ind), Gaussian copula (GC), Student’s ¢ (t), Frank (Fr), Clayton (Cl), flipped
Clayton (fCl), Gumbel (Gu), and flipped Gumbel (fGu). The density functions
of these parametric copulas are given in Table 1.1.

1.2 Research Questions

1.2.1 Statistical Theory

Consider a quite arbitrary (semi)parametric model with a Euclidean parameter
of interest and assume that an asymptotically (semi)parametrically efficient
estimator of it is given. This thesis part aims at answering the following
specific research questions:

e If the parameter of interest is known to lie on a general surface (image of a
continuously differentiable vector valued function), what is the lower bound
on the performance of estimators under this restriction and how can an
efficient estimator be constructed?
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e If the parameter of interest belongs to the zero set of a continuously differ-
entiable function (for which it might be impossible to parametrize it as the
image of a continuously differentiable vector valued function), what is the
lower bound on the performance of estimators under this restriction and
how can an efficient estimator be constructed?

1.2.2 Biometric Application

Suppose we have score-based multibiometric matchers, in which two or more
different matchers compute a similarity score for any pair of two biometric
samples. This thesis part aims at answering the following specific research
questions:

e How can copula models handle dependence between matchers? How do
we estimate the dependence parameters from training data? What are the
performances of handling dependence compared to the simple independence
assumption between matchers in applications?

e How can copula models be used in standard biometric verification? How
can we compare copula-based biometric fusion to the simple independence
assumption between matchers?

e How can copula models be used in forensic applications for combining multi-
algorithm face recognition systems, which are usually dependent?

1.3 Contributions

1.3.1 Statistical Theory

The work carried out has several contributions to semiparametric estimation
subject to restrictions:

e If the parameter of interest is known to lie on a general surface (image of
a continuously differentiable vector valued function), we have a submodel
in which the Euclidean parameter may be rewritten in terms of a lower-
dimensional Euclidean parameter of interest. An estimator of this under-
lying parameter is constructed based on the original estimator, and it is
shown to be (semi)parametrically efficient. It is proved that the efficient
score function for the underlying parameter is determined by the efficient
score function for the original parameter and the Jacobian of the function
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defining the general surface, via a chain rule for score functions. This gen-
eral method is applied to linear regression and normal copula models, where
it leads to natural results.

e For a given semiparametric model, quite frequently the elements of the pa-
rameter of interest are not mathematically independent but vanish on a
vector-valued continuously differentiable function, thus resulting in a semi-
parametric model subject to equality constraints. We present an explicit
method to construct (semi)parametrically efficient estimators of the Eu-
clidean parameter in such equality constrained submodels and prove their
efficiency. Our construction is based solely on the original efficient estimator
and the constraining function.

1.3.2 Biometric Applications

Our work has the following contributions to the field of biometric fusion:

e We present a mathematical framework for modelling dependence between
matchers in likelihood-based fusion by copula models. The pseudo-maximum
likelihood estimator (PMLE) for the copula parameters and its asymp-
totic performance are studied. For a given objective performance measure
in a realistic scenario, a resampling method for choosing the best copula
pair is proposed. Finally, the proposed method is tested on some public
databases from fingerprint, face, speaker, and video-based gait recognitions
under some common objective performance measures: maximizing accep-
tance rate at fixed false acceptance rate, minimizing half total error rate,
and minimizing discrimination loss.

e In standard biometric verification, we present two main contributions in
score level fusion: (i) proposing a new method of measuring the perfor-
mance of a fusion strategy at fixed FAR via Jeffreys credible interval analy-
sis and (ii) subsequently providing a method to improve the fusion strategy
under the independence assumption by taking the dependence into account
via parametric families of copula models, which we call fixed FAR fusion.
We test our method on some public databases, compare it to a Gaussian
mixture model and linear logistic methods, which are also designed to han-
dle dependence, and notice its significant improvement with respect to our
evaluation method.

e We propose a new method for combining multi-algorithm score-based face
recognition systems, which we call the two-step calibration method. The
two-step method is based on parametric families of copula models to handle
the dependence. Its goal is to minimize discrimination loss. We show that
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our method is accurate and reliable on some real public databases using
the cost of log likelihood ratio and the information-theoretical empirical
cross-entropy (ECE).

1.4 Overview of the Thesis

The thesis contains, for the most part, published or submitted papers. Each
chapter is preceded by a chapter introduction and closed by a chapter conclu-
sion. The chapter introduction provides information where the repetitions (if
any) are and how the chapter can be understood while the chapter conclusion
summarizes the contents of the chapter. Each paper is inserted in a separate
section and there is no modification in the contents besides small corrections
such as typos.

Chapter 2 proposes a semiparametric estimation method for constrained
Euclidean parameters. Two kinds of restrictions are considered and an effi-
cient estimator for each case is provided in terms of the efficient estimator
for the original parameter and the function defining the restriction. The first
restriction, for which it is known that the parameter of interest lies on a gen-
eral surface (image of a continuously differentiable vector valued function), is
presented in Section 2.2. The second one is studied in Section 2.3, where the
parameter of interest satisfies a functional equality constraint.

Chapter 3 introduces a semiparametric LR-based score level fusion strat-
egy by splitting the marginal individual likelihood ratios and the dependence
between matchers via the copula concept. A new quantity called the Correc-
tion Factor is defined, which incorporates the dependence between matchers
to improve simple fusion under the independence assumption. While the indi-
vidual likelihood ratios are computed nonparametrically using the PAV algo-
rithm, a semiparametric model is proposed to compute the Correction Factor
by proposing some well-known parametric copulas for genuine and impostor
scores, and choosing the best pair by a resampling method. Finally, some
experimental results on real databases are reported.

Chapter 4 implements the semiparametric LR-based fusion in forensic face
scenarios that we called the two-step method. The best copula pair is chosen
by minimizing the discrimination loss and the PAV algorithm is applied to
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make the fused score well calibrated. Some experiments using synthetic and
real face databases are conducted to compare the performance of the two-step
method to the performance of the other LR-based fusions (GMM and Logit)
with respect to the cost of loglikelihood ratio and the ECE plot.

Chapter 5 concludes this thesis. It discusses how the research questions are
answered by the work presented in the thesis. It also points out possibilities
for future research, in particular it suggests to study some alternative methods
for computing the Correction Factor.



Part 1

Statistical Theory






Chapter

Semiparametric Reduced Parameter

2.1 Chapter Introduction

PURPOSE. This chapter presents efficient estimators of FEuclidean parameters
subject to restrictions, which are called reduced parameters. These estimators
are based on estimators that are efficient within the model without restric-
tions. The restrictions are divided into two cases: the parameter has to be
in the image of a continuously differentiable function of a lower dimensional
parameter and the parameter has to belong to the zero set of a continuously
differentiable function of the parameter.

CONTENTS. The main results for (semi)parametric models in which the pa-
rameter of interest is determined by a lower dimensional parameter, are given
in Theorem 2.2.1 and Theorem 2.2.2. An explicit construction of an efficient
estimator under this restriction is given and some examples are also given. If
the parameter of interest satisfies an equality constraint, we propose another
method to construct an efficient estimator in Theorem 2.3.1.

PUBLICATIONS. The manuscript presented in Section 2.2 has been published
in [20] and the manuscript of Section 2.3 has been published in [21].
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2.2 Semiparametrically Efficient Estimation of Con-
strained Euclidean Parameters

2.2.1 Abstract

Consider a quite arbitrary (semi)parametric model with a Euclidean parameter
of interest and assume that an asymptotically (semi)parametrically efficient
estimator of it is given. If the parameter of interest is known to lie on a
general surface (image of a continuously differentiable vector valued function),
we have a submodel in which this constrained Euclidean parameter may be
rewritten in terms of a lower-dimensional Euclidean parameter of interest. An
estimator of this underlying parameter is constructed based on the original
estimator, and it is shown to be (semi)parametrically efficient. It is proved
that the efficient score function for the underlying parameter is determined
by the efficient score function for the original parameter and the Jacobian of
the function defining the general surface, via a chain rule for score functions.
Efficient estimation of the constrained Euclidean parameter itself is considered
as well.

Our general estimation method is applied to location-scale, Gaussian copula
and semiparametric regression models, and to parametric models under linear
restrictions.

2.2.2 Introduction

Let Xi,...,X, beiid. copies of X taking values in the measurable space
(X, A) in a semiparametric model with Euclidean parameter § € © where O
is an open subset of R¥. We denote this semiparametric model by

P = {P97G : €0, GegG}. (2.2.1)

Typically, the nuisance parameter space G is a subset of a Banach or Hilbert
space. This space may also be finite dimensional, thus resulting in a parametric
model.

We assume an asymptotically efficient estimator 6, = én(X 1y...,Xp) is given
of the parameter of interest 6, which under regularity conditions means that

R 1 <A -~
\/ﬁ <6n — 60— ﬁ Z@(XMQ,G,'P)) _>P0,G 0 (2.2.2)

i=1
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holds. Here £ (;0,G,P) is the efficient influence function at P ¢ for estimation
of 6 within P and

Eh&Gfﬁz(Aﬂa&QPM%u&GPM%g@O_u@&GP)@2&

is the corresponding efficient score function at Py ¢ for estimation of ¢ within

P.

The topic of this paper is asymptotically efficient estimation when it is known
that 0 lies on a general surface, or equivalently, when it is known that 6 is
determined by a lower dimensional parameter via a continuously differentiable
function, which we denote by

0=f(v), veN. (2.2.4)

Here f : N ¢ R — R* with d < k is known, N is open, the Jacobian

flv) = (W>i_lmk (2.2.5)

Ivj j=1,..,d

of f is assumed to be of full rank on N, and v is the unknown d-dimensional
parameter to be estimated. Thus, we focus on the (semi)parametric model

Q={Py,c : vEN, GEG} CP. (2.2.6)

The first main result of this paper is that a semiparametrically efficient es-
timator of v, the parameter of interest, has to be asymptotically linear with
efficient score function for estimation of v equal to

(v, G, Q) = flw)i(-0,G,P). (2.2.7)

Such a semiparametrically efficient estimator of the parameter of interest can
be defined in terms of f(-) and the efficient estimator 6, of 6; see equation
(2.2.29) in Section 2.2.5. This is our second main result. How (2.2.7) is related
to the chain rule for differentiation will be explained in Section 2.2.3, which
proves this chain rule for score functions. The semiparametric lower bound
for estimators of v is obtained via the Hajek-LeCam Convolution Theorem for
regular parametric models and without projection techniques in Section 2.2.4.
In Section 2.2.5 efficient estimators within Q of v and 6 are constructed, as well
as efficient estimators of 6 under linear restrictions on #. The generality of our
approach facilitates the analysis of numerous statistical models. We discuss
some of such parametric and semiparametric models and related literature in
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Section 2.2.6. One of the proofs will be given in Appendix 1 in Subsection
2.2.7.

The topic of this paper should not be confused with estimation of the pa-
rameter 6 when it is known to lie in a subset of the original parameter space
described by linear inequalities. A comprehensive treatment of such estimation
problems may be found in [22]. Our model Q with its constrained Euclidean
parameters also differs from the constraint defined models as studied by Bickel
et al. (1993, 1998) (henceforth called BKRW), which are defined by restric-
tions on the distributions in P.

2.2.3 The Chain Rule for Score Functions

The basic building block for the asymptotic theory of semiparametric models
as presented in e.g. [23] is the concept of regular parametric model. Let Pg =
{Py : 6 € ©} with © C R¥ open be a parametric model with all Py dominated
by a o-finite measure p on (X, .A). Denote the density of Py with respect to
p by p(0) = p(-;0,Pe) and the Lo(p)-norm by || - ||, . If for each 6y € ©
there exists a k-dimensional column vector £(fy, Pe) of elements of Ly(Pp,),
the so-called score function, such that the Fréchet differentiability

I v/p(0) — /p(6o) — & (6 — 00)" £(60, Pe)/p(00) ||,

:O(|9—90’), 9—)90, (2.2.8)

holds and the k x k Fisher information matrix
1(90) :/ é(@o,'P@)éT(@o,'P@)dPQO (2_2,9)
X

is nonsingular, and, moreover, the map 0 — £(8, Po)+/p(6) from © to L5(u)
is continuous, then Pg is called a regular parametric model. Often the score
function may be determined by computing the logarithmic derivative of the
density with respect to 0; cf. Proposition 2.1.1 of [23]. We will call P from
(2.2.1) a regular semiparametric model if for all G € G

P@yG = {PQ’G 10 e @} (2.2.10)
is a regular parametric model.

Fix 6p € © and Gy € G, and write Py, g, = Fo. Let v : © — G with
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¥ (0g) = Go be such that
Py ={Poy@ : 0 €O} (2.2.11)

is a regular parametric submodel of P with score function é(@o,Pw) at O
and Fisher information matrix I(6y, Py), say. Let the density of Py ) with
respect to p be denoted by ¢(f). Since Py, is a regular parametric model the
score function £(6y, Py) for 0 at 6 within Py, satisfies (cf. (2.2.8))

I Va(0) — /a(8o) — 3 (8 — 00)" £(80, Pp)v/a(00) |,

=o(|0 —6o]), 60— 6y (22.12)

Considering now the (semi)parametric submodel Q from(2.2.10) we fix 1y and
write f(vp) = 6y and f(v) = 0. Within Q the Fréchet differentiability (2.2.12)
yields

I Va(fw) — Valf(vo) — 5 (fw) — fFo) €(f(n0), Po)Va(f (W) |l
=o<rf<v>—f<m>\>, Fw) = f(w), (2:2.13)

and hence

I Valf(v)) = Va(f(wo)) — (v —v0)" f(w0) €00, Pp) vV a(f (v0)) Il

=o(lv—wl), v—ow, (2.2.14)
in view of the differentiability of f(-). Since f(-) is continuous, this means that
Qy ={Pru)w(fw) : vEN} (2.2.15)

is a regular parametric submodel of @ with score function
(o, Qu) = fT(v0)E(60, Py) (2.2.16)

for v at Py and Fisher information matrix
FHw0) (00, Py) f(r0) = (1) / 0(00, Py)l% (00, Py)dPy f(ro).  (2.2.17)
X

We have proved

Proposition 2.2.1. Let P as in (2.2.1) be a regular semiparametric model and
let Q as in (2.2.10) be a regular semiparametric submodel with f(-) and f(-)
defined as in and below (2.2.4) and (2.2.5). If there exists a reqular parametric
submodel Py, of P with score function 5(00,7%) for 6 at 8y = f(vp), then there
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exists a reqular parametric submodel Qy of Q with score function é(l/o, Qy)
for v at vy satisfying (2.2.16).

This Proposition is also valid for parametric models, as may be seen by choos-
ing G finite dimensional or even degenerate. The basic version of the chain
rule for score functions is for such a parametric model Pg. We have chosen the
more elaborate formulation of Proposition 2.2.1 since we are going to apply
the chain rule for such parametric submodels Py, of semiparametric models P.

2.2.4 Convolution Theorem and Main Result

An estimator 6, of § within the regular semiparametric model P is called
(locally) regular at Py = Py, g, if it is (locally) regular at Py within Py, for
all regular parametric submodels Py of P containing Pg g,. According to
the Héjek-LeCam Convolution Theorem for regular parametric models (see
e.g. Section 2.3 of [23]) this implies that such a regular estimator 6, of 6
within P has a limit distribution under P, that is the convolution of a nor-
mal distribution with mean 0 and covariance matrix I~1(6y, Py) and another
distribution, for any regular parametric submodel P, containing Fy. If there
exists ¥ = 1 such that this last distribution is degenerate at 0, we call 0,,
(locally) efficient at Py and Py, a least favorable parametric submodel for es-
timation of 6 within P at Py. Then the Hgjek-LeCam Convolution Theorem
also implies that 0, is asymptotically linear in the efficient influence function
{(0y, Gy, P) = U(-; 6y, Gy, P) satistying

(80, Go, P) = £(00, Pyy) = I (60, Py ) (00, Py, ) (2.2.18)

which means

n
vn (én — 0y — %ZE(XZ-; 0o, GO,P)> —p, 0. (2.2.19)
i=1
The argument above can be extended to the more general situation that
there exists a least favorable sequence of parametric submodels indexed by
Yj,j =1,2,..., such that the corresponding score functions £(6o, Py,) for 6
at 0 within model Py, converge in L5(Pp) to ({60, Go, P) = £(-;60, Go, P), say.
A regular estimator 6,, of 6 within P is called efficient then, if it is asymp-
totically linear as in (2.2.19) with efficient influence function ¢(6y, Gy, P) =
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0(+; 00, Go, P) satisfying

—1
(6o, Go, P) = ( / éwo,Go,méT(eo,Go,P>dPo> (6o, Go, P)
X

= I"%(6, Go, P){(00, Go, P). (2.2.20)

Indeed, by the Convolution Theorem for regular parametric models the con-
vergence

i=1 —p, (

0 ?) (2.2.21)
% > (X5 00, ij)
=1

J

holds with the k-vectors R; and Z; independent and Z; normal with mean
0 and covariance matrix [ _1(90,77¢j). Taking limits as j — oo we see by
tightness arguments and by the convergence of !5(90,73%) to !5(90, Go,P) in
L5(Py), that also

i (0 =00 3 32 060,60, P) B
A =P (ZP> (2.2.22)
= > {(Xi; 00, Go, P) P

n s
(2

S

=1

holds with Rp and Zp independent. If Rp is degenerate at 0, then én is locally
asymptotically efficient at Py within P and the sequence of regular parametric
submodels Py, is least favorable indeed.

Now, let us assume such a least favorable sequence and efficient estimator 0,,
exist at Py = Py, g, with 6p = f(r0) and f(-) from (2.2.4) and (2.2.5) contin-
uously differentiable. By the chain rule for score functions from Proposition
2.2.1 the score function é(uo, ij) for v at vy within Q¢j satisfies

U(vo, Qu;) = f1(10)E(00, Py,) (2.2.23)

and hence the corresponding influence function ¢(vy, Qy,) satisfies

00, Qu,) = (FT00) 100, Py, ) FT0)060, Py). (22.20)

Let 7, be a locally regular estimator of v at Py within the regular semipara-
metric model Q. By the convergence of £(6, Py,) to £(6o, Go,P) in LE(Py),
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the influence functions from (2.2.24) converge in L4(Pp) to

K(VO,GO,Q):(fT(uo)I(OO,GO,P)f(VO)> )00, Go, P)  (2.2.25)

and the argument leading to (2.2.22) yields the convergence

Vn <f/n -1 — %Z;g(Xi; vy, Go, Q)) . (Rg)
Py

n 7 (2.2.26)
1 0( X Q
ﬁ Z; E(Xla o, GOa Q)
with Rg and Zg independent. Note that Zg has a normal distribution with
mean 0 and covariance matrix

Iil(VO, G, Q) = (f.T(Vo)I(Q(), Go, P)f(y())> ! . (2227)

Under an additional condition on f(-) we shall construct an estimator 2, of
v based on 6, for which Rg is degenerate. This construction of 7, will be
given in the next section together with a proof of its efficiency, and this will
complete the proof of our main result formulated as follows.

Theorem 2.2.1. Let P from (2.2.1) be a regular semiparametric model with
Py = Pyyco € P,y = f(w), and f(-) from (2.2.4) and (2.2.5) continuously
differentiable. Furthermore, let f(-) have an inverse on f(N) that is differ-
entiable with a bounded Jacobian. If there exists a least favorable sequence of
regular parametric submodels Py, and an asymptotically efficient estimator 0.,
of 0 satisfying (2.2.22) with Rp = 0 a.s., then there exists a least favorable
sequence of reqular parametric submodels Q. of the restricted model Q from
(2.2.10) and an asymptotically efficient estimator v, of v satisfying (2.2.26)
with Rg = 0 a.s. and attaining the asymptotic information bound (2.2.27).

Note that the convolution result (2.2.26) and (2.2.25) also holds if the con-
vergent sequence of regular parametric submodels Py, is not least favorable,
and that it implies by the central limit theorem that the limit distribution
of /n (I, —1p) is the convolution of a normal distribution with mean 0 and
covariance matrix

I (1, Go, Q) = ( FT(vo)1 (00, Go, P) f(yo)) (2.2.28)

and the distribution of Ro.
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2.2.5 Efficient Estimator of the Parameter of Interest

There are many ways of constructing efficient estimators in (semi)parametric
models. One of the common approaches is upgrading a y/n-consistent estima-
tor as in Sections 2.5 and 7.8 of [23]. A somewhat different upgrading approach
is used in the following construction.

Theorem 2.2.2. Consider the situation of Theorem 2.2.1. If the symmetric
positive definite k x k-matriz I, is a consistent estimator of 1(6,G,P) within
P and vy, is a \/n-consistent estimator of v within Q, then

o=t (F 0L F) " P 00— 1 (70)] (2.2.29)
is efficient, i.e., it satisfies (2.2.26) with Rg =0 a.s.

Proof The continuity of f (+) and the consistency of 7, and I,, imply that

R = (o) i i) £, (22:30)
converges in probability under Py to
. . ~1 .
Ky = (fT(Vo)I(90, Goap)f(Vo)) (o)1 (60, Go, P). (2.2.31)

This means that K,, consistently estimates K. In view of (2.2.29), (2.2.25),
(2.2.20), and (2.2.22) with Rp = 0 we obtain

1~ -
vn <ﬁn —w-- Zg(Xi;V()a Go, Q))

i=1

= Vn <yn — v+ K |00 = £ (70)] - %ZKOE(XZ-; o, GMD))
=1

= Vn (pn — vy — Ky [f () — f(vO)])

+ [Kn — KO] \/15 Z@(Xi; 00, Go, P) + 0p(1). (2.2.32)

By the consistency of K,, the second term at the right hand side of (2.2.32)
converges to 0 in probability under Py in view of the central limit theorem. Be-
cause f (7n) = f(vo) + f(10) (Fn — 10) +0p (7, — 1) holds and Ko f (1) equals
the d x d identity matrix, the first part of the right hand side of (2.2.32) also
converges to 0 in probability under F. [l
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To complete the proof of Theorem 2.2.1 with the help of Theorem 2.2.2 we
will construct a y/n-consistent estimator 7, of v and subsequently a consistent
estimator I, of I(8,G,P). Let || - || be a Euclidean norm on R¥. We choose 7,
in such a way that

1

I ) = b 1< 30k || £) = 0n ] 42 (2.2.33)

holds. Of course, if the infimum is attained, we choose 7, as the minimizer.
By the triangle inequality and the y/n-consistency of 6,, we obtain

. 1 .
£ (@n) = fvo) lI< inf [} () = On || +—+ 1| f(v0) = On |

A 1 1
<20, fon) |+ =0, (). (2230)

The assumption from Theorem 2.2.1 that f(-) has an inverse on f(N) that
is differentiable with a bounded Jacobian, suffices to conclude that (2.2.34)
guarantees y/n-consistency of 7.

In constructing a consistent estimator of the Fisher information matrix based
on the given efficient estimator én, we split the sample in blocks as follows. Let
(kn), (€n), and (m,) be sequences of integers such that k, = {,my, k,/n —
k,0 < k <1, and £, — oo,m, — oo hold as n — oo. For j =1,...,¢, let HAW-
be the efficient estimator of 6 based on the observations X; 1y, +1, - -, Xjm,

and 6,0 be the efficient estimator of § based on the remaining observations
Xk, +15---,Xn. Consider the "empirical” characteristic function

nlt) = ;n iexp Lity/iin (g~ Ono) } . 1 € B, (2.2.35)
j=1

which we rewrite as

butt) = exp { it (s 0) b - exp it (s — ) )
>
= exp {—itm (én,o - 90) } Bu(2). (2.2.36)

In view of m,/(n — ky) — 0 and (2.2.22) with Rp = 0 a.s. we see that the
first factor at the right hand side of (2.2.36) converges to 1 as n — oo. The
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efficiency of 0,, in (2.2.22) with Rp = 0 a.s. also implies
B (0n(0)) = £ (ex {itv/mn (61 - 00) })
— E (exp{itZp}) (2.2.37)

as n — 0o, with Zp normally distributed with mean 0 and covariance matrix
I71(0y, Go, P). Some computation shows

 (|ut0 - £ (dn0)[*)
= gln (1 — ‘E (exp {zt\/TTn <én,1 - 90) }) ‘2> gi (2.2.38)

It follows by Chebyshev’s inequality that ¢, (t) and hence gZ;n(t) converges
under Py = Py, ¢, to the characteristic function of Zp at ¢,

On(t) —p, E (exp {itZp}) = exp {—1t"T71 (60, Go, P)t} . (2.2.39)

For every t € RF we obtain
7 T -1
— 2log (3% (qsn(t))) —sp, tTT71 (69, Go, P)t. (2.2.40)

Choosing k(k+1)/2 appropriate values of ¢ we may obtain from (2.2.40) an es-
timator of I~*(6y, Go, P) and hence of I(#y, Go, P). Indeed, with ¢ equal to the
unit vectors u; we obtain estimators of the diagonal elements of I~!(6y, Go, P)
and an estimator of its (i, ) element is obtained via

log (afe (&n(ui)» +log (3% (qén(uj))) ~log (3% (d;n(ui + uj))) .

When needed, the resulting estimator of I1(6y, Go, P) can be made positive def-
inite by changing appropriate components of it by an asymptotically negligible
amount, while the symmetry is maintained.

Under a mild uniform integrability condition it has been shown by [24], that
existence of an efficient estimator 6, of 0 in P implies the existence of a consis-
tent and y/n-unbiased estimator of the efficient influence function ¢(-; 8, G, P).
Basing this estimator on one half of the sample and taking the average of this
estimated efficient influence function at the observations from the other half
of the sample, we could have constructed another estimator of the efficient
Fisher information. However, this estimator would have been more involved,
and, moreover, it needs this extra uniformity condition.
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With the help of Theorem 2.2.2, the estimator 7, of v from (2.2.33), and the
construction via (2.2.40) of an estimator I,, of the efficient Fisher information
we have completed our construction of an efficient estimator i, as in (2.2.29)
of v. This estimator can be turned into an efficient estimator of § = f(v)
within the model Q from (2.2.10) by

On = f(m) (2.2.41)
with efficient influence function

(60, Go, Q) = f(10)(vo, Go, Q)
= f(w) (fT(uo)f(eo, Go, P) f(vo))il FT(1)E(60, Go, P) (2.2.42)

and asymptotic information bound
, : , -1,
I Y60, Go, Q) = f(w) (fT(Vo)I(%, Goﬂ’)f(”o)) (o). (2.2.43)

Indeed, according to [23] Section 2.3, 6, is efficient for estimation of # under
the additional information 6 = f(v).

Remark 2.2.1. If f(-) is a linear function, i.e., # = Lv + « holds with the
k x d-matrix L of maximum rank d, then

v, = (LTL)"'LT (0, — ) (2.2.44)

attains the infimum at the right hand side of (2.2.33). So, the estimator
(2.2.29) becomes

Dy = (LTfnL)il L', [én - a} (2.2.45)

with efficient influence function (2.2.25) and asymptotic information bound
(2.2.27) with f(vp) = L, and the estimator from (2.2.41)

6, = L (LTIAnL>71 L7, [én - a} ta (2.2.46)

Note that 6, is the projection of ,, on the flat {0 eRF : 0 =Lv+a,veRY
under the inner product determined by I, (cf. Appendix 1 in Subsection 2.2.7)
and that the covariance matrix of its limit distribution equals the asymptotic
information bound

-1

I (60, Go, Q) = L (LT1(6y, Gy, P)L)  L”. (2.2.47)
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Another way to describe this submodel Q with § = Lv + « is by linear restric-
tions

Q={Pryta : VEN,GEGt={Ppc: R"0=8,0€0,GeG}, (22.48)

where RTa = 3 holds and the k x d-matrix L and the k x (k — d)-matrix R
are matching such that the columns of L are orthogonal to those of R and the
k x k-matrix (L R) is of rank k. Note that the open subset N of R? determines
the open subset © of R* and vice versa. See [25], [26], [27], and [28] for some
examples of estimation under linear restrictions.

In terms of the restrictions described by R and g the efficient estimator 0,, of
6 from(2.2.46) within the submodel Q can be rewritten as

~ ~ ~ -1 ~
0, =0, — 'R (RTIn_lR) (RTOn - 5) , (2.2.49)
with asymptotic information bound
LTI 'L =17 = 'R(RTTI'R)IRTIY, T = 1(0o, Go, P), (2.2.50)

as will be proved in Appendix 1 in Subsection 2.2.7.

2.2.6 Examples

In this section we present five examples, which illustrate our construction
of (semi)parametrically efficient estimators. We shall discuss location-scale,
Gaussian copula, and semiparametric regression models, and parametric mod-
els under linear restrictions.

Example 2.2.1. Coefficient of variation known

Let g(-) be an absolutely continuous density on (R, B) with mean 0, variance
1, and derivative ¢/(-), such that [[1+ 2%](¢'/g(z))?g(x)dz is finite. Consider
the location-scale family corresponding to g(-). Let there be given efficient
estimators fi,, and &,, of u and o, respectively, based on X1, ..., X,, which are
i.i.d. with density c~1g((-—p)/0). By I;; we denote the element in the ithe row
and jth column of the matrix I = 021(#, G, P), where the Fisher information
matrix 1(6,G,P) is as defined in (2.2.20) with 8 = (u,0)” and G = {g(-)}.
Some computation shows I11 = [(¢'/9)%g, 12 = I1 = [x(¢'/g(x))?g(z)dx,
and Io = [[zg'/g(x) + 1]2g(x)dx exist and are finite; cf. Section 1.2.3 of [29].

We consider the submodel with the coefficient of variation known to be equal
to a given constant ¢ = o/ and with v = p the parameter of interest. Since in



30 Chapter 2. Semiparametric Reduced Parameter

a parametric model the model itself is always least favorable, the conditions of
Theorem 2.2.2 are satisfied and the estimator 2, = fi,, of p from (2.2.29) with
Up = [in, Hn = (un,an)T, and In =0, —2] is efficient and some computation
shows

N -1 _ _
[y = (111 + 2clio + 02122) (111 + cli2) i, + (I12 + cla2) 0] - (2.2.51)

In case the density g(-) is symmetric around 0, the Fisher information matrix
is diagonal and fi,, from (2.2.51) becomes

N 1., _
[y, = (Ill + 62122) (111 fin + cl220y] (2.2.52)
In the normal case with g(-) the standard normal density /i, reduces to
fin = (1437 [fin + 2¢5,) (2.2.53)

with p, and &, equal to e.g. the sample mean and the sample standard
deviation, respectively; cf. [30], [31], and [32].
Example 2.2.2. Gaussian copula models

Let
Xl — (Xl,b cee 7X1,m)Ta e '7Xn = (Xn,la o 7Xn,m)T

be i.i.d. copies of X = (X1,..., X;,)T. Fori =1,...,m, the marginal distri-
bution function of X; is continuous and will be denoted by Fj. It is assumed
that (®~1(F1(X1)),..., 2" (Fu(Xm)))T has an m-dimensional normal distri-
bution with mean 0 and positive definite correlation matrix C(6), where ®
denotes the one-dimensional standard normal distribution function. Here the
parameter of interest 6 is the vector in R™(m~1)/2 that summarizes all correla-
tion coefficients p,s, 1 <7 < s < m. We will set this general Gaussian copula
model as our semiparametric starting model P, i.e.,

P={Pc : 0= (P12, Pm-1ym)’ +G = (Fi(-);..., Fu(-)) € G}. (2.2.54)

The unknown continuous marginal distributions are the nuisance parameters
collected as G € G.

Theorem 3.1 of [33] shows that the normal scores rank correlation coefficient
is semiparametrically efficient in P for the 2-dimensional case with normal
marginals with unknown variances constituting a least favorable parametric
submodel. As [34] explain at the end of their Section 1 and in their Section
4, their Theorem 4.1 proves that normal marginals with unknown, possibly
unequal variances constitute a least favorable parametric submodel, also for
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the general m-dimensional case. Since the maximum likelihood estimators are
efficient for the parameters of a multivariate normal distribution, the sample
correlation coefficients are efficient for estimation of the correlation coefficients
based on multivariate normal observations. But each sample correlation coef-
ficient and hence its efficient influence function involve only two components
of the multivariate normal observations. Apparently, the other components
of the multivariate normal observations carry no information about the value
of the respective correlation coefficient. Effectively, for each correlation coeffi-
cient we are in the 2-dimensional case and invoking again Theorem 3.1 of [33]
we see that also in the general m-dimensional case the normal scores rank
correlation coeflicients are semiparametrically efficient. They are defined as

LS e (Y G,)) 8 (2R (X))
) — =1 (2.2.55)

m FE o ()]

J

with E(«n) and an) being the marginal empirical distributions of F,. and Fj,

respectively, 1 < r < s < m. The Van der Waerden or normal scores rank cor-

relation coefficient [)g) from (3.3.9) is a semiparametrically efficient estimator

of p.s with efficient influence function
by (Xr, X) = @7 (Fr(X,)) @71 (Fu(X,)) (2.2.56)
~Lon {[@7 (B + [07 (RU(X))
This means that
O = (P15 P 1y)” (2.2.57)

efficiently estimates 6 with efficient influence function

U(X;0,G,P) = (£p, (X1, Xa), ..., 1, (X1, X)) T (2.2.58)

2 P(m—1)m

Subexample 2.2.2.1. Exchangeable Gaussian copula

The exchangeable m-variate Gaussian copula model
Q={Ppc:pc(-1/(m—-1),1), GeG}CP (2.2.59)

is a submodel of the Gaussian copula model P with a one-dimensional pa-
rameter of interest ¥ = p. In this submodel all correlation coeflicients have
the same value p. So, § = 1;p with 1; indicating the vector of ones of di-
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mension k = m(m — 1)/2. In order to construct an efficient estimator of p
within Q along the lines of Section 2.2.5, in particular Remark 2.2.1, we first
apply (2.2.44) with « = 0 and L = 1j, to obtain the (natural) \/n-consistent

estimator
Pn = Un = Z >t (2.2.60)
r=1 s=r+1

>~ \

For 6§ = 1yp we get by simple but tedious calculations (see Appendix 2 in
Subsection 2.2.7)

o (1-p*)? it [{r,s}0{t,u}| =2,
Ely Lo, =< 2(1=p)%p(2+3p) if |{r,s}n{t,u}| =1, (2.2.61)
2(1 — p)?p? it [{r,s}n{t,u}|=0.

It makes sense to estimate I(1x, G, P) by substituting p, for p in (2.2.61), to
compute the inverse of the resulting matrix, and to choose this matrix as the
estimator I,,. To this end, we note that for every pair {r,s}, 1 < r # s <
m, there are 2(m — 2) pairs of {¢,u}’s having one element in common and
there are 2(m — 2)(m — 3) pairs of {t,u}’s having no elements in common.
Hence, the sum of the components of each column vector of I=!(1xp, G, P)
s (1 —p)%(1 + (m — 1)p)?. Each matrix with the components of each column
vector adding to 1 has the property that the sum of all row vectors equals
the vector with all components equal to 1, and hence the components of each

column vector of its inverse also add up to 1. This implies
Vil = (1= pa) 2 (14 (m = 1)pa) 1]

and hence by (2.2.45)

. 1 . 1 . m —_1m—-1 m
s _ (4T T _taTrs _ -
b = <1k1n1k) 1] 10 = 176, = <2> 3 A =p (2.2.62)
r=1 s=r+1
attains the asymptotic information bound (cf. (2.2.27))
-1 m\ !
WFrae 6P = () a-pPasmone e26)

Hoff et al. [34] proved the efficiency of the pseudo-likelihood estimator for p
in dimension m = 4. Segers et al. [35] extended this result to general m and
presented the efficient lower bounds for m = 3 and m = 4 in their Example
5.3. However, their maximum pseudo-likelihood estimator is not as explicit as



2.2 Semiparametrically Efficient Estimation of Constrained Euclidean
Parameters 33

our (2.2.62).
Subexample 2.2.2.2. Four-dimensional circular Gaussian copula

A particular, one-dimensional parameter type of four-dimensional circular
Gaussian copula model has been studied by [34] and [35]. It is defined by

its correlation matrix )

L p p p
p 1L p p

2.2.64
Pop1op (2:2.64)
p p* p 1

Our semiparametric starting model P is the same as in (2.2.54) with m = 4,
but with the components of # rearranged as follows

0= (P12 y P14 5 P23 5, P34, P13, P24)T-

Now, with f(p) = (p, p, p, p, p>, p°)T the present circular Gaussian
submodel @ may be written as

Q={Pypc : pE(=3,1), GeG}.

In order to construct an efficient estimator of p within Q along the lines of
Theorem 2.2.2, we propose as a /n-consistent estimator of p

P = 5Pn1 + g sign (Pn,1) Pn2,
pna =% (29 + 2% + 5 + A5 ) s oz =4 (M + \/ﬁ§2)>(2.2.65)

As in (2.2.61) we get by simple but tedious calculations (see Appendix 2 in
Subsection 2.2.7)

Y (f(p).G.P) = L (1 - ) (2.2.66)
2 p? p? 2p? p(2+0%) p(2+0%
P’ 2 2p* P p(2+0*) p(2+0%)
p? 2p? 2 p? p(2+0%) p(2+0%
2p? P p? 2 p(2+0*) p(2+0%) |
2
p(2+p%) p2+p%) p(2+0*) p(2+0*) 21+ 4p? )
p(2+p%) p(2+0%) p(2+0*) p(2+07) 4p? 2 (14 p?)

which has inverse A
I(f(p),G,P) =13 (1—p?) (2.2.67)
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pt+2 3p? 3p? P20t — (0P +20) —(pP+2p
3p? pt+2 p* +2p? 3p? — (PP +2p) —(0®+2p
3p” pt +2p? pt+2 3p? (p +2p) —(p*+2p
pt + 2p? 3p? 3p? pt+2 p +20) —(*+2p

6 2

— (P +20) —(P+2) (P +20) —(Fr) 20 2k
~(P+2) —(Pr2) — (0P 2) (P r2p) 25T 2

Substituting p, into (2.2.67) we obtain a \/n-consistent estimator of I(f(p), G, P).
In view of f(p) = (1,1,1,1,2p,2p)T we have

FEOIF(p),G.P) = (1= p?) 7 (L4 % 1+ p2 1+ o2 1+ 9% —2p, 2p) .
Consequently the asymptotic lower bound for estimation of p within Q equals
. . _1 2

FO) 10, 6P ()] =5 (1-p)" (2.2.68)

Substituting p,, for p we obtain as the efficient estimator from Theorem 2.2.2

~ _ 1+ ,On _ _ Pn n ~(n _
pn=pnt 2 5 (Pn1 — pn) — -\ ( (ng) + Pg4)> - P%) . (2.2.69)

Hoff et al. [34] have shown that the pseudo-likelihood estimator is not efficient
in this case. Segers et al. [35] have established the asymptotic lower bound
(2.2.68) and have constructed an alternative, efficient, one-step updating esti-
mator suggesting the pseudo-maximum likelihood estimator as the preliminary
estimator.

Example 2.2.3. Partial spline linear regression

Here the observations are realizations of i.i.d. copies of the random vector
X = (v, zT, UT)T with Y, Z, and U 1-dimensional, k-dimensional, and p-
dimensional random vectors with the structure

Y =017 +(U) + e, (2.2.70)

where the measurement error € is independent of Z and U, has mean 0, fi-
nite variance, and finite Fisher information for location, and where (-) is
a real valued function on RP. Schick [36] calls this partly linear additive re-
gression, [23] mention it as partial spline regression, whereas [37] are talking
about the partial smoothing spline model. Under the regularity conditions
of his Theorem 8.1 [36] presents an efficient estimator of # and a consistent
estimator of I(#, G, P). Consequently our Theorem 2.2.2 may be applied di-
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rectly in order to obtain an efficient estimator of v in appropriate submodels
with § = f(v) without our construction of an estimator of I(6, G, P) via char-
acteristic functions. Note that for submodels with 8 restricted to a linear
subspace, # = Lv say, our approach is not needed, since the reparametrization
Y = vI'LTZ 4+ +(U) + ¢ brings the estimation problem back to its original
(2.2.70).

Example 2.2.4. Multivariate normal with common mean

Let G be the collection of nonsingular k X k-covariance matrices and let the
parametric starting model be the collection of nondegenerate normal distribu-
tions with mean vector # and covariance matrix X,

P— {Pg,E L 9eRF, Te g} . (2.2.71)

Efficient estimators of § and ¥ are the sample mean X,, = n~* Yo, X, and
the sample covariance matrix 3, = (n — 1)~' 0 (X; — X)) (X; — X)7,
respectively. Note that X,, attains the finite sample Cramér-Rao bound and
the asymptotic information bound with I(0,%,P) = 1.

The parametric submodel we consider is
Q={P,ux: peR, ¥Xeg}. (2.2.72)
In view of (2.2.45) and (2.2.28)
~ -1 ~ —
i = (152;%) 173-1%, (2.2.73)

is an efﬁcientlestimator of p within Q that attains the asymptotic lower bound
(1{2*11k)_ . In case the covariance matrix X is diagonal with its variances

denoted by o2, ... ,az, we are dealing with the Graybill-Deal model as pre-
sented by [22] on her page 88. With X;,, = 1 >t X, Sin = 1 > i1 (X —
Xin)?, and 3, = diag(Sin, . 751%,71) we obtain the Graybill-Deal estimator

o Zf:l X%n/sz%n
=
Zi:l 1/Sz2,n

with asymptotic lower bound (1{2_11@_1 =1/3F 1/02.
Example 2.2.5. Restricted maximum likelihood estimator

(2.2.74)

Hn

Maximum likelihood estimation of the generalized linear model under linear
restrictions on the parameters is done in [27] via an iterative procedure using a
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penalty function. Kim and Taylor [28] introduce the restricted EM algorithm
for maximum likelihood estimation under linear restrictions. Our approach
as described in Remark 2.2.1 with 0, a(n unrestricted) maximum likelihood
estimator avoids such iterative procedures.

2.2.7 Appendices
Appendix 1: Additional Proofs

In this appendix proofs will be presented of (2.2.49) and (2.2.50).

Since fn has been chosen to be symmetric and positive definite, wany, T,y €
RF, is an inner product on RF. Define the k x k-matrices IL, ;, and IL,, g by

M.p =L (LTfnL)_l L7,
,p=1'R (RTfn—lR)_l RT. (2.2.75)

With the above inner product these matrices are projection matrices on the
linear subspaces spanned by the columns of L and f; LR, respectively. Indeed,
Hn,LHn,L = Hn,L» Hn,RHn,R = Hn,Ra (l' - Hn,Lx)Tann,Lx =0,z € Rk; (y -
M, py) LI, ry = 0,y € R¥, T, Lz = Lz, z € R and II, gl 'Ry =
f; 'Ry, y € R¥=? hold. The linear subspaces spanned by the columns of L
and f,j ! R have dimensions d and k — d, respectively, since the matrices (L, R)

and I, are nonsingular. Moreover, these linear subspaces are orthogonal in
view of LTI,I,-'R = LT R = 0. This implies

M,z +1,ge =2 zcR" (2.2.76)

Combining (2.2.75), (2.2.76), and (2.2.46) we obtain (2.2.49) and, by the con-
sistency of I,,, (2.2.50).

Appendix 2: Computational Details

We present the computational details for (2.2.61) and (2.2.66) presented in
Example 2.2.2. Since our computations will be based on fourth moments of
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multivariate normal random variables, we consider

Za 0 1 Pab  Pac Pad

Zy 0 Poa 1 Poe Pobd
7= ~N ,

ZC 0 Pca  Pcb 1 Pcd

Z4 0 Pda  Pdb  Pde 1

The following fourth moments of Z can be obtained by straightforward com-
putations:

(Zy) =3

(Z3Zy) = 3pap

(ZgZI?) =14+ 2pab

(ZC%Z ) = Poc + 2,0abpac
(ZaZbZeZoq) = PabPed + PacPbd + PadPbe-

e o 0 0 0o
T Em

For every 4,7 = 1,..., (g) let M;; be the element in the i-th row and j-th
column of the efficient lower bound I~1(, G, P). Because of ; = pus, 0 = pea
for some a, b, ¢, and d, we have

Mij =F (ZaZb - %pab [Zg + Zl?]) (ZCZd - %pCd [202 + Zcﬂ) .

‘We have three cases:

e {a,b}N{c,d}| =2
My = E (ZaZy — 3pav 27 + ZbQ])z
_B(220) - g (2221 Z22) 4 YE (74 422272+ 73)
= (1+20%) — pab (3pab + 3pab) + 1P (3+ 2 [1+20%,] +3)
2\2
= (1 - pab)
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o |{a,b} N{c,d}| =1 (without lost of generality assume d = a)

Mij = E (ZaZy — 3pab [Za + Z3)) (ZaZe = 5pac [Za + Z2])

=E(Z2ZZ:) — $pabE (Z2Ze + Z Zo Z,)

—2pacE (232 + 22 Za2)

+1pavpacE (Zo + Z2ZE + Z2Z% + 22 Z?)
= (pbe + 2PabPac) — 3Pab (3Pac + [Pac + 2PabPuc])

—3Pac (3pab + [Pab + 2PacPie))

+ L pappac (3+ [L+202] + [1+202.] + [1+202.))
= 5 (1= p2y = P2c) (20be — PabPac) + 5 PabPacPie

e {a,b}Nn{c,d}| =0

Mij = B (ZaZy = gpab [ 23 + Z3]) (ZeZa — 3pea |22 + Z))

= E(ZaZyZcZa) — 3paE (ZaZeZa + 2 ZeZa)
—1peaE (22,2 + 252 2)
+ipabped (2322 + Z§ 22 + 2324 + 7} Z3)

= pabPed + PacPd + PadPbe — 3Pab ([Pcd + 2PacPad] + [Ped + 20bcPba))
—30cd ([Pab + 2Pacpvc] + [Pab + 2padpbd])
3 pavped ([1+205.) + [1+ 2p5.] + [1+2024] + [1+ 2034])

= PacPbd + PadPbe — (PabPacPad + PoaPbcPod + PeaPebPed + PdaPdbPdc)
+3pavped (Poe + Phe + Pag + Pia)

Finally, substitution of the correlation structures in Subexample 2.2.2.1 and
Subexample 2.2.2.2 give (2.2.61) and (2.2.66), respectively.

2.3 Semiparametrically Efficient Estimation of Eu-
clidean Parameters under Equality Constraints

2.3.1 Abstract

Assume a (semi)parametrically efficient estimator is given of the Euclidean
parameter in a (semi)parametric model. A submodel is obtained by con-
straining this model in that a continuously differentiable function of the Eu-
clidean parameter vanishes. We present an explicit method to construct
(semi)parametrically efficient estimators of the Euclidean parameter in such
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equality constrained submodels and prove their efficiency. Our construction is
based solely on the original efficient estimator and the constraining function.

Only the parametric case of this estimation problem and a nonparametric
version of it have been considered in literature.

2.3.2 Introduction

Let Xq,...,X,, beiid. copies of X taking values in the measurable space
(X, A) in a regular semiparametric model with Euclidean parameter 6 € O,
where © is an open subset of R¥. We denote this semiparametric model by

P={Pyg : 00, GegG}. (2.3.1)

Typically, the nuisance parameter space G is a subset of a Banach or Hilbert
space. If this space is finite dimensional, we are dealing with a parametric
model.

We assume an asymptotically efficient estimator 6,, = én(X 1y...,Xp) is given
of the parameter of interest 6, which under regularity conditions means that

. 1 < -
vn <9n —0—— ;E(Xi, 0, G,P)) —pye 0 (2.3.2)

holds. Here g(, 0,G,P) is the efficient influence function for estimation of
within P and

I-46,G,P) = / U(z;0,G,P)"(2;0,G, P)dPs c:() (2.3.3)
X

is the information bound, which corresponds to the efficient information matrix

1(0,G,P).

Quite frequently the elements of the parameter of interest 8 = (61, ...,0;) are
not mathematically independent but satisfy d functional relationships S;(6) =
0, t=1,...,d, with d < k. Formally, this can be described as

S(@)=0, 6¢co, (2.3.4)

where S is a function from R* to R?. We will assume that the d x k Jacobian
matrix S(-) exists, is continuous in 6 on O, and has full rank d. Thus, we have
constrained the semiparametric model P to a semiparametric submodel of it,
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namely

Q= {P97G : S(@) =0,0€0, Ge Q} . (2.3.5)

Given the constraint S(0) = 0, we will adapt the semiparametrically efficient
estimator 6, of @ within P in such a way that the adapted estimator is semi-
parametrically efficient within the constrained model Q. Of course, it has to
have at least as small asymptotic variance as the original estimator 6,, and to
be at least as close to the true value stochastically.

Efficient estimation of Euclidean parameters under equality constraints for
nonparametric models has been studied in [38], [39], [40], [41], in Example
1.3.6, 3.2.3, and 3.3.3 of Bickel et al. (1993), henceforth called [23], in [42],
and in [43]. In [23] nonparametric models under equality constraints are called
constraint defined models. Let the semiparametric model P be embedded
into a nonparametric model P and let the map v : P — R¥ be such that
v(Pyq) = 0 holds for all Py € P. In view of P C P estimation of v(P)
within P is easier than within P. This relation between these models also
holds under the equality constraint S(v(P)) = 0. Consequently, the results
for nonparametric models under constraints are not directly applicable to our
semiparametric situation.

For the constrained parametric estimation problem so-called restricted maxi-
mum likelihood estimators have been studied. Aitchison and Silvey [44] have
used Lagrange multipliers with an iterative computation method. An alter-
native iterative construction has been proposed by [45], who also presents
a long list of examples of constrained parametric estimation problems. To
prove efficiency of these restricted maximum likelihood estimators additional
regularity conditions are needed. Our method does not need these additional
conditions, provided an efficient estimator for the original unconstrained para-
metric model is given. Finite sample Cramér-Rao bounds for the constrained
parametric case have been derived by e.g. [46], [47], and [48].

To the best of our knowledge the semiparametric version of the topic of the
present paper has not been studied in literature yet.

Estimation of the Euclidean parameters constrained by equalities is quite dif-
ferent from estimation of parameters constrained by inequalities. A compre-
hensive treatment of the latter estimation problems may be found in [22].

If Q can be reparametrized as

Q={Py,c:veN, Geg}, (2.3.6)
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where N is open and f : N — O is injective and continuously differentiable
with full rank Jacobian, then v can be estimated semiparametrically efficiently
as in [20] and, as noted there, 6 can be estimated efficiently as well by applying
f () to the efficient estimator of v. However, it may be hard or even impossible
to find such a reparametrization. A simple, formal example is estimation of
the mean vector of a bivariate normal distribution where it is known that this
mean vector lies on the unit circle. The unit circle cannot be parametrized
as in (2.3.6) with N open and f(-) continuous and injective. Indeed, assume
v, € N converge to a point at the boundary of N. Then f(v,) converge to
a point on the unit circle f(1), say, with 1y € N. But by the continuity of
f () this implies that there exist a point in N close to the boundary of N and
a point in N close to vy that are mapped on the same point of the circle by
f(+), which contradicts its injectivity. On the other hand there are submodels
Q of the type (2.3.6) that cannot be viewed as a submodel of the type (2.3.5).
Again consider estimation of the mean vector of a bivariate normal distribution
where it is known now that this mean vector lies on the unit circle with one
point removed. This unit circle with one point removed can be parametrized
as in (2.3.6) with f(-) continuous and N open, but it cannot be described via
(2.3.4), since the preimage of the closed set {0} under a continuous function
S(-) has to be closed and the unit circle with one point removed is not. In
the present paper, everything will be done directly to the original parameter
subject to equality constraints without reparametrizing it.

The outline of the paper is as follows. In Section 2.3.3, we will present a lower
bound to the efficient information bound for estimating the parameter of in-
terest within the constrained model Q. This lower bound will be formulated
in terms of the efficient information bound of the original model P and the
Jacobian of the constraining function S(-). An explicit estimator that is effi-
cient within the constrained model, will be given in Section 2.3.4. It attains
the lower bound from Section 2.3.3, which shows that both this information
bound and the estimator are efficient within the constrained model. Examples
are discussed in Section 2.3.5. Our conclusions are presented in Section 2.3.6.

2.3.3 Efficient Influence Functions and Projection

In the situation of Section 2.3.2 we denote the so-called efficient score function
for 6 by ~
(0,G,P)=1(0,G,P)(;0,G,P). (2.3.7)
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We will restrict attention to regular semiparametric models for which at every
Py = Py, € P the parameter ¢ is pathwise differentiable, the tangent space
P is the sum of the tangent space P; for 8 and the tangent space P for G, and
the efficient score function £*(-; 6, G, P) for 6 is the projection of the (ordinary)
score function ¢ (+;0,G,P) for 0 on the orthocomplement of P, within P in the
sense of componentwise projection within LY(Py) = {f € La(Ry) : Ep, f(X) =
0}; for details see Chapter 3 of [23] and Chapter 25 of [49].

By Proposition 3.3.1 of [23] the efficient influence function £(-;6,G, Q) for 6
within the submodel Q can be obtained by projecting the efficient influence
function 6( 0,G,P) for § within P onto the tangent space Q of Q or onto an
appropriate subspace of this tangent space.

Let {0, : 0, € R¥ n € R, |n| < €} for sufficiently small € > 0 be a path
through 6y in R¥ in the direction r € R¥, which means that |6, — 6y — nr| =
o(|n]). If this path satisfies S(6;;) = 0, |n| < ¢, then the differentiability of S(:)
at 6 implies [S(0,) — S(0o) — nS(0o)r| = o(|n|), meaning [nS(6o)r| = o(|nl),
and hence S(fp)r = 0. In other words, such a path within the parameter
set {# : S(A) = 0,0 € RF}, has a direction r at 6y that belongs to the
orthocomplement of the d-dimensional linear space within R¥ spanned by the
d row vectors of the Jacobian matrix S(6p). In fact, to each element of this
orthocomplement [S ()] corresponds such a path, as is proved in detail in
Appendix 2.3.7 with the help of the implicit function theorem.

With Py € Q let L be a k x (k — d)-matrix, whose columns span this (k — d)-
dimensional orthocomplement. Since P is a regular semiparametric model, the
parametric submodel Py = {Fy g, : 6 € ©} is regular. With s(¢) denoting the
square root of the density of Py ¢, with respect to an appropriate dominating
measure p, this regularity implies

[15(65) — 5(60) — 55(60) (6 — 60)"£(60)[|,. = 0|6y — bo|), by — b0, (2:3.8)

where || - ||, is the norm of La(u) and £(6p) = £(-;600,Go,P) is the score
function for 6 at y; cf. Definition 2.1.1 and formula (2.1.4) of [23]. For a path
{6, : 0, e R*, n €R, |n| < e} with direction r at 6y as above, this implies

[15(85) — s(60) — 315(80)r" £(80)ll,e = ol[nl), 0 — 0. (2.3.9)

Consequently, we are dealing ‘here with a 1-dimensional regular parametric
model with score function r7¢(6y) for n at n = 0. It follows that the closed

linear span [LTZ (6?0)} of all such score functions 7¢(6p) is the tangent space Q;
of Q1 ={Pyg, : S(0) =0, 6 € O} at Fy. This implies that the tangent space
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O of Q at Py contains both {LTZ(OO)} and P,. Writing £(6o) for £*(-; 0, Go, P)

we have for every tangent ¢t € Py
rTi(00) + =T (00) + L+ 17 (£60) ~ £ (00)) (2.3.10)
Since £* () is the componentwise projection of {(fp) on the orthocomplement
of Py, each component of £(6y) — £*(6y) belongs to P» and we obtain from
(2.3.10)
05 [LTé(eo)] +Py = [LT0(00)] + P2 D [L70°(6y)] . (2.3.11)

Taking 6 = 6 in formula (2.3.7) and suppressing 6y and P from the notation
we rewrite (2.3.11) as

Q5 [LTé| + Py = [L7¢] + Py o [L7¢] = [L712]. (2.3.12)

We shall denote the componentwise inner product within L(Py) by < >0
and the projection within L(Py) of the efficient influence function ¢ into

[LTIE} by
11, (2 | [LTIZ]) = ALTTI, (2.3.13)
where A is a k x (k—d)-matrix. Since /—1II, (lZ | [LTIED has to be orthogonal
to [LTUZ} , 1.e., since
<E— ALTTE, ETIL>O = YL~ ALTII7VL = 0 (2.3.14)

holds, we have
M (7] |£718]) = L (L7IL) " LI (2.3.15)

In order to write this projection in terms of S = S(fy) we note that according

to the Appendix 1 in Subsection 2.2.7 of [20] L(LTIL) ' LTI+1- 18T (S11ST)~
is the identity map, which implies
i (Z | [LTIZD =0 [71ST(SI71 87180, (2.3.16)

By Theorem 3.3.2.A of [23] and formula (3.3.27) in particular, this implies that
the limit distribution under Py of any properly normalized regular estimator
of 8 within the submodel Q is the convolution of a normal distribution with

1S
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mean 0 and covariance matrix

L(r"rn)™

LT =17t —17187(Sr-187)~1sr1 (2.3.17)
and some other distribution. In the next Section we shall construct an estima-
tor of 6 within Q that is asymptotically linear in the influence function from
(2.3.16). Consequently, it is asymptotically normal with minimal covariance
matrix, i.e.,

Jn (é . 90) Sp N (0, - I—lsT(SI—lsT)—1$I—1> (2.3.18)

holds.

2.3.4 Efficient Estimator under Equality Constraints

Note that S(8) = S(0) — S(6g) = S(60)(8 — 6p) + o(]6 — 6p|) holds for 6y
with S(6y) = 0. Since an efficient estimator 0, within P is asymptotically
linear in the efficient influence function £(-;0,G,P), this implies that S(6,)
is asymptotically linear in the influence function S (90)67(-; 0o, Go, P) under 6.
In order to construct an efficient estimator of € within Q we will use this
asymptotic linearity.

Our main result reads as follows.

Theorem 2.3.1. Consider the reqular semiparametric model P and its sub-
model Q given by (2.3.1) and (2.3.5), respectively. Assume that S : RF —
R%, d < k, is continuously differentiable with Jacobian matriz S() of full rank
d, and that the tangent spaces satisfy the conditions mentioned in the first para-
graph of Section 2.5.3. Let X1,...,X, be i.i.d. with distribution P € P and
suppose that 0, is an efficient estimator of the parameter of interest 8 within
P based on Xq,..., X, with efficient influence function E(, 0,G,P) and that

I,, is a consistent estimator of I(6,G,P) from (2.3.3). Write

A A s A c A A P -1 A
0 = b — 1,187(0,) ($(00) 171 87(60))  5(00) (2.3.19)
and define .
0, =argmin || ¢ — 0 || (2.3.20)
¢, 8()=0

with || - || the Buclidean norm or a topologically equivalent norm. Then 0,
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efficiently estimates 0 within the submodel Q with efficient influence function
0(0,G,Q) ={(-:0,G,P) (2.3.21)
“(0.0.P)870) ($0)170.C. 73)5T(9))*1 $(0)0(+0,G,P)
and hence it satisfies (2.3.18). Furthermore,
Vi(fn —07) —=p, . 0 (2.3.22)
holds.

Proof. In view of the convolution result proved in Section 2.3.3 (cf. (2.3.17))
it suffices to show that 6, is asymptotically linear in the influence function
from (2.3.21), since this yields both sharpness of the convolution bound and
efficiency of the estimator. Fix 6y with S(6p) = 0 and Py = Py, g, € Q, and
write

\/ﬁ (02 — 90 — %Z X“@o,GOa )>
= \/ﬁ (én — 90 — %Zg(Xue(b G07P)>

1
1876, (s(én)ffls'T(én))_l

xy/n <S<én> - %i S(00)0(X; 6o, Goﬂ’)) (2.3.23)
=1
_ (f,;lsT(én) (S(én)fglsT(én))f

(o, Go, P)ST(6y) (5‘(00)1*1(00, GO,P)ST(00)>_1) S(6y)

n

X ﬁ Z E(Xl, 90, Go, P)

i=1
= Rl,n - R2,n - RS,n-
The asymptotic linearity of 6, from (2.3.2) implies that Ry, converges to 0 in
probability under Py. By the central limit theorem the second factor of R3,
is asymptotically normal with mean 0 and covariance matrix I~1(6y, Go, P)
from (2.3.3). Since $(-) is continuous and I,, and 6,, are consistent in estimat-
ing I(6y, Go, P) and 6, respectively, this implies that Rs,, converges to 0 in
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probability under P as well. We also conclude that the first factor of Rg,, is
bounded in probability. Together with the asymptotic linearity of S(6,,), as
noted at the start of this Section, this yields the convergence of Rs, to 0 in

probability under P.

It remains to be shown that (2.3.22) holds. In view of S(6y) = 0 and Appendix
2.3.7 we may parametrize a part of the zero set of S(-) near 6y by

So=1{010="00+ Ln+r(n), nc H}, (2.3.24)

where the k —d columns of the matrix L span the orthocomplement of [S(6y)],
r(n) = o(]| n ||) holds as || n || tends to 0, and H is an appropriate neighborhood
of 0 within R¥~?. Note that n=' 37| £(X;; 6o, Go, Q) is of the order O,(1/+/n)
under Py and takes its values in [L] in view of (2.3.15). Together with (2.3.24)
this shows that there exists a random k-vector R, = 0,(1/y/n) such that

O+ 2> U(Xi:600,Go, Q) + R € Sp (2.3.25)
=1

holds with probability tending to 1. Because of the definition of ,,, the triangle
inequality, and the asymptotic linearity of 8}, in the efficient influence function
as proved above, this yields

16— 6y, |
i=1
<[l 6o+ %> U(Xi360,Go,Q) = 0y, | + || Ra | (2.3.26)
i=1
o)
which proves (2.3.22). O

Remark 2.3.1. Consistent estimators I,, of I1(0,G,P) may be constructed
from 6, as in Section 4 of [20]. In regular parametric cases the Fisher informa-
tion 1(6) = I(0, G, P) depends on 6 only and is continuous in it. Consequently,
I, = I(6,) is consistent in estimating () then.

Remark 2.3.2. According to Theorem 2.3.1 the estimators 6}, and 0,, have the
same asymptotic performance to first order. However, only 0, is guaranteed to
be efficient within Q, since 6} need not be a zero of S(-). In order to compute

0,, to the desired order of precision one typically needs an iterative numerical
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procedure, like Newton-Raphson.

Remark 2.3.3. Parametrize the linear case by S() = RT(6 — o) with R a
d x k-matrix and « a fixed k-vector. Now, S(0) = RT holds and the estimator
from (2.3.20) reduces to

b, =6, — I7'R (RTf,;lR) TRT (én . a) . (2.3.27)

In terms of a k x (k — d)-matrix L, whose columns span the orthocomplement
of [ST(6)] = [R], this estimator may be written as

fp=a+L (LTIAnL>71 LTr, (én - a) (2.3.28)

according to the Appendix 1 in Subsection 2.2.7 of [20]. Note that this esti-
mator attains the asymptotic information bound

L(L"1(6,G,P)L)""

LT (2.3.29)
Comparing their formula (4.18) to (2.3.28) above we note that the approaches
of the present paper and of [20] yield exactly the same estimator in the linear
case, although the approaches differ in the general case.

Remark 2.3.4. The estimators 9 and 9 are efficient within the models QO
and P, respectively. Since Q is a submodel of P, it is easier to estimate 6
within @ than within P. This is visible in the respective limit distributions by
comparing (2.3.2) and (2.3.3) to (2.3.18). The difference between the two limit
covariance matrices is 1S (ST-1ST)~1SI~1, which is positive semidefinite
because of the nonsingularity of the symmetric information matrix I, the max-
imum rank of S, and the fact that the inverse of a symmetric positive definite
matrix is also symmetric positive definite.

By Theorem 2.3.1, (2.3.15), and (2.3.16) we have

~ _1 A
6o — 60 = L (LTIL) " L7 (0, — 00) + 0, (L) (2.3.30)
This means that 6, — 6y may be viewed as a projection of 0,, — 0y into [L],
approximately. In other words, 6,, tends to be closer to the true value 6y than
0,, in the metric induced by I
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2.3.5 Examples

Our construction of (semi)parametrically efficient estimators will be illustrated
in this section by some examples, all of which have been discussed also in
Section 5 of the companion paper [20].

Example 2.3.1. Coefficient of variation known

Let g(+) be an absolutely continuous density on (R, B) with mean 0, variance 1,
distribution function G, and derivative ¢'(-), such that [[14+2%](¢'/g(z))%g(x)dx
is finite. Consider the location-scale family corresponding to g(-). Let there
be given efficient estimators fi, and &, of u and o, respectively, based on
X1,..., Xy, which are i.i.d. with density o~!g((- — p)/o). By I;; we denote
the element in the ithe row and jth column of the matrix I = o21(6,G,P),
where the Fisher information matrix 1(0,G,P) is as defined in (2.3.3) with
0 = (p,0)T. Some computation shows

I = [(4)90 12 = I = [ aldJg(a) Pyl

and
m=ﬂﬁM@Hme

exist and are finite; cf. Section 1.2.3 of [29].

We consider the submodel with the coefficient of variation ¢/u known to be
equal to a given constant ¢. We may put this constraint in a linear form by
choosing S(0) = c¢#; — 62. By Remark 2.3.3 and Example 5.1 of [20] this
implies that the efficient estimator 6,, of # within the constraint model Q from
Theorem 2.3.1 equals B

On = (fin, cfin)” (2.3.31)

with
N -1 _ _
fin = (I1 + 2¢hs + Iao) (11 + cha) fin + (L2 + cl) 5,) . (2.3.32)

Similar relations hold for the symmetric and normal cases as discussed in
Example 5.1 of [20]. Note that one gets another, but still efficient estimator of
0, if one formulates the constraint in a nonlinear way. Choosing e.g. S(0) =
62/61 — ¢, we arrive by Theorem 2.3.1 at 6% = (1%, 0%)7, where straightforward
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computations with ¢, = 7, /i, yield

s = (I + 28, 11g + 2 1p) (2.3.33)
[(111 + {QEn — 6}112) Hn + (112 + {2571 — C}IQQ) 5n]
and
0% = (I + 28 T1o + E2122) " (2.3.34)
[(cIiy + cEnli2) fin + (Gnl12 + 5%-722) Tn) -

Indeed, this estimator is asymptotically equivalent to the one from (2.3.31),
but the corresponding coefficient of variation does not equal c. The projection
from (2.3.20) of 0% = (ur, o) yields 0, = (fin, cjin)? with
~ _ 92 -1
fn = (111 + 2¢, 119 + cnfgg) (2.3.35)
= 2 _ P = =2 _
[(Ill + %Il2> n + <11—:_Ccc2n Il2 + QCnl_f;CC” IQQ) Jn] s

which is asymptotically equivalent to fi,, but differs from it.
Example 2.3.2. Exchangeable Gaussian copula model

Let
Xl - (Xl,h cee 7X1,m)Ta .. '7Xn - (Xn,la cee 7Xn,m)T

be i.i.d. copies of X = (X1,...,X;,)T. For i =1,...,m, the marginal distri-
bution function of X; is continuous and will be denoted by F;. It is assumed
that (®~1(F1(X1)),...,® 1 (F,(X)))T has an m-dimensional normal distri-
bution with mean 0 and positive definite correlation matrix C(6), where ®
denotes the one-dimensional standard normal distribution function. Here the
parameter of interest 6 is the vector in R™(m~1/2 that summarizes all correla-
tion coefficients p,s, 1 < r < s < m. We will set this general Gaussian copula
model as our semiparametric starting model P, i.e.,

P={Poc : 0=(p12,- . pem-1ym)’ G = (Fi(),...,Fn(-)) € G}. (2.3.36)

As argued in [20] the Van der Waerden or normal scores rank correlation
coefficient

—~

5(n) jil @ (A F () 07 (R (X))

TS n . 2
1 _
1

J

S|

(2.3.37)
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with Fﬁn) and Iﬁ‘gn) being the marginal empirical distributions of F;. and Fj,
respectively, 1 < r < s < m, is a semiparametrically efficient estimator of p;s
with efficient influence function

gprs (X, Xs) = o (Fr (X)) o (Fs(X5)) (2.3.38)
— Lo { [T (F(X))] + [0 (RUX))}

This means that

A~

én - (97117 s 7énk>T - (ﬁgg)v s 7pAEnm)71)m)T7 k= m(m - 1)/27 (2339)
efficiently estimates 6 within P with efficient influence function

UX;0,G,P) = (s (X1, X2), o Loy (K1, X)) (2.3.40)

The submodel
Q={Pyg :0=14p, pe(-1/(m—-1),1), GeG}CP (2.3.41)

with 1; indicating the vector of ones of dimension k is the exchangeable m-
variate Gaussian copula model. In this submodel all correlation coefficients
have the same value p.

With J the k x k identity matrix we choose R = Ji — %1;91% and a = 0 in
Remark 2.3.3 and obtain

m—1

m k
S =13 "0, (23.42)

r=1 s=r+1 7=1

Bl

én = 1kgn = lkﬁnv én = pn =

as efficient estimator of § within submodel Q.
Example 2.3.3. Partial spline linear regression

As in Example 5.3 of [20] the observations are realizations of i.i.d. copies
of the random vector X = (Y, Z7, UT)T with Y, Z, and U 1-dimensional, k-
dimensional, and p-dimensional random vectors with the structure

Y =072 +(U) +-, (2.3.43)

where the measurement error ¢ is independent of Z and U, has mean 0, finite
variance, and finite Fisher information for location, and where ) (-) is a real val-
ued function on RP. The distribution function of Z, U, and ¢ and the function
¥(+) together constitute the nuisance parameter G whereas 6 is the parameter
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of interest. Schick [36] presents an efficient estimator of § and a consistent
estimator of (A, G,P) in his Theorem 8.1. Consequently our Theorem 2.3.1
may be applied directly in order to obtain an efficient estimator of § in appro-
priate submodels Q without our construction of an estimator of 1(0, G, P) via
characteristic functions. In the linear case of Remark 2.3.3 the parameter of
interest # within the submodel Q may be reparametrized by § = o + Lv with
the vector o and the matrix L known. Now v is the parameter of interest and
we return to the situation of (2.3.43) with X = (Y — a2, Z7L, UT)T.
Example 2.3.4. Multivariate normal with common mean

Let G be the collection of nonsingular k x k-covariance matrices and let the
parametric starting model be the collection of nondegenerate normal distribu-
tions with mean vector 6 and covariance matrix X,

P = {Rg,E cheRF, T e g}. (2.3.44)

Efficient estimators of # and ¥ are the sample mean X, = n~" Z?:l X, and
the sample covariance matrix 3, = (n — 1)~' 0 (X; — X,)(X; — X,)7T,
respectively. Note that X,, attains the finite sample Cramér-Rao bound and
the asymptotic information bound with I(0,%,P) = 1.

The parametric submodel we consider is

k
1
Q=<{ Py : 0cRF 9:1k%29j, Yegy, (2.3.45)
j=1

in which all marginals of each distribution have the same mean. In view of
(2.3.28) with L = 14

o -1 ~ _
b, = 1, (1{2;11k> 17$-1%, (2.3.46)

is an efficient estimator ?f f within Q, which attains the asymptotic informa-
tion bound (1{2*11;6)_ 1k1£. See also Example 5.4 of [20].
Example 2.3.5. Restricted maximum likelihood estimator

Maximum likelihood estimation of the generalized linear model under linear
restrictions on the parameters is done in [27] via an iterative procedure using a
penalty function. Kim and Taylor [28] introduce the restricted EM algorithm
for maximum likelihood estimation under linear restrictions. Jamshidian [45]
compares the performance of the gradient projection and of the expectation-
restricted-maximization (ERM) method under linear restrictions. Our ap-
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proach as described in Remark 2.3.3 with 6,, a(n unrestricted) maximum likeli-
hood estimator avoids such iterative procedures, provided 0,, can be computed
without iterations. Moreover, Theorem 2.3.1 is not constrained to linear re-
strictions.

2.3.6 Conclusion

In this paper, we have shown that the efficient influence function for estimation
of # within the semiparametric model

Q:{PQ’G : S(Q):O,HGG,GEQ}

can be obtained by projecting the efficient influence function for estimation of
0 within the unconstrained model

P={Pc : 60, GegG}.
It follows that these influence functions are related by
6,G, Q)
- (J —I740,G,P)S(6)T (5'(9)1*1(9, G, P)S(@)T)

-1

S(Q)) 06, G,P)

and hence the corresponding efficient lower bounds by
40,6, =176,G,P)
—I7Y0,G,P)S(O)T (s‘(e)rl(e, G,P)S(Q)T)_ SO)I71(0,G,P).
Furthermore, Theorem 2.3.1 provides a simple method to upgrade an asymp-

totically efficient estimator for # within the unconstrained model to an efficient
estimator within the constrained model.

2.3.7 Additional Proof: Existence of a Path with a Given Di-
rection

Given a continuously differentiable function S : © ¢ R* — R? with k > d.
Define
M={0e€0:50) =0}
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and let fp € M be such that the Jacobian of the function S at 6o, say S (6o),
has full-rank d. Suppose that r € R¥ with S(fy)r = 0. We would like to
construct a path through 6y with direction r.

Note that according to the Implicit Function Theorem, there exists an open
subset U C RF? 0 € U, and a unique continuously differentiable function
¢ : U — M with ¢(0) = 6 (usually, called parametrization). If ¢y denotes
the Jacobian of the function ¢ at 0, then the chain rule gives

S(00)po =0
in view of S(¢(u)) = 0 for every u € U. This implies
im(¢o) C S(60)™
Since dim(im(¢o)) = k — d = dim(S(6p)*) we obtain
im(¢o) = S(60) "

Consequently, the direction 7 has to belong to z'm(d)o), which means that there
exists a v € U with ¢gv = r. Now define a path

{0y} ={o(w) : neR, |n] <e}

for sufficiently small & > 0, which obviously passes through 6y because of
#»(0) = By. Then, we have

|6y = 00 —nr| = |d(nr) — ¢(0) — nr|

[ndov = nr| + o(jn)

IN

= o([n])-

2.4 Conclusion of Chapter 2

In this chapter, we have proposed efficient estimators for (semi)parametric
models whenever the parameter of interest is constrained, by updating an
estimator that is efficient within the model without constraints.

In Section 2.2, we considered the case where the Euclidean parameter of inter-
est is determined by a lower dimensional parameter via a continuously differ-
entiable function. An efficient estimator of this lower dimensional parameter
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can be defined in terms of the restriction function and the efficient estimator
of the original estimator. It has also been shown that this estimator attains
the efficient lower bound, which is obtained via the Hajek-LeCam Convolution
Theorem for regular parametric models and without projection techniques. In
the case where the parameter of interest has to satisfy a functional equal-
ity constraint, we have proposed a construction of an efficient estimator of
the parameter of interest without reparametrization in Section 2.3. This con-
struction is based on the original parameter and the function defining the
constraint. Unlike in the first case, we have derived the efficient lower bound
by a projection technique here.
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Chapter

Semiparametric Copula-Based Score
Level Fusion

3.1 Chapter Introduction

PURPOSE. This chapter presents the use of copula models to handle depen-
dence between matchers in score level fusion. The use of copula models is
aimed at improving on the fusion method that assumes independence between
matchers.

CONTENTS. Section 3.2 explains a mathematical framework for building a
semiparametric likelihood ratio-based fusion and for estimating the underlying
parameters. The corresponding semiparametric model is made by modeling
the marginal individual likelihood ratios nonparametrically and the depen-
dence between them by parametric copulas. Some applications in real biomet-
ric scenarios are given briefly by computing the individual likelihood ratios via
the PAV algorithm, by modeling dependence via some well-known parametric
families of copulas, and by demonstrating how the best copula pair for gen-
uine and impostor scores is obtained. The special case when the dependence
between matchers for genuine and impostor scores is modeled by Gaussian
copulas with the same correlation matrices and the individual likelihood ra-
tios are computed by kernel density estimation (KDE), is presented in Section
3.3 and evaluated for standard biometric verification scenarios. A more gen-
eral method, which is also based on copula models, is provided in Section3.4
for standard biometric verification scenarios as well by setting the false ac-
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ceptance rate in advance. The Jeffreys’ credible interval for comparing the
proposed method to the simple fusion method, which assumes independence
between matchers, is also provided in Section 3.4.

PUBLICATIONS. The manuscript presented in Section 3.3 has been published
in [50], and Section 3.4 has been accepted for publication at BTAS 2016.

NOTES. The reader may focus on the following subsections:

(1) 3.2.4 explains how the LR is computed via copula models;

(2) 3.2.5.2 presents estimation of parameters for computing the LR;

(3) 3.2.6 demonstrates the choice of the best copula pair in some scenarios;
(4) 3.4.3 discusses Jefreys’ method for comparing two fusion strategies.

Subsection 3.4.4 gives the mathematical background that has already been
explained in Subsections 3.2.4 and 3.2.5.2. We also note that the manuscript
presented in Section 3.3 was published before the manuscripts from Sections
3.2 and 3.4 had been written. Therefore, the individual likelihood ratios in
Section 3.3 were computed by the KDE method instead of the PAV algorithm
as used in Sections 3.2 and 3.4.

3.2 Semiparametric Likelihood-ratio-based Score Level
Fusion via Parametric Copulas

3.2.1 Abstract

We present a mathematical framework for modelling dependence between
matchers in likelihood-based fusion by copula models. The pseudo-maximum
likelihood estimator (PMLE) for the copula parameters and its asymptotic per-
formance are studied. For a given objective performance measure in a realistic
scenario, a resampling method for choosing the best copula pair is proposed.
Finally, the proposed method is tested on some public databases from finger-
print, face, speaker, and video-based gait recognitions under some common
objective performance measures: maximizing acceptance rate at fixed false
acceptance rate, minimizing half total error rate, and minimizing discrimina-
tion loss. We also compare the proposed method to Gaussian mixture model
(GMM) and linear logistic (Logit) methods, which are also designed to handle
dependence.
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3.2.2 Introduction

In a biometric verification system, biometric samples (images of faces, finger-
prints, voices, gaits, etc.) of people are compared and classifiers (matchers)
indicate the level of similarity between any pair of samples by a score. If two
samples of the same person are compared, a genuine score is obtained. If a
comparison concerns samples of different people, the resulting score is called
an impostor score. Depending on the application, a biometric verification sys-
tem may give either a hard decision or a soft decision. Hard decision means
that the system decides whether two biometric samples (query and template)
are from the same individual or not by comparing the score to a threshold. On
the other hand, the soft decision can be used in a forensic scenario by only
giving the likelihood ratio (LR) value as an evidential value and let the final
decision to the judge [3]. A common performance measure for this scenario is
the cost of log likelihood ratio that can be decomposed into discrimination and
calibration performance [8].

When our biometric system has two or more classifiers, one has to transform
these multiple scores to a new score (a scalar) as a fused score, which is called
score level fusion. It is convenient if the fused score is again an LR because:
(1) it is optimal for standard biometric verification [15] and (2) it reflects
evidential value in forensic individualization [3]. By assuming independency
between classifiers, the fused LR is only the product of the individual likelihood
ratios of the classifiers (henceforth called PLR fusion). However, the score level
fusion problem becomes difficult if the scores are dependent. In this paper, we
propose a score level fusion method with the following advantageous:

1. The fused score is an LR.
2. It can deal with dependent scores.

This paper uses the copula concept to handle dependence between classifiers.
Although the copula model is already used in [50-53] for some different sce-
narios, none of them provides analytically how this model is built and why
the estimation of parameters determining the model is reliable. After explain-
ing some related works in Section 3.2.3, this paper will explain how a copula
model splits the LR computation for two or more classifiers into a product of
the individual likelihood ratio and a correction factor in Section 3.2.4. Section
3.2.5 introduces a semiparametric model of LR-based fusion and subsequently
provides an estimator of the proposed model with its convergence analysis.
Detailed procedures to apply for several different applications of our method
is given in Section 3.2.6. Finally, our conclusions are presented in Section
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3.2.7.

3.2.3 Score Level Fusion

There are three categories in score level fusion: transformation-based [13],
classifier-based [14], and density-based (also called likelihood-ratio-based) [16].
The transformation-based fusion is done by mapping all components of the
vector of comparison scores to a comparable domain and applying some sim-
ple rules such as sum, mean, max, med, etc. Apart from its simplicity, it is
important that the training set is representative of the data. For instance,
to normalize scores to the unit interval [0,1], one must have the minimum
and maximum scores. However, if the training data has outlier(s) then this
estimation will not be reliable and may destroy the fusion performance. The
classifier-based fusion acts as a classifier of the vector of the comparison scores
to distinguish between genuine and impostor scores. These two first cate-
gories cannot be used in forensic scenario since the fused score is not always
an LR value. The last category would be optimal for biometric verification
if the underlying distributions were known according to the Neyman-Pearson
lemma [15]. Moreover, the fused score, as an LR value, can be used for foren-
sic evidence evaluation [3] in forensic individualization as a multiplicative fac-
tor for the information before analyzing the evidence (prior odds) to get the
new information after taking the evidence into account (posterior odds) via
Bayesian framework

Oposterior = LR x Oprior- (321)

Since these distributions are unknown in practice then the performance does
depends on the accuracy of the LR computation.

The LR is defined as the ratio between the density functions of the genuine and
impostor scores. There are two categories for computing the LR: (1) estimat-
ing the density functions of the genuine and impostor scores separately and (2)
estimating the LR directly. The common approaches of the first category are
modelling the underlying densities parametrically (assuming normal, Weibull,
Gaussian mixture, etc.) and nonparametrically (kernel density estimation,
histogram binning, etc.). The parametric model is usually used because of its
simplicity and nonparametric model is chosen because of its flexibility. How-
ever, the main problem in using parametric models is the difficulty in choosing
the appropriate model whereas nonparametric estimators have sensitivity in
the choice of the bandwidth or other smoothing parameters, especially for our
multivariate case. A common parametric model to compute the density ratio
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directly, is the logistic regression method (Logit) by assuming the LR hav-
ing some parametric form such as linear, quadratic, and so on. Although this
method can also be used for the multivariate case [54,55], the same problem in
choosing an appropriate model will also appear. On the other hand, a nonpara-
metric approach called Pool Adjacent Violators (PAV) method, which seems
promising because of its optimality in transforming score to its LR value [8],
is only applicable for 1-dimensional score which means that it cannot be used
to compute the LR for fusion.

Many studies of score level fusion assume independency between classifiers;
see [55-57]. However, the independency assumption is not realistic since the
scores are obtained from the same sample. To incorporate the dependency
between classifiers, we propose a semiparametric LR-based biometric fusion
by modelling the marginal individual likelihood ratios nonparametrically and
the dependence between them by parametric copulas, to trade off between the
limitations of parametric and the flexibility of nonparametric models.

3.2.4 Likelihood Ratio Computation via Copula

Suppose we have d classifiers and let (s1,---,$4) denote the concatenated
vector of d similarity scores where s is the corresponding score from the k-th
classifier for k = 1,...,d. Let fgen and fimp be the densities of genuine and
impostor scores, respectively. The likelihood ratio at a point (sq,---,sq) is
defined by
. fgen(sla T ,Sd)
fimp(sly Ty Sd) ‘
Using the copula concept, the densities fgen and fimp will be split into their
marginal densities and a factor modelling their dependency.

LR(s1, " ,84) (3.2.2)

A d-variate copula is a distribution function on the unit cube [0, 1]¢, of which
the marginals are uniformly distributed. Sklar [18] shows the existence of
copula for any multivariate distribution functions f.

Theorem 3.2.1 (Sklar (1959)). Let d > 2, and suppose H is a distribution
function on R with one dimensional continuous marginal distribution func-
tions F1,--- , Fy. Then there is a unique copula C so that

H(zy,...,zq) = C(Fi(x1),..., Fy(zq)) (3.2.3)

for every (x1,...,24) € R
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By taking the d-th derivative of (3.2.3), we will get the joint density function

h(a:l, ... ,a:d) = C(F1($1), e 7Fd<$d))

d
X H filas) (3.2.4)

where c¢ is the copula density and f; is the ¢-th marginal density for every
i=1,---,d. This implies that (3.2.2) can be written as

Cgen(Fgen1(51), "+ 5 Fgena(8a))
Cimp( imp, 1(31) : 1mp,d<3d))

LR(517 to 78d) =

fgen z(sz

)
=1 flmp 1(32)

x (3.2.5)

where cgen and cimp are the copula densities of genuine copula Cgen and im-
postor copula Ciy,p, respectively. The second factor of (3.2.5), which is the
product of the individual likelihood ratios

d

d . S.
PLR(s) = [ | }an((s)) = [ LR:(si). (3.2.6)
j=1 JMMP,EAT i=1

will be called the Naive Bayes part, while the first factor, which is the copula
density ratio

Cgen(Fgen,l(sl)y T 7Fgen,d(3d))

CF s (Cgen,cimp) —
( ) Cimp(Emp,l(sl)a T 7Rmp,d(sd))

(3.2.7)

will be called the correction factor where the superscript (Cgen, Cimp) means
that the CF is modelled by copulas Cgen and Cipp for genuine and impostor
scores, respectively. We call (3.2.7) as correction factor because it corrects the
likelihood ratio computation under independence assumption.

3.2.5 Semiparametric Model for Likelihood Ratio Computa-
tion

The LR as defined in (3.2.5) could be computed exactly if the marginal and
copula densities of genuine and impostor scores were known. However, they
have to be estimated from training data that will be done semiparametrically,
modelling the Naive Bayes part and distribution functions nonparametrically,
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and the dependence between them by parametric copulas. Note that we aim at
incorporating dependence between classifiers. Therefore, the copula parameter
is the main parameter that one is interested in, which is called the parameter
of interest, while the marginal likelihood ratios and distribution functions are
treated as nuisance parameters in the sense that they are less important than
the copula parameter when modelling dependence between classifiers. How-
ever, in computing the LR itself, we need to estimate all parameters composing
(3.2.5).

This section will present three main steps of computing the LR using our
approach: (1) computing the Naive Bayes part, (2) computing the correction
factor for a given copula pair of genuine and impostor scores, and (3) choosing
the best copula pair for a specific performance measure. Let

Wi,...,. W (3.2.8)

) Ngen

and

Bi,.. (3.2.9)

-+ Bo,

be i.i.d copies of d-dimensional random variable of genuine scores W = (W7, - - -
and impostor scores B = (By, -+ , By), respectively. Here, we will assume that
the random variable of genuine and impostor scores are continuous.

3.2.5.1 Naive Bayes part

The Naive Bayes part is typically easy to be computed because there are sev-
eral methods of computing the LR for 1-dimensional scores. The most common
ways are Kernel Density Estimation (KDE), Logistic Regression (Logit), His-
togram Binning (HB), and Pool Adjacent Violators (PAV) methods; see [4]
for a brief explanation of these methods. In this paper, we choose the PAV
method because of its optimality [57].

For every k =1,--- ,d, PAV sorts and assigns a posterior probability of 1 and
0 to the k-th component of genuine and impostor scores, respectively. It then
finds the non-monotonic adjacent group of probabilities and replaces it with
average of that group. This procedure is repeated until the whole sequence is
monotonically increasing which estimates the posterior probability P(H1|(+))
of the k-th component of (3.2.8) and (3.2.9) where H; correspond to a genuine
score. By assuming

P(Hl) — _ Mgen

b
Ngen + Nimp
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the corresponding LRys of (3.2.8) and (3.2.9) can be computed according to
the Bayesian formula by

PULI() | iy

EReC) = TPRI0) ™ s

(3.2.10)

so that we have a numerical function that maps score to its ITI\%;C Finally,
for every score from the k-th classifier, its corresponding LRy value can be
computed by interpolation.

3.2.5.2 Semiparametric correction factor estimation

While the Naive Bayes part is modelled nonparametrically, the correction
factor will be modelled semiparametrically by assuming Cgen and Ciyp to
be parametric copulas. Let fgen and i, denote the dependence parameters
determining Cgen and Ciyp, respectively. Since the marginal distributions are
treated as nuisance parameters as noted before, we will focus on the estimation

egen

of parameter of interest § = ( ) Thus our correction factor model is

defined by

0 imp

CF = {CFy &™) . geo, FeF) (3.2.11)

where © C R is open and F is a collection of continuous marginal distri-
bution functions. Here, D is the dimensionality of 8, which is the sum of
dimensionalities of Oge, and 6iy,p, and

F= (Fgen,h e 7Fgen,da Emp,la T aEmp,d)' (3212)
Note that if the marginal distributions Fyen x and Fipp for & =1,...,d are

known then the log-likelihood of the combined samples (3.2.8) and (3.2.9) can
be written as

Ngen Nimp
L= logcy,, (Ugeni) + Y _logcs,, (Uinp;) (3.2.13)
i=1 j=1
where
Ugen,z’ = (Fgen,l(Wl,i)7 o ;Fgen,d(Wd,i))
and

Uimp,i = (Emp,l(Bl,j)v e 7Emp,d(Bd,j))
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for i = 1,...,ngen and j = 1,...,Nimp. Differentiating (3.2.13) with respect
to 0 gives
&= 8Cegen (Ugen,i)

Z Clgen (Ugen,i)

i=1

=0

and -
5 2tm, (Uimp) _ o
= iy (Uinnp,j)
As a consequence, if Fye, , and Fin,p, . are replaced by their modified empirical
distribution functions based on samples

Wk71, ceey kagen

and
Bk,l? ) Bk,nimpa

respectively, we will get two-step estimators égemngen and éimp,nimp called pseudo-
mazimum likelihood estimator (PMLE) of gen and 6imyp, respectively, as stud-
ied in [58] and extended in [19]. Our modified empirical distribution function
based on a sample X1,...,X,, is defined by

- 1

Fo(o) = —— > lixi<sp VT ER (3.2.14)
1=1

Under some regularity conditions, we can derive the convergence of

A~

0, = <?gen="g6n> (3.2.15)

gimp’nimp

in the following theorem.

Theorem 3.2.2. Write n = ngen + Nimp and assume 0 < lim, ngen/n <
1. If copula Cgen and Cimp satisfy conditions C2-C4 and assumption AI-Ab
explained in Section 3 of Chen and Fan [19] then

N (én . 9) 5 N(0,3) (3.2.16)

holds as n — oo for some positive definite covariance matrix 3.

Proof. Proof is given in the Appendix 3.2.8. O
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This theorem guarantees the convergence of 6,, with order 1 /v/n. In a weaker
statement, it tells that the estimated LR tends to the true LR if our parametric
copulas correctly specify the true copulas and the sample size is big enough.

3.2.5.3 Choosing the best copula pair

Note that the LR at score s = (s1,---,sq) under correction factor model
(3.2.11) can be computed by a rule of thumb:

d
LR (Cuen Cimn) (5) = T LRi(sy) x CFiCxeCme)(s) (3.2.17)
k=1 e

Here ij{k() and 0, are given by (3.2.10) and (3.2.15), respectively, while £,
is the modified empirical version of (3.2.12), which is obtained by replacing
all components in F' with their corresponding modified empirical distribution
functions. However, the choice of the appropriate parametric copulas can be
difficult in practice. Therefore, what we can do is assuming Cgen and Ciyp
belong to a family of parametric copulas and choosing the best copula pair.
Interestingly, Theorem 3.2.2 is still valid although the copula pair (Cgen, Cimp)
misspecified the true pair. It means that we will still get a reasonable estimator
of the dependence parameter whenever a copula pair is chosen.

As noted in Section 3.2.2, combining classifiers in biometric recognition may
have different goals depending on the application or scenario. For a given
classifier K, let e(K) be a performance measure of classifier K. Assume that
the smaller value of e(K), the better performance of the classifier K. For
instances, e(K) can be the equal error rate, total error rate, false rejection
rate at certain false accept rate, 1 minus area under ROC curve, and so on.

Let
C={Cy---,Cn}

be a family of n. candidate copulas. Since a goodness-of-fit test as provided
in [59] will only give the copula pair that is closest to the pair (cgen, Cimp),
but whose ratio is not necessarily closest to the ratio cgen/cimp, We propose
to choose the best copula pair as follows. Let K(i,7) be the classifier using
copula pair (Cj, Cj) in its correction factor model for 1 < 4, j, < n., which is
defined by

Kij(s) = LR(C:Ci(s), Vs e R?

as given in (3.2.17). Given a performance measure e, our model selection
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will choose (Cy, Cy) as the best copula pair with respect e if e(K, ) has the
smallest value among other pairs, i.e.,

e(Kry) <e(Kj), VI1<i,j,<ne.

If there are two or more best pairs then we choose one of them at random.
Note that it is always useful to include independence copula in C to guaran-
tee that the chosen fused classifier performs at least as good as fusion under
independence assumption.

3.2.6 Applications

We will present how our correction factor works and improves the PLR fusion
in some practical scenarios: maximizing TMR at certain FMR, minimizing half
total error rate (HTER), and minimizing discrimination loss. The first two
scenarios are usually used in a standard biometric verification while the last
one is used in forensic scenarios. To approximate the correction factor, we will
use the following parametric copulas: independence copula (ind), Gaussian
copula (GC), Student’s ¢ (t), Frank (Fr), Clayton (Cl), flipped Clayton (fCl),
Gumbel (Gu), and flipped Gumbel (fGu). Therefore, the copulas Cgen and
Cimp are chosen from the copula family

C = {ind, GC, t, Fr, Cl, Gu, {Cl, f{Gu}.
These parametric copulas are the same as used in [52,53].

Suppose that we have genuine and impostor scores as given in (3.2.8) and
(3.2.9), respectively, that will be used to train our method with respect to an
evaluation measure e. Our procedure to choose the best copula pair is simple.
We randomize the genuine (impostor) scores and take two disjoint subsets
with size

Ny = min {10000, | nimp/2] }

and
ny = min {10000, [ngen/2]}.

This re-sampling method is aimed at increasing the computation speed because
it will be repeated 100 times to see the consistency. After all 64 fused classifiers

LR = {LRCeenCimn) + Cyep, Cianp € C}

are trained using the first subset, their evaluation measures are then computed
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Table 3.1: Sample size of training and testing sets

training testing
genuine | impostor | genuine | impostor
NIST-finger 1,000 999,000 5,000 | 2,4995,000
Face-3D 106,762 | 21,987,938 | 46,912 | 16,005,130

Databases

BSS1 968 936,056 968 | 1,089,000
BSS2P1 1,853 | 3,431,756 | 1,853 | 3,431,756
BSS2P2 1,853 | 3,431,756 | 1,853 | 3,431,756

BSS3 7252 | 2,460,980 | 7,629 | 2,612,826

XM2VTS 600 40,000 400 111,800

on the second subset. Of the n. x n. resulting different fused classifiers we
choose the one that minimizes the performance measure e. We then com-
pare the performance of the chosen pair to the PLR method using the paired
t-test at significance level 0.01 to see whether the difference is significant or
not. If the performance of the chosen pair is significantly different from the
PLR method then we use this copula pair in computing the correction factor.
Otherwise, we take (ind,ind) as the best pair or in other words we simply use
the PLR method. For the Logit and GMM methods, we employ the linear
logistic regression as used in [55] for the Logit method while the parameters
in the GMM method are fitted by the algorithm proposed in [60], which au-
tomatically estimates the number of mixture components using the minimum
message length criterion with the minimum and maximum numbers of com-
ponents being 1 and 20, respectively. Once all fusion strategies have been
trained, their performances with respect to the performance measure e are
computed based on the testing set. The sample sizes of genuine and impostor
scores for both training and testing sets of all databases are given in Table
3.1.

3.2.6.1 Maximizing TMR at Fixed FMR

In standard biometric verification, one has to set a threshold A such that a
score greater than or equal to the threshold is recognized as genuine score while
a score less than the threshold is recognized as impostor score. Therefore, a
biometric recognition system can make two different errors: accept an impostor
score as genuine score and reject a genuine score. The probability of accepting
an impostor score is called the False Match Rate (FMR(A)) with threshold A,
while the probability of rejecting a genuine score is called the False Non-Match
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Rate (FNMR/(A)). The complement of the FNMR(A) is called the True Match
Rate (TMR(A)), which is defined as the probability of accepting a genuine
score as genuine score. Since every genuine score will be either accepted or
rejected by the system, we have TMR(A) = 1-FNMR(A). The most common
method to see the performance of a biometric person verification system is by
plotting the relation between FMR(A) and TMR(A) for all A € (—o0,0),
which is known as Receiver Operating Characteristic (ROC) [1].

Performance measure: The threshold can also be determined by putting a
FMR value in advance. For a given fixed FMR = «, the corresponding TMR
value can be estimated based on data. Let

Wi, W (3.2.18)
Bi,--, By, (3.2.19)

be 1-dimensional genuine and impostor scores, respectively. In our case, these
are the fused scores of the testing set. According to [2], the TMR, can be
estimated by

- Fg?n(@ﬁ‘_ (1 - Oé))

imp
where Fgo, and Fj

on (3.2.18) and (3.2.19), respectively while Q f—- is the empirical quantile func-

imp

are left-continuous empirical distribution functions based

tion with respect to F— . Slightly different from (3.2.14), the left-continuous

imp*
empirical distribution function based on a sample X1, --- , X, is defined by
1- n
Fi(w) =~ > 1ixi<a}p, VT ER (3.2.20)

i=1

and its corresponding quantile function is defined by

Qp-(p) =supfy : F(y) <p}, VYpel[o1]. (3.2.21)

Since higher TMR leads to a better classifier, the performance measure in this
standard verification scenario is e = 1 — TMR,,.

Databases: We use NIST-finger [61] and Face-3D [62,63] data to simulate
fingerprint and face authentication, respectively.

e NIST-finger: NIST-finger contains fingerprint similarity scores from one
system run on images of 6000 subjects. Each subject has one left index
and one right index fingerprint both in the gallery and probe sets. All



70 Chapter 3. Semiparametric Copula-Based Score Level Fusion

Table 3.2: Best copula pair at several FMRs of our method on the NIST-finger and
Face-3D databases

Best pair at FMR
10°° 107 10°3
NIST-finger | {Gu,t} | {Gu,t} | {ind,ind}
Face-3D {ind,Fr} | {ind,Fr} | {indFr}

Databases

comparison scores of all pairs of left index fingerprints and all pairs of right
index fingerprints are then computed. Here, we can consider the comparison
scores based on left and right index fingerprints to be the first and second
classifiers that will be combined. We use the first 1000 subjects for training
and the rest for testing.

e Face-3D: Face-3D is used in [62,63] for 3D face recognition. The training
and the testing set are already defined and contain very different images
(taken with different cameras, backgrounds, poses, expressions, illumina-
tions and time). In his papers, the author proposes 30 classifiers operating
on 30 different facial regions. We only use 5 regions out of these 30: simi-
larity of the full face, the left half, the right half, the bottom part, and the
upper part of the face. This choice is made to have dependent classifiers.

Results: We train our method at FMR 1075, 1074, and 1073. The best copula
pairs and the TMRs for all scenarios are given by Table 3.2 and Table 3.3,
respectively. It is shown that on the NIST-finger database the improvement
of our method compared to the PLR method is relatively small and that all
fusion methods have almost the same performance as seen in Figure 3.1, which
shows that the ROC curves of all fusion methods almost coincide. On the other
hand, the improvement of our method compared to the PLR method can be
clearly seen by the Face-3D database. This phenomenon occurs because the
left and right index fingerprints are almost independent while the overlapping
regions on the Face-3D database are dependent. Interestingly, the dependence
on the Face-3D database cannot be captured by the GMM method and this
GMM method even performs worse than the best single matcher (BSM). This
happens because the estimated number of components in the GMM method
is equal to the maximum value (20) that we chose. This suggests that the
number of components might be more than 20. However, if we increase the
number of components then the estimator becomes less reliable.
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Figure 3.1: ROC curves of different fusion strategies on (a)NIST-finger (b)face-3D

Table 3.3: The TMRs of different fusion strategies on the NIST-finger and Face-3D
databases. The bold number in every column is the best one.

NIST-finger Face-3D

Methods TMR at FMR
10 [ 100* [ 1073 [ 107 | 107* | 1073
BSM 0.793 | 0.835 | 0.887 | 0.784 | 0.849 | 0.900
PLR 0.882 | 0.912 | 0.939 | 0.817 | 0.866 | 0.917
Logit 0.883 | 0.911 | 0.939 | 0.828 | 0.876 | 0.918
GMM 0.878 | 0.910 | 0.937 | 0.747 | 0.812 | 0.896
Proposed | 0.884 | 0.914 | 0.939 | 0.823 | 0.884 | 0.946
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3.2.6.2 Minimizing HTER

Performance measure: Besides maximizing the TMR at certain FMR, one
may also be interested in minimizing some types of error:

e Equal error rate EER: Let A* be the threshold value at which FMR(A*)
and FNMR(A*) are equal. Then EER is defined as the common value
EER = FMR(A*) = FNMR(A*).

e Total error rate TER(A): The sum of the FMR(A) and the FNMR(A), i.e.,
TER(A) = FMR(A) + FNMR(A). One may also consider the half total
error rate HTER(A) = TER(A)/2, to keep the error value between 0 and
1.

e Weighted error rate WER3(A): A weighted sum of the FMR(A) and the
FNMR(A), i.e., WERg(A) = BFMR(A)+(1—B)FNMR(A), S € [0,1]. The
weights are usually called cost of false acceptance and cost of false rejection.

e Area under ROC curve (AUC).

Here, A is the threshold to compute the FMR and FNMR. Note that for a
given § € [0, 1], we can set the performance measure e = infa WERg(A) and
follow our procedure to get the best copula pair. To give an illustration, we will
put 8 = 0.5, which leads to infa HTER(A). Frequently, the minimum value
of HTER is approximated by the EER. This EER is used to report a fusion
performance in [17,56]. However, as pointed out in [64], the corresponding A*
is only a decision threshold and hence EER should not be used to measure
performance. To report fusion performance itself, they suggest to set the
threshold A* using the training set and to report the final performance by
computing the HTER(A*) on the testing set. Therefore, we train our method
by following this procedure but adapted as follows. Once all 64 copula based
fusion strategies have been trained on the first subset of the training set, they
are applied to the first subset of the training set to determine the threshold A*
and to the second subset of the training set to compute the HTER(A*). For
all our benchmark methods, the threshold A* is determined using the fused
scores of training data and the HTER(A*) is computed using the fused scores
of the testing data.

Databases: We use the same publicly available scores databases as used
in [17] from video-based gait biometrics. There are 4 databases in which their
training and testing sets are already clearly defined.

e BSS1: This database contains three-dimensional scores based on the gait
energy image (GEI), gait period, and height of the subject [65].
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Table 3.4: The HTERs of different fusion strategies on the video-based gait databases.
The bold number in every column is the best one.

Methods BSS1 BSS2P1 | BSS2P2 | BSS3

BSM 0.042 0.050 0.048 0.150
PLR 0.035 0.056 0.042 0.132
Logit 0.034 0.052 0.041 0.136

GMM 0.034 0.047 0.034 0.134
Proposed, 0.034 0.047 0.035 0.131
Best pair | {Gu,fCl} | {Gu,GC} | {t,t} | {Gu,Cl}

e BSS2P1: This database is composed of three-dimensional scores based on
the GEI and 1- and 2-times frequency elements in the frequency-domain
feature [65].

e BSS2P2: This database is almost the same as the BSS2P1 database but
the scores are computed based on the GEI, chrono-gait image, and gait low
image [65].

e BSS3: This database is composed of two-dimensional scores from a wearable
accelerometer and a gyroscope sensor [66].

Results: The HTERs of different fusion strategies are reported in Table 3.4.
We do not present the performance of other fusion strategies used in [17] be-
cause it is already shown there that the pseudo likelihood ratio method is
always among the first or second best results for all databases. Hence we are
mostly interested in how our method can improve the PLR method. Interest-
ingly, we can see that the PLR method performs worse than the best single
classifier on the BSS2P1 database. This may be because ignoring dependence
of dependent classifiers will degrade the performance of the fusion. This is
confirmed by the performance of our method, which does take the dependence
into account. It is better than the best single classifier. We can also see that
the GMM method is comparable to our method for all databases. Apparently,
the GMM method fits the dependence structures quite well.

3.2.6.3 Minimizing discrimination loss

The last application of our method concerns forensic biometric scenarios. Un-
like the standard biometric verification that gives a hard decision whether a
score is genuine or impostor, the likelihood ratio value in the forensic case only
provides a soft decision, which can be used to support the judge in court to
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make an objective decision [3].

Performance measure: Fusion is hoped to integrate the complementary
information from the individual classifiers. In a forensic scenario one aims
at increasing the discrimination power (the ability of distinguishing between
genuine and impostor scores). Briimmer and du Preez [8] introduce a measure
called the cost of log likelihood ratio (Cy;) in the field of speaker recognition,
which may be interpreted as a summary statistic for a LR computation [67].
This measure is also used in forensic face scenarios in [12]. Note that the scores
are interpretable as likelihood ratios when computing this measure. Given 1-
dimensional genuine scores (3.2.18), which correspond to the hypothesis of the
prosecution, and impostor scores (3.2.19), which correspond to the hypothesis
of the defense, the cost of log likelihood ratio CY, is defined by

1 & 1
Ciie = 5, > log <1 * VV@')

gen i=1

Timp
> log, (14 By). (3.2.22)
j=1

+

2Nimp

To explain the name of this measure we note that our fused scores are LR
values and may be rewritten in terms of the logarithm of LR. The minimum
value of the CY, (denoted by Hrr;in), which is obtained by plugging the scores
after PAV transformation into (3.2.22), is called the discrimination loss. This
measure can be seen as the opposite of discrimination power. The smaller
the value of this quantity, the higher the discrimination power. The difference
between the Cj, and the fﬁin is called the calibration loss

ol = ¢y, — Cin, (3.2.23)

Calibration is transforming a biometric comparison score to its LR value.
It means that the calibration loss Cﬁfl tends to zero if the scores are well-
calibrated and grows without bound if the scores are miscalibrated. Since we
are interested in having better discrimination power, we put the performance
measure e = C’H“;in. Nevertheless, the Cy; and the discrimination loss will also
be reported.

Databases: We use the following databases:

e XM2VTS: There are 8 classifiers in this database: 5 face classifiers and 3
speech classifiers. In order to have an application in the field of speaker
recognition, we only take the speech classifiers. Moreover, only the LFCC-
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GMM and SSC-GMM classifiers are used in this experiment because they
have the highest correlation value among all pairs. The training and testing
sets are already defined [64].

e Face-3D: The same database as used for the standard verification in Section
3.2.6.1.

Results: The fﬁin and CY, values of different fusion strategies and the best
copula pair of our method on the XM2VTS and Face-3D databases are pre-
sented in Table 3.5. Our method outperforms other methods with respect
to the performance measure ﬁ?rin. Moreover, the Cjj, of our method on the
XM2VTS database is only slightly higher than the GMM method and on
the Face-3D database our method even has by far the smallest C, among all
methods. As before, the GMM method performs poorly even it is compared to
the best single classifier. Surprisingly, even though the Logit method performs
better than the PLR method for the standard biometric verification scenario
in Section 3.2.6.1, its performance is also worse than the best single classi-
fier. It means that the Logit method can discriminate genuine and impostor
scores quite well in the tails, but it fails in the middle. Another interesting
thing is that if we use the best copula pair {ind,Fr} chosen in Section 3.2.6.1
then the corresponding u”;i“ is 0.040 which is higher than the 0.038 for the
copula pair {ind,t}, which is trained to minimize the C{" here. It tells us
that the copula pair {ind,t} handles dependence on the whole scores better
than the copula pair {ind,Fr}, which is trained to handle dependence in the
tail. Finally, we also notify that the calibration loss of our all fusion strategies
(including our method) is pretty high on the Face-3D database as seen in Fig-
ure 3.2. In order to reduce this calibration loss, we proposed in our previous
work [53] a method called two-step calibration method. Briefly, the first step of
this method is computing both training and testing sets to their fused scores
once the best copula pair has been found and the second step is calibrating
the fused scores by the PAV algorithm trained based on the fused scores of
the training set. Readers who are interested in the detailed explanation of the
two-step calibration method may refer to [53].

3.2.7 Conclusion

We have presented the mathematical framework of a semiparametric LR-based
score level fusion method to improve via parametric copula families the PLR
fusion strategy. Estimators of the dependence parameters have been provided
and subsequently their convergence has been analyzed. It has also been shown
in detail how our LR-based method is used and how the best copula pair
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Figure 3.2: The discrimination and calibration loss of different fusion strategies on
the XM2VTS and Face-3D databases

Table 3.5: The C’H‘T“ and C), values of different fusion strategies on the XM2VTS
and Face-3D. The bold number in every column is the best one.

XM2VTS Face-3D

Methods i o o o
BSM 0.044 | 0.587 | 0.072 | 1.596
PLR 0.041 | 0.057 | 0.064 | 0.214
Logit 0.037 | 0.153 | 0.141 | 0.423
GMM 0.038 | 0.046 | 0.121 | 0.421
Proposed, | 0.034 | 0.047 | 0.038 | 0.140
Best Pair {Fr fGu} {ind,t}
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is chosen. Finally, application to standard biometric verification and foren-
sic scenarios has been demonstrated on real databases from fingerprint, face,
speaker, and video-based gait recognition, and it has been confirmed that our
LR-based method outperforms the GMM and Logit fusion methods, which are
also designed to handle dependence.

3.2.8 Appendix: Proof of Theorem 3.2.2

According to Proposition 2 of Chen and Fan [19], we have

Vigen (Bgenngen = Bgen) = N0, Sgen)

and

/Mimp (eimpmimp - Himp) — N(0, Eimp)

for some positive definite matrices Egen and Yimp. Define A, = ngen/n with
lim,_yoo A, = A. Since ngn ngen and 91mp Nimp AT€ independent then

\/m (égenmgcn - 0gen>
— N(0,%)

= (Ege&l/)\ Zimp/(()l - /\)> '

Vi (6, - 0) =

where

3.3 Semiparametric Score Level Fusion: Gaussian
Copula Approach

3.3.1 Abstract

Score level fusion is an appealing method for combining multi-algorithms,
multi-representations, and multi-modality biometrics due to its simplicity. Of-
ten, scores are assumed to be independent, but even for dependent scores,
according to the Neyman-Pearson lemma, the likelihood ratio is the optimal
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score level fusion if the underlying distributions are known. However, in re-
ality, the distributions have to be estimated. The common approaches are
using parametric and nonparametric models. The disadvantage of the para-
metric method is that sometimes it is very difficult to choose the appropriate
underlying distribution, while the nonparametric method is computationally
expensive when the dimensionality increases. Therefore, it is natural to re-
lax the distributional assumption and make the computation cheaper using a
semiparametric approach.

In this paper, we will discuss the semiparametric score level fusion using Gaus-
sian copula. The theory how this method improves the recognition perfor-
mance of the individual systems is presented and the performance using syn-
thetic data will be shown. We also apply our fusion method to some public
biometric databases (NIST and XM2VTS) and compare the thus obtained
recognition performance with that of several common score level fusion rules
such as sum, weighted sum, logistic regression, and Gaussian Mixture Model.

3.3.2 Introduction

Multi-biometric system or biometric fusion is a combination of several biomet-
ric systems or algorithms in order to enhance the performance of the individual
system or algorithm. In general, it can be characterized into six categories [68]:
multi-sensor, multi-algorithm, multi-instance, multi-sample, multi-modal and
hybrid. Several studies [68-71] show that combining information from mul-
tiple traits or algorithms can provide better performance. For example, Lu
et al. [69] combining three different feature extractions (Principle Component
Analysis, Independent Component Analysis and Linear Discriminant Analy-
sis) which is related to the multi-algorithm biometric fusion. In the fingerprint
biometric field, Prabhakar and Jain [72] use the left and right index fingers
to verify an individual’s identity which is an example of the multi-instance
biometric fusion.

Biometric fusion can be done at the sensor, feature, match score, rank and
decision levels either for verification or identification. In this paper, we will
focus on the match score level for person verification. This means that scores
from multiple biometric matchers for every pair of two subjects (user and
enrollment) are transformed to a new score (a scalar) as a combined score.
Once the new score has been generated, one has to decide whether the user
and enrollment are from the same person or not. To do this, a threshold has to
be set such that a score greater than or equal to the threshold is recognized as
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genuine score which means that the user and enrollment are the same subject
while a score less than the threshold will lead to the conclusion that the user
and enrollment are different people which will be called by impostor score.
This threshold is determined using a set which is called the training set and
is evaluated using a disjoint set which is called the testing set

There are three categories in biometric fusion: transformation-based [13],
classifier-based [14], and density-based. The last category would be optimal if
the underlying densities were known. However, in practice, such densities have
to be estimated from the training set so that the performance relies on how
well these two densities are estimated. The parametric models suffers from the
limitation in choosing the appropriate parametric model to the data. The most
successful parametric approach is the Gaussian Mixture Model (GMM) [16].
However, the number of the mixture components which is the most important
part in estimating GMM is very hard to be determined. The author in his
paper used GMM fitting algorithm proposed in [60] that automatically esti-
mates the number of the mixture components using an EM algorithm and
the minimum message length criterion. However, the computational cost is
time consuming when the sample size is big or the the number of mixture
components increases. On the other hands, the nonparametric models have a
problem in choosing bandwidth and computational cost when working in the
multidimensional space.

This paper focuses on the fusion strategy for dependent matchers. Using
synthetic data, we will show that our approach is robust in handling the de-
pendent classifiers even with an extremely high dependence structure. We will
also apply our method on the public databases NIST-BSSR1 and XM2V'TS.
The rest of this paper is organized as follows. In Section 3.3.3, we will review
the theory of Gaussian copula, why it is suitable to be chosen and how to
do Gaussian copula based fusion. Some experimental results on the synthetic
data are presented in Section 3.3.4 to show the robustness of our method in
handling the dependence issues and the results on the public database will be
provided to show the applicability of our method in the real world. Finally,
this paper will be closed by our conclusions.
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3.3.3 Gaussian Copula Fusion
3.3.3.1 Likelihood ratio based fusion

Suppose we have d matchers and let X = (X1,---, Xy) denote the d compo-
nents of the matching(similarity or distance) scores where X; is the random
variable corresponding to the i-th match score where X takes its values in
Q C RY. The decision function is a map v : R? + {0,1} where 0 and 1
corresponds to negative and positive decisions which are denoted by Hy and
Hy, respectively. A system can make two types of error(false): accepting an
impostor score or rejecting a genuine score. The probability of accepting im-
postor score P(¢(X) = 1|Hp) is called by False Acceptance Rate (FAR) while
the probability of rejecting genuine score P(¢(X) = 0|H;) is called by False
Rejection Rate (FRR). From the definition of FRR, it can be understood that
the probability of accepting genuine score that will be called by True Positive
Rate (TPR) is TPR = 1 — FFR. In application, the FAR has to be set very
small since the cost of accepting an impostor may be much more expensive
than the cost of rejecting a genuine user. For example, in security, allowing a
forbidden person to access a secret place is much more dangerous that reject-
ing a "nice” person to access it. Therefore, for every given FAR, our fusion
has to maximize the TPR.

Neyman and Pearson established the most powerful test based on the like-
lihood ratio [15]. Let fgen and fimp be the density of genuine and impostor

scores, respectively. The likelihood ratio at a point x = (z1,- -+ ,z4) is defined
by
fgen(x)
LR(x) = . (3.3.1)
Jimp (%)

According to the Neyman-Pearson theorem, in order to get the maximum TPR
for every fixed FAR, say «, we have to decide

P(X)=1 < LR(x) >1n (3.3.2)
where 7 is implicitly defined by
P(LR(X) > 1) = a. (3.3.3)

As a consequence, the optimal performance can be reached by defining the
fused score as the likelihood ratio of the vector consisting of all matching
scores.



3.3 Semiparametric Score Level Fusion: Gaussian Copula Approach 81

3.3.3.2 (zaussian copula

Computing (3.3.1) means that the estimation of fgen and fimp is a must.
Let H be any distribution function on R? with density h. A classical result of
Sklar [18] shows that H can be uniquely factorized into its univariate marginal
distributions and a distribution function on the unit cube [0,1]¢ in R? with
uniform marginal distributions which is called by copula:

Theorem 3.3.1 (Sklar (1959)). Let d > 2 and suppose H is a distribution
function on R with one dimensional continuous marginal distribution func-
tions F1,--- , Fy. Then there is a unique copula C so that

H(.Tl, . ,a:d) = C(Fl(l‘l), .. .,Fd(a:d)) V(:cl, . ,a;d) S Rd. (334)

This paper assumes that C' is determined by a multivariate normal distribution
with standard normal marginals and correlation matrix R. Note that this
assumption is more flexible than assuming H to be multivariate normally
distributed. The main difference is that each marginal of the multivariate
normal has to be normally distributed while each marginal of a Gaussian
copula can be any continuous distribution function. In section 3.3.4, we will
see that our generated data follow a Gaussian copula distribution with normal
and weibull marginal.

The key concept of the Gaussian copula is the assumption of the existence of a
componentwise transformation 7 : R? - R? such that 7(X) ~ N (0, R). Here,
each component 7; of 7 is a monotone continuous function. One can show that

Ti(z) = @1 (Hi(z;)) (3.3.5)

for i = 1,...,d where ® and H; denote the standard normal distribution
function and the marginal distribution of the i—th component.

This means that (3.3.4) can be rewritten as
H(zr, .. 24) = Op(@ 7 (wn), .., 0 (ug)), (3.3.6)

where u; = F(z;), ® the one-dimensional standard normal distribution func-
tion, and ®p the d-dimensional standard normal distribution function with
correlation matrix R. Consequently, the density function of H is

d
h(z1,...,7q) = ‘R|11/26XP(—;UT(R_1 — D) [] fi(z), (3.3.7)
i=1
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with u= (@~ 1(Fi(z1)), -, (Fa(za)))T.

3.3.3.3 Gaussian copula based fusion

Our fused score using the Gaussian copula approach is defined by (3.3.1) with
the numerator fimp and the denominator fee, as in (3.3.7), i.e.,

| Rimpl"? x exp (= 3ugen” (Rgeh — Iugen) x [Ty fgen.i(@:)

’Rgcn|1/2 X exp (_%uimpT(Ri_mlp — I)Ujp) ¥ H;'i=1 fzmpZ(xz)

(3.3.8)

Here, Rgen and Riy,p denote the correlation matrices of transformed genuine
and impostor scores, respectively, Ugen and uimp are given by

LR(.CEl, s ,:Ed)

Ugen = (7 (Fyen,1(21)), -+, @7 (Fyen,a(wa)))"

and
Uimp = (27 (Fimp1 (1)), -+, 27 (Fympaa(za)))”

respectively. To obtain the LR value as given by (3.3.8), we need to estimate
the correlation matrices Rgen(Rimp), the marginal densities fgen i( fimp) and
marginal distribution functions Fyep i(Fimps) using a training set. Given a
training set, we can extract to the genuine and impostor scores. Note that
the scores often are dependent within the group of genuine scores, within the
group of impostor scores, and between these two groups. However, we shall
proceed as if all scores are independent. The resulting estimators are still
reliable because most scores will be independent.

Let Wq,..., W and By,...,B be the two samples representing the

) Ngen ? Mimp
genuine and impostor scores, respectively.

Matchers dependence As stated above, some genuine and impostor scores
are dependent. However, we are interested in the correlation matrices of the
match scores, which we will assume to be the same, Rgen = Rimp = R. We
shall estimate R using the combined sample, i.e.,

(X1, Xp) = (Wi, ..., W, Ba, ., By )

’ Ngen

with n = ngen +Nimp. Our experiments show that such restriction will improve
the performance of the fused score. It is reasonable since we are estimating
the matchers dependence not only the genuine or impostor scores dependence.



3.3 Semiparametric Score Level Fusion: Gaussian Copula Approach 83

Klaasen and Wellner [73] give an explicit formula to obtain an optimal es-
timator for the correlation matrix R via normal rank correlation by taking

R= (ﬁﬁ’;)) where

Prs’ = %i [qﬂ (#1)}2 (3.3.9)
j=1

where ® denotes the one-dimensional standard normal distribution function
while E(nn) and an) are the marginal empirical distributions of F, and Fj,
respectively, is an efficient estimator for p,s for every 1 <r < s <d.

Marginal density estimation To estimate the marginal density functions,
we use the kernel bandwidth optimization as studied by Shimazaki and Shi-
nomoto [74]. This method has two different kinds of choosing the optimal
bandwidth. The first bandwidth choice is similar with the regular bandwidth
selection but it performs much faster than the built-in ksdensity matlab. The
second one is a local bandwidth optimization. This approach works very well
in handling the data that have ”spikes”.

Marginal distribution function estimation The empirical distribution
function is an optimal estimator for the marginal distribution function and
very easy to be implemented and very fast to be computed (see Figure 3.3
for an example in biometric). The empirical distribution function, F , is the
distribution function that puts mass 1/n at each data point x; where n is
the number of the observation. In this paper, since we need to compute the
quantile of the standard normal, then to avoid singularity, we prefer to put
mass 1/(n + 1). Explicitly, the empirical distribution function of genuine and
impostor scores are given by

n i
R 1 gen R 1 imp
Fgen(z) = m ; (Dwi<a) and Fimp(z) = m ; (V(B,<al-

(3.3.10)
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3.3.4 Experimental Results

To study the robustness of our method in fusing biometrics scores related to
the classifiers dependence, genuine and impostor scores are generated that fol-
low three different distribution functions and have three different dependence
levels. Here, we assume that there are 1000 subjects with 2 biometric spec-
imens for each subject, one is put as user and the other for enrollment. We
also assume that we have 2 different biometric systems. Therefore, the size of
genuine and impostor scores are 2 x 1000 and 2 x 9999000, respectively which
we will use as training data. The testing data are obtained in the same way.
The parameters for generating the data are:

e multivariate normal scores with correlations 0.99,0.5 and 0.1 with genuine
means [1, S]T, 5, 3}T and [5, 3]T, respectively. All impostor means are set to
be [0,0]".

e Gaussian copula with correlation value 0.9,0.5 and 0.1. The genuine and
impostor marginals of the first matcher are set to follow weibull distribution
with the shape parameters 3 and 1, respectively, and the common scale
parameter 4. For the second matcher, the genuine and impostor marginals
follow normal distribution with parameter (5,1) and (1,0), respectively.

Once all data have been generated, for every pair of training and testing set,
the exact likelihood ratio is computed which is called by true fusion. The
next step is performing the sum rule with min-max and z-norm normalization
and also the weighted sum using Fisher criterion [75]. Subsequently, we pick
the best results. For the Logit fusion, we use nonlinear logistic regression as
given by W. Chen and Y. Chen [76]. The performance of several methods
compared with the true fusion is provided in Table 3.6. The bold value is the
best non-true fusion which indicated the TPR (%) at 0.01% FAR. We can see
that our method is the most robust approach especially for the data with high
dependence.

Table 3.6: Influence of Dependence in Biometric Fusion

High Moderate Low
Methods MV [ GC [Gu | MV [ GC [Gu | MV [GC |Gu
True Fusion 90.70 | 93.20 | 99.90 | 91.00 | 90.70 | 97.40 | 96.90 | 90.90 | 84.70
Best Linear 80.80 | 90.40 | 94.00 | 91.00 | 90.20 | 90.00 | 96.90 | 89.90 | 83.50

Logistic Regression | 00.10 | 88.20 | 87.60 | 90.60 | 90.50 | 87.40 | 96.90 | 90.80 | 82.80

Gaussian Copula 90.10 | 92.80 | 99.70 | 89.80 | 90.70 | 93.50 | 96.50 | 90.60 | 84.70

*MV: Multivariate Normal, GC: Gaussian Copula, Gu: Gumbel Copula.
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We will also apply our method on the public databases: NIST-BSSR1 [61] and
XM2VTS [64]. The NIST-BSSR1 database has three different set:

e NIST-Multimodal: Two fingerprints and Two face matchers applied to 517
subjects,

e NIST-Face: Two face matchers applied to 3000 subjects,

e NIST-Finger: Two fingerprints applied to 6000 subjects.

For every experiment, each set is split up randomly into two subsets, one
is used for training and the other is used for testing. Then the naive sum
rule with min-max normalization, naive sum with Z-normalization, weighted
sum with Fisher criterion, nonlinear logistic regression, and our method are
performed and the TPR at 0.01% is computed for every fusion strategy. This
procedure is repeated 20 times and the average of all TPR at 0.01% for each
fusion strategy is provided in the Table 3.7. We do not include the Gaussian
Mixture Model (GMM) fusion strategy because the computation is very time
consuming when it is done on a normal computer. However, we also provide
the result of the GMM strategy as reported in [16] and we compare the 95%
Confidence Interval on increase in TPR at 0.01% as given by Table 3.8. We can
see that our approach outperforms all other fusion strategies (the bold value is
the best one) even with GMM fusion which is computationally expensive. Also
for the XM2V'TS database that contains match scores from five face matchers
and three speech matchers applied to 295 subjects with the partition of the
training and testing set have been defined in [64], our method is the highest
among all reported TPR at 0.01% FAR.

Table 3.7: TPR (%) values for different methods at 0.01% FAR on the public
databases

NIST NIST
Method Multi NIST Finger | XM2VTS
Face .

modal print
Naive Sum min-max 97.97 76.47 91.33 97.50
Naive Sum Z-norm 97.87 76.48 91.33 97.50
Weighted Sum 97.97 76.48 91.40 97.50
Logistic Regression 98.74 76.48 91.46 98.50
Gaussian Mixture Model [16] 99.10 77.20 91.40 98.70
This paper 99.48 77.21 91.60 99.00
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Table 3.8: Comparison with LR fusion using Gaussian Mixture Model on the NIST-
BSSR1 database

95% Confidence Interval

Mean TPR (%) on increase in TPR (%)

Database at 0.01% FAR at 0.01% FAR
BSM | GMM GC GMM GC
NIST-Multimodal | 85.30 | 99.10 | 99.48 | [13.50,14.00] | [13.51,14.84]
NIST-Face 71.20 | 77.20 | 77.21 [ 4.70, 7.30] [ 4.69, 7.32]
NIST-Fingerprint | 83.50 | 91.40 | 91.60 | [ 7.60, 8.20] | [ 7.63, 8.57]

*BSM: Best Single Matcher, GMM: Gaussian Mixture Model, GC: Gaussian Copula (used in this paper).

3.3.5 Conclusion

The Gaussian copula is a semiparametric model which is easy to be imple-
mented, cheap in computation, and able to handle the dependence structure
that usually appears in multi-algorithm fusion. Using several synthetic data,
we have shown that our approach performs very well in dependent classifiers
fusion even for extreme dependence structures when the performance of other
approaches drops dramatically. We also see that our method works well when
it is applied on the NIST-BSSR1 database (see Figure 3.4 for the comparison
of the boundary decision with another approaches on this database) and even
on the XM2VTS it reaches the highest TPR at 0.01% FAR among all reported
results. However, it has limitations in estimating the tail density because es-
timation is based on the kernel density method. Our experiments show that
although our approach works well at 0.01% FAR, it is sometimes much worse
than individual classifiers at 0.001% FAR.

3.4 Fixed FAR Correction Factor of Score Level Fu-
sion

3.4.1 Abstract

In biometric score level fusion, the scores are often assumed to be independent
to simplify the fusion algorithm. In some cases, the ”average” performance
under this independence assumption is surprisingly successful, even competing
with a fusion that incorporates dependence. We present two main contribu-
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tions in score level fusion: (i) proposing a new method of measuring the perfor-
mance of a fusion strategy at fixed FAR via Jeffreys credible interval analysis
and (ii) subsequently providing a method to improve the fusion strategy under
the independence assumption by taking the dependence into account via para-
metric copulas, which we call fixed FAR fusion. Using synthetic data, we will
show that one should take the dependence into account even for scores with a
low dependence level. Finally, we test our method on some public databases
(FVC2002, NIST-face, and Face3D), compare it to Gaussian mixture model
and linear logistic methods, which are also designed to handle dependence, and
notice its significance improvement with respect to our evaluation method.

3.4.2 Introduction

In a score based biometric person verification system, a threshold has to be
set to decide whether a matching score between two biometric samples (query
and template) is a genuine or an impostor score. A genuine score leads to
the conclusion that the query and template originate from the same person
while an impostor score means that the query and template stem from different
people. We will assume that the matching score is a similarity score. Note that
once the threshold is set, the system can make two different errors: accept an
impostor score as genuine score and reject a genuine score. The probability of
accepting an impostor score is called the False Acceptance Rate (FAR), while
the probability of rejecting a genuine score is called the False Rejection Rate
(FRR). The complement of the FRR is called the True Positive Rate (TPR),
which is defined as the probability of accepting a genuine score as genuine
score. Since every genuine score will be either accepted or rejected by the
system, we have TPR = 1 — FRR. The most common method to evaluate a
biometric person verification system is by plotting the relation between FAR
and TPR, which is known as Receiver Operating Characteristics (ROC).

When there are two or more matchers, one has to transform these multiple
scores to a new score (a scalar) as a fused score, which is called score level fu-
sion. There are three categories in score level fusion. The most commonly used
one is the transformation-based one which is done by mapping all components
of the vector of matching scores to a comparable domain and applying some
simple rules such as sum, mean, max, med, etc. [13]. However, this approach
relies heavily on the niceness of the training set used for the transformation.
For example if one wants to normalize each component of the vector of match-
ing scores to the unit interval [0,1] (which is called minmax normalization),
then the maximum and the minimum of all scores have to be determined.



3.4 Fixed FAR Correction Factor of Score Level Fusion ]9

Unfortunately, when the maximum and minimum scores have to be estimated
from the training set that has outlier(s), the estimation will be very bad. The
second approach is classifier-based fusion which is done by stacking all compo-
nents of the vector of matching scores and applying a classifier to separate the
genuine and impostor scores [14]. The last approach is based on estimation of
the densities of the genuine and impostor scores [16]. According to [15] this
approach, which is also known as likelihood ratio based, would be optimal if
the underlying densities were known. However, in practice, such densities have
to be estimated from data so that the performance relies on how well the two
densities are estimated.

In this paper, we will focus on score level fusion for dependent matchers.
The likelihood ratio based fusion automatically incorporates the dependence
between matchers. However, this approach needs to estimate two density
functions, which is a challenging task. While the choice of an appropriate
parametric model is sometimes difficult, nonparametric estimators suffer from
the difficulty that they are sensitive to the choice of the bandwidth or of other
smoothing parameters. To simplify, many researchers assume that all gen-
uine and impostor scores are independent so that the likelihood ratio is only
the product of the individual likelihood ratios of the matchers (henceforth
called PLR fusion); see [55-57]. However, the independence assumption is not
realistic since the scores are obtained from the same sample. A study of in-
corporating dependence instead of using PLR fusion is presented in [77] where
the authors investigate the effect of considering correlation and compare their
method to PLR fusion by computing the difference between the areas their
respective ROCs. However, in practice the FAR has to be set in advance.
For example, in a security application, the FAR is set to be very small and
usually less than 0.1% or even 0.01%. Since area under ROC does not al-
ways reflect the performance at small FAR, we will compare the performance
between dependent and PLR fusion at specific FAR.

This paper has two main contributions: proposing an evaluation of biometric
fusion at fixed FAR and proposing a method to improve PLR fusion. In Section
3.4.3, we present our method to evaluate biometric fusion at fixed FAR. Instead
of using parametric or nonparametric models, we propose a semiparametric
approach, which will be called fixred FAR fusion, by modeling the marginal
densities nonparametrically and the dependence between them by parametric
copulas as explained in Section 3.4.4. We will see the gain of considering
dependence using synthetic data and subsequently compare our method to
GMM [16] and Logit [55] fusions, which are also intended to deal with matcher
dependence, on some real databases (FVC2002, NIST-face, Face3D) in Section
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3.4.5. Although also vector machine (SVM) fusion can handle dependence, we
do not include it because it is a classifier tool so that we cannot set the FAR
value beforehand (the FAR value of SVM fusion is automatically determined
by the classifier). Finally, our conclusions are presented in Section 3.4.6.

3.4.3 Performance of biometric fusion at fixed FAR

Suppose we have d matchers. In biometric fusion, one has to find a function
¥ : R — R, which will be called a fusion. Let

Wi,...,W (3.4.1)

9 Ngen

and
B:,....B (3.4.2)

<9 Pnimp

be i.i.d copies of the d-dimensional random variable of genuine scores Sgen
and impostor scores Sinp, respectively. In this section, we will present how to
measure the performance of a fusion at fixed FAR.

Let a be a fixed FAR. The exact TPR is
TPR = P(1)(Sgen) > 7) (3.4.3)
where the threshold 7 is explicitly determined via relation
P(¢(Simp) > 7) = . (3.4.4)

This means that all fused scores greater than or equal to T will be recognized
as genuine scores. In practice, we do not know the distribution functions of
Sgen and Siy,p. However, we can compute the empirical value of TPR based
on (3.4.1) and (3.4.2) by

TPR = F, (7). (3.4.5)
where R
#=inf{z : Fi (x)>1—a}. (3.4.6)

Here, ﬁgﬁn and Eﬁlp are modified empirical distribution functions based on the
two samples

w(wl)a s 7¢(anen)

and

w(B1)7 HEER w(Bnimp)a
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respectively. Our modified empirical distribution function based on a sample
X1,...,X,, is defined by

. 1 <&
F@) = ; lixi<ey, VTER (3.4.7)

The TPR is only an estimated rate, which may be viewed as the probability
of a Bernoulli experiment [63]. With ngen genuine scores TPR has a binomial
distributioglvith success probability TPR, which may be approximated by
Bin(ngen, TPR). We employ Jeffreys method to construct a credible interval
(CI) from this. It is one of the more trusted ways to obtain a CI here [75,78].
In conclusion, for a given significance level 0 < ¢ << 1, we will have the
100(1 — €)% Jeffreys CI [L,U] where

L = B(e/2; 1, B2) (3.4.8)
and
U=DB(1-¢/2;B1,5) (3.4.9)
with ] ]
B1 = ngen TPR + 3 and 2 = ngen(1 — TPR) + 3
Here, B(e;p1,p2) denotes the £ quantile of a Beta(pi, p2) distribution. This

means that it is approximately 100(1 — €)% certain that the true TPR is
in-between L and U.

3.4.4 Fixed FAR correction factor

According to the Neyman-Pearson lemma [15], the optimal fusion is the likelihood-
ratio-based method, i.e., by taking ¢¥» = LR where

f gen(s)
fimp(S)
where fgen and fimp are the densities of genuine and impostor scores, respec-

tively, which are unknown in practice. Therefore, we have to estimate the LR
from data.

LR(s) =

(3.4.10)
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3.4.4.1 Correction factor

A copula is a distribution function on the unit cube [0, 1]%, d > 2, of which the
marginals are uniformly distributed. Susyanto et al. [50] use a specific copula
called Gaussian copula to handle dependence between classifiers in biometric
fusion. However, since the Gaussian copula is appropriate for only a limited
number of biometric data sets, we will use a family of well-known parametric
copulas from the collection of elliptic and Archimedean copulas.

For any continuous multivariate distribution function there exists a copula
function [18].

Theorem 3.4.1 (Sklar (1959)). Let d > 2, and suppose H is a distribution
function on R® with one dimensional continuous marginal distribution func-

tions Fy,--- ,Fy. Then there is a unique copula function C : [0,1]¢ — [0,1],
so that

H(zy,...,zq) = C(Fi(21), ..., Fa(zq)) (3.4.11)
for every (x1,...,24) € R

The joint density function can be computed by taking the d-th derivative of
(3.4.11):

h(.%'l, Ce ,:Bd) = C(Fl(.%'l), Ce ,Fd(:Bd))

d
X H fi(z:) (3.4.12)
i=1

where ¢ is the copula density and f; is the i-th marginal density for every
i=1,---,d. Note that according to (3.4.12), we can estimate separately the
dependence structure represented by the copula density ¢ and the individual
densities f; in order to get the joint density h. If C, is determined by a
finite dimensional Euclidean parameter « then it is called a parametric copula.
In this case, we can estimate the dependence parameter « based on i.i.d.
observations
Xi,..., X,

with
Xi:(X1i7"‘7Xdi) Wzl,...,n

by the pseudo-maximum likelihood estimator (PMLE). Mathematically, the
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PMLE of « has to maximize
1 n
= logea (Fl(Xh-), .. ,Fd(XdZ-)) (3.4.13)
i=1

where Fj is the modified empirical distribution function as defined in (3.4.7)
based on Xj1,..., X, for 1 < j <d and ¢, is the copula density.

Let Cgen and Cipy,p be the copula corresponding to genuine and impostor scores
with copula densities cgen and cimp, respectively. In view of (3.4.10) and
(3.4.12), the likelihood ratio at score s = (s1,--- ,sq) can be written as

LR(s) = PLR(s) x CF(s)
where
d
PLR(s) = [ [LRi(s:) (3.4.14)
i=1
is the product of the individual likelihood ratios and

Cgen(Fgen,l(sl); T aFgen,d(3d>)
Cimp(Emp,l(sl)a te 7Emp,d(5d))

CF(s) = (3.4.15)
is the copula density ratio that will be called the correction factor. Here, Fyen ;
and Fimp,; denote the distribution functions of genuine and impostor scores,
respectively.

Note that for every i-th component of score s = (s1,---,8q), the poste-
rior probability P(Hi|s;) can be estimated optimally by the Pool-Adjacent-
Violators (PAV) algorithm as shown in [57] where H; correspond to a genuine
user. Therefore, from the Bayesian relation

P(H1|$z) o P(Sl’Hl) P(Hl)

P(Hols;)  P(silHo) ~ P(Hp)

where Hy corresponds to an impostor user, we can estimate LR; optimally by

P(Hi|si) o Mimp

LR; =
1-— P(Hﬂsi) TNgen

(3.4.16)

as used in [8] for calibrating scores in the field of speaker recognition. There-
fore, we only need to estimate the correction factor CF.
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3.4.4.2 Fixed FAR fusion

Estimating CF can be done by estimating cgen and cimp separately. Of course
we will not estimate these copula densities nonparametrically since it will
lead to the same problems as when estimating the original density functions
directly. We will approximate CF by the following parametric copulas: Gaus-
sian copula (GC), Student’s ¢ (t), Frank (Fr), Clayton (Cl), and Gumbel (Gu).
We also include the independence copula (ind) to guarantee that our fusion is
better than the PLR method. Readers interested in copulas are referred to [79]
for a more detailed explanation. To have more dependence models and be-
cause the Clayton and Gumbel copulas are not symmetric, their flipped forms
(flipped Clayton (fCl) and flipped Gumbel (fGu)) will be included as well (if
U has copula C then 1 —U has copula flipped C'). Therefore, the copulas cgen
and cimp are chosen from the copula family

¢ = {ind, GC, t, Fr, C1, Gu, fCl, fGu}.

Note that the best copula pair must have the best performance among other
pairs in the sense that it has the highest TPR at fixed FAR. Applying a
goodness-of-fit test as provided in [59] will only give the copula pair that is
closest to the pair (cgen, Cimp), but whose ratio is not necessarily closest to the
ratio cgen/cCimp. Therefore, we propose to choose the best copula pair directly
by maximizing the empirical TPR at the given FAR= « as explained in Section
3.4.3. Given a fixed FAR = «, a set C of n. candidate copulas and a training
set, our fixed FAR fusion is very simple. The first step is computing PLR
by the PAV algorithm and multiplying it by each of all copula pairs ¢gen/Cimp
in which the dependence parameters have been estimated by the PMLEs as
defined in (3.4.13). Of the n.xn. resulting different combined scores we choose
the one that maximizes the TPR.

3.4.5 Experimental Results

To study the performance of our fixed FAR fusion in improving the simple
PLR method we apply it to synthetic and real databases, which are split
up into training and testing sets. Given a training set, we will compute the
product of the individual likelihood ratios and select the best copula pair. The
corresponding testing set is used for evaluation only. We compare our fixed
FAR fusion to the linear Logit fusion explained in [55] and the GMM fusion
proposed in [16] at FAR= 0.01% for all experiments. The Jeffreys ClIs of all
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fusions are computed at significance level 0.01 and the improvement of fusion
1) compared to PLR fusion in TPR at 0.01% FAR is defined by [Ly—U, Uy, — L]
where [Ly, Uy| and [L, U] are the 99% Jeffreys Cls of fusion ¢ and PLR fusion,
respectively, as explained in Section 3.4.3.

Given genuine and impostor scores

and
Bq,..

. Bnimp

in the training set, our procedure to choose the best copula pair is simple. We
randomize the genuine (impostor) scores and take two disjoint subsets with
size

np = min {10, 000; [ngen/2] }

and
Ny = min {10, 000; | Nimp /2] }.

This re-sampling method is aimed at increasing the computation speed because
it will be repeated 100 times to see the consistency. Once the product of the
individual likelihood ratios is computed, it is multiplied by the 64 copula pair
estimates Cgen/Cimp. After all 64 combined scores are obtained using the first
subset, the empirical TPR at 0.01% FAR is then computed. The final TPR
for each copula pair is the average over all 100 experiments. The best copula
pair is the pair having the highest average of the TPR values. If there are
several pairs having the same averages, we choose the pair with the smallest
variance. If there is still more than one pair having the smallest means and
variances then we choose one of them at random.

3.4.5.1 Synthetic Data

To get synthetic data that behave like real data, we take two algorithms pre-
sented in [63]. The first algorithm measures the similarity of the left half of the
face between two images and the second one the similarity of the right half.
The density and distribution functions of the genuine and impostor scores for
each algorithm are estimated by a mixture of logconcave densities [80]. We
choose this estimation method because it is more general than a Gaussian
mixture and more robust for handling skewness. To obtain scores with ex-
plicit dependence that can be represented by a copula C, we generate random
samples of the copula C and apply the inverse transform technique, using the
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estimates of the two marginal distribution functions. In this way the gen-
erated scores have as marginal distribution functions these estimates of the
distribution functions of data generated by the two algorithms. Recall that if
F' is a continuous distribution function then U is uniformly distributed if and
only if F~1(U) has distribution function F.

In our experiment, we generate 10,000 genuine and 1,000,000 impostor scores
in the way as explained above. The dependence is made by putting 4 different
copula pairs

{(GC, GC), (t, fC), (fGu, GC), (CL, Gu)}

completed with 9 dependence level pairs obtained from the cross pairs
{low, moderate, high}.

In order to know the effect of dependence in biometric fusion, the low, mod-
erate, and high dependence levels are set to have correlation values 0.1, 0.5,
and 0.9 for Gaussian and Student’s ¢ copulas while for other copulas we put
parameters 1, 10, and 50. Student’s ¢ copula has 3 degrees of freedom for all
experiments.

By following our procedure, we get that the best copula pair is the true one
for every experiment. Then, the fixed FAR fusion is compared to the PLR
fusion to see the gain of considering dependence in biometric fusion. Figure
3.5 shows the improvement by the fixed FAR fusion compared to the PLR
fusion. We can see that we really have to take the dependence into account
when the dependence between the impostor scores is higher than between the
genuine ones. Moreover, the dependence between classifiers should be taken
into account even for low levels of dependence.

3.4.5.2 FVC2002-DB1 database

This data set [81] consists of 100 fingers with 8 impressions per finger. We
will use the same experimental set up as used in [77] by putting the first two
impressions as templates and the remaining ones as queries. Two 600 x 100
scores matrices are obtained by matching each query to both the templates
using a minutiae matcher [82]. The purpose of this experiment is to see the
improvement in using our fixed FAR method for multi-instances scenarios.
To have a big enough testing set so that the Cls are not too large, we did
1,000 experiments. In every experiment, we randomized the 100 subjects, and
took 70 subjects for training and the remaining 30 for testing. Our fixed FAR
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Figure 3.5: Gain of considering dependence between classifiers. The blue thick lines
are the 99% Jeffreys CI of fixed FAR fusion compared to PLR fusion. The blue thick
lines that do not intersect the red dashed line, mean that the gain of considering
dependence is significant. On the x-axis the databases are indicated in 9 groups of
4, each group having the same dependence level pair for each of the 4 chosen copula
pairs. Database (L,L) has low and low dependence levels for genuine and impostor
scores, (L,M) low and moderate, (L,H) low and high, etc.
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Table 3.9: PERFORMANCES AT 0.01% FAR oN FVC2002-DB1.

99% Jeffreys CI compared to PLR
Methods | TPR in TPR at 0.01% FAR
BSM 77.5% N/A
PLR 81.8% N/A
Logit 81.9% [—0.4%, 0.6%]
GMM 83.6% [ 1.3%, 2.3%]
FFF 83.9% [ 1.7%, 2.6%]

BSM: Best Single Matcher, GMM: Gaussian Mixture Model, Logit: Logistic Regres-
sion, PLR: Product of Likelihood Ratios, FFF: our fixed FAR fusion. The bold
number is the best one and the underlined number is the worst one.

and benchmark fusion methods were trained on the first subset and evaluated
on the second subset. As a result, each fusion method has 180 genuine and
5,220 impostor scores for every experiment. The average TPR is computed
by pooling all genuine scores from the 1,000 experiments in one set and all
impostor scores in the other set [1]. Therefore, we have 180,000 genuine and
5,220,000 impostor scores in total.

For every experiment, we train our fixed FAR fusion method by following the
procedure explained at the beginning of this section and the pair (ind,fCl)
is obtained as the best copula pair. The difference of the area under ROC
of our fixed FAR and the PLR fusion is around 0.1%, which is relatively
small. At first sight it is consistent with the results in [77] , which claims
that considering dependence will not improve the PLR fusion significantly.
However, if we highlight the TPR at FAR= 0.01% (see Figure 3.6), we can see
that the improvement is significant. Detailed TPR values for our fixed FAR
and benchmark fusions are provided in Table 3.9. On this database, our fixed
FAR fusion is slightly better than the GMM fusion and both of them improve
the PLR fusion at significance level 0.01. On the other hand, the Logit and
PLR fusions have almost the same performances.

3.4.5.3 NIST-face database

The NIST-face BSSR1 database is published by the National Institute of Stan-
dards and Technology [61]. The data contain similarity scores from two face
algorithms run on images from 3,000 subjects with each subject having two
probe images and one gallery image. To evaluate the performance of our
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Figure 3.6: Comparison between the PLR and our fixed FAR fusion methods on
FV(C2002-DB1 database. The small box contains the highlighted performance at
around 0.01% FAR. The dashed lines are the 99% Jeffrey Cls.



100 Chapter 3. Semiparametric Copula-Based Score Level Fusion

0.95

0.9

0.85

TPR

0.8

0.75

0.7

0.65 ‘ ‘ ‘ ‘

10 10 10 10 10
FAR

Figure 3.7: Comparison between the PLR and our fixed FAR fusion methods on
NIST-face database. The small box contains the highlighted performance at around
0.01% FAR. The dashed lines are the 99% Jeffrey Cls.

benchmark fusion strategies, we randomize the subjects and split the set into
two disjoint sets with size 1,500 each. Each fusion strategy is trained on the
first subset and evaluated on the second subset. This procedure is repeated
10 times. Then, we collect all genuine scores from all 10 experiments in one
set and all impostor scores in another set resulting in 30,000 genuine and
44,970,000 impostor scores.

Figure 3.7 shows that the ROC of our fixed FAR fusion method almost co-
incides with the ROC of the PLR fusion. Although our fixed FAR fusion
has the highest TPR, we should not conclude that it is the best one because
all 99% Jeffreys Cls are overlapping (see Table 3.10). This means that on
this database, the simple PLR fusion method is comparable to other fusion
methods that take dependence into account.
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Table 3.10: PERFORMANCES AT 0.01% FAR oN NIST-FACE DATABASE.

99% Jeffreys CI compared to PLR
Methods | TPR in TPR at 0.01% FAR
BSM | 71.2% N/A
PLR | 76.9% N/A
Logit | 76.1% [—2.0%, 0.5%]
GMM | 76.8% [—1.4%, 1.1%)
FFF | 77.4% [—0.8%, 1.7%]

BSM: Best Single Matcher, GMM: Gaussian Mixture Model, Logit: Logistic Regres-
sion, PLR: Product of Likelihood Ratios, FFF: our fixed FAR fusion.

3.4.5.4 Face3D database

This database is used in [62,63] for 3D face recognition. It is quite realistic
for biometric verification because both the training and the testing set con-
tain very different images (taken with different cameras, backgrounds, poses,
expressions, illuminations and time). In his papers, the author proposes 60
different classifiers by measuring the similarity of different regions. In our
experiment, we only take 5 regions out of these 60: similarity of the full face,
the left half, the right half, the bottom part, and the upper part. The results
of these 5 algorithms are rather correlated, of course. This choice is made to
see the performance of our benchmark methods in handling the dependence
between classifiers. By following our procedure, we get as the best copula pair
(ind,Fr).

Figure 3.8 shows clearly that considering dependence can improve the perfor-
mance significantly. We can see that our fixed FAR fusion method is the only
fusion strategy that can handle the dependence on this database as given in
Table 3.11. While our fixed FAR fusion performs very well in handling the
dependence, the GMM fusion is even worse than the best single matcher. This
happens because the estimated number of components in the GMM is equal
to the the maximum value (20) of it when being estimated by the minimum
message length criterion as proposed in [60]. It means that the number of
components may be more than 20. However, if we increase the number of
components then the estimator becomes less reliable.
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Figure 3.8: Comparison between the PLR and our fixed FAR fusion methods on
Face3D database. The small box contains the highlighted performance at around
0.01% FAR. The dashed lines are the 99% Jeffrey Cls.

Table 3.11: PERFORMANCES AT 0.01% FAR oON FACE3D DATABASE.

99% Jeffreys CI compared to PLR
Methods | TPR in T%,’R at 0.01p% FAR
BSM | 84.9% N/A
PLR | 86.6% N/A
Logit 87.6% [ 0.1%, 1.7%]
GMM | 81.2% [—6.3%, —4.5%]
FFF | 88.4% [ 1.0%, 2.6%]

BSM: Best Single Matcher, GMM: Gaussian Mixture Model, Logit: Logistic Regres-
sion, PLR: Product of Likelihood Ratios, FFF: our fixed FAR fusion. The bold
number is the best one and the underlined number is the worst one.
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3.4.6 Conclusion

We have proposed and used an alternative method for evaluating the per-
formance of biometric fusion methods at fixed FAR using Jeffreys credible
intervals. We have also proposed a fixed FAR fusion method to improve via
parametric copulas the PLR fusion strategy. From a simulation study with
synthetic data, we have concluded that it is always useful to take the depen-
dence into account even for low dependence levels. It has also been shown that
our fixed FAR fusion method is the best method on real databases compared
to the GMM and Logit fusion methods, which are also designed to handle
dependence. Instead of a rule of thumb to always take dependence in bio-
metric fusion into account, we propose to always check whether our fixed FAR
method improves on the PLR fusion method by a simple test as follows: define
relevant training and testing sets, follow our procedure in choosing the best
copula pair on the training set, and finally check the significance improvement
using our evaluation method on the testing set. We can see from the FVC2002-
DBI1 database that the existing rule of thumb concludes the unimportance in
considering dependence. However, when the FAR value is fixed (0.01%), we
get a significant improvement of around 82% to 84% (around 2%). Although
it is a relatively small improvement, our fixed FAR fusion method reduces the
number of people that have to be checked manually from 18 to 16 for every
100 people. This means that if the manual checking needs 10 minutes per
person then we save 20 minutes for every 100 people.

3.5 Conclusion of Chapter 3

In this chapter we presented a mathematical framework for semiparametric
LR-based biometric fusion via parametric copula families. The convergence of
the parameters determining the LR computation was discussed and a detailed
procedure to train the proposed method was also demonstrated. Experimental
results in all sections of this chapter have shown that our method outperforms
the other LR-based fusion methods (the GMM and Logit methods) and of
course the PLR method especially for the standard biometric verification sce-
nario.
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Chapter

Fusion in Forensic Face Recognition

4.1 Chapter Introduction

PURPOSE. This chapter presents the results of a study into the effect of in-
corporating dependence between matchers in score level fusion for forensic face
recognition. Of course, it is hoped that taking dependence into account yields
a better performance than simple fusion under the independence assumption
between matchers.

CONTENTS. Section 4.2 introduces a new method of score level fusion for
forensic face recognition based on the PAV algorithm and copula models. The
detailed procedure of the proposed method is given in Subsection 4.2.4 and

some experiments on synthetic and real databases are presented in Subsection
4.2.5.

PUBLICATIONS. The manuscript presented in Section 4.2 has been published
in [53].

NOTES. The reader might focus on the following subsections:

(1) 4.2.4 explains how our proposed method, which we call the two-step cal-
ibration method, can be used in combining two or more dependent face
recognition systems in order to get better performance than with the sim-
ple fusion method under the independence assumption;

(2) 4.2.5 provides experimental results on synthetic and real databases.
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Subsection 4.2.3 gives some performance measures that have been discussed
in Chapter 1, Subsection 1.1.1.

4.2 Two-step Calibration Method for Multi-algorithm
Score-based Face Recognition Systems by Min-
imizing Discrimination Loss

4.2.1 Abstract

We propose a new method for combining multi-algorithm score-based face
recognition systems, which we call the two-step calibration method. Typically,
algorithms for face recognition systems produce dependent scores. The two-
step method is based on parametric copulas to handle this dependence. Its goal
is to minimize discrimination loss. For synthetic and real databases (NIST-
face and Face3D) we will show that our method is accurate and reliable using
the cost of log likelihood ratio and the information-theoretical empirical cross-
entropy (ECE).

4.2.2 Introduction

The likelihood ratio (LR) approach of evidence evaluation is increasingly ac-
cepted in forensic science [3]. The LR of evidence e is defined as the ratio
between the probability of the evidence given prosecution and defense hy-

potheses, i.e., (el )
P(e|H,

LR(e) Ple|Hy) (4.2.1)
where H}, and Hy are two mutually exclusive hypotheses respectively sup-
porting whether or not the suspect is the donor of the biometric trace. This
quantitative value is computed by a forensic scientist and can be used to sup-
port the fact finder (judge/jury) in court to make an objective decision. The
Bayesian framework explains elegantly how the LR supports the decision via
relation

P(Hyle) _ P(e|H,)  P(H,) 122)
P(Hgle)  P(elHq) P(Ha)
This means that the LR can be interpreted as a multiplicative factor for the
information before analyzing the evidence (prior odds) to get the new infor-

mation after taking the evidence into account (posterior odds).
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In this paper we are studying multi-algorithm score-based face recognition sys-
tems, in which two or more different algorithms compute a similarity score
for any pair of face images. This means that the evidence e is a vector of
scores in which every score describes the similarity of the image found at the
crime scene and an image of the suspect. It is intuitively understandable that
combining several algorithms might be advantageous. For instance, every in-
dividual algorithm can be selected for its good performance under a specific
condition, such as varying pose, illumination, or robustness. Therefore, an ap-
propriate combination is hoped to integrate the complementary information
of the individual algorithms. Indeed, several studies [62,63,69] show that a
multi-algorithm method might enhance the recognition performance.

Several methods of deriving the LR from a biometric comparison score, which
is also called calibration, have been proposed and evaluated for single-algorithm
face recognition systems; see [4,5] for a survey of these methods. In contrast,
to the best of our knowledge, there is no method of combining two or more face
recognition systems for forensic evidence evaluation. In this paper, we pro-
pose such a method, which we will call the two-step calibration method, for
calibrating multi-algorithm face recognition systems via parametric copulas.
We will compare our method to the linear logistic regression (Logit) method,
which is commonly used in the field of speaker recognition [54,55], and also
to the Gaussian Mixture Model (GMM) [16] and the simple Product of Likeli-
hood Ratios (PLR) [56], which are originally proposed in biometric fusion for
person authentication. We also show through simulation and real data that
the logistic regression method used in the field of speaker recognition [54, 55]
is not recommendable for use in forensic face scenarios.

The rest of this paper is organized as follows. Section 4.2.3 reviews the cost
of log likelihood ratio and the ECE plot, which measure the accuracy and re-
liability of calibration methods. Our two-step calibration method is presented
in Section 4.2.4. Section 4.2.5 demonstrates the excellent performance of our
method for both synthetic and real databases. Finally, our conclusions are
presented in Section 4.2.6.

4.2.3 Performance Evaluation of Likelihood Ratio Computa-
tion

There are two types of measures for the reliability of calibration methods:
application-dependent [6,7] and application-independent [8—11] measures. Since
forensic scientists do not have access to the prior odds, we will focus on
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application-independent ones.

4.2.3.1 Cost of log likelihood ratio

The cost of log likelihood ratio (Cy;) is introduced by Briimmer and du
Preez [8] in the field of speaker recognition, is based on a generalization of cost
evaluation metrics, and is used in forensic face scenarios in [12]. This measure
may be interpreted as a summary of a LR computation [67]. Note that a face
recognition system does not necessarily produce a similarity score as an LR
value. Thus, a calibration is needed to make this original score interpretable
as an accepted measure of strength of evidence in court by mapping it into
LR value, which we also call LR score. A score is called genuine if it is
associated to 2 images of the same person, and is called an impostor score if it
involves 2 images of two different persons. Let M denote a method to calibrate
original scores into LR values. Given a set of scores, let LR, denote the set of
Ngen genuine M-calibrated scores, which correspond to the hypothesis of the
prosecution, and LRq the set of Njyup impostor M-calibrated scores, which
correspond to the hypothesis of the defense. The cost of log likelihood ratio
Chy is defined by

1 1
Cir = 5 2, loma <1 - LR>

8N LReLR,
1
2NV;

- > logy (1+1LR). (4.2.3)

P LReLRg

To explain the name of this metric we note that LR in formula (4.2.3) may
be rewritten in terms of the logarithm of LR. Interestingly, this metric can be
decomposed into a discrimination and calibration form via relation

Cyy = Cin 4 ol (4.2.4)
Here, ff;in and C’ﬁ?l denote the discrimination and calibration loss, respec-

tively. Discrimination loss is the opposite of discrimination power (the abil-
ity of the system to distinguish between genuine and impostor scores). The
smaller the value of this quantity, the higher the discrimination power. The

ff;in is defined as the minimum Cy;, value under evaluation by preserving the
discrimination power which is attained by the Pool-Adjacent-Violators (PAV)
algorithm as proved in [8]. Therefore, the CJi" is computed by plugging the
Me-calibrated scores after PAV transformation into (4.2.3). On the other hand,
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calibration loss indicates the calibration performance on a separate evaluation
set.

4.2.3.2 ECE plot

The Empirical Cross Entropy (ECE) plot is an application-independent method
of measuring the reliability of calibration with an information theoretical in-
terpretation [10]. The ECE function is defined as a function of the log prior
odds by

1
ECE(lp) = 1 14+ ——
() 2Ngen LRgE:R o < TIR €1p>
P
1
o 2 m&(1+LRxéﬂ (4.2.5)
P LRELRy

for every lp € (—o0,00). Clearly Cy, = ECE(0) holds, which shows that the
ECE generalizes the cost of log likelihood ratio.

Figure 4.1 is an example of the ECE plot of a system. The solid red curve
represents the performance of the calibration, the dashed blue curve is the
minimum ECE value under evaluation by preserving the discrimination power
which is attained by PAV transformation, and the dashed black curve is the
entropy of the neutral system without considering the evidence, i.e., all LR
values equal to 1. The difference between the solid red and dashed blue curves
is the calibration loss. Since the ECE value can be interpreted as the average
information loss by taking the system into account, we can see that the system
will lose more information than the neutral system for log prior odds greater
than 2. Therefore, forensic scientists should provide the usual LR and also
explain to the fact finder that he should not use the forensic system if his log
prior odds are greater than 2.

4.2.4 Evidential Value Computation of Multi-algorithm Sys-
tems by Minimizing Discrimination Loss

This section explains how to get calibrated scores for d-algorithm face recog-
nition systems, i.e., computing the LR at evidence e = (s1,- -+ ,sq). Of course,
if the joint density functions of the evidence under both hypotheses, which
will be denoted by feen and fimp for genuine and impostor scores, respectively,
are known then the exact LR can be easily obtained. However, in practice,
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Figure 4.1: Example of ECE plot

these density functions have to be estimated from data. This classical problem
in statistics can be solved by parametric (e.g., normal distribution, Weibull
distribution) and nonparametric (e.g., histogram, kernel density estimation)
models. However, the choice of an appropriate parametric model is sometimes
difficult while nonparametric estimators suffer from the difficulty that they
are sensitive to the choice of the bandwidth or of other smoothing parame-
ters, especially for our multivariate case. Therefore, it is natural to approach
our estimation problem semiparametrically, modelling the marginal densities
nonparametrically and the dependence between them by parametric copulas.

4.2.4.1 Dependence through Copula

Mathematically, a copula is a distribution function on the unit cube [0, 1]¢,
d > 2, of which the marginals are uniformly distributed. In practice, it is
widely used to describe the dependence of random variables; see e.g. [83,84]
for application in econometrics and finance. In biometric fusion, Susyanto
et al. [50] use a specific copula called Gaussian copula to handle the depen-
dence between classifiers. A classical result of Sklar [18] relates any continuous
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multivariate distribution function to a copula.
Theorem 4.2.1 (Sklar (1959)). Let d > 2, and suppose H is a distribution
function on R with one dimensional continuous marginal distribution func-

tions F1,--- ,Fy. Then there is a unique copula C so that
H(ﬂj‘l,...,l‘d) :C(Fl(‘rl)?"'aFd(Id)) (426)
for every (x1,...,14) € R

The joint density function can be computed by taking the d-th derivative of
(4.2.6):

h(a:l, ... ,md) = C(F1($1), .- -7Fd<xd))

d
X H filas) (4.2.7)

where c is the copula density and f; is the ¢-th marginal density for every
i =1,---,d. We can see that the density h is a product of the copula den-
sity depending only on the marginal distributions Fi, - - - , Fy and its marginal
densities. It means that we can estimate separately the dependence structure
represented by the copula density ¢ and the individual densities f; in order to
get the joint density h. If C,, is determined by a finite dimensional Euclidean
parameter « then it is called parametric copula. In this case, we can estimate
the dependence parameter o based on i.i.d. observations

Xi,..., X,

with
Xi:(Xliw-.dez') Wzl,...,n

by the pseudo-maximum likelihood estimator (PMLE). Mathematically, the
PMLE of o has to maximize

1 & . .
=3 logea (Fl(XM), . ,Fd(Xdi)) (4.2.8)
n =1
where .
. 1 _
Fy(z) = I gl{xﬁq}v Vi<j<d

is a modified empirical distribution function and ¢, is the copula density.

Let Cgen and Cip,p be the copula corresponding to genuine and impostor scores
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with copula densities cgen and cimp, respectively. In view of (4.2.1) and (4.2.7),

the likelihood ratio at e = (s1,--- , $q) can be written as
LR(G) _ Cgen(Fgen,l(sl)a T 7Fgen,d(3d))
Cimp(Fimp,l(Sl)y T aFimp,d(Sd))
d
x [T LRi(s:) (4.2.9)
i=1

where Fyen; and Finp; denote the distribution functions of genuine and im-
postor scores, respectively. The i-th individual LR can be computed for
each i = 1,...,d by the PAV algorithm, which is optimal for calibrating 1-
dimensional scores. Therefore, we only need to estimate the first factor at the
right hand side of (4.2.9): the copula part.

4.2.4.2 Two-step Calibration Methods

As noted before, the density functions fgen and fimp have to be estimated,
which implies that the copula densities cgen and cimp must be estimated as well.
Estimating copula density functions nonparametrically will lead to the same
problems as when estimating the original density functions directly. Therefore,
we will approximate the copula part of (4.2.9) by some well-known parametric
copulas. We will use the following copulas: Gaussian copula (GC), Student’s ¢
(t), Frank (Fr), Clayton (Cl), and Gumbel (Gu). We also include the indepen-
dent (ind) to guarantee that our combined system is better than the simple
product of likelihood ratios. Readers interested in copulas are referred to [79]
for a more detailed explanation. To have more dependence models and be-
cause the Clayton and Gumbel copulas are not symmetric, their flipped forms
(flipped Clayton (fCl) and flipped Gumbel (fGu)) will be included as well (if
U has copula C then 1 —U has copula flipped C). Therefore, the copulas cgen
and cimp are chosen from the copula family

C = {ind, GC, t, Fr, Cl, Gu, {Cl, fGu}.

We can choose the best copula for cgen and cjyp from the family C for fgen
and fimp by a goodness-of-fit test as provided in [59]. However, this method
only guarantees that the selected copulas are closest to cgen and cimp, but
not necessarily good enough to model cgen/cimp. Therefore, we propose to
choose the best copula pair directly by minimizing the discrimination loss as
explained in Section 4.2.3.1. Since the estimated copula pair is not the true
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copula and only minimizing the discrimination loss among other pairs, the
combined scores can be poorly calibrated. To solve this problem, we apply
the PAV algorithm once combined scores have been obtained via the best
copula pair.

Given a set C of n. candidate copulas and a training set, our two-step cali-
bration method is very simple. The first step is computing the product of the
individual likelihood ratios by the PAV algorithm and multiplying this product
by each of all copula pairs ¢gen/éimp in which the dependence parameters have
been estimated by the PMLEs as defined in (4.2.8). Of the n. x n. resulting
different combined scores we choose the one that minimizes the discrimina-
tion loss. The second step is transforming the combined scores by the PAV
algorithm so that the final scores have high discrimination power and are also
well-calibrated.

4.2.5 Experimental Results

To study the performance of our two-step calibration method we apply it to
synthetic and real databases, which are split up into training and testing sets.
Given a training set, we will compute the product of the individual likelihood
ratios, select the best copula pair, and calibrate the combined scores. The
corresponding testing set is used for evaluation only. The ECE plot is chosen
for evaluation because it is more general than the cost of log likelihood ratio.
On the real databases, beside plotting the ECE curves, we also highlight the
discrimination loss and the ECE values for log prior odds —2, 0, and 2; see
Table 4.1. We compare our two-step method to the Logit method studied
in [55] and the GMM method where the number of the mixture components is
automatically estimated by the minimum message length criterion as proposed
in [60]. For all experiments, the maximum value of the number of the mixture
components is 20.

Given genuine and impostor scores

Wi,...,W,

» YW ngen

and
By,..

s B,y

in the training set, our procedure to choose the best copula pair is simple. We
randomize the genuine (impostor) scores and take two disjoint subsets with
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size

np = min {10000, [ngen/2] }

and
Ny = min {10000, [nimp/2]}.

This re-sampling method is aimed at increasing the computation speed because
it will be repeated 100 times to see the consistency. Once the product of the
individual likelihood ratios is computed, it is multiplied by the 64 copula pair
estimates Cgen/Cimp. After all 64 combined scores are obtained using the first
subset, the discrimination loss is then computed. The final discrimination loss
for each copula pair is the average over all 100 experiments. The best copula
pair is the pair having the smallest average of the discrimination loss values.
If there are several pairs having the same averages, we choose the pair with
the smallest variance. If there is still more than one pair having the smallest
means and variances then we choose one of them at random.

4.2.5.1 Synthetic data

To get synthetic data that behave like real data, we take two algorithms pre-
sented in [63]. The first algorithm measures the similarity of the left half of the
face between two images and the second one the similarity of the right half.
The density and distribution functions of the genuine and impostor scores for
each algorithm are estimated by kernel density estimation. To obtain scores
with ezplicit dependence that can be represented by a copula C', we generate
random samples of the copula C and apply the inverse transform technique,
using the estimates of the two marginal distribution functions. In this way
the generated scores have as marginal distribution functions these estimates
of the distribution functions of data generated by the two algorithms. Recall
that if F' is a continuous distribution function then U is uniformly distributed
if and only if F~(U) has distribution function F.

In our experiment, we generate 10,000 genuine and 1,000,000 impostor scores
in the way as explained above. The dependence is made by putting 4 different
copula pairs

{(GC, GC), (t, fC1), (fGu, GC), (CL, Gu)}

completed with 9 dependence level pairs obtained from the cross pairs
{low, moderate, high}.

The low, moderate, and high dependence levels are set to have correlation
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Figure 4.2: Performance on synthetic data. On the x-axis the databases are indicated
in 9 groups of 4, each group having the same dependence level pair for each of the 4
chosen copula pairs. Database 1-4 has low and low dependence levels for genuine and
impostor scores, 5-8 low and moderate, 9-12 low and high, 13-16 moderate and low,
etc.

values 0.1, 0.5, and 0.9 for Gaussian and Student’s t copulas while for other
copulas we put 1, 10, and 50. Student’s ¢ copula has 3 degrees of freedom for
all experiments.

Figure 4.2 is the plot of discrimination loss of our 36 simulated databases.
The true LR can be computed exactly because the underlying distributions
are known. We can see that our two-step method outperforms the others. As
expected, the PLR method performs poorly when the dependence between
algorithms is moderate or high because much information will lose by assum-
ing the independence between algorithms. The GMM method is the second
best method but the computation time is much longer than for the two-step
method. We can also see that the logistic regression method, which is com-
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monly used in the field of speaker recognition, has the worst performance
among all methods.

4.2.5.2 NIST-face BSSR1 database

The NIST-face BSSR1 database is published by National Institute of Stan-
dards and Technology [61]. The data contain similarity scores from two face
systems run on images from 3000 subjects with each subject having two probe
images and one gallery image. We only take 2992 subjects because the scores
of the other 8 subjects on the first system are always —1. It is reported
that these images are not accepted by the facial recognition system and are
therefore excluded. To evaluate the performance of our benchmark calibra-
tion methods, we randomize the subjects and split the set into two disjoint
sets with size 1496. We follow the procedure explained at the beginning of
this section and the pair (ind,GC) is obtained as the best copula pair. We
repeat this experiment 20 times and all of them give almost the same result.
Therefore, we decided to show only one of these results.

The GMM, PLR, and our two-step method have almost the same performance
as seen from the ECE plot in Figure 4.3. Although the Logit method performs
reasonably well for small values of the log prior odds, it has the highest cal-
ibration loss among all methods and it is even dangerous for use in forensic
face scenarios for large values of the log prior odds (greater than 2). By only
considering the discrimination loss, Table 4.1 of the NIST-face part tells us
that the GMM is the best calibration method. However, the ECE values show
that the two-step method is actually the best one.

4.2.5.3 Face-3D database

This database is used in [62,63] for 3D face recognition. It is quite realistic for
the forensic face problem, because both the training and the testing set con-
tain very different images (taken with different cameras, backgrounds, poses,
expressions, illuminations and time). In his papers, the author proposes 60
classifiers operating on 30 different facial regions with 2 different image reg-
istration methods. In our experiment, we only take 3 classifiers out of these
60: similarity of the full face, the left and the right half. The results of these
3 classifiers are rather correlated, of course. This choice is made to see the
performance of our benchmark methods in handling the dependence among
classifiers. Although they are not different algorithms, we use these 3 clas-
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Figure 4.4: ECE plot of Face3D

sifiers to have different types of data and see the performance our two-step
method for multi-classifiers scenario as well. By following our procedure, we
get as the best copula pair (ind,t). The performances on this database are
provided by Figure 4.4 for the ECE plot and Table 4.1 for the discrimination
loss and some values of the ECE.

We can see that our two-step method is the best one using all evaluation
metrics (CIin | Cy,, ECE at small prior odds, and ECE at high prior odds). As
before, the Logit method performs poorly on this database since the underlying
distributions are not gaussian. Surprisingly, the GMM method also has poor
performance on this database; it is even worse than the simple PLR. This
may be because the number of the mixture components is more than the the
maximum value that we set. However, if we increase the number of components
then we will have a problem with the limitation of the sample size.
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NIST-Face Face 3D
Methods (Cmin ECE (min ECE

1Ir i) 0 2 1Ir i) 0 2
BSS 0.187 | 0.153 | 0.189 | 0.037 | 0.162 | 0.012 | 0.210 | 0.073
GMM 0.131 | 0.123 | 0.139 | 0.033 | 0.125 | 0.013 | 0.256 | 0.260
Logit 0.150 | 0.138 | 0.174 | 0.055 | 0.159 | 0.020 | 0.598 | 0.828
PLR 0.137 | 0.123 | 0.139 | 0.028 | 0.155 | 0.012 | 0.197 | 0.066
Proposed | 0.134 | 0.120 | 0.136 | 0.027 | 0.112 | 0.009 | 0.132 | 0.040

Table 4.1: Discrimination loss and ECE of different methods on the real databases.
BSS: Best Single System, GMM: Gaussian Mixture Model, Logit: Logistic Regression,
PLR: Product of Likelihood Ratios. The bold number is the best one in every column.

4.2.6 Conclusion

We propose a two-step calibration method to compute the likelihood ratio
of multi-algorithm score-based face recognition systems in forensic evidence
evaluation. The first step of the two-step method is computing the product
of the individual likelihood ratios multiplied by the density ratio of the best
copula pair determined by minimizing discrimination loss. The simple second
step is applying the PAV algorithm in order to get well-calibrated scores.
Using several synthetic data sets, we have shown that our approach performs
very well in handling all dependence levels (low, moderate, and high). We
also see that our two-step method on the real databases NIST-face BSSR1
and Face3D. We conclude that the GMM method, which works quite well
in biometric fusion for person authentication, can somehow perform poorly
in forensic face scenarios. We also recommend to avoid the logistic method,
which is commonly used in the field of speaker recognition, to compute the
likelihood ratio in forensic face recognition because it has high discrimination
loss and sometimes it is much worse than the neutral system.

4.3 Conclusion of Chapter 4

In this chapter, we studied the use of copula models in forensic face scenarios
and proposed the two-step calibration method. Using some well-known para-
metric copula families, it was demonstrated how to choose the best copula
pairs for genuine and impostor scores on some synthetic and public databases.
Finally, we also noticed that the GMM and Logit method may somehow per-
form poorly in forensic face scenarios.
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Chapter

Conclusion

This chapter concludes this PhD thesis and presents recommendations for
future research. The thesis contains contributions to Statistical Theory and
Biometric Applications. The Statistical Theory part of this thesis was inspired
by the dependence between two comparison scores that involve at least one
common person. This dependence was modelled by a Gaussian copula with
constraints on the covariance matrix. We studied efficient estimation in this
model and generalized this to efficient estimation in quite general semipara-
metric models with constraints on the parameters.

Our LR-based score level fusion was proposed in the Biometric Application
part to handle dependence between matchers. The results from the Statistical
Theory part were not used in the Biometric Application part because they
did not give a significant improvement and sometimes they even degraded
the performance of our fusion strategy. In the following, we highlight the
main contributions of this thesis by reviewing the research questions posed in
Chapter 1 and explaining how the thesis answers these questions.

5.1 Answers to the research questions

5.1.1 Statistical Theory

Consider a quite arbitrary (semi)parametric model with a Euclidean parameter
of interest and assume that an asymptotically (semi)parametrically efficient
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estimator of it is given.

e If the parameter of interest is known to lie on a general surface (image of a
continuously differentiable vector valued function), what is the lower bound
on the performance of estimators under this restriction and how can an
efficient estimator be constructed?

A semiparametric submodel is defined in which the parameter of interest is
the lower dimensional parameter determining the general surface. The semi-
parametric lower bound for estimators of it is obtained via the Hajek-LeCam
Convolution Theorem for regular parametric models. Furthermore, the effi-
cient score function for the underlying parameter is determined by the efficient
score function for the original parameter and the Jacobian of the function
defining the general surface, via a simple chain rule for score functions. An
efficient estimator for the underlying parameter is constructed in terms of
the efficient estimator for the original estimator, the Jacobian of the function
defining the general surface, and a consistent estimator of the optimal lower
bound. This consistent estimator is based on empirical characteristic functions
and a sample splitting technique. Finally, some simple examples are given in
location-scale, Gaussian copula, and semiparametric regression models, and in
parametric models under linear restrictions.

e If the parameter of interest belongs to the zero set of a continuously differ-
entiable function (for which it might be impossible to parametrize it as the
image of a continuously differentiable vector valued function), what is the
lower bound on the performance of estimators under this restriction and
how can an efficient estimator be constructed?

A semiparametric submodel is defined in which the parameter of interest is
restricted by an functional equality constraint. The efficient influence func-
tion for the constrained parameter is obtained by a projection technique and
an updated estimator is proposed for the constrained parameter in terms of
the efficient estimator of the parameter without restrictions and the function
defining the equality constraint. An efficient estimator for the constrained
parameter itself is then obtained by finding the closest point in the zero set of
the function defining the constraint to the updated estimator. Finally, some
simple examples are given in location-scale, Gaussian copula, semiparametric
regression, and parametric models.



5.1 Answers to the research questions 123

5.1.2 Biometric Application

Suppose we have score-based multibiometric matchers, in which two or more
different matchers compute a similarity score for any pair of two biometric
samples.

e How can copula models handle dependence between matchers? How do
we estimate the dependence parameters from training data? What are the
performances of handling dependence compared to the simple independence
assumption between matchers in applications?

A what we call semiparametric LR-based score level fusion strategy is pro-
posed. The LR of the joint matchers is computed by splitting the marginal
likelihood ratios and the dependence between matchers via the copula con-
cept. As a result, the LR can be computed by multiplying the product of
the individual likelihood ratios and the copula density ratio called Correction
Factor. A semiparametric model to compute the Correction Factor is pro-
posed by computing the individual likelihood ratios nonparametrically via the
PAV algorithm and by modelling dependence between matchers by parametric
copulas. It is then discussed how the estimator for the Correction Factor pa-
rameter can be obtained and how it behaves like, asymptotically. Finally, some
applications simulating real biometric scenarios are presented and it is demon-
strated how our LR-based fusion is applied to them including the method to
choose the best copula pairs.

e How can copula models be used in standard biometric verification? How
can we compare copula-based biometric fusion to the simple independence
assumption between matchers?

In line with the semiparametric LR-based score level fusion strategy, a method
is proposed, called fixed FAR fusion, by maximizing the true positive rate
(TPR) at fixed false acceptance rate (FAR) semiparametrically. After com-
putation of the individual likelihood ratios via the PAV algorithm, the best
Correction Factor modelled by some well-known parametric copulas is deter-
mined by optimization of the TPR at fixed FAR, which is set beforehand,
using a resampling method. Our fixed FAR fusion is then compared to sim-
ple fusion under the independence assumption between matchers by use of
Jeffreys” method. Our fixed FAR fusion is also compared to other LR-based
methods (GMM and Logit) on synthetic and real databases.

e How can copula models be used in forensic applications for combining multi-
algorithm face recognition systems, which are usually dependent?
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Following the semiparametric LR-based score level fusion strategy, a method
called two-step calibration is proposed by choosing from a family of some well-
known parametric copulas the copula pair that gives the smallest discrimina-
tion loss after the product of the individual likelihood ratios has been com-
puted via the PAV algorithm. Once the best copula pair has been chosen,
the training data are fused via this copula pair and the fused data are used
to train the PAV algorithm in order to make the fused scores well calibrated.
Some experimental results on real databases show that the two-step method
outperforms the PLR, GMM, and Logit methods with respect to the cost of
loglikelihood and the ECE plot.

5.2 Final remarks

There are two types of dependence in score level fusion: dependence between
scores (that involve at least one common person) produced by one matcher
and dependence between matchers. The first type of dependence may be
modelled by a Gaussian copula under constraints, which is a special case of
a general semiparametric model with constrained parameters. Although such
semiparametric models can be applied to some common problems in statistics,
the obtained results do not help in improving the accuracy of estimates of the
LR and they might even degrade the performance. Causes might be that most
scores are independent and that the assumption of the observations following
a Gaussian copula distribution is rather strong and hard to be satisfied for
real biometric data. On the other hand, the dependence between matchers
is always relevant and should be taken care of in order to improve the PLR
method as can be seen from the results in Chapter 3. It is also emphasized
that the best copula pair may be different for every performance measure.

5.3 Recommendations for future research

5.3.1 Statistical Theory

In Section 2.3 semiparametric estimation of Euclidean parameters under equal-
ity constraints is discussed. In future research more general constraints can
be studied by considering both equality and inequality constraints as already
studied in parametric models.
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5.3.2 Biometric Application

Chapters 3 and 4 discussed the importance of incorporating dependence be-
tween matchers in score level fusion. A semiparametric LR-based method was
proposed where the individual likelihood ratios are computed by the PAV al-
gorithm and the Correction Factor is approximated by a copula density ratio.
Future work may investigate the following problems.

e The accuracy of the PAV algorithm can be very poor for small sample
sizes. A more robust method that can handle small sample size problems
for estimating 1-dimensional likelihood ratios, may potentially improve the
semiparametric LR-based method.

e The parametric copula families that are used in Chapter 3, model the de-
pendencies between all matchers the same. More precisely, if there are three
matchers then the dependence of all three pairs of two matchers is assumed
to be the same. In practice, the dependence between the first and second
matcher may be different from the dependence between the first and the
third one or between the second and third one. Therefore, by allowing
each pair of two matchers to have different dependence may also lead to
improvement.
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Summary

Semiparametric Copula Models for Biometric Score Level Fu-
sion

In biometric recognition, biometric samples (images of faces, fingerprints,
voices, gaits, etc.) of people are compared and matchers (classifiers) indicate
the level of similarity between any pair of samples by a score. If two samples
of the same person are compared, a genuine score is obtained. If a comparison
concerns samples of different people, the resulting score is called an impostor
score. If we model the joint distribution of all scores by a (semiparametric)
Gaussian copula model, the resulting correlation matrix will be structured.
It has many zeros and many correlations have a common value. Estimation
of these parameters is a problem in constrained semiparametric estimation, a
topic that we study in quite some generality in the Statistical Theory part of
this thesis. The Biometric Application part of it focuses on score level fusion
and models the dependence between classifiers also by semiparametric copula
models.

The Statistical part of this thesis studies semiparametric estimation of con-
strained Fuclidean parameters. When the Euclidean parameter is known to lie
on a general surface (image of a continuously differentiable vector valued func-
tion), the lower bound for estimators for the underlying parameter is obtained
via the Hajek-LeCam Convolution Theorem for regular parametric models
and subsequently an efficient estimator attaining this bound is constructed in
terms of the original estimator and the function defining the surface.

A projection technique is used for computing the lower bound for the estima-
tors when the Euclidean parameter belongs to the zero set of a continuously
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differentiable function (for which it might be impossible to parametrize it as
the image of a continuously differentiable vector valued function) and an effi-
cient estimator under this constraint is also provided in terms of an efficient
estimator within the unconstrained model and the function defining the con-
straint.

The Biometric part proposes a semiparametric likelihood ratio-based score
level fusion strategy by modelling the marginal individual likelihood ratios
nonparametrically and the dependence between them by parametric copu-
las. The dependence parameter is estimated by pseudo-likelihood estimation
and its convergence is discussed. A detailed procedure to train the proposed
method is provided and applications on real data for the biometric standard
verifications and in forensic scenarios are also demonstrated.



Samenvatting

Semiparametrische Copula Modellen voor Biometrische Score
Level Fusion

Bij biometrische herkenning worden biometrische samples (vingerafdrukken,
opnamen van gezichten, stemmen, manieren van lopen, etc.) vergeleken en
geven vergelijkers (matchers) door middel van een score de mate van gelijkenis
aan tussen paren van samples.

Als twee samples van eenzelfde persoon worden vergeleken, wordt een genuine
score verkregen. Bij het vergelijken van samples van verschillende personen
heet de resulterende score een impostor score. Als we de simultane verdeling
van alle scores modelleren met een (semiparametrisch) Gaussian copula model,
dan is de resulterende correlatiematrix gestructureerd. Deze heeft veel nullen
en veel correlaties hebben dezelfde waarde.

Het schatten van deze waarden is een probleem in het semiparametrisch schat-
ten met voorwaarden op de parameters. Dit is een onderwerp dat we in zijn
volle algemeenheid bestuderen in het Statistische Theorie-deel van het proef-
schrift. Het Biometrische Toepassingen-deel richt zich op het samenvoegen
van scores en modelleert de onderlinge afhankelijkheid van vergelijkers ook
door middel van semiparametrische copula modellen.

Het statistische deel van dit proefschrift bestudeert het semiparametrisch schat-
ten van ingeperkte Euclidische parameters. Wanneer bekend is dat de Eu-
clidische parameter op een algemeen oppervlak (het beeld van een continu-
differentieerbare vectorwaardige functie) ligt, krijgen we de ondergrens voor
schatters van de onderliggende parameter via de Hajek-LeCam Convolutie
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Stelling voor reguliere parametrische modellen. Vervolgens wordt een efficiénte
schatter geconstrueerd die deze ondergrens bereikt en die gedefinieerd is in
termen van een efficiénte schatter binnen het niet-ingeperkte model en van de
functie die het oppervlak definieert. Een projectietechniek wordt gebruikt om
de ondergrens te bepalen voor schatters, wanneer de Euclidische parameter
behoort tot de nulpuntenverzameling van een continu-differentieerbare func-
tie (waarvoor het onmogelijk kan zijn om die te herparametriseren als beeld
van een continu-differentieerbare vectorwaardige functie), en ook wordt een
efficiénte schatter onder zo'n inperking gegeven in termen van een efficiénte
schatter binnen het niet-ingeperkte model en van de functie die de inperking
definieert.

Het Biometrische deel stelt een semiparametrische op likelihood ratio gebaseerde
samenvoegingsstrategie voor scores voor die de individuéle likelihood ratio niet-
parametrisch modelleert en hun onderlinge athankelijkheden via parametrische
koppelingsfuncties. De afhankelijkheidsparameters worden met pseudo-likelihood
estimation geschat en hun convergentie wordt besproken. Een gedetailleerde
procedure wordt beschreven om de voorgestelde methode te trainen en toepassin-
gen op echte gegevens worden gepresenteerd voor standaard biometrische ver-
ificatie en voor forensische situaties.
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