

P E E R - T O - P E E R I N F O R M AT I O N R E T R I E VA L

almer s . tigelaar

http://almer.tigelaar.net

PhD dissertation committee
Chairman and Secretary

Prof. dr. ir. A. J. Mouthaan University of Twente, NL
Supervisor

Prof. dr. P. M. G. Apers University of Twente, NL
Assistant Supervisor

Dr. ir. D. Hiemstra University of Twente, NL
Members

Prof. dr. J. P. Callan Carnegie Mellon University, US
Prof. dr. F. Crestani Università della Svizzera Italiana, CH
Prof. dr. ir. A. P. de Vries Delft University of Technology, NL
Prof. dr. F. M. G. de Jong University of Twente, NL
Prof. dr. D. K. J. Heylen University of Twente, NL
Dr. ir. J. A. Pouwelse Delft University of Technology, NL

CTIT
CTIT PhD Dissertation Series No. 11-222
Centre for Telematics and Information Technology (CTIT)
P.O. Box 217, 7500 AE Enschede, The Netherlands

SIKS Dissertation Series No. 2012-29
The research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School for
Information and Knowledge Systems

The research in this thesis was supported by the Nether-
lands Organisation for Scientific Research (NWO) under
project number 639.022.809

c© 2012 Almer S. Tigelaar, Enschede, The Netherlands
Cover Design by Almer S. Tigelaar

This work is licensed under the Creative Commons Attribution Non-
Commercial Share-Alike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ or contact Creative
Commons, 444 Castro Street, Suite 900, Mountain View, CA, 94041, USA.

ISBN:
ISSN:
DOI:

978-90-365-3400-0
1381-3617, No. 11-222
10.3990/1.9789036534000

http://www.utwente.nl
http://wwwhome.ewi.utwente.nl/~apers/
http://www.utwente.nl
http://wwwhome.ewi.utwente.nl/~hiemstra/
http://www.utwente.nl
http://www.cs.cmu.edu/~callan/
http://www.cmu.edu
http://sites.google.com/site/fcrestani/
http://www.usi.ch
http://homepages.cwi.nl/~arjen/
http://www.tudelft.nl
http://wwwhome.ewi.utwente.nl/~fdejong/
http://www.utwente.nl
http://wwwhome.ewi.utwente.nl/~heylen/
http://www.utwente.nl
http://pds.twi.tudelft.nl/~pouwelse/
http://www.tudelft.nl
http://www.ctit.utwente.nl/
http://www.siks.nl/
http://www.siks.nl/
http://www.nwo.nl/
http://www.nwo.nl/
http://almer.tigelaar.net
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.3990/1.9789036534000

peer-to-peer information retrieval

dissertation

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Wednesday, September 26th, 2012 at 14:45

by

Almer Sampath Tigelaar
born on May 9th, 1982

in Avissawella, Sri Lanka

This dissertation is approved by:

Prof. dr. Peter M. G. Apers (supervisor)
Dr. ir. Djoerd Hiemstra (assistant supervisor)

http://wwwhome.ewi.utwente.nl/~apers/
http://wwwhome.ewi.utwente.nl/~hiemstra/

‘Don’t tell me what I can’t do!’

John Locke (Lost)

http://lostpedia.wikia.com/wiki/Don't_tell_me_what_I_can't_do

P R E FA C E

‘After I got my PhD, my mother
took great relish in introducing

me as, “this is my son, he’s a
doctor but not the kind that

helps people.”’

Randy Pausch

It was a warm summer day in August. I was standing in a line waiting
for my turn. It was hot, my T-shirt was soaked, my feet hurt, but I felt

good, real good. I looked around and listened to the music dampened
through my earplugs. I saw people dancing in the distance to my right,
someone zip-lining past them and groups of people drinking and chatting
in an open air lounge-like area to my left. The social atmosphere was
good here, it had been for days. This was Hungary, this was Budapest,
this was Sziget Festival. The queue dissolved and finally it was my turn.
I went inside the massive white tent which was filled with endless rows
of computers. I had only 10 minutes of Internet access: make them count.

I quickly opened my mailbox and found a mail by Djoerd Hiemstra.
He worked at the database group of the University of Twente, a different
research group from where I got my Master’s degree just a month ear-
lier. I had contacted him before I left and he was now asking whether I
would be interested in a PhD position on a new project he was starting.
There were more mails to plough through and I just spent a couple of
long nights doing things that, well, are fun, but not exactly conducive to
thinking straight, so I typed a quick reply telling him that I would get
back to him when I returned to the Netherlands.

That was four years ago. We had a meeting, I expressed interest, ap-
plied for the job and the rest is history. Now, four years later, the thesis
is finished and the project is drawing to a close. As any PhD student will

vii

tell you: the process is not easy. You spend four years with a subject until
you practically eat, drink and sleep it. It is a test of aptitude that makes
you an expert on your terrain. However, it is certainly not for everyone.

You get a lot of freedom to structure your own research process and to
pursue the direction of your choosing. However, this is a double-edged
sword, as there is the risk of engaging in unnecessary detours, running
in circles and getting stuck in dead-ends. A good supervisor can do won-
ders to prevent these pitfalls and get you back on track. The nice things
about doing a PhD are undeniably that you get to meet lots of interesting
people, enjoy a great deal of personal freedom and travel frequently.

I had a great time during the ESSIR summer school in Padova, Italy, and
was grateful that a friend was able to facilitate a visit to the information
retrieval research group, in nearby Lugano, led by Fabio Crestani. I am
happy he agreed to be on my committee. I also had the opportunity
to spend four months at Carnegie Mellon University in Pittsburgh as a
visiting scholar. It was challenging at times, but enjoyable. I would like
to thank Jamie Callan for his excellent guidance, and am honoured that
he is on my committee. Furthermore, I thank Anagha whom I greatly
enjoyed cooperating with and David for his technical support. Also, Luís,
Wang and Arnold for making it a pleasant stay, my ‘host’ family: Stacy,
Andy, Ellie, Ben, Larry and Jackie, as well as the people at CMU Film
Club.

I remember a brief visit to the Delft University of Technology where
Djoerd and I had a pleasant interaction about peer-to-peer systems with
Johan Pouwelse, who also agreed to be on my committee. Dirk Heylen
inquired several times about the status of my PhD, and I am happy he
joined my committee, as well as Franciska de Jong from the same group.
I encountered Arjen de Vries at several conferences, and am honoured he
is part of my committee too.

I would like to thank my colleagues at the database group. First and
foremost my daily supervisor, Djoerd Hiemstra, who was always a great
help for generating new and fresh ideas, my supervisor Peter Apers, the
few moments we shared were useful, and Dolf Trieschnigg for his feed-
back. I would also like to thank Maarten for his guidance, Maurice for
occasional tips, Jan for assisting with technical issues and Ida & Suse for
helping out with too many things to list here. I also want to thank my
direct colleagues over the years, particularly: Riham, Victor and Moham-
mad, and also: Robin, Harold, Sander, Anand, Sergio, Juan, Mena and

viii

Rezwan.
And then, of course, there are those really close people that stay with

you throughout the years, to whom I am thankful for supporting me
during the highs and lows inevitably part of such a long timespan: Mario,
Desi, Marco, Guido, Martijn, Menno, Sara, Edwin, Annemarie and Robert.
As well as: Alexander, Isaac, Zwier, Danny, François, Thijs, Ruben, Jan,
Gert, Mareije, Marco P., Niels N., Maher, Nisa, Fenne and Bayan.

Then there’s all the people with whom I lived together during my PhD:
Robert, Thomas, Chiel, Dirk-Maarten, Vanessa, Janina, Niels, Maarten, Ju-
lia, Sara, Jochem, Lieke, Maike, Chris, Dirk, Stefan, Marissa, Inga, Katha-
rina, Twan and René. Thanks for providing a home.

I also want to thank my family: Klaas, Marrie, Rianne, Dennis, Maura,
Sander, Erma and Britt. I am happy that my sister Rianne and my trusted
friend Mario agreed to be my paranymphs.

I want to thank all those that read (parts) of this thesis and provided
helpful suggestions. Firstly, Marco for reading large parts, nagging me
about the mathematical notation, meticulously checking my references,
and for sparring about the propositions with me. Secondly, Mario for
spotting those final lay-out issues. Gratitude to the many others that
primarily read the introductory chapter, and various other parts: Dolf,
Victor, Mohammad, Menno, Sara, Maike and Robert.

Finally, I want to thank the people involved in creating all the fiction
and non-fiction I read, listened, watched and played over the past four
years. Thanks to them there was always something to look forward to,
even when the going got tough.

Almerස�ප� Tigelaar,
August 2012.

ix

C O N T E N T S

1 Introduction 1
1.1 Motivation 2
1.2 Research Topics 5
1.3 Thesis Structure 7

2 Peer-to-Peer Networks 9
2.1 Applications 10
2.2 Challenges 12
2.3 Tasks 14
2.4 Architectures 15
2.5 Economics 26
2.6 Information Retrieval 31

3 Existing Research & Systems 41
3.1 Optimisation Techniques 44
3.2 Information Retrieval Systems 52
3.3 Key Focus Areas 61
3.4 Economic Systems 63
3.5 Our Network Architecture 74

4 Representing Uncooperative Peers 85
4.1 Data Sets 87
4.2 Metrics 89
4.3 Can we do Better than Random? 90
4.4 Query-Based Sampling using Snippets 107

xi

5 Selecting Cooperative Peers 121
5.1 Approach 124
5.2 Data Sets 130
5.3 Experiment 135
5.4 Discussion 154
5.5 Conclusion 156

6 Caching Search Results 157
6.1 Experiment Set-up 160
6.2 Centralised Experiments 162
6.3 Decentralised Experiments 169
6.4 Conclusion 175

7 Conclusion 179

Bibliography 185

List of Publications 211

SIKS Dissertations 213

Summary 219

Samenvatting 221

xii

1
I N T R O D U C T I O N

‘We could say we want the web to
reflect a democratic world vision.

To do that, we get computers to
talk with each other in such a
way as to promote that ideal.’

Tim Berners-Lee

What is peer-to-peer information retrieval and why
should you care and read this thesis? Where can you
find the parts that are interesting for you? All these
questions are answered in this chapter.

Over the past decade the Internet has become an integral part of our
daily lives. We follow the news, view fascinating videos and listen

to our favourite music on-line. One task is essential to all these on-line
activities: finding information. Nowadays, a rich palette of web search
engines exists, from the big: Google, Bing and Yahoo; to the specific:
YouTube for videos, Wikipedia for encyclopedia articles, IMDB for films;
to the small: the search field on the website of your local library, univer-
sity or favourite blog author. These search engines allow us to quickly
find what we are looking for in large data collections in mere fractions
of a second: a feat unprecedented in human history. Massive amounts
of computers in large data centres enable the big search giants to pro-
vide their services. The research area that concerns itself with improving
search technology is called information retrieval, formally defined as: ‘the
technique and process of searching, recovering and interpreting informa-
tion from large amounts of stored data’ (McGraw-Hill, 2002). In short:

1

introduction

searching for needles in a haystack. Conventionally, the haystack is a doc-
ument collection, the needle is the specific document you are looking for
and the text you use to describe that specific needle is called the query:
the text you enter in a search box.

The web is not solely a consumption medium and offers more than a
searchable gateway to information alone. In contrast with, for example,
broadcast television, the World Wide Web encourages us to actively con-
tribute and share. This ranges from creating our own content, to sharing
our favourite existing stories, music and videos with others. The drive
to share things with our peers is human nature. Given this, it is not sur-
prising that applications that enable us to share content with each other
directly have gained widespread popularity, nor is it surprising that these
are called peer-to-peer applications. Familiar examples are Napster, Kazaa
and BitTorrent, lesser known ones are Usenet, Skype and Spotify. The cen-
tral idea of all peer-to-peer applications is the same: use the processing
and storage capacity available at the edges of the Internet: the machines
that we use every day, our desktop, laptop and tablet computers. The re-
search field that focuses on improving these peer-to-peer systems is called
peer-to-peer computing. It focuses on leveraging vast amounts of comput-
ing power, storage and connectivity from personal computers around the
world (Zeinalipour-Yazti et al., 2004). These loosely coupled computers,
the peers, are considered to be equal and supply as well as consume re-
sources in order to complete application-specific tasks.

In this thesis, we bring together the field of peer-to-peer computing
and information retrieval. The goal is to provide the foundation for a web
search engine which, like the existing ones, enables us to find information
in a fraction of a second, but that uses the computers in our homes to do
so. But, why would we want to do this?

1.1 motivation

The big commercial search engines dominate search in the world’s largest
document collection: the World Wide Web. Their search services use
many machines arranged in data centres which they exclusively control.
These machines download as many web pages as they can find, a process
referred to as crawling, and index these documents. Conceptually, an
index contains, for each term, the documents in which the term occurred.
Using this information, search engines can quickly suggest relevant pages

2

1.1 motivation

for a given query. The approach of storing the index in large data centres
and performing the searches there is termed centralised search: a single
party provides a search service over a large collection of documents.

The dominance of large search engines raises at least three ethical con-
cerns. Firstly, search engine companies can afford to buy vast amounts of
storage space and computing power which enables them to store and ac-
cess very large indices. Since not everyone can do this, the search engine
operators effectively control the information that can be found, thereby
establishing an information monopoly and censorship capabilities (Ku-
lathuramaiyer and Balke, 2006; Mowshowitz and Kawaguchi, 2002). This
position can be abused to suppress freedom of speech and censor crimes
committed by oppressive regimes. Secondly, conflicts of interest may oc-
cur, particularly with respect to products and services of competitors
(White, 2009; Edelman, 2010). The ability to monitor people’s interest
and controlling what they get to see, makes it easy to influence the suc-
cess of products in the marketplace beyond conventional advertising and
to play the stock market in an unprecedented way. Thirdly, the elaborate
tracking of user behaviour forms a privacy risk (Tene, 2008). In contrast
with regulated service providers like physicians, lawyers and bankers,
there is little legal protection for sensitive personal information revealed
to on-line search services.

There are also a number of technical concerns. Firstly, the web is a
medium which encourages users to create and publish their own content.
This has been a driving force behind its explosive growth and one can
question whether centralised solutions can keep up with the rapid pace
at which content is added, changed and removed (Lewandowski et al.,
2006). There is a need for alternative scalable solutions that can take
over when their centralised counterparts start to fail. Secondly, a large
amount of dynamically generated content is hidden behind web search
forms that cannot easily be reached by centralised search engines: the deep
web (Bergman, 2001). Thirdly, in central search the central party decides
how, when and what parts of a website are indexed: it does not enable
websites and search systems to completely independently manage their
search data (Galanis et al., 2003).

It would be better if no single party dominates web search. Users and
creators of web content should collectively provide a search service. This
would restore to them control over what information they wish to share as
well as how they share it. Importantly, no single party would dominate in

3

introduction

such a system, mitigating the ethical drawbacks of centralised search. Ad-
ditionally, this enables handling dynamic content and provides scalability,
thereby removing the technical weaknesses of centralised systems. Unfor-
tunately, no mature solution exists for this. However, peer-to-peer infor-
mation retrieval could form the foundation for such a collective search
platform. The way people share content with each other maps naturally
onto the peer-to-peer paradigm (Oram, 2001): a peer does not only pas-
sively consume resources, but also actively contributes resources back.

Peer-to-peer information retrieval is a fascinating and challenging re-
search area. In the past decade a number of prototype peer-to-peer search
engines have been developed in this field (Akavipat et al., 2006; Suel et al.,
2003; Bender et al., 2005b; Luu et al., 2006). While promising, none of
these has seen widespread real-world adoption. There are several likely
reasons for this. Firstly, peer-to-peer systems are challenging to develop.
Secondly, there is a lack of commercial interest in research and develop-
ment of these systems, perhaps since their centralised counterparts are
easier to monetise. Thirdly, they are not yet capable of providing a viable
alternative to contemporary centralised search engines. Despite these
reasons, we believe that peer-to-peer information retrieval systems are a
promising alternative to centralised solutions. The challenges that remain
can be resolved by focused research and development. While a peer-to-
peer web search engine would not instantly solve all of the ethical and
technical drawbacks of centralised search, it would be a good first step
in the right direction, as it enables solutions that directly and explicitly
involve users and content creators to a degree which is difficult or impos-
sible in a centralised approach. For example: users could help improve
search result quality by moderating and providing feedback (Chidlovskii
et al., 2000; Freyne et al., 2004); content creators can make their dynamic
content available and help with keeping the index fresh; both users and
creators can contribute their computing resources, like spare bandwidth,
storage and processing cycles, to provide a large distributed index with
good scalability properties (Krishnan et al., 2007).

With this thesis we aim to provide a new direction for applying the
peer-to-peer paradigm to information retrieval and hope to inspire fur-
ther research in this area. Sufficient interest can lead to the develop-
ment and large-scale deployment of real-world peer-to-peer information
retrieval systems that rival existing centralised client-server solutions in
terms of scalability, performance, user satisfaction and freedom.

4

1.2 research topics

1.2 research topics

The main goal of this thesis is to take several steps to make real-world
peer-to-peer web search systems more viable. The first part of the thesis
is theoretical and focuses on describing and framing existing concepts
and systems. It centres on the following research topics (RT’s):

RT 1. What is peer-to-peer information retrieval, how does it differ
from related research fields and what are its unique challenges?

A key element, that has been missing so far, is a clear and unambiguous
definition of what peer-to-peer information retrieval really is. One reason
for this is that it overlaps with at least two related research fields. Firstly,
peer-to-peer file sharing systems in which free text search is performed
to find files of interest. Secondly, federated information retrieval that
concerns itself with how a federation of search engines can collectively
provide a search service. There is a need for a clear definition of what
separates peer-to-peer information retrieval from these related fields: an
understanding of its unique challenges. Furthermore, we briefly investi-
gate the economics of peer-to-peer systems.

RT 2. What general peer-to-peer architectures, information retrieval
systems and optimisation techniques already exist?

Over the years, a number of peer-to-peer system architectures evolved.
We aim to provide an overview of the existing architectures, highlighting
their strengths and weaknesses from an information retrieval perspective,
as these are the foundation of any real-world system. Furthermore, we
also want to identify which peer-to-peer information retrieval systems so
far have been influential, what techniques can be used to optimise such
systems and how economics can be applied to peer-to-peer systems.

Conducting experiments with all peer-to-peer architectures is impossi-
ble due to time constraints. For the remainder of the thesis we would like
to pick one architecture to use as the basis for our experiments. Based
on the investigation we conducted for the previous two research topics,
we make an informed choice concerning the architecture we prefer for
further research and development.

The second part of the thesis assumes an architecture where one logical
party, termed the tracker, is responsible for suggesting relevant peers in

5

introduction

response to queries. It focuses on practical experiments using this partic-
ular architecture to create a peer-to-peer web search system and focuses
on the following research topics:

RT 3. How can content at uncooperative peers, and existing external
search systems, be made searchable?

There are many existing systems that could be integrated in a peer-to-peer
web search engine. However, changing their interface is either unwanted
or impossible. We would like to have some way of deciding whether
queries can be directed to these systems with only a minimal search inter-
face. We investigate and adapt an existing technique that sends computer-
generated probing queries to these systems to estimate their content. The
information obtained this way can, at a later stage, be used to direct actual
user queries to the systems believed to be capable of providing relevant
search results. This enables access to a broader amount of information,
aiding the transition to a fully cooperative peer-to-peer environment.

RT 4. How could we best represent the content of cooperative peers
to maximise the relevance of search results?

Cooperative peers can provide information about their content to the
tracker, so it can perform more effective peer selection. However, it is
not obvious what this information should be and how it should be used.
Furthermore, we would like to know the costs of transmission and stor-
age of this information, so that we can maximise relevance based on a
minimal amount of information. We compare the performance of a broad
range of possible representations.

RT 5. How can we distribute the query load and minimise the la-
tency for retrieving search results?

Users of modern centralised web search engines have become accustomed
to fast sub-second response times for their queries. There is a need for
a mechanism that also makes this possible for peer-to-peer web search
engines. We investigate keeping copies of previously obtained search
results at each peer as a solution. We take into account the volatile nature
of peer-to-peer systems and explore a simple incentive mechanism for
retaining search result caches.

6

1.3 thesis structure

1.3 thesis structure

This thesis aims to first introduce peer-to-peer systems from an informa-
tion retrieval perspective which is done in Chapter 2 (RT1&2). This is
followed by a survey of existing systems and techniques in Chapter 3
(RT2). Section 3.5 contains the choice for our experimental setting. That
concludes the theoretical part of this thesis.

The first two experimental chapters focus primarily on maximising rel-
evance of search results: in Chapter 4 we look at a technique called query-
based sampling to model uncooperative peers (RT3), followed by Chapter
5 in which we try to find out how to best represent cooperative peers for
maximising search result relevance (RT4).

In our final experiment, in Chapter 6, we shift focus to minimising la-
tency whilst retaining search result relevance: we show how search result
caching can be used to perform load balancing while keeping into ac-
count the unique characteristics of peer-to-peer networks and also briefly
touch on using reputations as an incentive mechanism for caching (RT5).

7

2
P E E R - T O - P E E R N E T W O R K S

‘The whole is greater than
the sum of its parts.’

Aristotle

This chapter presents the high-level concepts and dis-
tinctions central to peer-to-peer systems. It starts with
a general overview and moves towards challenges spe-
cific to information retrieval.

A node is a computer connected to a network. This network facil-
itates communication between the connected nodes through vari-

ous protocols enabling many distributed applications. The Internet is
the largest contemporary computer network with a prolific ecosystem of
network applications. Communication occurs at various levels called lay-
ers (Kurose and Ross, 2003, p. 55). The lowest layers are close to the
physical hardware, whereas the highest layers are close to the software.
The top layer is the application layer in which communication commonly
takes place according to the client-server paradigm: server nodes provide
a resource, while client nodes use this resource. An extension to this is
the peer-to-peer paradigm: here each node is equal and therefore called a
peer. Each peer could be said to be a client and a server at the same
time and thus can both supply and consume resources. In this paradigm,
peers need to cooperate with each other, balancing their mutual resources

This chapter is based on Tigelaar et al. (2012): Peer-to-Peer Information Retrieval: An
Overview, that appeared in ACM Transactions on Information Systems, Volume 32, Issue
2 (May 2012). c©ACM, 2012. http://doi.acm.org/10.1145/2180868.2180871.

9

http://doi.acm.org/10.1145/2180868.2180871

peer-to-peer networks

in order to complete application-specific tasks. For communication with
each other, during task execution, the peers temporarily form overlay net-
works: smaller networks within the much larger network they are part of.
Each peer is connected to a limited number of other peers: its neighbours.
Peers conventionally transmit data by forwarding from one peer to the
next or by directly contacting other, non-neighbouring, peers using rout-
ing tables. The architecture of a peer-to-peer network is determined by
the shape of its overlay network(s), the placement and scope of indices,
local or global, and the protocols used for communication. The choice of
architecture influences how the network can be utilised for various tasks
such as searching and downloading.

In practice the machines that participate in peer-to-peer networks are
predominantly found at the edge of the network, meaning they are not
machines in big server farms, but computers in people’s homes (Kurose
and Ross, 2003, p. 165). Because of this, a peer-to-peer network typically
consists of thousands of low-cost machines, all with different processing
and storage capacities as well as different link speeds. Such a network can
provide many useful applications, like: file sharing, streaming media and
distributed search. Peer-to-peer networks have several properties that
make them attractive for these tasks. They usually have no centralised
directory or control point and thus also no central point of failure. This
makes them self-organising, meaning that they automatically adapt when
peers join the network, depart from it or fail. The communication be-
tween peers uses a language common among them and is symmetric as is
the provision of services. This symmetry makes a peer-to-peer network
self-scaling: each peer that joins the network adds to the available total
capacity (Bawa et al., 2003; Risson and Moors, 2006).

In the following sections we will first discuss applications of peer-to-
peer networks and the challenges for such networks, followed by an in-
depth overview of commonly used peer-to-peer network architectures.

2.1 applications

Many applications use peer-to-peer technology. Some examples:

• Content Distribution: Usenet, Akamai, Steam.

• File Sharing: Napster, Kazaa, Gnutella, BitTorrent.

10

2.1 applications

• Information Retrieval: Sixearch, YaCy, Seeks.

• Instant Messaging: ICQ, MSN.

• Streaming Media: Tribler, Spotify.

• Telephony: Skype, SIP.

Significant differences exist among these applications. One can roughly
distinguish between applications with mostly private data: instant mes-
saging and telephony; and public data: content distribution, file sharing,
information retrieval and streaming media. The term peer-to-peer is con-
ventionally used for this latter category of applications, where the sharing
of public data is the goal which is also the focus of this thesis. The inter-
esting characteristic of public data is that there are initially only a few
peers that supply the data and there are many peers that demand a copy
of it. This asymmetry can be exploited to widely replicate data and pro-
vide better servicing for future requests. Since file sharing networks are
the most pervasive peer-to-peer application, we will frequently use it as
an example and basis for comparison, especially in the initial sections
of this chapter that focus on the common characteristics of peer-to-peer
computing. However, in Section 2.6 we will shift focus to the differences
and give a definition of peer-to-peer information retrieval and what sets
it apart from other applications.

The concepts query, document and index will often be used in this thesis.
What is considered to be a query or document, and what is stored in
the index, depends on the application. For most content distribution,
file sharing and streaming media systems, the documents can be files
of all types. The index consists of metadata about those files and the
queries are restricted to searching in this metadata space. Information
retrieval usually involves a large collection of text documents of which
the actual content is indexed and searchable by using free text queries.
For searching in instant messaging networks, and telephony applications,
the documents are user profiles of which some fields are used to form
an index. The query is restricted to searching in one of these fields, for
example: ‘nickname’.

11

peer-to-peer networks

2.2 challenges

There are many important challenges specific to peer-to-peer networks
(Daswani et al., 2003; Triantafillou et al., 2003; Milojicic et al., 2003):

• How to make efficient use of resources?
Resources are bandwidth, processing power and storage space. The
higher the efficiency, the more requests a system can handle and the
lower the costs for handling each request. Peers may vary wildly in
their available resources which raises unique challenges.

• How to provide acceptable quality of service?
Measurable important aspects are: low latency and sufficient high-
quality results.

• How to guarantee robustness?
Provide a stable service to peers and the ability to recover from data
corruption and communication errors whatever the cause.

• How to ensure data remains available?
When a peer leaves the network its content is, temporarily, not ac-
cessible. Hence, a peer-to-peer network should engage in quick dis-
tribution of popular data to ensure it remains available for as long
as there is demand for it.

• How to provide anonymity?
The owners and users of peers in the network should have at least
some level of anonymity depending on the application. This en-
ables censorship resistance, freedom of speech without the fear of
persecution and privacy protection.

Additionally, several behaviours of peers must be handled:

• Churn
The stress caused on a network by the constant joining and leav-
ing of peers is termed churn. Most peers remain connected to the
network only for a short time. Especially if the network needs to
maintain global information, as in a network with a decentralised
global index, this can lead to, recurring and costly, shifting and re-
balancing of data over the network. This behaviour also reduces the

12

2.2 challenges

availability of data. Peers may leave willingly, but they can also sim-
ply crash (Klampanos et al., 2005). A peer-to-peer network should
minimise the communication needed when a peer leaves or joins
the network (Stutzbach and Rejaie, 2006).

• Free riding
A peer-to-peer network is built around the assumption that all peers
in the network contribute a part of their processing power and avail-
able bandwidth. Unfortunately, most networks also contain peers
that only use resources of other peers without contributing anything
back. These peers are said to engage in free riding. A peer-to-peer
network should both discourage free riding and minimise the im-
pact that free riders have on the performance of the network as a
whole (Krishnan et al., 2002).

• Malicious behaviour
While free riding is just unfair consumption of resources, malicious
behaviours actively frustrate the usage of resources, either by ex-
ecuting attacks or ‘poisoning’ the network with fake or corrupted
data. A peer-to-peer network should be resilient to such attacks,
be able to recover from them and have mechanisms to detect and
remove poisoned data (Kamvar et al., 2003; Keyani et al., 2002).

Finally, it remains difficult to evaluate and compare different peer-to-peer
systems. For this we define the following research challenges:

• Simulation
Most peer-to-peer papers use self-developed simulation frameworks.
This may be surprising since several peer-to-peer simulators exist.
However, these have several problems like having limited ways to
obtain statistics, poor documentation and are generally hard to use
(Naicken et al., 2006, 2007). Creating a usable framework for a wide-
range of peer-to-peer experiments is a challenge.

• Standardised test sets
Simulations should use standardised test sets, so that results of dif-
ferent solutions to peer-to-peer problems can be compared. For a
file sharing network this could be a set of reference files, for an
information retrieval network a set of documents, queries and rel-
evance judgements. Creating such test collections is often difficult
and labour-intensive. However, they are indispensable for science.

13

peer-to-peer networks

2.3 tasks

We distinguish three tasks that every peer-to-peer network performs:

1. Searching: Given a query return some list of document references.

2. Locating: Resolve a document reference to concrete locations from
which the full document can be obtained.

3. Transferring: Actually download the document.

From a user perspective the first step is about identifying what one wants,
the second about working out where it is and the third about obtaining
it (Joseph, 2002). Peer-to-peer networks do not always decentralise all
of these tasks and not every peer-to-peer architecture caters well to each
task, as we will see later. The key point is that searching is different from
locating. We will concretely illustrate this using three examples.

Firstly, in an instant messaging application, searching would be look-
ing for users that have a certain first name or that live in a specific city, for
example: for all people named Zefram Cochrane in Bozeman, Montana.
This search would yield a list with various properties of matching users,
including a unique identifier, from which the searcher picks one, for ex-
ample: the one with identifier ‘Z2032’. The instant messaging application
can use this to locate that user: resolving the identifier to the current
machine address of the user, for example: 5.4.20.63. Finally, transferring
would be sending an instant message to that machine.

Secondly, in information retrieval the search step would be looking for
documents that contain a particular phrase, for example ‘pizza baking
robots’. This would yield a list of documents that either contain the exact
phrase or parts thereof. The searcher then selects a document of inter-
est with a unique identifier. Locating would involve finding all peers
that share the document with that identifier and finally downloading the
document from one of these.

As a final example let us consider the first two tasks in file sharing net-
works. Firstly, searching: given a query find some possible files to download.
This step yields unique file identifiers necessary for the next step, com-
monly a hash derived from the file content. Secondly, locating: given a
specific file identifier find me other peers that offer exactly that file. What
distinguishes these is that in the first, one still has to choose what one
wants to download from the search results, whereas in the second, one

14

2.4 architectures

knows exactly what one wants already and one is simply looking for repli-
cas. These two tasks are cleanly split in, for example, BitTorrent (Cohen,
2003). A free text search yields a list of possible torrent files: small meta-
data files that each describe the real downloadable file with hash values
for blocks of the file. This is followed by locating peers that offer parts
of this real file using a centralised machine called the tracker. Finally,
the download proceeds by obtaining parts of the file from different peers.
BitTorrent thus only decentralises the transfer task, and uses centralised
indices for both searching and locating. However, both BitTorrent exten-
sions and many other file sharing networks increasingly perform locating
within the network using a distributed global index. A distributed global
index can also be used for the search task. Networks that use aggregated
local indices, like Gnutella2 (Stokes, 2002), often integrate the search and
locate tasks: a free-text search yields search results with, for each file, a
list of peers from which it can be obtained.

2.4 architectures

There are multiple possible architectures for a peer-to-peer network. The
choice for one of these affects how the network can be searched. To be
able to search, one requires an index and a way to match queries against
entries in this index. Although we will use a number of examples, it is
important to realise that what the index is used for is application-specific.
This could be mapping filenames to concrete locations in the case of file
sharing, user identifiers to machine addresses for instant messaging net-
works, or terms to documents in the case of information retrieval. In all
cases the challenge is keeping the latency low whilst retaining the bene-
ficial properties of peer-to-peer networks like self-organisation and load
balancing (Daswani et al., 2003). Based on this there are several subtasks
for searching that all affect the latency:

• Indexing: Who constructs and updates the index? Where is it stored and
what are the costs of mutating it?
The peers involved in data placement have more processing over-
head than others. There can be one big global index or each peer
can index its own content. Peers can specialise in only providing
storage space, only filling the index or both. Where the index is
stored also affects query routing.

15

peer-to-peer networks

• Querying Routing: Along what path is a query sent from an issuing peer
to a peer that is capable of answering the query via its index?
Long paths are expensive in terms of latency, and slow network
links and machines worsen this. The topology of the overlay net-
work restricts the possible paths.

• Query Processing: Which peer performs the actual query processing (gen-
erating results for a specific query based on an index)?
Having more peers involved in query processing increases the la-
tency and makes fusing the results more difficult. However, if less
peers are involved it is likely that relevant results will be missed.

These search subtasks are relevant to tasks performed in all peer-to-peer
networks. In the following paragraphs we discuss how these subtasks
are performed in four commonly used peer-to-peer architectures using
file sharing as example, since many techniques used in peer-to-peer infor-
mation retrieval are adapted from file sharing networks.

2.4.1 Centralised Global Index

Early file sharing systems used a centralised global index located at a dedi-
cated party, usually a server farm, that kept track of what file was located
at which peer in the network. When peers joined the network they sent
a list of metadata on files they wanted to share containing, for example,
filenames, to the central party that would then include them in its central
index. All queries that originated from the peers were directly routed to
and processed by that central party. Hence, indexing and searching was
completely centralised and followed the client-server paradigm. Actually
obtaining files, or parts of files, was decentralised by downloading from
peers directly. This is sometimes referred to as a brokered architecture,
since the central party acts as a mediator between peers. The most fa-
mous example of this type of network is Napster. This approach avoids
many problems of other peer-to-peer systems regarding query routing
and index placement. However, it has at least two significant drawbacks.
Firstly, a central party limits the scalability of the system. Secondly, and
more importantly, a central party forms a single point of technical, and
legal, failure (Aberer and Hauswirth, 2002; Risson and Moors, 2006).

16

2.4 architectures

2.4.2 Distributed Global Index

Later systems used a distributed global index by partitioning the index over
the peers: both the index and the data are distributed in such networks.
These indices conventionally take the form of a large key-value store: a
distributed hash table (Stoica et al., 2001). When a peer joins the network
it puts the names of the files it wants to share as keys in the global in-
dex and adds its own address as value for these filenames. Other peers
looking for a specific file can then obtain a list of peers that offer that file
by consulting the global distributed index. Each peer stores some part of
this index. The key space is typically divided in some fashion over peers,
making each peer responsible for keys within a certain range. This also
determines the position of a peer in the overlay network. For example:
if all peers are arranged in a ring, newly joining peers would bootstrap
themselves in between two existing peers and take over responsibility for
a part of the key space of the two peers. Given a key, the peer-to-peer
network can quickly determine what peer in the network stores the as-
sociated value. This key-based routing has its origins in the academic
world and was first pioneered in Freenet (Clarke et al., 2001). There are
many ways in which a hash table can topologically be distributed over
the peers. However, all of these approaches have a similar complexity for
lookups: typically O (log n), where n is the total number of peers in the
network. A notable exception to this are hash tables that replicate all the
globally known key-value mappings on each peer. These single-hop dis-
tributed hash tables have a complexity of O (1) (Monnerat and Amorim,
2009). The primary difference between hash table architectures is the way
in which they adapt when peers join or leave the network and in how
they offer reliability and load balancing. A complete discussion of this is
beyond the scope of this thesis, but is described by Lua et al. (2005). We
restrict ourselves to briefly describing a popular contemporary hash table
implementation: Kademlia, and some common drawbacks of hash tables.

Maymounkov and Mazières (2002) introduce Kademlia: a distributed
hash table that relies on the XOR metric for distance calculation in the
key space. Using this metric has the desirable property that a single
routing mechanism can be used, whereas other hash tables conventionally
switch routing strategies as they approach a key that is being looked
up. Furthermore, Kademlia employs caching along the look-up path for
specific keys to prevent hotspots. As is common in distributed hash tables,

17

peer-to-peer networks

each peer knows many peers near it and a few peers far away from it in
the keyspace. Kademlia keeps these lists updated such that long-lived
nodes are given preference for routing in the keyspace. This prevents
routing attacks that rely on flooding the network with new peers. The
importance of relying on long-lived peers in a peer-to-peer network has
been shown before by Bustamante and Qiao (2004). Kademlia also offers
tuning parameters so that bandwidth can be sacrificed to obtain lower
routing latency. Kad is a large operational contemporary network, used
for file sharing, that implements Kademlia.

Unfortunately, Kademlia, as many other hash tables, is vulnerable to
attacks. An infamous example of this is the Sybil attack. The purpose of
this attack is to introduce malicious peers that are controlled by a single
entity. These can be used to execute a variety of secondary attacks, for
example: frustrating routing in the network, attacking a machine external
to the network by traffic flooding or obtaining control of a part of the key
space. This last attack is termed an eclipse attack and allows an external
entity to return whatever value it wishes for a particular key or range
of keys. Steiner et al. (2007) show that as few as eight peers are enough
to take over a specific key in Kademlia. They suggest that these attacks
can be prevented by using public-key infrastructure, or hierarchical ad-
mission control. Although taking over a complete network of millions of
peers would likely require more than taking control of several thousand
peers, the authors stress that practical solutions are urgently needed to
prevent Sybil attacks on existing deployed networks. Lesniewski-Laas
and Kaashoek (2010) introduce Whanau, a hash table that reduces the
global knowledge peers hold and is resistant to Sybil attacks to some
extent: it has a high probability of returning the correct value for a partic-
ular key, even if the network is under attack.

A global index can also be implemented using gossip to replicate the
full index for the entire network at each peer as done by Cuenca-Acuna
et al. (2003). However, this approach is not often used and conceptually
quite different from hash tables. A key difference is that each peer may
have a slightly different view of what the global index contains at a given
point in time, since it takes a while for gossip to propagate. In this way
it is also close to aggregation described in Section 2.4.4. The slow propa-
gation may or may not be acceptable depending on the application and
size of the network. We propose to use the term replicated global index to
distinguish this approach.

18

2.4 architectures

2.4.3 Strict Local Indices

An alternative is to use strict local indices. Peers join the network by con-
tacting bootstrap peers and connecting directly to them or to peers sug-
gested by those bootstrap peers until reaching some neighbour connectiv-
ity threshold. A peer simply indexes its local files and waits for queries
to arrive from neighbouring peers. An example of this type of network
is the first version of Gnutella (Aberer and Hauswirth, 2002). This net-
work performs search by propagating a query from its originating peer
via the neighbours until reaching a fixed number of hops, a fixed time-
to-live, or after obtaining a minimum number of search results: query
flooding (Kurose and Ross, 2003, p. 170). One can imagine this as a
ripple that originates from the peer that issued the query: a breadth-
first search (Zeinalipour-Yazti et al., 2004). Unfortunately, this approach
scales poorly as a single query generates massive amounts of traffic even
in a moderate size peer-to-peer network (Risson and Moors, 2006). Thus,
there have been many attempts to improve this basic flooding approach.
For example: by forwarding queries to a limited set of neighbours, result-
ing in a random walk (Lv et al., 2002), by directing the search (Adamic
et al., 2001; Zeinalipour-Yazti et al., 2004), or by clustering peers by con-
tent (Crespo and Garcia-Molina, 2004) or interest (Sripanidkulchai et al.,
2003). An important advantage of this type of network is that no index
information ever needs to be exchanged or synchronised. Thus, index
mutations are inexpensive, and all query processing is local and can thus
employ advanced techniques that may be collection-specific, but query
routing is more costly than in any other architecture discussed, as it in-
volves contacting a large subset of peers. While the impact of churn on
these networks is lower than for global indices, poorly replicated, unpop-
ular data may become unavailable due to the practical limit on the search
horizon. Also, peers with low bandwidth or processing capacity can be-
come a serious bottleneck (Lu, 2007).

2.4.4 Aggregated Local Indices

A variation, or rather optimisation, on the usage of local indices are aggre-
gated local indices. Networks that use this approach have at least two, and
sometimes more, classes of peers: those with high bandwidth and pro-
cessing capacity are designated as super peers, the remaining ‘leaf’ peers
are each assigned to one or more super peers when they join the net-

19

peer-to-peer networks

work. A super peer holds the index of both its own content as well as an
aggregation of the indices of all its leafs. This architecture introduces a
hierarchy among peers and by doing so takes advantage of their inherent
heterogeneity. It was used by FastTrack and in recent versions of Gnutella
(Liang et al., 2006; Stokes, 2002). Searching proceeds in the same way as
when using strict local indices. However, only the super peers participate
in routing queries. Since these peers are faster and well connected, this
yields better performance compared to local indices, lower susceptibility
to bottlenecks, and similar resilience to churn. However, this comes at
the cost of more overhead for exchanging index information between leaf
peers and super peers (Yang et al., 2006; Lu and Callan, 2006a). The dis-
tinction between leaf and super peers need not be binary, but can instead
be gradual based on, for example, node uptime. Usually leaf peers gener-
ate the actual search results for queries using their local index. However,
it is possible to even delegate that task to a super peer. The leafs then
only transmit index information to their super peer and pose queries.

2.4.5 Discussion

Figure 2.1 depicts the formed overlay networks for the described peer-to-
peer architectures. These graphs serve only to get a general impression
of what form the overlay networks can take. The number of participating
peers in a real network is typically much higher. Figure 2.1a shows a cen-
tralised global index: all peers have to contact one dedicated machine, or
group thereof, for lookups. Figure 2.1b shows one possible instantiation
of a distributed global index shaped like a ring (Stoica et al., 2001). There
are many other possible topological arrangements for a distributed global
index overlay, the choice of which only mildly influences the typical per-
formance of the network as a whole (Lua et al., 2005). These arrangements
all share the property that they form regular graphs: there are no loops, all
paths are of equal length and all nodes have the same degree. This con-
trasts with the topology for aggregated local indices shown in Figure 2.1c,
that ideally takes the form of a small world graph: this has loops, random
path lengths and variable degrees that result in the forming of clusters.
Small world graphs exhibit a short global separation in terms of hops
between peers. This desirable property enables decentralised algorithms
that use only local information for finding short paths. Finally, strict lo-
cal indices, Figure 2.1d, either take the form of a small world graph or

20

2.4 architectures

G

(a) central global index

G
G

G

G

G

G
G

G

G

(b) distributed global index

L

L

L

(c) aggregated local indices

LL

LL L

L L

L

L

(d) strict local indices

Figure 2.1: Overview of peer-to-peer index and search overlays. Each circle rep-
resents a peer in the network. Peers with double borders are involved
in storing index information and processing queries. A G symbol in-
dicates a peer stores a part of a global index, whereas an L symbol
indicates a local index. The arrows indicate the origin of queries and
the directions in which they flow through the system.

21

peer-to-peer networks

Table 2.1: Characteristics of Classes of Peer-to-Peer Networks

Global Index Local Indices

Centralised Distributed Aggregated Strict

Index

– Construction Central Peer All Peers All Peers All Peers

– Storage Central Peer All Peers (Shared) Super Peers All Peers (Indiv.)

– Mutation Cost? Low High Low None

Query Routing

– Method Direct Forwarding Forwarding Forwarding

– Parties Central Peer Intermediate Peers Super Peers Neighbour Peers

– Complexity O (1) O (log n)† O (ns)
‡ O (n)

Query Processing

– Peer Subset Central Only Small Medium Large

– Latency Low Medium Medium High

– Result Set Unit Query Term Query Query

– Result Fusion – Intersect Merge Merge

– Exhaustive Yes Yes No� No�

This list is not exhaustive, but highlights latency aspects of these general architectures
important for information retrieval.
?In terms of network latency and bandwidth usage from Yang et al. (2006).
†There are also O (1) distributed hash tables (Risson and Moors, 2006; Monnerat and
Amorim, 2009).
‡Applies to the number of super peers ns.
�Searches are restricted to a subset of peers and thus to a subset of the index.

a random graph depending on whether they include some type of node
clustering. A random graph can have loops and both random path lengths
and node degrees (Aberer and Hauswirth, 2002; Kleinberg, 2006; Girdz-
ijauskas et al., 2011). Besides the overall shape of the graph, the path
lengths between peers are also of interest. Networks with interest-based
locality have short paths between a peer and other peers with content sim-
ilar to its interests. Keeping data closer to peers more likely to request it,
reduces the latency and overall network load. Similarly, a network with
content-based locality makes it easier to find the majority of relevant con-
tents efficiently, since these are mostly near to one another: peers with
similar content are arranged in clusters (Lu, 2007). These approaches are
not mutually exclusive and can also be combined.

22

2.4 architectures

Table 2.2: Classification of Free-text Search in File Sharing Networks

Global Index Local Indices
Centralised Distributed Aggregated Strict

BitTorrent �
FastTrack �
FreeNet �
Gnutella �
Gnutella2 �
Kad �
Napster �

Table 2.1 shows characteristics of the discussed peer-to-peer architec-
tures and Table 2.2 shows an architectural classification for the search
task in several existing popular peer-to-peer file sharing networks. We
distinguish several groups and types of peers. Firstly, the central peer in-
dicates the machine(s) that store(s) the index in a centralised global index.
Secondly, the super peers function as mediators in some architectures.
Thirdly, all the peers in the network as a whole and on an individual
basis. These distinctions are important since in most architectures the
peers involved in constructing the index are not the same as those in-
volved in storage, leading to differences in mutation costs. A querying
peer rarely has local results for its own queries. Hence, the network needs
to route queries from the origin peer to result bearing peers. Queries can
be routed either via forwarding between peers or by directly contacting
a peer capable of providing results. Even the discussed distributed hash
tables use forwarding between peers to ‘hop’ the query message through
intermediate peers in the topology and close in on the peer that holds
the value for a particular key. For all architectures the costs of routing
a query is a function of the size of the network. However, the number
of peers that perform actual processing of the query, and generate search
results, varies from a single peer, in the centralised case, to a large subset
of peers when using strict local indices. Lower latency can be achieved
by involving fewer peers in query processing. For information retrieval
networks, returned results typically apply to a whole query, except for
the distributed global index that commonly stores results using individ-
ual terms as keys. For all approaches, except the central global index, it

23

peer-to-peer networks

is necessary to somehow fuse the results obtained from different peers. A
distributed global index must intersect the lists of results for each term.
Local indices can typically merge incoming results with the list of results
obtained so far. The simplest form of merging is appending the results of
each peer to the end of one large list.

The discussed approaches have different characteristics regarding locat-
ing suitable results for a query. The approaches that use a global index
can search exhaustively. Therefore, it is easy to locate results for rare
queries in the network: every result can always be found. In contrast,
the approaches that use local indices can flood their messages to only a
limited number of peers. Hence, they may miss important results and are
slow to retrieve rare results. However, obtaining popular, well replicated,
results from the network incurs significantly less overhead. Addition-
ally, they are also more resilient to churn, since there is no global data
to rebalance when peers join or leave the system (Lua et al., 2005). Lo-
cal indices give the peers a higher degree of autonomy, particularly in
the way in which they may shape the overlay network (Daswani et al.,
2003). Advanced processing of queries, such as stemming, decompound-
ing and query expansion, can be done at each peer in the network when
using local indices, as each peer receives the original query. When us-
ing a global index these operations all have to be done by the querying
peer, which results in that peer executing multiple queries derived from
the original query, thereby imposing extra load on the network. Further-
more, one should realise that an index is only part of an information
retrieval solution and that it cannot solve the relevance problem by itself
(Zeinalipour-Yazti et al., 2004).

Solutions from different related fields apply to different architectures.
Architectures using a global index have more resemblance to cluster and
grid computing, whereas those using a local index have most in common
with federated information retrieval. Specifically, usage of local indices
gives rise to the same challenges as in federated information retrieval
(Callan, 2000): resource description, collection selection and search result
merging, as we will discuss later in Section 2.6.2.

An index usually consists of either one or two layers: a one-step index or
a two-step index. In both cases the keys in the index are terms. However,
in a one-step index the values are direct references to document identi-
fiers, whereas in a two-step index the values are peer identifiers. Hence,
a one-step index requires only one lookup to retrieve all the applicable

24

2.4 architectures

documents for a particular term. Strict local indices are always one-step.
In a two-step index the first lookup yields a list of peers. The second
step is contacting one or more peers to obtain the actual document iden-
tifiers. A one-step index is a straight document index, whereas a two-step
index actually consists of two layers: a peer index and a document index
per peer. A network with aggregated local indices is two-step when the
leaf peers are involved in generating search results and the aggregated
indices contain leaf peer identifiers. Two-step indices are commonly used
in combination with a distributed global index: the global index maps
terms to peers that have suitable results. A distributed global index re-
quires contacting other peers most of the time for index lookups: even if
we would store terms as keys and document identifiers as values, to per-
form a lookup one still needs to hop through the distributed hash table
to find the associated value for a key. However, this is conceptually still
a one-step index, since the distributed hash table forms one index layer.
Some approaches use a third indexing layer intended to first map queries
to topical clusters (Klampanos and Jose, 2004).

Peer-to-peer networks are conventionally classified as structured or un-
structured. The approach with strict local indices is classified as unstruc-
tured and the approach that uses a distributed global index as structured.
However, we agree with Risson and Moors (2006) that this distinction
has lost its value, because most modern peer-to-peer networks assume
some type of structure: the strict local indices approach is rarely applied.
The two approaches are sometimes misrepresented as competing alter-
natives (Suel et al., 2003), whereas their paradigms really augment each
other. Hence, some systems combine some properties of both (Rosen-
feld et al., 2009). The centralised global index is structured because the
central party can be seen as one very powerful peer. However, the over-
lay networks that form at transfer time are unstructured. Similarly, the
aggregated indices approach is sometimes referred to as semistructured
since it fits neither the structured nor the unstructured definition. We be-
lieve it is more useful to describe peer-to-peer networks in terms of their
specific structure and application and the implications this has for real-
world performance. Hence, we will not further use the structured versus
unstructured distinction. Rather, we will focus on our primary applica-
tion: searching in peer-to-peer information retrieval networks. However,
we first look at the economics of peer-to-peer systems to get an under-
standing of potentially usable incentive mechanisms.

25

peer-to-peer networks

2.5 economics

A peer-to-peer network is about resource exchange. This can be viewed
in terms of economics, analysed using game theory and modelled using
mechanism design. Taking an economic angle can make peer-to-peer tech-
nology into a more reliable platform for distributed resource-sharing. A
necessary step towards this is the development of mechanisms by which
the contributions of individual peers can be solicited and predicted. In-
centives play a central role in providing a predictable level of service
(Buragohain et al., 2003).

The concepts introduced in this section are not central to this thesis,
but they do offer extra background for understanding the mechanisms
used in successful contemporary peer-to-peer networks. Furthermore, the
concepts presented here are used in a looser fashion in the experimental
sections of this thesis and are required to understand the related work on
peer-to-peer economics in Section 3.4.

2.5.1 Economies

In an economy decentralisation is achieved by rational agents that attempt
to selfishly achieve their goals. We distinguish between two types of
agents: suppliers and consumers. Each agent generally has some resources
or goods that can be supplied to other agents. The preferences of an agent
for consuming external resources can be expressed via a utility function
that maps an external resource to a utility value (Ferguson et al., 1996;
Leyton-Brown and Shoham, 2008). Agents should be facilitated in some
way, so they can actually supply and consume resources. An economic
system can be used for this, which should charge the agents for services
they consume based on the value they derive from it (Buyya et al., 2001).

Before we present economic models, let us first briefly discuss the
connections between economies, peer-to-peer and information retrieval.
Firstly, in a peer-to-peer system a peer can be considered to be an agent.
In this section we use these two terms interchangeably. Besides this, there
are parallels between the utility of a search result and that of goods in an
economy. Imagine that you are hungry: the first apple you eat has a high
utility for you, whereas the second has less utility and the third even less.
As your stomach fills up, eating more apples becomes less attractive. At
some point eating yet an other apple might even make you sick and thus

26

2.5 economics

have a negative utility. This effect is called diminishing marginal utility. For
search results something similar applies assuming that they are ranked
in order of descending relevance. The first result is the most important,
whereas the second and third actually become less important. Eventually,
having too many results adds unnecessarily confusion and diminished
satisfaction. Users of web search engines favour precision: high quality re-
sults, over recall: a high quantity of results. This phenomenon is known as
the paradox of choice and applies to much more than just search results
(Oulasvirta et al., 2009; Flynn, 2005).

To achieve decentralisation there are two often used economic models:
exchange-based and price-based. We will discuss both of these briefly.
Let us first look at the exchange-based economy, sometimes called commu-
nity, coalition, share holder or barter economy: each agent has some ini-
tial amount of resources and agents exchange resources until they all
converge to the same level of satisfaction: when their marginal rate of
substitution is the same. In this situation no further mutually beneficial
exchanges are possible and the system is said to have achieved its Pareto
optimal allocation, sometimes called Pareto efficient allocation. The defin-
ing characteristic of an exchange-based economy is that a Pareto optimal
allocation method, involving selfish agents, can result in optimal decen-
tralised resource allocation algorithms. This model works best when all
participating agents are symmetric and thus provide as well as consume
resources. This is conventionally the case in peer-to-peer networks.

The other often used economic model is the price-based economy. In
this economy resources are priced based on demand, supply and the
wealth in the economic system. Each agent initially has some wealth
and computes the demand for some good from its utility function and
budget constraint. In a price-based economy the goal of each agent is
to maximise revenue (Ferguson et al., 1996). There are various approaches
to how supply and demand are reconciled within a price-based economy.
Often used ones are commodity markets, bargaining models and auctions.
A complete discussion of this is beyond the scope of this thesis, but a
good overview is given by Buyya et al. (2001). Most price-based models
assume a competitive market, but there are plenty of cases where one
company dominates a particular market and is the only supplier of a
good: a monopoly. If competitive markets are one extreme, a monopoly is
the other. Usually the situation is somewhere in between: a small number
of suppliers dominate the market and set prices: an oligopoly.

27

peer-to-peer networks

What makes a good market model is difficult to define. Commonly
used criteria include: the global good of all (social welfare), the global per-
spective (Pareto optimality), the amount of participation, stability of the
mechanisms (resistance to manipulation), computational efficiency and
communication efficiency. Measures like intervention of price regulation
authorities can be used to prevent the market from collapsing. Alter-
natively, one can leave it to the market to consolidate naturally (Buyya
et al., 2001). Clearly economic concepts, like pricing and competition, can
provide solutions to reduce the complexity of service provisioning and
decentralise access mechanisms to resources (Ferguson et al., 1996).

What has been described thus far applies to exchange of privately owned
goods. There are also public goods: for example a lighthouse. Public goods
are not excludable in supply, anyone can use them, and are non-rival in
demand, everyone can use them simultaneously. They are not subject
to traditional market mechanisms. Similarly, club goods are usually also
non-rival in demand, but they are excludable in supply: only the club
members can use them. A cable TV broadcast is a typical example of
a club good: all subscribers can use the broadcast simultaneously. Club
goods can be provided by a market by either charging only a flat member-
ship fee, called coarse exclusion, or a membership fee and a usage based
price, called fine exclusion.

The price for a public good, a tax to all members of the public, is ide-
ally the Lindahl equilibrium which is always Pareto optimal. Unfortunately
this equilibrium is hard to determine, since it requires complete knowl-
edge of the individual demand for the good of each member of the public.
Furthermore, the Lindahl equilibrium is hard to determine if malicious
members misreport the benefit they gain from the good: lying is benefi-
cial as this would mean lower taxes (Krishnan et al., 2007).

The concept of goods offers a framework to think about resource pro-
visioning in peer-to-peer networks. There is clearly more than one way
to apply these abstractions. One way would be to view the peer-to-peer
network as a club. Every peer that joins the club gains access to the re-
sources within: the club goods. In a peer-to-peer information retrieval
network, this would be the search services of other peers and the results
they can provide. An other way is to view the exchanged resources as pri-
vate goods and apply conventional market mechanics, exchange-based or
price-based, for decentralisation. Either way, we need some way to for-
mally express and reason about such economic systems.

28

2.5 economics

2.5.2 Game Theory and Mechanism Design

Game theory is often used to study economic situations in the form of
simplified games and has been recognised as a useful tool for modelling
the interactions of peers in peer-to-peer networks (Buragohain et al., 2003).
Games are usually classified based on two main properties. Firstly, by the
number of agents that participate: either two-person or more which is re-
ferred to as n-person. Secondly, by whether the game is zero-sum or
not: in a zero-sum game for one agent to win an other agent must lose,
whereas in a non-zero-sum game both parties can get better by cooper-
ating (Davis, 1983). A peer-to-peer information retrieval network, where
each peer can gain by exchanging search results with others, would be an
example of an n-person non-zero-sum game.

In game theory the economic behaviour of rational agents is viewed
as a strategy. Agents assign a utility to an external resource as discussed
in the previous subsection. If an agent itself has limited resources, it
may choose a suboptimal strategy and is considered to be a bounded ra-
tional player (Shneidman and Parkes, 2003; Leyton-Brown and Shoham,
2008). A game reaches its weak Nash equilibrium when no agent can gain
by changing his strategy given that the strategies of all other agents are
fixed. A strong or strict Nash equilibrium is when every agent is strictly
worse off if he were to change his strategy given that all other agents’
strategies are fixed (Golle et al., 2001). Not all Nash equilibria are Pareto
optimal and not all Pareto optimums are a Nash equilibrium. We discuss
a famous example to illustrate this: the prisoner’s dilemma, a two-person
non-zero-sum game.

Imagine that you and a friend are suspected of committing a crime to-
gether and are arrested by the police. Upon arrest, the police has found
illegal weapons on both of you, which is considered a minor crime. How-
ever, they suspect the two of you have been involved in something bigger:
a major crime. You are both placed in separate interrogation cells. Each
of you may either remain silent or confess to the major crime. Each com-
bination of actions has different consequences. If one confesses and the
other does not, the police will set the confessor free and the other will
go to jail for twenty years. If both of you confess, you both go to jail for
five years. If both of you remain silent you both go to jail for one year
for the minor crime of weapons possession. There is no way for the two
of you to communicate since you are in separate rooms. We make the

29

peer-to-peer networks

You
Confess Silent

Friend
Confess (Y = 5, F = 5) (Y = 20, F = 0)
Silent (Y = 0, F = 20) (Y = 1, F = 1)

Figure 2.2: Pay-off matrix for the Prisoner’s Dilemma. The values are the num-
ber of years in prison for (Y)ou and your (F)riend depending on the
choices you and him make shown in the row and column labels.

assumption that both of you are rational and act exclusively in your own
best interest. We define remaining silent as playing cooperatively and
confessing as playing non-cooperatively with respect to the other player.
The pay-off matrix is shown in Figure 2.2. The problem with this game
is that the only rational course of action is to play non-cooperatively: to
both confess, even though you are both worse off, five years in prison,
than if you would both remain silent: one year in prison. Consider that
if you do not know what your friend will do, he will probably confess
since that will set him free at your expense. If he confesses you are best
of also confessing, since that reduces your sentence from twenty to only
five years. Only very naïve players would both remain silent. This is an
example of a problem that has a Nash equilibrium that is not Pareto op-
timal. There are numerous other game theoretic problems that follow a
similar pattern (Davis, 1983; Myerson, 1997).

Ying stands to yang as game theory stands to mechanism design. Where
game theory reasons about how agents will play a game, mechanism de-
sign reasons about how to design games that produce desired outcomes. In
conventional mechanism design, players calculate a strategy and feed this
to a centre that calculates and declares the outcome. Since determining
optimal strategies and calculating outcomes can be quite hard, algorithmic
mechanism design focuses on constructing mechanisms that retain compu-
tation feasibility. Finally, distributed algorithmic mechanism design further
assumes that the mechanism is carried out via distributed computation
and therefore maps better onto peer-to-peer networks. Distributed mech-
anisms can sometimes achieve better complexity results than centralised
mechanisms (Shneidman and Parkes, 2003).

In all forms of mechanism design, the aim of the designer is to create a
good mechanism. What is good can be defined in many ways: efficient, bud-
get balanced, et cetera. A mechanism may have a centre: a central party

30

2.6 information retrieval

that makes decisions. Mechanism can be designed as one-shot or repeated
and agent behaviour that may not seem rational in the short term, is hope-
fully rational in the long term. Furthermore, agents may be faulty: they
stop working, drop messages or act arbitrarily. Techniques are necessary
to detect, and remove, these non-strategising agents. Rational agents may
learn from participation in a protocol to further refine their own strategy.
Irrational agents do not follow an intended behaviour by the mechanism
designer (Shneidman and Parkes, 2003).

Mechanism design can be used to create a good mechanism based on a
set of pre-selected criteria. As we have seen in Section 2.6.1 these criteria
are not the same for all peer-to-peer networks, and they are not the same
for all tasks either. In a file sharing network maximising the downstream
bandwidth usage may be the most important criterion during the trans-
fer step. In a peer-to-peer information retrieval network this could in-
stead be maximising the estimated relevance of search results during the
search step and minimising the latency for obtaining those search results
in the transfer step. Regardless, mechanism design provides a mental
framework for thinking about these criteria and designing experiments
in which peers optimise for them.

After this brief detour into economics, to which we will return later
in Chapter 3, it is time to move on to the primary subject of this thesis:
information retrieval in peer-to-peer systems.

2.6 information retrieval

In an information retrieval peer-to-peer network the central task is search-
ing: given a query return some list of document references: the search
results. A query can originate from any peer in the network and has to be
routed to other peers that can provide search results based on an index.
The peers thus supply and consume results. A search result is a compact
representation of a document that can contain text, image, audio, video
or a mixture of these (Zeinalipour-Yazti et al., 2004). A search result, also
called a snippet, at least includes a pointer to the full document and com-
monly additional metadata like: a title, a summary, the document size, et
cetera. A concrete example: search results as displayed by modern search
engines. Each displayed result links to the associated full document. The
compact snippet provides a first filtering opportunity for users, enabling
them to choose the links to follow.

31

peer-to-peer networks

Peer-to-peer information retrieval networks can be divided into two
classes based on the location of the documents pointed to. Firstly, those
with internal document references, where the documents have to be down-
loaded from other peers within the network, for example: digital libraries
(Lu and Callan, 2006a; Di Buccio et al., 2009). Secondly, those with external
document references, where obtaining the actual documents is outside of
the scope of the peer-to-peer network, for example: a peer-to-peer web
search engine (Bender et al., 2005b).

In the following subsections we compare peer-to-peer information re-
trieval networks with other applications and paradigms.

2.6.1 Comparison with File Sharing Networks

File sharing networks are used to search for, locate and download files
that users of the peer-to-peer network share. The searching in such net-
works is similar to peer-to-peer information retrieval. A free text query
is entered after which a list of files is returned. After searching, the user
selects a file of interest to download that usually has some type of glob-
ally unique identifier, like a content-based hash. The next step is locating
peers that have a copy of the file. It may then be either transferred from one
specific peer or from several peers simultaneously in which case specific
parts of the file are requested from each peer and stitched back together
after the individual downloads complete.

The tasks of locating peers, and especially transferring content, are the
primary application of file sharing networks and the focus of research and
performance improvements. Searches in such networks are for known
items, whereas in information retrieval networks the intent is more var-
ied (Lu, 2007). While some information retrieval networks also provide
locating and downloading operations, they typically focus on the search
task. Besides this, there are at least three concrete differences.

Firstly, the search index for file sharing is usually based only on the
names of the available files and not on their content as in information
retrieval. Such a name index is smaller than a full document index (Suel
et al., 2003). Hence, there are also fewer postings for each term, which
makes it less costly to perform intersections of posting lists, an operation
common in a distributed global index (Reynolds and Vahdat, 2003). Be-
cause of their small size the central approach scales well for name indices
(Lu, 2007). However, they have become unpopular due to legal reasons.

32

2.6 information retrieval

Table 2.3: Differences between Locating in File Sharing and Searching in Infor-
mation Retrieval Using a Two-Step Index

File Sharing Information Retrieval

Application Locating Searching
Index
– Content File identifiers Document text
– Size Small Large
– Dominant Operation Append Update
– Document Location Internal External
– First Step Mapping f ileid→ {peer} term→ {peer}
– Second Step Mapping f ileid→ f ile term→ {document}
– Mapping Type Exact lookup Relevance ranking
– Result Fusion Trivial Difficult
Dominant Data Exchange
– Unit Files Search results
– Size Megabytes+ (large) Kilobytes (small)
– Emphasis High throughput Low latency

Secondly, when a file is added to a file sharing index, it does not change.
If an adjusted version is needed, it is simply added as a new file. Hence,
index updates are not required. In contrast, in an information retrieval
network, when the underlying document changes, the associated search
results generated from that document have to change as well. Hence, the
index needs to be updated so that the search results reflect the changes
to the document pointed to.

Thirdly, since the emphasis in a file sharing network is on quickly
downloading files, it is important to have high throughput. In contrast,
in information retrieval the search task dominates, in which low latency is
the most important (Reynolds and Vahdat, 2003). More concretely: it is
acceptable if the network takes half a minute to locate the fastest peers
for a download, whereas taking that long is not acceptable for obtaining
quality search results. Table 2.3 summarises the differences assuming a
two-step index and a peer-to-peer web search engine. For file sharing the
index is the one used for locating a file, whereas for information retrieval
it is the one used for searching. The first-step mapping is at the level of the
whole network, whereas the second-step mapping is at a specific peer.

33

peer-to-peer networks

L

M

L

L

Figure 2.3: Schematic depiction of federated information retrieval. Each circle
represents a peer in the network, those at the left are clients. Peers
with double borders, at the right, are servers that maintain local in-
dices marked with L. In between is the mediator node denoted with
an M. The arrows indicate the origin of queries and the direction in
which these flow through the system.

2.6.2 Comparison with Federated Information Retrieval

In federated information retrieval1 there are three parties as depicted in
Figure 2.3: clients that pose queries, one mediator and a set of search servers
that each disclose a collection of documents: resembling strict local in-
dices. The search process begins when a client issues a query to the me-
diator. The mediator has knowledge of a large number of search servers
and contacts a subset of these appropriate for answering the query. Each
search server then returns a set of search results for the query. The media-
tor merges these results into one list and returns this to the client (Callan,
2000).

Similarities

There are three challenges that form the pillars of federated information
retrieval that it has in common with peer-to-peer information retrieval
(Callan, 2000). Firstly, there is the resource description problem: the media-
tor either needs to receive an indication of the queries it can handle from

1 This is also referred to as distributed information retrieval. However, ‘distributed’ can
be confused with general distributed systems such as server farms and grids. Hence, we
stick to the now more popular term federated information retrieval.

34

2.6 information retrieval

each search server (Gravano et al., 1997), in the case of cooperative servers,
or the mediator needs to discover this by probing the search servers if
they are uncooperative (Du and Callan, 1998; Shokouhi and Zobel, 2007).
In either case the end result is a resource description of the search server.
These descriptions are typically kept small for efficiency reasons, as even
large collections can be described with a relatively small amount of data
(Tigelaar and Hiemstra, 2010b). The description can consist of, for exam-
ple: summary statistics, collection size estimates and/or a representative
document sample. In a peer-to-peer information retrieval network, the
peers need to know to what other peers they can send a query. Hence,
resource descriptions are also needed. The advantage of peer-to-peer net-
works is that peers can be cooperative and use a designed and agreed
upon protocol, making exchange of resource descriptions easier. How-
ever, peers may have incentive to cheat about their content, which creates
challenges unique to peer-to-peer networks.

Secondly, there is the collection selection problem: after acquiring resource
descriptions, the next step is selecting a subset of search servers that can
handle the query. When the mediator receives a new query from a client
it can quickly score it locally against the acquired resource descriptions
to determine the servers most likely to yield relevant search results for
it. The algorithms for determining the best servers in federated infor-
mation retrieval can be divided in two groups. Firstly, those that treat
resource descriptions as big documents without considering individual
documents within each resource: CORI, CVV and KL-Divergence based
(Callan et al., 1995; Yuwono and Lee, 1997; Xu and Croft, 1999). Secondly,
those that do consider the individual documents within each resource:
GlOSS, DTF, ReDDE and CRCS (Gravano et al., 1999; Nottelmann and
Fuhr, 2007; Si and Callan, 2003a; Shokouhi, 2007). Although considering
individual documents gives better results, it also increases the complex-
ity of resource descriptions and the communication costs. Additionally,
most existing resource selection algorithms are designed for use by a sin-
gle mediator party making them difficult to apply in a network with, for
example, aggregated local indices. Resource selection according to the
unique characteristics of peer-to-peer networks requires new algorithms
(Lu, 2007).

Thirdly, there is the result merging problem: once the mediator has ac-
quired results from several search servers these need to be merged into
one coherent list. If all servers would use the same algorithm to rank

35

peer-to-peer networks

their results this would be easy. However, this is rarely the case and ex-
act ranking scores are commonly not included. The first step in merging
is to normalise the scores globally, so that they are resource indepen-
dent. In federated information retrieval CORI or the SemiSupervised
Learning (SSL) merging algorithm can be used for this (Si and Callan,
2003b). However, in peer-to-peer environments the indexed document
collections often vary widely in their sizes, which makes CORI unlikely
to work well. SSL requires a sample database which makes it undesir-
able in peer-to-peer networks cautious about bandwidth usage. An al-
ternative approach is to recalculate document scores at the mediator as
done by Kirsch’s algorithm (Kirsch, 1997) which is quite accurate and
has low communication costs by only requiring each resource to provide
summary statistics. However, this also requires knowledge of global cor-
pus statistics that is costly to obtain in peer-to-peer networks with local
indices. Result merging in peer-to-peer information retrieval networks
requires an algorithm that can work effectively with minimal additional
training data and communication costs, for which none of the existing
algorithms directly qualifies. Result merging in existing networks has so
far relied on simple frequency-based methods, and has not provided any
solution to relevance-based result integration (Lu, 2007).

Differences

The first noticeable difference with peer-to-peer information retrieval is
the strict specialisation of the various parties. The clients only issue
queries whereas the search servers only serve search results. This also
determines the shape of the rigid overlay network that forms: a graph
with clients on one side, servers on the other side and the mediator in the
middle, as shown in Figure 2.3. Indeed, federated information retrieval
is much closer to the conventional client-server paradigm and commonly
involves machines that already ‘know’ each other. This contrasts with
peer-to-peer networks where peers take on these roles as needed and fre-
quently interact loosely with ‘anonymous’ other machines. Additionally,
a peer-to-peer network is subject to significant churn, availability and
heterogeneity problems that only mildly affect federated information re-
trieval networks due to the strict separation of concerns (Lu, 2007).

A second difference is the presence of the mediator party. To the clients
the mediator appears as one entry point and forms a façade: clients are

36

2.6 information retrieval

never aware that multiple search servers exist at all. This has the implica-
tion that all communication is routed through the mediator which makes
it a single point of failure. In practice a mediator can be a server farm
to mitigate this. However, it still remains a single point of control, simi-
lar to completely centralised search systems, which can create legal and
ethical difficulties. A peer-to-peer network with one central ‘mediator’
point for routing queries is conceptually close to a federated information
retrieval network (Lu, 2007). However, most peer-to-peer networks lean
towards distributing this mediation task, mapping queries to peers that
can provide relevant results, over multiple peers.

2.6.3 Challenges

In Section 2.2 we have already seen some challenges that apply to peer-to-
peer networks in general. In this subsection we discuss a subset of these
aspects more important to peer-to-peer information retrieval.

Latency

In peer-to-peer information retrieval, latency is dominated by the number
of peers involved in routing and processing queries. We have seen that
local and global indices are suitable for different types of queries and
that there are many optimisations that can be applied to reduce the cost
of storing and transmitting index information. Nevertheless, the chal-
lenge of optimally combining these techniques, and finding new ones, to
keep latency within acceptable bounds remains. The reason for this is
primarily that there is no one good solution for all cases and that the
increasing amount of information to index is leading to greater latency
problems. For any search system, it is important to serve search results
quickly without compromising too much on result quality. The technical
causes of delays are irrelevant to users. After entering a query, the results
should appear in at most 2 seconds, but ideally instantaneously in terms
of perception, which means a delay of 0.1 seconds. Anything below that
is unlikely to positively impact the user experience (Nah, 2004). Most
existing solutions rightly focus on reducing the number of hops or using
parallelisation to reduce latency. Efficient query routing is a challenge
specific to peer-to-peer information retrieval and directly tied to latency.
More research in temporal aspects of querying could lead to more opti-
mal tailored solutions.

37

peer-to-peer networks

Freshness

Keeping the index fresh is a challenge for every search engine, which
is commonly the responsibility of the engine’s web crawling component.
The index needs to be representative of the indexed websites, without
incurring too much load on those sites to detect changes. Some web doc-
uments change quickly and some change rarely, and not every change
that occurs is significant enough to warrant an index update (Risvik and
Michelsen, 2002). In the ideal situation, websites participate cooperatively
in a peer-to-peer network and signal significant changes to themselves to
the network. This would remove the need for crawling. However, peer-
to-peer web search engines will initially have to cope with the existing
situation. Having peers perform their own crawl seems realistic, but in-
troduces the same problems seen in conventional web crawling. Since
many updates can occur due to changing documents, it is important that
the index used has minimal mutation overhead. Separate indexing strate-
gies could be used for fast and slow changing documents. A further
challenge is caching of postings lists or search results. These mechanisms
decrease latency, but do so at the expense of freshness.

Evaluation

Even though a simulation can fix many of the free variables of a peer-to-
peer network, for rigorous comparison the same data needs to be used.
There is a need for a common collection, a way to distribute this col-
lection over multiple peers and a query set. There have been at least
two attempts at establishing such a benchmark (Klampanos et al., 2005;
Neumann et al., 2006), although they have not yet seen widespread adop-
tion. Klampanos et al. (2005) state that evaluating peer-to-peer informa-
tion retrieval systems is a demanding and neglected task. They establish
a number of different document test beds for evaluating these systems.
They state that evaluation of these networks is hard for several reasons.
Firstly, they are assumed to be very large which makes simulation diffi-
cult. Secondly, they are subject to churn caused by normal peer on-off
cycles and peers that crash or malfunction. Unfortunately, the impact
of churn is not well investigated in peer-to-peer information retrieval ex-
periments, as most assume an always-on environment (Zeinalipour-Yazti
et al., 2004). Thirdly, documents are not likely to be randomly placed at
peers, instead their distribution is influenced by previous location, prior

38

2.6 information retrieval

retrieval and replication. Lastly, simulating user behaviour is complex,
for example: realistically simulating how both collections and query fre-
quencies change over time. This is usually circumvented by reflecting
behaviour in the document distribution. However, it is difficult to reflect
the application scenario such that the results can be conclusive.

Different types of peer-to-peer information retrieval networks have dif-
ferent document distributions. Klampanos et al. (2005) present standard-
ised distributions for three of these derived from the WT10g collection
(Bailey et al., 2003) using about 1.7 million documents. Firstly, the web
domain where the distribution of documents follows a power-law. Sec-
ondly, loosely controlled grid networks with a uniform distribution of
documents that impose an equal load on each peer. Thirdly, digital li-
braries where the distribution also follows a power law, although less
extreme than for the web domain. Additionally, digital libraries have
fewer peers that each share a significantly larger amount of documents
compared to the other cases. Replication is simulated in all cases by ex-
ploiting inter-domain links. The web and grid scenarios use about 11,680
peers, whereas 1,500 are used for the digital library case. Lu and Callan
(2003) also present a test bed for digital libraries with 2,500 peers based
on WT10g, and later also one with 25,000 peers based on the Gov2 collec-
tion (Lu, 2007; Clarke et al., 2004). Gov2 splits have also been used in the
federated information retrieval setting (Fallen and Newby, 2006; Thomas
and Hawking, 2007).

39

3
E X I S T I N G R E S E A R C H & S Y S T E M S

‘There is a single light of science
and to brighten it anywhere is

to brighten it everywhere.’

Isaac Asimov

Peer-to-peer information retrieval has been an active
research area for about a decade. In this chapter we
first reveal its main focus, followed by an in-depth ex-
amination of optimisation techniques, an overview of
existing information retrieval systems and its key chal-
lenges. This is followed by research on economics in
peer-to-peer networks and the introduction of our own
system architecture.

Apractical view on the goal of peer-to-peer information retrieval is
minimising the number of messages sent per query while maintain-

ing high recall and precision (Zeinalipour-Yazti et al., 2004). There are
several approaches to do this which represent trade-offs. Let us start
with the two common strategies to partition indices over multiple ma-
chines: partition-by-document and partition-by-keyword (Li et al., 2003). In
partition-by-document each peer is responsible for maintaining a local
index over a specific set of documents: the postings for all terms of a
particular document are located at one specific peer. In some cases the

This chapter is based on Tigelaar et al. (2012): Peer-to-Peer Information Retrieval: An
Overview, that appeared in ACM Transactions on Information Systems, Volume 32, Issue
2 (May 2012). c©ACM, 2012. http://doi.acm.org/10.1145/2180868.2180871.

41

http://doi.acm.org/10.1145/2180868.2180871

existing research & systems

documents themselves are also stored at that peer, but they need not
be. The strict and aggregated local indices architectures are commonly
used in peer-to-peer networks that use this partitioning. In contrast, in
partition-by-keyword each peer is responsible for storing the postings for
some specific keywords in the index. A natural architecture for this is the
distributed global index.

An early investigation into the feasibility of peer-to-peer web search
was done by Li et al. (2003). They view partition-by-document as a more
tractable starting point, but show that partition-by-keyword can get close
to the performance of partition-by-document by applying various optimi-
sations to a distributed global index. In contrast, Suel et al. (2003) con-
clude that partition-by-document approaches scale poorly, because doc-
ument collections do not ‘naturally’ cluster in a way that allows query
routing to a small fraction of peers and thus each query requires contact-
ing nearly all peers. Perhaps due to this paper much of the research in
peer-to-peer information retrieval has focused on partition-by-keyword
using a distributed global index (Klampanos and Jose, 2004).

Unfortunately, a distributed global index is not without drawbacks
since it is intended for performing efficient lookups, not for efficient
search (Bawa et al., 2003). Firstly, a distributed hash table provides load
balancing rather naively, by resorting to the uniformity of the hash func-
tion used (Triantafillou et al., 2003). As term posting lists differ in size,
hotspots can emerge for popular terms, which debalances the load. Sec-
ondly, the intersection of term posting lists ignores the correlations be-
tween terms, which can lead to unsatisfactory search accuracy (Lu, 2007).
Thirdly, the communication cost for an intersection grows proportionally
with the number of query terms and the length of the inverted lists. Sev-
eral optimisations have been proposed like storing multiterm query re-
sults for terms locally to avoid intersections and requiring peers to store
additional information for terms strongly correlated with the terms they
already store. The choice of resource descriptions in a distributed global
index is thus limited by the high communication costs of index updates:
full-text representations are unlikely to work well due to the massive net-
work traffic required. Fourthly, skewed corpus statistics, as a result of
term partitioning, may lead to globally incomparable ranking scores. Fi-
nally, distributed hash tables are vulnerable to various network attacks
that compromise user security and privacy as well as the authenticity of
data (Steiner et al., 2007).

42

existing research & systems

Many authors fail to see a number of benefits unique to partition-by-
document local indices, such as the low costs for finding popular items,
advanced query processing, inexpensive index updates and high churn
resilience. Admittedly, the primary challenge for such indices is routing
the query to suitable peers. Our stance is that both approaches have their
merit and complement each other. Recent research indeed confirms the
effectiveness of using local indices for popular query terms and a global
index for rare query terms (Rosenfeld et al., 2009).

Li et al. (2003) conclude that web-scale search is not possible with peer-
to-peer technology. They indicate that compromises need to be made in
either the quality of search results or the structure of the network. Accord-
ing to them, the overhead introduced by communication between peers
is too large to offer reasonable query response times given the capacity
of the Internet. However, much work, discussed in the next section, has
been done since their paper and the nature and capacity of the Internet
have changed significantly in the intervening time.

Yang et al. (2006) compare the performance of several peer-to-peer ar-
chitectures for information retrieval combined with common optimisa-
tions. They test three approaches: a distributed global index augmented
with Bloom filters and caching; aggregated local indices with query flood-
ing; and strict local indices using random walks. All of these are one-step
term-document indices. Interestingly, they all consume approximately the
same amount of bandwidth during query processing, although the aggre-
gated local indices are the most efficient. However, the distributed global
index offers the lowest latency of these three approaches, closely followed
by aggregated local indices and strict local indices being orders of magni-
tude slower. For all approaches the forwarding of queries in the network
introduces the most latency, while answering queries is relatively inex-
pensive. Even though the distributed global index is really fast, its major
drawback rears its ugly head at indexing and publishing time. Adding
new documents to the network requires updating the posting lists, which
takes six times as much bandwidth and nearly three times as much time
compared to the aggregated local indices. Strict local indices resolve all
this locally and incur no costs in terms of time or bandwidth for pub-
lishing documents. This study clearly shows that an architecture should
achieve a balance between retrieval speed and update frequency.

43

existing research & systems

3.1 optimisation techniques

In this section we discuss several optimisation approaches. There are two
reasons to use these techniques. One is to reduce bandwidth usage and
latency, the other is to improve the quality and quantity of the search re-
sults returned. Most techniques discussed influence both of these aspects
and offer trade-offs, for example: one could compromise on quantity to
save bandwidth and on quality to reduce latency.

3.1.1 Approximate Intersection of Posting Lists with Bloom Filters and Min-
Wise Independent Permutations

(Cuenca-Acuna et al., 2003; Reynolds and Vahdat, 2003; Suel et al., 2003;
Zhang and Suel, 2005; Michel et al., 2005a, 2006)

When using a distributed global index, a multiterm query requires mul-
tiple lookups in the distributed hash table. The posting lists for all terms
need to be intersected to find the documents that contain all query terms.
Exchanging posting lists can be costly in terms of bandwidth, particu-
larly for popular terms with many postings, thus smaller Bloom filters
derived from these lists can be transferred instead. Reynolds and Vahdat
(2003) were the first to use Bloom Filters in the context of peer-to-peer
information retrieval.

A Bloom filter is an array of bits. Each bit is initially set to zero. Two
operations can be carried out on a Bloom filter: inserting a new value and
testing whether an existing value is already in the filter. In both cases k
hash functions are first applied to the value. An insert operation, based
on the outcome, sets k positions of the Bloom filter to one. Membership
tests read the k positions from the Bloom filter. If all of them equal one
the value might be in the data set. However, if one of the k positions
equals zero the value is certainly not in the data set. Hence, false positives
are possible, but false negatives never occur (Bloom, 1970; van Heerde,
2010, p. 82). Bloom filters are an attractive approach for distributed
environments because they achieve smaller messages which leads to huge
savings in network I/O (Zeinalipour-Yazti et al., 2004).

Consider an example in the peer-to-peer information retrieval context:
peer Q poses a query consisting of terms a and b. We assume that term
a has the longest posting list. Peer A holds the postings Pa for term a,
derives a Bloom filter Fa from this and sends it to peer B that contains

44

3.1 optimisation techniques

the postings Pb for term b. Peer B can now test the membership of each
document in Pb against the Bloom filter Fa and send back the intersected
list Pb ∩ Fa to peer Q as final result. Since this can still contain false
positives, the intersection can instead be sent back to peer A, that can
remove false positives since it has the full postings Pa. The result is then
Pa ∩ (Pb ∩ Fa): the true intersection for terms a and b, which can be sent
as result to peer Q. Bandwidth savings occur when sending the small Fa

instead of the large Pa from peer A to B. However, this approach requires
an extra step if one wants to remove the false positives (Reynolds and
Vahdat, 2003).

False positives are the biggest drawback of Bloom filters: the fewer bits
used, the higher the probability a false positive occurs. Large collections
require more bits to be represented than smaller ones. Unfortunately,
Bloom filters need to have the same size for the intersection and union
operations to work. This makes them unsuitable for peer-to-peer net-
works in which the peers have collections that vary widely in the number
of contained documents.

Bloom filters can be used to perform approximate intersection of post-
ing lists. However, as a step prior to that it is also interesting to estimate
what an additional posting list would do in terms of intersection to the
lists already obtained. This task only requires cardinality estimates and
not the actual result of an intersection. While Bloom filters can be used
for this, several alternatives are explored by Michel et al. (2006). The most
promising is Min-Wise Independent Permutations (MIPs). This requires a
list of numeric document identifiers as input values. Firstly, this method
applies k linear hash functions, with a random component, to the values
each yielding a new list of values. Secondly, the resulting k lists are all
sorted, yielding k permuted lists, and the minimum value of each of these
lists is taken and added to a new list: the MIP vector of size k. The funda-
mental insight is that each element has the same probability of becoming
the minimum element under a random permutation. The method esti-
mates the intersection between two MIP vectors by taking the maximum
of each position in the two vectors. The number of distinct values in the
resulting vector divided by the size of that vector forms an estimate of
the overlap between them. The advantage is that even if the input vectors
are of unequal length, it is still possible to use only the first few positions
to get a, less accurate, approximation. Michel et al. (2006) show that MIPs
are much more accurate than Bloom filters for this type of estimation.

45

existing research & systems

3.1.2 Reducing the Length of Posting Lists with Highly Discriminative Keys

(Skobeltsyn et al., 2009; Luu et al., 2006)
An alternative way of reducing the costs of posting list intersection

for a distributed global index is by making the lists themselves shorter.
To achieve this, instead of building an index over single terms, one can
build one over entire multiterm queries. This is the idea behind highly
discriminative keys. No longer are all terms posted in a global distributed
index, but instead multiterm queries are generated from a document’s
content that discriminate that document well from others in the collection.
The result: more postings in the index, but shorter posting lists. This
offers a solution to one of the main drawbacks of using distributed hash
tables: intersection of large posting lists.

3.1.3 Limiting the Number of Results to Process with Top k Approaches

(Tang et al., 2002; Cuenca-Acuna et al., 2003; Suel et al., 2003; Tang and
Dwarkadas, 2004; Balke et al., 2005; Michel et al., 2005a; Zhang and Suel,
2005; Skobeltsyn and Aberer, 2006; Skobeltsyn et al., 2007a, 2009)

Processing only a subset of items during the search process can yield
performance benefits: less data processing and lower latency. Various
algorithms, discussed shortly, can be used to retrieve the top items for a
particular query without having to calculate the scores for all the items.
Retrieving top items makes sense as it has been shown that users of web
search engines prefer quality over quantity with respect to search results:
more precision and less recall (Oulasvirta et al., 2009). Top k approaches
have been applied to various architectures and at various stages in peer-
to-peer information retrieval:

Top k results requesting

A simple optimisation is requesting only the top results. Approaches
that use local indices always apply a form of limited result requesting
implicitly by bounding the number of hops made during flooding or by
performing a random walk that terminates. However, that number can
also be explicitly set to a constant as Cuenca-Acuna et al. (2003) do for
their globally replicated index. They first obtain a list of k search results
and keep contacting nodes as long as the chance of them contributing to
this top k remains high. The top results stabilise after a few rounds.

46

3.1 optimisation techniques

Top k query processing

This approach has its roots in the database community, particularly in
the work of Fagin et al. (2001). Several variations exist, all with the same
basic idea: we can determine the top k documents given several input lists
without having to examine these lists completely and while not adversely
affecting performance. This is often used in cases where a distributed
global index is used and posting lists have to be intersected. The threshold
algorithm is the most popular top k processing approach (Michel et al.,
2005a; Suel et al., 2003).

The threshold algorithm maintains two data structures: a queue with
peers to contact for obtaining search results and a list with the current
top k results. Peers in the queue are processed one by one, each returning
a limited set of k search results of the form (document, score) sorted by
score in descending order. For a distributed global index these are the
top items in the posting list for a particular term. The algorithm tracks
two scores for each unique document: worst and best. The worst score is
the sum of the scores for a document d found in all result lists in which d
appeared. The best score is the worst score plus the lowest score (of some
other document) encountered in the result lists in which d did not ap-
pear. Since all the result lists are truncated, this last score forms an upper
bound of the best possible score that would be achievable for document
d. The current top k is formed by the highest scoring documents seen so
far based on their worst score. If the best score of a document is lower
than the threshold, which is the worst score of the document at position
k in the current top k results, it need not be considered for the top k. The
algorithm bases the final intersection on only the top k results from each
peer, that provably yields performance equivalent to ‘sequentially’ inter-
secting the entire lists. This saves both bandwidth and computational
costs without negatively affecting result quality.

A drawback of the threshold algorithm is that looking up document
scores requires random access to the result lists (Suel et al., 2003). Zhang
and Suel (2005) later investigated the combination of top k query pro-
cessing with several optimisation techniques. They draw the important
conclusion that different optimisations may be appropriate for queries of
different lengths. Balke et al. (2005) show that top k query processing can
also be effective in peer-to-peer networks with aggregated local indices.

47

existing research & systems

Top k result storing

One step further is only storing the top k results for a query, or term, in
the index. Skobeltsyn and Aberer (2006) take this approach as a means
to further reduce traffic consumption. Related to this is the work of Tang
and Dwarkadas (2004) that store postings only for the top terms in a
document. They state that while indexing only these top terms might
degrade the quality of results, it likely does not matter since such docu-
ments would not rank high for queries for the other terms they contain
anyway.

3.1.4 Involving Fewer Peers During Index Look-ups by Global Replication

(Cuenca-Acuna et al., 2003; Galanis et al., 2003)
Lookups to map queries to peers are expensive when they involve con-

tacting other peers, regardless of the architecture used. What if a peer can
do all lookups locally? The authors of the PlanetP system explore this ap-
proach (Cuenca-Acuna et al., 2003). They replicate a full global index at
each peer: a list of all peers, their IP address, current network status and
their Bloom filters for terms. This information is spread using gossip. If
something changes at a peer it gossips the change randomly to each of its
neighbours until enough neighbouring peers indicate that they already
know about the rumour. Each peer that receives rumours also spreads
it in the same way. There is the possibility that a peer misses out on a
gossip; to cope with this the authors periodically let peers exchange their
full directory and they also piggyback information about past rumours
on top of new ones. Whilst this is an interesting way to propagate index
information, it is unfortunately also slow: it takes in the order of hun-
dreds of seconds for a network of several thousand peers to replicate the
full index information at each peer. This approach is not widely used and
is best suited to networks with a small number of peers due to scalability
issues (Zeinalipour-Yazti et al., 2004).

Although we prefer to label this approach as a (replicated) global index,
it can also be viewed as a very extreme form of aggregation where each
peer holds aggregate data on every other peer in the network. Note that
this approach differs from a single-hop distributed hash-table, since it
uses no hashing and no distributed key space. Hence, the topology of the
network is not determined by a key space.

48

3.1 optimisation techniques

3.1.5 Reducing Processing Load by Search Result Caching

(Reynolds and Vahdat, 2003; Skobeltsyn and Aberer, 2006; Skobeltsyn
et al., 2007a; Zimmer et al., 2008; Skobeltsyn et al., 2007b, 2009; Tigelaar
and Hiemstra, 2011; Tigelaar et al., 2011)

It makes little sense to reconstruct the search result set for the same
query over and over again if it does not really change. Performance can
be increased significantly by caching search results. The effectiveness of
exploiting usage data to boost performance by caching for centralised
search engines has been shown previously (Fagni et al., 2006; Baeza-Yates
et al., 2007b; Lempel and Moran, 2003). Skobeltsyn and Aberer (2006)
use a distributed hash table to keep track of peers that have cached rel-
evant search results for specific terms. Initially this table is empty, and
each (multiterm) query is first broadcast through the entire peer-to-peer
network, using a shower broadcast1 with costs O (n) for a network of n
peers. After this step the peer that obtained the search results registers
itself as caching in the distributed hash table for each term in the query.
This allows for query subsumption: returning search results for subsets of
the query terms in the absence of a full match. The authors base the con-
tent of the index on the queries posed within the network, an approach
they term query-driven indexing. This significantly reduces network traffic
for popular queries while maintaining a global result cache that adapts
in real-time to submitted queries.

3.1.6 Involving fewer Peers during Query Processing by Clustering

(Bawa et al., 2003; Sripanidkulchai et al., 2003; Crespo and Garcia-Molina,
2004; Klampanos and Jose, 2004; Akavipat et al., 2006; Klampanos and
Jose, 2007; Lu and Callan, 2007; Nguyen et al., 2008; Lele et al., 2009;
Papapetrou et al., 2010; Tirado et al., 2010)

When using local indices, keeping peers with similar content close to
each other can make query processing more efficient. Instead of sending a
query to all peers it can be sent to a cluster of peers that covers the query’s
topic. This reduces the total number of peers that need to be contacted
for a particular query. Unfortunately, content-based clustering does not
occur naturally in peer-to-peer networks (Suel et al., 2003). Hence, Bawa
et al. (2003) organise peer-to-peer networks by using topic segmentation.

1 A broadcasting method that visits each peer only once, described in Datta et al. (2005)

49

existing research & systems

They arrange the peers in the network in such a way that only a small
subset of peers, that contain matching relevant documents, need to be
consulted for a given query. Clustering peers is performed based on
either document vectors or full collection vectors. They then use a two-
step process to route queries based on the topic they match. They first
find the cluster of peers responsible for a specific topic and forward the
query there. After this the query is flooded within the topical cluster
to obtain matches. They conclude that their architecture provides good
performance, both in terms of retrieval quality and in terms of latency
and bandwidth. Unfortunately, their system requires a central directory
for finding an initial topic cluster for query routing. Akavipat et al. (2006)
show how to do clustering without a central directory.

Klampanos and Jose (2007) evaluate cluster-based approaches for large-
scale peer-to-peer information retrieval, focusing on single-pass cluster-
ing with both a variable and fixed number of clusters. They find that
the predominantly small size of web documents makes them hard to re-
late to other documents thereby leading to poor clustering. Clustering
mechanisms fail to discover the structure of the underlying document
distribution, leading to the situation where not enough relevant sources
can be contacted to route a query to. This is due to the loss of information
inherent in the creation of cluster centroids. They propose two solutions.
Firstly, replicating documents part of popular clusters on multiple peers,
leading to a significant improvement in effectiveness. Although this does
not solve the problem for unpopular topics, it could work sufficiently
well for most users. Secondly, assuming a relevance feedback mechanism
exists and using this to alter the centroids of the global topic clusters.
The weight of each term in a cluster is then determined by the relevance
of that cluster to the query based on the feedback. They show the use-
fulness of both replication and relevance feedback which lead to better
query routing and higher precision, emphasising relevance feedback as a
promising evolution in peer-to-peer information retrieval.

Interest-based clustering works either by shortening the path lengths
between peers with similar interest, meaning: peers that pose similar
queries, or by bringing peers with a particular interest closer to peers with
matching content. Although not exactly the same, both aim to reduce the
number of hops needed for obtaining relevant content. In the first case
by leveraging cached information present at peers with similar interests:
caches at other consuming peers, while the second case brings one closer

50

3.1 optimisation techniques

to the origin of information: providing peers that contain original content
(Sripanidkulchai et al., 2003; Akavipat et al., 2006). The two clustering
approaches: by content and by interest, can also be combined.

3.1.7 Reducing Latency and Improving Recall using Random Walks

(Lv et al., 2002; Yang et al., 2006)
Peer-to-peer systems with local indices are conventionally searched

with query flooding. That approach is theoretically exhaustive, but be-
cause of tractability it is applied in a non-exhaustive way by bounding the
number of hops. Lv et al. (2002) propose an alternative to this by using
random walks. Instead of searching in a breadth-first manner by forward-
ing the queries to all neighbours, we search depth-first by forwarding the
query only to one neighbour. Such a walk originates from the querying
peer and randomly steps forward through the network. Peers that have
relevant results send these back directly to the originating peer. Peers
participating in the walk occasionally check the satisfaction of the orig-
inating peer with respect to the number of results obtained so far and
terminate the walk based on this. Yang et al. (2006) find that this ap-
proach is slow, but multiple walks can be started in parallel to decrease
the latency. Similar to random walks Kalogeraki et al. (2002) propose to
forward query messages to a randomly selected fraction of neighbouring
peers. However, this still increases messaging costs exponentially when
increasing the fraction, whereas for random walkers this remains linear.

3.1.8 Reducing Latency and Improving Recall using Directed Walks

(Adamic et al., 2001; Joseph, 2002; Kalogeraki et al., 2002; Yang and Garcia-
Molina, 2002; Tsoumakos and Roussopoulos, 2003; Zhong et al., 2003;
Zeinalipour-Yazti et al., 2004; Li et al., 2009; Song et al., 2010)

Adamic et al. (2001) route query messages via high-degree nodes, those
with high connectivity, and show that this both decreases search time and
increases the network penetration. Yang and Garcia-Molina (2002) for-
ward query messages to peers that previously returned the most query
results. In a similar vein Tsoumakos and Roussopoulos (2003) introduce
adaptive probabilistic search where each peer maintains a probabilistic
routing table for each query that either originated from it or travelled
through it. The initial peer that submits a query broadcasts it to all its
neighbours, but from there on the query message is forwarded only to

51

existing research & systems

Table 3.1: Selection of Peer-to-Peer Information Retrieval Systems Literature

Name References

DCT / ALVIS Buntine et al. (2005); Luu et al. (2006)
Skobeltsyn and Aberer (2006); Skobeltsyn et al. (2007a, 2009)

DHI / SPINA Di Buccio et al. (2009)
DTF Fuhr (1999); Nottelmann and Fuhr (2007)
pSearch / eSearch Tang et al. (2002); Tang and Dwarkadas (2004)
MINERVA Bender et al. (2005b); Chernov et al. (2005); Bender et al. (2006)

Michel et al. (2006); Bender et al. (2007); Zimmer et al. (2008)
NeuroGrid Joseph (2002)
ODISSEA Suel et al. (2003); Zhang and Suel (2005)
PHIRST Rosenfeld et al. (2009)
PlanetP Cuenca-Acuna et al. (2003)
SETS Bawa et al. (2003)
Sixearch Akavipat et al. (2006); Menczer et al. (2008); Lele et al. (2009)

the neighbour that has the highest probability of obtaining results based
on past feedback. Zeinalipour-Yazti et al. (2004) build upon this and
propose a mechanism where peers actively build profiles of neighbour-
ing peers based on the most recent queries they responded to, similar
to Joseph (2002). A peer scores incoming queries against the profiles of
its neighbouring peers, ranking them both qualitatively: based on their
cosine similarity, and quantitatively: based on the number of previously
returned results. This outperforms basic flooding, random forwarding
(Kalogeraki et al., 2002) and pure quantitative directed routing (Yang and
Garcia-Molina, 2002).

3.2 information retrieval systems

Many peer-to-peer information retrieval systems have been developed for
various applications. These systems often borrow elements from file shar-
ing networks and federated information retrieval with various levels of
success. Most research systems focus on either the domain of computing
grids, digital libraries or the web.

Table 3.1 lists references to literature that describes major research sys-
tems developed. Figure 3.1 shows a classification breakdown of these
peer-to-peer information retrieval systems and other discussed systems.

52

3.2 information retrieval systems

Global

NeuroGrid

DHT

Triantafillou2003

ALVIS Clustering

Index

Klampanos2004

DHI

Local

MINERVA 3-StepGalanis2003

2-Step1-Step (DHT)

PHIRST

pSearch

Sixearch

Aggregated (2-Step)

Gossip

Strict (1-Step)

DTF

SETS

ODISSEA

PlanetP

Figure 3.1: Classification of peer-to-peer information retrieval research systems.
See Section 2.4 and Section 3.1 for an explanation of the rectangular
distinctions. Clustering in this diagram means explicit interest-based
or content-based clustering and not the random clusters that can oc-
cur naturally when using aggregated local indices.

53

existing research & systems

3.2.1 Scientific Systems

Although many research systems exist, we restrict ourselves to a subset
of them in this section. We discuss systems that stand out because of their
pioneering nature or by use of an interesting mix of techniques.

Sixearch

One of the first peer-to-peer information retrieval systems was the In-
frasearch project, that later became JXTASearch (Waterhouse et al., 2002;
Klampanos and Jose, 2004) which is also the basis for Sixearch (Akavipat
et al., 2006; Lele et al., 2009). Sixearch consists of several components: a
topical crawler, a document indexing system, a retrieval engine, JXTA for
peer-to-peer network communication and a contextual learning system.
They use an XML-based architecture and assume that the query consists
of a structured customisable set of fields. A book collection could, for
example, have the fields: title, author, et cetera. This approach is not
geared well towards full-text retrieval since it is based on the structure
of queries rather than that of the content shared (Klampanos and Jose,
2004). Supplier peers publish, for each query field, a set of keywords
for which they believe they can provide relevant results: their resource
description. Consumer peers pose structured queries that are routed to
appropriate supplier peers using hubs. The query routing bases itself on
content profiles of neighbouring peers that are continually improved us-
ing reinforcement learning based on past interactions. Fusion of search
results returned by multiple peers uses a simple voting algorithm. The
authors want to improve their system by focusing on contextual learning
and social collaboration. They intend to extend their design with a rep-
utation system as a security component to distinguish spammers from
honest peers (Menczer et al., 2008).

ODISSEA

Suel et al. (2003) introduce the ODISSEA peer-to-peer architecture. Their
system consists of two tiers. The lower tier consists of peers that maintain
a distributed global index. The postings for a term are always located
at a single peer. The upper tier consists of update peers that insert or
update documents in the system, like a crawler or a web server, and
query peers that use the lower tier to answer queries. The novelty in their

54

3.2 information retrieval systems

approach is both in the specialisation of peers as well as in their usage
of a distributed global term-document index. The specialisations make
that in their system the peers responsible for storing, constructing and
querying the index are in fact disjunct. This resembles the completely
centralised approach, commonly used by modern search engines, where
some machines just store documents in the index, some crawl to keep the
index fresh and (external) others only query. In contrast to those systems,
ODISSEA offers an open indexing and searching infrastructure in which
every machine that ‘speaks’ the protocol can participate as peer.

When handling multiterm queries, the posting list intersections are con-
ducted in ascending order of term posting list size: from small to large,
as this greatly reduces the amount of data that needs to be transferred.
Furthermore, they apply top k query processing to minimise bandwidth
usage. The authors suggest optimisation of query execution, compres-
sion and pruning techniques as important future work. Furthermore,
they state that web-scale information retrieval is a much more challeng-
ing application than file sharing.

MINERVA

Bender et al. (2005b) assume that each peer performs its own crawls and
builds a local index. A peer first searches its own local index to find rele-
vant search results. If these results are unsatisfactory, the peer can consult
a global distributed index that contains for each term in the network a list
of peers that have relevant documents: a two-step index. This global in-
dex also contains statistics regarding the local indices maintained by each
peer. The authors show that properly estimating the overlap between
search results can reduce the number of peers that need to be contacted
for complete recall by more than 60 percent. However, the lookups in a
distributed hash table remain expensive. Bender et al. (2006) propose to
use correlations among individual terms in a query to reduce the number
of lookups: the peer that handles the first term in the query also, adap-
tively, stores what peers to contact for the remaining query terms. This
significantly reduces the number of involved peers, while sustaining the
same level of recall. Nevertheless, popular terms can cause severe load
imbalances if a single peer bears responsibility for storing all postings for
one term. Michel et al. (2005b) propose creating one-step term-document
indices in MINERVA for popular terms to reduce response times. Since

55

existing research & systems

posting lists are usually scanned sequentially, from the best to worst scor-
ing document for a particular term, they use an order-preserving hash
function2 to store the postings for a term sorted by descending score
over multiple peers. The authors apply top k query processing to fur-
ther reduce load. This can be further optimised by applying search result
caching (Zimmer et al., 2008): storing cached search results for each com-
plete query on peers that store the postings for one of the query terms.
These results contain meta information that helps in judging whether
they are still fresh enough and whom to contact for refreshed results.
The authors show that cycling out the least frequently used item is the
best cache management strategy for a bounded cache. They experiment
with both exact caching: matching a multiterm query exactly, and ap-
proximate caching: matching term subsets of a multiterm query. They
find that both approaches save valuable network resources without com-
promising result quality.

In later work Bender et al. (2005a) consider the novelty of additional
results, in addition to the quality, using a modified federated search col-
lection selection algorithm. This also appears in Michel et al. (2006) who
focus on further optimising query routing. Furthermore, they experiment
with Bloom filters and Min-Wise Independent Permutations, showing the
latter is better for obtaining result set size estimates.

ALVIS

Buntine et al. (2005) and Luu et al. (2006) introduce the ALVIS Peers
system: a distributed global index approach, with several innovations.
During final result fusion each peer that generated an index entry is con-
tacted and asked to recompute the document score based on global and
local statistics, thereby generating globally comparable scores. Instead
of storing postings for individual terms, the authors use highly discrim-
inative keys. This introduces the problem of having to store many more
keys than in a conventional term-peer index. To mitigate this, in later
work (Skobeltsyn et al., 2007a, 2009) they combine their approach with
query-driven indexing storing only popular keys in the index and apply
top k result storing. While this has a penalty for less popular, long-tail
queries, Shokouhi et al. (2007b) showed that query logs can be used to
prune irrelevant keys from an index without much performance loss.

2 Such a function guarantees that if a > b, then hash (a) > hash (b).

56

3.2 information retrieval systems

PHIRST

The differences between global and local indices give rise to a difficult
trade-off. We have to choose between fast, but costly and inflexible ex-
act search or slow, but cheap and flexible approximate search. Rosenfeld
et al. (2009) present an approach to peer-to-peer full-text search that com-
bines global and local indices for different types of terms. They keep
only the low-frequency terms in a hash table, while estimating the counts
for common terms via limited query flooding. Newly added documents
likely contain more well-known highly frequent terms and less new low-
frequency terms. Because of this effect they claim that their approach
leads to a proportionally smaller index as the number of indexed docu-
ments and peers increases compared to a full index kept in a distributed
hash table. Loo et al. (2004) and Huebsch et al. (2005) already showed
that this hybrid approach improves recall and response times and incurs
less bandwidth overhead for search in file sharing.

Klampanos2004

Klampanos and Jose (2004) attempt to apply standard information re-
trieval approaches in a peer-to-peer environment. They combine aggre-
gated local indices with content clustering. They assume that each peer
indexes its own documents and finds content clusters in its own collec-
tion. At the network level each peer joins one or more content-aware
groups based on its local clusters. The content-aware groups are poten-
tially overlapping clusters of peers. Each super peer, referred to as hub
in their paper, stores the descriptors of these groups and given a query
can score it against them. The descriptors are simple term frequency vec-
tors. A simplified version of Dempster-Shafer theory, a way to combine
evidence from multiple sources into one common belief, is used to fuse
results from multiple peers at the super peers. This seems to perform
well, while contacting few peers: usually one or two, sometimes three
and rarely six. The overall system offers recall and precision levels that
substantially exceed centralised search. They experimented with 560,000
documents, from the TREC 6 and 7 ad-hoc track, divided over 1,500 peers
and used the Managing Gigabytes (MG) system for their experiments
(Witten et al., 1999).

57

existing research & systems

NeuroGrid

Joseph (2002) introduces an adaptive decentralised search system called
NeuroGrid that uses hybrid indexing: initially all the peers have their
own local document index, but when they join the network they create a
peer index of their neighbouring peers. This closely resembles aggregated
local indices, but with each peer functioning as a super peer. Initially a
NeuroGrid network is a simple message flooding network. The novelty
in the approach is in the adaptive routing of queries. User responses
to search results, the absence of positive feedback or explicit negative
feedback, are recorded. When NeuroGrid has to select a subset of peers
to forward a query to, it tries to maximise the chance of receiving positive
feedback for the returned results based on these previous experiences. In
case of positive feedback the querying peer establishes a direct link to the
responding peer in the overlay network. This type of clustering gradually
increases connectivity and makes all peers become more knowledgeable
concerning the content of their neighbours. This approach also reduces
the length of the path that queries need to travel over time. The system
prefers reliable peers: those that respond to queries and supply on-topic
results of interest to the user. Well-connected peers have more influence
on the statistical learning process.

Galanis2003

Galanis et al. (2003) propose organising all the data sources on the In-
ternet in a large peer-to-peer network where queries are answered by
relevant sites. They assume that each peer is essentially an XML search
engine that maintains a local index. When a peer joins the network, it
sends other peers a summary of its data: a small set of selected tags and
keywords representative for its content. A join thus generates a wave
of messages, making their approach geared towards networks with low
churn. Alternatively, such information can also be piggybacked when
sending queries as in Di Buccio et al. (2009). Peers initially acquire con-
tent summaries of others peers in the system via neighbouring peers and
maintain their own peer index. The authors examine the effect of replicat-
ing summaries to every peer and to peer subsets of various sizes. They
experiment with networks of 100 and 200 peers based on crawled eBay
XML data. Their results suggest that using replication to every peer out-
performs that of using subsets, although using large subsets can approach

58

3.2 information retrieval systems

this performance level. They compare full replication aggregated indices
with a strict local indices approach and show aggregation increases query
throughput with 2,071 percent and offers 72 times faster response times.

Triantafillou2003

Triantafillou et al. (2003) focus on enforcing fair load distribution among
peers. They cluster documents into semantic categories and cluster peers
based on the categories of documents they offer. The authors emphasise
the need to impose some logical system structure to achieve high perfor-
mance in a peer-to-peer information retrieval network. Peers maintain a
document index that maps document identifiers to categories, a cluster in-
dex that maps categories to cluster identifiers, and a peer index that maps
cluster identifiers to peers. The terms in a query are first mapped to cat-
egories, then to clusters and finally to a random peer within the relevant
clusters. This random peer tries to satisfy the query with its own local
results, but if too few are available it forwards the query to neighbouring
nodes in the same cluster. This repeats until there are sufficient results.
Since selection is random, each peer in a cluster is equally likely to be
picked, which achieves load balancing among peers within the same clus-
ter. Peers are assigned to clusters based on the categories of documents
they share. For load balancing among clusters the authors introduce the
fairness index and a greedy algorithm to maximise this, called MaxFair,
which also compensates for peers with different processing power, con-
tent distribution and storage capacities. The most powerful peer in each
cluster is designated as leader that participates in the MaxFair algorithm.
Categories may be dynamically reassigned to a different cluster to im-
prove fairness based on the load of each cluster. They show that their
approach is capable of maintaining fairness even when peers and docu-
ment collections change.

3.2.2 Non-Scientific Systems

Various developed systems exist that do not have direct scientific roots.
In this section we list several of the better known systems. Although we
attempt to give some details about the underlying technology used, it
is often a bit harder to classify these systems as operational details are
sometimes missing or not well documented.

59

existing research & systems

YaCy

www.yacy.net

In YaCy each peer crawls parts of the web and builds a local index.
When connected to the larger YaCy network the local index entries are
injected into a distributed global index with a high level of redundancy
to ensure continuous availability. YaCy uses no centralised servers, but
relies on a select set of machines that maintain seed lists for bootstrapping
peers into the network. To protect user privacy it does not index deep
web pages by default. However, these parameters can be changed. YaCy
is an open project with transparent protocols and positions itself as a
counter-movement against the increasing influence of, and dependence
on, large-scale proprietary search engines. As of July 2011 it consists of
about 600 peers, that indexed 1.4 billion documents and serve results for
about 130,000 queries every day.

Seeks

www.seeks-project.info

This project aims to design and develop an open peer-to-peer network
that provides a social search overlay: clustering users with similar queries
so they can share both query results, similar to interest-based clustering,
but also their experiences with those results: making it a social network.
It aims to make real-time, decentralised, web search a reality. To protect
the privacy of users the queries are hashed. Seeks performs no crawl-
ing, instead relying solely on users to push content into the network.
Although it is initially populated with search results from major search
engines. Seeks uses a distributed global index and is usable and under
active development as of 2012.

Faroo

www.faroo.com

This is a proprietary peer-to-peer search engine that uses a distributed
global index and aims to ‘democratise search’. They perform distributed
crawling and ranking. Faroo encrypts queries and results for privacy
protection. They claim to be the largest peer-to-peer search engine with
as many as 2 million peers.

60

www.yacy.net
www.seeks-project.info
www.faroo.com

3.3 key focus areas

3.3 key focus areas

We believe there are several key areas that are important to focus on
today to be able to create the peer-to-peer information retrieval systems of
tomorrow. The following list is based on the existing research discussed
in this chapter and our own insights:

• Combining the strengths of global and local indices and develop-
ing algorithms to easily shift appropriate content from one to the
other based on term or query popularity. Many existing systems do
not scale well because they are solely based on either flooding the
network with queries or because they require some form of global
knowledge (Zeinalipour-Yazti et al., 2004).

• No architecture exists that offers the best solution for all peer-to-
peer information retrieval problems, different architectures apply
to different situations.

• Although good scalability properties are inherent to the peer-to-
peer paradigm, systems that wish to support web-scale search need
to focus on effectively distributing their load over a high number of
peers: hundreds of thousands to millions (Triantafillou et al., 2003).
An important reason for this is that peers are heterogeneous in
terms of capacity and connectivity and are not dedicated server ma-
chines: they have to perform many other tasks as well.

• Focusing on search results instead of documents. This means shift-
ing attention to networks that provide access to external documents
emphasising the search task: the core of peer-to-peer information
retrieval.

• Investigating and improving the performance of search result caches.
It is important to achieve a good balance between providing results
that are sufficiently fresh and not taxing the network for updating
those results. This also should depend on the, predicted or pro-
vided, mutation frequency of the resources pointed to.

• Improving handling of peer heterogeneity in web search. A few peers
have a lot of documents, whereas many peers have much smaller
collections. These smaller collections are often specialised, making
them appropriate for more specific queries.

61

existing research & systems

• Applying interest-based and/or content-based clustering as it sim-
plifies both the construction of resource descriptions and query rout-
ing, resulting in reduced latency.

• Improving both topology and query routing, particularly for avoiding
and routing around hotspots in networks. A good topology favours
both effectiveness and efficiency, by making it possible for a query
to reach a relevant target peer in few steps.

• Focusing on precision over recall. Achieving a hundred percent recall
in peer-to-peer systems would involve searching in all indices and
is far too costly (Klampanos et al., 2005). It is also unnecessary if
the quality of the returned results is high enough. Although this
requires better result fusion techniques. One should realise that
web search users do not browse beyond the first search result page,
but instead engage in query reformulation.

• Developing real-time distributed relevance feedback mechanisms (Klam-
panos and Jose, 2007). Ideally, search result quality continually im-
proves based on user feedback as is common for centralised search
engines. The emerging trend of coupling this to social networks
could be further explored.

• Creating a number of large standardised test collections that apply to
different types of peer-to-peer information retrieval networks. The
work of Klampanos et al. (2005) provides a good start, but is still
somewhat conservative with respect to scale.

• Focusing on tangible benefits of peer-to-peer networks rather than
ethics or ‘coolness’, giving users a proper incentive to search using
such networks over other solutions. This is particularly important
for peer-to-peer web search engines.

• Realising that any web search service is a form of adversarial informa-
tion retrieval: companies and people, suppliers of information, have
an incentive to appear high up in rankings (Craswell and Hawking,
2009). Use this fact to improve the quality of service for the end
users.

62

3.4 economic systems

3.4 economic systems

There is a large body of scientific work that applies economics, game
theory or mechanism design to peer-to-peer networks. These approaches
try to give peers incentives to participate in the peer-to-peer network, or
disincentives for unwanted behaviour, and thereby encourage them to
actually also supply resources instead of only consuming them. They
particularly aim to mitigate the problem of free-riding and discourage
certain malicious behaviours, see Section 2.2 for definitions.

In this section we discuss a broad selection of related work in order
to get a better understanding of what incentive mechanisms can be used
for what purpose and the impact these have. They could be used to
address some of the challenges in the key focus areas presented in the
previous section. We do not restrict ourselves to information retrieval
alone, as there is little information retrieval research that applies game
theory directly. However, as we will see in Section 3.5, this may be a
possible starting point, particularly when networks can not be assumed
to be fully cooperative.

3.4.1 Optimising Query Routing

One problem in uncooperative networks is how to incentivise peers to
participate in query routing. This is particularly important in networks
that use either strict or aggregated local indices. Let us look at some
reward systems that can be used for this situation.

Zhong et al. (2003) consider the problem of message forwarding in
mobile ad-hoc networks. They focus on selfish nodes that need incentive
to forward messages they receive to other nodes. A selfish node is defined
as an economically rational node whose objective is to maximise its own
welfare: the benefit of its actions minus the cost of its actions. They
introduce a simple, cheat-proof, credit-based system for mobile ad-hoc
networks with selfish nodes: Sprite. This system relies on a centralised
credit clearance service that keeps track of the credit balance of nodes.
Nodes are charged for sending messages and may obtain credit by either
buying it using real money or preferably by forwarding messages from
other peers. The authors model the transactions as a receipt-submission
game and prove the correctness of their approach. Their prototype shows
that their system adds very little processing overhead. Li et al. (2009) take

63

existing research & systems

this work as inspiration and focus on query message routing in peer-to-
peer networks that use strict local indices. When a peer issues a query
it offers a reward for the results. Neighbouring peers are promised this
premium as payment when relevant search results are returned via them.
Peers may choose to which other peers they forward a query and do so
in return for a part of the premium offered to them. Finally, when a peer
is discovered via query routing that has relevant search results, these are
passed back along the path to the peer that initiated the query. Along the
way each peer is given the promised reward. This reward currency can be
used to issue new queries by each peer and thus encourages participation
in routing. The authors show their approach is better in utilising the peer-
to-peer network than both query flooding and random walks. This set-up
could also be useful in networks with aggregated local indices.

Sun and Garcia-Molina (2004) present a Selfish Link-based InCentive
(SLIC) for peer-to-peer networks with strict local indices. Their focus
is on servicing query messages in such networks. The flooding based
search mechanism allows neighbouring peers to control each other’s ac-
cess to the rest of the network: a mutual access control relationship. SLIC
exploits this relationship by allowing each peer to rate its neighbours and
use the rating to control how many queries from each neighbour to pro-
cess and forward. They point out two advantages of their approach: each
peer is greedy and trying to maximise its utility and each peer needs to
keep statistics only about its direct neighbours. SLIC operates in periods
of, for example, one minute. During each period, a peer can use its ca-
pacity to service queries from neighbouring peers in the overlay network.
They show a peer has several options to increase its reputation and thus
its utility obtained from the network: by sharing more data and thus
increasing its answering power, by increasing the number of edges (the
connectivity) or by increasing the capacity used to service a neighbour’s
queries. The authors use the total and average number of hits to measure
utility. They consider the initial rating that should be used for newly join-
ing peers and show that using (functions of) the average rating of peers
in the network is a good approach.

Yang et al. (2005) discuss non-cooperative behaviour in file-sharing
peer-to-peer networks that use strict local indices. In their set-up, peers
compete for the right to handle a query and deliver search results. Be-
cause of the nature of the network, peers may choose not to forward
queries to potential competing peers. To solve this, the authors propose

64

3.4 economic systems

an economic protocol that encourages peers to cooperate even when there
is competition. A peer can buy the Right To Respond (RTR) for a query.
Peers have incentive to buy this right, since it brings in business from a
peer’s perspective. When a query originates at a peer, an RTR is offered
to each neighbour which consists of the reputation of the querying peer,
a timestamp, the query and a price. The reputation is based on previ-
ous interactions of neighbouring peers with the requesting peer. Peers
can choose the price at which they buy and (re)sell RTR’s. To prevent
useless offers, peers can indicate in a profile what categories of queries
they can handle. These filters enable more intelligent routing of queries.
The authors also allow peers to adapt the network to be close to other
peers that have information that interests them, which reduces routing
overhead. They make the assumption that there is some central entity
that keeps track of the balance of each peer and assumes it is not easy
for peers to change their identity. Their goal is to maximise the quality of
the results and minimise the number of messages needed to obtain these
results. They show that RTR has the same performance, in terms of qual-
ity and message overhead, in an uncooperative network as normal query
flooding has in a cooperative network.

Karakaya et al. (2007) address the problem of free-riding in peer-to-
peer file sharing networks. They assume a network with a topology
like Gnutella: queries and search results are routed using the peer-to-
peer overlay network, while file transfers are performed directly between
peers. They show that by keeping track of the behaviour of neighbouring
peers in the overlay network, a peer can determine whether a neighbour
is free-riding. Tracking is done over time, so that possible counter actions
are taken only when sufficient evidence has been gathered. They iden-
tify three types of free-riders: those that do not contribute any files but
do route messages: non-contributors, those that share very little files and
route messages: consumers, and those that do not contribute any files and
also do not route any messages: droppers. They show that, depending
on the type of free-riding, different counter actions can be appropriate.
To counter, peers can either reduce the time to live of messages origi-
nating from the free-rider or drop originating message entirely. Whilst
the latter seems very effective, it also affects genuine contributors, since
the free-rider detection also yields false positives. An other problem is
the fact that the actual downloads are performed between peers directly.
This enables peers to lie and promise to service a download via query hit

65

existing research & systems

messages, but to actually not deliver the ‘goods’ when the direct down-
load is initiated, negatively affecting performance. To detect malicious
behaviour the authors propose to broadcast notification messages about
such events back over the path where the query hit messages originated
from. Finally, they show their approach is resilient to a variety of other
attacks, including collusion among free-riders.

3.4.2 Levelling Supply and Demand

While peers in a peer-to-peer network supply as well as consume re-
sources, keeping this balance equal is a challenge. It may be beneficial
for a peer to only take and not give anything back. There is a need for
mechanisms that equalise the supply and demand, several of which have
been explored.

Vishnumurthy et al. (2003) propose an economic framework for re-
source sharing called KARMA. In their system each peer has a certain
amount of KARMA: a form of currency. The goal of KARMA is to discour-
age free-riding and achieve a balance between the resources consumed
and supplied by peers. A distributed hash table is used for keeping
track of which peer shares which file. To obtain a file, a peer pays some
KARMA to the supplier peer that can provide the file. Groups of spe-
cial nodes, termed bank-sets, keep track of the KARMA balance of each
peer. The bank-set is distributed and replicated. Transactions involve two
steps. Firstly, transferring the KARMA via the bank-sets. Secondly, trans-
ferring the actual file between the supplying and consuming peer. All
transactions are zero-sum, encrypted and verifiable. The bank-set acts as
mediator when conflicts arise. Their framework forms an interesting start-
ing point for equalising contributions in peer-to-peer networks, although
maintaining a monetary system seems cumbersome.

Ranganathan et al. (2003) claim the performance of incentive schemes
in peer-to-peer networks is not well understood. They model two incen-
tives schemes as a multi-person prisoner’s dilemma: a token exchange
(pricing) scheme where peers pay each other for files requiring a currency
mechanism, and a peer approved (soft incentive) scheme based on reputa-
tions, requiring a reliable and secure mechanism for reputation tracking.
They consider two classes of users: those that share all their files and
those that share only a subset. With no incentive mechanism in place, the
pay-offs are always higher for partial sharers. The peer approved system

66

3.4 economic systems

encourages more peers to perform full sharing depending on the benefit
function used. Token exchange leads to a higher number of files shared
compared with the peer approved scheme when the files are distributed
uniformly. However, when files are assumed to have a Zipf distribution, a
few peers serving most of the files, the peer approved scheme converges
to the same optimum as token exchange, albeit at a slower rate. This sug-
gests that for peer-to-peer networks where the resources to be obtained
are not uniformly distributed, like search results in a peer-to-peer web
search engine, a reputation scheme may form a better starting point than
a monetary scheme.

Ngan et al. (2003) investigate the usefulness of auditing as a mecha-
nism for enforcing fair sharing behaviour in peer-to-peer networks. They
believe that peers should not be placed in a position of permanent au-
thority over other peers. If all nodes in the peer-to-peer system publish
their digitally signed resource usage records and other nodes audit those
records, each node has a natural incentive to publish accurate resource
usage records. Peers in the network can still collude with others to lie col-
lectively about their resource usage or they may even bribe other peers
to condone false data. To prevent this, the audit process uses a challenge
mechanism: If a peer claims to have a file, and thus claims to have less
storage available, an other auditing peer asks for the hash codes of several
random blocks of that file and compares this to those of the same blocks
stored at other peers. Audits are performed anonymously by using one or
more intermediate peers. Machines that hold a copy of a file perform nor-
mal audits periodically on their origin peers, whereas all peers perform
random audits. Once a cheating peer has been discovered, its usage file
is effectively a signed confession of its misbehaviour. The authors conclude
that auditing provides incentives and increased resistance to collusion
and bribery attacks.

3.4.3 Establishing Trust Relationships

One step further than directly levelling the supply and demand in a peer-
to-peer system is making sure that peers in the system can be trusted.
This commonly involves building ones reputation over time, the primary
goal of this is increasing trust between peers. The secondary goals may
vary from levelling contributions to fending of attacks, as we will see.

67

existing research & systems

Kamvar et al. (2003) use reputation as a means to decrease the number
of inauthentic files on a peer-to-peer file sharing network. Each peer in
their system rates the other peers based on successful transactions. The
challenge in a distributed environment is how to aggregate these local
ratings, trust values, without centralised storage. The authors present
EigenTrust that uses the notion of transitive trust: peers have a high opin-
ion of peers that have provided them with authentic files and are likely to
trust the opinions of those peers. EigenTrust, which uses basic linear alge-
bra, eventually converges to the global trust value for each peer, meaning:
the trust the system, as a whole, places in a particular peer. The authors
run simulations with a large number of different threats and show that
EigenTrust remains highly effective even when up to 70 percent of the
peers in a network form a malicious collective. In that specific case, only
10 percent of downloads are inauthentic, versus 96 percent when Eigen-
Trust is not used.

Grothoff (2003) describes the GNUnet system: a peer-to-peer network
for anonymous distributed file sharing. He employs an economic trust
model to perform resource allocation and to discourage free-riding. The
author considers trust to be local and non-transitive: not communicated
between peers, in contrast with Kamvar et al. (2003). There are no special
nodes in his system. Each peer keeps track of transactions performed
with other peers in the past and learn which ones behave well. As in
any peer-to-peer network, a node can never be guaranteed that a service
that it has provided in the past will pay off in the future. If a peer has
a resource shortage it may choose to drop requests from other peers that
have earned low trust: consumers compete for the resources at suppliers
with the trust they earned. The author states that simple supply-demand
schemes are inadequate for peer-to-peer networks since supply usually
exceeds demand: most computing resources are available in excess most
of the time and massive resource consumption only occurs during brief
peak periods. Hence, they conclude that freeloading is harmless as long
as excess resources are available. A number of attack scenarios are con-
sidered, but ultimately it appears that the damage a peer can inflict is
limited by its own bandwidth. The authors briefly consider the prob-
lem of fake content and propose user feedback as a solution. However,
in an anonymous network, the feedback itself can be either a valuable
contribution or a malicious deception. Finally, the author states it is diffi-
cult to evaluate if the algorithms they present optimise for the right goal

68

3.4 economic systems

which is to allocate resources for each peer proportional to the amount
of resources provided. The problem with this definition is that it does
not capture protocol overhead and variations in resource value over time.
Hence evaluation remains an open issue.

Andrade et al. (2004a) attempt to reduce free-riding in a peer-to-peer
grid system using autonomous, local, reputations. They state economies
based on currencies are too complex to implement, but do recognise that
in the absence of incentives for donation, a large proportion of peers only
consume resources: free-riders. In their CPU-sharing grid, termed Our-
Grid, the peers are assumed to be eager consumers: a peer gains positive
benefit from whatever resources it obtains. A peer calculates the repu-
tation of an other peer locally based on the favours it has received from
and given to that other peer, in terms of donated processing power. This
build up of autonomous local reputations uses no information on inter-
actions that did not directly involve the peer assessing the reputation,
which reduces the number of ways in which malicious peers can distort
the reputation system. Techniques such as lying about the behaviour of
third parties can not be applied. The authors run experiments with a
small network of hundred peers. Each peer can be either consuming, not
consuming and donating their resources: collaborate, or not consuming
and staying idle: free ride. They show their approach reduces the num-
ber of transactions with free-riders over time, depending on the number
of free-riders in the network and the total number of consuming peers.
However, this convergence takes some time which might not work very
well in dynamic resource-sharing networks with many joining and de-
parting peers. Additionally, they show that if free-riders can change their
identity, their method does not converge if the reputation system can be
both positive and negative. However, when using only positive repu-
tations the network is far less sensitive to identity changing free-riders,
regardless of the total number of consumers in the network. In follow-up
work (Andrade et al., 2004b) the authors drop the eagerness assumption:
consuming peers have a limit on the amount of resources they can use
with positive utility. They do assume that the value of giving and receiv-
ing a donation does not vary much between peers, which seems realistic
for grid computing. Simulation reveals that even when there is a famine
of donations, their approach encourages cooperative behaviour among
peers. The elegance of their approach is that it does not require central
coordination or cryptography.

69

existing research & systems

3.4.4 Using Behavioural Histories

An alternative way to assess the contribution of other peers in the network
is looking at their behavioural histories: a more direct method than using
trust or reputations. We look at two such approaches.

Feldman et al. (2004) investigate incentives for peers to cooperate in
peer-to-peer networks. They attempt to prevent the so called ‘tragedy of
the commons’ : the situation where the result of each peer attempting to
maximise its own utility, lowers the overall utility of the system. They
claim using conventional strategies, like tit-for-tat, does not work well in
a peer-to-peer context in contrast to Cohen (2003). Their starting point
is the generalised prisoner’s dilemma. A peer can either defect or coop-
erate and peers can reciprocate towards each other. To decide whether
to cooperate with a peer in the future, peers can keep a private history
where they record the behaviour of previously contacted peers. However,
since peer-to-peer networks are large, the likelihood of multiple transac-
tions between the same peers is low. Hence, the authors propose a global
shared history, stored in a distributed hash table, where the behaviours
of all peers are tracked: how many times a peer defected or cooperated
and the transactions that have taken place. The shared history introduces
new peer behaviours that can have a negative effect on cooperation in
the network. Peers can collude to report false statistics, for example: be-
ing overly positive by indicating that a certain peer always cooperates,
even if it did not. The authors use the Maxflow algorithm to counter this
when not too many peers are lying about the shared history statistics. A
complete discussion of Maxflow is beyond the scope of this thesis. One
final issue is that of zero-cost identities. A peer can easily disconnect
from the network and reconnect to whitewash its own history. To handle
this, global statistics are kept on the behaviour of these ‘strangers’. Peers
decide what their behaviour towards strangers is based on these statis-
tics. The authors show that this stranger-adaptive approach is effective
both when using private and shared histories. Finally, the authors show
that traitors, peers with good reputation that defect, can be countered by
looking only at the short-term history.

Friedman and Resnick (2001) treat the problem of cheap pseudonyms
prevalent on the Internet. Peer-to-peer networks are a specific instance
of this problem, since peers can easily depart and rejoin the peer-to-peer
network and, by doing so, clear their reputation. The authors consider

70

3.4 economic systems

several scenarios based on a repeated prisoner’s dilemma that rewards
mutual cooperation, keeps mutual defection costs neutral and gives an
added bonus for defecting if the opponent chooses to cooperate. Players
playing their first game are termed newcomers and players that played
in previous rounds are referred to as veterans. Players are randomly
paired each round. If players can not change their identity, then a lo-
calised punishment strategy yields a sustainable equilibrium: cooperate
with those who cooperated in the previous round and defect with those
that defected. If players can change their identity, then the public grim
trigger, every player defects if there has been a defection in the previ-
ous round, is an equilibrium. However, this is highly inefficient, as a
simple network error can paralyse the entire game. An alternative is to
punish newcomers by having the veterans always defect when they are
paired with a newcomer. The authors show that this entry-fee for new-
comers yields an equilibrium, and that there is no alternative strategy that
yields a higher pay-off. There appears to be no other way than to punish
newcomers. They consider letting newcomers pay a fixed amount to all
veterans in the network, but conclude that this can cause players to stay
around for longer than they can contribute anything useful and discour-
ages poor peers from participating. Finally, they introduce an alternative
way to discourage identity changing: issuing regular and once-in-a-life-
time identities. This approach gives participants an option to commit
to not changing identities. In equilibrium no one would use the regular
identifiers.

3.4.5 Explaining Free Riding

So far we have seen that many of the approaches discussed have the pur-
pose of reducing or eliminating free-riding. However, is it really necessary
to do this? Why do networks with free-riding peers remain operational?
We look at two studies that examine this.

Krishnan et al. (2002) attempt to explain why free-riding can be tol-
erated in peer-to-peer file sharing networks. Ideally, the fact that once
users download files they, by default, also share it immediately, leads
to the situation where the provision of content on the network scales to
match the level of demand for the content. The authors state that files on
peer-to-peer networks have the economic properties of public and club
goods: non-rivalry in demand and non-excludability in supply. Tradi-

71

existing research & systems

tional economic theory predicts that free-riders cause inefficient private
provision of public goods and calls for central intervention to remedy
this problem. However, this does not explain the high levels of sharing
seen in peer-to-peer networks. While sharing implies a cost by reducing
the user’s private bandwidth, it also reduces traffic other peers place on
other nodes in the network which increases the user’s utility. The au-
thors model the problem of free-riders using game theory and conclude
that peer-to-peer networks can tolerate a certain amount of free-riding.
Above this threshold the network would collapse, the risk of which en-
courages newly joining nodes to share instead of free-ride, since no one
benefits from a defunct peer-to-peer network. Free-riding appears to be
part of a sustainable equilibrium.

Jian and MacKie-Mason (2008) investigate the incentives for file shar-
ing in peer-to-peer networks. They first consider the so-called offload
effect: sharing redistributes network traffic to the advantage of the shar-
ing peer. However, in large networks, where highly sought after files are
highly replicated already, the benefit of offloading by sharing appears to
be quite minimal. The authors conclude that the offload effect alone is
not sufficient to motivate the amount of sharing seen on successful peer-
to-peer networks. They turn to indirect incentive for contributing to the
public good, also known as generalised reciprocity: ‘I will do this for you
without expecting anything back from you, in the confident expectation
that someone else will do something for me down the road’. They show
that, even in the presence of free-riders, stable equilibria emerge where
only some peers share content. The reason for this appears to be that
peers care a lot about fulfilling their own demands. Since the cost of
sharing is relatively low, free-riding can be tolerated to a certain extent.

3.4.6 Conclusion

We have seen various ways in which economics can be applied to peer-to-
peer networks. We briefly summarise the main findings:

• Rewarding peers is an effective way to incentivise them to partic-
ipate in query routing, and is necessary in uncooperative environ-
ments that use local indices. This can be implemented using cred-
its, mutual ratings, response rights or behavioural tracking (Zhong
et al., 2003; Sun and Garcia-Molina, 2004; Yang et al., 2005; Karakaya
et al., 2007).

72

3.4 economic systems

• Reputation systems can be used to level supply and demand in
peer-to-peer systems. This can be based done using some type
of currency, although monetary schemes seem somewhat imprac-
tical. An alternative is rating or auditing peers. A reputation sys-
tem should be robust to malicious collectives of peers that conspire
to subvert the system (Vishnumurthy et al., 2003; Buragohain et al.,
2003; Ranganathan et al., 2003; Ngan et al., 2003; Kamvar et al., 2003;
Karakaya et al., 2007).

• Systems that build trust by tracking contributions over a long time
period remain effective when under attack. Trust can be used as
a currency for resource consumption, to reduce free-riding and to
stimulate cooperation among peers (Kamvar et al., 2003; Grothoff,
2003; Andrade et al., 2004a,b; Suryanarayana and Taylor, 2004).

• Behavioural histories give insight into how the tragedy of the com-
mons can be prevented. They can also be used to determine entry
fees for newcomers to the network, as this discourages them from
whitewashing their reputation by disconnecting and reconnecting
to the network (Friedman and Resnick, 2001; Kamvar et al., 2003;
Feldman et al., 2004).

• While free-riding is unwanted behaviour, and many systems focus
on discouraging it, it seems that free-riding is also part of a sustain-
able equilibrium: a certain amount of free-riding can be tolerated
(Krishnan et al., 2002; Jian and MacKie-Mason, 2008).

• Simplified games can be used to model and reason about resource
exchange in peer-to-peer networks. However, very basic supply-
demand schemes are inadequate, since supply usually exceeds de-
mand (Friedman and Resnick, 2001; Grothoff, 2003; Wang and Li,
2003; Ranganathan et al., 2003; Zhong et al., 2003; Feldman et al.,
2004).

73

existing research & systems

3.5 our network architecture

Armed with an understanding of peer-to-peer information retrieval, back-
ground knowledge of existing systems and challenges as well as eco-
nomic systems and incentive mechanisms, we are ready to explain our
architecture in this section. We use this as the basis for our experiments
in Chapter 4, 5 and 6.

The most popular peer-to-peer file sharing technology to date is BitTor-
rent (Cohen, 2003). Torrent traffic is a mainstay of residential broadband
users (Maier et al., 2009) and accounts for a substantial amount of traf-
fic on the Internet (Pouwelse et al., 2005). We use it as inspiration and
starting point for our own architecture and experiments. While we have
briefly touched on BitTorrent in Section 2.3, we describe it more elabo-
rately here and draw an analogy with peer-to-peer information retrieval.
We start with a brief overview in Section 3.5.1, followed by a translation
to information retrieval in Section 3.5.2. We close with a selection of liter-
ature specifically about BitTorrent in Section 3.5.3.

3.5.1 BitTorrent Overview

BitTorrent (Cohen, 2003) is based on the observation that the upload ca-
pacity of peers that are downloading largely goes unused. To solve this,
BitTorrent cuts files into small blocks that are downloadable not only from
the original peer that shared the file, but also from all still downloading
peers that have obtained a subset of those blocks. This way, peers that
are downloading can saturate their download link by transferring blocks
from many different peers, not only the peer that shared the original file.
Although BitTorrent was originally released in 2001, it did not really take
off until 2003 when it was used for spreading Linux distributions and
other content. Crucial to its adoption was the emergence of websites that
allowed users to search for files to download.

Instead of downloading the actual file from a website, users obtain a
small meta-data file: a torrent. Besides a filename and size, this file con-
tains two important pieces of information needed for locating and trans-
ferring. Firstly, hash values for each block of the file to be downloaded.
Secondly, the address of a tracker that keeps track of the peers that are
also sharing (parts of) the file. Peers that have complete copies of the file
are termed seeders, whereas peers that have not yet downloaded all blocks

74

3.5 our network architecture

are termed leechers. When a peer wants to initiate transfer of a particular
file it contacts the tracker to obtain a list of seeders and leechers, this is
the locating task termed scraping in BitTorrent. The strength of BitTorrent
is handling situations where only a few machines have the complete file
and many of them are still downloading it. The tracker has the crucial
tasks of helping peers, that are interested in obtaining the same file, find
each other. By default trackers return a limited random set of peers that
share the same file. All peers that share (parts of) the same file, and
upload to and download from each other, are collectively called a swarm.

BitTorrent uses no central resource allocation for the transfer task. In-
stead each peer tries to maximise its own download rate. Leechers down-
load from whichever peer has the current block they want. However,
those peers may refuse to upload, this is termed choking. A peer uploads
in parallel only to a limited number of peers, termed the active set, pro-
viding them all with an equal share of its upload bandwidth. The rest of
the peers are choked. The size of the active set typically depends on the
total available upload capacity. Peers prefer to unchoke peers that give
them a high download rate (for other blocks of the file that they are still
downloading). That rate is the average measured over a fixed time win-
dow: typically the last twenty seconds. Each uploading peer redecides
every ten seconds which peers it unchokes. To find better connections
a peer also optimistically unchokes a random peer every thirty seconds,
regardless of the download rate it gets from that peer. If a downloading
peer does not retrieve a block it has requested from a peer it is connected
to for over a minute, it assumes that peer has ‘snubbed’ him and will not
upload to that peer again, except as an optimistic unchoke. After a peer
has downloaded the file completely, and is thus a seed, it simply prefers
to upload to peers to which it has the best upload rates.

The ideas behind BitTorrent’s resource allocation closely resemble the
tit-for-tat strategy in game theory: if you give me a good download rate,
I will upload to you as reward. But, if you do not upload to me for some
time, I will stop uploading to you as well. Although after a while I might
contact you again and see if you reciprocate if I upload something to you.
The initial strategy is to cooperate and to defect only if the other party
defects as well. A party’s previous behaviour is held against him only
once: peers do not keep a history of past behaviour of other peers.

Recent years have seen a move away from centralised components in
BitTorrent. A limited form of this is bypassing the tracker and obtaining

75

existing research & systems

knowledge of additional peers in the swarm by exchanging information
with other peers. A stronger change has been doing away with centralised
trackers altogether: trackers are no longer dedicated server-like machines,
instead a distributed global index is used to provide the same function-
ality. BitTorrent uses a derivative of Kademlia as distributed hash table3

(Maymounkov and Mazières, 2002). Effectively, all peers collectively pro-
vide the locating service, removing a single point of failure. Furthermore,
the global index is not only used for locating suitable peers, but also for
the step that precedes it: downloading the torrent meta-data file. Instead
of a torrent file, websites only provide a so-called magnet link, which is
a hash over a part of the content of the torrent file. Peers can download
the full torrent file by performing a look-up of this hash value in a dis-
tributed global index to see which peers provide it4. Hence, the locating
and transferring steps are first carried out for the torrent file, and later
followed by the same steps for transferring blocks of the actual file the
torrent file describes.

3.5.2 BitTorrent and Information Retrieval

BitTorrent’s success makes it an attractive model for other peer-to-peer
applications, but how do we apply the principles set forth by BitTorrent to
information retrieval? We have already seen the differences between file
sharing and information retrieval at an abstract level in Section 2.6.1. Let
us take a closer look at how we can translate some of BitTorrent’s ideas
to peer-to-peer information retrieval. The following paragraphs describe
the architecture that we will use in the remainder of the thesis.

We take the point of view that peers are capable of providing relevant
search results instead of the conventional view that peers hold static doc-
ument collections. This distinction makes it easier to abstract away from
who actually holds the document, as we do not focus on actually obtain-
ing those: the transfer task is considered to be outside of the scope of the
peer-to-peer network. A search result, which we also refer to as snippet,
consists of at least a location (URL), usually a title and a query-dependent
summary. This is treated in more detail in Chapter 4.

Starting with the tracker, we have to recognise that the task of the
tracker in a file sharing network is merely locating appropriate peers,

3 http://www.bittorrent.org/beps/bep_0005.html (Retrieved June 25th 2012)
4 http://www.bittorrent.org/beps/bep_0009.html (Retrieved June 25th 2012)

76

http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0009.html

3.5 our network architecture

whereas the task of a tracker in information retrieval is searching for ap-
propriate peers. We can view this as the tracker giving advice to peers for
where they can obtain relevant search results for their queries. Essentially
this makes the network form a two-step index: one step to map a query
to appropriate peers and a second step to send that query to those peers
and obtain the actual search results. This has something in common with
federated information retrieval’s mediator party, except that the tracker is
not a façade and does not perform actual search result retrieval or merg-
ing: it is more lightweight (see Section 2.6.2).

For estimating which peers have relevant content for a given query, the
tracker needs representations of each content bearing peer: each supplier
in the network. Hence, when peers bootstrap into the network they either
need to cooperate and provide a resource description, explored in Chap-
ter 5, or the tracker needs to sample their content, examined in Chapter
4. We assume the tracker stores the resource descriptions in a centralised
global index. As we have seen in Section 3.5.1, this starting assumption
also makes it easier to decentralise the tracker by switching from a cen-
tral global index to a distributed global index later on, or perhaps even to
aggregated local indices. Keeping resource descriptions up to date is an
open challenge we briefly discuss in Chapter 6.

We can define a swarm in our system as the collection of all peers
that have search results for a particular query. A search result set could
conceptually be viewed as a (very small) file, and blocks could be seen
as either individual search results or subsets of the full search result set.
The active set can be viewed as the maximum number of queries a peer
is willing (or can) process per unit of time. But, what is a seeder and
what is a leecher? In an information retrieval network we can distinguish
between suppliers that provide search results and consumers that pose
queries. Thus suppliers may seem like seeds and consumers may seem
like leechers. However, we run into a fundamental difference here: in file
sharing the leechers are all interested in obtaining the same file at the same
time. This works because the time it takes to obtain a file is typically long.
Contrast this with search results that can be transferred in the blink of an
eye. Hence, in an information retrieval network, peers will rarely have
a symmetric interest at exactly the same point in time. How do we deal
with this? In Chapters 6 we explore search results caching as solution
for this asymmetry. Consuming peers are expected to cache the search
results for the queries they posed, so that others may obtain those results

77

existing research & systems

directly from them at a later point in time. This reduces the load on the
supplier peers, just as leechers reduce the request load on the seeders
in BitTorrent: search result caching also exploits the storage and upload
capacity of other peers in the network. There is one small problem with
this analogy. As soon as the consumer peers obtain search results for a
query they directly become suppliers themselves. Hence, true leechers in
the BitTorrent sense do not really exist in our peer-to-peer information
retrieval network. Instead we make the conceptual distinction between
origin suppliers: those that generated the initial search results for a query,
and other suppliers that hold cached results. This leads us to solving a
problem that BitTorrent itself does not actually address: how to keep the
seeders around?

Whenever a file transfer completes in BitTorrent, and the peer becomes
a seeder for the file, there is a huge incentive to disconnect from the
swarm. Ideally nodes would stay in the swarm for as long as needed to
give back as much bandwidth as was used for the download. Equiva-
lently, we would like consumer peers that have obtained a search result
set for a query to keep it around so that others may use it. Thus, this same
problem exists in our architecture and this is where we can extend some
of the mechanics BitTorrent uses during file transfers. BitTorrent’s tit-for-
tat can be viewed as a very simple reputation system with a short-term
memory. One way to implement this idea in a peer-to-peer information re-
trieval system would be using reputations as incentive for keeping search
result caches. A peer’s reputation is lowered in response to cache misses.
Other peers are less willing to share their cached items with peers with
a low reputation, and hence can choke them by refusing to serve cached
results for queries. This forces the low reputation peer to obtain results
from other peers which increases latency. Of course: peers can also opti-
mistically unchoke a peer so it can gain reputation. Furthermore, peers
with low reputation are less likely to be selected as origin suppliers by the
tracker. This makes it more difficult to share unique content and makes
sense when you consider that low reputation peers likely serve spam web
pages or are link farms.

To summarise: our architecture uses a tracker that contains resource
descriptions of all supplier peers in the network. Peers in the network are
expected and incentivised to cache search results they obtain for queries
in order to evenly balance the load. The focus is thus explicitly on search
results and not on the documents they are derived from. We assume

78

3.5 our network architecture

the tracker is implemented as a global index, which could be either a
centralised or distributed global index, as described in Section 2.4. Fur-
thermore, the tracker maps queries to peers, the peers themselves map
the queries to search results. Hence, the architecture is a global two-step
index as shown in Figure 3.1.

3.5.3 Studies of BitTorrent

The incentive of giving upload bandwidth resulting in download recipro-
cation is said to build robustness in BitTorrent (Cohen, 2003). However,
this claim is somewhat disputed. In this section we give a brief overview
of existing studies of BitTorrent to show strengths and points of improve-
ment. We focus particularly on its incentive mechanics. At the end of
the section we briefly summarise what the observations in these studies
mean for the information retrieval analogy.

Pouwelse et al. (2005) perform a detailed study of the performance of
BitTorrent in combination with SuprNova. BitTorrent is a system that
has stood the test of intensive daily use by a very large user community.
The authors stress that it is only a download protocol and that it needs
to be combined with global components for finding files. Although the
lack of global components increases availability, their presence increases
data integrity. The authors identify three global components: a website
offering a searchable archive of torrent files, mirrors of that archive and
central trackers that keep track of who is actively downloading a partic-
ular file. The torrents that appear at the website are user moderated to
reduce the number of fake and corrupted files. This moderation appears
to be very effective. A central tracker provides peers with a list of some
of the other peers that share the same file, with whom the user can estab-
lish direct connections to barter for chunks of the file. Unfortunately, the
trackers, as well as the other global components, are a frequent target of
denial-of-service attacks and they are costly to operate due to gigabytes
of daily bandwidth consumption. The authors conclude there is an obvi-
ous need to decentralise these global components. While peers with high
upload rates will, with high probability, also be able to download with
high speeds, the resources of peers that share a file initially, the seeders,
are heavily taxed. The author see this as a flaw in BitTorrent’s design and
state that peers should be rewarded for seeding instead of being punished.
Additionally, peers should also be given incentives to lengthen their up-

79

existing research & systems

time, as most of the peers remain on-line only for a very short time. Their
study shows that the arrival and departure process of downloaders does
not follow a Poisson model as suggested by Qiu and Srikant (2004), rather
it is dominated by flash crowds: large groups of peers that form temporar-
ily to download a specific file and then disappear once done. BitTorrent
can handle large flash crowds.

Bharambe et al. (2005) investigate the performance of BitTorrent using
a simplified implementation of the protocol in a discrete-event simulator.
They make several interesting observations about the protocol. Firstly,
preserving seed bandwidth is crucial when there are only a few seeds.
Initially serving only unique blocks, also known as superseeding, is an
excellent way to do this. Also, prioritising the rarest blocks for download
is important to prevent the situation where almost all blocks have been
downloaded except one rare block, as this increases download times and,
at worst, makes it impossible to complete a download.

What about reciprocation? The authors find that tit-for-tat fails to pre-
vent unfairness across nodes in terms of volume of content served. This
is primarily due to heterogeneity in the bandwidth capacity of participat-
ing machines: high bandwidth peers that connect to low bandwidth peers
and vice verso. The authors propose applying tit-for-tat at the level of in-
dividual blocks, instead of average transfer rates. However, changing the
protocol is infeasible as so many peers are already using the unfairness
in the existing protocol and thus have no incentive to switch to a fairer
protocol at all.

In general it seems better to design or adjust a system such that the
most selfish behaviours lead to an optimal outcome, rather than actually
relying on altruism. Piatek et al. (2007) share this view and ask the ques-
tion: can a strategic peer ‘game’ BitTorrent to significantly improve its
download performance at the same level of upload contribution? The au-
thors show that the performance of BitTorrent is not so much due to its
tit-for-tat bandwidth sharing, but can be attributed to the fact that many
people use default, suboptimal, settings and to BitTorrent clients that do
not strategise. Whilst Qiu and Srikant (2004) mathematically showed that
an equilibrium can emerge, Piatek et al. (2007) conclude that it rarely
does in practice. BitTorrent, they claim, relies on significant upload altru-
ism provided by peers with high bandwidth capacity. Such high capacity
peers are often forced to pair with low capacity peers until they happen
to run in to an equal peer by optimistic unchokes.

80

3.5 our network architecture

The authors verify their claims experimentally by using a modified
strategising BitTorrent client with the telling name BitTyrant. Three strate-
gies are used in BitTyrant to improve performance. Firstly, finding peers
with large reciprocation bandwidth. Secondly, expanding the active set
dynamically until the marginal benefit of one more unchoked peer is
outweighed by the cost of reduced reciprocation of other peers. Thirdly,
instead of dividing the upload bandwidth equally among the peers in the
active set, the client lowers its upload contribution to a peer as long as
the peer continues to reciprocate. This allows for a larger active set. To
summarise: BitTyrant differs from the reference BitTorrent implementa-
tion by dynamically shaping its active set and varying the upload rate
per connection. The rationale is that the best peers reciprocate most for
the least number of bytes contributed back to them.

BitTyrant was evaluated both in the real-world and in a controlled wide-
area test bed environment known as PlanetLab5. Evaluation shows that
BitTyrant offers a median 70 percent performance gain for a 1 Mb/s client
on live Internet swarms. Of course, in such swarms it is the only Bit-
Tyrant client among peers using non-strategising clients. However, even
in swarms that consist of only BitTyrant clients, it still offers better perfor-
mance over the reference implementation, since the strategies make more
optimal usage of available bandwidth.

Recent implementations of BitTorrent use a distributed global index
instead of a centralised tracker. Historically two distributed hash ta-
bles have come into use: the Main-Line DHT (MDHT) and the Azureus
DHT (ADHT), both of these are Kademlia derivatives that make different
choices with respect to functionality and parameters. Crosby and Wallach
(2007) examine both implementations and find that they fail to implement
important aspects of Kademlia, like extra routing tables and data migra-
tion. This leads to erroneous behaviour like lookups that never return,
which happens for 20 percent of the lookups in the MDHT, rejections
of key store attempts and long lookup delays, in the order of minutes,
caused by time-outs of dead peers. Furthermore, they point out that dis-
tributed hash tables raise security concerns that are difficult to address.
Falkner et al. (2007) find that the maintenance overhead of the ADHT
is high and makes up 81 percent of the network traffic. The length of
lookups are the result of conservative time-outs. They suggest the ADHT

5 http://www.planet-lab.org (Retrieved June 25th 2012)

81

http://www.planet-lab.org

existing research & systems

can be adapted to reduce lookup latency and conclude that median re-
sponse times of 281 milliseconds are possible. They also propose aggres-
sively refreshing routing tables when there is not much network demand
or churn.

Tribler is a social peer-to-peer network optimised for streaming me-
dia introduced by Pouwelse et al. (2008a). Conventional peer-to-peer file
sharing systems focus exclusively on technical issues and are unable to
leverage the power of social phenomena. The authors believe that peers in
a peer-to-peer network had best be viewed as social partners rather than
solitary rational agents. They identify five key research challenges for
peer-to-peer file sharing: decentralisation, availability, integrity, provid-
ing incentives and network transparency. The prime social phenomenon
that is exploited in Tribler is that of ‘kinship fosters cooperation’. They
have implemented the ability to distinguish friend from foe and new-
comer. Virtually all peer-to-peer systems lack persistent memory about
previous activity in the network about, for example, social relations, al-
truism levels, peer uptimes and taste similarities. Tribler uses a number
of megacaches: the friends list with information on social networks, the
peer cache with information on the peers in the network, the metadata
cache with file metadata and the preference cache with the preferences of
other peers. The megacaches are kept up-to-date by using Bloom filters to
reduce bandwidth overhead. They manage to reduce the metadata cache
to a size of several hundreds of kilobytes which allows it to be cheaply
replicated among all peers. This reduces the problem of content discovery
from network-based keyword searching to a local search. To locate con-
tent, people with similar tastes, taste buddies, are connected with each
other. To more effectively connect people, geolocation is used. Tribler
is bootstrapped by first connecting to known super peers and thereafter
participating in the global Tribler overlay swarm that is solely used for
content and peer discovery. A fundamental limitation of file sharing sys-
tems is that of the session boundary: once the session ends, all context
information is lost. To solve this, the authors introduce permanent and
unique peer identifiers using public-key cryptography. For communica-
tion among peers the epidemic BuddyCast algorithm is used (Pouwelse
et al., 2008b). For the actual downloads they use the 2Fast protocol that
divides peers into collectors, that want to obtain a resource, and helpers,
that are willing to assist in this for free. The authors conclude that the idea
of exploiting the naturally occurring social connections between humans

82

3.5 our network architecture

behind the computers in large-scale peer-to-peer networks is starting to
become a major research topic. They also mention reputation systems as
important future work.

With respect to improvements to BitTorrent’s mechanics we can con-
clude that seeds should be rewarded and peers should be incentivised
to remain part of the network for a longer amount of time. In an in-
formation retrieval set-up this translates to offloading peers that provide
original search results and incentivising peers that have caches to keep
them. Whilst saturating the upload links of peers is not a goal of peer-to-
peer information retrieval, the more general goal of using those links to
serve cached results is similar. To superseed would be to make sure that
results for rare queries are replicated to a sufficient degree, so that they
will not disappear if the origin supplier goes off-line. This makes sense
for information retrieval to an extent, results for rare queries should re-
main available. On the other hand, filling caches with results for queries
that are rarely asked seems wasteful. A possible solution for this would
be to anticipate the demand for such queries. However, this deserves a
study of its own, making a good trade-off is non-trivial and not subject
of this thesis. A starting point from a centralised perspective is given by
Fagni et al. (2006) and Lempel and Moran (2003).

83

4
R E P R E S E N T I N G U N C O O P E R AT I V E P E E R S

‘The biscuit degenerates
outside the culture!’

(randomly generated)

A peer-to-peer information retrieval network may ini-
tially contain few documents, and can thus answer few
queries: there is a bootstrap problem. In this chapter
we examine how to represent uncooperative peers and
external search servers, so that queries for which no
cooperative peers qualify can be directed to them.

A fundamental problem in a peer-to-peer web information retrieval
system is how to seed the network with sufficient content. A small

network with few peers is unlikely to attract a large following. Hence, we
need to overcome this content bootstrap problem: the network must be
able to provide useful results for a large range of queries from the start.
There are two ways in which this can be achieved. Firstly, there can be
uncooperative peers within the network: they may provide only a partial or
legacy interface for searching their content. This contrasts with cooperative
peers that can provide any information about their document collection
that is required. Secondly, there are search servers external to the peer-
to-peer network, that may also provide only a basic search interface. In
this chapter we consider these cases to be equivalent and interchangeably
use the terms uncooperative peer and search server. The work discussed
in this chapter applies to peer-to-peer information retrieval that uses a

Parts of this chapter appeared previously in Tigelaar and Hiemstra (2009, 2010a,b).

85

representing uncooperative peers

tracker, as well as to federated information retrieval that uses a mediator.
The way in which the representations obtained are used for retrieving
results differs between these two scenarios as described in Section 2.6.2.

A search server minimally provides an interface that can accept queries
and return search results. The tracker can fall back to redirecting a query
to these search servers in case there are no or few cooperative peers in the
network capable of providing relevant search results for that particular
query. However, there is one problem with this approach: since search
servers are external to the peer-to-peer network, and like uncooperative
peers do not offer more than a minimalistic search interface, they can not
provide the tracker with a resource description. Hence, we have to turn
to other techniques to represent the content of these external servers, so
that relevant queries can be directed to them. In this chapter we look at
various ways of improving an established technique for obtaining such
representations: query-based sampling.

Query-based sampling can be used to discover the content available at
a search server (Callan and Connell, 2001). This method makes only a
minimal assumption: the server should be able to receive and process
queries and send back a list of search results. Each search result, also
referred to as snippet, consists of a location, title and a brief summary. No
other functionality is necessary beyond what end users of a search en-
gine would use directly via its interface. Conventionally, random queries,
consisting of a single term, are sent to this search engine and the doc-
uments the returned search results point to are fully downloaded from
their source locations by the tracker, or mediator in federated informa-
tion retrieval, to create a resource description of the server. This resource
description is a language model: terms with occurrence counts. For ex-
ample: [(apple, 16) , (pear, 23)]. The vocabulary is defined as the terms
without occurrence counts: [apple, pear]. The first query sent is conven-
tionally a frequently occurring word in the (English) language obtained
from an external resource, for example: a dictionary. The purpose of this
first query is to retrieve some initial search results. Subsequent queries
are terms drawn randomly from the vocabulary of the language model
constructed so far. Thus, conventionally only the query sent in the first
iteration is based on an external resource. The process of sending queries,
downloading documents and updating the language model, iterates until
a stopping criterion is reached. For example, when three hundred docu-
ments have been downloaded or after hundred iterations.

86

4.1 data sets

In this chapter we will look at two research questions with respect to
query-based sampling:

1. Can query-based sampling using full documents be improved by
using an alternative term selection strategy?

2. How does query-based sampling using only snippets compare to
downloading full documents in terms of the learned language model?

4.1 data sets

All experiments in this chapter rely on a subset of the following datasets:

OANC: The Open American National Corpus 1.1: A heterogeneous
collection. We use it exclusively for selecting bootstrap terms
(Ide and Suderman, 2010).

TREC123: A heterogeneous collection consisting of TREC Volumes 1–3.
Contains: short newspaper and magazine articles, scientific
abstracts and government documents (Harman, 1994). Used
in previous experiments by Callan and Connell (2001).

WT2G: Web Track 2G: A small subset of the Very Large Corpus web
crawl conducted in 1997 (Hawking et al., 2000).

WIKIL: The large Memory Alpha Wiki.
http://memory-alpha.org

WIKIM: The medium sized Fallout Wiki.
http://fallout.wikia.com

The first experiment in Section 4.3, about alternative term selection strate-
gies, relies on the first three sets only. The second experiment, in Section
4.4, uses all of them.

The OANC is used as external resource to select a bootstrap term on
the first query-based sampling iteration: we pick a random term out of
the top 25 most frequent terms, excluding stop words. TREC123 is used
for comparison with Callan and Connell (2001). WT2G is a representative
subset of the web. It has some deficiencies, such as missing inter-server
links (Bailey et al., 2003). However, since we use only the page data, this
is not a major problem for this experiment.

87

http://memory-alpha.org
http://fallout.wikia.com

representing uncooperative peers

Table 4.1: Properties of the Data Sets Used

Name Raw Index #Docs #Terms #Unique

OANC 97M 117M 8,824 14,567,719 176,691
TREC123 2.6G 3.5G 1,078,166 432,134,562 969,061
WT2G 1.6G 2.1G 247,413 247,833,426 1,545,707
WIKIL 163M 84M 30,006 9,507,759 108,712
WIKIM 58M 25M 6,821 3,003,418 56,330

0 2000 4000 6000 8000 10000

0.
00

00
0.

00
04

0.
00

08

Document Length (bytes)

D
en

si
ty

TREC123
WT2G
WIKIL
WIKIM

Figure 4.1: Kernel density plot of document lengths up to 10 kilobytes for each
collection.

We have included two additional Wiki collections for use in the snippet
experiment: WIKIL and WIKIM, to examine the effect on recent, self-
contained search servers. All Wiki collections were downloaded from
Wikia, on October 5th 2009. Wikis contain many pages in addition to
normal content pages. However, we index only the content pages.

Table 4.1 shows some properties of the data sets. We have also included
Figure 4.1 that shows a kernel density plot of the size distributions of
the collections (document mark-up removed) (Venables and Smith, 2012).
WT2G has a more gradual distribution of document lengths, whereas
TREC123 shows a sharper decline near two kilobytes. Both collections
consist primarily of many small documents. This is also true for the Wiki
collections, especially WIKIL has many very small documents.

88

4.2 metrics

4.2 metrics

Evaluation is done by comparing the complete remote language model
of the search server with the subset local language model at the tracker
each iteration. We discard stop words and compare terms unstemmed.
Various metrics exist to conduct this comparison. For comparability with
earlier work we use two metrics, the CTF ratio and KLD, and introduce
one new metric in this context: the Jensen-Shannon Divergence, which
we believe is a better choice than the others for reasons outlined later.

We first discuss the Collection Term Frequency (CTF) ratio. This metric
expresses the coverage of the terms of the locally learned language model
as a ratio of the terms of the actual remote model. It is defined as follows
(Callan et al., 1999):

CTFratio
(
T , T̂

)
=

1
α
· ∑

t∈T̂
CTF (t, T) , (4.1)

where T is the actual model and T̂ the learned model. The CTF function
returns the number of times a term t occurs in the given model. The
symbol α represents the sum of the CTF of all terms in the actual model
T , which is simply the number of tokens in T . The higher the CTF ratio,
the more of the terms have been found.

The Kullback-Leibler Divergence (KLD) gives an indication of the ex-
tent to which two probability models, in this case our local and remote
language models, will produce the same predictions. The output is the
number of additional bits it would take to encode one model into the
other. It is defined as follows (Manning et al., 2008, p. 231):

KLD
(
T ‖ T̂

)
= ∑

t∈T
P (t | T) · log2

P (t|T)
P
(
t|T̂
) , (4.2)

where T̂ is the learned model and T the actual model. KLD has several
disadvantages. Firstly, if a term occurs in one model, but not in the other
it will produce zero or infinite numbers. Therefore, we apply Laplace
smoothing, that simply adds one to all counts of the learned model T̂ .
This ensures that each term in the remote model exists at least once in
the local model, thereby avoiding divisions by zero (Baillie et al., 2006a).
Secondly, the KLD is asymmetric, which is expressed using the double
bar notation. Manning and Schütze (1999, p. 304) reason that using

89

representing uncooperative peers

Jensen-Shannon Divergence (JSD) solves both problems. It is defined in
terms of the KLD as (Dagan et al., 1997):

JSD
(
T , T̂

)
= KLD

(
T
∥∥∥∥∥T + T̂

2

)
+ KLD

(
T̂
∥∥∥∥∥T + T̂

2

)
. (4.3)

The Jensen-Shannon Divergence (JSD) expresses how much information
is lost if we describe two distributions with their average distribution.
This distribution is formed by summing the counts for each term that oc-
curs in either model and taking the average by dividing this by two. Us-
ing the average is a form of smoothing that avoids changing the original
counts in contrast with the Laplace smoothing used by the KLD. Other
differences with the KLD are that the JSD is symmetric and finite. Conve-
niently, when using a logarithm of base 2 in the underlying KLD, the JSD
ranges from 0.0 for identical distributions to 2.0 for maximally different
distributions.

4.3 can we do better than random?

In query-based sampling conventionally random single-term queries are
used to obtain a document sample of each search server. In this section we
explore if better resource descriptions can be obtained by using alterna-
tive single-term query construction strategies. We motivate our research
from the perspective of search servers that offer access to information not
easily reached by conventional crawling: the deep web.

The surface web consists of static, easily indexable, pages. The deep
web consists of content that is generated dynamically by search servers in
response to user queries. These queries are sent through a search form or
interface. The simplest incarnation of a search interface presents a single
free-text search field. These interfaces commonly provide access to an
underlying database, for example: a database with descriptions of films
or books. The number of deep web pages that provide search services
like this is estimated by one study to be five hundred times larger with
respect to the amount of surface web pages (Bergman, 2001).

The deep web is similar to the surface web: they both grow fast and
offer a diverse range of information. However, there are some notable dif-
ferences: the deep web is mostly structured and difficult to crawl. Some

90

4.3 can we do better than random?

deep web sites expose direct links to the underlying content, making in-
dexing easier for traditional search engines. Despite this, the major search
engines, Google, Yahoo and Bing, have trouble indexing the deep web. A
2004 study shows that they typically index only 37 percent of the available
deep content (Chang et al., 2004). It has been suggested that a database-
centred, discover-and-forward access model would be a better approach
for enabling search of the deep web (He et al., 2007). Peer-to-peer infor-
mation retrieval provides a model for this. However, it still requires a
resource description of each server or uncooperative peer.

Recall that conventional query-based sampling revolves around send-
ing random single-term queries to a search server to discover its language
model. This section focuses on drawing terms in iterations that follow the
first. We explore several strategies to choose single-term queries based on
the constructed language model. Our research question is:

‘Can query-based sampling be improved by using an alterna-
tive term selection strategy?’

The foundational work for acquiring resource descriptions via query-
based sampling was done by Du and Callan (1998), Callan et al. (1999)
and Callan and Connell (2001). They showed that a small sample of
several hundred documents can be used for obtaining a good quality
resource description of large collections consisting of hundreds of thou-
sands of documents. They used uniform random term selection, meaning
each term in the vocabulary has an equal probability of being chosen, but
suggest that query terms could be selected from the learned language
model using other criteria. This is what this section focuses on. The test
collection used in their research, TREC-123, is not a web data collection.
However, Monroe et al. (2002) showed that the query-based sampling ap-
proach also works very well for web data when using random queries.

Conventionally we compare the language model of the sample with
that of the collection to assess the resource description quality. Sampling
stops when a certain amount of documents has been obtained. Baillie
et al. (2006a) propose using the predictive likelihood as a stopping crite-
rion for sampling, instead of a fixed number of documents. They use a
set of reference queries that represent typical information needs. Perfor-
mance is measured with respect to this set of reference user queries. They
thus shift focus with respect to the foundational work, which looked at

91

representing uncooperative peers

similarities between language models, to the expected real-world perfor-
mance given a representative query set.

A problem with sampling is that some documents are more likely to be
sampled than others. For example: longer documents are more likely to
be sampled than shorter ones. This problem is commonly referred to as
sampling bias. Bar-Yossef and Gurevich (2006) introduce two methods for
obtaining an unbiased sample from a search system. The novelty of their
approach is that they take into account the probability that a document
is sampled. They use stochastic simulation techniques to produce nearly
unbiased samples. Their goal is to produce realistic estimates of the sizes
of search engine indices. The question is whether we really need unbiased
samples for building resource descriptions (Baillie et al., 2006a). We do
not further investigate this issue. However, we do use their rejection
sampling technique for the query cardinality strategy presented later.

Ipeirotis and Gravano (2002) introduce a variant of query-based sam-
pling called focused probing. They apply machine learning methods to
learn the categorisation of a remote server based on the returned content.
For example, a server that returns documents containing ‘hepatitis’ and
‘MRSA’, would be placed in the ‘Health’ category. This information can
be used by a central system to narrow down the server selection for a user
query. For example, all queries typically associated with health are for-
warded to sites in this category, the returned results are merged and then
presented to the user. In follow-up work Ipeirotis and Gravano (2008)
improve their category-based approach with shrinkage. This approach
exploits the hierarchy inherent in the categorisation used. This works by
first traversing higher up the category hierarchy and smoothing the lan-
guage models of servers, so that their representations are more similar.
This is particularly effective for small servers, as their representations can
augment each other this way. The negative effects of this, like introducing
terms in a server’s resource description that the server does not contain or
underestimating term frequencies, are offset by the overall improvement
in performance.

Ntoulas et al. (2005) have the goal of crawling as much content as pos-
sible from a hidden web resource and present an adaptive approach for
term selection: they try to identify those terms that are most likely to re-
turn the most additional documents. This outperforms other approaches
in terms of the number of documents seen. However, the goal of crawling
differs from merely representing a resource. Madhavan et al. (2008) have

92

4.3 can we do better than random?

a similar goal and use tf.idf on the documents obtained so far to select
keywords for subsequent iterations.

Other approaches go deeper into the functionality of the search inter-
face itself. For example, Bergholz and Chidlovskii (2003) investigate how
to find out what type of complex queries a free-text search field supports,
for example: if it supports Boolean queries and what operators it sup-
ports for such queries. Chang et al. (2005) assume that the page on which
the search interface resides contains clues about the underlying content.
This is suitable for search forms that contain additional interface elements
to narrow a search. In our research we restrict ourselves to the basic as-
sumption that there is a single search field devoid of semantic clues. We
send only single-term queries via this interface.

4.3.1 Methodology

In our experimental set-up we have a single remote server whose content
we wish to estimate by sampling. This server provides a minimal search
interface: it can only take queries and return search results consisting
of a list of documents. Each document in this list is downloaded and
used to build a resource description in the form of a vocabulary with
frequency information, also called a language model (Callan and Connell,
2001). The act of submitting a query to the remote server, obtaining search
results, downloading the documents, updating the local language model
and calculating values for the evaluation metrics is called an iteration. An
iteration consists of the following steps:

1. Pick a one-term query.

a) In the first iteration our local language model is empty and
has no terms. Thus, for bootstrapping, we pick a random term
from an external resource.

b) In subsequent iterations we pick a term based on a term selec-
tion strategy. We only pick terms that we have not yet submit-
ted previously as query.

2. Send the query to the remote search server, requesting a maximum
number of results (n = 10).

3. Download all the returned documents if 1 ≤ n ≤ 10 or, if n = 0, go
to step 5.

93

representing uncooperative peers

4. Update the resource description using the content of the returned
documents.

5. Evaluate the iteration by comparing the remote language model
with the local model (see metrics described in Section 4.2)

6. Terminate if a stopping criterion has been reached, otherwise go to
step 1.

This set-up is similar to that of Callan and Connell (2001). However, there
are several differences. During evaluation, step five, we compare all word
forms in the index unstemmed which can lead to a slower performance in-
crease. The database indices used by Callan and Connell contain only
stemmed forms. Additionally, the underlying system uses fewer stop
words. Callan and Connell use a list of 418 stop words. We use a con-
servative subset of this list consisting of 33 stop words that is distributed
with Apache Lucene. We examine no more than 10 documents per query,
as this is the number of search results commonly returned by search en-
gines on the initial page nowadays. Callan concluded that the influence
of the number of documents examined per query is small on average. Ex-
amining more documents appears to result in faster learning, although
with more variation (Callan et al., 1999; Callan and Connell, 2001).

4.3.2 Strategies

In conventional query-based sampling, terms in iterations after the first
one are selected at random from the language model constructed so far.
This means that if we obtain 100 terms after the first iteration, each term
in the language model has an equal probability of 1/100 = 0.01 of being
selected for the next iteration. The probability of an individual term be-
ing selected decreases as the vocabulary size increases. This is termed
uniform random selection.

Vocabulary Frequency-Based Measures

A simple adjustment to selecting a random query term is selecting a
term based on frequency information of the terms in the documents re-
trieved so far. Since a language model is more than just a vocabulary:
it also contains term occurrence counts. We devised several selection
strategies that exploit this. To illustrate we use the following example:

94

4.3 can we do better than random?

[(lychee, 6) , (okra, 3), (rambutan, 1)]. This means that 60 percent of the
terms seen so far are lychee, 30 percent are okra and the remaining 10
percent are rambutan. In a uniform random selection scenario, that dis-
regards the frequencies, all terms are equally likely to be selected with a
probability of approximately 33 percent. Choosing between them would
be like rolling a three-sided dice. Let us investigate several alternatives to
uniform random selection:

biased-random-collection Terms with a high frequency in the lan-
guage model are more likely to be selected. This simply uses the
frequency information to alter the selection probability. In this case
the probability for lychee would be 0.6, for okra 0.3 and for rambutan
0.1.

least-frequent Select the term with the lowest frequency in the lan-
guage model. In the example this would be rambutan, since: 0.1 <

0.3 < 0.6.

most-frequent Select the term with the highest frequency in the lan-
guage model. In the example this would be lychee, since: 0.6 >

0.3 > 0.1.

For these last two approaches, it is possible that there are multiple terms
with the same lowest or highest frequency. For example:
[(apple, 0.1) , (pear, 0.1) , (banana, 0.1)]. Selection among such terms, with
the same frequency, is random. Since the frequency of terms in a vocabu-
lary follows a Zipf distribution (Manning et al., 2008, p. 82), such random
selection is more likely to occur among low frequency terms.

Document Frequency Based Measures

In each iteration we obtain a sample of documents. In the previous sec-
tion we considered all documents together as one language model. The
approaches in this section use the individual language models of each
obtained document.

biased-random-document Each iteration we throw an n-faced dice
where n is the number of terms in our local language model. However,
the probability of a term being selected is proportional to its document
frequency. The higher the document frequency, the more likely the term

95

representing uncooperative peers

will be selected. This is equivalent to biased-random-collection, but using
document frequencies: in how many documents a term appears, instead
of collection frequencies.

document information radius Each iteration we can use the sta-
tistical properties of the documents obtained so far. One way is to adapt
the idea behind one of the metrics we use: Jensen-Shannon Divergence
(JSD), explained in Section 4.2. We term this approach document informa-
tion radius to prevent confusion with the metric. The intuition behind
this method is: from all documents we first select the one that has the
most terms in its language model that diverge from the language model
of all sampled documents. From this document we select the term that
diverges least from the combined language model as query.

Recall that the JSD calculates the divergence between two language
models. In this approach, we compare the current local language model
to a pooled language model of a group of documents. We define that S
represents the entire sample of documents. The steps are as follows:

1. Determine document scores:

a) Each document d ∈ S has an initial score of zero.

b) For each term t in the vocabulary of S consider the pool of
documents St ⊆ S that contain that term at least once.

c) Increase the score of each document d ∈ St with the JSD be-
tween the language model defined over the document pool St

for each term t and the model of the entire sample S . The
document score is thus a sum of JSD values.

2. Select the document with the highest score.

3. From this document select the term t whose
JSD (St,S) contributed least to the document score.

For example: if we have document A with score 0.5 and B with 1.0, we
would select document B since it has a higher score. Thereafter we would
select from the individual terms in document B the one with the lowest
Jensen-Shannon Divergence.

96

4.3 can we do better than random?

document potential Assume that it is preferable to use terms from
many different documents as queries to obtain a good sample. Given this
we need some way to avoid selecting query terms from one document
too often. We need to determine the document potential. To do this we use
appearance counts. Each iteration a document appears in the search re-
sults, its count is incremented by one. Thereafter, a query term is selected
randomly from the document with the lowest appearance count. So, if we
have document A with count 1 and document B with count 2, a term will
be drawn randomly from the vocabulary of document A. If there are mul-
tiple documents with the same, lowest, appearance count, a document is
first selected randomly and then a term from that document’s vocabulary.
So, if A and B both have count 1, we first select either document A or B
with a fifty percent probability and then randomly select a term from the
selected document as query.

This approach continually attempts to ‘harvest’ terms from documents
that either appeared in more recent iterations or were neglected before.
It indirectly also penalises long documents that have a higher probability
of appearing in search results often.

Controlled Query Generation

Frequency information can also be used in more complex ways. Con-
trolled query generation was proposed as a means of evaluating blind rel-
evance feedback algorithms (Jordan et al., 2006). In this approach, queries
with high discriminative power are generated from the documents seen
so far. Kullback-Leibler Divergence (KLD), also called relative entropy,
forms the basis for this. The KLD for each term is calculated between all
the documents it appears in and the entire collection:

score (t,St,S) = P (t | St) · log2
P (t | St)

P (t | S) , (4.4)

where t represents a single term, St the subset of documents of the sample
in which t occurs and S the sample of the collection seen so far. Hence,
St ⊆ S . The resulting score represents the power of a term to discriminate
a subset of documents with respect to all other terms.

The highest scoring terms are used for querying. This might appear
counter-intuitive, since terms with high discriminative power imply that
these terms also return fewer and more specific documents. We will see

97

representing uncooperative peers

later that returning fewer documents each iteration does not necessarily
yield poor modelling performance.

Query Cardinality

Bar-Yossef and Gurevich (2006, 2008b) present several approaches to ob-
tain a uniform random sample from the index of large search engines to
compare their coverage of the web. An important point they make is that
of query overflow and underflow. A query that underflows is one that re-
turns less than the number of desired results, whereas one that overflows
returns more. For example: assume that we want each query to yield
10 documents, if only 5 are returned by a query it is a query that under-
flows. We call the number of results that a query yields the cardinality of
the query.

The problem of underflow is relevant to query-based sampling. Each
iteration we can send one query and get back results. Ideally, we would
always want each query to return as many document as we request, since
processing a query is a costly operation. If one query yields less than the
amount of requested documents, we are partially wasting an iteration.
This problem is not addressed in the foundational query-based sampling
papers (Callan et al., 1999; Callan and Connell, 2001).

To avoid underflow we adopt the rejection sampling method that is
illustrated in the pool-based sampler of Bar-Yossef and Gurevich (2006).
To determine which query to send we adopt the following procedure:

1. Select a random term t from the set of terms T seen so far (the
vocabulary of the local language model).

2. Count the number of documents |St| in our sample S that contain t.
Use this count as an estimate of the number of results that will be
returned.

3. If |St| is exactly the number of desired documents n, then accept
and use this term. Otherwise, with probability 1 − |St| /n, reject
the term and return to step 1, and with probability |St| /n accept
and use this term.

Terms that are present in few documents in the sample obtained so far
have a lower probability of being selected for obtaining more documents.

98

4.3 can we do better than random?

4.3.3 Results

In this section we report the results of our experiments. Because the
queries are chosen randomly, we repeated each experiment 30 times. We
derived the regression plots from scatter plots. Based on the shape of the
data we fitted regression lines using y = log (x) + c. The graphs show
results for 100 iterations. We verified that the trends shown continue be-
yond the graph limit up to 125 iterations. In each iteration a variable
number of documents is returned. We show the average number of re-
turned results per iteration in separate graphs.

Figure 4.2 shows results on TREC-123 using the basic strategies: ran-
dom, biased-random-collection, biased-random-doc, least-frequent and
most-frequent. We see that the baseline, random term selection, performs
quite well. While the biased approaches both perform worse than ran-
dom, although using document frequencies instead of collection frequen-
cies appears to be more optimal. Realise that document frequencies are
in fact coarse collection frequencies. The only strategy that actually per-
forms better than random is least-frequent. The opposite strategy, most-
frequent, performs worst. Apparently, if we try to sample from a large
underlying collection, using the least frequent terms as queries is the most
optimal approach.

If we regard the region between the least-frequent and most-frequent
strategies in each graph as an upper and lower limit, we can explain why
the random strategy already works well. Since there are just a few high
frequency terms and many low frequency terms, the probability of ran-
domly selecting a less frequent term is quite large. This is the reason that
random is so close to least-frequent. However, there is still a probability
of selecting a frequently occurring term, which explains why random is
slightly less optimal than always selecting the least frequent term. The
number of returned results per iteration decreases more rapidly for least-
frequent, but this apparently does not affect the strategy’s capability of
optimally sampling the underlying collection. The most-frequent strategy
always returns ten results. However, these results are likely to be largely
the same after each iteration. This redundancy in the results explains
most-frequent’s relatively poor performance.

Figure 4.3 shows the results for the advanced strategies. The random
baseline is repeated in this graph for comparison. The document potential
strategy performs quite poorly. Even though it manages to consistently

99

representing uncooperative peers

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

C
ol

le
ct

io
n

Te
rm

 F
re

qu
en

cy
 (C

TF
) R

at
io

0 20 40 60 80 100
0

2
4

6
8

10

Iteration

K
ul

lb
ac

k
Le

ib
le

r
D

iv
er

ge
nc

e
(K

LD
)

Random
Biased−Random−Coll
Biased−Random−Doc
Least−Frequent
Most−Frequent

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Iteration

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 20 40 60 80 100

5
6

7
8

9
10

Iteration

R
es

ul
ts

 p
er

 It
er

at
io

n

Figure 4.2: Results for TREC-123 for the basic frequency strategies. Legend in
the top right graph. For CTF higher is better in terms of modelling
performance, whereas for KLD and JSD lower is better.

100

4.3 can we do better than random?

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

C
ol

le
ct

io
n

Te
rm

 F
re

qu
en

cy
 (C

T
F)

 R
at

io

0 20 40 60 80 100

0
2

4
6

8
10

Iteration

K
ul

lb
ac

k
Le

ib
le

r
D

iv
er

ge
nc

e
(K

LD
)

Random
Cont. Query Gen.
Query Cardinality
Document IRad
Document Potential

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Iteration

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 20 40 60 80 100

5
6

7
8

9
10

Iteration

R
es

ul
ts

 p
er

 It
er

at
io

n

Figure 4.3: Results for TREC-123 for the advanced strategies. Legend in the top
right graph.

101

representing uncooperative peers

select terms as query that retrieve a relatively stable number of results,
these queries retrieve documents that poorly model the collection. The
original scatter plots suggest that this strategy gets stuck on using query
terms from one particular document in early iterations. The document in-
formation radius strategy always retrieves ten results, but similarly does
not perform so well. Query cardinality performs just a little bit worse
than random. In contrast, controlled query generation performs a bit
better than random, comparable to least-frequent select.

Figure 4.4 and Figure 4.5 show the results for the strategies for WT2G.
This collection is more representative for the Web. The pattern for the ba-
sic strategies, in Figure 4.4, is mostly the same as for TREC-123. The only
difference is the results per iteration that varies much more for WT2G.
The more heterogeneous nature of the corpus likely causes this higher
variation. Indeed, the performance of least-frequent is quite good consid-
ering how few documents it retrieves in later iterations. The advanced
strategies in Figure 4.5 show more difference. Controlled query gener-
ation, a strategy that performed better than random for TREC-123, per-
forms poorly here. It appears to get stuck on terms that often retrieve the
same documents. Apart from this, the result is similar to TREC-123 with
query cardinality performing close to random.

To give further insight into why least-frequent select performs better,
Figure 4.6 shows scatter plots of the JSD against the number of iterations
and against bandwidth. These scatter plots show about 1000 samples of
the source data per graph. Specifically, the two top graphs show the basis
for the regression lines in the bottom-left graph of Figure 4.4. We can
see from these graphs that random has more outliers than least-frequent
select. We believe that the outliers for random are frequently occurring
terms. Least-frequent never selects these terms. As a result its perfor-
mance has less variance, which explains the better regression line.

We also plotted the JSD against the bandwidth consumption, shown as
the bottom graphs in Figure 4.6. The horizontal axis in these graphs is
not the number of iterations, but the combined size in kilobytes of the
sample. It appears that the least-frequent strategy also shows more stable
performance when plotted against bandwidth, suggesting that it retrieves
higher quality documents in terms of representativeness measured by the
JSD. For random, the quality of retrieved documents seems to vary more
compared with least-frequent. This implies that least-frequent provides,
on average, better results per unit of bandwidth used.

102

4.3 can we do better than random?

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

C
ol

le
ct

io
n

Te
rm

 F
re

qu
en

cy
 (C

T
F)

 R
at

io

0 20 40 60 80 100

0
2

4
6

8
10

Iteration

K
ul

lb
ac

k
Le

ib
le

r
D

iv
er

ge
nc

e
(K

LD
)

Random
Biased−Random−Coll
Biased−Random−Doc
Least−Frequent
Most−Frequent

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Iteration

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 20 40 60 80 100

5
6

7
8

9
10

Iteration

R
es

ul
ts

 p
er

 It
er

at
io

n

Figure 4.4: Results for WT2G for the basic frequency strategies. Legend in the
top right graph.

103

representing uncooperative peers

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration

C
ol

le
ct

io
n

Te
rm

 F
re

qu
en

cy
 (C

T
F)

 R
at

io

0 20 40 60 80 100
0

2
4

6
8

10

Iteration

K
ul

lb
ac

k
Le

ib
le

r
D

iv
er

ge
nc

e
(K

LD
)

Random
Cont. Query Gen.
Query Cardinality
Document IRad
Document Potential

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Iteration

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 20 40 60 80 100

5
6

7
8

9
10

Iteration

R
es

ul
ts

 p
er

 It
er

at
io

n

Figure 4.5: Results for WT2G for the advanced strategies. Legend in the top right
graph.

104

4.3 can we do better than random?

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Random

Iterations

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 20 40 60 80 100
0.

0
0.

5
1.

0
1.

5
2.

0

Least−Frequent

Iterations

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Bandwidth Usage (Kilobytes)

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Bandwidth Usage (Kilobytes)

Figure 4.6: Scatter plots of the Jensen Shannon Divergence (JSD) against the num-
ber of iterations (top) and the bandwidth consumption (bottom) for
WT2G. The left graphs are for the random strategy, the right graphs
for least-frequent. Each graph is based on approximately 1000 sam-
ples.

105

representing uncooperative peers

4.3.4 Conclusion

In conventional query-based sampling, remote servers are sampled by
sending random terms as queries, retrieving the results and using these to
build a resource description. We presented several alternative approaches
to using random terms. Selecting the least-frequent term in the language
model as query yields slightly better performance than selecting a ran-
dom term. Most other presented strategies did not show consistent im-
provement for the two test collections used.

The least-frequent approach outperforms other methods, while down-
loading less documents per iteration on average: it saves more bandwidth
as the number of iterations increase. This suggests that we need to look
beyond the quantity of data, the number of documents, used to build
resource descriptions and pay more attention to quality and representa-
tiveness of those documents.

Nevertheless, the results also show that random selection is quite op-
timal and difficult to improve upon when relying just on the data pro-
vided by the search server. Furthermore, despite the good results for
least-frequent, we did not study the influence of the size of the underly-
ing database on the performance of the querying strategy. As such the
result of this research should be seen as strictly applying to sites that
index a large underlying collection in the same, or higher, order as the
collections used in this research. The rationale behind this: using a least-
frequent strategy on small collections may result in many iterations with
a low number of search results, since rarely occurring terms might ap-
pear only in one specific document. For a large collection this problem
is less pronounced. Low-frequency terms likely occur in at least some
other documents. This also increases the chance that new documents are
retrieved, which leads to a more accurate model in fewer iterations than
the random approach.

4.3.5 Future work

We regard investigating the exact influence of the size of the underlying
collection as important future work. Combining this with collection size
estimation enables faster and less costly construction of resource descrip-
tions tailored to collections of specific sizes. The research presented in
this section is admittedly limited in scope. We would need to test on a
higher number of recent collections with varying sizes to produce robust

106

4.4 query-based sampling using snippets

experimental results. Other strategies for term selection could also be ex-
plored. However, we believe that further improvements, when using just
the sampled language model, will be difficult.

We wish to emphasise that while a resource description needs to repre-
sent the underlying resource well, it need not necessarily be unbiased. In
fact, some bias might make resource selection easier (Baillie et al., 2006a).
The costs of term selection and query construction is an other aspect that
should be more deeply evaluated.

Work that explores beyond the usage of the sampled language model
has so far focused on using reference queries (Baillie et al., 2006a) and
the beforementioned hierarchical topic-based content classification with
shrinkage (Ipeirotis and Gravano, 2002, 2008). This may offer a promising
basis for follow-up research.

Future work could also explore the construction of multi-term queries,
which possibly return a more diverse set of documents each iteration
(Jordan et al., 2006). Additionally, querying web forms that have more
search fields, possibly not all of them free text, could be further explored
(Senellart et al., 2008).

4.4 query-based sampling using snippets

As we have learned in this chapter so far: query-based sampling is a
technique that exploits only the native search functionality provided by
servers to construct a resource description. This description is based on
the downloaded content of a small subset of documents the server returns
in response to queries (Callan et al., 1999). In this section we present an
approach that requires no additional downloading beyond the returned
results, but instead relies solely on information returned as part of the
results: the snippets.

In conventional query-based sampling, the first step is sending a query
to a server. The server returns a ranked list of results, of which the top
n most relevant documents are downloaded and used to build a resource
description. Queries are randomly chosen, the first from an external re-
source and subsequent queries from the description built so far. This
repeats until a stopping criterion is reached (Callan et al., 1999; Callan
and Connell, 2001). Disadvantages of downloading entire documents are
that it consumes more bandwidth, is impossible if servers do not return
full documents and does not work when the full documents themselves

107

representing uncooperative peers

Figure 4.7: Example snippets. From top to bottom: each snippet consists of an
underlined title, a two line summary and a link.

are non-text: multimedia with short summary descriptions. In contrast,
some data always comes along ‘for free’ in the returned search results:
the snippets. A snippet is a short piece of text consisting of a document
title, a short summary and a link as shown in Figure 4.7. A summary can
be either dynamically generated in response to a query or is statically de-
fined (Manning et al., 2008, p. 157). We postulate these snippets can also
be used for query-based sampling to build a language model. This way
we can avoid downloading entire documents and thus reduce bandwidth
usage and cope with servers that return only search results or contain
multimedia content. However, since snippets are small, we need to see
many of them. This means sending more queries compared with the full
document approach. While this increases the query load on the remote
servers, it is an advantage for live systems that need to sample from col-
lections that change over time, since it allows continuously updating the
language model, based on results of live queries.

Whether the documents returned in response to random queries are a
truly random part of the underlying collection is doubtful. Servers have
a propensity to return documents that users indicate as important and
the number of in-links has a substantial correlation with this (Azzopardi
et al., 2007). This may not be a problem, as it is preferable to know only
the language model represented by important documents, since the user
is likely to look for those (Baillie et al., 2006a). Bar-Yossef and Gurevich
(2008b) focus on obtaining uniform random samples from large search
engines, in order to estimate their size and overlap. Thomas and Hawking
(2007) evaluated this in the context of obtaining resource descriptions and
found it does not consistently work well across collections.

108

4.4 query-based sampling using snippets

The approach we take has some similarities with prior research by Pal-
toglou et al. (2007). They show that downloading only a part of a docu-
ment can also yield good modelling performance. However, they down-
load the first two to three kilobytes of each document in the result list,
whereas we use small snippets and thus avoid any extra downloading
beyond the search results.

Our main research question is:

‘How does query-based sampling using only snippets compare
to downloading full documents in terms of the learned lan-
guage model?’

We show that query-based sampling using snippets offers similar perfor-
mance compared with using full documents. However, using snippets
uses less bandwidth and enables continuously updating the resource de-
scription at no extra cost. Additionally, we introduce a method to estab-
lish the homogeneity of a corpus, which can be useful for determining a
corpus-specific sampling strategy.

4.4.1 Methodology

In our experimental set-up we have one remote search server which con-
tent we wish to estimate by sampling. This server can only take queries
and return search results. For each document a title, snippet and down-
load link is returned. These results are used to locally build a resource
description in the form of a vocabulary with frequency information at
the tracker. The act of submitting a query to the remote server, obtaining
search results, updating the local language model and calculating values
for the evaluation metrics is called an iteration. An iteration consists of
the following steps:

1. Pick a one-term query.

a) In the first iteration our local language model is empty and has
no terms. In this case we pick a random term from an external
resource as query.

b) In subsequent iterations we pick a random term from our local
language model that we have not yet submitted previously as
query.

109

representing uncooperative peers

2. Send the query to the remote server, requesting a maximum number
of results (n = 10). In our set-up, the maximum length of the docu-
ment summaries may be no more than 2 fragments of 90 characters
each (|s| ≤ 2 · 90).

3. Update the resource description using the results (1 ≤ n ≤ 10).

a) For the full document strategy: download all the returned doc-
uments and use all their content to update the local language
model.

b) For the snippet strategy: use the title and summary of each
document in the search results to update the local language
model. If the same document appears multiple times in search
results, do not use its title and use its summary only if it differs
from previously seen summaries of that document.

4. Evaluate the iteration by comparing the unstemmed language model
of the remote server with the local model (see metrics described in
Section 4.2).

5. Terminate if a stopping criterion has been reached, otherwise go to
step 1.

Since the snippet approach uses the title and summary of each docu-
ment returned in the search results, the way in which the summary is
generated affects performance. We use Apache Lucene that generates
keyword-in-context document summaries (Manning et al., 2008, p. 158).
These summaries are constructed by using words surrounding a query
term in a document, without keeping into account sentence boundaries.
For all experiments, the summaries consisted of two keyword-in-context
fragments of maximally ninety characters. This length is similar to what
is used by modern web search engines for summary generation. One
might be tempted to believe that snippets are biased due to the fact that
they commonly also contain the query terms. However, in full-document
sampling the returned documents also contain the query and have a sim-
ilar bias, although mitigated by document length.

4.4.2 Results

In this section we report the results of our experiments. Since the queries
are chosen randomly, we repeated each experiment 30 times.

110

4.4 query-based sampling using snippets

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

C
ol

le
ct

io
n

Te
rm

 F
re

qu
en

cy
 (C

T
F)

 R
at

io

Full Documents
Snippets

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Iterations

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 20 40 60 80 100
0

2
4

6
8

Iterations

K
ul

lb
ac

k
Le

ib
le

r
D

iv
er

ge
nc

e
(K

LD
)

0 20 40 60 80 100

0
50

0
10

00
20

00

Iterations

Ba
nd

w
id

th
 U

sa
ge

 (K
ilo

by
te

s)

Figure 4.8: Results for TREC123. The graphs show the CTF, KLD, JSD and band-
width usage, plotted against the number of iterations, both for the
full document and snippet-based approach. The legend is shown in
the top left graph.

111

representing uncooperative peers

Figure 4.8 shows our results on TREC123 in the conventional way for
query-based sampling: a metric against the number of iterations on the
horizontal axis (Callan and Connell, 2001). We have omitted graphs for
WT2G and the Wikia collections as they are highly similar in shape.

As the bottom right graph shows, the amount of bandwidth consumed
when using full documents is much larger compared with using snippets.
Full documents downloads each of the ten documents in the search re-
sults, that can be potentially large. Downloading all documents also uses
many connections to the server: one for the search results plus ten for the
documents, whereas the snippet approach uses only one connection for
transferring the results and performs no additional downloads.

The fact that the full documents approach downloads a lot of extra
information, results in it outperforming the snippet approach for the de-
fined metrics as shown in the other graphs of Figure 4.8. However, com-
paring this way is unfair. Full document sampling performs better, sim-
ply because it acquires more data in fewer iterations. A more interesting
question is: how effectively do the approaches use bandwidth?

Bandwidth

Figures 4.9 and 4.10 show the metrics plotted against bandwidth usage.
The graphs are 41-point interpolated plots based on experiment data.
These plots are generated in a similar same way as recall-precision graphs,
but they contain more points: 41 instead of 11, one every 25 kilobytes. Ad-
ditionally, the recall-precision graphs, as frequently used in TREC, use the
maximum value at each point (Harman, 1993). We use linear interpola-
tion instead that uses averages.

Figure 4.9 shows that snippets outperform the full document approach
for all metrics. This seems to be more pronounced for WT2G. The under-
lying data reveals that snippets yield much more stable performance in-
crements per unit of bandwidth. Partially, this is due to a larger quantity
of queries. The poorer performance of full documents is caused by vari-
ations in document length and quality. Downloading a long document
that poorly represents the underlying collection is heavily penalised. The
snippet approach never makes very large ‘mistakes’, because its docu-
ment length is bound to the maximum summary size.

TREC123 and WT2G are very large heterogeneous test collections as we
will show later. The WIKI collections are more homogeneous and have

112

4.4 query-based sampling using snippets

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ol

le
ct

io
n

Te
rm

 F
re

qu
en

cy
 (C

TF
) R

at
io TREC123

Full Documents
Snippets

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WT2G

0 200 400 600 800 1000

0
2

4
6

8
10

K
ul

lb
ac

k
Le

ib
le

r
D

iv
er

ge
nc

e
(K

LD
)

0 200 400 600 800 1000

0
2

4
6

8
10

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Bandwidth Usage (Kilobytes)

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Bandwidth Usage (Kilobytes)

Figure 4.9: Interpolated plots for all metrics against bandwidth usage up to 1000
kilobytes. The left graphs show results for TREC123, the right for
WT2G. Axis titles are shown on the left and bottom graphs, the leg-
end in the top left graph.

113

representing uncooperative peers

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
ol

le
ct

io
n

Te
rm

 F
re

qu
en

cy
 (C

TF
) R

at
io WIKIL

Full Documents
Snippets

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WIKIM

0 200 400 600 800 1000

0
2

4
6

8
10

K
ul

lb
ac

k
Le

ib
le

r
D

iv
er

ge
nc

e
(K

LD
)

0 200 400 600 800 1000

0
2

4
6

8
10

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Bandwidth Usage (Kilobytes)

Je
ns

en
 S

ha
nn

on
 D

iv
er

ge
nc

e
(J

SD
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Bandwidth Usage (Kilobytes)

Figure 4.10: Interpolated plots for all metrics against bandwidth usage up to
1000 kilobytes. The left graphs show results for WIKIL, the right
for WIKIM. Axis titles are shown on the left and bottom graphs, the
legend in the top left graph.

114

4.4 query-based sampling using snippets

different document length distribution characteristics. In Figure 4.10 we
see that the performance of snippets on the WIKIL corpus is worse for
the JSD, but undecided for the other metrics. For WIKIM performance
measured with CTF is slightly better and undecided for the other metrics.
Why this difference? We conducted tests on several other large size Wiki
collections to verify our results. The results suggest that there is some re-
lation between the distribution of document lengths and the performance
of query-based sampling using snippets. In Figure 4.1 we see a peak at
the low end of documents lengths for WIKIL. Collections that exhibit this
type of peak all showed similar performance to WIKIL: snippets perform-
ing slightly worse especially for the JSD. In contrast, collections that have
a distribution like WIKIM, also show similar performance: slightly better
for CTF. Collections that have a less pronounced peak at higher docu-
ment lengths, or a more gradual distribution, appear to perform at least
as good or better using snippets compared to full documents.

The reason for this is that as the document size decreases and ap-
proaches the snippet summary size, the full document strategy is less
heavily penalised by mistakes. It can no longer download large unrepre-
sentative documents, only small ones. However, this advantage is offset
if the document sizes equal the summary size. In that case, the full docu-
ment approach would use twice the bandwidth with no advantage: once
to obtain the search results, with summaries, and once again to get the
entire documents which are identical to the snippet summaries.

Homogeneity

While WIKIM has a fairly smooth document length distribution, the per-
formance increase of snippets over full documents with regard to the
JSD and KLD metrics is not the same as that obtained with TREC123 and
WT2G. This might be caused by the homogeneous nature of the collection.
Consider that if a collection is highly homogeneous, only a few samples
are needed to obtain a good representation. Every additional sample can
only slightly improve such a model. In contrast, for a heterogeneous
collection, each new sample can improve the model significantly.

So, how homogeneous are the collections that we used? We adopt the
approach of Kilgarriff and Rose (1998), that split the corpus into parts
and compare those, with some slight adjustments. As metric we use the
Jensen-Shannon Divergence (JSD), explained in Section 4.2, also used by

115

representing uncooperative peers

Table 4.2: Collection Homogeneity Expressed as Jensen-Shannon Divergence

Collection name µ JSD

TREC123 1.11
WT2G 1.04
WIKIL 0.97
WIKIM 0.85

Lower scores indicate more homogeneity (n = 100, σ = 0.01).

Eiron and McCurley (2003) for the same task. The exact procedure we
used is as follows:

1. Select a random sample S of 5000 documents from a collection.

2. Randomly divide the documents in the sample S into ten bins:
s1 . . . s10. Each bin contains approximately 500 documents.

3. For each bin si calculate the Jensen-Shannon Divergence (JSD) be-
tween the bigram language model defined by the documents in bin
si and the language model defined by the documents in the remain-
ing nine bins. Meaning: the language model of documents in s1

would be compared to that of those in s2 . . . s10, et cetera. This is
known as a leave-one-out test.

4. Average the ten JSD scores obtained in step 3. The outcome repre-
sents the homogeneity. The lower the number, the more self similar-
ity within the corpus, thus the more homogeneous the corpus.

Because we select documents from the collection randomly in step 1,
we repeated the experiment ten times for each collection. The averaged
results in table 4.2 show that the large collections we used, TREC123 and
WT2G, are more heterogeneous compared with the smaller collections
WIKIL and WIKIM. It appears that WIKIL is more heterogeneous than
WIKIM, yet snippet-based sampling performs better on WIKIM. This
could be caused by the difference in document length distributions dis-
cussed earlier. It seems as if query-based sampling using snippets is bet-
ter suited towards heterogeneous collections with a smooth distribution
of document lengths. However, this needs to be further investigated.

116

4.4 query-based sampling using snippets

0 200 600 1000

0
40

80
12

0

TREC123

Bandwidth (Kilobytes)

La
te

nc
y

(s
ec

on
ds

)

0 200 600 1000

0
40

80
12

0

WT2G

Bandwidth (Kilobytes)

La
te

nc
y

(s
ec

on
ds

) Full Documents
Snippets

Figure 4.11: Latency of full documents and snippets, lower is better. The thick
diagonal bar made up of squares shows the performance of snip-
pets. The more thinly spread out circles the performance of full
documents.

Latency

Now that we have plotted everything against bandwidth, we are ignoring
an other important factor: latency. Sending a query and returning results
takes time. Since the snippet approach needs many iterations to consume
the same amount of bandwidth as full documents, it might impose addi-
tional delay. We wonder: at the same bandwidth usage, does the snippet
approach incur more latency compared with full documents?

An argument in favour of snippet query-based sampling is that noth-
ing extra needs to be downloaded: it relies solely on the snippets. In a
real-world system these snippets come along ‘for free’ with the results
returned in response to each query posed to the system. We assume a
set-up where obtaining search results costs 100 milliseconds (ms), down-
loading a document costs 100 ms for setting up the connection and 1 ms
for each kilobyte downloaded (assuming an 8 megabit connection). The
same server that provides the search service also stores all documents.
Each iteration the full document strategy costs at least 1050 ms: 100 ms
for the search results and 950 ms for downloading the, on average, 9.5
documents. Snippets costs only 100 ms for obtaining the search results.

Figure 4.11 shows the comparison in scatter plots. The performance

117

representing uncooperative peers

variation of the full document approach is large. TREC123 contains many
small documents which may explain its consistent poor performance with
full documents: it would need to initiate more downloads. However,
this requires further investigation. The snippet approach performs signif-
icantly better. However, for WT2G the full document approach is more
optimal. WT2G has a more even document length distribution with fewer
small documents as shown in Figure 4.1. The result thus depends on the
characteristics of the documents that make up the collection. Selecting
different costs also leads to different performance. For example, with a
transfer rate of one kilobyte per 50 ms the snippet approach always has
the lowest latency for both data sets. Since the full document approach
requires initiating more connections and also requires more bandwidth,
it is more sensitive to the characteristics of the network connection.

4.4.3 Conclusion and Future Work

We have shown that query-based sampling using snippets is a viable alter-
native for conventional query-based sampling using full documents. This
opens the way for distributed search systems that do not need to down-
load documents at all, but instead solely operate by exchanging queries
and search results. Few adjustments are needed to existing operational
federated information retrieval systems, as the remote search engines and
the mediator already exchange snippets. For peer-to-peer information re-
trieval systems, peers could occasionally submit snippet batches to the
tracker, thereby helping to keep resource descriptions up-to-date. Alter-
natively, they could first perform resource selection locally based on the
snippets seen, thereby offloading the tracker. Our research implies that
the significant overhead incurred by downloading documents in today’s
prototype federated information retrieval systems can be completely elim-
inated. This also enables modelling servers from which full documents
can not be obtained and those that index multimedia content. Further-
more, the central server can continuously use the search result data to
keep its resource descriptions up to date without imposing additional
overhead, naturally coping with changes in document collections that oc-
cur over time. This also provides the extra iterations that snippet query-
based sampling requires without extra latency.

Compared with the conventional query-based sampling approach, our
snippet approach shows equal or better performance per unit of band-

118

4.4 query-based sampling using snippets

width consumed for most of the test collections. The performance also
appears to be more stable per unit of bandwidth used. Factors that in-
fluence the performance are the document length distribution and the
homogeneity of the data. Snippet query-based sampling performs best
when document lengths are smoothly distributed, without a large peak
at the low-end of document sizes, and when the data is heterogeneous.

Even though the performance of snippet query-based sampling de-
pends on the underlying collection, the information that is used always
comes along ‘for free’ with search results. No extra bandwidth, connec-
tions or operations are required beyond simply sending a query and ob-
taining a list of search results. Herein lies the strength of the approach.

We believe that the performance gains seen in the various metrics leads
to improved selection and merging performance. However, this is some-
thing that could be further explored. A measure for how representative
the resource descriptions obtained by sampling are for real-world usage
would be very useful. This remains an open problem, also for full docu-
ment sampling, even though some attempts have been made to solve it
(Baillie et al., 2009).

An other research direction is the snippets themselves. Firstly, how
snippet generation affects modelling performance. Secondly, how a query
can be generated from the snippets seen so far in more sophisticated ways.
This could be done by attaching a different priority to different words in
a snippet. Finally, the influence of the ratio of snippet to document size
could be further investigated.

119

5
S E L E C T I N G C O O P E R AT I V E P E E R S

‘If you want to be incrementally
better: be competitive. If you

want to be exponentially
better: be cooperative.’

Anonymous

A peer-to-peer information retrieval network essen-
tially consists of many small cooperative search en-
gines. Given a query we need to direct it to one or
more peers with relevant results. In this chapter, we
explore how cooperative peers can be represented for
this selection, what the effect is in terms of search re-
sult relevance and what the costs of representations are
in terms of bandwidth and storage space.

An open challenge for peer-to-peer information retrieval networks is
routing a query to one or more peers that have sufficient relevant

search results. In this chapter, we focus on the special party that facilitates
query routing: the tracker. This can either be a single machine, a set of
special peers in the network or, at the other extreme: all peers. The sole
purpose of the logical tracker in our peer-to-peer information retrieval
network is providing advice for query routing. When a peer has a query
it first sends it to the tracker to obtain a list of candidate peers from
which it can obtain search results. However, the tracker needs some way
to match queries to candidate peers. The central question this chapter
tries to answers is:

‘What is the best representation for a peer in terms of retrieval
effectiveness and costs?’

121

selecting cooperative peers

The effectiveness is measured by the number of relevant documents
returned. Since we consider a web search environment in this thesis, we
focus primarily on precision at early ranks. The costs are expressed in
terms of bandwidth and storage. Transferring more data between the
peer and the tracker incurs a higher cost.

Lu and Callan (2003) explore three approaches for representing indi-
vidual peers as well as groups of peers: based on the titles of documents,
on vocabularies (match-based) and on vocabularies with frequency infor-
mation: language models (content-based). They assume a super peer
network where queries are first routed between super peers and then to
leaf peers. Assuming that a leaf peer always forwards a query to the su-
per peer, there are three retrieval steps. Firstly, selecting alternative super
peers to forward the query to, this is evaluated using both simple flood-
ing as well as content-based selection. Secondly, selecting appropriate leaf
nodes for a query, evaluated using all three approaches described. Finally,
the actual document retrieval itself, performed using the title and content-
based approaches. Conceptually, the role of the super peers is equivalent
to that of the tracker in our design, although with the additional challenge
of forwarding queries between super peers. Lu and Callan (2003) evalu-
ate their approach on a host-based split of WT10g (Bailey et al., 2003)
with about 1.4 million documents divided over 2,500 peers. They con-
clude that using content-based resource selection, for all three steps, is
substantially better than using other alternatives when considering recall,
precision and the communication overhead. This is closely followed by
using flooding between super peers combined with content-based selec-
tion for leaf peers and document retrieval. However, requiring a match
for all query terms, when both leaf peer selection and document selection
use the title-based approach, offered comparable precision. Additionally,
the vocabulary (match-based) approach also offered only slightly lower
precision, and may be a good alternative if content-based representation
is not possible.

Witschel (2008) investigates peer representations in peer-to-peer infor-
mation retrieval networks. He emphasises that it is important for resource
descriptions to remain compact as they need to be passed around the
network frequently. He experiments with pruning resource descriptions,
adjusting them based on the query stream, as well as based on query
expansion. The datasets used are CiteSeer and the German medical cor-
pora Ohsumed and GIRT-4. Explored resource selection techniques are:

122

selecting cooperative peers

random, based on unpruned CORI representations and based on CORI
representations pruned to a fixed selection of the top n terms, where n
varies between 10 and 640. His experiments use selections ranging from 1
to 100 peers. He concludes that resource descriptions can be pruned with-
out much performance loss in terms of mean average precision: about
-0.05 when using the top 10 terms. Unfortunately, results for precision at
specific cut-offs are not provided and the paper relies on mean average
precision and relative precision as main metrics, which makes it difficult
to compare results with our work. Using query expansion does not seem
to improve results and in fact produces significantly worse results most
of the time. In contrast, learning and adapting the representations based
on an actual query log improves performance with at least 5 percent or
more consistently.

Klampanos and Jose (2004) let each peer cluster its own documents and,
based on these locally created document clusters, let each peer join one
or more matching content-aware groups. These are groups of peers that
cover a particular topic: clusters at the network level. Each super peer
stores descriptors of these groups and matches queries against them. The
group descriptors are term frequency vectors, derived from the local doc-
ument clusters of all associated peers. The authors used the ad-hoc TREC
collections of TREC 6 and 7 for evaluation, a network with 560,000 docu-
ments divided over 1,500 peers. Their approach offers substantially better
performance, in terms of precision and recall, compared with centralised
search. Furthermore, the number of contacted peers is low: usually one
or two, sometimes three and rarely six.

Resource representation and collection selection have been extensively
studied in the context of federated information retrieval (Callan, 2000).
In federated information retrieval, a mediator holds representations of all
resources, search servers, and scores incoming queries against these rep-
resentations to determine what servers should actually perform retrieval.
In contrast with the peer-to-peer tracker, the mediator also forwards the
queries to the servers and merges the results from multiple servers into
one result list. The mediator is essentially a façade: client machines that
issue queries are not aware of the many search servers ‘behind’ the medi-
ator, see Section 2.6.2 for more details.

Early federated information retrieval approaches represented each re-
source as a single large document. These documents were stored in
an index and queries scored against this index directly yield a ranking

123

selecting cooperative peers

of appropriate servers. This method was used by CORI, CVV and KL-
Divergence (Callan et al., 1995; Yuwono and Lee, 1997; Xu and Croft,
1999). Later approaches considered the individual documents in each
collection: GlOSS, DTF, ReDDE and CRCS (Gravano et al., 1999; Nottel-
mann and Fuhr, 2007; Si and Callan, 2003a; Shokouhi, 2007). In ReDDE
a set of sample documents is retrieved from each server, these are stored
in a central sample index. When a query is scored against this index, the
result is a list of documents. The intuition behind ReDDE is that each doc-
ument in the result set is essentially a vote for the resource the document
belongs to. Votes are accumulated by going down the ranked list and
counting votes for each resource. The weight of the vote is proportional
to the size of the resource. Hence, there is a bias towards large collections.

The work discussed so far considers only cooperative resources. In
contrast, when resources are uncooperative one can resort to query-based
sampling (Callan et al., 1999), discussed in Chapter 4, and resource size
estimations (Shokouhi et al., 2006b). However, in this chapter we assume
a cooperative scenario.

5.1 approach

In this chapter we describe and test a variety of peer selection methods.
We assume the scenario described previously: a tracker whose sole pur-
pose is to make a best estimate as to what query should be handled by
which peer. We assume a cooperative environment, where each peer can
provide its own representation, also termed a resource description. The
purpose of this exploration is to get an impression of the performance
of each method in terms of relevance and the associated bandwidth and
storage costs. In the following sections we introduce the methods that we
will test in the experimental section and the costs they incur.

5.1.1 Methods

Random

When one does not know anything about peers, the simplest strategy
is to randomly return a set of peers for a particular query. This strategy
would not be a bad choice for a scenario where all the peers have identical
indices, or when they are very large to begin with, as it would provide a
natural way to perform load balancing: random selection does not require

124

5.1 approach

any cooperation and also has zero storage-cost overhead for the tracker.
However, in the scenario that we are considering, a heterogeneous peer-
to-peer network, this is not true: for each query there are only a few peers
that hold relevant documents.

In peer-to-peer networks that use a single layer of strict local indices
only (see Section 2.4), which is a different architecture than the one we
consider here, randomly forwarding the query throughout the overlay
network has been found to be an effective strategy (Lv et al., 2002), see
also Section 3.1.7. However, while the tracker in our experiment also per-
forms query routing, forwarding through an overlay network is different.
In a random walk the random selection at each forwarding step is over a
small set of neighbouring peers, whereas in our case we select a random
peer from the entire network.

Size-based

If we could obtain a single statistic with regard to a particular peer, what
should it be? Perhaps its size: intuitively, larger collections hold more
documents and thus also more relevant documents. We conduct a sim-
ple experiment, where the tracker returns a static list with the n largest
peers. In a cooperative environment each peer could easily provide this
information accurately at little cost. In uncooperative environments this
can be estimated (Shokouhi et al., 2006b). The tracker needs to hold only
one numeric value for each peer.

Vocabulary-based

Using the vocabulary of each peer is an established idea that has been
used previously in peer-to-peer information retrieval experiments (Gra-
vano et al., 1997, 1999; Lu and Callan, 2003). Using all terms in the vo-
cabulary is wasteful from a bandwidth and storage perspective, and also
unnecessary. It has been shown that removing all single term occurrences
can work as well or better than using all terms (Lu and Callan, 2003). In
our experiment we represent each peer by a limited selection of the top
n terms in its vocabulary. We select the top n in three different ways: by
count (tf), by local tf.idf and by global tf.idf. For the count approach we
determine the score of each term as follows:

125

selecting cooperative peers

termscore
(
t, Cp

)
= ∑

d∈Cp

tf (t, d) , (5.1)

where t is a term, d is a document and Cp is a peer’s document collection.
The function tf (t, d) gives the occurrence count of term t in document d.
For the tf.idf approaches we use a slightly different formula:

termscore (t, C) = ∑
d∈C

tf (t, d) · idf (t, C) , (5.2)

where the variables are identical to the previous formula, with one addi-
tion: the idf function returns the inverse document frequency for term t
in collection C. Its formal definition: idf (t, C) = log (|C| /df (t, C)), where
the df function gives the number of documents in which term t appears
in collection C and |C| is the total number of documents in collection C.
For the local tf.idf variant, C is simply the peer’s document collection
Cp, whereas for global tf.idf C represents the collection of all peer in the
network Cg.

The count-based approach is conceptually the least complex: we rank
all terms in the resource by descending count and take the top n. In the
local tf.idf approach the idf is based solely on the peer’s own collection,
whereas for the global tf.idf the idf is over the collections of all peers
combined. Hence, the global tf.idf variant is expensive, because it is the
only one that requires communication with other peers, or the tracker, to
obtain global inverse document frequencies.

After we have selected the top n terms the actual count or tf.idf infor-
mation is removed and the vocabulary is used as a flat list of terms for
peer selection: a type of large document representation. The peers thus
need to only transmit a list of terms to the tracker, no additional informa-
tion is needed. The tracker stores the resource description of each peer
in a single index and scores each incoming query against this index to
determine the best servers for providing relevant search results for this
query.

Term-weighted Vocabulary-based

In the previous approach we removed the term counts, but what happens
if we do use these? In this approach we experiment with peer vocabular-
ies that include frequency information. We store the top n = 1,000 terms

126

5.1 approach

of each peer, including their frequencies. Each query is first split into
separate terms and then matched against the representation of each peer.
The scoring function is the same as that used for full language models
and has the following formal definition (Lu and Callan, 2003):

Rp
(
Q,Lp,Lg

)
= ∑

t∈Q
log
{

λP
(
t | Lp

)
+ (1− λ) P

(
t | Lg

)}
, (5.3)

where Q is a query, t is a term within the query, Lp is the language model
of peer p and Lg is the model of the entire collection: either ClueWeb09-B
or Gov2 in our case. The influence of the smoothing background model
Lg is controlled by the constant λ. Each peer is scored this way, and from
the result we select the top 10 peers.

Query Log based

We start from the scenario where each peer submits its query to the
tracker to obtain advice. Let us assume that the tracker actually uses
this information to route future queries to the peers that submitted them
previously. The underlying assumption is that those peers either already
hold or have obtained relevant documents from other peers. The tracker
thus needs to maintain a query history for each peer.

In this experiment, we simulate the query log using the approach of
Dang and Croft (2010). The generated log is based on the anchors be-
tween peers. We use only unique anchors, so if one anchors occurs mul-
tiple times between two peers, it is used only once as a query. However,
the count information is used for selection as follows: we select the top
n queries by count to form the actual resource description at the tracker.
Particularly for small peers this may lead to many ties in the ranking due
to the low query counts. To resolve ties we prefer longer queries over
smaller ones, as these are likely to be more descriptive. Note that, in con-
trast with the vocabulary-based approach, a query can consist of more
than one term.

Document Sample based

An often used approach is taking a random sample of documents from
each peer, storing these in a central sample index, scoring each query

127

selecting cooperative peers

against this index and deriving a ranking of peers from the resulting
ranking of documents. This is often referred to as the small document
approach, as each peer is represented by a small set of sampled docu-
ments. We test two algorithms that use a central sample index: ReDDE
and CRCS (Si and Callan, 2003a; Shokouhi, 2007). We also adapt ReDDE
for use with a simple reputation scheme, explained later. The costs for the
tracker of maintaining document samples is difficult to predict precisely
as document sizes vary and the sample is drawn randomly.

ReDDE uses the central sample index to estimate how many relevant
documents it expects each peer to contain. This proceeds as follows: the
query is first scored against the central sample index, this yields a ranking
of the sample documents. ReDDE considers each document in the top
ranking to represent m matching documents in the actual peer, where
m is the size of the collection divided by the size of the sample. For
example, if we have a sample Sp of 10 documents of one particular peer
p, and the peer’s collection Cp consists of 1,000 documents, then each
matching sample document in the ranking represents the expectation of
m = 1,000/10 = 100 matching documents at the peer. This is formally
defined as (Shokouhi and Si, 2011; Si and Callan, 2003a):

Rp
(
Q,Sp, Cp

)
= ∑

d∈Sp

Rd (d,Q) ·
∣∣Cp
∣∣∣∣Sp
∣∣ , (5.4)

where Q is a query, Sp represents the sample documents of peer p in
the central sample index, Cp is the document collection of peer p, d is a
document in the sample Sp and Rd (d,Q) is 1 if document d is ranked
high enough for query Q and 0 otherwise1. The last part of the formula∣∣Cp
∣∣ /
∣∣Sp
∣∣ is often referred to as the scale factor, where

∣∣Cp
∣∣ is the number

of documents at peer p and
∣∣Sp
∣∣ is the number of sample documents of

peer p in the central sample index.

ReDDE does not consider the entire ranking of documents, but only the
top n. There are a number of ways in which n can be chosen. We used
a fixed value of n = 1,000 documents, corresponding with ReDDE.top
(Arguello et al., 2009a). With respect to the formula above, this means
that Rd (d,Q) is 0 if the rank of sample document d is higher than 1,000.

1 There are also variants of ReDDE that substitute the score of the sample document here,
these are termed score-based variants, we use a count-based approach.

128

5.1 approach

In ReDDE, the weight of each document is essentially the same, irre-
spective of its rank. In contrast, CRCS does consider the rank of each
document, which means that sample documents that are ranked higher
have more influence on the selection process. Additionally, CRCS also
normalises the scale factor with respect to the largest peer in the system.
It is defined as follows (Shokouhi, 2007; Shokouhi and Si, 2011):

Rp
(
Q,Sp, Cp, Cpmax

)
= ∑

d∈Sp

α · exp (−β · R (d,Q)) ·
∣∣Cp
∣∣∣∣Cpmax
∣∣ · ∣∣Sp

∣∣ , (5.5)

where Q is a query, Sp represents the sample documents of peer p in
the central sample index, Cp is the document collection of p, Cpmax is the
largest document collection in the system, d is a document in sample Sp

and R (d,Q) is the rank of sample document d in the relevance ranking
for query Q. For the constants we used α = 1.2 and β = 2.8, and we
consider the top n = 50 ranked sample documents. These parameter
settings are identical to those used in the original paper that introduced
the method (Shokouhi, 2007).

We can adapt ReDDE to weight a reputation score for each peer. We as-
sume the reputation is a value between 0.0 and 1.0 and use the following
adjusted version of the original ReDDE formula:

Rp
(
Q,Sp, Cp, rp

)
= ∑

d∈Sp

Rd (d,Q) ·
∣∣Cp
∣∣∣∣Sp
∣∣ · rp, (5.6)

where rp ∈ [0, 1] is the reputation. The rest of the parameters are identical
to the original ReDDE Formula 5.4. The intuition behind this formula is
that the reputation affects how many relevant documents are expected to
be returned. If a particular peer has a reputation of say 0.5, then only
half its document are expected to be relevant. In our experiment we
derive reputations from two sources: spam scores and pageranks, this is
discussed in Subsection 5.3.7.

5.1.2 Costs

Table 5.1 shows an overview of the theoretical cost of each approach. Ran-
dom selection has no costs, no information needs to be stored at, or trans-
ferred to, the tracker, apart from the peer identifiers. Storing the size

129

selecting cooperative peers

Table 5.1: Theoretical Costs of each Method

Method Costs / Peer (Bytes)

Random 0
Size 4
Vocabulary
- 10 terms 50
- 100 terms 500
- 1000 terms 5,000
Weighted Vocabulary (1000 terms) 9,000
Samples 5,000 – 1,500,000

would only costs as much as storing a single integer. A conservative esti-
mate of four bytes is used here, as this would allow for peers with up to
four billion documents: likely enough for contemporary collections. For
the vocabulary-based approach, we assume the average term length to be
five characters and also assume these to be mostly characters expressible
in one byte. Here the storage requirements become larger depending on
the number of terms used. For weighted vocabularies, assuming we use
1,000 terms for each peer, the costs are somewhat higher as we store a
single precision floating point value for each term as well. Finally, using
document samples has a variable costs that depends on the size of the
sample documents. If we assume an average document length of 5,000
bytes, and a sample size of 1 to 300 documents, we get an estimate of as
much as 1,500,000 bytes per peer. However, this is likely to be an over-
estimate and the real size is likely closer to the lower number predicted:
5,000 bytes per peer.

Apart from the costs in bytes shown in the table, there is also the ad-
ditional cost of storing peer identifiers and/or host names. This is some-
thing that will likely add an additional overhead of several tens of bytes
to each of the methods here. We will revisit this issue later when we
present the actual costs as opposed to these theoretical costs.

5.2 data sets

We use the ClueWeb 2009 Category B collection, consisting of fifty million
documents, and the Gov2 collection consisting of about twenty five mil-

130

5.2 data sets

Table 5.2: Collection Statistics

ClueWeb09-B Gov2

Raw Size (GB) 1,500 400
Index Size (GB) 435 217
#Documents (K) 50,220 25,205
Avg Doc Length (B) 5,215 5,716
#Peers (K) 2,929 17
#Anchors (K) 404,060 2,973
#Terms (M) 143 69
#Queries 98 149

lion documents (Clarke et al., 2004, 2009). All mark-up is removed from
the documents before they are added to the index, this results in some
empty documents, and conversely some documentless peers, that we do
not further consider.

Statistics are shown in Table 5.2. We use the TREC queries for these col-
lections for evaluation. For ClueWeb there are two queries and for Gov2
there is one query for which there are no relevant search results. These
were not included conforming to the official TREC evaluations. We exper-
iment with almost 3 million peers for ClueWeb09-B and nearly 17 thou-
sand for Gov2. To the best of our knowledge there is no previous work
that explores resource selection in peer-to-peer networks at the scale of
millions of peers. Gov2 has been previously used to create a 25 thousand
peer network (Lu, 2007).

There are likely machines that hold the web pages for many hostnames,
and conversely there are hostnames that may in reality map to many
machines. For reasons of simplicity we ignore these complications and
assume that each unique hostname represents one peer in the peer-to-
peer system. This approach has been used before to create generic web
retrieval (Hawking and Thomas, 2005) and peer-to-peer web retrieval test
beds (Klampanos et al., 2005; Lu and Callan, 2003).

ClueWeb09-B and Gov2 are both subsets of the web, but have different
characteristics. The peers in Gov2 are very large: each holds nearly 1,500
documents on average, whereas for ClueWeb09-B this is only about 17.
Table 5.2 also lists the number of anchors. We define an anchor as a link,
made using an HTML anchor tag, between two distinct hosts, these are so

131

selecting cooperative peers

2000 5000 20000 50000 200000 5000000.
00

00
0.

00
10

0.
00

20

Document Length (Bytes)

D
en

si
ty

ClueWeb
Gov2

Figure 5.1: Document length distribution of ClueWeb09-B and Gov2 based on
pre-processed documents.

Table 5.3: Largest Peers in ClueWeb

Peer #Docs #Anchors

en.wikipedia.org 5,996,421 4,197,241
dictionary.reference.com 34,686 223,468
dir.yahoo.com 30,428 76,877
www.aboutus.org 26,818 22,352
acronyms.thefreedictionary.com 25,849 351,828
en.wiktionary.org 22,067 83,211
www.answers.com 21,735 101,433
commons.wikimedia.org 21,450 214,888
www.scribd.com 20,476 31,872
www.iexplore.com 19,535 2,768

132

5.2 data sets

Table 5.4: Largest Peers in Gov2

Peer #Docs #Anchors

ghr.nlm.nih.gov 717,321 66
nih-library.nih.gov 709,105 46
wcca.wicourts.gov 694,505 11
cdaw.gsfc.nasa.gov 665,987 16
catalog.tempe.gov 650,208 366
www.catalog.kpl.gov 637,313 6
edc.usgs.gov 551,123 362
www.fs.usda.gov 492,416 18
gis.ca.gov 459,329 35
www.csm.ornl.gov 441,201 253

called external links. Hence, links within the same host are not considered
and only unique anchors counts are shown. Since the number of peers
in Gov2 is much lower, the number of interlinks, and thus anchors, is
also much lower. Furthermore, the size distribution of these collections is
different as well. Figure 5.1 shows the size distribution as a kernel density
plot, and Table 5.3 and Table 5.4 list the largest peers and the number of
documents they contain, as well as the number of incoming anchors. Even
though the average document length of both collections is not that far
apart, the distribution is somewhat different as can be seen in the kernel
density plot. While ClueWeb09-B has many small documents, those in
Gov2 are larger. ClueWeb09-B has a snapshot of the complete English
Wikipedia, which results in one peer that dwarfs many of the others. We
will revisit this during our experiments. For Gov2 the size distribution is
more even, and the peers are larger. The number of anchors for Gov2 is
also lower for the largest peers listed, for reasons explained before: there
are simply not that many peers in Gov2, and they are larger and more
self-contained.

Figure 5.2 and Figure 5.3 show, for each TREC query, the number of
peers we would need to contact to achieve complete recall. The purpose
of these graphs is to get an impression of the distribution of relevant
documents over the peers. For ClueWeb09-B, TREC query number 1 we
would need to contact 10 peers to achieve perfect recall. Each segment in
the bar indicates how many peers there are that have a number of rele-

133

selecting cooperative peers

1 6 12 19 27 34 41 48 55 62 69 76 83 90 98

TREC Query Number

#P
ee

rs

0
50

10
0

15
0

1
2
3 - 5
6 - 10
11 - 20
21 - 50
51 - 100
101 - 200
201 - 500
501 - 1000

Figure 5.2: Distribution of relevant documents per peer for ClueWeb09-B.

701 715 728 741 754 767 780 793 806 819 832 845

TREC Query Number

#P
ee

rs

0
50

10
0

15
0

1
2
3 - 5
6 - 10
11 - 20
21 - 50
51 - 100
101 - 200
201 - 500
501 - 1000

Figure 5.3: Distribution of relevant documents per peer for Gov2.

134

5.3 experiment

1 6 12 19 27 34 41 48 55 62 69 76 83 90 98

TREC Query Number

#D
oc

um
en

ts

0
50

10
0

15
0

en.wikipedia.org
other

Figure 5.4: Distribution of relevant documents over Wikipedia and other peers
for ClueWeb09-B.

vant documents in a specific range. For query 1 there are 7 peers with one
relevant document and 3 peers with more than one: 2, 6–10 and 51–10,
respectively. What we can conclude from these graphs is that, for both
ClueWeb09-B and Gov2, there are many peers that hold a relevant docu-
ment, but there are also a few peers that hold many relevant documents.
The average number of peers to contact for full recall is 52 for Gov2 and
33 for ClueWeb09-B. We will get back to this in the experiment section.

Figure 5.4 shows the number of relevant documents that specifically
reside at Wikipedia, and those that reside at other hosts. In contrast with
the other graphs, we show the number of documents on the vertical axis.
As stated, the Wikipedia peer is many times larger than others, we will
see the effect this has on resource selection in the next section.

5.3 experiment

In this section we evaluate each peer selection method taking the perspec-
tive of the tracker. We use the TREC queries to assess the performance in
terms of relevance of each method. In most cases this is based on using a
particular resource description at the tracker for peer selection, followed
by performing the actual document retrieval at the peers.

For indexing and searching the collections, and derivatives thereof, we
used Apache Lucene 3.4. By default we obtain maximally 1,000 search

135

selecting cooperative peers

Table 5.5: Centralised Baselines

Corpus Part P@5 P@10 P@30 P@100 MAP

CWB Full 0.19 0.20 0.16 0.13 0.09
Wp 0.21 0.21 0.15 0.10 0.06
No-Wp 0.18 0.19 0.16 0.12 0.08

Gov2 Full 0.29 0.28 0.27 0.24 0.14

results per peer and perform a merge to obtain a final result list with
maximally 1,000 results as well. In some experiments, we vary the num-
ber of selected peers and in others we keep this fixed. The merge we
perform is perfect, meaning: we assume that peers have access to global
idf statistics that would enable them to merge search results from multi-
ple sources perfectly. In a real system this could be solved using Kirsch’s
algorithm (Kirsch, 1997; Lu, 2007). However, we do not further consider
the result merging problem in this chapter.

For the experiments conducted in this chapter, we look strictly at rel-
evance. However, we stress that a peer selection algorithm should take
query processing overhead and load distribution into account.

5.3.1 Baselines

We first need to establish a baseline. We created four indices: one with
all ClueWeb Category B documents, one with only the Wikipedia part of
ClueWeb, one with everything but the Wikipedia part of ClueWeb and
one with all Gov2 documents. Table 5.5 shows results for centralised
baseline runs for the 98 TREC ClueWeb queries on the ClueWeb indices
and the 149 TREC Gov2 queries on the Gov2 index.

The reason we created a Wikipedia-only index is to measure the effect
of selecting Wikipedia as peer. We can see this effect is significant, as us-
ing only Wikipedia offers performance competitive with using the whole
of ClueWeb Category B. This suggests that simply selecting Wikipedia
as peer is a good strategy, since it contains so many relevant documents,
which can also be seen in Figure 5.4. However, the results of the every-
thing except Wikipedia run (No-Wp), shows that decent performance can
also be obtained without Wikipedia. The fact that the Wikipedia portion
of ClueWeb has different characteristics in terms of documents quality

136

5.3 experiment

Table 5.6: ClueWeb09-B Random Selection

#Peers P@5 P@10 P@30 P@100 MAP

1 0.00 0.00 0.00 0.00 0.00
10 <0.01 <0.01 <0.01 <0.01 <0.01
100 <0.01 <0.01 <0.01 <0.01 <0.01
1000 <0.01 <0.01 <0.01 <0.01 <0.01

Table 5.7: Gov2 Random Selection

#Peers P@5 P@10 P@30 P@100 MAP

1 <0.01 <0.01 <0.01 <0.01 <0.01
10 0.01 0.01 <0.01 <0.01 <0.01
100 0.05 0.04 0.02 0.01 <0.01
1000 0.22 0.18 0.12 0.06 0.02

has been observed before (Bendersky et al., 2011; He et al., 2009).
Experiments with the Gov2 collections partitioned by domain name

have been performed before by Thomas and Hawking (2007). Earlier
work on Gov2 shows that partitioning by domain name is particularly
challenging for result merging, a problem we do not consider in this
chapter (Fallen and Newby, 2006).

5.3.2 Random

Since there are thousands of peers in Gov2 and millions of peers in
ClueWeb09-B, the odds of randomly selecting a peer with relevant docu-
ments are very low. In fact, for each Gov2 query there are on average 181,
standard deviation ±149, relevant documents distributed over 52 ± 35
peers. For each ClueWeb query there are on average 72 ± 46, relevant
documents distributed over 33± 22 peers. Hence, the average probabil-
ity of randomly selecting one peer with at least one relevant document
is about 0.3 percent for Gov2 and about 0.001 percent for ClueWeb09-
B. That probability increases as we randomly select more peers without
replacement.

We verified the effect of random selection on both ClueWeb09-B and
Gov2 by selecting 1, 10, 100 and 1000 peers randomly. These experiments

137

selecting cooperative peers

were repeated ten times and the results were averaged. For ClueWeb09-B,
the final result was very close to zero for all metrics and for all selection
sizes as shown in Table 5.6. The higher probability of selecting a good
peer at random in Gov2 was confirmed by our experiments. In Table 5.7
we see that the P@5 is as high as 0.22 for random selection of 1,000 peers
respectively.

For a large peer-to-peer network, like the one based on ClueWeb09-B,
we can not perform random selection and need more information about
peers in order to make an informed routing decision. A similar argument
holds for Gov2, as selecting 1,000 peers is very taxing on the resources of a
peer-to-peer network. However, for very small peer-to-peer information
retrieval networks, with limited resources, a random selection strategy
may not be the worst approach, particularly if relevant documents are
uniformly distributed.

5.3.3 Size-based

Table 5.8 shows the results for size based selection on ClueWeb09-B. The
largest server is Wikipedia: en.wikipedia.org, and in fact the results for
selecting 1 peer are identical to the Wikipedia baseline run we saw before.
The WP column shows the percentage of the returned results provided
by Wikipedia. In ClueWeb, some of the Wikipedia pages are outside the
official Wikipedia part of the corpus. Hence, there is a 1 percent error
margin on the numbers reported in the WP columns in all tables. This
is the reason why for 1 peer we see 99 percent instead of 100 percent
Wikipedia results.

If we increase the number of selected peers, we see a dip around 100
peers. Further investigation reveals that performance actually increases
quickly again after selecting 200 and 500 peers respectively, with 500 giv-
ing a top P@5 of 0.19, but a lower P@15 of 0.16 compared to the results
for 1,000 peers. This suggests that there are a few large peers (around
100) that, while large, have fewer relevant documents, which negatively
affects the precision. These observations are similar to those by Witschel
(2008).

For ClueWeb09-B we also conducted this same experiment based on
pageranks instead of size. Since large servers can accumulate a lot of
pagerank, the results of this experiment were nearly identical to those
shown in Table 5.8, the only difference being a P@5 of 0.17 instead of 0.18

138

5.3 experiment

Table 5.8: ClueWeb09-B Size-based Selection

#Peers P@5 P@10 P@30 P@100 MAP WP

1 0.21 0.21 0.15 0.10 0.05 99%
10 0.18 0.18 0.14 0.09 0.05 91%
100 0.16 0.16 0.12 0.09 0.04 63%
1000 0.18 0.18 0.12 0.09 0.04 34%

Table 5.9: Gov2 Size-based Selection

#Peers P@5 P@10 P@30 P@100 MAP

1 0.00 0.00 0.00 0.00 0.00
10 0.05 0.04 0.02 0.01 <0.01
100 0.23 0.23 0.19 0.13 0.04
1000 0.27 0.27 0.26 0.22 0.10

when selecting the 1,000 peers with the highest pagerank.
Table 5.9 shows the results for size base selection on Gov2. We can see

that selecting the largest peer is ineffective, as it has no relevant results for
any of the queries. Selecting more peers gives increasingly better perfor-
mance, suggesting that the smaller servers still contribute relevant docu-
ments. Gov2’s peer size distribution is more uniform than ClueWeb09-B’s,
particularly at the low-end, and since there are fewer peers, we are select-
ing a much larger percentage of them: 1,000 peers is 5.88 percent of Gov2,
whilst it is only 0.03 percent of ClueWeb09-B.

We can conclude that size does have influence on performance. This
observation is in line with resource selection algorithms that have a size
bias, like ReDDE (Si and Callan, 2003a). However, as is clear from the
results for Gov2, just picking the largest peer, or a subset of large peers,
does not always work very well. Further analysis reveals that the top ten
servers in Gov2 hold only 0.73 percent of the relevant documents. This
drastically bounds the maximum attainable performance. The results for
ClueWeb09-B are distorted: 24.66 percent of the relevant documents re-
sides at the largest peer: en.wikipedia.org. Using the top ten servers only
marginally increases this to 25.21 percent. Hence, the fairly good perfor-
mance for ClueWeb is really due to Wikipedia.

Statically selecting the largest peers in the networks is not a good

139

selecting cooperative peers

approach for two other reasons besides the results of the experiments.
Firstly, it would not work well for long-tail queries. Secondly, it would
miss highly relevant search results that reside at small peers. Neverthe-
less, knowing the size of peers does improve things with respect to ran-
dom selection. Hence, knowing the size is better than nothing.

5.3.4 Vocabulary-based

In this section we base the selection on the vocabulary of each peer. We
performed these experiments in two ways. Firstly, by considering the full
content of each document. Secondly, by considering only the vocabulary
of the document titles. In both cases, but especially when using only
titles, some small servers may have fewer than the top n terms requested.
Hence, their resource descriptions would be smaller than those of larger
servers. By default, smaller matching documents get a boost in Lucene,
to cope with the fact that longer documents are more likely to match any
query2. However, since these are large document representations, this is
the opposite of what we want. Hence, we turned off this document length
normalisation when scoring a query against the resource descriptions.
Note that, even with length normalisation turned off, Lucene does use
the inverse document frequencies when scoring.

In contrast with the previous sections, we fixed the number of peers
to 10 in this setting. This way we can see the influence of changing the
number of top terms n. We wanted to find out if a larger or smaller
top n matters. Intuitively, a higher n value would give more information
for selection. Hence, using a larger n is expected to yield better perfor-
mance. However, a larger n also has higher costs in terms of bandwidth
consumption and storage.

Table 5.10 shows the results for using the top n content and title vo-
cabularies for ClueWeb09-B. The fraction of search results provided by
Wikipedia is shown in the last column. Note that Wikipedia was never se-
lected for any of the queries for the runs with a fixed n. For the titles only
the count-based results are shown, while for full content the results of all
methods are shown. As can be seen, the local.tfidf approach consistently
performs worse, and at best equal to using global tf.idf’s. It seems to be
always best to base the top n term vocabularies on simple counts. For

2 For details see http://lucene.apache.org/core/old_versioned_docs/versions/3_4_0/
api/all/org/apache/lucene/search/Similarity.html (Retrieved June 25th 2012)

140

http://lucene.apache.org/core/old_versioned_docs/versions/3_4_0/api/all/org/apache/lucene/search/Similarity.html
http://lucene.apache.org/core/old_versioned_docs/versions/3_4_0/api/all/org/apache/lucene/search/Similarity.html

5.3 experiment

Table 5.10: ClueWeb09-B Top n Vocabulary-based Selection

Method #Terms P@5 P@10 P@30 P@100 MAP WP

C-C 10 0.15 0.13 0.08 0.04 0.03 0%
100 0.09 0.09 0.04 0.02 0.02 0%
1000 0.03 0.03 0.01 <0.01 <0.01 0%
1% 0.17 0.15 0.10 0.05 0.04 10%

C-L 10 0.07 0.04 0.02 <0.01 <0.01 0%
100 0.04 0.02 0.01 <0.01 <0.01 0%
1000 0.02 0.01 0.01 <0.01 <0.01 0%
1% 0.09 0.07 0.03 0.02 0.01 32%

C-G 10 0.10 0.08 0.05 0.02 0.02 0%
100 0.08 0.06 0.03 0.01 0.01 0%
1000 0.03 0.02 0.01 0.01 0.01 0%
1% 0.15 0.12 0.08 0.04 0.04 25%

T-C 10 0.11 0.09 0.06 0.03 0.02 0%
100 0.12 0.10 0.06 0.03 0.03 0%
1000 0.09 0.07 0.04 0.02 0.02 0%
1% 0.16 0.15 0.11 0.08 0.05 46%

Selection is based on (C)ontents using term (C)ounts, (L)ocal tf.idf or (G)lobal
tf.idf. For (T)itles only term (C)ounts are shown. At most 10 peers are selected.

141

selecting cooperative peers

titles, not all results are shown here, the differences in ClueWeb09-B are
small, in fact using global tf.idf gives about equal performance to using
counts when using 100 and 1,000 terms respectively. When using 10 terms
the performance is about two thirds of the count-based approach. Briefly:
using simple counts is the most effective approach for ClueWeb09-B and
also the cheapest. Using more evidence, that is: more terms, does not
yield better performance in terms of precision. One could conclude that
using only the top 10 terms is optimal within the explored settings for
content, and the top 100 terms for titles. Using 1,000 terms for content
is in fact worse than using 1,000 title terms. In general: using just titles
works well, consistent with the observations of Lu and Callan (2003).

A possible cause of the poor performance when using more terms for
content is that small peers become overrepresented and large peers un-
derrepresented. To investigate this issue further we also performed a run
that uses 1 percent of all the terms for each peer. The results of this are
consistently better than any of the fixed cut-offs for ClueWeb and the
reduction in precision is much less than when using a fixed number of
terms. This suggests that, indeed, using a fixed number of terms may
not be the best approach if collection sizes are heterogeneous, as this
may overrepresent the small servers. Having the larger peers represented
more strongly helps performance, which pleads for using a size-relative
number of terms instead. Although for ClueWeb these results are dis-
torted by Wikipedia, we can see that when using counts only 10 percent
of the results are from Wikipedia, while counts give better results than
any of the other methods explored.

Table 5.11 shows the results for Gov2 using all methods for content and
using counts for the titles. The count-based content selection performs
about 0.03 worse for P@5, but that difference becomes smaller for higher
precision levels. For title selection the situation is reversed: count-based
performs better than the global tf.idf, not shown here, by about the same
margin. There are two things different about the results for Gov2. Firstly,
using more terms gives better performance, this is true for all variants
tested. Secondly, using only titles outperforms content-based summaries
by a large margin at higher precision levels. This may be the result of the
organisation of the Gov2 source data. The average title length for Gov2
is 16± 24 characters, which is in fact much shorter than for ClueWeb09-B
that has titles of 42± 45 characters. Hence, we have to assume that Gov2’s
titles are more descriptive in some other, perhaps semantic, way.

142

5.3 experiment

Table 5.11: Gov2 Top n Vocabulary-based Selection

Method #Terms P@5 P@10 P@30 P@100 MAP

C-C 10 0.11 0.10 0.07 0.04 0.01
100 0.16 0.13 0.09 0.05 0.02
1000 0.25 0.22 0.15 0.08 0.03
1% 0.23 0.22 0.20 0.14 0.05

C-L 10 0.10 0.07 0.04 0.02 0.01
100 0.15 0.12 0.07 0.03 0.01
1000 0.22 0.18 0.10 0.04 0.02
1% 0.24 0.23 0.18 0.12 0.04

C-G 10 0.13 0.11 0.08 0.04 0.01
100 0.19 0.16 0.11 0.06 0.02
1000 0.27 0.23 0.16 0.07 0.03
1% 0.27 0.25 0.21 0.14 0.05

T-C 10 0.13 0.11 0.08 0.04 0.01
100 0.19 0.17 0.12 0.07 0.02
1000 0.28 0.25 0.20 0.12 0.05
1% 0.15 0.13 0.10 0.07 0.02

Based on Contents (C) using term counts (C), local tf.idf (L) and global tf.idf (G).
For titles (T) only term counts (C) are shown. Selecting at most 10 peers.

143

selecting cooperative peers

We also applied the 1 percent term selection on Gov2, the results here
are less conclusive. For titles, using a fixed percentage is consistently
worse than using 1,000 terms and mostly worse when using 100 title
terms. If we look at the content-based results, we see that for counts using
a fixed selection of 1,000 terms gives equal or better performance at low
precision levels, only for global and local tf.idf we see improved results.
However, we do see, like for ClueWeb, that the performance is more sta-
ble at higher precision levels, equalling or outperforming all other fixed
term selections from P@10 and higher, and offering better performance in
terms of MAP. Hence, this approach may be better when a high number
of relevant results is desired.

We have already seen that considering the size of the document collec-
tion of each peer can be very effective. Whilst this approach has been
explored in previous work when using document samples, it has not
been used in the same way for using vocabularies. Hence, we introduce
a weighting function:

scoreweighted
(
sp, Cp

)
= sp ·

(
1 + log

∣∣Cp
∣∣) , (5.7)

where sp is the unweighted score of the vocabulary document of peer
p and

∣∣Cp
∣∣ gives the number of documents at peer p. Effectively, we

reweight the score of each vocabulary by giving peers with more docu-
ments the ability to compensate for the fixed size of the vocabulary docu-
ment. Reweighting applies only to peers with a non-zero score.

Table 5.12 shows the results for ClueWeb. These can be compared with
Table 5.10, as the only difference is the weighting formula introduced. We
see that similar patterns still hold as in the original results, the difference
being that using 10 terms is now also the best performing approach when
using titles and the drop in performance when using more terms for
contents is less pronounced. The performance when using only titles is
also much closer to using a content vocabulary. All results are consistently
better than when not using size weighting. Using global tf.idfs performs
the best for low precision levels. However, using just counts seem better
for higher precision levels. Interestingly, Wikipedia is hardly ever selected
for the fixed-size vocabularies. It does not benefit from the size bias, likely
due to it being underrepresented. Contrast this with the 1 percent runs
and we see a higher percentage of Wikipedia results compared to the non
size-weighted approach.

144

5.3 experiment

Table 5.12: ClueWeb09-B Top n Size-weighted Vocabulary-based Selection

Method #Terms P@5 P@10 P@30 P@100 MAP WP

C-C 10 0.17 0.15 0.11 0.06 0.04 0%
100 0.14 0.13 0.10 0.05 0.04 0%
1000 0.10 0.08 0.04 0.02 0.02 1%
1% 0.15 0.15 0.12 0.09 0.06 51%

C-L 10 0.10 0.06 0.03 <0.01 <0.01 0%
100 0.11 0.07 0.03 0.01 0.01 0%
1000 0.11 0.08 0.04 0.01 0.01 0%
1% 0.16 0.16 0.13 0.08 0.05 71%

C-G 10 0.17 0.15 0.09 0.04 0.03 0%
100 0.19 0.17 0.10 0.04 0.04 0%
1000 0.15 0.11 0.05 0.02 0.02 0%
1% 0.21 0.19 0.14 0.10 0.07 62%

T-C 10 0.16 0.15 0.11 0.05 0.04 0%
100 0.16 0.14 0.09 0.05 0.03 0%
1000 0.11 0.09 0.05 0.03 0.02 2%
1% 0.17 0.16 0.11 0.08 0.05 49%

Based on (C)ontents or (T)itles using term (C)ounts, (L)ocal tf.idf or (G)lobal
tf.idf. Selecting at most 10 peers.

145

selecting cooperative peers

Table 5.13: Gov2 Top n Size-weighted Vocabulary-based Selection

Method #Terms P@5 P@10 P@30 P@100 MAP

C-C 10 0.16 0.14 0.10 0.06 0.02
100 0.20 0.18 0.13 0.09 0.03
1000 0.28 0.25 0.20 0.12 0.05
1% 0.23 0.23 0.20 0.13 0.04

C-L 10 0.11 0.08 0.05 0.02 <0.01
100 0.23 0.19 0.12 0.05 0.02
1000 0.27 0.22 0.16 0.08 0.03
1% 0.26 0.25 0.20 0.13 0.05

C-G 10 0.16 0.13 0.09 0.05 0.01
100 0.25 0.20 0.15 0.08 0.03
1000 0.34 0.29 0.21 0.12 0.05
1% 0.28 0.27 0.23 0.15 0.06

T-C 10 0.16 0.14 0.10 0.05 0.01
100 0.21 0.18 0.14 0.09 0.03
1000 0.30 0.27 0.21 0.14 0.05
1% 0.15 0.14 0.11 0.07 0.02

Based on (C)ontents or (T)itles using (C)ounts, (L)ocal tf.idf or (G)lobal tf.idf.
Selecting at most 10 peers.

146

5.3 experiment

Table 5.13 shows the size-weighted results for Gov2, that show a similar
pattern of improvement as ClueWeb09-B. However, the differences here
are larger and, in terms of early precision, also improve over the baseline
centralised search when using global tf.idfs. A difference with the results
in Table 5.11 is that the content-based approach really does perform better
here by a margin.

Overall using just a title-based vocabulary already offers impressive
performance at a low cost, but using a content-based vocabulary offers
further performance improvements. Weighting by including the size of
the peers offers large performance gains.

In brief: using counts is the best and least expensive approach. When
using content-based vocabularies using fewer terms is in fact preferable,
while for titles using a bit more seems better. Weighting in the size of the
collections is a good idea and offers a competitive boost to performance.

We can conclude in general that for one corpus, Gov2, using more
terms helps performance. However, this is not true for ClueWeb, in which
using more terms actually degrades performance. Since we see opposite
trends, this makes a strong case for the conclusion that the number of
terms selected from each peer is highly corpus dependent, and that more
is not always better.

5.3.5 Term-weighted Vocabulary-based

In this section we apply weighting to the individual terms in the vocabu-
laries. We use the top 1,000 terms based on counts, as in some of the ex-
periments in the previous section, but instead of throwing the frequency
information away, we use it for scoring. What we would like to find out
is if this makes a difference. The scoring in this experiment was done
outside of Lucene with a custom implementation.

Table 5.14 shows the results for ClueWeb09-B. These are better than
both the unweighted and size-weighted results of the previous section
for 1,000 terms, which shows that including frequency information helps
performance. It compensates for the overrepresentation of small servers
when using a fixed number of terms. We experimented with two lambda
values: 0.8 and 0.1. The higher value gives better results, also in the
results for Gov2 in Table 5.15. The performance for content here is nearly
identical to that of unweighted vocabularies, but not for titles. However,
the general results are not as good as the size-weighted results.

147

selecting cooperative peers

Table 5.14: ClueWeb09-B Top n = 1000 Term-weighted Vocabulary-based Selec-
tion

Method P@5 P@10 P@30 P@100 MAP WP

C (λ = 0.8) 0.18 0.15 0.10 0.05 0.03 0%
T (λ = 0.8) 0.16 0.13 0.08 0.04 0.03 0%

C (λ = 0.1) 0.17 0.15 0.10 0.05 0.03 0%
T (λ = 0.1) 0.14 0.12 0.07 0.03 0.03 0%

Based on (C)ontent and (T)itles. Selecting at most 10 peers.

Table 5.15: Gov2 Top n = 1000 Term-weighted Vocabulary-based Selection

Method P@5 P@10 P@30 P@100 MAP

C (λ = 0.8) 0.25 0.22 0.16 0.09 0.03
T (λ = 0.8) 0.24 0.22 0.17 0.11 0.04

C (λ = 0.1) 0.19 0.17 0.13 0.07 0.02
T (λ = 0.1) 0.22 0.19 0.13 0.08 0.03

Based on (C)ontent and (T)itles. Selecting at most 10 peers.

As we have suggested in the previous section, using a fixed number
of terms can overrepresent small servers. In this section we have shown
that this can be attributed to stripping of frequency information from the
representations, at least for ClueWeb09-B. This is consistent with other
experiments, like those of Lu and Callan (2003), and shows that language
models can be pruned significantly, while still offering competitive per-
formance. However, for Gov2, the results are less conclusive. Includ-
ing frequency information does not matter much for content, and can
even negatively affect performance for titles. Future experiments could
look at the effect of selecting different amounts of terms, either fixed or
percentage-based.

5.3.6 Query Log based

In this section we discuss the results of the experiments that use a query
log as representation. Each peer is represented by a history of its queries.
Table 5.16 shows the results for ClueWeb09-B and Table 5.17 shows the
results for Gov2. We tested these collections both unweighted and size-

148

5.3 experiment

Table 5.16: ClueWeb09-B Top n Query Log (U)nweighted and Size-(W)eighted
Selection

Method #Terms P@5 P@10 P@30 P@100 MAP WP

U 10 0.16 0.14 0.09 0.04 0.03 0%
100 0.15 0.12 0.09 0.05 0.03 0%
1000 0.16 0.13 0.10 0.05 0.04 0%

W 10 0.15 0.13 0.10 0.05 0.04 0%
100 0.16 0.13 0.10 0.06 0.04 0%
1000 0.17 0.14 0.10 0.06 0.03 0%

Selecting at most 10 peers.

Table 5.17: Gov2 Top n Query Log (U)nweighted and Size-(W)eighted Selection

Method #Terms P@5 P@10 P@30 P@100 MAP

U 10 0.13 0.11 0.08 0.04 0.01
100 0.22 0.18 0.14 0.07 0.02
1000 0.26 0.24 0.18 0.11 0.04

W 10 0.17 0.15 0.11 0.06 0.02
100 0.26 0.21 0.16 0.09 0.03
1000 0.27 0.24 0.19 0.12 0.04

Selecting at most 10 peers.

149

selecting cooperative peers

weighted, using the algorithm discussed in Section 5.3.4. For ClueWeb09-
B the influence of the number of queries used is quite minimal. For lower
precision levels using fewer queries seems desirable, whereas higher pre-
cision levels can be boosted slightly by using more queries. Size-weighting
makes some difference, but the improvement is quite minimal, and there
is even some deterioration when using fewer queries. We never consult
Wikipedia, showing that it is not required for decent performance. The
results for Gov2 show something different though: using more queries
leads to larger performance gains, and also doubles the MAP. The un-
weighted results are somewhat similar to those using peer vocabularies
with global tf.idf in Table 5.11. Size-weighting gives a bigger boost for
Gov2 compared with ClueWeb09-B. Although, this diminishes as more
queries are used.

Using unweighted queries gives performance that is on par with us-
ing peer vocabularies, and does not show the diminishing performance
for ClueWeb09-B when using just terms. However, the gain from size
weighting is less prominent here than for peer vocabularies.

5.3.7 Document Sample based

In this section we evaluate the effectiveness of resource selection algo-
rithms that use a central sample index: ReDDE (Si and Callan, 2003a)
and CRCS (Shokouhi, 2007). When we create an index like this, we have
to choose how many documents we sample from each server. Since the
collection size in a peer-to-peer network can be heterogeneous, we use a
percentage of the number of documents in the index instead of a fixed
number. We aim to represent servers with about 300 documents, similar
to what is often randomly sampled by query-based sampling approaches
(Callan et al., 1999). We apply the following rule: we use a random selec-
tion of 1 percent of the document collection at each peer as sample, with
a minimum of 1 document and a maximum of 3,000. This gives us:

samplesize
(
Cp
)
= min

(
max

(
1,
∣∣Cp
∣∣ · 0.01

)
, 3000

)
, (5.8)

where Cp is a peer’s document collection. In the formulas in Section 5.1
samplesize

(
Cp
)

is referred to as
∣∣Sp
∣∣.

Wikipedia in ClueWeb09-B is an unreasonably large outlier: it consists
of 6 million documents, whereas the next largest server consists of only
about 30,000 or so. Hence, Wikipedia is capped to 3,000 documents. For

150

5.3 experiment

Table 5.18: ClueWeb09-B (R)eDDE and (C)RCS Selection

Method #Peers P@5 P@10 P@30 P@100 MAP WP

R-C 1 0.11 0.11 0.07 0.05 0.03 44%
3 0.16 0.15 0.09 0.05 0.03 25%
5 0.18 0.16 0.10 0.05 0.03 22%
10 0.17 0.16 0.09 0.06 0.04 19%

R-T 1 0.08 0.08 0.05 0.02 0.02 39%
3 0.14 0.12 0.07 0.03 0.02 24%
5 0.13 0.12 0.07 0.04 0.02 21%
10 0.13 0.12 0.07 0.04 0.03 18%

C-C 1 0.05 0.04 0.02 0.01 0.01 0%
3 0.09 0.07 0.05 0.02 0.02 0%
5 0.11 0.11 0.07 0.03 0.02 0%
10 0.13 0.13 0.09 0.04 0.03 0%

C-T 1 0.05 0.03 0.02 0.01 0.01 0%
3 0.09 0.07 0.04 0.02 0.01 0%
5 0.10 0.07 0.04 0.02 0.01 0%
10 0.11 0.08 0.05 0.02 0.02 0%

Based on Full (C)ontent or (T)itles.

Gov2 we used the same settings, here the largest peer has about 700,000
documents, and in fact only the top 19 servers have sizes above 300,000.
Hence, only these servers are slightly underrepresented.

Table 5.18 shows the results of using ReDDE and CRCS on ClueWeb09-
B. We select from 1, 3, 5 and 10 peers: commonly used values. The
selection of 10 peers can be compared against previous result tables. We
see CRCS consistently performs poorer than ReDDE and, again, just us-
ing titles gives reasonable performance. Comparing ReDDE’s selection
of 10 peers with selecting the 10 largest peers in Section 5.3.3, we see
that we might as well statically select the 10 largest peers, as this gives
better performance. While using just vocabularies does not work as well
as ReDDE, using size-weighted vocabularies gives similar performance
at a lower cost. Table 5.19 shows results for Gov2. The situation is re-
versed: CRCS outperforms ReDDE with few exceptions, results are good
compared with the baseline, also in terms of precision at higher levels.

151

selecting cooperative peers

Table 5.19: Gov2 (R)eDDE and (C)RCS Selection

Method #Peers P@5 P@10 P@30 P@100 MAP

R-C 1 0.06 0.05 0.04 0.02 0.01
3 0.13 0.12 0.09 0.05 0.02
5 0.17 0.16 0.12 0.08 0.02
10 0.24 0.23 0.18 0.12 0.04

R-T 1 0.06 0.05 0.03 0.01 <0.01
3 0.12 0.10 0.07 0.04 0.01
5 0.14 0.12 0.10 0.06 0.02
10 0.18 0.16 0.13 0.08 0.02

C-C 1 0.20 0.17 0.12 0.07 0.03
3 0.28 0.24 0.18 0.11 0.04
5 0.26 0.25 0.20 0.13 0.05
10 0.27 0.27 0.22 0.15 0.06

C-T 1 0.07 0.07 0.05 0.03 0.01
3 0.13 0.12 0.09 0.05 0.01
5 0.17 0.14 0.11 0.06 0.02
10 0.19 0.16 0.12 0.08 0.02

Based on Full (C)ontent or (T)itles.

Finally, let us look at ReDDE with the reputation adjustment. We use
two different sources to estimate a reputation for each peer in the network.
Firstly, the average content spam scores of all documents of the peer. Sec-
ondly, the average pagerank of all documents of the peer. We scale these
to a number between 0.0 and 1.0 and apply the ReDDE formula with the
reputation adjustment. Table 5.20 shows the results.

We also experimented with using the median page rank and spam score
of each server, as well as the page rank or spam score of the homepage or
index page of each peer. Unfortunately, none of these alternatives showed
consistently better results compared to just using the averages.

Perhaps we should look at other sources of information for determining
the reputation of peers. For example, in a dynamic system this can be
based on the behaviour of peers observed over time, see Section 3.4. We
experiment with an alternative simple reputation scheme that affects peer
selection in Section 6.3.

152

5.3 experiment

Table 5.20: ClueWeb ReDDE Reputation Selection using (S)pam Scores or
(P)ageranks

Method #Peers P@5 P@10 P@30 P@100 MAP WP

S-C 1 0.11 0.11 0.07 0.05 0.03 44%
3 0.15 0.14 0.09 0.05 0.03 26%
5 0.16 0.15 0.08 0.05 0.03 23%
10 0.16 0.15 0.09 0.06 0.04 20%

S-T 1 0.08 0.08 0.05 0.02 0.02 41%
3 0.13 0.11 0.06 0.03 0.02 24%
5 0.15 0.12 0.08 0.04 0.03 21%
10 0.15 0.12 0.08 0.04 0.03 18%

P-C 1 0.11 0.11 0.07 0.05 0.03 44%
3 0.16 0.15 0.09 0.05 0.03 26%
5 0.17 0.15 0.10 0.05 0.03 22%
10 0.16 0.15 0.09 0.06 0.04 20%

P-T 1 0.08 0.08 0.05 0.02 0.02 37%
3 0.13 0.12 0.07 0.03 0.02 24%
5 0.16 0.13 0.07 0.04 0.02 21%
10 0.14 0.12 0.07 0.04 0.03 18%

Based on Full (C)ontent or (T)itles.

153

selecting cooperative peers

Table 5.21: Approximate Storage Costs of each Approach

Complete (megabytes) Per Peer (bytes)
CW09-B Gov2 CW09-B Gov2

Random 0 0 0 0
Size 82 1/2 29 31
Vocabulary (C)
- 10 terms/peer 701 4 251 251
- 100 terms/peer 4,697 26 1,680 1,593
- 1000 terms/peer 24,576 213 8,789 12,973
- 1% 679 51 243 3,085
Vocabulary (T)
- 10 terms/peer 520 4 186 212
- 100 terms/peer 942 13 337 772
- 1000 terms/peer 1,292 37 462 2,282
- 1% 15 1 5 54
Term-Weighted Vocab. (C)
- 1000 terms/peer 35,761 278 12,789 16,973
Term-Weighted Vocab. (T)
- 1000 terms/peer 1,880 49 672 2,986
Query Log
- 10/peer 1,153 8 412 481
- 100/peer 3,396 25 1,215 1,504
- 1000/peer 6,503 54 2,326 3,314
Samples (C)* 12,481 1,233 4,464 75,230
Samples (T)* 108 4 39 214

* = counts exclude index overhead.

5.4 discussion

In Table 5.21 we show an overview of the actual cost of each method
in terms of storage space required at the tracker, that can be compared
against the estimates in Table 5.1 in Section 5.1.2. This includes the over-
head needed for storing the index, the host names of the peers, et cetera.
It gives a rough indication of the required storage space and how much
bandwidth would be needed to transfer peer representations. However,
the bandwidth required is likely lower than the estimates shown here,
as this would not include the overhead incurred by the indices. These

154

5.4 discussion

indices also require processing power to construct and maintain.
Since ClueWeb09-B has many more peers, the costs are higher than for

Gov2. However, the last two columns show the storage cost normalised
per peer, and thus provide a basis for comparison. For content vocab-
ularies only the count-based tracker index sizes are shown, since those
of local tf.idf and global tf.idf are comparable in size. The storage re-
quirements for samples are based on the random document sample used
during the experiments. Although random document samples can be dif-
ferent in size, the numbers reported here still give a rough impression of
the required storage space.

The least expensive option is random selection, but it also performs
poorly, particularly for ClueWeb. A simple size-based approach is the
first option that actually needs some storage space, and also the least
amount of all other approaches discussed. It requires about 30 bytes per
peer, for storing the peer’s hostname and size. The downside is that this
approach depends heavily on several large peers, using such a strategy
for selection exclusively would not be good for load balancing and would
also adversely affect the diversity of search results. While better than
random selection, it is not a feasible approach to use exclusively for a
large-scale real-world peer-to-peer information retrieval system.

Moving on, we see the vocabulary-based approaches get more expen-
sive as more terms are selected. However, this levels off more quickly
for ClueWeb09-B than for Gov2. The reason is that ClueWeb09-B con-
tains many small servers that do not consist of that many terms, a similar
argument holds true for the titles, that are on average shorter in Gov2,
but with a more uniform length distribution. Combining the vocabulary-
based approaches with size-weighting gives good performance and the
storage requirements for these are modest compared to storing document
samples. Selecting a percentage of the vocabulary is not very expensive,
in terms of space, compared with some of the higher fixed amounts.

In terms of required storage, anchors are more expensive to store than
individual terms. However, using top n = 1,000 term-weighted vocabular-
ies is the most expensive option in terms of storage space for ClueWeb09-
B, requiring almost 13 kilobytes per peer. For Gov2 the only more expen-
sive option is storing document samples. Using term-weighted vocabular-
ies is a necessity when using a fixed amount of terms with ClueWeb09-B.
However, for Gov2 it may be better to rely on plain or size-weighted vo-
cabularies instead.

155

selecting cooperative peers

5.5 conclusion

We have discussed and presented a range of methods for representing
peers in a peer-to-peer information retrieval network. With respect to the
centralised baselines, the methods particularly negatively affect the preci-
sion at higher levels (P@30, P@100). However, this may not be a problem
when one is interested only in the top results. The size of peers plays
a role in peer selection. Indeed, when no other information is available,
using just the size is a legitimate fallback option with a low cost com-
pared to the alternative when there is no information: random selection.
Document sampling-based approaches, like ReDDE and CRCS, give good
performance. However, they are expensive in terms of transmission and
storage costs. Using simple content-based top n term vocabularies, count-
based for ClueWeb09-B and based on the global tf.idf score for Gov2,
offers fair precision, but not as good as the document sample-based ap-
proaches. However, adapting the size-weighting, central to the sampling
approaches, offers competitive performance at a lower cost. Reweighting
by reputation is not effective with the reputation models we used. Using
top n term-weighted vocabularies, that include term frequency informa-
tion, seems a necessity for ClueWeb09-B, but not for Gov2. Finally, using
query logs offers decent performance, but has no advantage over using
just vocabularies.

It is difficult to give a definitive recommendation based on the results
presented, as we have seen that results also differ depending on the cor-
pus used. However, for a peer-to-peer information retrieval network it
seems best to let each peer transmit its size, and a top n vocabulary
preferably based on document content, but alternatively based on just
the document titles, including frequency information if possible. Extend-
ing this conclusion to non-cooperative peer-to-peer environments, this
implies that estimating the size of a peer and performing query-based
sampling using only document titles, should work well. Although using
larger snippets is explored in Section 4.4, using just document titles needs
to be further investigated, as does size estimation.

156

6
C A C H I N G S E A R C H R E S U LT S

‘The content people have no clue.
The cost of bandwidth is going

down to nothing and hard drives
are getting so big, and they’re so

cheap. The content distribution
industry is going to evaporate.’

Bram Cohen (in 2005)

Quickly providing search results for queries is an im-
portant feature of any large-scale web search engine. In
this chapter we investigate distributed demand-driven
search result caching as a means for keeping latency
low in a large peer-to-peer web search network, partic-
ularly for obtaining results for popular queries.

As we have learned, in peer-to-peer information retrieval a network of
peers provide a search service collaboratively. The term peer refers

to the fact that in a peer-to-peer system all peers are considered equal
and can both supply and consume resources. Each additional peer adds
extra processing capacity and bandwidth in contrast with typical clien-
t/server search systems where each additional client puts extra strain on
the server. When a peer-to-peer network has good load balancing proper-
ties it can scale up to handle millions of peers simultaneously. However,

This chapter is based on Tigelaar et al. (2011): Search Result Caching in Peer-to-Peer Infor-
mation Retrieval Networks, that appeared in Multidisciplinary Information Retrieval, Lecture
Notes in Computer Science 6653, c©Springer, 2011.

157

caching search results

performance is strongly affected by how well it can deal with the contin-
uous rapid joining and departing of peers called churn.

In this chapter we explore search result caching as a load balancing
strategy. We assume that for each query there is a peer that can provide a
set of original search results. If this query is posed often, that peer would
cripple under the demand for providing this set of results over and over
again. Hence, we propose that each peer that obtains search results for a
particular query caches those results. The effect is that search results for
popular queries can be obtained from many peers: high availability, and
the load on the peer that provided the original results is reduced: load
balancing.

We define the following research questions:

1. What fraction of queries can be potentially answered from caches?

2. How can the cache hit distribution be characterised?

3. What is the distribution of cached result sets given an unbounded
cache?

4. What is the effect of bounding the cache: how does the bound and
cache policy affect performance?

5. What optimisations can be applied to make caching more effective?

6. How does churn affect caching?

7. How can free-riding peers, that do not cache, be detected and pe-
nalised?

Most research in peer-to-peer information retrieval focuses on simulating
networks of hundreds (Skobeltsyn and Aberer, 2006) to thousands (Lu
and Callan, 2006a) of peers. In contrast, our experiments are of a larger
scale: using over half a million peers. To our knowledge, there is no
previous scientific work that investigates the properties of networks of
this size. Our motivation is that large peer-to-peer information retrieval
networks deserve more attention because of their real-world potential
(Lu, 2007) and that this size is in the range of operational peer-to-peer
networks used for other applications (Stutzbach and Rejaie, 2006).

Markatos (2001) analysed the effectiveness of caching search results for
a centralised web search engine, combined with a caching web acceler-
ator. His experiments suggest that one out of three queries submitted

158

caching search results

has already been submitted previously. Cache hit ratios between 25 to 75
percent are possible. He showed that even a small bounded cache (100
megabytes) can be effective, but that the hit ratios still increase slowly
when the cache size is increased to several gigabytes. The larger the cache,
the less difference the policy for replacing items in the cache makes. He
recommends taking into account both access frequency and recency.

Baeza-Yates et al. (2007b) analysed the performance of caching for a
centralised search engine. They compare both caching search results and
the posting lists of terms. They conclude that caching is an effective tech-
nique for improving response times, reducing the query processing load
and improving bandwidth utilisation. They find that caching posting lists
has a much lower miss rate than caching search results. They also intro-
duce their own caching policy for evicting terms from this cache that is
more effective than existing cache eviction policies.

Skobeltsyn and Aberer (2006) investigated how search result caching
can be used in a peer-to-peer information retrieval network. When a peer
issues a query, it first looks in a meta-index, kept in a distributed hash
table, to see if there are peers with cached results for this query. If so,
the results are obtained from one of those peers, but if no cached results
exist, the query is broadcast through the entire network. The costs of this
fallback are O (n) for a network of n peers. In our experiments we do not
distribute the meta-index, but focus only on a distributed cache. An ad-
ditional difference is that they always use query subsumption: obtaining
search results for subsets of the terms of the full query. They claim that
with subsumption, cache hit rates of 98 percent are possible as opposed
to 82 percent without. The authors also utilised bounded caches, but do
not show the effect of different limits.

Bhattacharjee et al. (2003) propose using a special data structure com-
bined with a distributed hash table to efficiently locate cached search re-
sult sets stored for particular term intersections. This is especially helpful
in approaches that store an inverted index with query terms, as it reduces
the amount of network traffic necessary for performing list intersections
for whole queries. This could be considered to be bottom-up caching:
first storing results for individual terms, then for combinations of terms
up to the whole query level. Whereas subsumption is top-down caching:
first storing results for the whole query, then for combinations of terms
and finally for individual terms.

159

caching search results

Table 6.1: Query Log Statistics

Users 651,647
Queries (All) 21,082,980
Queries (Unique) 10,092,307

6.1 experiment set-up

Our experiments give insight into the maximum benefits of caching. Each
experiment has been repeated at least five times, averages are reported.
No differences were observed that exceeded 0.5 percent. We assume there
are three types of peers: suppliers that have their own locally searchable
index, consumers that have queries to issue and mixed peers that have both.
In our experiments, the indices do not actually exist and we assume that,
for each query, a fixed set of pre-merged search results is available. We
also assume that all peers cooperate in caching search result sets unless
otherwise noted.

6.1.1 Dataset

To simulate a network of peers posing queries we use a large search en-
gine query log (Pass et al., 2006). This log consists of over twenty million
queries of users recorded over a time span of three months. Each unique
user in the log is a distinct peer in our experiment for a total of 651,647
peers. We made several adjustments. Firstly, some queries are censored
and appear in the log as a single dash, these were removed (Brenes and
Gayo-Avello, 2009). Secondly, we removed entries by one user in the log
that poses an unusually high number of queries: likely some type of
proxy. Furthermore, we assume that a search session lasts at most one
hour. If the exact same query was recorded multiple times in this time
window, these are assumed to be requests for subsequent search result
pages and are used only once in the simulation. Table 6.1 shows statis-
tics regarding the log. We play back the log in chronological order. One
day in the log, May 17th 2006, is truncated and does not contain data for
the full day. This has consequences for one of our experiments described
later. For clarity: we do not use real search results for the queries in the
log. In our experiments we assume that specific subsets of peers have
search result sets and obtain experimental results by counting hits only.

160

6.1 experiment set-up

6.1.2 Tracker

For query routing we introduce the tracker that keeps track of which peers
cache search result sets for each query. This is inspired by BitTorrent
(Cohen, 2003). However, in BitTorrent the tracker is used for locating a
specific file: exact search. A hash sequence based on a file’s contents yields
a list of all peers that have an exact copy of that particular file. In contrast,
we want to obtain a list of peers that have cached search result sets for
a specific free-text query: approximate search. See Section 3.5 for a more
detailed explanation.

The tracker can be implemented in various ways: as a single dedicated
machine, as a group of high capacity machines, as a distributed hash ta-
ble or by fully replicating a global data index over all peers. Let us first
explore if a single machine solution is feasible. The tracker needs to store
only queries and mappings to all peers in the network. We can make a
rudimentary calculation based on our log: storing IPv6 addresses for all
the 650,000 peers would take about 10 megabytes. Storing all the queries
in the log, assuming an average query length of 15 bytes (Pass et al., 2006;
McNamee and Mayfield, 2004), would take about 315 megabytes. Even
including the overhead of data structures we could store this within 1
gigabyte. Consider that most desktop machines nowadays have 4 giga-
bytes of main memory and disk space in the range of terabytes. However,
storage space is not the only aspect to consider, bandwidth is equally
important. Assume the tracker is connected to a 100 megabit line, that
can transfer 12.5 megabytes per second. The tracker receives queries, 15
bytes each, and sends out sets of peer addresses, let us say 10 per query:
160 bytes. This means a single machine can process 81,920 queries per
second. This works even if 12 percent of the participating peers query it
every second.

In our calculation we have made many idealisations, but it shows that
a single machine can support a large peer-to-peer network. Nevertheless,
there are three reasons to distribute the tracker. Firstly, a single machine
is also a single point of failure: if it becomes unreachable, due to techni-
cal malfunction or attacks, the peer-to-peer network is rendered useless.
Secondly, a single machine may become a bottleneck even outside its own
wrongdoing: for example due to poor bandwidth connections of partici-
pating peers. Thirdly, putting all this information in one place opens up
possibilities for manipulation. See also Section 3.5.

161

caching search results

0 5 10 15 20

0
2

4
6

8
10

Hit Distribution

Queries (x 1,000,000)

H

it
s

(x
 1

,0
00

,0
00

) Central Supplier Peer (Origin)
Consumer Peers (Caches)

Figure 6.1: Distribution of hits when peers perform result caching.

6.2 centralised experiments

Let us first consider the case where one supplier peer in the system is
the only peer that can provide search results. This peer does not pose
queries. This scenario provides a baseline that resembles a centralised
search system. Calculating the query load is trivial: all 21 million queries
have to be answered by this single central supplier peer. However, what if
the search results provided by the central supplier peer can be cached by
the consuming peers? In this scenario, the tracker makes the assumption
that all queries are initially answered by the central peer. When a con-
suming peer asks the tracker for advice for a particular query, this peer
is registered at the tracker as caching search results for that query. Subse-
quent requests for that same query are offloaded to caching peers. When
there are multiple caching peers for a query, one is selected randomly.
Furthermore, we assume unbounded caches for now.

Figure 6.1 shows the number of search results provided by the central
supplier peer and the summed hits on the caches at the consumers. Re-
sults for about half of the queries need to be given by the supplier at least
once. The other half can be served from consumer caches. Caching can
reduce the load on the central peer by about 50 percent, suggesting about
half the queries we see are unique, consistent with Zimmer et al. (2008).
Skobeltsyn and Aberer (2006) find only 18 percent of their queries are

162

6.2 centralised experiments

0 1 (1,2] (3,4] (5,6] (7,8] (9,10] (11,12] (13,14]

Share Ratios

Ratio

Pe

er
s

(x
 1

00
0)

0
10

0
30

0
50

0

Figure 6.2: Observed share ratios.

unique, perhaps because they use a Wikipedia trace. This is inconsistent
with our findings and those of others (Croft et al., 2010, p. 183).

Caching becomes more effective as more queries flow through the sys-
tem, because there are increasingly more repeated queries and less unique
queries. So, you always see slightly fewer new queries. Perhaps there is
mild influence of Heap’s law at the query level (Croft et al., 2010, p. 83).

How many results can a peer serve from its local cache and for how
many does it have to consult caches of other peers? The local cache hit
ratio climbs from around 22 percent for several thousand queries to 39
percent for all queries. These local hits are a result of re-search behaviour
(Teevan et al., 2007). The majority of hits, 61–78 percent, is external.

Let us take a look at external hits. We define a peer’s share ratio as:

shareratio = #cachehits/#queries, (6.1)

where #cachehits is the number of external hits on a peer’s cache: all hits
not caused by its own queries, and #queries the number of queries issued
by the peer. A shareratio of 0 means a peer’s cache is never used to answer
external queries, 1 that a peer handles as many queries as it poses and
above 1 indicates it serves results for more queries than it sends.

Figure 6.2 shows about 20 percent of peers does not share anything.
The majority, 68 percent, at least serve results for some queries, whereas
12 percent (80,000 peers) serve results for more queries than they issue.

163

caching search results

Number of Cached Results per Peer

Cached Results

Pe

er
s

(x
 1

00
0)

0
50

10
0

15
0

20
0

25
0

30
0

1 50 100 150 200 250

Figure 6.3: Observed cache sizes. Each bar represents 5 search result sets. The
horizontal axis extends to 7,500. The visible part of the graph covers
99.2 percent of all peers, each peer caches at least one result set.

6.2.1 Required Cache Sizes

So far we have assumed caches of unbounded size. This is not very re-
alistic since machines in a peer-to-peer network have limited resources.
Let us try to find out how big a cache we really need. Figure 6.3 shows
the distribution of the number of cached items per peer for the previous
experiment. We see that the vast majority of peers, about 225 thousand,
cache 1–5 result sets. The graph is cut-off after 250 results, but extends to
the highest number of cached items seen at a single peer: about 7,500.

How much space does it take to store a set of search results? Assume
that each set of results consists of 10 items and that each item consists of
a URI, a summary and some additional metadata, taking up 1 kilobyte
of space: 10 kilobytes per set. Even for the peer with the largest number
of cached results this takes only 73 megabytes. However, a cache of 5
items, 50 kilobytes, is much more typical. Table 6.2 gives an overview
of storage requirements for various search result set sizes. Most modern
personal computers can keep the entire cache in main memory, even with
a supporting data structure like a hash table.

164

6.2 centralised experiments

Table 6.2: Cache Storage Requirements in Megabytes (MB)

Result Set Size Low (5) Medium (100) High (7,500)

10 0.05 1 73
100 0.5 10 730

1,000 5 98 7,300
Assumes each search result takes up 1KB: 5 results for low, 100 for medium and 7,500 for high.

At the start of this section we discussed the share ratios: the relation-
ship between the number of queries posed by a peer and the number of
times that same peer’s cache was used by an other peer. A relationship
that is related is the number of queries posed versus the number of search
result sets cached. If a peer poses a query it automatically also caches re-
sults for that query so this is always at least 1, but may be more when it
consults its own cache frequently. The average is 1.19 standard deviation
±0.63 and the median is 1.06. Thus: an interesting property of the set-up
we have discussed is that machines that pose a lot of queries also need to
have more capacity in order to cache results: he who consumes the most
needs to provide the most.

6.2.2 Bounded Caches

As suggested in the previous subsection: it is possible to use unbounded
caches for at least some time. However, it is not very desirable to do
so for three reasons. Firstly, if systems run for an extended period of
time, the cache has to be bounded somehow, since they will run out of
space eventually. Secondly, there is no point in keeping around result sets
that are not requested any more. Thirdly, in a real system, search results
expire due to index updates at the suppliers.

We want to limit the size of the cache at some maximum number of
search result sets to keep. To this end we investigate three different cache
policies, with different limits on the cache size. When a new result set
has to be inserted in the cache and the cache limit is reached, the cache
policy comes into play.

The most basic policy when the cache limit is reached is to throw out
a random result set, this is called Random Replacement (RR) (Podlipnig
and Böszörmenyi, 2003). The advantage of this method is that it requires
no additional administration at all. The downside is that we may be

165

caching search results

L5 L10 L20 L50 L100 Infinite

Baseline
RR
LFU
LRU

Bounded Cache Performance

Pe
er

 C
ac

he
 H

it
s

(x
1,

00
0,

00
0)

0
2

4
6

8
10

Figure 6.4: Bounded cache performance. The total number of queries is
21,082,980. The bars show the amount serviceable from peer caches
for various per-peer cache size limits (5, 10, 20, 50 and 100) and strate-
gies (RR, LFU and LRU). The rightmost bar shows the performance
with unbounded caches.

throwing away valuable sets from the cache. What is valuable is conven-
tionally expressed using either frequency or recency which provides the
motivation for the two other policies tested (Markatos, 2001). In the Least
Frequently Used (LFU) policy, the search result set that was consulted the
least amount of times, meaning: that has the least hits, is removed. In
Least Recently Used (LRU) the search result set that was least recently con-
sulted is removed. In the case of LFU there can be multiple ‘least’ sets
that have the same lowest hit count. If this occurs, a random choice is
made among those sets.

Figure 6.4 shows the hit distribution for the baseline unbounded cache
and the RR, LFU and LRU caching strategies with various cache limits
after running through the entire log. Experiments were conducted with
per-peer cache limits of 5, 10, 20, 50 and 100 result sets. We can see that
a higher cache limit brings the results closer to the unbounded baseline,
which is what we would expect. The most basic policy, Random Replace-
ment, performs worst, particularly when the cache size is small (L5, L10).

166

6.2 centralised experiments

However, it performs almost the same as the LFU algorithm for large
caches (L50, L100). In fact LFU performs quite poorly across the board,
inconsistent with Zimmer et al. (2008). We believe this is caused by the
fact that there can be many sets with the same hit count in a cache, which
degrades LFU to RR. For all cases the LRU policy is clearly superior. Al-
though, the higher the limit, the less it matters what policy is used, also
found by Markatos (2001). L100/LRU with 10 results per set takes only 1
megabyte of space and achieves 99.1 percent of the performance of using
unbounded caches.

6.2.3 Optimisations

In this subsection we use unbounded caches and investigate the impact of
several optimisations: stopword removal, reordering, stemming and query sub-
sumption. These techniques map multiple queries, that were previously
considered distinct, to one common query representation. Since the num-
ber of representations is lower than the original number of queries, the
strain of serving original search results on the central supplier peer is also
lower. This capitalises on the fact that there are cached copies of search
result sets available for similar queries.

For stopword removal we remove words from queries that match those
in a stopword list used by Apache Lucene consisting of 33 English terms.
For reordering, the words in the query are alphabetically sorted, for ex-
ample: from ‘with MacCutcheon you live happily ever after’ to ‘after
ever happily live MacCutcheon with you’. The last common technique is
stemming, for example from ‘airplane’ and ‘airplanes’ to ‘airplan’. This
example also shows the well known drawback of stemming: that of reduc-
ing distinct meanings to an unrelated form. We used the Porter2 English
stemming algorithm (Porter, 2001).

We ran experiments with the three described techniques individually
and combined. The first five rows of Table 6.3 show the results. Without
any optimisations, the central peer has to serve 47.9 percent of all queries.
Applying stopping or re-ordering only marginally improves this by about
a half percent. Stemming offers the most improvement: over 1.6 percent.
Combining techniques is effective and yields a 3.1 percent improvement,
exceeding the sum of the individual techniques.

One final technique, that is less commonly used, is query subsumption
(Skobeltsyn and Aberer, 2006). When a full query yields no search results,

167

caching search results

Table 6.3: Cache Hits for Various Optimisations (×1,000)

Central Internal External

Baseline 10,092 47.9% 4,237 20.1% 6,754 32.0%
Sto(P) 9,993 47.4% 4,265 20.2% 6,824 32.4%
(R)eorder 9,992 47.4% 4,274 20.3% 6,816 32.3%
(S)tem 9,768 46.3% 4,359 20.7% 6,955 33.0%
P+R+T 9,449 44.8% 4,462 21.2% 7,172 34.0%

S(U)bsumption 6,352 26.5% 7,239 30.2% 10,365 43.3%
P+R+T+U 5,773 22.3% 8,335 32.1% 11,834 45.6%

Shows what party answers what query as an absolute number and percentage. The first
five rows have a total query count of 21 million, the sixth 24 and the seventh 26 million.

subsumption breaks the query into multiple subqueries. This process
iterates with increasingly smaller subqueries until at least one of these
queries yields search results. The subqueries generated are combinations,
with no repetition, of the terms in the full query Q. The length goes
down each iteration, starting from len(Q)− 1 terms to a minimum of 1
term. For example, given a resultless query Q of length three: ‘a b c’, we
next try the three combinations of length two: ‘a b’, ‘a c’ and ‘b c’. If that
yields no results we try all combinations of length one, which are the indi-
vidual terms ‘a’, ‘b’ and ‘c’. The rationale for iterating top-down, from the
whole query to the individual terms, is that longer queries are more spe-
cific and are thus expected to yield more specific, higher-quality, results.
Long queries can generate an unwieldy number of possible subqueries.
Therefore, we restrict the maximum number of generated combinations
at any level to 1000, to keep it manageable.

In our experiment we evaluate at each iteration whether there is a query
that yields at least one search result set. If so, all queries at that same
iteration level, for which there are cached result sets, generate cache hits.
Hence, for the example above, if for the full query ‘a b c’ search results
are not available, but there is at least one result at the level of individual
terms: ‘a’, ‘b’ and ‘c’. The full query can generate 1–3 cache hits: one for
each individual term for which a result set is available. This thus causes
the total amount of cache hits to increase beyond the number of original
queries and simulates the effect of increased query load for merging result
sets from multiple peers.

168

6.3 decentralised experiments

Table 6.3 shows the results in the bottom two rows. As mentioned
the total amount of cache hits is different: 24 million for subsumption
alone, a 13.6 percent increase. Nevertheless, performance improves with
21.4 percent less strain on the central peer. Combining subsumption with
the three other techniques further increases the query total to nearly 26
million, but also further decreases the central peer load by 4.2 percent.
The trade-off with subsumption is a higher total query load, but a lower
load on the central peer. It reduces query-level caching to term-level
caching that is known to have higher hit rates (Croft et al., 2010, p. 183)

All the discussed optimisations decrease precision in favour of higher
recall. Hence, the quantity of search results for a particular query goes up,
but the quality is likely to go down. Whether such a trade-off is justified
depends on how sparse the query space is to begin with. However, for a
general search engine, it certainly makes sense to apply some, if not all,
of these techniques.

6.3 decentralised experiments

Now that we have shown the effectiveness of caching for offloading one
central peer, we make the scenario more realistic. Instead of a central peer
we introduce n peers that are both supplier and consumer. These mixed
peers are chosen at random. They serve search results, pose queries and
participate in caching. The remaining peers are merely consumers that
can only cache results.

The central hits in the previous sections become hits per supplier in this
scenario. We assume unbounded caches and no optimisations to focus on
the differences between the centralised and decentralised case. How does
the distribution of search results affect the external cache hit ratios of the
supplier peers? We examine two distribution cases:

single supplier For each query there is always only exactly one sup-
plier with unique relevant search results.

multiple suppliers The number of supplier peers that have relevant
results for a query depends on the popularity. There is always at
least one supplier, but the more popular a query the more suppliers
there are: up to all n suppliers for very popular queries.

For simplicity we assume in both cases that there is only one set of search
results per query. In the first case this set is present at exactly one supplier

169

caching search results

Table 6.4: Original Search Results and Cache Hits (×1,000)

Single Multiple

Suppliers (origin) 11,599 12,111
Consumers internal (caches) 3,683 3,930
Consumers external (caches) 5,801 5,042

10,000 peers are suppliers operating in mixed mode.

peer. However, the second case is more complicated: among the mixed
peers we distribute the search results by considering each peer as a bin
covering a range in the query frequency histogram. We assume that for
each query there is at least one peer with relevant results. However, if
a query is more frequent it can be answered by more peers. The most
frequent queries can be served by all n suppliers. The distribution of
search results is, like the queries themselves, Zipf over the suppliers. We
believe that this is realistic, since popular queries on the Internet tend
to have many search results as well. In this case the random choice is
between a variable number m of n peers that supply search results for a
given query. Thus, when the tracker receives a query for which there are
multiple possible peers with results, it chooses one randomly.

We performed two experiments to examine the influence on query load.
The first is based on the single supplier case. The second is based on the
multiple suppliers case. For multiple suppliers we first used the query log
to determine the popularity of queries and then used this to generate the
initial distribution of search results over the suppliers. This distribution
is performed by randomly assigning the search results to a fraction of
the suppliers depending on the query popularity. Since normally the
query popularity can only be approximated, the results represent an ideal
outcome. We used n = 10,000 supplier peers in a network of 651,647
peers in total (about 1.53 percent). This mimics the World Wide Web with
a small number of websites and a very large number of surfing clients.

Figure 6.5 and Table 6.4 show the results. The number of original search
results provided by the suppliers is about five percent higher than in the
central peer scenario. This is the combined effect of no explicit offloading
of the supplier peers by the tracker, and participation of the suppliers
in caching for other queries. In the second case there is slightly more
load on the supplier peers than in the first case: 57 percent versus 55

170

6.3 decentralised experiments

1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000

Supplier External Hits

External Hits

Su

pp
lie

rs

0
10

00
30

00
50

00

Single Supplier
Multiple Suppliers

Figure 6.5: Supplier external hit distributions (n = 10,000 suppliers).

percent. The hit distribution in Figure 6.5 is similar even though the
underlying assumptions are different. About 87 percent of peers answer
between 1,000 and 1,500 queries. A very small number of peers answers
up to about five times that many queries. Differences are found near
the low end, that seems somewhat more spread in the single supplier
than in the multiple suppliers case. Nevertheless, all these differences
are relatively small. The distribution follows a wave-like pattern with
increasingly smaller peaks: near 1300, 2500, 3700 and 4900 (not shown).
The cause of this is unknown.

6.3.1 Churn

The experiments thus far have shown the maximum improvements that
are attainable with caching. In this subsection we add one more level of re-
alism: we no longer assume that peers are on-line infinitely. We base this
experiment on the single supplier case where the search results are uni-
formly distributed over the suppliers. The query log contains timestamps
and we assume if a specific peer has not issued a query for some period
of time, its session has ended and its cache is temporarily no longer avail-
able. If the same peer issues a query later, it comes back on-line and its

171

caching search results

cache becomes available again. This simulates churn in a peer-to-peer
network where peers join and depart from the network. We assume the
presence of persistent peer identifiers, also used in real-world peer-to-
peer systems (Pouwelse et al., 2008a). All peers, including supplier peers,
are subject to churn. For bootstrapping: if there are no suppliers on-line,
an off-line one is randomly chosen to provide results.

Assuming that all peers are on-line for a fixed amount of time is unre-
alistic. Stutzbach and Rejaie (2006) show that download session lengths,
post-download lingering time and the total up-time of peers in peer-to-
peer file sharing networks are best modelled by using Weibull distributions.
However, our scenario differs from file sharing. An information retrieval
session does not end when a search result has been obtained, rather it
spans multiple queries over some length of time. Even when a search
session ends, the machine itself is usually not immediately turned off or
disconnected from the Internet. This leads us to two important factors
for estimating how long peers remain joined to the network. Firstly, there
should be some reasonable minimum that covers at least a browsing ses-
sion. Secondly, up-time should be used rather than ‘download’ session
length. As soon as a peer issues its first query we calculate the remaining
up-time of that peer in seconds as follows :

remaininguptime = 900 + (3600 · 8) · w, (6.2)

where w is a random number drawn from a Weibull distribution with
λ = 2 and k = 1. The w parameter is usually near 0 and very rarely near
10. The up-time thus spans from at least 15 minutes to at most about
80 hours. About 20 percent of the peers is on-line for longer than one
day. This mimics the distribution of up-times as reported in Stutzbach
and Rejaie (2006), making the assumption that the uptime of peers in file
sharing systems resembles that of information retrieval systems.

Figure 6.6 shows the results: the number of origin search results served
by suppliers as well as the number of internal and external hits on the
caches of consumer peers. We see the number of supplier hits increases to
over 12.75 million: over 1.16 million more compared to the situation with
no churn. The majority of this increase can be attributed to a decrease in
the number of external cache hits. The dotted cloud shows the size of the
peer-to-peer network on the right axis: this is the number of peers that is
on-line simultaneously. We can see that this varies somewhere between

172

6.3 decentralised experiments

1
2

3
4

5
6

7

A

ct
iv

e
Pe

er
s

(x
 1

0,
00

0)

0 5 10 15 20

0
5

10
15

20
Hit Distribution (Churn)

Queries (x 1,000,000)

H

it
s

(x
 1

,0
00

,0
00

)

Suppliers C. Internal C. External Network Size

Figure 6.6: Distribution of hits under churn conditions (n = 651,647 peers).

about 30,000 and 80,000 peers. There is a sudden dip in the graph caused
by the earlier described log truncation on one specific date. A rhythmic
pattern can also be seen, which may be circadian in nature.

We also ran this distributed experiment with churn with a L100 LRU
cache and all optimisations enabled: stopping, re-ordering, stemming
and query subsumption. This yields a cache hit ratio of 69 percent (for
25.45 million queries) for this most realistic scenario.

6.3.2 Reputations

As a final experiment we drop the cooperativeness assumption partially
and assume that there are some peers in the network that do not want to
cache. From a peer’s perspective a cache takes up space and cache hits
consume bandwidth. Hence, if a peer can get away with not caching any
search results while it can still use the caches of other peers, that would
give it the largest utility at the lowest cost. This would be somewhat sim-
ilar to a situation that can occur in BitTorrent: a peer trying to download
from other peers without uploading back to them. Whilst this behaviour
is optimal for the peer, it is not optimal for the network as a whole. To
prevent a ‘tragedy of the commons’ BitTorrent uses a tit-for-tat mecha-

173

caching search results

nism: if I can download from you, I will give you some upload in return.
Unfortunately, this is difficult to apply directly to peer-to-peer informa-
tion retrieval, since the interests of peers are usually not symmetric at the
exact same time (see also Section 3.5.2). Hence, we introduce a simple
binary reputation system to handle this. A peer has a positive reputation
by default, but its reputation can become negative based on its behaviour.

In this experiment we divide the consumer peers into two groups: those
that cache and those that do not cache. There is a 50 percent probability
of ending up in either group. The supplier peers always cache, we as-
sume unbounded caches and all peers start out with a positive reputation.
When a peer poses a query, receives advice from the tracker, and, based
on that, contacts a peer that caches, everything proceeds as normal. How-
ever, if the peer contacted does not cache it is ‘caught’. This is reported
to the tracker that sets the reputation of the offending peer to negative.
Thereafter, the querying peer will try to obtain cached results from other
peers. In worst case it has to resort to a supplier. Before a caching peer
provides search results it checks the reputation of the requesting peer at
the tracker. When the requesting peer’s reputation is negative, caching
peers will not interact with it anymore, a grim trigger, and thus the peer
has to resort to always contacting the suppliers. These are assumed to be
slower due to their higher query processing load.

We perform the experiment using the single supplier case with n =

10,000 suppliers in mixed mode, consuming and supplying, and no opti-
misations, like stemming or subsumption, enabled. Over the experiment
runs there were an average 321,108 peers out of the 651,647 that engaged
in non-caching behaviour, a little less than half of the total number of
peers, as the suppliers always cache. The average number of peers getting
caught not caching was 272,691: nearly 85 percent. Hence, the detection
mechanism is fairly effective in identifying free-riding peers.

Table 6.5 shows the total number of hits for each type of peer and the
amount of those hits that were on the suppliers. We define that having
less supplier hits is better, as it means the other hits are being served from
peer caches. We can see that the caching consumer peers, which includes
the suppliers themselves operating in mixed mode, are able to utilise the
caches of other peers most effectively: only about 54 percent of the hits
is on suppliers. The second group are the peers that are not-caching
and that are also not caught doing so, they are already less effective,
requiring the suppliers for over 61 percent of their queries. The penalty

174

6.4 conclusion

Table 6.5: Hits for the Reputation Experiment (×1,000)

Total Hits Supplier Hits %

Caching Consumers 11,181 6,045 54.1%
Non-Caching Consumers (Not Caught) 1,569 964 61.4%
Non-Caching Consumers (Caught) 8,332 6,811 81.7%

that they are already paying by not caching is that not caching also has the
consequence that there can be no internal cache hits. For repeated queries
such peers thus have to utilise the network again: shooting themselves in
the foot. Finally, there is the group of non-caching consumers that are
caught at some point, they have to contact the suppliers for nearly 82
percent of all queries. Hence, they can still get away with using some of
the caches, but they are heavily penalised in terms of performance when
they are caught.

6.4 conclusion

We conducted several experiments that simulate a large-scale peer-to-peer
information retrieval network. Our research questions can be answered
as follows:

1. At least 50 percent of the queries can be answered from search result
caches in a centralised scenario. For the decentralised case cache
hits up to 45 percent are possible.

2. Share ratios, the rate between cache hits and issued queries, are
skewed which suggests that additional mechanisms are needed for
cache load balancing.

3. The typical cache is small, with outliers for eager consuming peers.
Peers that issue many queries also provide lots of cached results.

4. Small bounded caches approach the performance of unbounded
caching. The Least Recently Used (LRU) cache replacement pol-
icy consistently outperforms the other policies. However, the larger
the cache, the less the policy matters. If each peer were to keep
just 100 cached search result sets, the performance is 99.1 percent of
unbounded caches.

175

caching search results

5. We have shown that stopword removal, stemming and alphabetical
term re-ordering can be combined to boost the amount of cache hits
by about 3.1 percent. Query subsumption can increase cache hits by
21.4 percent, to nearly 80 percent, but also imposes a higher total
query load. All of the optimisation techniques trade search result
quality for quantity. However, they all improve the effective usage
of caches.

6. Introducing churn reduces the maximum attainable cache hits to
33 percent (-12 percent) without optimisations and 69 percent (-11
percent) with optimisations.

7. A simple reputation scheme is effective for detecting 85 percent of
free-riding peers, that can be effectively penalised by redirecting
them to slower peers for obtaining search results.

We have shown the potential of caching under increasingly realistic condi-
tions using a large query log. Caching search results significantly offloads
the origin suppliers that provide search results under all considered sce-
narios using this log. Our set-up has nice scaling properties, where the
supply matches with the demand for search results. These experiments
could be extended by adding extra layers of realism. For example, indi-
vidual search results could be used instead of fixed result sets, allowing
merging and construction of new search result sets.

We have explored several fundamental caching policies showing that
Least Recently Used (LRU) is the best approach for our scenario. How-
ever, more advanced policies could be explored that include frequency as
a component such as 2Q, LRFU or ARC (Markatos, 2001; Megiddo and
Modha, 2003; Podlipnig and Böszörmenyi, 2003). These techniques com-
bine advantages of LRU and LFU. Nevertheless, in reality there may be
more than just LRU/LFU to take into account. For example queries per-
taining to current events for which the relevant search results frequently
change. The result sets for such queries should have a short time to live,
whereas there are queries for which the search results change very rarely,
these could be cached much longer. Making informed decisions about
invalidation requires knowledge about the rate of change for particular
queries (Blanco et al., 2010). Perhaps this information, or an estimate
thereof, could be made an integral part of the search results, similar to
the way in which Domain Name System (DNS) records work. Further-

176

6.4 conclusion

more, we assumed the capacity of the tracker is unbounded. However, a
policy similar to what is used to maintain peer caches could be applied
there too. This does have the consequence that the tracker loses track of
search results that are available, but for which the mappings have been
thrown away. The fact that caching requires keeping track of which peers
issued what query raises privacy concerns that we have not addressed
here. This basic problem is shared with BitTorrent and other file sharing
networks and can be alleviated to some extent using onion routing at the
cost of additional latency, although this does not solve the problem com-
pletely (Goldschlag et al., 1999; Le Blond et al., 2010). Finally, we have
not investigated peer selection and result merging in this chapter, both of
which are relevant for real-world systems (Lu, 2007). An investigation of
peer selection is contained in Chapter 5.

177

7
C O N C L U S I O N

‘Some things need to be
believed to be seen...’

Guy Kawasaki

Many important concepts and distinctions have been
introduced and the research topics from the introduc-
tion chapter have been explored. What conclusions can
we draw from our investigation and experiments?

This thesis began with the aim of fusing peer-to-peer computing with
information retrieval, as to provide the groundwork for developing

a distributed alternative to the contemporary centralised web search en-
gines. We started with a set of research topics in the introductory chapter,
each of which we will address in the following paragraphs:

RT 1. What is peer-to-peer information retrieval, how does it dif-
fer from related research fields and what are its unique challenges?
(Chapter 2)

Peer-to-peer information retrieval uses the bandwidth, storage and pro-
cessing capacity of machines at the edge of the network to provide a free-
text search service capable of returning relevant search results for queries
with minimal delay. It shares the three main tasks central to all peer-to-
peer networks: searching, locating and transferring. However, in peer-to-
peer information retrieval, the emphasis is on distributing the first task:
searching. This differs from peer-to-peer file sharing where the emphasis
is on the transfer task. When searching, the goal is to maximise the rele-
vance of the results while minimising the latency to obtain those results.

179

conclusion

In contrast, when transferring, the goal is maximising the transfer speed
for obtaining an exact copy of a resource selected in the initial search step.
Furthermore, searching in information retrieval networks focuses on free
text search within the contents of documents, whilst searching in file shar-
ing networks conventionally considers only the names of documents, not
their actual content.

Peer-to-peer information retrieval overlaps with federated information
retrieval, and shares its central challenges: resource description, collec-
tion selection and result merging. However, the key difference is that
in federated information retrieval all queries and search results are chan-
nelled through a centralised mediator party. This enforces a strict division
between the consumers and providers of information. In peer-to-peer in-
formation retrieval the predominant mode of interaction is with other
peers, not with a centralised mediator.

We identified a number of key challenges for peer-to-peer networks
with respect to usage guarantees, behaviour of peers and evaluation. Chal-
lenges unique and important to peer-to-peer information retrieval are
minimising latency, maintaining index freshness and developing test col-
lections (Tigelaar et al., 2012). We also presented an economic perspective
on peer-to-peer search.

RT 2. What general peer-to-peer architectures, information retrieval
systems and optimisation techniques already exist? (Chapter 2 and
Chapter 3)

We organised the main architectures around index placement, and identi-
fied four types of indices that are used: the centralised global index, the
distributed global index, aggregated local indices and strict local indices.
Each has different consequences for query routing and processing. Most
existing research and systems today use a combination of these, with the
distributed global index and aggregated local indices being the most pop-
ular. We have also shown the difference between a one-step index, where
keys map directly to documents, and a two-step index, where the keys
map to peers and the peers contain document mappings.

We showed various optimisations that can be applied in peer-to-peer
information retrieval networks to reduce bandwidth usage and latency
and to improve the quality and quantity of the search results returned.
Besides this we gave an overview and classification of existing systems,
like Minerva, ALVIS and PHIRST (Bender et al., 2005b; Luu et al., 2006;

180

conclusion

Rosenfeld et al., 2009). We also looked at applied optimisations, like:
search result caching, topical clustering and global index replication. Fi-
nally, we discussed the future of peer-to-peer information retrieval, indi-
cating specific challenges and key areas to focus on, the most important
of which are: emphasising precision over recall, focusing on search re-
sults instead of documents, combining the strengths of local and global
indices, applying clustering, using search result caching, performing load
balancing and using relevance feedback (Tigelaar et al., 2012).

We gave an impression of how economics can be applied to peer-to-
peer systems and presented a peer-to-peer information retrieval architec-
ture that uses BitTorrent as inspiration (Cohen, 2003). Whilst BitTorrent
is a file sharing peer-to-peer network, that focuses on quickly transfer-
ring files, its basic incentive mechanism can be adapted for minimising
latency and maximising relevance when conducting searches. Central to
BitTorrent is the presence of a tracker that maintains global knowledge.
While we often think of this tracker as a centralised party, its functionality
can be distributed over the peers that make up the network. In fact, this
natural evolution has already taken place for BitTorrent.

RT 3. How can content at uncooperative peers, and existing external
search systems, be made searchable? (Chapter 4)

For modelling the contents of uncooperative peers we investigated a tech-
nique that uses probe queries and downloads the documents in the re-
turned search results: query-based sampling (Callan, 2000). The sample
documents obtained this way are used as resource description of the peer.
New queries can be scored against this to estimate the relevance of a
peer for a particular query. Conventionally, random queries are used
for probing. We experimented with different ways of query selection.
However, only using the least-frequent terms as queries showed a very
marginal improvement in terms of similarity to using the full language
model of the peers. Furthermore, we presented a method where the doc-
uments themselves are no longer downloaded. Instead, it uses the doc-
ument summaries that are part of each search result. This gives better
modelling performance per unit of bandwidth consumed. Whilst this ap-
proach takes longer to converge to a representative resource description:
more query-result retrieval iterations are needed, its strength is that it
does not require any additional downloading beyond the search results
that are already returned anyway (Tigelaar and Hiemstra, 2009, 2010b).

181

conclusion

RT 4. How could we best represent the content of cooperative peers
to maximise the relevance of search results? (Chapter 5)

It is difficult to give a general recommendation for peer representation,
as this depends on the characteristics of the collections of each peer. Al-
though using peer size is a poor selection criterion by itself, it performs
better than random and is effective when combined with other methods.
It seems that representing peers by simple term vocabularies combined
with size weighting is an effective method that gives results competitive
with the more conventional document sampling approach. For certain col-
lections term-weighted vocabularies can offer even better performance.

RT 5. How can we distribute the query load and minimise the la-
tency for retrieving search results? (Chapter 6)

We have shown that by having peers maintain fairly small search result
caches, holding onto copies of search result sets for 100 previously issued
queries, is effective for distributing the query load. With optimisations
nearly 70 percent of queries can be answered from peer caches despite
peers turning on and off. However, the share ratios of peers, the number
of cached result sets a peer holds versus the number of queries a peer
poses, is skewed. This suggests that additional mechanism are needed to
enforce fair load balancing (Tigelaar and Hiemstra, 2011; Tigelaar et al.,
2011). We showed that a simple reputation system can discourage peers
from free-riding in a caching peer-to-peer information retrieval network.

We have seen the strengths of peer-to-peer networks: each peer is equal
and can both supply and consume resources. Important advantages of
these networks are that they have no central point of failure, are self-
organising and self-scaling. However, we have also learned about the
challenges such an environment poses. A peer-to-peer network typically
consists of thousands of low-cost machines all with different processing
and storage capacities, as well as different link speeds. This makes it
more difficult to provide a consistent quality of service in terms of re-
trieval latency and data availability. Not all peers are on-line all the time,
and as a result a peer-to-peer network is subject to churn: the joining and
departing of peers. For information retrieval, one of the central problems
in this environment is routing queries to available peers with relevant re-
sults. At least some of these challenges can be solved by using incentives
for participation.

182

conclusion

Peer-to-peer technology has the potential to offer a robust solution to
the ethical and technical problems that plague centralised solutions and
deserves more attention. In this thesis we have given a clear definition
of peer-to-peer information retrieval and what distinguishes it from re-
lated and overlapping fields, like file sharing and federated information
retrieval. Furthermore, we provided an overview of what has been done
so far and what choices can be made when implementing a system in
practice. Both of these aspects are important for future research and devel-
opment of real-world systems. We have also investigated several specific
problems experimentally, particularly focusing on peer representations
and load balancing mechanisms. These concrete contributions may aid
in the design and construction of a large-scale peer-to-peer web search
engine, which is the primary goal of this thesis.

183

B I B L I O G R A P H Y

Aberer, K. and Hauswirth, M. 2002. An Overview on Peer-to-Peer In-
formation Systems. In Proceedings of the Workshop on Distributed Data
& Structures (WDAS’02), Paris, France. Proceedings in Informatics 14,
Carleton Scientific 2002, 171–188. (pages 16, 19, and 22).

Adamic, L. A., Lukose, R. M., Puniyani, A. R., and Huberman, B. A.
2001. Search in Power-law Networks. Physical Review E 64, 4, 046135:1–
046135:8. (pages 19 and 51).

Akavipat, R., Wu, L.-S., Menczer, F., and Maguitman, A. G. 2006.
Emerging Semantic Communities in Peer Web Search. In Proceedings of
the Workshop on Information Retrieval in Peer-to-Peer Networks (P2PIR’06),
Arlington, VA, US. ACM Press, New York, NY, US, 1–8. (pages 4, 49,
50, 51, 52, and 54).

Andrade, N., Brasileiro, F., Cirne, W., and Mowbray, M. 2004a. Dis-
couraging Free Riding in a Peer-to-Peer CPU-Sharing Grid. In Proceed-
ings of the IEEE International Symposium on High Performance Distributed
Computing (HPDC’04), Honolulu, HI, US. IEEE Computing Society, Los
Alamitos, CA, US, 129–137. (pages 69 and 73).

Andrade, N., Mowbray, M., Cirne, W., and Brasileiro, F. 2004b. When
can an Autonomous Reputation Scheme Discourage Free-riding in a
Peer-to-Peer system? In Proceedings of the IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’04), Chicago, IL, US. IEEE
Computer Society, Los Alamitos, CA, US, 440–448. (pages 69 and 73).

Arguello, J., Callan, J., and Díaz, F. 2009a. Classification-based Re-
source Selection. In Proceeding of the ACM Conference on Information and
Knowledge Management (CIKM’09), Hong Kong, CN. ACM, New York,
NY, US, 1277–1286. (page 128).

185

bibliography

Azzopardi, L., de Rijke, M., and Balog, K. 2007. Building Simulated
Queries for Known-item Topics: An Analysis using Six European Lan-
guages. In Proceedings of the ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval (SIGIR’07), Amsterdam, NL. ACM Press,
New York, NY, US, 455–462. (page 108).

Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras,
V., and Silvestri, F. 2007b. The Impact of Caching on Search Engines.
In Proceedings of the ACM SIGIR Conference on Research & Development
in Information Retrieval (SIGIR’07), Amsterdam, NL. ACM Press, New
York, NY, US, 183–190. (pages 49 and 159).

Bailey, P., Craswell, N., and Hawking, D. 2003. Engineering a Multi-
purpose Test Collection for Web Retrieval Experiments. Information
Processing & Management 39, 6, 853–871. (pages 39, 87, and 122).

Baillie, M., Azzopardi, L., and Crestani, F. 2006a. Adaptive Query-
based Sampling of Distributed Collections. In Proceedings of the Confer-
ence on String Processing and Information Retrieval (SPIRE’06), Glasgow,
UK. Springer-Verlag, Heidelberg, DE, 316–328. (pages 89, 91, 92, 107,
and 108).

Baillie, M., Carman, M. J., and Crestani, F. 2009. A Topic-based Mea-
sure of Resource Description Quality for Distributed Information Re-
trieval. In Proceedings of the European Conference on Information Retrieval
Research (ECIR’09), Toulouse, FR. Springer-Verlag, Heidelberg, DE, 485–
497. (page 119).

Balke, W.-T., Nejdl, W., Siberski, W., and Thaden, U. 2005. Progressive
Distributed Top-k Retrieval in Peer-to-Peer Networks. In Proceedings
of the International Conference on Data Engineering (ICDE’05), Tokyo, JP.
IEEE Computer Society, Los Alamitos, CA, US, 174–185. (pages 46
and 47).

Bar-Yossef, Z. and Gurevich, M. 2006. Random Sampling from a Search
Engine’s Index. In Proceedings of the Conference on the World Wide Web
(WWW’06), Edinburgh, UK. ACM Press, New York, NY, US, 367–376.
(pages 92 and 98).

186

bibliography

Bar-Yossef, Z. and Gurevich, M. 2008b. Random Sampling from a
Search Engine’s Index. Journal of the ACM 55, 5, 1–74. (pages 98
and 108).

Bawa, M., Manku, G. S., and Raghavan, P. 2003. SETS: Search Enhanced
by Topic Segmentation. In Proceedings of the ACM SIGIR Conference on
Research & Development in Information Retrieval (SIGIR’03), Toronto, ON,
CA. ACM Press, New York, NY, US, 306–313. (pages 10, 42, 49, and 52).

Bender, M., Michel, S., Triantafillou, P., and Weikum, G. 2007. Design
Alternatives for Large-scale Web Search: Alexander was Great, Aeneas
a Pioneer, and Anakin has the Force. In Proceedings of the Workshop on
Large-Scale and Distributed Systems for Information Retrieval (LSDS-IR’07),
Amsterdam, NL. 16–22. (page 52).

Bender, M., Michel, S., Triantafillou, P., Weikum, G., and Zimmer, C.
2005a. Improving Collection Selection with Overlap Awareness in P2P
Search Engines. In Proceedings of the ACM SIGIR Conference on Research
& Development in Information Retrieval (SIGIR’05), Salvador, BR. ACM
Press, New York, NY, US, 67–74. (page 56).

Bender, M., Michel, S., Triantafillou, P., Weikum, G., and Zimmer,
C. 2005b. MINERVA: Collaborative P2P Search. In Proceedings of the
Conference on Very Large Databases (VLDB’05), Trondheim, NO. 1263–
1266. (pages 4, 32, 52, 55, and 180).

Bender, M., Michel, S., Triantafillou, P., Weikum, G., and Zimmer, C.
2006. P2P Content Search: Give the Web Back to the People. In Pro-
ceedings of the International Workshop on Peer-to-Peer Systems (IPTPS’06),
Santa Barbara, CA, US. (pages 52 and 55).

Bendersky, M., Croft, W. B., and Diao, Y. 2011. Quality-biased Ranking
of Web Documents. In Proceedings of the ACM Conference on Web Search
and Data Mining (WSDM’11), Hong Kong, CN. ACM Press, New York,
NY, USA, 95–104. (page 137).

Bergholz, A. and Chidlovskii, B. 2003. Using Query Probing to Iden-
tify Query Language Features on the Web. In Proceedings of the SIGIR
Workshop on Distributed Information Retrieval, Toronto, ON, CA. 21–30.
(page 93).

187

bibliography

Bergman, M. K. 2001. The Deep Web: Surfacing Hidden Value. Journal
of Electronic Publishing 7, 1. (pages 3 and 90).

Bharambe, A. R., Herley, C., and Padmanabhan, V. N. 2005. Analyzing
and Improving BitTorrent Performance. Tech. Rep. MSR-TR-2005-03,
Microsoft Research. Feb. (page 80).

Bhattacharjee, B., Chawathe, S., Gopalakrishnan, V., Keleher, P.,
and Silaghi, B. 2003. Efficient Peer-to-Peer Searches Using Result-
Caching. In Proceedings of the International Workshop on Peer-to-Peer Sys-
tems (IPTPS’03), Berkeley, CA, US. 225–236. (page 159).

Blanco, R., Bortnikov, E., Junqueira, F., Lempel, R., Telloli, L., and
Zaragoza, H. 2010. Caching Search Engine Results over Incremental
Indices. In Proceedings of the ACM SIGIR Conference on Research & De-
velopment in Information Retrieval (SIGIR’10), Geneva, CH. ACM Press,
New York, NY, US, 82–89. (page 176).

Bloom, B. H. 1970. Space/time Trade-offs in Hash Coding with Allow-
able Errors. Communications of the ACM 13, 7, 422–426. (page 44).

Brenes, D. J. and Gayo-Avello, D. 2009. Stratified Analysis of AOL
Query Log. Information Sciences 179, 12, 1844–1858. (page 160).

Buntine, W., Aberer, K., Podnar, I., and Rajman, M. 2005. Opportu-
nities from Open Source Search. In Proceedings of the Conference on Web
Intelligence (WI’05), Compiègne, FR. 2–8. (pages 52 and 56).

Buragohain, C., Agrawal, D., and Suri, S. 2003. A Game Theoretic
Framework for Incentives in P2P Systems. In Proceedings of the IEEE
Conference on P2P Computing (P2P’03), Linköping, SE. IEEE Computer
Society, Los Alamitos, CA, US, 48–56. (pages 26, 29, and 73).

Bustamante, F. and Qiao, Y. 2004. Friendships that Last: Peer Lifespan
and its Role in P2P Protocols. In Proceedings of the International Workshop
on Web Content Caching and Distribution (IWCW’03), Hawthorne, NY, US.
Kluwer Academic Publishers, Norwell, MA, US, 233–246. (page 18).

188

bibliography

Buyya, R., Stockinger, H., Giddy, J., and Abramson, D. 2001. Economic
Models for Management of Resources in Peer-to-Peer and Grid Com-
puting. In Proceedings of the Symposium on The Convergence of Informa-
tion Technologies and Communications (ITCom’01), Denver, CO, US. SPIE,
Bellingham, WA, US, 13–25. (pages 26, 27, and 28).

Callan, J. 2000. Distributed Information Retrieval. In Advances in Infor-
mation Retrieval. Kluwer Academic Publishers, 127–150. (pages 24, 34,
123, and 181).

Callan, J. and Connell, M. 2001. Query-based Sampling of Text
Databases. ACM Transactions on Information Systems 19, 2, 97–130.
(pages 86, 87, 91, 93, 94, 98, 107, and 112).

Callan, J., Connell, M., and Du, A. 1999. Automatic Discovery of Lan-
guage Models for Text Databases. In Proceedings of the ACM SIGMOD
Conference on Management of Data (SIGMOD’99), Philadelphia, PA, US.
ACM Press, New York, NY, US, 479–490. (pages 89, 91, 94, 98, 107, 124,
and 150).

Callan, J., Lu, Z., and Croft, W. B. 1995. Searching Distributed Collec-
tions with Inference Networks. In Proceedings of the ACM SIGIR Confer-
ence on Research & Development in Information Retrieval (SIGIR’95), Seat-
tle, WA, US. ACM Press, New York, NY, US, 21–28. (pages 35 and 124).

Chang, K. C.-C., He, B., Li, C., Patel, M., and Zhang, Z. 2004. Struc-
tured Databases on the Web: Observations and Implications. ACM
SIGMOD Record 33, 3, 61–70. (page 91).

Chang, K. C.-C., He, B., and Zhang, Z. 2005. Toward Large Scale Integra-
tion: Building a MetaQuerier over Databases on the Web. In Proceedings
of the Conference on Innovative Data Systems Research (CIDR’05), Asilomar,
CA, US. 44–55. (page 93).

Chernov, S., Serdyukov, P., Bender, M., Michel, S., Weikum, G., and
Zimmer, C. 2005. Database Selection and Result Merging in P2P Web
Search. In Proceedings of the Conference on Databases, Information Systems,
and Peer-to-Peer Computing (DBISP2P’05), Trondheim, NO. Springer-
Verlag, Heidelberg, DE, 26–37. (page 52).

189

bibliography

Chidlovskii, B., Glance, N. S., and Grasso, M. A. 2000. Collaborative
Re-Ranking of Search Results. In Proceedings of AAAI-2000 Workshop on
AI for Web Search, Austin, TX, US. 18–23. (page 4).

Clarke, C., Craswell, N., and Soboroff, I. 2004. Overview of the
TREC 2004 Terabyte Track. In Proceedings of the Text REtrieval Conference
(TREC’04). National Institute of Standards and Technology, Gaithers-
burg, MD, US. (pages 39 and 131).

Clarke, C., Craswell, N., and Soboroff, I. 2009. Overview of the TREC
2009 Web Track. In Proceedings of the Text REtrieval Conference (TREC’09).
National Institute of Standards and Technology, Gaithersburg, MD, US.
(page 131).

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. 2001. Freenet: A
Distributed Anonymous Information Storage and Retrieval System. In
Proceedings of the Workshop on Designing Privacy Enhancing Technologies
(PET’00), Berkeley, CA, US. Springer-Verlag, New York, NY, US, 46–66.
(page 17).

Cohen, B. 2003. Incentives Build Robustness in BitTorrent. In Proceed-
ings of the Workshop on Economics of Peer-to-Peer Systems (P2PEcon’03),
Berkeley, CA, US. (pages 15, 70, 74, 79, 161, and 181).

Craswell, N. and Hawking, D. 2009. Web Information Retrieval. In In-
formation Retrieval: Searching in the 21st Century, A. Göker and J. Davies,
Eds. John Wiley & Sons, Ltd., Chichester, UK, 85–101. (page 62).

Crespo, A. and Garcia-Molina, H. 2004. Semantic Overlay Networks
for P2P Systems. In Proceedings of the International Workshop on Agents
and Peer-to-Peer Computing (AP2PC’04), New York, NY, US. Springer-
Verlag, Heidelberg, DE, 1–13. (pages 19 and 49).

Croft, W. B., Metzler, D., and Strohman, T. 2010. Search Engines:
Information Retrieval in Practice 1st Ed. Pearson Education. ISBN
9780131364899. (pages 163 and 169).

Crosby, S. A. and Wallach, D. S. 2007. An Analysis of BitTorrent’s Two
Kademlia-based DHTs. Tech. Rep. TR-07-04, Department of Computer
Science, Rice University, Houston, TX, US. June. (page 81).

190

bibliography

Cuenca-Acuna, F. M., Martin, R. P., and Nguyen, T. D. 2003. Plan-
etP: Using Gossiping to Build Content Addressable Peer-to-Peer Infor-
mation Sharing Communities. In Proceedings of the IEEE International
Symposium on High-Performance Distributed Computing (HPDC’03), Seat-
tle, WA, US. IEEE Computer Society, Los Alamitos, CA, US, 236–249.
(pages 18, 44, 46, 48, and 52).

Dagan, I., Lee, L., and Pereira, F. 1997. Similarity-based Methods for
Word Sense Disambiguation. In Proceedings of the Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (EACL’97),
Madrid, ES. Association for Computational Linguistics, Stroudsburg,
PA, US, 56–63. (page 90).

Dang, V. and Croft, W. B. 2010. Query Reformulation using Anchor
Text. In Proceedings of the ACM Conference on Web Search and Data Mining
(WSDM’10), New York, NY, USA. ACM Press, New York, NY, USA, 41–
50. (page 127).

Daswani, N., Garcia-Molina, H., and Yang, B. 2003. Open Problems
in Data-Sharing Peer-to-Peer Systems. In Proceedings of the International
Conference on Database Theory (ICDT’03), Siena, IT. Springer-Verlag, Lon-
don, UK, 1–15. (pages 12, 15, and 24).

Datta, A., Hauswirth, M., John, R., Schmidt, R., and Aberer, K. 2005.
Range Queries in Trie-structured Overlays. In Proceedings of the IEEE
Conference on P2P Computing (P2P’05), Konstanz, DE. IEEE Computer
Society, Los Alamitos, CA, US, 57–66. (page 49).

Davis, M. D. 1983. Game Theory: A Nontechnical Introduction 2nd Ed. Dover
Publications. ISBN 9780486296722. (pages 29 and 30).

Di Buccio, E., Masiero, I., and Melucci, M. 2009. Improving Informa-
tion Retrieval Effectiveness in Peer-to-Peer Networks through Query
Piggybacking. In Proceedings of the European Conference on Digital Li-
braries (ECDL’09), Corfu, GR. Springer-Verlag, Heidelberg, DE, 420–424.
(pages 32, 52, and 58).

Du, A. and Callan, J. 1998. Probing a Collection to Discover its Lan-
guage Model. Tech. Rep. UM-CS-1998-029, University of Massachusetts,
Amherst, MA, US. July. (pages 35 and 91).

191

bibliography

Edelman, B. 2010. Hard-coding Bias in Google ‘Algorithmic’ Search Re-
sults. http://www.benedelman.org/hardcoding/ (Retrieved June 24th
2012). (page 3).

Eiron, N. and McCurley, K. S. 2003. Analysis of Anchor Text for Web
Search. In Proceedings of the ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval (SIGIR’03), Toronto, ON, CA. ACM Press,
New York, NY, US, 459–460. (page 116).

Fagin, R., Lotem, A., and Naor, M. 2001. Optimal Aggregation Algo-
rithms for Middleware. In Proceedings of the Symposium on Principles of
Database Systems (PODS’01), Santa Barbara, CA, US. ACM Press, New
York, NY, US, 102–113. (page 47).

Fagni, T., Perego, R., Silvestri, F., and Orlando, S. 2006. Boosting the
Performance of Web Search Engines: Caching and Prefetching Query
Results by Exploiting Historical Usage Data. ACM Transactions on Infor-
mation Systems 24, 1, 51–78. (pages 49 and 83).

Falkner, J., Piatek, M., John, J. P., Krishnamurthy, A., and Anderson,
T. 2007. Profiling a Million User DHT. In Proceedings of the ACM SIG-
COMM Conference on Internet Measurement (IMC’07), San Diego, CA, US.
ACM Press, New York, NY, US, 129–134. (page 81).

Fallen, C. T. and Newby, G. B. 2006. Partitioning the Gov2 Corpus by
Internet Domain Name: A Result-set Merging Experiment. In Proceed-
ings of the Text REtrieval Conference (TREC’06). National Institute of Stan-
dards and Technology. (pages 39 and 137).

Feldman, M., Lai, K., Stoica, I., and Chuang, J. 2004. Robust Incentive
Techniques for Peer-to-Peer Networks. In Proceedings of the ACM Con-
ference on Electronic Commerce (EC’04), New York, NY, US. ACM Press,
New York, NY, US, 102–111. (pages 70 and 73).

Ferguson, D. F., Nikolaou, C., Sairamesh, J., and Yemini, Y. 1996.
Economic Models for Allocating Resources in Computer Systems.
In Market-based Control: a Paradigm for Distributed Resource Allocation.
World Scientific Publishing Co., Inc., River Edge, NJ, US, 156–183.
(pages 26, 27, and 28).

Flynn, S. M. 2005. Economics for Dummies 1st Ed. Pearson Education.
ISBN 9789043011358 (Dutch Translation). (page 27).

192

http://www.benedelman.org/hardcoding/

bibliography

Freyne, J., Smyth, B., Coyle, M., Balfe, E., and Briggs, P. 2004. Fur-
ther Experiments on Collaborative Ranking in Community-based Web
Search. Artificial Intelligence Review 21, 3, 229–252. (page 4).

Friedman, E. J. and Resnick, P. 2001. The Social Cost of Cheap
Pseudonyms. Journal of Economics & Management Strategy 10, 2, 173–
199. (pages 70 and 73).

Fuhr, N. 1999. A Decision-theoretic Approach to Database Selection in
Networked IR. ACM Transactions on Information Systems 17, 3, 229–249.
(page 52).

Galanis, L., Wang, Y., Jeffery, S., and DeWitt, D. 2003. Processing
Queries in a Large Peer-to-Peer System. In Proceedings of the Conference
on Advanced information Systems Engineering (CAiSE’03), Klagenfurt, AT.
Springer-Verlag, Heidelberg, DE, 273–288. (pages 3, 48, and 58).

Girdzijauskas, S., Galuba, W., Darlagiannis, V., Datta, A., and
Aberer, K. 2011. Fuzzynet: Ringless Routing in a Ring-like Structured
Overlay. Peer-to-Peer Networking and Applications 4, 3, 259–273. (page
22).

Goldschlag, D., Reed, M., and Syverson, P. 1999. Onion Routing. Com-
munications of the ACM 42, 2, 39–41. (page 177).

Golle, P., Leyton-Brown, K., Mironov, I., and Lillibridge, M. 2001.
Incentives for Sharing in Peer-to-Peer Networks. In Proceedings of the
ACM Conference on Electronic Commerce (EC’01), Tampa, FL, US. ACM
Press, New York, NY, US, 264–267. (page 29).

Gravano, L., Chang, K. C.-C., Garcia-Molina, H., Lagoze, C., and
Paepcke, A. 1997. Stanford Protocol Proposal for Internet Retrieval and
Search. Tech. rep., Stanford University. Jan. (pages 35 and 125).

Gravano, L., Garcia-Molina, H., and Tomasic, A. 1999. GlOSS: Text-
source Discovery over the Internet. ACM Transactions on Database Sys-
tems 24, 2, 229–264. (pages 35, 124, and 125).

Grothoff, C. 2003. An Excess-based Economic Model for Resource Al-
location in Peer-to-Peer Networks. Wirtschaftsinformatik 3. (pages 68
and 73).

193

bibliography

Harman, D. K. 1993. Overview of the First TREC Conference. In Pro-
ceedings of the ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval (SIGIR’93), Pittsburgh, PA, US. ACM Press, New York,
NY, US, 36–47. (page 112).

Harman, D. K. 1994. Overview of the Third Text REtrieval Conference
(TREC-3). In Proceedings of the Third Text REtrieval Conference (TREC-3).
Gaithersburg, MD, US, National Institute of Standards and Technology.
(page 87).

Hawking, D. and Thomas, P. 2005. Server Selection Methods in Hybrid
Portal Search. In Proceedings of the ACM SIGIR Conference on Research
& Development in Information Retrieval (SIGIR’05), Salvador, BR. ACM
Press, New York, NY, US, 75–82. (page 131).

Hawking, D., Voorhees, E., Craswell, N., and Bailey, P. 2000.
Overview of the TREC-8 Web Track. Tech. rep., National Institute of
Standards and Technology, Gaithersburg, MD, US. Nov. (page 87).

He, B., Patel, M., Zhang, Z., and Chang, K. C.-C. 2007. Accessing the
deep web. Communications of the ACM 50, 5, 94–101. (page 91).

He, J., Balog, K., Hofmann, K., Meij, E., de Rijke, M., Tsagkias, M., and
Weerkamp, W. 2009. Heuristic Ranking and Diversification of Web
Documents. In Proceedings of the Text REtrieval Conference (TREC’09),
Gaithersburg, MD, US. National Institute of Standards and Technology.
(page 137).

Herbert, F. 1965. Dune. Chilton Books. Based on Dune World and The
Prophet of Dune, ISBN 9780801950773.

Huebsch, R., Chun, B., Hellerstein, J. M., Loo, B. T., Maniatis, P.,
Roscoe, T., Shenker, S., Stoica, I., and Yumerefendi, A. R. 2005. The
Architecture of PIER: an Internet-scale Query Processor. In Proceedings
of the Conference on Innovative Data Systems Research (CIDR’05), Asilomar,
CA, US. 28–43. (page 57).

Ide, N. and Suderman, K. 2010. The Open American National Corpus.
http://www.americannationalcorpus.org/ (Retrieved June 24th 2012).
(page 87).

194

http://www.americannationalcorpus.org/

bibliography

Ipeirotis, P. G. and Gravano, L. 2002. Distributed Search over the Hid-
den Web: Hierarchical Database Sampling and Selection. In Proceedings
of the Conference on Very Large Databases (VLDB’02), Hong Kong, CN.
394–405. (pages 92 and 107).

Ipeirotis, P. G. and Gravano, L. 2008. Classification-aware Hidden-web
Text Database Selection. ACM Transactions on Information Systems 26, 2,
1–66. (pages 92 and 107).

Jian, L. and MacKie-Mason, J. K. 2008. Why Share in Peer-to-Peer Net-
works? In Proceedings of the International Conference on Electronic Com-
merce (ICEC’08), Innsbruck, AT. ACM Press, New York, NY, US, 4:1–4:8.
(pages 72 and 73).

Jordan, C., Watters, C., and Gao, Q. 2006. Using Controlled Query Gen-
eration to Evaluate Blind Relevance Feedback Algorithms. In Proceed-
ings of the ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’06),
Chapel Hill, NC, US. ACM Press, New York, NY, US, 286–295. (pages
97 and 107).

Joseph, S. 2002. NeuroGrid: Semantically Routing Queries in Peer-to-Peer
Networks. In Proceedings of the Networking 2002 Workshops on Web En-
gineering and Peer-to-Peer Computing, Pisa, IT. Springer-Verlag, London,
UK, 202–214. (pages 14, 51, 52, and 58).

Kalogeraki, V., Gunopulos, D., and Zeinalipour-Yazti, D. 2002. A
Local Search Mechanism for Peer-to-Peer Networks. In Proceedings
of the Conference on Information and Knowledge Management (CIKM’02),
McLean, VA, US. ACM Press, New York, NY, US, 300–307. (pages 51
and 52).

Kamvar, S. D., Schlosser, M. T., and Garcia-Molina, H. 2003. The
EigenTrust Algorithm for Reputation Management in P2P Networks. In
Proceedings of the Conference on the World Wide Web (WWW’03), Budapest,
HU. ACM Press, New York, NY, US, 640–651. (pages 13, 67, 68, and 73).

Karakaya, M., Körpeoğlu, I., and Ulusoy, Ö. 2007. Counteracting Free
Riding in Peer-to-Peer Networks. Computer Networks 52, 3, 675–694.
(pages 65, 72, and 73).

195

bibliography

Keyani, P., Larson, B., and Senthil, M. 2002. Peer Pressure: Distributed
Recovery from Attacks in Peer-to-Peer Systems. In Proceedings of the Net-
working 2002 Workshops on Web Engineering and Peer-to-Peer Computing,
Pisa, IT. Springer-Verlag, London, UK, 306–320. (page 13).

Kilgarriff, A. and Rose, T. 1998. Measures for Corpus Similarity and
Homogeneity. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP’98), Granada, ES. Association for
Computational Linguistics, Stroudsburg, PA, US, 46–52. (page 115).

Kirsch, S. T. 1997. Document Retrieval over Networks wherein Ranking
and Relevance Scores are Computed at the Client for Multiple Database
Documents. United States Patent 5,659,732. (pages 36 and 136).

Klampanos, I. A. and Jose, J. M. 2004. An Architecture for Information
Retrieval over Semi-collaborating Peer-to-Peer Networks. In Proceed-
ings of the ACM Symposium on Applied Computing (SAC’04), Nicosia, CY.
ACM Press, New York, NY, US, 1078–1083. (pages 25, 42, 49, 54, 57,
and 123).

Klampanos, I. A. and Jose, J. M. 2007. An Evaluation of a Cluster-based
Architecture for Peer-to-Peer Information Retrieval. In Proceedings of
the International Conference on Database and Expert Systems (DEXA’07),
Regensburg, DE. 380–391. (pages 49, 50, and 62).

Klampanos, I. A., Poznański, V., Jose, J. M., and Dickman, P. 2005. A
suite of testbeds for the realistic evaluation of peer-to-peer information
retrieval systems. In Proceedings of the European Conference on Information
Retrieval Research (ECIR’05), Santiago de Compostela, ES. 38–51. (pages
13, 38, 39, 62, and 131).

Kleinberg, J. M. 2006. Complex Networks and Decentralized Search Al-
gorithms. In Proceedings of the International Congress of Mathematicians
(ICM’06), Madrid, ES. 1019–1044. (page 22).

Krishnan, R., Smith, M. D., Tang, Z., and Telang, R. 2002. The Vir-
tual Commons: Why Free-riding can be Tolerated in File Sharing Net-
works. In Proceedings of the International Conference on Information Sys-
tems (ICIS’02), Barcelona, ES. (pages 13, 71, and 73).

196

bibliography

Krishnan, R., Smith, M. D., Tang, Z., and Telang, R. 2007. Digital
Business Models for Peer-to-Peer Networks: Analysis and Economic
Issues. Review of Network Economics 6, 2, 194–213. (pages 4 and 28).

Kulathuramaiyer, N. and Balke, W.-T. 2006. Restricting the View and
Connecting the Dots - Dangers of a Web Search Engine Monopoly. Jour-
nal of Universal Computer Science 12, 12, 1731–1740. (page 3).

Kurose, J. F. and Ross, K. W. 2003. Computer Networking: A Top-Down Ap-
proach Featuring the Internet 2nd Ed. Addison-Wesley. ISBN 0201976994.
(pages 9, 10, and 19).

Le Blond, S., Legout, A., Lefessant, F., Dabbous, W., and Kaafar, M. A.
2010. Spying the World from your Laptop: Identifying and Profil-
ing Content Providers and Big Downloaders in BitTorrent. In Proceed-
ings of the USENIX Conference Large-scale Exploits and Emergent Threats
(LEET’10), San Jose, CA, US. USENIX Association, Berkeley, CA, US.
(page 177).

Lele, N., Wu, L.-S., Akavipat, R., and Menczer, F. 2009. Sixearch.org
2.0 Peer Application for Collaborative Web Search. In Proceedings of the
ACM Conference on Hypertext and Hypermedia (HT’09), Torino, IT. ACM
Press, New York, NY, US, 333–334. (pages 49, 52, and 54).

Lempel, R. and Moran, S. 2003. Predictive Caching and Prefetching of
Query Results in Search Engines. In Proceedings of the Conference on the
World Wide Web (WWW’03), Budapest, HU. ACM Press, New York, NY,
US, 19–28. (pages 49 and 83).

Lesniewski-Laas, C. and Kaashoek, M. F. 2010. Whanau: A Sybil-proof
Distributed Hash Table. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI’10), San Jose, CA,
US. USENIX Association, Berkeley, CA, US, 8–24. (page 18).

Lewandowski, D., Wahlig, H., and Meyer-Bautor, G. 2006. The Fresh-
ness of Web Search Engine Databases. Journal of Information Science 32, 2,
131–148. (page 3).

Leyton-Brown, K. and Shoham, Y. 2008. Essentials of Game Theory: A
Concise, Multidisciplinary Introduction eBook Ed. Morgan & Claypool.
ISBN 978159829548. (pages 26 and 29).

197

bibliography

Li, C., Yu, B., and Sycara, K. 2009. An Incentive Mechanism for Message
Relaying in Unstructured Peer-to-Peer Systems. Electronic Commerce
Research and Applications 8, 6, 315–326. (pages 51 and 63).

Li, J., Loo, B. T., Joseph, L., Hellerstein, J. M., Karger, D. R., Morris,
R., and Kaashoek, M. F. 2003. On the Feasibility of Peer-to-Peer Web
Indexing and Search. In Proceedings of the International Workshop on Peer-
to-Peer Systems (IPTPS’03), Berkeley, CA, US. 207–215. (pages 41, 42,
and 43).

Liang, J., Kumar, R., and Ross, K. W. 2006. The FastTrack Overlay: A
Measurement Study. Computer Networks 50, 6, 842–858. (page 20).

Loo, B. T., Huebsch, R., Stoica, I., and Hellerstein, J. M. 2004. The
Case for a Hybrid P2P Search Infrastructure. In Proceedings of Proceed-
ings of the International Workshop on Peer-to-Peer Systems (IPTPS’04), San
Diego, CA, US. 141–150. (page 57).

Lu, J. 2007. Full-text Federated Search in Peer-to-Peer Networks. Ph.D.
thesis, Carnegie Mellon University. CMU-LTI-07-003. (pages 19, 22, 32,
35, 36, 37, 39, 42, 131, 136, 158, and 177).

Lu, J. and Callan, J. 2003. Content-based Retrieval in Hybrid Peer-to-
Peer Networks. In Proceedings of the Conference on Information and Knowl-
edge Management (CIKM’02), New Orleans, LA, US. ACM Press, New
York, NY, US, 199–206. (pages 39, 122, 125, 127, 131, 142, and 148).

Lu, J. and Callan, J. 2006a. Full-text Federated Search of Text-based
Digital Libraries in Peer-to-Peer Networks. Information Retrieval 9, 4,
477–498. (pages 20, 32, and 158).

Lu, J. and Callan, J. 2007. Content-based Peer-to-Peer Network Overlay
for Full-text Federated Search. In Proceedings of Recherche d’Information
Assistée par Ordinateur (RIAO’07), Pittsburgh, PA, US. 490–509. (page
49).

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., and Lim, S. 2005. A Sur-
vey and Comparison of Peer-to-Peer Overlay Network Schemes. Com-
munications Surveys & Tutorials 7, 2, 72–93. (pages 17, 20, and 24).

198

bibliography

Luu, T., Klemm, F., Podnar, I., Rajman, M., and Aberer, K. 2006.
ALVIS Peers: A Scalable Full-text Peer-to-Peer Retrieval Engine. In Pro-
ceedings of the Workshop on Information Retrieval in Peer-to-Peer Networks
(P2PIR’06), Arlington, VA, US. ACM Press, New York, NY, US, 41–48.
(pages 4, 46, 52, 56, and 180).

Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. 2002. Search and
Replication in Unstructured Peer-to-Peer Networks. In Proceedings of
the International Conference on Supercomputing (ICS’02), New York, NY,
US. ACM Press, New York, NY, US, 84–95. (pages 19, 51, and 125).

Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., and
Halevy, A. Y. 2008. Google’s Deep Web Crawl. Proceedings of the VLDB
Endowment 1, 2, 1241–1252. (page 92).

Maier, G., Feldmann, A., Paxson, V., and Allman, M. 2009. On
Dominant Characteristics of Residential Broadband Internet Traffic. In
Proceedings of the ACM SIGCOMM Conference on Internet Measurement
(IMC’09), Chicago, IL, US. ACM Press, New York, NY, US, 90–102.
(page 74).

Manning, C. D., Raghavan, P., and Schütze, H. 2008. Introduction to
Information Retrieval 1st Ed. Cambridge University Press, New York,
NY, US. ISBN 9780521865715. (pages 89, 95, 108, and 110).

Manning, C. D. and Schütze, H. 1999. Foundations of Statistical Natural
Language Processing 1st Ed. MIT Press, Cambridge, MA, US. ISBN
9780262133609. (page 89).

Markatos, E. P. 2001. On Caching Search Engine Query Results. Com-
puter Communications 24, 2, 137–143. (pages 158, 166, 167, and 176).

Maymounkov, P. and Mazières, D. 2002. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In Proceedings of the Inter-
national Workshop on Peer-to-Peer Systems (IPTPS’02), Cambridge, MA,
US. 53–65. (pages 17 and 76).

McGraw-Hill. 2002. McGraw-Hill Dictionary of Scientific and Technical
Terms 6th Ed. McGraw-Hill Professional. ISBN 9780070423138. (page
1).

199

bibliography

McNamee, P. and Mayfield, J. 2004. Character N-Gram Tokenization
for European Language Text Retrieval. Information Retrieval 7, 1, 73–97.
(page 161).

Megiddo, N. and Modha, D. S. 2003. ARC: A Self-tuning, Low Over-
head Replacement Cache. In Proceedings of the USENIX Conference on
File And Storage Technologies (FAST’03), San Francisco, CA, US. USENIX
Association, Berkeley, CA, US, 115–130. (page 176).

Menczer, F., Wu, L.-S., and Akavipat, R. 2008. Intelligent Peer Networks
for Collaborative Web Search. Artificial Intelligence Magazine 29, 3, 35–46.
(pages 52 and 54).

Michel, S., Bender, M., Triantafillou, P., and Weikum, G. 2006. IQN
Routing: Integrating Quality and Novelty in P2P Querying and Rank-
ing. In Proceedings of the International Conference on Extending Database
Technology (EDBT’06), Munich, DE. 149–166. (pages 44, 45, 52, and 56).

Michel, S., Triantafillou, P., and Weikum, G. 2005a. KLEE: A Frame-
work for Distributed Top-k Query Algorithms. In Proceedings of the
International Conference on Very Large Databases (VLDB’05), Trondheim,
NO. 637–648. (pages 44, 46, and 47).

Michel, S., Triantafillou, P., and Weikum, G. 2005b. MINERVA in-
finity: A Scalable Efficient Peer-to-Peer Search Engine. In Proceedings of
the International Conference on Middleware’05. Springer-Verlag, New York,
NY, US, 60–81. (page 55).

Milojicic, D. S., Kalogeraki, V., Lukose, R. M., Nagaraja, K., Pruyne,
J., Richard, B., Rollins, S., and Xu, Z. 2003. Peer-to-Peer Computing.
Tech. rep., Hewlett-Packard Company. July. (page 12).

Monnerat, L. and Amorim, C. 2009. Peer-to-Peer Single Hop Dis-
tributed Hash Tables. In Proceedings of the IEEE Conference on Global
Telecommunications (GLOBECOM’09), Honolulu, HI, US. IEEE Press, Pis-
cataway, NJ, US. (pages 17 and 22).

Monroe, G., French, J. C., and Powell, A. L. 2002. Obtaining Language
Models of Web Collections using Query-based Sampling Techniques.
In Proceedings of the Hawaii International Conference on System Sciences
(HICSS’02), Big Island, HI, US. Vol. 3. IEEE Computer Society, Wash-
ington, DC, US, 1241–1247. (page 91).

200

bibliography

Mowshowitz, A. and Kawaguchi, A. 2002. Assessing Bias in Search
Engines. Information Processing & Management 38, 1, 141–156. (page 3).

Myerson, R. B. 1997. Game Theory: Analysis of Conflict 1st Ed. Harvard
University Press. ISBN 9780674341166. (page 30).

Nah, F. F.-H. 2004. A Study on Tolerable Waiting Time: How Long are
Web Users Willing to Wait? Behaviour & Information Technology 23, 3,
153–163. (page 37).

Naicken, S., Basu, A., Livingston, B., and Rodhetbhai, S. 2006. A
Survey of Peer-to-Peer Network Simulators. In Proceedings of the An-
nual Postgraduate Symposium on the Convergence of Telecommunications,
Networking and Broadcasting (PGNet’06), Liverpool, UK. (page 13).

Naicken, S., Livingston, B., Basu, A., Rodhetbhai, S., Wakeman, I.,
and Chalmers, D. 2007. The State of Peer-to-Peer Simulators and Sim-
ulations. ACM SIGCOMM Computer Communication Review 37, 2, 95–98.
(page 13).

Neumann, T., Bender, M., Michel, S., Weikum, G., Bonnet, P., and
Manolescu, I. 2006. A Reproducible Benchmark for P2P Retrieval. In
Proceedings of the Workshop on Performance and Evaluation of Data Manage-
ment Systems (EXPDB’06), Chicago, IL, US. ACM Press, New York, NY,
US. (page 38).

Ngan, T.-W. J., Wallach, D. S., and Druschel, P. 2003. Enforcing Fair
Sharing of Peer-to-Peer Resources. In Proceedings of the International
Workshop on Peer-to-Peer Systems (IPTPS’03), Berkeley, CA, US. 149–159.
(pages 67 and 73).

Nguyen, L. T., Yee, W. G., and Frieder, O. 2008. Adaptive Distributed
Indexing for Structured Peer-to-Peer Networks. In Proceedings of the
Conference on Information and Knowledge Management (CIKM’08), Napa
Valley, CA, US. ACM Press, New York, NY, US, 1241–1250. (page 49).

Nottelmann, H. and Fuhr, N. 2007. A Decision-theoretic Model for
Decentralised Query Routing in Hierarchical Peer-to-Peer Networks. In
Proceedings of the European Conference on Information Retrieval Research
(ECIR’07), Rome, IT. 148–159. (pages 35, 52, and 124).

201

bibliography

Ntoulas, A., Zerfos, P., and Cho, J. 2005. Downloading Textual Hid-
den Web Content through Keyword Queries. In Proceedings of the
ACM/IEEE-CS Joint Conference on Digital libraries (JCDL’05), Denver, CO,
US. ACM Press, New York, NY, US, 100–109. (page 92).

Oram, A. 2001. Peer-to-Peer: Harnessing the Power of Disruptive Technologies
1st Ed. O’Reilly Media. ISBN 9780596001100. (page 4).

Oulasvirta, A., Hukkinen, J. P., and Schwartz, B. 2009. When More is
Less: The Paradox of Choice in Search Engine Use. In Proceedings of the
ACM SIGIR Conference on Research & Development in Information Retrieval
(SIGIR’09), Boston, MA, US. ACM Press, New York, NY, US, 516–523.
(pages 27 and 46).

Paltoglou, G., Salampasis, M., and Satratzemi, M. 2007. Hybrid Re-
sults Merging. In Proceedings of the Conference on Information and Knowl-
edge Management (CIKM’07), Lisbon, PT. ACM Press, New York, NY, US,
321–330. (page 109).

Papapetrou, O., Siberski, W., and Fuhr, N. 2010. Text Clustering for
Peer-to-Peer Networks with Probabilistic Guarantees. In Proceedings of
the European Conference on Information Retrieval Research (ECIR’10), Mil-
ton Keynes, UK. Springer-Verlag, Heidelberg, DE, 293–305. (page 49).

Pass, G., Chowdhury, A., and Torgeson, C. 2006. A Picture of Search. In
Proceedings of the Conference on Scalable Information Systems (InfoScale’06),
Hong Kong, CN. ACM Press, New York, NY, US, 1–7. (pages 160
and 161).

Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., and
Venkataramani, A. 2007. Do Incentives Build Robustness in BitTor-
rent? In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI’07), Cambridge, MA, US. USENIX As-
sociation, Berkeley, CA, US. (page 80).

Podlipnig, S. and Böszörmenyi, L. 2003. A Survey of Web Cache Re-
placement Strategies. ACM Computing Surveys 35, 4, 374–398. (pages
165 and 176).

Porter, M. F. 2001. The English (Porter2) Stemming Algo-
rithm. http://snowball.tartarus.org/algorithms/english/stemmer.

html (Retrieved January 13th 2011). (page 167).

202

http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html

bibliography

Pouwelse, J. A., Garbacki, P., Epema, D. H. J., and Sips, H. J. 2005.
The BitTorrent P2P File-Sharing System: Measurements and Analy-
sis. In Proceedings of the International Workshop on Peer-to-Peer Systems
(IPTPS’05), Ithaca, NY, US. 205–216. (pages 74 and 79).

Pouwelse, J. A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup,
A., Epema, D. H. J., Reinders, M., van Steen, M. R., and Sips, H. J.
2008a. Tribler: A Social-based Peer-to-Peer System. Concurrency and
Computation: Practice and Experience 20, 2, 127–138. (pages 82 and 172).

Pouwelse, J. A., Yang, J., Meulpolder, M., Epema, D. H. J., and Sips,
H. J. 2008b. BuddyCast: An Operational Peer-to-Peer Epidemic Pro-
tocol Stack. Tech. Rep. PDS-2008-005, Delft University of Technology.
(page 82).

Qiu, D. and Srikant, R. 2004. Modeling and Performance Analysis of
BitTorrent-like Peer-to-Peer Networks. In Proceedings of the Conference
on Applications, Technologies, Architectures and Protocols for Computer Com-
munications (SIGCOMM’04), Portland, OR, US. ACM Press, New York,
NY, US, 367–378. (page 80).

Ranganathan, K., Ripeanu, M., Sarin, A., and Foster, I. 2003. To
Share or not to Share: An Analysis of Incentives to Contribute in Col-
laborative File Sharing Environments. In Proceedings of the Workshop on
Economics of Peer-to-Peer Systems (P2PEcon’03), Berkeley, CA, US. (pages
66 and 73).

Reynolds, P. and Vahdat, A. 2003. Efficient Peer-to-Peer Keyword
Searching. In Proceedings of the International Conference on Middleware’03,
Rio de Janeiro, BR. Springer-Verlag, New York, NY, US, 21–40. (pages
32, 33, 44, 45, and 49).

Risson, J. and Moors, T. 2006. Survey of Research Towards Robust Peer-
to-Peer Networks: Search Methods. Computer Networks 50, 17, 3485–
3521. (pages 10, 16, 19, 22, and 25).

Risvik, K. M. and Michelsen, R. 2002. Search Engines and Web Dynam-
ics. Computer Networks 39, 3, 289–302. (page 38).

Rosenfeld, A., Goldman, C. V., Kaminka, G. A., and Kraus, S. 2009.
PHIRST: A Distributed Architecture for P2P Information Retrieval. In-
formation Systems 34, 2, 290–303. (pages 25, 43, 52, 57, and 181).

203

bibliography

Senellart, P., Mittal, A., Muschick, D., Gilleron, R., and Tommasi,
M. 2008. Automatic Wrapper Induction from Hidden-web Sources with
Domain Knowledge. In Proceedings of the Workshop on Web Information
and Data Management (WIDM’08), Napa Valley, CA, US. ACM Press,
New York, NY, US, 9–16. (page 107).

Shneidman, J. and Parkes, D. 2003. Rationality and Self-Interest in Peer
to Peer Networks. In Proceedings of the International Workshop on Peer-
to-Peer Systems (IPTPS’03), Berkeley, CA, US. 139–148. (pages 29, 30,
and 31).

Shokouhi, M. 2007. Central-Rank-based Collection Selection in Uncoop-
erative Distributed Information Retrieval. In Proceedings of the European
Conference on Information Retrieval Research (ECIR’07), Rome, IT. 160–172.
(pages 35, 124, 128, 129, and 150).

Shokouhi, M. and Si, L. 2011. Federated Search. Foundations and Trends
in Information Retrieval 5, 1, 1–102. (pages 128 and 129).

Shokouhi, M. and Zobel, J. 2007. Federated Text Retrieval from Un-
cooperative Overlapped Collections. In Proceedings of the ACM SIGIR
Conference on Research & Development in Information Retrieval (SIGIR’07),
Amsterdam, NL. ACM Press, New York, NY, US, 495–502. (page 35).

Shokouhi, M., Zobel, J., Scholer, F., and Tahaghoghi, S. M. M. 2006b.
Capturing Collection Size for Distributed Non-cooperative Retrieval. In
Proceedings of the ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR’06), Seattle, WA, US. ACM Press, New York,
NY, US, 316–323. (pages 124 and 125).

Shokouhi, M., Zobel, J., Tahaghoghi, S. M. M., and Scholer, F. 2007b.
Using Query Logs to Establish Vocabularies in Distributed Information
Retrieval. Information Processing & Management 43, 1, 169–180. (page 56).

Si, L. and Callan, J. 2003a. Relevant Document Distribution Estima-
tion Method for Resource Selection. In Proceedings of the ACM SIGIR
Conference on Research & Development in Information Retrieval (SIGIR’03),
Toronto, ON, CA. ACM Press, New York, NY, US, 298–305. (pages 35,
124, 128, 139, and 150).

204

bibliography

Si, L. and Callan, J. 2003b. A Semisupervised Learning Method to
Merge Search Engine Results. ACM Transactions on Information Sys-
tems 21, 4, 457–491. (page 36).

Skobeltsyn, G. and Aberer, K. 2006. Distributed Cache Table: Efficient
Query-driven Processing of Multi-term Queries in P2P Networks. In
Proceedings of the Workshop on Information Retrieval in Peer-to-Peer Net-
works (P2PIR’06), Arlington, VA, US. ACM Press, New York, NY, US,
33–40. (pages 46, 48, 49, 52, 158, 159, 162, and 167).

Skobeltsyn, G., Luu, T., Aberer, K., Rajman, M., and Podnar Žarko,
I. 2007a. Query-driven Indexing for Peer-to-Peer Text Retrieval. In
Proceedings of the Conference on the World Wide Web (WWW’07), Banff,
AB, CA. ACM Press, New York, NY, US, 1185–1186. (pages 46, 49, 52,
and 56).

Skobeltsyn, G., Luu, T., Podnar Žarko, I., Rajman, M., and Aberer, K.
2007b. Web Text Retrieval with a P2P Query-driven Index. In Proceed-
ings of the ACM SIGIR Conference on Research & Development in Informa-
tion Retrieval (SIGIR’07), Amsterdam, NL. ACM Press, New York, NY,
US, 679–686. (page 49).

Skobeltsyn, G., Luu, T., Podnar Žarko, I., Rajman, M., and Aberer, K.
2009. Query-driven Indexing for Scalable Peer-to-Peer Text Retrieval.
Future Generation Computer Systems 25, 1, 89–99. (pages 46, 49, 52,
and 56).

Song, W., Zeng, X., Hu, W., Chen, Y., Wang, C., and Cheng, F. 2010.
Resource Search in Peer-to-Peer Network Based on Power Law Distri-
bution. In Proceedings of the Conference on Networks Security, Wireless
Communications and Trusted Computing (NSWCTC’10). IEEE Computer
Society, Washington, DC, US, 53–56. (page 51).

Sripanidkulchai, K., Maggs, B. M., and Zhang, H. 2003. Efficient Con-
tent Location using Interest-based Locality in Peer-to-Peer Systems. In
Proceedings of the IEEE International Conference on Computer Communica-
tions (InfoCom’03), San Francisco, CA, US. 2166–2176. (pages 19, 49,
and 51).

205

bibliography

Steiner, M., En-Najjary, T., and Biersack, E. W. 2007. Exploiting KAD:
Possible Uses and Misuses. ACM SIGCOMM Computer Communication
Review 37, 5, 65–70. (pages 18 and 42).

Stoica, I., Morris, R., Karger, D. R., Kaashoek, M. F., and Balakr-
ishnan, H. 2001. Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications. ACM SIGCOMM Computer Communication Re-
view 31, 4, 149–160. (pages 17 and 20).

Stokes, M. 2002. Gnutella2 Specifications: Part I. http://g2.trillinux.

org/index.php?title=G2_specs_part1 (Retrieved June 18th 2012).
(pages 15 and 20).

Stutzbach, D. and Rejaie, R. 2006. Understanding Churn in Peer-to-Peer
Networks. In Proceedings of the ACM SIGCOMM Conference on Internet
Measurement (IMC’06), Rio de Janeiro, BR. ACM Press, New York, NY,
US, 189–202. (pages 13, 158, and 172).

Suel, T., Mathur, C., Wu, J.-w., Zhang, J., Delis, A., Kharrazi, M.,
Long, X., and Shanmugasundaram, K. 2003. ODISSEA: A Peer-to-
Peer Architecture for Scalable Web Search and Information Retrieval.
In Proceedings of the International Workshop on the Web and Databases
(WebDB’03), San Diego, CA, US. 67–72. (pages 4, 25, 32, 42, 44, 46,
47, 49, 52, and 54).

Sun, Q. and Garcia-Molina, H. 2004. SLIC: A Selfish Link-based Incen-
tive Mechanism for Unstructured Peer-to-Peer Networks. In Proceed-
ings of the IEEE International Conference on Distributed Computing Systems
(ICDCS’04), Hachioji, Tokyo, JP. IEEE Computer Society, Los Alamitos,
CA, US, 506–515. (pages 64 and 72).

Suryanarayana, G. and Taylor, R. N. 2004. A Survey of Trust Man-
agement and Resource Discovery Technologies in Peer-to-Peer Appli-
cations. Tech. Rep. UCI-ISR-04-6, Institute for Software Research. July.
(page 73).

Tang, C. and Dwarkadas, S. 2004. Hybrid Global-Local Indexing for Ef-
ficient Peer-to-Peer Information Retrieval. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI’04),
San Francisco, CA, US. USENIX Association, Berkeley, CA, US. (pages
46, 48, and 52).

206

http://g2.trillinux.org/index.php?title=G2_specs_part1
http://g2.trillinux.org/index.php?title=G2_specs_part1

bibliography

Tang, C., Xu, Z., and Mahalingam, M. 2002. pSearch: Information
Retrieval in Structured Overlays. In Proceedings of the Workshop on Hot
Topics in Networks (HotNets-I’02), Princeton, NY, US. (pages 46 and 52).

Teevan, J., Adar, E., Jones, R., and Potts, M. A. S. 2007. Informa-
tion Re-retrieval: Repeat Queries in Yahoo’s Logs. In Proceedings of the
ACM SIGIR Conference on Research & Development in Information Retrieval
(SIGIR’07), Amsterdam, NL. ACM Press, New York, NY, US, 151–158.
(page 163).

Tene, O. 2008. What Google Knows: Privacy and Internet Search Engines.
Utah Law Review 2008, 4, 1434–1490. (page 3).

Thomas, P. and Hawking, D. 2007. Evaluating Sampling Methods for Un-
cooperative Collections. In Proceedings of the ACM SIGIR Conference on
Research & Development in Information Retrieval (SIGIR’07), Amsterdam,
NL. ACM Press, New York, NY, US, 503–510. (pages 39, 108, and 137).

Tigelaar, A. S. and Hiemstra, D. 2009. Query-based Sampling us-
ing Only Snippets. Tech. Rep. TR-CTIT-09-42, Centre for Telematics
and Information Technology, University of Twente, Enschede, NL. Nov.
(pages 85 and 181).

Tigelaar, A. S. and Hiemstra, D. 2010a. Query-based Sampling: Can we
do Better than Random? Tech. Rep. TR-CTIT-10-04, Centre for Telem-
atics and Information Technology, University of Twente, Enschede, NL.
Feb. (page 85).

Tigelaar, A. S. and Hiemstra, D. 2010b. Query-based Sampling using
Snippets. In Proceedings of the Workshop on Large-Scale and Distributed
Systems for Information Retrieval (LSDS-IR’10), Geneva, CH. CEUR-WS,
Aachen, DE, 9–14. (pages 35, 85, and 181).

Tigelaar, A. S. and Hiemstra, D. 2011. Query Load Balancing by
Caching Search Results in Peer-to-Peer Information Retrieval Net-
works. In Proceedings of the Dutch-Belgian Information Retrieval Workshop
(DIR’11), Amsterdam, NL. 28–31. (pages 49 and 182).

Tigelaar, A. S., Hiemstra, D., and Trieschnigg, D. 2011. Search Result
Caching in Peer-to-Peer Information Retrieval Networks. In Proceed-
ings of the Information Retrieval Facility Conference (IRFC’11), Vienna, AT.
Springer-Verlag, Heidelberg, DE, 134–138. (pages 49, 157, and 182).

207

bibliography

Tigelaar, A. S., Hiemstra, D., and Trieschnigg, D. 2012. Peer-to-Peer
Information Retrieval: An Overview. ACM Transactions on Information
Systems 30, 2, 9:1–9:34. (pages 9, 41, 180, and 181).

Tirado, J. M., Higuero, D., Isaila, F., Carretero, J., and Iamnitchi,
A. 2010. Affinity P2P: A Self-organizing Content-based Locality-aware
Collaborative Peer-to-Peer Network. Computer Networks 54, 12, 2056–
2070. (page 49).

Triantafillou, P., Xiruhaki, C., Koubarakis, M., and Ntarmos, N.
2003. Towards High Performance Peer-to-Peer Content and Resource
Sharing Systems. In Proceedings of the Conference on Innovative Data Sys-
tems Research (CIDR’03), Asilomar, CA, US. 120–132. (pages 12, 42, 59,
and 61).

Tsoumakos, D. and Roussopoulos, N. 2003. Adaptive Probabilistic
Search for Peer-to-Peer Networks. In Proceedings of the IEEE Confer-
ence on P2P Computing (P2P’03), Linköping, SE. IEEE Computer Society,
Washington, DC, US, 102–110. (page 51).

van Heerde, H. J. W. 2010. Privacy-aware Data Management by means of
Data Degradation - Making Private Data Less Sensitive over Time. Ph.D.
thesis, Centre for Telematics and Information Technology, University of
Twente, Enschede, NL. ISBN 9789036530026. (page 44).

Venables, W. N. and Smith, D. M. 2012. An Introduction to R. http://

cran.r-project.org/doc/manuals/R-intro.html (Retrieved June 25th
2012). (page 88).

Vishnumurthy, V., Chandrakumar, S., and Sirer, E. G. 2003. KARMA:
A Secure Economic Framework for Peer-to-Peer Resource Sharing.
In Proceedings of the Workshop on Economics of Peer-to-Peer Systems
(P2PEcon’03), Berkeley, CA, US. Department of Heuristics And Re-
search on Material Applications. (pages 66 and 73).

Wang, W. and Li, B. 2003. To Play or to Control: A Game-based Control-
theoretic Approach to Peer-to-Peer Incentive Engineering. In Proceed-
ings of the International Workshop on Quality of service (IWQoS’03), Mon-
terey, CA, US. Springer-Verlag, Heidelberg, DE, 174–192. (page 73).

208

http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/manuals/R-intro.html

bibliography

Waterhouse, S., Doolin, D. M., Kan, G., and Faybishenko, Y. 2002.
Distributed Search in P2P Networks. IEEE Internet Computing 6, 1, 68–
72. (page 54).

White, A. 2009. Search Engines: Left Side Quality versus Right Side
Profits. Working paper, Toulouse School of Economics. Dec. http://

dx.doi.org/10.2139/ssrn.1694869 (Retrieved June 25th 2012). (page
3).

Witschel, H. F. 2008. Ranking Information Resources in Peer-to-Peer
Text Retrieval: An Experimental Study. In Proceedings of the Workshop on
Large-Scale and Distributed Systems for Information Retrieval (LSDS-IR’08),
Napa Valley, CA, US. ACM Press, New York, NY, US, 75–82. (pages
122 and 138).

Witten, I. H., Moffat, A., and Bell, T. C. 1999. Managing Gigabytes: Com-
pressing and Indexing Documents and Images 2nd Ed. Morgan Kaufmann.
ISBN 9781558605701. (page 57).

Xu, J. and Croft, W. B. 1999. Cluster-based Language Models for Dis-
tributed Retrieval. In Proceedings of the ACM SIGIR Conference on Re-
search & Development in Information Retrieval (SIGIR’99), Berkeley, CA,
US. ACM Press, New York, NY, US, 254–261. (pages 35 and 124).

Yang, B., Condie, T., Kamvar, S. D., and Garcia-Molina, H. 2005. Non-
Cooperation in Competitive P2P Networks. In Proceedings of the IEEE
International Conference on Distributed Computing Systems (ICDCS’05),
Columbus, OH, US. IEEE Computer Society, Washington, DC, US, 91–
100. (pages 64 and 72).

Yang, B. and Garcia-Molina, H. 2002. Improving Search in Peer-to-
Peer Networks. In Proceedings of the IEEE International Conference on
Distributed Computing Systems (ICDCS’02), Vienna, AT. IEEE Computer
Society, Washington, DC, US, 5–14. (pages 51 and 52).

Yang, Y., Dunlap, R., Rexroad, M., and Cooper, B. F. 2006. Perfor-
mance of Full Text Search in Structured and Unstructured Peer-to-Peer
Systems. In Proceedings of the IEEE International Conference on Computer
Communications (InfoCom’06), Barcelona, ES. 2658–2669. (pages 20, 22,
43, and 51).

209

http://dx.doi.org/10.2139/ssrn.1694869
http://dx.doi.org/10.2139/ssrn.1694869

bibliography

Yuwono, B. and Lee, D. L. 1997. Server Ranking for Distributed Text
Retrieval Systems on the Internet. In Proceedings of the Conference on
Database Systems For Advanced Applications (DASFAA’97), Melbourne,
AU. World Scientific Press, 41–50. (pages 35 and 124).

Zeinalipour-Yazti, D., Kalogeraki, V., and Gunopulos, D. 2004. Infor-
mation Retrieval Techniques for Peer-to-Peer Networks. Computing in
Science & Engineering 6, 4, 20–26. (pages 2, 19, 24, 31, 38, 41, 44, 48, 51,
52, and 61).

Zhang, J. and Suel, T. 2005. Efficient Query Evaluation on Large Textual
Collections in a Peer-to-Peer Environment. In Proceedings of the IEEE
Conference on P2P Computing (P2P’05), Konstanz, DE. IEEE Computer
Society, Los Alamitos, CA, US, 225–233. (pages 44, 46, 47, and 52).

Zhong, S., Chen, J., and Yang, Y. R. 2003. Sprite: A Simple, Cheat-proof,
Credit-based System for Mobile Ad-hoc Networks. In Proceedings of the
IEEE International Conference on Computer Communications (InfoCom’03),
San Francisco, CA, US. 1987–1997. (pages 51, 63, 72, and 73).

Zimmer, C., Bedathur, S., and Weikum, G. 2008. Flood Little, Cache
More: Effective Result-reuse in P2P IR Systems. In Proceedings of the
Conference on Database Systems For Advanced Applications (DASFAA’08),
New Delhi, IN. Springer-Verlag, Berlin, DE, 235–250. (pages 49, 52, 56,
162, and 167).

210

L I S T O F P U B L I C AT I O N S

Refereed

Tigelaar, A. S. and Hiemstra, D. 2010. Query-based Sampling using
Snippets. In Proceedings of the Workshop on Large-Scale and Distributed
Systems for Information Retrieval (LSDS-IR’10), Geneva, CH. CEUR-WS,
Aachen, DE, 9–14.

Tigelaar, A. S. and Hiemstra, D. 2011. Query Load Balancing by
Caching Search Results in Peer-to-Peer Information Retrieval Net-
works. In Proceedings of the Dutch-Belgian Information Retrieval Workshop
(DIR’11), Amsterdam, NL. 28–31.

Tigelaar, A. S., Hiemstra, D., and Trieschnigg, D. 2011. Search Result
Caching in Peer-to-Peer Information Retrieval Networks. In Proceed-
ings of the Information Retrieval Facility Conference (IRFC’11), Vienna, AT.
Springer-Verlag, Heidelberg, DE, 134–138.

Tigelaar, A. S., Hiemstra, D., and Trieschnigg, D. 2012. Peer-to-Peer
Information Retrieval: An Overview. ACM Transactions on Information
Systems 30, 2, 9:1–9:34.

Non-Refereed

Tigelaar, A. S. and Hiemstra, D. 2009. Query-based Sampling using
Only Snippets. Tech. Rep. TR-CTIT-09-42, Centre for Telematics and
Information Technology, University of Twente, Enschede, NL.

Tigelaar, A. S. and Hiemstra, D. 2010. Query-based Sampling: Can we
do Better than Random? Tech. Rep. TR-CTIT-10-04, Centre for Telemat-
ics and Information Technology, University of Twente, Enschede, NL.

211

S I K S D I S S E RTAT I O N S

Since 1998, all dissertations written by PhD students who have conducted
their research under the auspices of a senior research fellow of the SIKS
research school are published in the SIKS Dissertation Series.

2012-28 Nancy Pascall (UvT) Engendering Tech-
nology Empowering Women

2012-27 Hayrettin Gürkök (UT) Mind the
Sheep! User Experience Evaluation & Brain-
Computer Interface Games

2012-26 Emile de Maat (UvA) Making Sense of
Legal Texts

2012-24 Laurens van der Werff (UT) Evalua-
tion of Noisy Transcripts for Spoken Document Re-
trieval

2012-23 Christian Muehl (UT) Toward Affec-
tive Brain-Computer Interfaces: Exploring the Neu-
rophysiology of Affect during Human Media Interac-
tion

2012-22 Thijs Vis (UvT) Intelligence, politie en vei-
ligheidsdienst: verenigbare grootheden?

2012-21 Roberto Cornacchia (TUD) Querying
Sparse Matrices for Information Retrieval

2012-20 Ali Bahramisharif (RUN) Covert Vi-
sual Spatial Attention, a Robust Paradigm for Brain-
Computer Interfacing

2012-19 Helen Schonenberg (TUE) What’s
Next? Operational Support for Business Process Exe-
cution

2012-18 Eltjo Poort (VU) Improving Solution Ar-
chitecting Practices

2012-17 Amal Elgammal (UvT) Towards a Com-
prehensive Framework for Business Process Compli-
ance

2012-16 Fiemke Both (VU) Helping people by un-
derstanding them - Ambient Agents supporting task
execution and depression treatment

2012-15 Natalie van der Wal (VU) Social
Agents. Agent-Based Modelling of Integrated Inter-
nal and Social Dynamics of Cognitive and Affective
Processes
2012-14 Evgeny Knutov (TUE) Generic Adapta-
tion Framework for Unifying Adaptive Web-based
Systems
2012-13 Suleman Shahid (UvT) Fun and Face:
Exploring non-verbal expressions of emotion during
playful interactions
2012-12 Kees van der Sluijs (TUE) Model Driven
Design and Data Integration in Semantic Web Infor-
mation Systems
2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Preprocessing, Discov-
ery, and Diagnostics
2012-10 David Smits (TUE) Towards a Generic
Distributed Adaptive Hypermedia Environment
2012-09 Ricardo Neisse (UT) Trust and Privacy
Management Support for Context-Aware Service
Platforms
2012-08 Gerben de Vries (UVA) Kernel Methods
for Vessel Trajectories
2012-07 Rianne van Lambalgen (VU) When the
Going Gets Tough: Exploring Agent-based Models of
Human Performance under Demanding Conditions
2012-06 Wolfgang Reinhardt (OU) Awareness
Support for Knowledge Workers in Research Net-
works
2012-04 Jurriaan Souer (UU) Development of
Content Management System-based Web Applica-
tions 2012-05 Marijn Plomp (UU) Maturing Interor-
ganisational Information Systems
2012-03 Adam Vanya (VU) Supporting Architec-
ture Evolution by Mining Software Repositories

213

siks dissertations

2012-02 Muhammad Umair (VU) Adaptivity,
emotion, and Rationality in Human and Ambient
Agent Models
2012-01 Terry Kakeeto (UvT) Relationship Mar-
keting for SMEs in Uganda
2011-49 Andreea Niculescu (UT) Conversa-
tional Interfaces for Task-oriented Spoken Dialogues:
design aspects influencing interaction quality
2011-48 Mark Ter Maat (UT) Response Selection
and Turn-taking for a Sensitive Artificial Listening
Agent
2011-47 Azizi Bin Ab Aziz (VU) Exploring Com-
putational Models for Intelligent Support of Persons
with Depression
2011-46 Beibei Hu (TUD) Towards Contextualized
Information Delivery: A Rule-based Architecture for
the Domain of Mobile Police Work
2011-45 Herman Stehouwer (UvT) Statistical
Language Models for Alternative Sequence Selection
2011-44 Boris Reuderink (UT) Robust Brain-
Computer Interfaces
2011-43 Henk van der Schuur (UU) Process Im-
provement through Software Operation Knowledge
2011-42 Michal Sindlar (UU) Explaining Behav-
ior through Mental State Attribution
2011-41 Luan Ibraimi (UT) Cryptographically En-
forced Distributed Data Access Control
2011-40 Viktor Clerc (VU) Architectural Knowl-
edge Management in Global Software Development
2011-39 Joost Westra (UU) Organizing Adapta-
tion using Agents in Serious Games
2011-38 Nyree Lemmens (UM) Bee-inspired Dis-
tributed Optimization
2011-37 Adriana Burlutiu (RUN) Machine
Learning for Pairwise Data, Applications for Prefer-
ence Learning and Supervised Network Inference
2011-36 Erik van der Spek (UU) Experiments in
serious game design: a cognitive approach
2011-35 Maaike Harbers (UU) Explaining Agent
Behavior in Virtual Training
2011-34 Paolo Turrini (UU) Strategic Reasoning
in Interdependence: Logical and Game-theoretical In-
vestigations
2011-33 Tom van der Weide (UU) Arguing to Mo-
tivate Decisions
2011-32 Nees-Jan van Eck (EUR) Methodological
Advances in Bibliometric Mapping of Science
2011-31 Ludo Waltman (EUR) Computational
and Game-Theoretic Approaches for Modeling
Bounded Rationality
2011-30 Egon van den Broek (UT) Affective Sig-
nal Processing (ASP): Unraveling the mystery of emo-
tions

2011-29 Faisal Kamiran (TUE) Discrimination-
aware Classification
2011-28 Rianne Kaptein (UVA) Effective Focused
Retrieval by Exploiting Query Context and Docu-
ment Structure
2011-27 Aniel Bhulai (VU) Dynamic website op-
timization through autonomous management of de-
sign patterns
2011-26 Matthijs Aart Pontier (VU) Virtual
Agents for Human Communication - Emotion Reg-
ulation and Involvement-Distance Trade-Offs in Em-
bodied Conversational Agents and Robots
2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for Trust Dynam-
ics
2011-24 Herwin van Welbergen (UT) Behavior
Generation for Interpersonal Coordination with Vir-
tual Humans On Specifying, Scheduling and Realiz-
ing Multimodal Virtual Human Behavior
2011-23 Wouter Weerkamp (UVA) Finding Peo-
ple and their Utterances in Social Media
2011-22 Junte Zhang (UVA) System Evaluation
of Archival Description and Access
2011-21 Linda Terlouw (TUD) Modularization
and Specification of Service-Oriented Systems
2011-20 Qing Gu (VU) Guiding service-oriented
software engineering - A view-based approach
2011-19 Ellen Rusman (OU) The Mind’s Eye on
Personal Profiles
2011-18 Mark Ponsen (UM) Strategic Decision-
Making in Complex Games
2011-17 Jiyin He (UVA) Exploring Topic Structure:
Coherence, Diversity and Relatedness
2011-16 Maarten Schadd (UM) Selective Search
in Games of Different Complexity
2011-15 Marijn Koolen (UvA) The Meaning of
Structure: the Value of Link Evidence for Information
Retrieval
2011-14 Milan Lovric (EUR) Behavioral Finance
and Agent-Based Artificial Markets
2011-13 Xiaoyu Mao (UvT) Airport under Con-
trol. Multiagent Scheduling for Airport Ground Han-
dling
2011-12 Carmen Bratosin (TUE) Grid Architec-
ture for Distributed Process Mining
2011-11 Dhaval Vyas (UT) Designing for Aware-
ness: An Experience-focused HCI Perspective
2011-10 Bart Bogaert (UvT) Cloud Content Con-
tention
2011-09 Tim de Jong (OU) Contextualised Mobile
Media for Learning
2011-08 Nieske Vergunst (UU) BDI-based Gener-
ation of Robust Task-Oriented Dialogues

214

siks dissertations

2011-07 Yujia Cao (UT) Multimodal Information
Presentation for High Load Human Computer Inter-
action
2011-06 Yiwen Wang (TUE) Semantically-
Enhanced Recommendations in Cultural Heritage
2011-05 Base van der Raadt (VU) Enterprise Ar-
chitecture Coming of Age - Increasing the Perfor-
mance of an Emerging Discipline
2011-04 Hado van Hasselt (UU) Insights in Re-
inforcement Learning; Formal analysis and empirical
evaluation of temporal-difference learning algorithms
2011-03 Jan Martijn van der Werf (TUE) Com-
positional Design and Verification of Component-
Based Information Systems
2011-02 Nick Tinnemeier (UU) Organizing
Agent Organizations. Syntax and Operational Se-
mantics of an Organization-Oriented Programming
Language
2011-01 Botond Cseke (RUN) Variational Algo-
rithms for Bayesian Inference in Latent Gaussian
Models
2010-54 Riham Abdel Kader (UT) ROX: Run-
time Optimization of XQueries
2010-53 Edgar Meij (UVA) Combining Concepts
and Language Models for Information Access
2010-52 Peter-Paul van Maanen (VU) Adaptive
Support for Human-Computer Teams: Exploring the
Use of Cognitive Models of Trust and Attention
2010-51 Alia Khairia Amin (CWI) Understand-
ing and Supporting Information Seeking Tasks in
Multiple Sources
2010-50 Bouke Huurnink (UVA) Search in Au-
diovisual Broadcast Archives
2010-49 Jahn-Takeshi Saito (UM) Solving Diffi-
cult Game Positions
1962-01 Philip K. Dick (UCB) The Man in the
High Castle
2010-47 Chen Li (UT) Mining Process Model Vari-
ants: Challenges, Techniques, Examples
2010-46 Vincent Pijpers (VU) e3alignment: Ex-
ploring Inter-Organizational Business-ICT Align-
ment
2010-45 Vasilios Andrikopoulos (UvT) A The-
ory and Model for the Evolution of Software Services
2010-44 Pieter Bellekens (TUE) An Approach to-
wards Context-sensitive and User-adapted Access to
Heterogeneous Data Sources, Illustrated in the Televi-
sion Domain
2010-43 Peter van Kranenburg (UU) A Compu-
tational Approach to Content-Based Retrieval of Folk
Song Melodies
2010-42 Sybren de Kinderen (VU) Needs-driven
Service Bundling in a Multi-supplier Setting - the
computational e3-service approach

2010-41 Guillaume Chaslot (UM) Monte-Carlo
Tree Search
2010-40 Mark van Assem (VU) Converting and
Integrating Vocabularies for the Semantic Web
2010-39 Ghazanfar Farooq Siddiqui (VU) Inte-
grative Modeling of Emotions in Virtual Agents
2010-38 Dirk Fahland (TUE) From Scenarios to
Components
2010-37 Niels Lohmann (TUE) Correctness of
Services and their Composition
2010-36 Jose Janssen (OU) Paving the Way for
Lifelong Learning; Facilitating competence develop-
ment through a learning path specification
2010-35 Dolf Trieschnigg (UT) Proof of Concept:
Concept-based Biomedical Information Retrieval
2010-34 Teduh Dirgahayu (UT) Interaction De-
sign in Service Compositions
2010-33 Robin Aly (UT) Modeling Representation
Uncertainty in Concept-Based Multimedia Retrieval
2010-32 Marcel Hiel (UvT) An Adaptive Service
Oriented Architecture: Automatically solving Inter-
operability Problems
2010-31 Victor de Boer (UVA) Ontology Enrich-
ment from Heterogeneous Sources on the Web
2010-30 Marieke van Erp (UvT) Accessing Natu-
ral History - Discoveries in data cleaning, structur-
ing, and retrieval
2010-29 Stratos Idreos (CWI) Database Crack-
ing: Towards Auto-tuning Database Kernels
2010-28 Arne Koopman (UU) Characteristic Rela-
tional Patterns
2010-27 Marten Voulon (UL) Automatisch Con-
tracteren
2010-26 Ying Zhang (CWI) XRPC: Efficient Dis-
tributed Query Processing on Heterogeneous XQuery
Engines
2010-25 Zulfiqar Ali Memon (VU) Modelling
Human-Awareness for Ambient Agents: A Human
Mindreading Perspective
2010-24 Dmytro Tykhonov (TUD) Designing
Generic and Efficient Negotiation Strategies
2010-23 Bas Steunebrink (UU) The Logical Struc-
ture of Emotions
2010-22 Michiel Hildebrand (CWI) End-user
Support for Access to Heterogeneous Linked Data
2010-21 Harold van Heerde (UT) Privacy-aware
Data Management by means of Data Degradation
2010-20 Ivo Swartjes (UT) Whose Story Is It Any-
way? How Improv Informs Agency and Authorship
of Emergent Narrative
2010-19 Henriette Cramer (UvA) People’s Re-
sponses to Autonomous and Adaptive Systems

215

siks dissertations

2010-18 Charlotte Gerritsen (VU) Caught in
the Act: Investigating Crime by Agent-Based Simula-
tion
2010-17 Spyros Kotoulas (VU) Scalable Discov-
ery of Networked Resources: Algorithms, Infrastruc-
ture, Applications
2010-16 Sicco Verwer (TUD) Efficient Identifica-
tion of Timed Automata, theory and practice
2010-15 Lianne Bodenstaff (UT) Managing De-
pendency Relations in Inter-Organizational Models
2010-14 Sander van Splunter (VU) Automated
Web Service Reconfiguration
2010-13 Gianluigi Folino (RUN) High Perfor-
mance Data Mining using Bio-inspired techniques
2010-12 Susan van den Braak (UU) Sensemak-
ing Software for Crime Analysis
2010-11 Adriaan ter Mors (TUD) The world ac-
cording to MARP: Multi-Agent Route Planning
2010-10 Rebecca Ong (UL) Mobile Communica-
tion and Protection of Children
2010-09 Hugo Kielman (UL) A Politiële
gegevensverwerking en Privacy, Naar een effectieve
waarborging
2010-08 Krzysztof Siewicz (UL) Towards an Im-
proved Regulatory Framework of Free Software. Pro-
tecting user freedoms in a world of software commu-
nities and eGovernments
2010-07 Wim Fikkert (UT) Gesture interaction at
a Distance
2010-06 Sander Bakkes (UvT) Rapid Adaptation
of Video Game AI
2010-05 Claudia Hauff (UT) Predicting the Effec-
tiveness of Queries and Retrieval Systems
2010-04 Olga Kulyk (UT) Do You Know What I
Know? Situational Awareness of Co-located Teams in
Multidisplay Environments
2010-03 Joost Geurts (CWI) A Document Engi-
neering Model and Processing Framework for Multi-
media documents
2010-02 Ingo Wassink (UT) Work flows in Life Sci-
ence
2010-01 Matthijs van Leeuwen (UU) Patterns
that Matter
2009-46 Loredana Afanasiev (UvA) Querying
XML: Benchmarks and Recursion
2009-45 Jilles Vreeken (UU) Making Pattern
Mining Useful
2009-44 Roberto Santana Tapia (UT) Assessing
Business-IT Alignment in Networked Organizations
2009-43 Virginia Nunes Leal Franqueira
(UT) Finding Multi-step Attacks in Computer Net-
works using Heuristic Search and Mobile Ambients
2009-42 Toine Bogers (UvT) Recommender Sys-
tems for Social Bookmarking

2009-41 Igor Berezhnyy (UvT) Digital Analysis
of Paintings
2009-40 Stephan Raaijmakers (UvT) Multino-
mial Language Learning: Investigations into the Ge-
ometry of Language
2009-39 Christian Stahl (TUE, Humboldt-
Universität zu Berlin) Service Substitution – A Be-
havioral Approach Based on Petri Nets
2009-38 Riina Vuorikari (OU) Tags and Self-
organisation: a metadata ecology for learning re-
sources in a multilingual context
2009-37 Hendrik Drachsler (OUN) Navigation
Support for Learners in Informal Learning Networks
2009-36 Marco Kalz (OUN) Placement Support
for Learners in Learning Networks
2009-35 Wouter Koelewijn (UL) Privacy en
Politiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling
2009-34 Inge van de Weerd (UU) Advancing
in Software Product Management: An Incremental
Method Engineering Approach
2009-33 Khiet Truong (UT) How Does Real Affect
Affect Affect Recognition In Speech?
2009-32 Rik Farenhorst (VU) and Remco de
Boer (VU) Architectural Knowledge Management:
Supporting Architects and Auditors
2009-31 Sofiya Katrenko (UVA) A Closer Look
at Learning Relations from Text
2009-30 Marcin Zukowski (CWI) Balancing Vec-
torized Query Execution with Bandwidth-optimized
Storage
2009-29 Stanislav Pokraev (UT) Model-Driven
Semantic Integration of Service-Oriented Applica-
tions
2009-28 Sander Evers (UT) Sensor Data Manage-
ment with Probabilistic Models
2009-27 Christian Glahn (OU) Contextual Sup-
port of social Engagement and Reflection on the Web
2009-26 Fernando Koch (UU) An Agent-Based
Model for the Development of Intelligent Mobile Ser-
vices
2009-25 Alex van Ballegooij (CWI) RAM: Ar-
ray Database Management through Relational Map-
ping
2009-24 Annerieke Heuvelink (VUA) Cognitive
Models for Training Simulations
2009-23 Peter Hofgesang (VU) Modelling Web
Usage in a Changing Environment
2009-22 Pavel Serdyukov (UT) Search For Exper-
tise: Going beyond direct evidence
2009-21 Stijn Vanderlooy (UM) Ranking and Re-
liable Classification
2009-20 Bob van der Vecht (UU) Adjustable Au-
tonomy: Controling Influences on Decision Making

216

siks dissertations

2009-19 Valentin Robu (CWI) Modeling Pref-
erences, Strategic Reasoning and Collaboration in
Agent-Mediated Electronic Markets
2009-18 Fabian Groffen (CWI) Armada, An
Evolving Database System
2009-17 Laurens van der Maaten (UvT) Fea-
ture Extraction from Visual Data
2009-16 Fritz Reul (UvT) New Architectures in
Computer Chess
2009-15 Rinke Hoekstra (UVA) Ontology Repre-
sentation - Design Patterns and Ontologies that Make
Sense
2009-14 Maksym Korotkiy (VU) From Ontology-
enabled Services to Service-enabled Ontologies (mak-
ing ontologies work in e-science with ONTO-SOA)
2009-13 Steven de Jong (UM) Fairness in Multi-
Agent Systems
2009-12 Peter Massuthe (TUE, Humboldt-
Universität zu Berlin) Operating Guidelines for Ser-
vices
2009-11 Alexander Boer (UVA) Legal Theory,
Sources of Law & the Semantic Web
2009-10 Jan Wielemaker (UVA) Logic Program-
ming for Knowledge-intensive Interactive Applica-
tions
2009-09 Benjamin Kanagwa (RUN) Design, Dis-
covery and Construction of Service-oriented Systems
2009-08 Volker Nannen (VU) Evolutionary
Agent-Based Policy Analysis in Dynamic Environ-
ments
2009-07 Ronald Poppe (UT) Discriminative
Vision-Based Recovery and Recognition of Human
Motion
2009-06 Muhammad Subianto (UU) Under-
standing Classification
2009-05 Sietse Overbeek (RUN) Bridging Supply
and Demand for Knowledge Intensive Tasks - Based
on Knowledge, Cognition, and Quality
2009-04 Josephine Nabukenya (RUN) Improving
the Quality of Organisational Policy Making using
Collaboration Engineering
2009-03 Hans Stol (UvT) A Framework for
Evidence-based Policy Making Using IT

2009-02 Willem Robert van Hage (VU) Evalu-
ating Ontology-Alignment Techniques
2009-01 Rasa Jurgelenaite (RUN) Symmetric
Causal Independence Models
2008-35 Ben Torben Nielsen (UvT) Dendritic
Morphologies: function shapes structure
2008-34 Jeroen de Knijf (UU) Studies in Frequent
Tree Mining
2008-33 Frank Terpstra (UVA) Scientific Work-
flow Design; theoretical and practical issues
2008-32 Trung H. Bui (UT) Toward Affective
Dialogue Management using Partially Observable
Markov Decision Processes
2008-31 Loes Braun (UM) Pro-Active Medical In-
formation Retrieval
2008-30 Wouter van Atteveldt (VU) Semantic
Network Analysis: Techniques for Extracting, Repre-
senting and Querying Media Content
2008-29 Dennis Reidsma (UT) Annotations and
Subjective Machines - Of Annotators, Embodied
Agents, Users, and Other Humans
2008-28 Ildiko Flesch (RUN) On the Use of Inde-
pendence Relations in Bayesian Networks
2008-27 Hubert Vogten (OU) Design and Imple-
mentation Strategies for IMS Learning Design
2008-26 Marijn Huijbregts (UT) Segmentation,
Diarization and Speech Transcription: Surprise Data
Unraveled
2008-25 Geert Jonker (UU) Efficient and Equi-
table Exchange in Air Traffic Management Plan Re-
pair using Spender-signed Currency
2008-24 Zharko Aleksovski (VU) Using Back-
ground Knowledge in Ontology Matching
2008-23 Stefan Visscher (UU) Bayesian network
models for the management of ventilator-associated
pneumonia
2008-22 Henk Koning (UU) Communication of IT-
Architecture
2008-21 Krisztian Balog (UVA) People Search in
the Enterprise
2008-20 Rex Arendsen (UVA) Geen bericht, goed
bericht. Een onderzoek naar de effecten van de intro-
ductie van elektronisch berichtenverkeer met de over-
heid op de administratieve lasten van bedrijven.

217

S U M M A RY

The Internet has become an integral part of our daily lives. However,
the essential task of finding information is dominated by a handful of
large centralised search engines. In this thesis we study an alternative
to this approach. Instead of using large data centres, we propose using
the machines that we all use every day: our desktop, laptop and tablet
computers, to build a peer-to-peer web search engine. We provide a defi-
nition of the associated research field: peer-to-peer information retrieval.
We examine what separates it from related fields, give an overview of the
work done so far and provide an economic perspective on peer-to-peer
search. Furthermore, we introduce our own architecture for peer-to-peer
search systems, inspired by BitTorrent.

Distributing the task of providing search results for queries introduces
the problem of query routing: a query needs to be sent to a peer that
can provide relevant search results. We investigate how the content of
peers can be represented so that queries can be directed to the best ones
in terms of relevance. While cooperative peers can provide their own
representation, the content of uncooperative peers can be accessed only
through a search interface and thus they can not actively provide a de-
scription of themselves. We look into representing these uncooperative
peers by probing their search interface to construct a representation. Fi-
nally, the capacity of the machines in peer-to-peer networks differs con-
siderably, making it challenging to provide search results quickly. To
address this, we present an approach where copies of search results for
previous queries are retained at peers and used to serve future requests
and show participation can be incentivised using reputations.

There are still problems to be solved before a real-world peer-to-peer
web search engine can be built. This thesis provides a starting point for
this ambitious goal and also provides a solid basis for reasoning about
peer-to-peer information retrieval systems in general.

219

S A M E N VAT T I N G

Het Internet is wezenlijk onderdeel geworden van ons dagelijks leven.
Enkele grote gecentralizeerde zoekmachines domineren de essentiële taak
van het zoeken naar informatie op het web. In dit proefschrift kijken
we naar een alternatieve aanpak waarbij, in plaats van grote data centra,
de computers gebruikt worden die we dagelijks gebruiken: onze desk-
tops, laptops en tablets, om een peer-to-peer zoekmachine te bouwen.
We geven een definitie van het gerelateerde onderzoeksveld: peer-to-peer
information retrieval, en beschrijven hoe dit verschilt van andere onder-
zoeksvelden. Daarnaast geven we een overzicht van wat er al gedaan
is, alsmede een economische invalshoek op het zoeken in peer-to-peer
netwerken. We presenteren ook een eigen architectuur voor peer-to-peer
zoeksystemen, geïnspireerd door BitTorrent.

Het distribueren van het leveren van zoekresultaten levert een prob-
leem op: we moeten weten welke zoekvraag het beste door welke com-
puter kan worden afgehandeld. We onderzoeken hoe we de documenten
op computers zodanig kunnen representeren dat we elke zoekvraag naar
de computer kunnen sturen met de meeste relevante documenten. Niet
alle computers kunnen hun eigen representatie leveren. We kijken hoe
we een representatie voor deze computers kunnen afleiden via hun zoek-
functie. De capaciteit van de computers in het netwerk loopt ver uiteen,
wat het snel leveren van zoekresultaten bemoeilijkt. Als oplossing onder-
zoeken we een aanpak waarbij kopieën van zoekresultaten voor eerder
gestelde zoekvragen worden vastgehouden en gebruikt om toekomstige,
gelijkende, zoekvragen af te handelen. We laten zien dat deelname kan
worden gestimuleerd met een reputatiesysteem.

Er zijn nog talrijke problemen die moeten worden opgelost voor een
peer-to-peer zoekmachine voor het web gerealizeerd kan worden. Dit
proefschrift biedt een startpunt voor dit ambitieuze doel en vormt een ba-
sis voor het redeneren over peer-to-peer information retrieval systemen.

221

	Contents
	Introduction
	Motivation
	Research Topics
	Thesis Structure

	Peer-to-Peer Networks
	Applications
	Challenges
	Tasks
	Architectures
	Economics
	Information Retrieval

	Existing Research & Systems
	Optimisation Techniques
	Information Retrieval Systems
	Key Focus Areas
	Economic Systems
	Our Network Architecture

	Representing Uncooperative Peers
	Data Sets
	Metrics
	Can we do Better than Random?
	Query-Based Sampling using Snippets

	Selecting Cooperative Peers
	Approach
	Data Sets
	Experiment
	Discussion
	Conclusion

	Caching Search Results
	Experiment Set-up
	Centralised Experiments
	Decentralised Experiments
	Conclusion

	Conclusion
	Bibliography
	List of Publications
	SIKS Dissertations
	Summary
	Samenvatting

