
On the Analysis of
Synchronous Dataflow Graphs

a system-theoretic perspective

Robert de Groote

Members of the graduation committee:

Prof. dr. ir. G. J.M. Smit University of Twente (promotor)
Dr. ir. J. Kuper University of Twente (assistant-promotor)

Prof. dr. ir. M. J. G. Bekooij University of Twente
Prof. dr. ir. H. J. Broersma University of Twente

Prof. dr. S. S. Bhattacharyya University of Maryland
Dr. J. McAllister Queen’s University, Belfast
Dr. P. K. F. Hölzenspies Facebook, London

Prof. dr. ir. P.M.G. Apers University of Twente (chairman and secretary)

Faculty of Electrical Engineering, Mathematics and Computer Sci-
ence, Computer Architecture for Embedded Systems (CAES) group

CTIT
CTIT Ph.D. thesis Series No. 15-382
Centre for Telematics and Information Technology
PO Box 217, 7500 AE Enschede, The Netherlands

This research is conducted within the Asynchronous and Dy-
namic Virtualisation through Performance Analysis to support
Concurrency Engineering (Advance) project (Grant Agreement
No. 248828) supported under the FP7-ICT-2009.3.6 program of
the European Commission.

This research is conducted within the Programming Large-Scale
Heterogeneous Infrastructures (Polca) project (Grant Agreement
No. 610686) supported under the FP7-ICT-2013.3.4 program of the
European Commission.

Copyright © 2016 Robert de Groote, Enschede, The Netherlands.
This work is licensed under the Creative Commons Attribution-
NonCommercial 3.0 Netherlands License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/
3.0/nl/.

This thesis was typeset using LATEX, TikZ, and Vim. This thesis was
printed by Gildeprint Drukkerijen, The Netherlands.

ISBN 978-90-365-4041-4
ISSN 1381-3617; CTIT Ph.D. Thesis Series No. 15-382
DOI 10.3990/1.978903653997540414

http://www.utwente.nl/
http://caes.ewi.utwente.nl/
http://www.utwente.nl/ctit
http://www.project-advance.eu
http://www.project-advance.eu
http://www.project-advance.eu
http://www.project-advance.eu
http://www.polca-project.eu
http://www.polca-project.eu
http://www.polca-project.eu
http://creativecommons.org/licenses/by-nc/3.0/nl/
http://creativecommons.org/licenses/by-nc/3.0/nl/
http://www.gildeprint.nl/
http://dx.doi.org/10.3990/1.978903653997540414

On the Analysis of Synchronous Dataflow
Graphs

a system-theoretic perspective

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 5 februari 2016 om 14.45 uur

door

Elibertus de Groote

geboren op 11 augustus 1978
te Emmen

Dit proefschrift is goedgekeurd door:

Prof. dr. ir. G. J.M. Smit (promotor)
Dr. ir. J. Kuper (assistant promotor)

Copyright © 2016 Robert de Groote
ISBN 978-90-365-4041-4

vAbstract

In the design of real-time systems, time forms a key requirement in a system’s
specification. System designers must be able to verify whether a system meets its
timing demands or not, e.g., whether it responds to input within a specific time
window, or whether it is able to process data at a given rate. Synchronous dataflow
(SDF) graphs are models of computation that allow for conservative analysis of a
system’s temporal dynamics. By assuming worst-case temporal behaviour for the
system’s components, a temporal analysis translates to guarantees on the timing
of the system. This potentially leads to an over-dimensioned system, where buffers
used for communication links may be larger and clock speeds may be higher than
necessary.

Different classes of SDF graphs exist. These classes vary in the richness of the prop-
erties that specify the behaviour of a graph. The richer these properties, the smaller
the graph needed to express the same behaviour. As a result, the difficulty of the
analysis of an SDF graph depends on its succinctness: the richer the properties
of a graph, the more computationally demanding its analysis. In this thesis, we
consider the following three classes, in order of increasing succinctness: homoge-
neous (HSDF),multi-rate (MRSDF, sometimes referred to as SDF) and cyclo-static
(CSDF) synchronous dataflow.

Current approaches to the analysis of SDF graphs are divided into two main lines
of thought. The first consists of those approaches that perform an exact analysis
by considering the temporal dynamics of the graph at the finest possible level of
granularity. As a result, the computed performance characteristics are tight: if the
components of the system behave according to their worst-case behaviour, then
the system’s performance matches the performance predicted by the model. Conse-
quently, over-dimensioning of the system is kept to a minimum. A disadvantage of
the approach is its scalability: while HSDF graphs may be analysed in polynomial
time, for MRSDF and CSDF graphs, analysis has an exponential time complexity.

Approaches that belong to the second line of thought are those that aim for a low
computational complexity of the analysis, using approximation. To achieve this,
they simplify the potentially complex patterns that compose the temporal behaviour
of an SDF graph. This simplification is conservative: performance characteristics
computed from this simplified behaviour are pessimistic with respect to the worst-
case behaviour of the system. As a result, the system may be over-dimensioned to
a larger extent when compared to an exact analysis. This is compensated by better
scalability compared to exact methods, as it allows the three classes of dataflow to

vi

be analysed in polynomial time.

With respect to accuracy and computational complexity, these two lines of thought
are currently at different ends of a discontinuous spectrum. In case an exact analy-
sis is computationally too expensive, the only alternative is a, possibly too coarse,
conservative approximation. Likewise, the sole alternative to an overly pessimistic
approximation is an exact analysis that may potentially be too costly.

In this thesis, we develop a mathematical characterisation of SDF graphs that pro-
vides a basis for combining the two lines of thought described above. We view SDF
graphs as linear discrete event systems, which may be described elegantly using a
mathematical structure called max-plus algebra. The central conviction of this the-
sis is that this system theoretic perspective unifies current approximate and exact
approaches, by allowing for incremental analysis, in which an initial rough estimate
may be improved in a stepwise fashion, until the result is accurate enough.

This approach to the analysis of synchronous dataflow graphs consists of two main
building blocks, the first of which is approximation: we present transformations of
CSDF graphs into a pair of equally-sized HSDF graphs, which give a simplification
of the temporal behaviour of the CSDF graph. These HSDF graphs, which we refer
to as single-rate approximations, may be analysed efficiently, and their performance
characteristics provide bounds on those of the CSDF graph.

The second building block consists of graph transformations, which increase the
level of detail of a specific part of the graph, by expanding it into a larger subgraph.
This transformation generalises existing transformations, such as the construction
of single-rate equivalents. Furthermore, it adds novel transformations, such as the
construction of multi-rate equivalents: MRSDF graphs that express the same be-
haviour as the more succinct CSDF graphs.

As an application of the theory presented in this thesis, we present two approaches
to the computation of the throughput, which is a primary performance character-
istic, of an multi-rate synchronous dataflow (MRSDF) graph. Our first approach
is an exact approach that exploits the structure of the single-rate equivalent of the
graph, restricting the analysis to a subgraph. Our second approach combines the ap-
proximations and transformations into an incremental approach, which iteratively
improves the accuracy of the analysis by partially unfolding critical actors.

We validate the soundness of our approach to throughput analysis by applying it
to a number of benchmark sets and case studies and comparing the results with
current state-of-the art approaches. This comparison confirms the efficiency of our
exact approach, and the validity of our incremental approach: our exact method
computes the throughput of an SDF graphs in a fraction of the time required by
state-of-the-art approaches, and our incremental approach trades off accuracy with
size of the analysed graph.

viiSamenvatting

Tijd speelt een belangrijke rol in het ontwerp van real-time systemen. Onwerpers
van zulke systemen moeten na kunnen gaan of aan alle eisen met betrekking tot
timing wordt voldaan. Zo moet bijvoorbeeld geverifieerd kunnen worden of het
systeem binnen de vereiste tijdsspanne reageert op een specifieke invoer, of dat
het systeem in staat is om een bepaalde hoeveelheid gegevens per tijdseenheid
te verwerken. Synchrone dataflow (SDF) grafen zijn modellen van berekeningen,
waarmee een conservatieve analyse van het temporele gedrag van een systeem kan
worden uitgevoerd. Door, per component in het systeem, van worst-case timing uit
te gaan, vertaalt een temporele analyse zich naar garanties over de timing van het
systeem. Een potentieel gevolg hiervan is dat het systeem over-gedimensioneerd
wordt: buffers krijgen een onnodig grote capaciteit en kloksnelheden zijn hoger
dan noodzakelijk.

Er bestaan verschillende klassen van SDF grafen, die variëren in hoe uitgebreid
de eigenschappen zijn waarmee het gedrag van een graaf kan worden gespecifi-
ceerd. Hoe uitgebreider deze eigenschappen, hoe kleiner de graaf die nodig is om
het zelfde gedrag uit te drukken, en hoe meer tijd een analyse van deze graaf in
beslag zal nemen. In dit proefschrift beschouwen wij de volgende drie klassen, in
toenemende mate van compactheid: homogene (HSDF),multi-rate (MRSDF, soms
kortweg SDF genoemd) en cyclo-statische (CSDF) synchrone dataflow.

Huidige aanpakken voor de analyse van SDF grafen zijn onder te verdelen in twee
gedachtengangen. De eerste gedachtengang omvat benaderingen die een exacte
analyse uitvoeren, door in de analyse de fijnste details van het temporele gedrag
van de graaf mee te nemen. Hierdoor komt het berekende gedrag van het model
nauwkeurig overeen met het worst-case gedrag van het systeem. Een voordeel
hiervan is dat het over-dimensioneren van het systeem tot een minimum wordt
beperkt. Een sterk nadeel van deze benadering is de beperkte schaalbaarheid: waar
HSDF grafen in polynomiale tijd kunnen worden geanalyseerd, heeft een exacte
analyse van MRSDF en CSDF grafen een exponentiële complexiteit.

Aanpakken die behoren tot de tweede gedachtengang streven naar een lage com-
plexiteit van de analyse, door gebruik te maken van approximaties. Hiertoe ver-
eenvoudigen ze de complexe patronen die aan het tijdsgedrag van een graaf ten
grondslag liggen. Deze vereenvoudiging is conservatief : voorspellingen aangaande
de prestaties van het systeem zijn pessimistisch met betrekking tot het werkelijke
gedrag. Hierdoor kan het systeem sterker worden geoverdimensioneerd dan bij een
exacte analyse. Dit nadeel wordt gecompenseerd door een betere schaalbaarheid

viii

in vergelijking met exacte methoden: de drie genoemde klassen van SDF grafen
kunnen allen in polynomiale tijd worden geanalyseerd.

Met betrekking tot nauwkeurigheid en complexiteit, bevinden de twee genoemde
gedachtengangen zich aan verschillende uiteinden van een discontinu spectrum.
Indien een exacte analyse computationeel te duur is, is het enige alternatief een
(mogelijk te onnauwkeurige) conservatieve approximatie. Andersom is het enige
mogelijke alternatief voor een pessimistische approximatie een potentieel te kost-
bare exacte analyse.

In dit proefschrift ontwikkelen we een wiskundige karakterisatie van SDF grafen,
die een basis vormt voor het combineren van de twee genoemde gedachtengangen.
Hierbij beschouwen wij SDF grafen als lineaire discrete event systemen, welke ele-
gant beschreven kunnen worden in een wiskundige structuur genaamd max-plus
algebra. De centrale overtuiging in dit proefschrift is dat dit systeem-theoretische
perspectief de huidige approximerende en exacte aanpakken verenigt, door een
incrementele analyse toe te staan, waarin een initieel grove benadering stapsgewijs
kan worden verbeterd, totdat het verkregen resultaat nauwkeurig genoeg is.

Deze incrementele aanpak voor de analyse van synchrone dataflow grafen is op-
gebouwd uit twee transformaties. De eerste hiervan is een approximerende: deze
transformatie zet een CSDF graaf om naar een tweetal HSDF grafen waarvan het
temporele gedrag een versimpeling is van dat van de CSDF graaf. Deze HSDF gra-
fen, genaamd single-rate approximaties, kunnen efficiënt worden geanalyseerd, en
de verkregen prestatiekenmerken geven grenzen aan die van de CSDF graaf.

De tweede transformatie is een graaf uitvouwing, welke details in het gedrag van
een specifiek deel van de graaf uitlicht, door dat deel te vervangen door een grotere
graaf. Deze transformatie generaliseert bestaande transformaties, waaronder de
constructie van zogenaamde single-rate equivalenten. Verder biedt het een aantal
nieuwe transformaties, zoals de constructie van een multi-rate equivalent: dit is
een MRSDF graaf met hetzelfde temporele gedrag als die van de meer beknopte
CSDF graaf.

Als toepassing van de in dit proefschrift gepresenteerde theorie, geven wij twee
aanpakken voor de berekening van een primair prestatiekenmerk, namelijk door-
voersnelheid, van eenMRSDF graaf. Onze eerste aanpak is een exacte aanpak die de
structuur van de single-rate equivalent van de graaf uitbuit, en hierdoor de analyse
beperkt tot een kleinere graaf. Onze tweede aanpak is een incrementele aanpak,
welke stapsgewijs de nauwkeurigheid van de analyse verbetert, door steeds zoge-
naamd kritieke actoren uit te vouwen. We valideren de degelijkheid van deze twee
aanpakken op een aantal benchmark sets en case studies, en vergelijken de resul-
taten met de huidige state-of-the art benaderingen. Deze vergelijking bevestigt
de doeltreffendheid van onze exacte aanpak en de validiteit van onze stapsgewijze
aanpak. Onze incrementele aanpak laat de wisselwerking tussen nauwkeurigheid
van de analyse en grootte van de geanalyseerde graaf zien, en onze exacte methode
berekent de doorvoersnelheid van een SDF graph in een fractie van de tijd die
state-of-the-art methodes nodig hebben.

ixDankwoord

Daar is ’ie dan! De bevalling was zwaar, de draagtijd wat langer dan gebruikelijk,
maar met het schrijven van dit dankwoord rond ik dan eindelijk mijn proefschrift
af. Daarmee komt een einde aan een lang en soms zwaar proces, waar ik echter
geenmoment spijt van heb gehad. Gelukkig heb ik dit proces niet alleen doorlopen,
en daarom wil ik graag een aantal mensen bedanken.

Allereerst wil ik Jan bedanken, vooral voor zijn begrip van de zoektocht waar een
promovendus zich door heen beweegt en alle leermomenten die hierbij horen. Jan,
bedankt voor je begeleiding in het worden van wat ik nu ben, van dag 1 tot het
moment dat je met een fles whisky aanbelde om het verzenden van het concept-
proefschrift te vieren. Bedankt dat je me de ruimte hebt gegeven om zelf een rich-
ting te vinden, vrij van de reeds vaag uitgestippelde lijnen van het onderzoekspro-
ject waarin ik begon (iets met statistiek?). Door jou is dit proefschrift een logboek
van mijn eigen speurtocht geworden.

Ik had natuurlijk nooit aan dit avontuur kunnen beginnen zonder het vertrouwen
van Gerard. Gerard, bedankt voor de positieve manier van het leiden van de vak-
groep, waar mensen centraal staan, niet processen.

Naast Jan en Gerard heb ik ontzettend veel gehad aan Philip als begeleider. Philip,
bedankt dat ik altijd bij je kon binnen vallen om te sparren over iets waar ik op
vast zat en voor je opbouwende kritiek. We hebben samen vele uren voor het whi-
teboard gestaan om te proberen soms kromme gedachtengangen te formaliseren.
Maar naast de inhoudelijke begeleiding wil ik je vooral bedanken voor je vermo-
gen om mij en anderen te motiveren. Het zinnetje “lower your standards” klinkt
nog regelmatig in mijn hoofd en het lukt me nu om de lat wat lager te leggen dan
voorheen (al kan hij nog flink wat verder zakken).

Tijdensmijn tijd als promovendus heb ikmet heel watmensen verschillende kamers
gedeeld: Timon, Anja, Berend (ik vind het geweldig dat jullie twee uit Trondheim
komen om bij mijn verdediging te zijn), Bart, Diego en Hermen: bedankt voor
de goede sfeer en het delen van zowel de frustraties en beslommeringen als het
enthousiasme en de persoonlijke overwinninkjes.

Marco, Jochem en Arjan, bedankt voor de werktijd die jullie kwijt waren aan de (in
retrospect soms bijzonder belachelijke) overpeinzingen die ik vaak ongevraagd in
jullie kantoor kwam delen. Ik heb niet bijgehouden hoeveel taart-weddenschappen
er zijn afgesloten, maar ik weet wel dat ik ze vaak verloor. Door al die weddenschap-
pen vrees ik (eigen schuld) de traditionele sketch bijna meer dan de verdediging

x

van dit proefschrift.

De bezoeken aan conferenties waren vooral ook leuke uitstapjes, maar zo hier en
daar gingen er wel eens wat dingen bijna mis. Hierbij ben ik vooral veel dank
verschuldigd aan Rinse voor het vervoeren van een niet nader te noemen doch
zeer belangrijk reisdocument. Ik zal het nog vaak (en terecht) moeten aanhoren,
maar dat zou ik veel vervelender hebben gevonden wanneer je drie minuten later in
Düsseldorf was aangekomen. En natuurlijk moet ik hier ook weer Philip bedanken,
voor het ter beschikking stellen van zijn bolide. I owe you guys!

Marlous, Nicole en Thelma, bedankt voor alle hulp bij het boeken van reizen en
hotels, invullen van declaratieformulieren, chocola, pepernoten, etc. Maar vooral
ook voor de tijd die jullie altijd hebben om, tussen al het denk-geweld, over iets
anders dan werk te praten.

Verder wil ik alle (ex-)collega-lotgenoten van CAES bedanken voor de goede sfeer
en toffe pauzes, in het bijzonder Thijs, Jonathan en Koen voor de hardloopkilome-
ters over de campus en omstreken, Albert voor het fanatisme op de squashbaan (de
goede oude tijd van de 9-0 is voorbij...), Christiaan en Gerwin voor het dagelijks
optrommelen van de kudde voor de lunchwandelingen en natuurlijk Jochem voor
het gemak dat ik en vele andere promovendi hebben van zijn LATEX template. Ik
denk dat het goede groepsgevoel, zoals die er bij CAES is, een omgeving schept
waarin mensen elkaar inspireren en waarin ideeën makkelijker tot wasdom komen.
Daar wil ik iedereen voor bedanken. Ik wens alle AIO’s die op het moment van
schrijvenmet hun promotie-onderzoek bezig zijn heel veel succesmet het afronden
ervan. Tenslotte hoop ik dat het onderwerp van dit proefschrift, synchrone dataf-
low, binnen de vakgroep in stand wordt gehouden door Marco, Guus, Viktorio en
Philip.

Gelukkig bestaat er ook nog een leven naast het promotie-onderzoek, al laat het
nadenken zich vervelend goed meenemen van werk naar huis. Arjan, Derk, Henry,
Joost, Joost, Jos, Lodewijk, Martijn en Martijn: het “wie wilt weg” (of wat de afkor-
ting www ook mag betekenen) weekend in januari slaagt er elk jaar weer om het
werk even totaal te vergeten. Of het nu Bremen, Berlijn, Amsterdam, Barcelona of
(als ik de verhalen mag geloven) St. Martijn is, het is een feest om een paar dagen
niks te moeten en alles te mogen. De timing is voor mij dit jaar misschien wat
minder, maar een betere manier om de spanning voorafgaand aan de verdediging,
een week later, te breken, kan ik me niet voorstellen.

Rutger, Ronald, Marloes en Liset: bedankt voor de donderdagmiddagen die ik
kon besteden aan het afronden van mijn boekje, omdat Xem na school bij jullie
terecht kon. Ook wil ik jullie bedanken voor de squash, films, spelletjes, etentjes en
verjaardagen die vaak met hoofdbrekens om een of ander lastig raadsel eindigden.
Ik hoop dat er nog vele zullen volgen!

Roy en Harold, bedankt voor de vele potjes squash, Puerto Rico, Agricola, Terra
Mystica, Tikal, Catan, Machiavelli en Ganzenbord, die ik slechts bij hoge uitzonde-
ring (imba!) eenswon. Ik hoop dat we nog duizenden stinknoten zullenwegwerken

xi

en dat ik nog watmeer winstpartijen bij mag schrijven dan ik in de afgelopen twaalf
jaar verzameld heb. Het is een geruststellend idee dat jullie straks links en rechts
van mij zitten tijdens het drie kwartier durende vragenvuur.

Mijn schoonouders, Henk en Gerda, wil ik bedanken voor het “thuis” dat jullie zijn,
en waar ik me vanaf het begin welkom mocht voelen. Het buitenleven, met in de
wijde verte de schone dreven, is vooral in de zomer altijd heel erg ontspannend.

Alle (goede en minder goede) eigenschappen die me soms hebben geholpen en
soms hebben tegengewerkt bij het afronden van dit proefschrift zijn gevormd tij-
dens mijn opgroeien in Erica. Pap en mam, bedankt voor alles wat jullie hebben
gedaan om mij (en Hendrie) in staat te stellen om “door te leren”, ook al heeft dat
betekend dat we nu veel minder dichtbij wonen en minder vaak even langs komen
dan jullie vaak wensen. Hendrie en Kelly, ook jullie wonen niet direct om de hoek
en we zien elkaar daarom eigenlijk te weinig. Toch is het altijd fijn om op bezoek te
zijn en de kinderen met elkaar te zien spelen, en ik hoop dat we dat in de toekomst
nog vaak zullen doen.

Last but not least ben ik enorm veel dank verschuldigd aan wat al bijna 15 jaar
mijn thuis is. Lieve Marloes en Xem, ik ben in de afgelopen paar jaren niet altijd
de leukste vriend of papa geweest, met een afwezig hoofd dat nog vol met werk
zat. Zonder jullie had ik dit boekje nooit af kunnen ronden. Marloes, bedankt
voor je enorme geduld, stabiliteit en positiviteit, die gelukkig sterker zijn dan het
pessimisme dat ik soms na een frustrerende werkweek mee naar huis nam. Xem,
ik sta nog steeds te kijken van de enorme hoeveelheid energie die je elke dag weer
laat zien. Van jouw opgewektheid, flexibiliteit en frisse opmerkzaamheid heb ik
misschien wel het meest geleerd in de afgelopen paar jaar.

Robert
Enschede, januari 2016

xii

xiiiContents

1 Introduction 1
1.1 Models of computation . 2

1.2 Performance Analysis . 4

1.3 Problem statement and approach 6

1.4 Contributions . 7

1.5 Outline . 8

2 Background and related work 11
2.1 Cyclo-static SDF . 13

2.1.1 Multi-Rate SDF . 14
2.1.2 Homogeneous SDF . 14
2.1.3 Structural invariants . 14
2.1.4 Functional determinacy . 16
2.1.5 Auto-concurrency . 16
2.1.6 Self-timed execution and throughput 18
2.1.7 Related Models . 19

2.2 Discrete event systems . 22
2.2.1 Max-plus algebra . 22
2.2.2 Vectors and matrices . 23
2.2.3 Linear dynamical max-plus systems 24
2.2.4 Spectral theory and scheduling 26
2.2.5 Graphical representations . 28
2.2.6 Shift-invariant and shift-varying systems 30

2.3 Temporal analysis of synchronous dataflow graphs 32
2.3.1 Synchronous dataflow graph transformations 33
2.3.2 Approximations . 41
2.3.3 Throughput analysis . 42

2.4 Discussion . 47

xiv

C
ontents

3 A mathematical characterisation of SDF 51
3.1 Dataflow processes and firing order 52

3.2 Temporal dynamics . 57
3.2.1 The actor firing perspective 58
3.2.2 The token transfer perspective 62
3.2.3 Comparing the two perspectives 66

3.3 Equivalent systems . 66

3.4 Discussion . 70

4 Synchronous dataflow graph transformations 75
4.1 Transforming CSDF into MRSDF 78

4.1.1 Mapping actors and channels from CSDF to MRSDF 79
4.1.2 Temporal equivalence . 81
4.1.3 Mapping admissible schedules 85
4.1.4 Pruning . 88

4.2 Unfolding CSDF actors . 94
4.2.1 Mapping channels and actors 94
4.2.2 Pruning the unfolded graph 96

4.3 Single-rate equivalents . 99

4.4 Unfolding MRSDF graphs . 101

4.5 Discussion . 103

5 Single-rate approximations 109
5.1 Linear shift-invariant systems . 110

5.2 Transforming the predecessor function 113
5.2.1 The actor firing perspective 114
5.2.2 The token transfer perspective 118

5.3 Single-rate approximations . 121
5.3.1 Optimistic and pessimistic systems 121
5.3.2 Computing strictly periodic schedules 125
5.3.3 Constructing temporal abstractions 132
5.3.4 Comparing the two perspectives 134

5.4 Quality of the approximation . 137

5.5 Discussion . 138

xv

C
on

te
nt

s

6 Throughput analysis 141
6.1 Throughput, parallelism, and maximum cycle ratio 143
6.2 Analysis of the single-rate equivalent 144

6.2.1 Structure: parallel and crossing channels 144
6.2.2 The throughput of closed walks 148
6.2.3 Efficient subgraph analysis . 152

6.3 An incremental approach . 156
6.3.1 Estimated throughput . 156
6.3.2 Cycle analysis by iterative vectorisation 159
6.3.3 Incremental throughput analysis of graphs 164

6.4 Discussion . 170

7 Case studies 173
7.1 Throughput analysis . 174

7.1.1 Benchmark sets . 175
7.1.2 Analysis of the single-rate equivalent 177
7.1.3 Incremental analysis . 185

7.2 Buffer capacity optimisation . 189
7.3 Discussion . 191

8 Conclusions and future work 195
8.1 Summary and conclusions . 195
8.2 Contributions . 199
8.3 Recommendations for future work 201

A Integer Arithmetic 205

Bibliography 211

List of Publications 221

xvi

11
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphs
the introductory chapter of this thesis, about temporal analysis
of synchronous dataflow graphs the introductory chapter of this
thesis, about temporal analysis of synchronous dataflow graphsIntroduction

Abstract – synchronous dataflow (SDF) is a popular model of computation,
used to model stream-processing applications. Analysis of the temporal dynam-
ics of an SDF graph provides guarantees with respect to the performance of the
system it models. Different classes of SDF graphs exist. As the richness of the
model’s properties increases, so does the potential complexity of its dynamics.
Current analysis techniques are divided into approximate and exactmethods.
Exact methods are accurate but time consuming, whereas approximations are
easier to compute, but potentially inaccurate. The main contribution of this
thesis is a mathematical basis for characterising the temporal dynamics of an
SDF graph. This basis is constructed from a system-theoretic perspective, and
unifies existing approximate and exact approaches, by providing a set of graph
transformations. As a result, the accuracy of an approximate analysis can be
balanced with its computational costs, giving a scalable approach.

A computer is a machine that performs computations. Computations map a se-
quence of input values to a sequence of output values. Computers perform com-
putations by following a series of predefined steps, given in the form of programs.
An important aspect of these computations is the time they take; some systems
only function correctly, if they respond to an input within a certain time window.
Examples of these systems are found in many systems that are embedded in larger
(often mechanical) machines, such as the electronic braking systems in a car or the
guiding system in rockets and satellites. Because timing is an integral part of their
correct functioning, these systems are called real-time (embedded) systems.

Computers have advanced tremendously over the past decades; they have become
both smaller and faster. The time a processor needs to perform a particular compu-
tation has decreased by several orders of magnitude, especially since the mid-1980s.
Whereas in the twentieth century the increase in performance was primarily due to
smaller components (a trend that follows the well-known law of Moore) allowing
for higher clock frequencies, the last twenty years has seen many improvements in

2

C
hapter

1–
Introduction

the organisation of the work carried out by a processor and its peripherals. For ex-
ample, the use of caches in the retrieval of data frommemory decreases the time to
access data that is intensively used, and speculative execution performs work before
it is known whether that work will be needed. In particular, the inclusion of multi-
ple processors in a computer allows computations to be performed in a distributed
way; partial results are computed on different processors and then combined to
form the result of the full computation.

When organising a distributed computation, one must take into account the depen-
dency structure of the computation: some steps in a computation require that other
steps are completed first. These steps must thus be executed sequentially. Steps that
do not depend on each other’s completion, in the sense that they do not require in-
put from other steps, can be executed in parallel. The available hardware resources
further imposes restrictions on the organisation of work. For example, the number
of processors limits the number of partial results that can be computed in parallel.

In the context of real-time embedded systems, computations must be organised in
such a way that their timing satisfies a set of constraints. In order to optimise the
performance of a computation, one must be able to study the interplay between its
organisation, the limitations imposed by the hardware resources, and the perfor-
mance. Themotivation behind this thesis is that the analysis of this interplay is best
done through the use of amodel of computation, and that SDF is a suitable model
to start with. An SDF model allows one to analyse the performance of a computa-
tion by incorporating non-functional properties, such as the time a computation
takes, into the dependency structure of the computation. Performance analysis of
real-time embedded systems using SDF is the main topic of this thesis.

1.1 Models of computation

Computations can be decomposed into smaller computations: for example, the
product C of two matrices A and B can be obtained by computing the products of
each of the rows of Awith matrix B separately. These smaller computations may be
distributed over different computers, and the result of the larger computation may
be obtained by combining the partial results. A natural way to depict a computation
is by means of a directed graph or a network. Each node in the graph corresponds
to a step in the computation, and arcs correspond to dependencies between steps.

Amodel of computation explains how the behaviour of the whole system is the result
of the behaviour of each of its components¹. When representing a computation as
a directed graph, a model of computation describes how each node must combine
its inputs to produce its outputs. Several such models have been proposed over the
past decades.

1This definition of model of computation is borrowed from the field of model-driven engineering.
The termmodel of computationmay also refer to the modelling of the computation steps carried out
by a machine, in complexity theory, or to mathematical abstractions of computations such as Turing
machines and lambda calculus.

3

1.1
–
M
od

el
so

f
co

m
pu

ta
ti
on

In the year 1974, Gilles Kahn wrote an influential article on what he called “a simple
language for parallel programming”, showing how computationsmay be distributed
over a network of computing devices [53]. The “how” consists of a set of rules that
these distributed computations must obey in order to yield functional determinacy,
which means that, when fed with the same input sequence, the computation yields
the same output sequence. The networked computations introduced by Kahn are
referred to as Kahn process networks. A key result proven by Kahn is that networks
of sequential processes, which compute functions over their input data and commu-
nicate through unbounded first-in first-out channels, are functionally determinate.

Prior to the introduction of Kahn’s process networks, a similar conclusion was pre-
sented in the context of a more restricted model for parallel computations, named
computation graph, presented by Karp and Miller in 1966 [55]. In a computation
graph, arcs represent first-in first-out queues, and each node represents a func-
tion. Nodes read data from their input arcs, and produce data on their output arcs.
This data is represented by markers placed on arcs, called tokens and commonly
depicted by solid dots. Arcs are annotated by four numbers, which indicate the
number of tokens read and produced by the corresponding functions, the number
of tokens initially present on the arc, and theminimum number of tokens that must
be present on the arc before tokens may be read from it.

Dataflow is a paradigm in which a computation is viewed as a network (i.e., a
directed graph) of concurrently executing processes that communicate by send-
ing data over channels. In a dataflow graph, nodes are called actors, and arcs are
referred to as channels. Dataflow graphs are a special case of Kahn’s process net-
works [61]. The central model of this thesis was introduced in the 1980s, and is
named synchronous dataflow [60]. A synchronous dataflow (SDF) graph can be
regarded as a restriction of Karp and Miller’s computation graphs: the number of
tokens produced (i.e., written to an output channel) and consumed (i.e., read from
an input channel), per firing of an actor, is known a priori. Different varieties of
SDF graphs exist. In this thesis, we treat the three most prominent ones, listed
below in increasing order of the richness of their properties:

Homogeneous synchronous dataflow (HSDF)
These graphs were studied by Reiter in 1968, as a special case of the compu-
tation graphs of Karp and Miller [78]. In an HSDF graph, each actor firing
involves the consumption if a single data token from each of the actor’s incom-
ing channels, and the production of a single token onto each of its outgoing
channels.

Multi-rate synchronous dataflow (MRSDF)
In MRSDF graphs, introduced in [60], actors produce and consume data at
fixed but different rates. This is the model that was proposed in the introduc-
tory paper on SDF, where the adjective “multi-rate” was simply omitted. An
MRSDF graph is a special case of the so-called computation graphs introduced
by Karp and Miller in the late sixties.

4

C
hapter

1–
Introduction

Cyclo-static dataflow (CSDF)
CSDF graphs were introduced by Bilsen in [11]. In a CSDF graph, actors have
periodically varying behaviour. Each actor cycles through a fixed number of
phases, and an actor’s execution time, as well as its production and consump-
tion rates, may differ per phase. This model was introduced about 15 years
after the introduction of synchronous dataflow, as a more versatile variant of
MRSDF. In the original definition of [11], actors in the graph fire in a strictly
sequential fashion, which means that CSDF does not, taxonomically speaking,
generalise MRSDF.

The theory and applications that we introduce in this thesis apply to CSDF graphs.
In particular, in our view on CSDF, we allow for actors that have varying execution
times, without limiting these actors to run in a purely sequential fashion. This gives
a natural taxonomy, where CSDF is a true generalisation of MRSDF, and MRSDF
generalises HSDF.

1.2 Performance Analysis

An attractive property of SDF graphs is their analysability. In an SDF graph, the
durations of firings of each actor, aswell as the production and consumption rates as-
sociated with firings, are constant integers. As a result, one may determine whether
the graph allows for an infinite number of firings andwhether the queues associated
with the channels can be realised in bounded memory. Furthermore, the times at
which actors fire follow a repetitive pattern (here we assume that graphs satisfy a
property called consistency, which we explain in further detail in Chapter 2), called
a graph iteration, which may be computed a priori. The potential complexity of
these patterns (i.e. the length of a graph iteration), is lowest for HSDF graphs, and
highest for CSDF graphs. This is illustrated in Figure 1.1, which shows the firing
times of an HSDF actor, as well as those for a CSDF actor. The number of firings
that compose a single pattern for CSDF actor b is 14, whereas the HSDF firing
pattern consists of a single firing.

Analysis of the performance of an SDF graph involves computing the details of
these firing patterns, by analysing the constraints on actor firing times, within a
single graph iteration. The difficulty of analysis thus depends on the size of an
iteration. Adding a single channel to a graph may result in a proportional increase
in the length of an iteration of the graph: the size of a graph iteration thus grows
exponentially in the size of the graph.

There are currently several different approaches to the analysis of SDF graphs, which
may be grouped into two main schools of thought. The first of these two schools
consists of those approaches that are exact, meaning that they compute the precise
details of the potentially long firing patterns. Since the size of a graph iteration
grows exponentially in the size of the graph, methods that fall in this class do not
scale very well.

5

1.2
–
Pe

rf
or

m
an

ce
A
na

ly
si
s

a,4 b,1 c,1

2

1

(a) HSDF graph.

a,3 b,⟨1, 2⟩ c,2
2 ⟨2, 2⟩

⟨2, 2⟩4
2

⟨3, 1⟩ 2
7

7
8⟨4, 0⟩

(b) CSDF graph.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

4

8

12

16

20

24

28

32

36

firing

tim
e

HSDF

CSDF

(c) Firing times of actor b.

Figure 1.1 – The complexity of firing patterns is determined by the kind of SDF graph. In
HSDF graphs, actors may be scheduled to fire in a strictly periodic fashion, whereas for a
CSDF graph, the complexity of such a pattern depends on the graph’s properties.

6

C
hapter

1–
Introduction

a,2 b,3 c,6
1 2

2
2

1

2 n

n
4n

2

Figure 1.2 – An example of anMRSDF graph for which an exact approach does unnecessary
work, and an approximation yields a large error.

The second school is concerned with approximate approaches: These approaches
can be characterised as working by assuming specific firing patterns rather than
deriving them. For example, they may assume that each actor fires in a strictly
periodic fashion, which means that an SDF graph is essentially treated as if it were
anHSDF graph. As a result, thesemethods scalemuch better, as they do not depend
on the length of a firing pattern. However, the simplification of these patterns gives
rise to an approximation error, which may be large.

1.3 Problem statement and approach

Exact methods provide an accuracy that may not be required, and require expo-
nential time, whereas approximate methods require polynomial time, but provide
an unknown accuracy. Existing methods fail for graphs for which an exact analysis
is infeasible due to the length of a single graph iteration, and approximation yields
a too pessimistic result. An example of such a graph is given in Figure 1.2: the per-
formance bottleneck in the graph is, independent of the value of the parameter n,
formed by cycle aba. For the graph, both the error of a conservative approximation,
and the length of a single iteration of the graph, increase linearly in n. Choosing n
very large thus renders the approximation useless in terms of accuracy, and makes
an exact analysis too costly.

Graphs such as Figure 1.2 reveal two main shortcomings of the current state-of-the-
art: First of all, current approximate analysis techniques do not provide any means
to assess their accuracy. As a result, systems designed to satisfy real-time constraints
may be severely over-dimensioned: as the throughput of the system, assessed by an
approximate technique, may be underestimated, the amount of hardware resources
required to let the system meet its constraints are overestimated. An assessment of
the approximation error would allow a designer to balance the accuracy of a quick
approximation against the time required by a thorough and exact analysis.

A second shortcoming is the scalability of exact methods. These methods make no
distinction between the criticality of different parts of the graph. Typically, only
a small part of the graph determines its performance bottleneck. Current exact
approaches treat the entire graph as potentially critical.

Underlying these two problems is the fact that no strong connection exists between
current exact and approximate methods. For graphs for which exact analysis does

7

1.4
–
C
on

tr
ib
ut

io
ns

not scale, the only alternative is a potentially highly inaccurate approximate analysis.
This thesis fills the gap between exact and approximatemethods by providingmeans
to improve approximation accuracy by increasing the size of the graph, in a scalable
way. The central research question addressed by this thesis is:

How can we combine exact and approximate analysis of synchronous data-
flow graphs into an approach that offers a trade-off between accuracy and
complexity?

We approach this question by taking a system-theoretic perspective. In this view,
SDF graphs are mathematical structures that define how events, such as the start or
completion of a computation, or the communication of data, are interrelated, and
how this restricts the times at which these events may take place. These mathemat-
ical structures are called discrete event systems, and are well-studied and described
usingmax-plus algebra.

This mathematical view allows us to design a basis that is shared between the exact
and approximate approaches. As a result, both kinds of approaches can be derived
from it, which we demonstrate in this thesis. The perspective furthermore allows
one to reason formally over the relation between graphs; in particular, it allows
us to conclude whether the “behaviour” of two graphs is equivalent, or whether
one graph always shows a better performance than another graph. The basis allows
us to design an incremental approach to the analysis of SDF graphs; starting with
a rough estimate, we show how this estimate may be incrementally improved by
applying transformations to the graph under analysis.

1.4 Contributions

Themain contribution of this thesis is a theoretical one: a soundmathematical basis
that characterises the temporal behaviour of HSDF,MRSDF and CSDF graphs. The
core of this basis is formed by viewing SDF graphs as discrete event systems. We use
the elegant mathematical structure calledmax-plus algebra to turn this perspective
into a formal definition on the set of schedules that are valid for these graphs.

From this mathematical basis, both exact and approximate analyses naturally fol-
low. This unifies the two main schools of thought in literature, which are either
concerned with exact or approximate analysis. Furthermore, the combination of
exact and approximate analyses gives rise to a trade-off between accuracy and run-
time of the analysis. This is achieved through graph transformations (for example,
from CSDF into MRSDF), which involve a process of algebraic rewriting.

In addition, we observed that in the literature on approximate approaches two
different perspectives can be distinguished, which we refer to as the token transfer
perspective and the actor firing perspective. In the first, the temporal behaviour
of a graph is described in terms of the times at which tokens move over channels,
whereas in the second this behaviour is described in terms of the times at which

8

C
hapter

1–
Introduction

actors complete their firings. Though closely related, we show that they differ in
the accuracy they provide.

The above theoretical contributions lead to the following practical results:

» A novel transformation of CSDF graphs, in which actors are unfolded into
multiple actors, which represent subsets of the firings of the original ac-
tor. Using this transformation, CSDF graphs may be transformed into their
multi-rate equivalent: an MRSDF that has the same temporal behaviour as
the CSDF graph. This transformation is the first of its kind and allows all
existing analysis methods that apply to MRSDF to be generalised to CSDF.
Furthermore, the transformation may be applied to the full graph, or to a
smaller subgraph, giving rise to partial transformations. Rather than trans-
forming an entire SDF graph into an equivalent HSDF graph, onemay trans-
form only those parts of the SDF graph that are of interest into a largerHSDF
graph. A remarkable property of all these transformations is that they may
be applied to graphs with parameterised initial tokens. This invalidates the
current conviction, which is that the structure of an equivalent HSDF graph
depends on the number of tokens.

» A set of novel approximate transformation from aCSDF graph into anHSDF
graph, which we refer to as a single-rate approximation. Single-rate approx-
imations are either optimistic or pessimistic, which refers to the fact that
their respective performance characteristics form upper or lower bounds on
those of the CSDF graph. Furthermore, they may be derived from the two
different viewpoints mentioned above.

» A novel incremental approach to throughput analysis of MRSDF graphs,
which combines the unfolding transformations and the approximate trans-
formations. The resulting algorithm computes the throughput of anMRSDF
graph by iteratively transforming only the parts of the graph that constrain
the throughput (i.e., those parts that form a bottleneck) into a larger graph.
As a result, accuracy of the analysis can be balanced with the complexity of
the analysis.

1.5 Outline

This thesis is organised in a bottom-up fashion, from background theory on SDF
graphs andmax-plus algebra to the analysis of throughput. In Chapter 2 we present
the necessary terminology and concepts that are used throughout the thesis. Fur-
thermore, the chapter gives an overview of the current approaches to the transfor-
mation, approximation and analysis of SDF graphs and related models. Chapter 3
introduces the mathematical basis underlying the tools developed in the chapters
following it. It is in this chapter where we define what constitutes a valid schedule
for an SDF graph, using max-plus algebra.

Chapter 4 is the first chapter that applies the mathematical basis for practical pur-
poses. In the chapter we demonstrate how, using the max-plus algebraic charac-

9

1.5
–
O
ut

li
ne

terisation of Chapter 3, an SDF actor may be unfolded into its firings, at a chosen
granularity. The chapter furthermore describes how the three different models,
HSDF, MRSDF and CSDF, may be transformed into one another.

Chapter 5 demonstrates how MRSDF and CSDF graphs may be approximated by
HSDF graphs, and how the error made by such an approximation may be assessed.
Chapters 4 and 5 rely on a number of identities between integer functions such as
themodulo, floor and ceiling operation, which may be found in Appendix A.

Chapter 6 combines the theory of chapters 4 and 5 to form a new approach to
throughput analysis of SDF graphs, which addresses the central research question
of this thesis. The chapter describes an incremental approach to throughput analysis
by demonstrating how the accuracy of approximate analysis may be improved in a
stepwise fashion, by applying transformations to those parts of the dataflow graph
that are performance-critical.

Chapter 7 applies the presented incremental analysis method to a number of case
studies, and discusses the results. Among the case studies is an influential compar-
ison that was carried out and presented almost a decade ago. Finally, Chapter 8
concludes the thesis and presents recommendations for future work. The chapter
furthermore contains a more detailed list of the contributions made by this thesis.

10

112

a chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,

iterations and throughput, as well as a coverage of related literature a
chapter about properties of synchronous dataflow, such as structural
invariants, iterations and throughput, as well as a coverage of related
literature a chapter about properties of synchronous dataflow, such as
structural invariants, iterations and throughput, as well as a coverage

of related literature a chapter about properties of synchronous
dataflow, such as structural invariants, iterations and throughput, as
well as a coverage of related literature a chapter about properties of
synchronous dataflow, such as structural invariants, iterations and
throughput, as well as a coverage of related literature a chapter about
properties of synchronous dataflow, such as structural invariants,
iterations and throughput, as well as a coverage of related literatureBackground and related work

Abstract – This chapter describes the three different classes of SDF graphs
that this thesis deals with, and introduces the terminology used to describe
their properties. SDF graphs form a subset of the broad class of discrete event
systems, which are elegantly described used max-plus algebra. This chapter
gives a brief introduction to discrete event systems and max-plus algebra, and
its use in characterising the temporal behaviour of SDF graphs. This chapter
furthermore discusses relevant literature on the transformation, approxima-
tion and performance analysis of SDF graphs and related models, such as Petri
nets and computation graphs.

Synchronous dataflow was introduced by Lee in 1987, as a programming paradigm
for the design and implementation of stream processing systems [60]. Its main
purpose, as presented by Lee, was to aid in the design of DSP applications for
concurrent implementation on parallel hardware, by making concurrency, which
is often available in signal processing algorithms, explicit. In the data flowparadigm,
algorithms are described as directed graphs, where the graph’s vertices represent
computations and its edges represent data dependencies [31, 63]. Computations are
data-driven: a vertex may fire (perform its computation) as soon as sufficient input
data is available on its incoming edges. This data is modelled by tokens. A firing
of a vertex involves the consumption of tokens from its incoming edges, and the
production of tokens onto its outgoing edges. Following the naming convention
that is common in literature, we refer to an SDF graph’s vertices as actors and to
its edges as channels. In a synchronous data flow graph, the number of tokens
produced and consumed per firing (production and consumption rates) is known
a priori. This makes SDF graphs statically schedulable and amenable for analysis.
A crucial property added to the model is time, which allows for temporal analyses
of the model.

Different kinds of SDF graphs exist. In the simplest class of SDF graphs, a single
firing of an actor produces and consumes a single token onto and from incident

12

C
hapter

2
–
Background

and
related

w
ork

FILT HIL EQ PLL DECI DECO
1 8 2 4 2 2 2 2

11
2 2

2

2

2
2

2

2

Figure 2.1 – A multi-rate SDF graph showing a voice-band data modem, taken from [60].

channels. Actors in these graphs are said to have a production and consumption
rate of one. This class is calledHSDF, and was introduced in [78]. We briefly touch
upon analysis of HSDF graphs in Section 2.2.4.

After the introduction of the basic SDFmodel in [60], themodel has been extended,
by several authors, with several annotations and properties. By allowing the num-
ber of tokens that are produced and consumed by a single firing to differ per actor
and per channel, we obtain the class of MRSDF graphs. This is the class that was
introduced, using the more general name SDF, in the initial paper on synchronous
dataflow, [60]. An example MRSDF graph is depicted in Figure 2.1. Analysis of
MRSDF graphs involves the construction and subsequent analysis of an equivalent
HSDF graph, called the single-rate equivalent of the MRSDF graph [51]. This ap-
proach is, however, penalised by the size of the latter: transforming an MRSDF
graph into an equivalent HSDF graph has an exponential complexity [77].

Themost general class that we consider in this thesis isCSDF, whichwas introduced
by Bilsen in 1996, and allows the number of tokens produced and consumed, as
well as an actor’s execution time, to vary periodically [11]. This class of graphs
generalises the scalar execution time and (production and consumption) rates,
found inMRSDF, to vectors. Theoriginal definition ofCSDF restricts the parallelism
that is available to actors, by implicitly assuming that each actor has a self-loop, with
a single token. As a result, CSDF actors are forced to run strictly sequentially, which
is a restriction that does not apply to MRSDF graphs. In our definition of CSDF
(see Section 2.1.5), we lift this restriction, such thatMRSDF is contained in CSDF.
We define the three classes listed above in terms ofCSDF, which is themost succinct
of the three, in Section 2.1.

Synchronous dataflow graphs form a subclass of the broad class of discrete event
systems [17, 20, 22]. These systems interrelate the times at which events occur, using
the operators max and + to capture respectively synchronisation and delay. The
state space of a discrete event system describes how timestamps of events evolve
over time [24]. We discuss this in more detail in Sections 2.2.1 and 2.2.

In this thesis, we regard synchronous dataflow graphs as discrete event systems. As
such, a basic understanding of the algebra used to describe the latter is necessary.
This algebra is referred to as max-plus algebra, and is described in further detail
in Section 2.2.1. Building upon this algebra, Section 2.2 presents the basic termi-

13

2.
1–

C
yc

lo
-s
ta
ti
c
SD

F

nology used to describe discrete event systems, and relates them to synchronous
dataflow graphs. Spectral analysis of so-called linear shift-invariant discrete event
systems is related to self-timed schedules ofHSDF graphs, fromwhich useful tempo-
ral properties such as throughput and latency may be derived [22, 49]. We discuss
the relationship between spectral theory and these properties in Section 2.2.4.

In Section 2.3, we describe existing literature on the analysis of SDF graphs. In
particular, we highlight related works on the transformation of SDF graphs into
simpler graphs, and on the approximation of SDF graphs. Furthermore, we discuss
several models related to SDF graphs, and dominant approaches to their analysis.

2.1 Cyclo-static SDF

In aCSDF graph, actors have cyclically varying behaviour: each actor cycles through
a fixed number of phases. The phase that an actor is in determines its execution
time and the number of tokens it produces onto and consumes from channels. The
number of phases is finite: after the actor has completed its last phase, it returns to
its first phase again.

Following [11], we use the term period to refer to the number of phases of an actor¹,
and denote the period of actor v by φv . The phase of an actor can be derived
from its firing index (i.e., the index in the sequence of all firings of that actor) in
a straightforward way: the behaviour of the actor during its kth firing (with k = 1
being the index of the first firing) is given by its (k mod1 φv)

th phase².

Each actor v has an associated execution time vector, which we denote by Tv =
[t1 , . . . , tφv] ∈ Nφv . At the start of an execution, an actor consumes data from its
incoming channels. The completion of the kth execution occurs at least tk mod1 φv

time units after this execution has started, and involves the production of tokens
onto its outgoing channels. For the sake of brevity, we write τv(k) to denote the
execution time of the kth firing of actor v.

Each channel vw (i.e., the channel from actor v to actor w) has an initial, inte-
ger number of tokens, denoted δvw . Furthermore, with each channel vw, two
vectors are associated. These vectors are the channel’s production rate vector, de-
noted P+vw = [ρ+1 , . . . , ρ+φv

] ∈ Nφv , and consumption rate vector, denoted P−vw =
[ρ−1 , . . . , ρ−φw

] ∈ Nφw . The kth firing of actor v produces ρ+k mod1 φv
tokens onto the

channel, whereas the kth firing of actor w consumes ρ−k mod1 φw
tokens from the

channel. We shall write ρ+vw(k) and ρ−vw(k) as respective shorthand notations for
ρ+k mod1 φv

and ρ−k mod1 φw
. We often refer to the source v of channel vw as the chan-

nel’s producer, and to the target w of vw as its consumer. If the number of tokens

1The term period is overloaded, as it may refer to both the phases of an actor and the times at which
actors fire.

2Wewrite k mod1 n as a shorthand notation for (k−1) mod n+1, with the mod operator defined
conventionally as: a mod b = a − b ⌊ ab ⌋ .

14

C
hapter

2
–
Background

and
related

w
ork

on each of an actor’s incoming channels is at least the channel’s consumption rate,
the actor may start an execution and is said to be enabled.

In the remainder of this thesis, we often need to refer to the total number of tokens
produced or consumed by an actor in one period. We therefore denote the number
of tokens produced onto channel vw in one period of v by PΣ+

vw = ∑
φv
i=1 ρ

+
vw(i),

and the number of tokens consumed, in one period of w, from channel vw as
PΣ−
vw = ∑

φw
i=1 ρ

−
vw(i). Furthermore, the greatest common divisor (gcd) occurs in our

transformation algorithms of chapters 4 and 5. We denote the greatest common
divisor, of quantities PΣ+

vw and PΣ−
vw , by gvw .

2.1.1 Multi-Rate SDF

In a multi-rate SDF (MRSDF) graph, actor execution times and production and
consumption rates are scalars rather than vectors. Multi-rate SDF graphs were
the first graphs introduced by Lee and Messerschmidt [60]. When referring to an
MRSDF actor’s execution time, or the rates associated with anMRSDF channel, we
simply omit the parameter k to functions ρ+vw , ρ−vw and τv . Chapter 4 describes how
any CSDF graph may be transformed into an equivalentMRSDF graph.

2.1.2 Homogeneous SDF

In a homogeneous SDF (HSDF) graph, production and consumption rates are all
equal to one. Homogeneous SDF graphs were studied by Reiter in 1968 [78], as a
restricted version of the more general computation graphs introduced two years
earlier byKarp andMiller [55]. ForHSDF graphs, many efficient analysis techniques
are available. In Chapter 4 we give transformations fromMRSDF and CSDF graphs
into equivalent HSDF graphs.

2.1.3 Structural invariants

Cyclic dependencies in a SDF graph limit the frequency at which actors may fire.
This maximum frequency depends on the rates and initial tokens associated with
the channels that compose these cycles. For a given channel vw, actorw completes,
on average, PΣ+

vw φw firings for every PΣ−
vw φv completed firings of actor v. Let the

gain of a channel be defined as:

gainvw =
PΣ−
vw φv

PΣ+
vw φw

,

and let the gain of a path be the product of the gains of the channels that compose
the path.

If the gain of each cycle equals one, then the graph is said to be consistent. The
firing times of actors in a consistent CSDF graph follow a repetitive pattern [11].
If, furthermore, the graph is strongly connected, then the number of tokens that
accumulates on a channel during execution, is bounded [40].

15

2.
1.3

–
St
ru

ct
ur

al
in
va

ri
an

ts

For a consistent CSDF graph, a minimal integer vector q exists such that, for every
channel vw, the following, so-called balance equation holds:

qv
PΣ+
vw
φv
= qw

PΣ−
vw
φw

. (2.1)

with the restriction that for each actor v, qv is an integer multiple of φv[11]. Vector
q is commonly referred to as the graph’s repetition vector, and gives rise to the
definition of a graph iteration: in a single graph iteration, actor v fires precisely
qv times. Note that for an MRSDF graph, the repetition vector entries must be
relatively prime (if not, then the vector cannot beminimal as a common divisor can
be divided out). For CSDF graphs the repetition vector entries are not necessarily
relatively prime.

As a dual to the repetition vector, a consistent CSDF graph has a second structural
invariant, which is associated with channels rather than actors [93]. For a consistent
CSDF graphG, aminimal integer vector s, with an entry for each channel inG, exists,
such that, for each actor v, the following, so-called flow conservation equation holds
for each pair of incoming and outgoing channels, uv and vw of v:

suv
PΣ−
uv
φv
= svw

PΣ+
vw
φv

, (2.2)

with the restriction that for each actor v, both sides of the equation are integer.
Vector s is commonly referred to as a P-semiflow in the context of Petri Nets [93].
In the context of dataflow graphs, we refer to it as flow normalisation vector. The
flow normalisation vector gives the ratios between the number of tokens that flows
through channels in a single iteration. Furthermore, vector smay be regarded as an
assignment of weights to channels. The weighted number of tokens on a channel
vw is then given by svwδvw . In any cycle of a consistent SDF graph, the total of the
weighted number of tokens is left unchanged by firings [64, 93].

In a single iteration of a consistent CSDF graph G, the weighted number of tokens
produced onto a channel vw in G is given by:

NG = qv svw
PΣ+
vw
φv

. (2.3)

By definition of the repetition and flow normalisation vectors, this quantity is the
same for every channel in the graph. We refer toNG as the scalar invariant associ-
ated with G. We use the scalar invariant as a scaling factor in the construction of
the single-rate approximations in Chapter 5.

We conclude this section with an illustration of the structural invariants, using an
example CSDF graph, depicted in Figure 2.2. Each of the two actors in the graph
has a period of two: φv = φw = 2. A repetition vector q that satisfies the balance
equations is given by qv = 4, qw = 6. In a single graph iteration, actor v completes
two, and actor w three periods. This means that in a single iteration, v produces

16

C
hapter

2
–
Background

and
related

w
ork

v w

⟨2, 0⟩2⟨2, 1⟩

⟨1, 2⟩ ⟨1, 1⟩⟨1, 1⟩

1
⟨1, 1⟩

Tv = ⟨2, 3⟩ Tw = ⟨2, 2⟩

Figure 2.2 – An example of a consistent CSDF graph

six tokens onto channel vw, and four tokens onto the self-loop vv. Furthermore,
actor w consumes six tokens from channel vw, and produces six tokens onto wv.
The smallest integer vector s that satisfies the flow conservation equations is given
by svv = 3 and svw = swv = 2. If we apply these normalisation factors to the
corresponding channel, then, in a single iteration, on each channel, twelve tokens
are transferred from producer to consumer. As a result, the scalar invariant of the
graph is twelve.

2.1.4 Functional determinacy

Synchronous dataflow graphs model applications that process streams of data. A
stream represents the sequence of tokens that are transferred over a channel in
an SDF graph. Since an actor in an SDF graph maps input data to output data, a
sequence of firings of an actor maps sequences of input data to sequences of output
data. Such a sequence is called a dataflow process [61, 76]. Dataflow processes thus
generalise the notion of a single actor firing to sequences of actor firings.

In this thesis, we restrict the analysis of SDF graphs to those executions that are
functionally determinate. That is, if the same sequence of input tokens is consumed
by a dataflow process, it produces the same sequence of output tokens [53]. A
sufficient condition for a dataflow process to be functionally determinate is that
each actor firing is functional, and that firings are strictly ordered [61, 75]. This
means that the data produced by a single firing is a function of the data it consumes,
and that themapping between the input and output sequences is (prefix-)monotonic:
given a prefix of the input sequence, part of the output sequence may already be
computed (see Figure 2.3).

The above is captured by the concept of amonotonic dataflow process. In a mono-
tonic dataflow process, firings ensure prefix-monotonicity: an actor produces to-
kens in the same order as their corresponding input tokens are consumed. We
describe this correspondence in more detail in Chapter 3.

2.1.5 Auto-concurrency

Actors in an SDF graph may fire as soon as sufficient input data is available. Avail-
ability of data may be sufficient for multiple firings, whichmay start simultaneously
(note that the consumption (and production) of tokens from a channel is instanta-
neous). Simultaneous firings of the same actor are called auto-concurrent. If each
firing takes the same amount of time, then firings that have started simultaneously

17

2.
1.5

–
A
ut

o-
co

nc
ur

re
nc

y

f

x3x2 x1 1

y4 y3
y2 y1

2

1

(a) Actor f with two enabled firings.

f

x3
1

2
f2(x2 , y3 , y4)

f1(x1 , y1 , y2)
1

(b) Two firings have completed.

Figure 2.3 – Any sequence of actor firings is functional: the sequence of data produced by
them is a function of the sequence of data they consume. This means that a sequence of
actor firings is (prefix-)monotonic: given a prefix of the input sequence, part of the output
sequence may already be computed. Monotonicity implies a strict ordering on an actor’s
firings; tokens consumed later correspond to tokens that are produced later.

also complete simultaneously. Self-loops (i.e., cycles consisting of a single channel)
are commonly used to explicitly limit the degree of auto-concurrency.

To ensure functional determinacy, a firing must delay the production of its output
tokens until all firings that functionally precede³ it have produced their output to-
kens. No such delay is necessary for MRSDF actors: as each firing of an MRSDF
actor takes the same amount of time, a firing that has started earlier than another
firing, completes earlier as well. Consequently, auto-concurrency of actors cannot
destroy functional determinacy. Things are different for CSDF actors, as their ex-
ecution time varies cyclically. As a result, a firing may, even though it has started
later, complete earlier than another firing that precedes it. This destroys prefix
monotonicity, and consequently, functional determinacy. To illustrate this, con-
sider again Figure 2.3, and assume that the second firing of f finishes before the first
firing does. The situation after two firings of f now differs from Figure 2.3(b), in that
the order of the two tokens on the outgoing channel of f is reversed. The mapping
from input sequences to output sequences, of the dataflow process associated with
f, is thus dependent on the timing of f, which means it is not prefix-monotonic.

To solve this problem, the original semantics of CSDF, as presented in [11, 33], im-
plicitly assumes that each actor has a self-loop, i.e., a channel with rates set to one,
and a single initial token. Such a self-loop prevents the actor to start multiple,
concurrent, executions. This so-called auto-concurrency is commonly available
to MRSDF and HSDF actors. The motivation for restricting auto-concurrency in
CSDF is that successive phases of an actor should not overlap, as phases are as-
sumed to imply the presence of internal state, which, in dataflow semantics, gives a
sequential execution. Assuming implicit self-loops for every actor (including those
with a single “phase”) in the graph, however, unnecessarily limits the expressiveness

3Theword “precedes” is slightly ambiguous, as it may refer both to time or ordering. We distinguish
between these two meanings using the adverbs temporally and functionally.

18

C
hapter

2
–
Background

and
related

w
ork

of CSDF graphs. This breaks the taxonomy that is implied by the generalisation
of production and consumption rate scalars to vectors, as offered by CSDF: any
MRSDF graph that has auto-concurrent actors is, under the definition of [11], not a
CSDF graph.

Some authors therefore choose to relax the original CSDF restriction of [11], by
assuming an implicit self-loop only for those actors that have phases with different
associated execution times [75, 98]. Others allow for auto-concurrent execution
of firings that have different associated execution times, but take no measures to
guarantee functional determinacy [91]. In this thesis, we choose to allow auto-
concurrent actors to be included in a CSDF graph, regardless of their execution
time vectors, and enforce functionally determinate execution by including dedi-
cated constraints on the times at which actors may complete their firings. These
constraints are described in more detail in Chapter 3.

2.1.6 Self-timed execution and throughput

In an SDF graph, execution is data-driven: an actor may fire as soon as the specified
amount of data (tokens) is available on each of its incoming edges. An actor that is
ready to fire is said to be enabled. In a self-timed execution of the graph, each actor
fires as soon as it is enabled.

In a consistent SDF graph, a self-timed execution eventually settles in a repetitive
pattern, called periodic phase [42]. In the periodic phase (of a self-timed execution),
each actor fires at a constant average rate4. Because in general, actors have different
production and consumption rates, the rates at which they fire. The ratio between
the (constant) rates at which two different actors fire is given by their repetition
vector entries.

The throughput of a consistent SDF graph G, denoted Th(G), is equal to the average
number of iterations completed per time unit, in a self-timed execution. Formally,
if we let tv(k) denote the time at which an actor v in G completes its kth firing, then
the throughput of G satisfies:

Th(G) = lim
k→∞

qvk
tv(k)

, (2.4)

where qv is the entry, in the repetition vector of G, of actor v.

In general, the self-timed execution of an arbitrary SDF graph does not immedi-
ately enter the periodic regime [42]. The phase that precedes the periodic phase
is referred to as the transient phase [42, 49]. The transient phase of an SDF graph
may be very long; only very pessimistic bounds for the length of the transient
phase exist [49]. To reduce the length of the transient phase, firings of a cleverly

4The word rate here is used in two different contexts: as a frequency, to refer to the number of
firings that an actor completes per time unit, and as a quantum, to indicate the number of tokens
produced or consumed by a firing.

19

2.
1.7

–
R
el
at

ed
M
od

el
s

selected set of vertices may be simulated prior to starting the self-timed execution.
This technique is called retiming and changes the initial token distribution of the
graph [73, 103].

2.1.7 Related Models

Synchronous dataflow graphs are often regarded as specific instances of computa-
tion graphs, and are also closely related to Petri nets. The use of timed event graphs
for the performance evaluation of real-time systems has been proposed in [21, 50].
Furthermore, various extensions have been made to the SDF model introduced
in [60], in order to capture properties of specific kinds of applications. Results ob-
tained for these related models may, either directly or indirectly often be applied to
SDF graphs. We therefore discuss several related models in the following sections.

Computation Graphs

One of the earliest models for computations were introduced by Karp andMiller in
1966. This model was named computation graph, and represents computations as
directed graphs [55]. For computation graphs, one may compute whether the com-
putation terminates, or whether it requires bounded memory [55]. These notions
are similar to those of liveness and boundedness for SDF graphs described in [40].
In a computation graph, functions are represented by vertices, and arcs indicate
which functions are composed: the output of the arc’s source is used as an input
of the arc’s sink. In a computation graph, with each arc four (integral) numbers
are associated: an initial number of ‘tokens’ present on the arc, two integers that
respectively give the number of tokens produced by the (function representing the)
arc’s head and consumed by the arc’s tail, and a threshold, which gives the minimum
number of tokens that must be on the arc in order for the tail to consume. The
multi-rate SDF graphs introduced by Lee in 1986 are a special case of these com-
putation graphs, where the threshold is equal to the number of consumed tokens.
However, computation graphs can be generally represented by equivalentMRSDF
graphs, as is shown in [12]. A threshold, which is greater than the number of con-
sumed tokens, translates to a reduction of the initial number of tokens present on
theMRSDF channel. This reduction is equal to the difference between the threshold
and the consumed number of tokens. Figure 2.4 shows an example computation
graph, and an equivalentMRSDF graph.

As a generalisation of the computation graphs of Karp and Miller, phased compu-
tation graphs have been proposed [96]. Phased computation graphs extend CSDF
graphs with thresholds and initial states: In phased computation graphs, the be-
haviour of an actor cyclically varies, similar to CSDF. However, prior to the cyclic
pattern, an actor goes to a predefined number of initial states. Furthermore, as in
computation graphs, an actor may not fire before the number of tokens on each
incoming channel is at least the channel’s threshold. These thresholds are similar to
those found in computation graphs, but now vary per phase. Although the initial
states prevent phased computation graphs from being equivalently represented by

20

C
hapter

2
–
Background

and
related

w
ork

a b c
(0, 2, 1, 1) (d , 1, 3, 4)

(a) Computation graph.

a b c2 1 1 d − 1 3

(b)MRSDF graph.

Figure 2.4 – A computation graph and an equivalent MRSDF graph. Thresholds greater
than the number of consumed tokens are accounted for by subtracting the difference from
the initial number of tokens [12].

CSDF graph, these initial states may simply be simulated, leaving a graph with just
the thresholds remaining.

MRSDF graphs are often referred to as special cases of computation graphs, and
phased computation graphs as generalisations of CSDF graphs. However, when tak-
ing a system-theoretic perspective, as is done in this thesis, the inferred differences
between the classes of graphs vanish. The translation from computation graphs
toMRSDF graphs, illustrated above and presented in [12], fits this view. In Chap-
ter 4, we illustrate how such a perspective allows phased computation graphs to be
represented by equivalentMRSDF graphs.

Petri Nets

Themost established model that is related to SDF is the Petri net. The subclass of
so-called bounded and conflict-free Petri-nets consists of those networks that can
be modeled by max-plus linear recurrence relations [49]. A Petri net is a network
(i.e., a directed graph), which consist of places and transitions. Transitions are
analogous to actors found in SDF, and places map to channels. Analogous to SDF
graphs, transitions may fire, which involves moving tokens from upstream places
to downstream places. Time may be included in the model by assigning holding
times to places. A holding time denotes the minimum time a token must remain in
a place, before it can be moved to a downstream place by the firing of a transition.

Weighted versions of these nets exist, where a place and transitionmay be connected
by several arcs. This indicates thatmultiple tokens are produced into and consumed
from the place. Figure 2.5 depicts a weighted Petri net. The gray squares are the
net’s transitions, the blue circles are places. The four black dots inside the center
place denote initial tokens, similar to SDF graphs. Each arc that connects a place
and a transition is annotated with an integer that indicates the number of tokens
that are moved (from place to transition, or vice-versa) by a firing of the transition.
Furthermore, each place is annotated by an integer specifying the holding time.
For example, each token that is moved into the upper left place must remain in the
place for at least one time unit, before it may be moved to the upper right place.

Multiple names are used in literature to refer to these weighted versions of Petri

21

2.
1.7

–
R
el
at

ed
M
od

el
s

2 3

5

23

5

1 4

3

(a) A weighted Petri net.

a, 1

b, 4

c, 3

5

2 3

5

2
4

3

(b) EquivalentMRSDF graph.

Figure 2.5 – A weighted Petri net (taken from [93]), and an equivalentMRSDF graph. The
holding time of each place is moved to its upstream transition.

Nets: weighted timed event graphs [5, 66], weighted marked graphs [18, 71, 83],
timed event graphs with multipliers [23, 46], or weighted T-Systems [9, 34, 93].
Well-known concepts used in dataflow sometimes have different names in Petri
net literature. For example, the notion of consistency translates to so-called weight-
balanced timed event graphs in [26, 27] and unitary graphs in [65].

Any weighted Petri-net may be transformed into an equivalentMRSDF graph. An
example transformation is illustrated in Figure 2.5. In the figure, the four tokens
present in the center place map to four initial tokens on the channel. Whereas in
the Petri net, tokens must remain in a place for a specified holding time, in the
MRSDF graph, tokens remain “inside an actor” for a duration specified by actor’s
execution time (see Section 2.1).

Related dataflow Graphs

In the definition given by Lee in [60], the word synchronous in synchronous data-
flow refers to the fact that the ratio between the rates at which any two actors fire
is a rational number. There are several classes of dataflow graphs for which this
definition does not apply, but which still may be conservatively abstracted by SDF
graphs.

Many stream-processing applications are dynamic in the sense that both their func-
tional and non-functional behaviour depends on the data that is processed. Differ-
ent values of data invoke different modes of operation. Nevertheless, for each class
of data, a fixed subset of tasks are carried out in a predefined order. This idea is
exploited in Scenario-Aware dataflow (SADF), which distinguishes between deter-
ministic processing of data in scenarios, and non-deterministic control, modelled by
automata [36, 94]. The SADF model allows for conservative performance analysis
in the presence of non-determinism [37, 87]. Methods for automatically detecting

22

C
hapter

2
–
Background

and
related

w
ork

the most important variables from multimedia applications, using them to select
and dynamically predict scenarios, have been proposed in literature [43].

In Affine Data-Flow (ADF) graphs, the firing times of actors are characterised by
a phase and a period [16]. The model provides a conservative abstraction of SDF
graphs in a way similar to the compositional temporal analysis model presented
in [48]. Although this thesis is restricted to the class ofCSDF graph, the transforma-
tions and approximations presented in Chapters 4 and 5 may be tailored to various
extensions of the basic SDFmodel.

2.2 Discrete event systems

Synchronous dataflow graphs form a small part of the broad class of discrete event
systems [17, 22, 49]. In a discrete event system, a finite number of resources (e.g.,
processors or machines) is shared by several users (e.g., jobs, data or manufactured
parts), which all contribute to the achievement of a common goal (e.g., a parallel
computation of a function applied to input data, or the assembly of a product in an
automated manufacturing line).

An event is an instantaneous occurrence, such as the beginning of a computation,
the production of a token or the completion of an execution. Whereas conventional
systems such as mechanical or electronic ones describe how a force, current or
voltage evolves over time, a discrete event system describes the evolution of time
over events. In this view, the start or execution of a particular firing of an SDF actor,
or the production of a token onto an SDF channel, may all be regarded as events.

The dynamics of discrete event systems can be described using the primitives of
synchronisation and delay: synchronisation requires that several resources or users
are available at the same time (e.g., the presence of all required input data), and
delay captures the fact that using a resource (e.g., computing the function) takes a
certain amount of time. Synchronisation may be expressed as themaximum (max)
of the times at which the involved events occur, and a delay with respect to an
event may simply be expressed by adding (+) a constant to the event’s timestamp.
These operators are provided bymax-plus algebra. In this section, we give a brief
description of max-plus algebra and show howmax-plus algebra is used to describe
the temporal dynamics of discrete event systems.

2.2.1 Max-plus algebra

Max-plus algebra is a mathematical structure named semiring, endowed with two
operations: max and +. The algebraic properties of the operators max and + resem-
ble those of (respectively) addition andmultiplication in conventional non-abstract
algebra. This allows techniques that are known for (the analysis of) systems in con-
ventional algebra to be applied to systems in max-plus algebra. To emphasise these
similarities, operations ⊗ and ⊕ are commonly defined as follows, where ⊗ has

23

2.
2.
2
–
Ve

ct
or

sa
nd

m
at

ri
ce

s

priority over ⊕:

x ⊕ y def
= max (x , y) , (2.5)

x ⊗ y def
= x + y. (2.6)

The properties of these operators are similar to their counterparts, + and × in
conventional algebra. They are associative and commuative, and ⊗ distributes
over ⊕ [22, 49]. The respective max-plus counterparts of one and zero, which, in
conventional algebra, are the unit elements of multiplication and addition, are 0
and −∞:

x ⊕ −∞ = max(x ,−∞) = x ,
x ⊗ 0 = x + 0 = x .

Following convention, we denote −∞ by ε. The set of the real numbers, extended
with ε, is defined as Rmax

def
= R ∪ {ε}. Max-plus algebra is then formally denoted

as the tuple:

Rmax = (Rmax ,⊕,⊗, ε, 0) , (2.7)

An in-depth treatment of max-plus algebra is beyond the scope of this thesis. Nev-
ertheless, in order to reason about SDF graphs as mathematical structures, an un-
derstanding of some basic concepts is necessary. This section provides a brief intro-
duction to max-plus algebra, borrowing most of the notation from [49] and [22].

2.2.2 Vectors and matrices

Operations ⊕ and ⊗ can be extended to vectors and matrices in a straightforward
way. We denote the set of n×mmatrices with elements inRmax byRn×m

max . A matrix
A ∈ Rn×m

max has n rows and m columns. The element in row i and column j of A is
denoted a i j , or, alternatively, [A]i j . We denote the sum C ∈ Rn×m

max of two matrices
A, B ∈ Rn×m

max by C = A⊕ B, with C defined as:

c i j = a i j ⊕ b i j . (2.8)

The product of matrices A ∈ Rn×m
max and B ∈ Rm×p

max is an n × pmatrix, defined as

[A⊗ B]i j =
m
⊕
k=1

a i k ⊗ bk j , (2.9)

where⊕ denotes summation inRmax, analogous to the summation symbol Σ in
conventional algebra.

The equivalents of the elements 0 and ε in Rmax for matrices are denoted E and
E, where E(k,m) ∈ Rk×m

max is a matrix with all elements equal to zero (ε), and

24

C
hapter

2
–
Background

and
related

w
ork

E(n) ∈ Rn×n
max is a square matrix with one (i.e., e) on the main diagonal and zero (ε)

elsewhere.

Finally, the kth power of a squarematrixA ∈ Rn×n
max is denotedA⊗k , and is recursively

defined for k ∈ N by:

A⊗0 = E(n) (2.10)

A⊗k = A⊗ A⊗k−1 . (2.11)

2.2.3 Linear dynamical max-plus systems

The dynamics of a discrete event system can be described in two related ways. First
of all, one may describe the evolution of the number of times an event of a specific
kind occurs, over time. Analogously, one may describe how time evolves over
events. The first approach involves the usage of operators min and +: for example,
the number of times an actor in an SDF graph may fire depends on the minimum
of the number of times producing actors have fired, plus some delay. In the second
approach, one interrelates the times at which events may occur, using operators
max and +. The resulting system of recurrence relations is a linear dynamical max-
plus system. The notion of time in a linear dynamical max-plus system differs
from the notion of time found in conventional systems. For example, in the former
kind of system, u(i) = t could state that the ith firing of a source actor in an SDF
graph occurs at time t, whereas in a conventional system, u(i) could refer to the
amplitude of a signal at time i.

Recurrence relations inRmax recursively specify the times at which events occur,
and are commonly named dater equations. The following is an example of a set of
dater equations:

a(k) = a(k − 1) ⊗ 1⊕ c(k − 2) ⊗ 2,
b(k) = a(k) ⊗ 2⊕ a(k − 1) ⊗ 7⊕ u(k − 1) ⊗ 1,
c(k) = a(k − 1) ⊗ 2⊕ b(k − 1) ⊗ 6,
y(k) = c(k).

(2.12)

This set of equations describes how the times at which five different kinds of events,
named a, b, c, u, and y, are interrelated. The time of the kth occurrence of the event
of kind a is denoted a(k), where the parameter k is commonly referred to as a
counter variable. Thus, where conventional systems map time to a domain-specific
quantity such as amplitude, force, or voltage, a max-plus system maps counters to
time. Note that, although it may be tempting to refer to x(k) as (the time of) the
kth occurrence of x, it is not implied that the (k+ 1)th occurrence of event x occurs
later than its kth occurrence (i.e., it is not implied that x(k + 1) ≥ x(k)).

The recurrence relations given above specify the interdependencies between the
different kinds of events. The first relation, for example, states that a(k)may occur
no sooner than two time units after event c(k − 2). It furthermore states that there

25

2.
2.
3–

Li
ne

ar
dy

na
m
ic
al

m
ax

-p
lu

ss
ys
te
m
s

must be at least one time unit between two successive occurrences of a. The last
equation states that events of kinds c and y occur simultaneously. Furthermore, the
interdependencies of a, b and c are cyclic: a depends on c, c depends on b (and a),
and b, in turn, depends again on a. No event depends on y, and all events, either
directly or indirectly, depend on u.

If we collect the three variables a, b and c from this example in a vector x = (a b c)T ,
then we may write (2.12) as the following two max-plus linear sums over matrices:

x(k) =
2
⊕
m=0

Am ⊗ x(k −m) ⊕ B ⊗ u(k − 1), (2.13a)

y(k) = C ⊗ x(k), (2.13b)

where matrices Am , B and C are defined as

A0 =
⎛
⎜
⎝

ε ε ε
2 ε ε
ε ε ε

⎞
⎟
⎠

A1 =
⎛
⎜
⎝

1 ε ε
7 ε ε
2 6 ε

⎞
⎟
⎠

A2 =
⎛
⎜
⎝

ε ε 2
ε ε ε
ε ε ε

⎞
⎟
⎠

B =
⎛
⎜
⎝

ε
1
ε

⎞
⎟
⎠

C = (ε ε 0)

The equations listed in (2.12) are examples of higher-order recurrence relations. An
Mth-order recurrence relation inRmax as an expression that has the form

t(k) =
M
⊕
m=0

Am ⊗ t(k −m). (2.14)

Higher-order recurrence relations, in which no event depends on itself, can be
transformed into a first-order relation, which is a relation of the form t(k) = A⊗
t(k−1) [22, 49]. First-order relations are conveniently used to express linear systems
in the following state-space representation

x(k + 1) = A(k) ⊗ x(k) ⊕ B(k) ⊗ u(k), (2.15a)
y(k) = C(k) ⊗ x(k) ⊕ D(k) ⊗ u(k), (2.15b)

where vectors x , u and y are respectively referred to as the system’s state, input and
output. Matrices A, B,C and D are commonly named the system’s dynamics, input,
output and feed-through matrices (in the example system (2.13) the feed-through
matrix is the zero matrix). The timing of output events depends on the timing of
state and input events, and state events depend on the previous state(s) and input
events.

Throughout this thesis, we shall refer to a system either by its state-space represen-
tation, or through higher-order recurrence relations. The form we use depends on

26

C
hapter

2
–
Background

and
related

w
ork

whichever is more natural in the given context: when referring to the system as a
whole, we do so by its state-space representation. We use a higher-order recurrence
relation when we need to refer to the dependencies of a specific kind of event, as
we did for example in (2.12).

We conclude this sectionwith an example. To develop an intuition for the behaviour
of a discrete event system, we examine the evolution of event times that emerges
from the recurrence relation. As all events depend on (the input) u, we let u(k) =
−∞ for k ≤ 0, and u(k) = 3(k− 1) for k ≥ 1. Furthermore, let the initial event times
be given by a(k) = b(k) = c(k) = −∞ for k ≤ 0. As a result, we also have y(k) = ε
for k ≤ 0. Using the recurrence relations given by (2.12), we may now compute how
the timing of the events evolves. This gives:

a(1) = a(0) ⊗ 1⊕ c(−1) ⊗ 2 = ε,
b(1) = a(1) ⊗ 2⊕ a(0) ⊗ 7⊕ u(0) ⊗ 1 = ε,
c(1) = a(0) ⊗ 2⊕ b(0) ⊗ 6 = ε,

and thus y(1) = ε. By iterative evaluation of the relations, we may compute the
times of subsequent events. This results in the following sequence (we again let
vector x(k) denote (a(k) b(k) c(k))T):

x(2) =
⎛
⎜
⎝

ε
1
ε

⎞
⎟
⎠

x(3) =
⎛
⎜
⎝

ε
4
7

⎞
⎟
⎠

x(4) =
⎛
⎜
⎝

ε
7
10

⎞
⎟
⎠

x(5) =
⎛
⎜
⎝

9
11
13

⎞
⎟
⎠

x(6) =
⎛
⎜
⎝

12
16
17

⎞
⎟
⎠

The first non-zero output occurs at y(3) = 7. The two subsequent output events
(i.e., y(4) and y(5)) occur at intervals of three time units, which corresponds to
the time between two successive input events, u(k) and u(k + 1). Event y(6),
however, occurs four time units after y(5). This is due to the events thatmake up the
system’s state, which fail to keep up with the pace of the input events. Consequently,
the time between input and output events, u(k) and y(k), increases steadily as
k increases. This relation is depicted in Figure 2.6. In the following section, the
limiting behaviour of the state on the output is discussed in more detail.

2.2.4 Spectral theory and scheduling

Classical system theory studies the input-output behaviour of dynamical systems.
In a discrete event system, input and output refer to the times at which specific
events occur, e.g., the arrival times of resources used in a manufacturing plant or
the completion time of a parallel computation. Studying the input-output behaviour
of a discrete event system involves computing both the delay between an input and
its corresponding output, and the rate or pace at which output events may occur.

The system that served as an example in the previous section, illustrates that the
maximum rate at which output events occur, is limited by the rate at which state

27

2.
2.
4
–
Sp
ec

tr
al

th
eo

ry
an

d
sc
he

du
li
ng

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

2

4

6

8

10

12

14

16

18

20

u(k), y(k)

k

u(k)
y(k)

Figure 2.6 – The evolution of the times at which input and output events, u(k) and y(k),
occur for the example max-plus system (2.12). The dashed line indicates the average pace at
which output events occur in the long term.

events occur. Computing this rate involves studying the autonomous part of the
system, which is the linear dynamical system given by

t(k + 1) = A(k) ⊗ t(k). (2.16)

The long-term behaviour of the autonomous system limits the rate at which output
events may occur [22, 49]. In particular, the eigenvalue of A corresponds to the
shortest possible average time between subsequent events of any kind. An eigen-
vector associated with an eigenvalue gives the times at which events should occur,
such that subsequent events occur at this maximum rate. Formally, an eigenvector
of a square matrix A is a vector v, such that Amaps v onto a scalar multiple of v.
Let A ∈ Rn×n

max be a square matrix, v ∈ Rn
max be an n−vector and λ ∈ Rmax be a scalar,

such that

A⊗ v = λ ⊗ v . (2.17)

The scalar λ is an eigenvalue of matrix A. Note that, as is the case in conventional
algebra, if v is an eigenvector, then any scalar multiple a⊗v of v is an eigenvector as
well. Since an eigenvalue is associated with an eigenvector, it is natural to consider
them as a pair. We call the pair (v , λ) ∈ Rn

max × Rmax an eigenmode of matrix
A ∈ Rn×n

max , if v and λ satisfy Equation (2.17).

An eigenvector gives rise to a strictly periodic sequence of state vectors, in the fol-
lowing way. If we choose to let the initial events occur at timestamps given by an

28

C
hapter

2
–
Background

and
related

w
ork

eigenvector v of A (that is, we set t(0) = v), then we have:

t(k) = A⊗ t(k − 1) = A⊗2 ⊗ t(k − 2) = . . . = A⊗k t(0)

= λ⊗k ⊗ t(0),

and straightforward induction gives t(k + 1) = λ ⊗ t(k). In conventional algebra,
this means that the event times follow a strictly periodic pattern, with period λ:

tv(k + 1) = tv(k) + λ.

Eigenvalues and eigenvectors of max-plus systems are closely related to the notions
of throughput and schedules, which are common terms in SDF parlance. A periodic
sequence of events that is obtained from an eigenvector in the way described above,
is analogous to the notion of a self-timed schedule for SDF graphs. Self-timedness
refers to the fact that each firing of an actor occurs as soon as possible. The time
of the initial firing of an actor is thus fully determined by the availability of suffi-
cient tokens on its incoming channels [40, 69]. The crucial difference between this
notion of a self-timed schedule and the sequence of event times obtained from an
eigenvector is that, in the former, the firing times of actors to not necessarily follow
a strictly periodic pattern [22, 41, 49], whereas in the latter they do.

To avoid confusionwith existing terms in SDF literature, we use the term eigensched-
ule to refer to the strictly periodic sequence of events obtained from an eigenvector.
In an eigenschedule, the rate at which each event occurs is equal to λ−1. The re-
ciprocal of the eigenvalue thus gives the throughput of the system, and this is the
maximum rate that any schedule can attain.

2.2.5 Graphical representations

There exists a strong relationship between squarematrices inRn×n
max on the one hand,

and weighted digraphs on the other hand. Any square matrix may be represented
by a weighted digraph, and vice versa. We denote by G(A) the graph representation
of (square) matrix A. Graph G(A) is a weighted directed graph that has a vertex
for every row (or column) in the matrix. An intuitive interpretation of the relation
between A and G(A) is to regard the former as being the distance matrix of the
latter: edge i j is in the graph, withweight w(i j) = A ji , if and only if matrix element
A ji is non-zero (i.e., in the max-plus sense: not equal to ε). An example of a matrix
and its graph representation is given in Figure 2.7.

Computing the kth power of a square matrix in max-plus algebra has an intuitive
graph-theoretical interpretation. To illustrate this, consider the matrix B = A⊗2.
The elements of B are given by

b i j =
n
⊕
k=1

a i k ⊗ ak j .

29

2.
2.
5–

G
ra

ph
ic
al

re
pr
es
en

ta
ti
on

s

1

2

3

1 0

5

3A =
⎛
⎜
⎝

ε ε 5
1 ε 3
ε 0 ε

⎞
⎟
⎠

A2 =
⎛
⎜
⎝

ε 5 ε
ε 3 6
1 ε 3

⎞
⎟
⎠

Figure 2.7 – A square matrix, its graph representation, and the square of the matrix, which
indicates the weight of the longest paths of two arcs.

u

a

b

c

y

1

0

2 6

2
7

1

2

Figure 2.8 – The example max-plus system (2.12), represented as a marked, weighted, di-
rected multigraph. Vertices a, b and c jointly denote the state of the system, vertices u and y
respectively represent the system’s input and output.

In words, element b i j gives the longest path of length 2 from vertex j to vertex i.
Max-plus algebraic matrix exponentiation is thus analogous to the computation
of longest paths (of a fixed length) in the graph representation of the matrix. As a
result, taking the max-plus sum of the n powers of an n × n matrix A essentially
computes, for every pair of vertices i and j, the longest path in G(A) from i to j.

Graphical representations of matrices extend naturally to higher-order recurrence
relations. We denote the graph representation of anMth-order relation (see (2.14))
by G(A0 , . . . ,AM). Edges in this graph have a weight and an integermarking. The
marking of an edge is represented by a corresponding number of tokens, denoted
by black dots. Furthermore, the graph G(A0 , . . . ,AM) is a multigraph: multiple
edges may exist between two vertices. The name for this kind of graph is amarked
weighted directed multigraph, or simply a marked graph [25]. Such a graph is equiv-
alent to a timed event graph in the context of Petri Nets, where each place has
precisely one upstream and one downstream transition [24].

A graphical representation of an Mth-order recurrence relation is constructed as
follows. For every matrix element [Am]i j with [Am]i j ≠ ε, the graph has an edge
e = ji. This edge has a weight w(e) = [Am]i j and marking δe = m. Graph
G(A0 , . . . ,AM) can be regarded as the union of the graph representations G(A i)
of matrices A i , where each edge in G(A i) is marked with i tokens. As an example,
Figure 2.8 depicts the graphical representation of relation (2.12).

30

C
hapter

2
–
Background

and
related

w
ork

Inputs to a max-plus system correspond to sources in its graph representation: ver-
tices that have no incoming edges, whereas outputs correspond to sinks: vertices
that have no outgoing edges. Vertices that are neither source nor sink represent
the system’s state. We assume that each state variable depends on every other state
variable, either directly or indirectly. In terms of the graphical representation of
the system, this means that the subgraph corresponding to the state is strongly
connected.

The eigenvalue of an autonomous system, defined by its higher-order recurrence
relation, can be computed from its graph representation. In particular, each cycle
in the graph imposes an upper bound on the rate at which events may occur. Define
the cycle ratio λ(C) of a cycle C as:

λ(C) def= ∑vw∈C wvw

∑vw∈C δvw
. (2.18)

The eigenvalue λ is then equal to the maximum of the graph’s cycle ratios:

λ = max
C∈G(A0 ,A1)

∑e∈C we

∑e∈C δe
. (2.19)

The right-hand side of (2.19) is referred to as the graph’smaximum cycle ratio [78].
Many algorithms for computing the maximum cycle ratio of a marked graph exist,
see for example [39, 47, 52, 58]. An elegant and efficient algorithm for computing
a graph’s maximum cycle ratio, in strongly polynomial time, is given by Karp and
Orlin in [54] and was later improved by Young, Tarjan and Orlin [101]. Another
well-established algorithm is the adaptation of Howard’s policy iteration algorithm,
and is described in [19]. For an extensive comparison of the performance of these
algorithms on a wide range of graphs, see [29, 30].

2.2.6 Shift-invariant and shift-varying systems

In conventional algebra, an important class of discrete-time systems is formed by
those that are linear and shift-invariant. Linearity means that the response (i.e.,
the output) of system to a complex input can be described as the weighted sum of
responses to simpler inputs. Shift-invariance refers to the fact that the output of
the system does not depend on the particular time the input is applied: delaying
the input by k discrete time units gives an identical output, but which is delayed by
k time units as well.

To understand how the notion of linearity and shift-invariance applies to discrete
event systems, it is important to understand the nature of inputs and outputs of
these systems. Inputs and outputs of a linear dynamical max-plus system form an
infinite sequence of timestamps. Discrete event systems that can be described by
a max-plus linear sum over matrices, as given by (2.14), are linear [22]. Shifting
the input by k corresponds to shifting the sequence by k places. A discrete event
system is shift-invariant if shifting the input sequence causes the output sequence
to be equally shifted.

31

2.
2.
6
–
Sh

if
t-
in
va

ri
an

t
an

d
sh

if
t-
va

ry
in
g
sy
st
em

s

u f, 1 y

(a) A shift-invariant system.

u f, 1 y2 2

(b) A shift-varying system.

Figure 2.9 – Shift-invariance in discrete event systems: providing the actual input several
firings later, results in a corresponding shift of the associated output.

As an example of a shift-invariant system, consider theHSDF graph depicted in Fig-
ure 2.9(a). Suppose that the sequence of inputs is the periodic sequence (1, 2, . . .).
That is, the ith firing of input actor u occurs at time i. The corresponding sequence
of firing times of output actor y is (ε, 2, 3, 4, . . .). Shifting the input by one causes
the output sequence to be shifted equally: the input sequence becomes (ε, 1, 2, 3 . . .),
and the output sequence (ε, ε, 2, 3, 4, . . .).

If we enforce actor f to consume (and produce) tokens in groups of two, we obtain
theMRSDF graph shown in Figure 2.9(b). The corresponding system is no longer
shift-invariant: to see this, consider the same input sequence as above. Due to the
fact that f requires two tokens to be present on its incoming channel, the output
sequence is the sequence of even numbers (2, 4, 6, . . .). Shifting the input by one
changes the output sequence in a sequence of odd numbers, prefixed by a single
zero: (ε, 3, 5, 7, . . .). The shifts in input and output sequences do not correspond.
Thus, the system corresponding to Figure 2.9(b) is not shift-invariant.

Whether a system is shift-invariant or not is derived from the system’s input-output
relation, as captured by the impulse response of the system [22, 27, 57], which can
generally be expressed as:

y(l) =⊕
m
h(l ,m) ⊗ u(m).

A system is shift-invariant if, in the above representation, we have h(l + 1,m +
1) = h(l ,m) [68]. For example, the impulse response of the shift-invariant system
corresponding to the graph depicted in Figure 2.9(a) has h(k,m) = k − m, for
k > m. Systems that are not shift-invariant are called shift-varying. In general,
shift-varying systems are more difficult to analyse than shift-invariant systems. An
important subclass of shift-varying systems consists of periodically shift-varying
systems. In such a system, the amount of shift in the output, caused by shifting the
input by k firings, is periodic in k. Examples of linear periodically shift-varying
systems are found in the domain of control and signal processing, such asmulti-rate
sampled-data control systems and multi-rate filter-bank systems [86].

For periodically shift-varying discrete systems with a single input and single output,
a pair (L,M) exists such that for all l ,m it holds that h(l+L,m+M) = h(l ,m) [67,

32

C
hapter

2
–
Background

and
related

w
ork

u f, 1 y2 5

Figure 2.10 – An example of an SDF graph that is described by a (2,5)-shift-invariant linear
max plus-system.

68]. As an example, consider the SDF graph depicted in Figure 2.10. In order to
derive the impulse response of this system, we first describe the constraints imposed,
by the three channels, on the firings of actors f and y, in max-plus algebra. Here,
we write v(k) to denote the time at which actor v completes its kth firing.

f (k) = u(2k − 1) ⊕ f (k − 1) ⊗ 1,
y(5k −m) = f (k),

for 0 ≤ m < 5. From these recurrent relations, we may obtain the relation between
firing times of output actor y and input actor u, by eliminating the firing times of
state actor f. This results in the following relation:

y(5k −m) = t f (k)
= u(2k − 1) ⊕ t f (k − 1) ⊗ 1
= u(2k − 1) ⊕ u(2k − 3) ⊗ 1⊕ t f (k − 2) ⊗ 2
= u(2k − 1) ⊕ u(2k − 3) ⊗ 1⊕ u(2k − 5) ⊗ 2⊕ t f (k − 3) ⊗ 3
=⊕

i=0
u(2k − 1 − 2i) ⊗ i .

If we write the relation between the input and output as:

y(l) =⊕
m
h(l ,m) ⊗ u(m).

We have h(l + 5,m + 2) = h(l ,m) for all l ,m ∈ Z. This means that if an input is
shifted by two samples, then the output remains the same except for a shift by five
samples. In the above we have restricted ourselves to systems with a single input
and a single output (SISO). For generalisations of this multidimensional notion of
periodicity, see for example [67].

2.3 Temporal analysis of synchronous dataflow graphs

Literature on the temporal analysis of SDF graphs can be categorised into exact
and approximatemethods. Exact analysis of SDF graphs exploits the fact that the
self-timed schedule of a consistent graph, after an initial transient phase, follows a
repetitive pattern composed of several so-called iterations. Such an iteration may
be explicitly represented by transforming the graph into an equivalentHSDF graph,

33

2.
3.1

–
Sy
nc

hr
on

ou
sd

at
af

lo
w
gr

ap
h
tr

an
sf
or

m
at

io
ns

which has a single actor for each individual firing in the iteration [88]. For these
HSDF graphs, efficient analysis techniques are available [78]. However, as the length
of a single iteration, in the worst case, grows exponentially in the size of the SDF
graph, approaches that rely on the construction of an equivalent HSDF graph are
often considered too costly for practical use [42].

Approaches that compute a conservative approximation of the temporal behaviour
of an SDF graph trade a loss in accuracy for computational efficiency. They assume
that the firing times of actors follow relatively simple patterns, for example strictly
periodic ones. This results in a (strongly) polynomial time complexity.

In this thesis, we present techniques to transform SDF graphs into equivalent and
approximating graphs. These either transform SDF graphs into equivalent HSDF
graphs, or derive from them abstractions that are easier to analyse. Transformations
play a prominent role in throughput analysis of SDF graphs. The following sections
discuss related work on transformations, approximations and throughput analysis.

2.3.1 Synchronous dataflow graph transformations

For HSDF graphs, several efficient algorithms for computing a periodic schedule
and associated throughput have been described and compared in literature. These
algorithms can not be applied to SDF graphs where actors fire at different rates.
A straightforward way to approach the analysis of an SDF graph is to transform
the graph into an equivalent HSDF graph, commonly referred to as its single-rate
equivalent. The single-rate equivalent is an HSDF graph that has as many actors
as a single graph iteration has firings. This transformation thus serves to deliver a
simpler kind (i.e., a homogeneous one) of SDF graph, which is equivalent in terms
of its temporal behaviour. As such, analysis results obtained for the single-rate
equivalent, such as its throughput, can be translated back to the SDF graph. We
discuss several existing transformations in the following two sections.

Transformation ofMRSDF graphs

Several transformations of an MRSDF graph into its single-rate equivalent have
been described in literature. Along with the introduction of SDF in [60, 62], a
transformation of anMRSDF graph into an equivalent HSDF graph was presented.
Equivalence here means that any schedule that is admissible for theMRSDF graph
is also admissible for the HSDF graph, and vice-versa. The transformation is based
on the fact that the ordering of tokens must be maintained: if an actor v produces
k tokens onto arc vw, then in the equivalent HSDF graph this particular firing of
v has k outgoing arcs; one for each token. These arcs connect the producer of the
corresponding token with the token’s consuming actor firing.

The transformation is straightforward: each actor in theMRSDF graph is duplicated
as many times as it is executed in a single iteration. These copies represent the
individual firings of the actor. For each token produced by a single firing, a single
channel is created. This channel connects the individual firings that produce and

34

C
hapter

2
–
Background

and
related

w
ork

a, 1 b, 2 c, 3
3 2 2 3

253 342

(a)MRSDF graph

a1

a2

b1

b2

b3

c1

c2

(b) HSDF graph

Figure 2.11 – Transformation of an MRSDF graph into an equivalent HSDF multigraph,
motivated from a functional perspective.

consume the token. As a result, the equivalent HSDF graph is a multigraph (as
opposed to a simple graph): a pair of vertices may be connected by multiple parallel
edges. The result of this transformation, applied to an exampleMRSDF graph, is
depicted in Figure 2.11.

The transformation described above ismotivated from a functional perspective: each
actor firing signifies the processing of a number of input tokens (as specified by
the consumption rate), resulting in a number of output tokens. This behaviour is
maintained by the transformation into the single-rate equivalent: the total number
of tokens consumed and produced by an HSDF actor equals the number of tokens
consumed and produced by the correspondingMRSDF actor. However, when the
graph obtained from the transformation is subsequently analysed for its temporal
properties, the functional perspective seems a poor choice. This is reflected by the
fact that many channels in the (functionally) equivalentHSDF graph are redundant,
in the sense that they express an equally strong or weaker constraint on the firing
times of other actors. In particular, if two vertices are connected by parallel arcs,
then they may be replaced by a single arc that enforces the strongest precedence
constraints enforced by the set of parallel arcs [51, 52, 88]. As a result, themultigraph
obtained by the transformation outlined above is transformed into a simple graph,
which simplifies the analysis. As an example, the result of applying this reduction
step to the multigraph is shown in Figure 2.12(a). The reduced graph contains 16
arcs, which is a reduction of one third compared to the multigraph. Consequently,
the number of tokens in the HSDF graph now no longer matches the number of
tokens found in the originalMRSDF graph.

The multi-rate HSDF graph contains many channels that are redundant, in the
sense that the precedence constraints they impose are equal or weaker than those
imposed by other channels. In [51, 52], techniques are presented to decrease the

35

2.
3.1

–
Sy
nc

hr
on

ou
sd

at
af

lo
w
gr

ap
h
tr

an
sf
or

m
at

io
ns

size of the graph by pruning these redundant channels, and by contracting certain
actors into a single actor. As a result of these node and edge degeneration techniques,
the HSDF graph is transformed into a smaller graph, which speeds up its analysis.

In the context of Petri nets, related transformations exist. A transformation anal-
ogous to the one presented in this thesis in Chapter 4 is given in [71], where a
weighted marked graph (i.e., an MRSDF graph, see Section 2.1.7) is transformed
into an unweighted marked graph (an HSDF graph). The transformation differs
from the one given in [60] in that it is motivated from a temporal perspective. A
notable aspect of the transformation is that it explicitly represents the ordering of
firings of a single transition. As a result, the resulting unweighted marked graph is
strongly connected. This differs from the transformation that we present in Chap-
ter 4, where the single-rate equivalent of a strongly connected SDF graph may not
be strongly connected. In Chapter 6, we show how strong connectedness of the
single-rate equivalent is not necessary for throughput analysis.

In Chapter 4 of this thesis we present a transformation of anMRSDF graph into a
temporally equivalent HSDF graph, that differs from the one presented in [60, 88],
This transformation can be regarded as a combination of the transformation and
reduction step outlined above: arcs in the equivalent HSDF graphs are treated as
precedence constraints, and these constraints arise from the data dependencies
enforced by channels in theMRSDF graph. A key distinction, however, is that due
to choosing amax-plus characterisation of theMRSDF graph as a starting point, the
transformation outlined in this thesis treats arcs in theMRSDF graph as precedence
constraints. As a result, a further reduction of arcs in the equivalent HSDF graph
is achieved, and no follow-up reduction step is necessary. As an example and a
preview into Chapter 4, the graph obtained using our transformation is depicted in
Figure 2.12(b). There are only 10 channels in the graph; 6 less than in the reduced
graph of Figure 2.12(a) and 14 less than in the multigraph of Figure 2.11(b).

When analysing the throughput of an SDF graph by computing themaximum cycle
ratio of its single-rate equivalent, actors in the latter that do not lie on a cycle, may
be pruned from the graph as well. In Chapter 6, we show how the maximum cycle
ratio of a single-rate equivalent may be computed from a single strongly connected
subgraph. For some graphs, this results in an HSDF graph that is more than 15,000
times smaller than the full single-rate equivalent.

The single-rate equivalents constructed in [51, 52, 60, 88] all represent individual
firings of actors by actors in the HSDF graph. The size of the single-rate equivalent
is thus equal to the number of firings in a single graph iteration.

A different approach is to consider the temporal behaviour of an SDF graph from
the viewpoint of the graph’s tokens, as is presented in [35–37]. Rather than capturing
the precedence constraints between actor firings, one may capture the interdepen-
dencies between the tokens that are in the graph. The time at which a token is
produced onto a channel, by some firing, depends on the times at which the tokens
consumed by that firing have become available. By symbolically executing a single
iteration of the graph, the details of the dependencies between tokens are captured

36

C
hapter

2
–
Background

and
related

w
ork

a1

a2

b1

b2

b3

c1

c2

(a) HSDF simple graph

a1

a2

b1

b2

b3

c1

c2

(b) Temporally equivalent HSDF graph
obtained in Chapter 4 of this thesis

Figure 2.12 – HSDF graph obtained from Figure 2.11(a), using the transformation presented
in Chapter 4 of this thesis.

a, 1 b, 4 c, 2
1 3 1 1

3
t4t3t2t1

1 1
t5

1

Figure 2.13 – By recording the interdependencies between individual tokens, as they flow
through the graph during a single iteration, a first-order max-plus system is obtained.

as a first-order, linear shift-invariant max-plus system. The system has a single
equation for each token in the graph. Thus, for graphs in which the number of
tokens is smaller than the size of the graph’s single-rate equivalent, this method
provides an attractive and powerful alternative to the analysis of SDF graphs.

As an example, we give the max-plus system that is obtained using the token-based
transformation from theMRSDF graph depicted in Figure 2.13:

t(k + 1) =
⎛
⎜
⎜
⎝

ε ε ε ε 0
5 5 5 ε 4
5 5 5 ε 4
5 5 5 ε 4
7 7 7 ε 6

⎞
⎟
⎟
⎠

⊗ t(k),

where the first five elements of vector t correspond to the five tokens marking arc
ba, in the order in which they are consumed by actor a. The last four elements in t
correspond to the four tokens on arc cb.

Using a straightforward transformation, the token-dependency max-plus system
can be represented by an HSDF graph. This graph is slightly larger than the max-
plus system, but may be smaller than a single-rate equivalent obtained using the
“traditional” transformation. In [35], it is shown that a reduction up to a factor of 279
is achieved. This particular figure is obtained for the graph shown in Figure 2.14, the
single-rate equivalent of which has 10601 actors. Since the graph has only six tokens,

37

2.
3.1

–
Sy
nc

hr
on

ou
sd

at
af

lo
w
gr

ap
h
tr

an
sf
or

m
at

io
ns

MP3 SRC APP DAC
1152 480 441 1

1 1

1
2

1

1 1 11

Figure 2.14 – The SDF graph representing an MP3 playback application, used in [35] as an
example to demonstrate the effectiveness of capturing the dependencies between tokens, as
an alternative to constructing a single-rate equivalent. As the graph contains only six tokens,
the corresponding max-plus system consists of 6 equations.

the max-plus system obtained for this graph by the method of [35] is given by six
max-plus equations. If we convert themax-plus system to anHSDF graph, the result
has 38 actors, which is 279 times smaller than the single-rate equivalent constructed
using “traditional” methods. However, this reduction factor does not provide a fair
comparison with these traditional methods: since the graph of Figure 2.14 is not
strongly connected, the traditional method would be applied to each of its strongly
connected components, rather than to the entire graph. Applying this principle
to the graph of Figure 2.14 means that three single-rate equivalents (i.e., one for
each component) must be analysed: actors MP3 and SRC each form a connected
component, and the subgraph induced by actors APP and DAC forms the third
component. The total number of actors in the single-rate equivalent of these three
components is four, rather than the number of 10601 given in [35]. This means that,
rather than obtaining a reduction of a factor of 279, the technique presented in [35]
results in a graph that is almost ten times larger. In other words, the comparison
reported in [35] is unfair, and biased towards a positive outcome for the token-based
transformation.

A comparison of the transformation presented in [35], and the efficiency of meth-
ods that are based on it, such as those described in [36, 87], with the “traditional
approach” of construction and subsequent analysis of a single-rate equivalent, must
be fair. That is, the latter must consider each of the SDF graph’s strongly connected
components indvidually, rather than transforming the full graph to its single-rate
equivalent. We therefore repeat the comparisonmade in [35], but construct a single-
rate equivalent for each the strongly connected components. The total size of the
HSDF graph (i.e., the sum of the sizes of the different HSDF graphs) is reported
in Table 2.1. The last column in the table lists the ratio between the sizes of the
graphs obtained by the transformation of [35], and the transformation of each of
the graph’s strongly connected components. A ratio smaller than one indicates that
theHSDF graph obtained by the method of [35] is in fact larger than the traditional
transformation. Note that the ratios reported in [35] (listed in the second to last
column) differ significantly from the actual ratios.

The transformations described above all transform anMRSDF graph into anHSDF
graph that is equivalent in some sense. Other kinds of transformations are de-
scribed in literature as well. The importance of dataflow graph transformations
is the motivation of [82]. The paper proposes methods of modeling and transfor-

38

C
hapter

2
–
Background

and
related

w
ork

Case study

HSDF
graph size
reported
in [35]

Total size
HSDF graph
components

Size
using
[35]

Ratio
reported
in [35]

Actual
ratio

h.263 decoder 1190 4 10 119 0.4
h.263 encoder 201 201 11 18.3 18.3
modem 48 17 210 0.23 0.08
mp3 dec. block par. 911 3 8 114 0.38
mp3 dec. granule par. 27 3 8 3.38 0.38
mp3 playback 10601 4 38 279 0.11
sample rate conv. 612 6 31 19.7 0.19
satellite 4515 22 217 20.8 0.10

Table 2.1 – A comparison of the ‘traditional’ transformation ofMRSDF into its single-rate
equivalent, both naively and per strongly connected component, and the transformation
presented in [35].

mation for more flexible forms of dataflow, such as parameterized synchronous
dataflow and cyclo-static dataflow. The transformations presented in [82] is clus-
tering. A clustering transformation for a dataflow graph is one that replaces a set
of multiple actors in the graph with a single actor. As a result, the chosen set of
actors is viewed as a single “unit”. [77]. A similar kind of clustering is proposed
in [80]. Here, rather than clustering actors, firings of actors are clustered. This is
done by adapting their production and consumption rates. A valid clustering step
is one that replaces each of the rates associated with an actor by a certain integer
multiple. This gives rise to a class of SDF graph that is named scalable synchronous
dataflow in [45, 80]. [3] presents a clustering transformation that groups certain
actors together that are to be run on the same processor. In [45], it is shown how
clustering of nodes may be achieved within the CSDF paradigm.

Whereas clustering reduces the size of an SDF graph, unfolding is a transformation
that increases the size of the graph, by splitting every actor into multiple actors.
The first such transformation, applied toHSDF graphs, is presented in [74]. Here, a
procedure for constructing an N−unfolded HSDF graph is described: every actor
in the graph is split into N actors, unraveling the “hidden concurrency” of iterative
dataflow programs. The procedure is used to construct equivalent graphs in which
each cycle consists of only a single initial token. Surprisingly little work is reported
on the unfolding of MRSDF or CSDF graphs. A first attempt to the unfolding of
MRSDF graphs is presented in [35]. The procedure to unfold anMRSDF graph N
times (listed as Definition 5 in [35]) seems a generalisation (although no reference
is made) of the procedure first described in [74]. Although the unfolding procedure
is claimed to yield a graph that has the same throughput (Proposition 2 in [35]), no
proof of the correctness is given. In fact, as also pointed out in [72], the unfolding
presented in [35] is incorrect. According to [72], unfolding an MRSDF graph is
possible only for a very specific subset of graphs. The graphs that may be unfolded

39

2.
3.1

–
Sy
nc

hr
on

ou
sd

at
af

lo
w
gr

ap
h
tr

an
sf
or

m
at

io
ns

are those for which each channel has an initial number of tokens that is an integer
multiple of the number of tokens consumed, per iteration, of the channel’s consum-
ing actor. Furthermore, it is noted that the procedure does not necessarily apply to
CSDF graphs.

The transformations that we present in Chapter 4 may be regarded as an unfolding
of CSDF graphs. They differ from the approaches taken in [35, 72, 74], in the sense
that they follow from a characterisation of the temporal dynamics of a CSDF graph.
Furthermore, the transformations presented in this thesis allow each actor to be
unfolded separately, rather than unfolding the entire graph.

Clustering is a transformation that we use in this thesis to reduce the size of the
HSDF graph that is analysed for its critical cycle. We contract actors in the single-
rate equivalent into a single actor. This potentially changes the graph’s throughput.
In Chapter 6, we describe a method that applies these contractions only if the
throughput is left unchanged. Otherwise, the graph is unfolded. Our approach is
similar to the scaling step of [80], in that the clustering in the single-rate equivalent
is indirectly, by changing the rates of an actor. An important difference is that
the rates are not simply scaled, but rather transformed into a cyclically varying
pattern of rates. The clustering and unfolding together give rise to an approach to
throughput analysis where the graph’s size is kept as small as possible.

Transformation of CSDF graphs

The transformation of an MRSDF graph into an equivalent HSDF graph can be
generalised towards CSDF graphs in a straightforward way, the main difference
being that determining the correspondence between producing and consuming
firings is slightly more complex. The construction of a single-rate equivalent of a
CSDF graph is described in the introductory paper [11]. This construction differs
from the token-oriented transformation of [62], which is applied to CSDF graphs
in [69] and [88]. It involves computing, for each firing that occurs in a single graph
iteration, the producing firings of the last tokens consumed by that firing. As a
result, the in-degree of an actor in the CSDF graph equals the in-degree of each of
its copies in the single-rate equivalent.

The transformation outlined in [11] is largely similar to the one we present in Chap-
ter 4. Our concept of a predecessor function gives precisely the index of the firing
that produces the last token consumed by some other firing. The predecessor func-
tion thus gives the topology of the single-rate equivalent. An important difference
between the transformation of [11] and the transformation put forward in this
thesis, is that [11] restricted its scope to CSDF graphs in which each actor has a
self-loop. Such a self-loop enforces a sequential execution of successive phases. The
transformation presented in Chapter 4 widens the scope to CSDF graphs where
auto-concurrent execution of consecutive actor phases is allowed. Functional de-
terminacy is maintained by including an extra constraint on the times at which
actor firings complete. This replaces the restrictive use of self-loops in [11] by an

40

C
hapter

2
–
Background

and
related

w
ork

a, 2 b, 3

⟨12, 8⟩ ⟨10, 10⟩

⟨10, 10⟩12⟨12, 8⟩

(a) CSDF graph.

a, 2 b, 3
20 20

201220

(b) Lumped representation.

Figure 2.15 – An example CSDF graph and its lumped representation. The transformation
is conservative, in the sense that the throughput of the lumped representation is never higher
than the throughput of the CSDF graph. The CSDF graph has a throughput of 1

10 and, since
neither actor is enabled, its lumped representation is deadlocked.

equally effective measure, while ensuring that the class of CSDF graphs contains
the class ofMRSDF graphs.

A straightforward transformation from CSDF intoMRSDF exists [45, 75, 88]. This
transformation involves replacing all (execution time and rate) vectors by their sum,
which simplifies a subsequent analysis. The resulting graph is often referred to as
the graph’s “lumped” representation. Again, this transformation takes a functional
stance: multiple phases, which correspond to the sequential execution of phase-
specific functions, are grouped into onemonolithic function. Although the lumped
representation may be regarded as functionally equivalent, its temporal dynamics
are certainly not maintained. In fact, the temporal behaviour of the graph gives a
conservative approximation of the CSDF graph. In the best case, the throughput
of the lumped representation is the same as the throughput of the original graph.
Generally, however, the throughput of the former is lower, and the transformation
may introduce deadlock. This is illustrated in Figure 2.15, which depicts a liveCSDF
graph, and a deadlocked lumped representation.

We present a transformation of a CSDF graph into an equivalent MRSDF graph
in Chapter 4. Equivalence here is to be understood in the temporal sense; any
schedule that is admissible for the CSDF graph, can be transformed into one that is
admissible for the multi-rate equivalent, and vice versa. This transformation makes
existing analysis techniques for MRSDF graphs applicable to CSDF graphs. The
number of actors in the equivalentMRSDF graph is equal to the total number of
actor phases in the CSDF graph. Our transformation from an CSDF graph into its
multi-rate equivalent is a special case of a transformation that allows an arbitrary
CSDF actor to be an unfolded an arbitrary number of times. In case each CSDF
actor is unfolded an integer multiple of its period, the resulting graph is anMRSDF
graph.

41

2.
3.2

–
A
pp
ro

xi
m
at

io
ns

2.3.2 Approximations

The potential complexity of schedules for MRSDF and CSDF graphs, in terms of
the irregularity of the firing time patterns, is limited by the length of a single graph
iteration. Because the length of a graph iteration grows exponentially in the size of
the graph, an exact analysis of CSDF graphs is, generally, computationally intensive.
The aim of computing a conservative approximation of, for example, the throughput
of an SDF graph, is to compute a guaranteed performance metric. This is achieved
by assuming simple firing patterns, such as strictly periodic schedules. These firing
patterns must be conservative: the performance predicted from the approximation
of the model must not be better than the actual performance.

Although the vast majority of literature on approximating the throughput of an SDF
graphs aims at computing a lower bound on throughput, the problem of computing
an upper bound is tackled in [84]. The method presented is similar to the concept
of an optimistic single-rate approximation, presented in this thesis in Chapter 5:
the upper bound on the throughput of a cycle is taken as the ratio between the
weighted sum of tokens (conform the normalisation vector, see Section 2.1.3) and
the sum of the execution times.

A first such approximation is presented in [23], in the context of Petri nets (named
“timed event graphs with multipliers” and equivalent to MRSDF graphs). The au-
thors use a min-plus algebraic characterisation of the number of times anMRSDF
actor has fired, in terms of the firing counts of connectedMRSDF actors. By taking
linear bounds on what they refer to as transition-to-transition equations, followed
by a transformation step called linearization, a so-called fluid timed event graph (i.e.,
an HSDF graph) is obtained. The performance (throughput) of the fluid approxi-
mation is never better than the performance of the approximated graph; deadlock
may be introduced by the transformation.

The transformation of anMRSDF graph into a single-rate approximation outlined
in Chapter 5 strongly resembles this approach. Our transformations generalise
towards CSDF graphs, and, moreover, give both an optimistic (in which every ad-
missible schedule of theCSDF graph is admissible for the optimistic approximation)
and a pessimistic one (every admissible schedule of the pessimistic approximation
is admissible for the CSDF graph).

Conservative approximations allow one to derive sufficient conditions for the live-
ness of a CSDF graph. In [8], two different sufficient conditions for the liveness of a
CSDF graph are given. These conditions are derived from two different intermedi-
ate weighted directed graph representations: if the CSDF graph is deadlocked, then
the weighted digraphs contain a negative cycle. Absence of a negative cycle is thus
a sufficient condition for liveness of the CSDF graph. The work presented in [8]
is a generalisation of a similar approach, applied to MRSDF graphs, presented in
earlier in [65]. The relationship between the approaches presented in [8, 65] with
the single-rate approximations presented in Chapter 5 is strong. The single-rate
approximations that we present in this thesis allow one to give sufficient as well

42

C
hapter

2
–
Background

and
related

w
ork

as necessary conditions for liveness of CSDF graphs. Rather than constructing a
graph that considers each phase, our approach splits this up in two steps: a transfor-
mation, followed by an approximation. The sufficient condition for liveness named
SC1 in [8] is analogous to the single-rate approximation of themulti-rate equivalent
of the CSDF graph.

In a CSDF graph, the number of tokens that “flow” through a channel per iteration,
differs per channel. This is a direct result of the fact that an actor may have differ-
ent production and consumption rates associated with different channels. In the
compositional temporal analysis (CTA) model, presented in [48], this property is
explicitly captured by transfer rates: the CTA model uses components with trans-
fer rates per port, in contrast with dataflow models, which consist of actors with
firing rules. The use of transfer rates makes the model attractive to the modeling
of multi-rate systems. As the name of the model indicates, it is composable. The
composition of components is again a component, and the properties of the new
component can be deduced from the properties of and the connections between
the individual components. The authors of [48] illustrate how a CTA graph forms
an abstraction of an SDF graph. In fact, the CTA abstraction of an SDF graph is
similar to the transformation into a pessimistic approximation that we describe
in Chapter 5. There are two important differences between the former and the
latter. First of all, the CTA model assumes periodic token arrival curves, whereas
the pessimistic single-rate approximations of Chapter 5 are based on actor firings.
Second, the rate at which tokens arrive at a port in the CTA model may differ per
port, whereas, since they are HSDF graphs, in the approximations of Chapter 5 all
these rates are equal. Through a change of counting units (see Section 5.2.1), any
CTA model may be transformed into an HSDF graph. Rather than resorting to the
rather heavy tool of using an linear program solver to analyse the CTA model for
consistency or throughput, one may thus apply simple combinatorial algorithms.
This means that the model has the same expressive power as timed event graphs,
and that standard algorithms can be used to analyse the model.

In [15], the sufficient condition for liveness of CSDF graphs is used as a fast test to
generate live random CSDF graphs. The procedure is faster than the method used
in [90].

2.3.3 Throughput analysis

The analysis of throughput, which is the average number of iterations completed
per time unit, of an SDF graph, is a well-studied subject in case the SDF graph is
homogeneous. As early as 1968, Reiter described how the throughput (or cycle
time) of a restricted version of the computation graph of Karp and Miller could be
determined [78]. The graphs dealt with by Reiter were, in fact,HSDF graphs. Reiter
showed that the maximum rate at which each node in the graph could execute, is
determined by the graph’s maximum cycle ratio.

For SDF graphs where actors fire at different rates (e.g.,MRSDF and CSDF), how-
ever, computing the throughput is more difficult. Two main classes of approaches

43

2.
3.3

–
Th

ro
ug

hp
ut

an
al
ys
is

exist: those that are based on the construction of a single-rate equivalent (see pre-
vious sections), and those that simulate a self-timed execution of the graph. In the
influential paper [42], it is described how the throughput of anMRSDF graph may
be computed by exploring the state-space of a self-timed execution of the graph
for its periodic regime. This approach to throughput analysis avoids the costly
transformation ofMRSDF into HSDF.

A self-timed execution yields a schedule that may not be (strictly) periodic from
the start, except when the initial starting times happen to coincide with the system’s
eigenvector (see Section 2.2.4). Assuming that the SDF graph is consistent, such a
schedule will eventually settle in a periodic phase [42, 49]. A single period in this
phase consists of a certain number of graph iterations. Since the length of a period
(in terms of the number of graph iterations that compose it) is not known a priori,
a history of actor firing times must be maintained. The approach presented in [42]
cleverly keeps this history small. It exploits the fact that only those states in which
some actor has just completed a full iteration need to be saved for reference. The
length of the history is thus equal to the number of graph iterations that must be
completed before a period is found.

Computing the throughput of a graph by simulating a self-timed execution, until a
periodic phase is found, is analogous to applying the power algorithm to compute
the eigenvalue of the corresponding max-plus system [49]. The power algorithm,
applied to a matrix A ∈ Rn×n

max , starts with an initial vector, x(0), and iteratively
computes a next vector by left-multiplying it (in the max-plus sense) with A:

x(k + 1) = A⊗ x(k).

The sequence of vectors x(0), x(1), . . . will eventually become periodic. That is,
eventually, for some integers k and m, and c ∈ Rmax, the following will hold true:

x(k +m) = c ⊗ x(k).

The eigenvalue of the system is then computed as λ = c
m , and eigenvector is given

by⊕m
j=1 λ⊗σ− j ⊗ x(k + j − 1) [49].

Unfortunately, the value of k for which the above holds may be quite large. This
means that the execution of a potentially large number of iterations may need to
be simulated (i.e., the transient phase), before a periodic phase is found. Only very
pessimistic bounds on the length of this transient phase are known [49].

To highlight both the strengths and weaknesses of this method, we discuss two
examples. To illustrate its efficiency by avoiding the construction of a single-rate
equivalent, consider the graph depicted in Figure 2.16. The rates associated with
actor b and the number of initial tokens in this graph have been left variable; the
size of the single-rate equivalent is equal to 5+2n (assuming that n is not a multiple
of 5). For this graph, the transient phase of a self-timed schedule consists of the
initial n parallel firings of actor a, followed by a periodic regime in which 5 parallel
firings of b are followed by n parallel firings of both a and c. Consequently, the

44

C
hapter

2
–
Background

and
related

w
ork

a, 1 b, 1 c, 1
5 n n 5

n5n5 55nn

Figure 2.16 – MRSDF graph for which the self-timed execution almost immediately enters
a periodic regime. As a result, a state-space exploration-based approach to compute the
graph’s throughput is extremely efficient.

a, 40 b, 36 c, 13 d, 48
6 10 5 2 20000 3 7 25 4

5326 3400002 4107

Figure 2.17 – MRSDF graph for which the self-timed execution has a long transient time.

throughput for this graph is computed in as few as 3 simulation steps, independent
of the size of the equivalent HSDF graph.

The method performs poorly on graphs where a large number of firings must be
simulated before the schedule settles in a periodic phase. An example of such a
graph is given in Figure 2.17. For this graph, the SDF analysis tool SDF3 requires
a few hours (17 hours on a 2.4GHz Intel Xeon CPU) to compute its throughput.
Note that the single-rate equivalent of the graph is relatively small: it consists of 22
actors.

The work of [42] includes an experimental study, in which state-space exploration
based throughput analysis is compared with several algorithms that analyse the
single-rate equivalent. The study makes an unnecessary distinction between algo-
rithms that are based on computing themaximum cycle mean, and those that com-
pute the maximum cycle ratio: the maximum cycle mean computation is applied
to a transformation of the graph’s single-rate equivalent into a weighted digraph,
which may be regarded as its first-order max-plus system representation. Such a
transformation adds an unnecessary amount of computation time to the analysis:
for one of the four benchmark sets, consisting of 100 graphs, the analysis of 44 was
aborted after failing to complete within half an hour.

Algorithms that compute themaximum cycle ratio are applied directly to the single-
rate equivalent. Results for this approach are not reported in the study. Instead,
the authors reason that an analysis based on a maximum cycle ratio computation
requires at least the time needed to transform the SDF graph into its single-rate
equivalent. As the implementation of this transformation (as used in the study)
took, on average, significantly more time than the analysis of the HSDF graph it
produced, it formed a clear bottleneck in the analysis, leading to a conclusion that
favours space-space based throughput analysis over the “classical approach”.

The experimental comparison reported on in [42] involves several choices that
introduce a bias in the experiment. This bias favours the state-space exploration

45

2.
3.3

–
Th

ro
ug

hp
ut

an
al
ys
is

based approach. First of all, the multigraph created by theMRSDF-to-HSDF trans-
formation is not reduced to a simple graph prior to running the analysis. This has a
dramatic effect on the algorithms that compute the graph’s maximum cycle ratio, as
their runtime depends on the number of arcs in the graph. Furthermore, the trans-
formation of theMRSDF graph into an equivalentHSDFmultigraph is unnecessary,
as the latter is transformed into a marked weighted directed multigraph. These two
steps can be merged into a single step in a straightforward way. Rethinking these
choices should lead to increased performance for theHSDF-based approach, albeit
that for SDF graphs for which the norm of the repetition vector is large, storing the
equivalent HSDF graph in memory will become very costly.

In Chapter 6, we present an algorithm for throughput analysis ofMRSDF graphs
that avoids transforming the graph into an equivalent HSDF graph. It exploits the
fact that individual cycles in the MRSDF graph may be analysed quite efficiently,
without explicitly creating its single-rate equivalent. The computation of through-
put then becomes a problem of composing the throughput of individual cycles,
which is non-trivial for multi-rate graphs. We present an extensive comparison
between the state-space exploration approach and our approach in Chapter 6.

The transformation based on the symbolic execution of an SDF graph, described
in [35, 36], has as a benefit that it is not susceptible to the long transient times that
may affect a state-space exploration based approach. Although its efficiency has not
been experimentally acknowledged, throughput analysis using said transformation
is expected to be more efficient than simulation.

Approximate analysis

Motivated by the high complexity of an exact throughput computation of an SDF
graph, methods have been proposed to approximate a graph’s throughput conser-
vatively. In [14] it is argued that maximum throughput is achieved by a so-called
N-periodic schedule, where N is the repetition vector of the graph, the entries of
which may be very large. Constructing an equivalent HSDF graph and computing
its throughput is essentially the same as computing a N-period schedule. By choos-
ing N such that contains small entries, computation time can be reduced, at the
cost of acquiring a lower throughput.

As an example, Figure 2.18(a) gives a conservative (2,1,1)-periodic schedule that is
admissible for the MRSDF graph of Figure 2.11(a). The throughput given by the
schedule is 1

24 , whereas the throughput given by the (2, 3, 2)-periodic schedule
(i.e., the schedule obtained from the equivalent HSDF graph) is 1

11 . If we construct
a schedule in which we schedule actor b 3-periodically, we obtain a higher through-
put, as depicted in Figure 2.18(b). As is pointed out in [14], increasing the irregular-
ity of the schedule of an arbitrary actor does not necessarily increase the throughput
of the schedule. Here, K is a vector that assigns each actor an individual period. By
controlling the vector K, one can control the complexity of the computation.

There is a strong relationship between the k-periodic schedules, presented in [14],

46

C
hapter

2
–
Background

and
related

w
ork

a a aa a a
b b b b b b b b

c c c c c

time
0 5 10 15 20 25 30 35 40 45 50 55 60

(a) A (2,1,1)-periodic schedule, with a throughput of 1
24 .

a a a a a a a a a
b b b bb b b bb b b b

c c c c c c c c

time
0 5 10 15 20 25 30 35 40 45 50 55 60

(b) A (1,3,1)-periodic schedule, with a throughput of 1
14 .

Figure 2.18 – Two different admissible schedules for theMRSDF graph from Figure 2.11(a),
with different throughputs.

on the one hand, and the transformations and approximations that we present
in chapters 4 and 5, on the other hand. In fact, the computation of a K-periodic
schedule essentially consists of a transformation of the CSDF graph, followed by
an approximation step. The transformation involves the unfolding of actors, with
the vector N giving the number of times each actor is unfolded. By computing a
pessimistic single-rate approximation for the unfolded graph, a K-periodic sched-
ule is obtained. This idea gives rise to an approach where the accuracy is balanced
with complexity: both the approximated throughput, as given by the N-periodic
schedule, and the computational effort to obtain the schedule, increase monotoni-
cally in the entries in N . However, as is pointed out in [14], for many choices of N ,
the throughput does not increase. The relationship between the entries in N and
the resulting throughput is far from trivial.

This thesis advances the work presented in [14]. In Chapter 6, we show that enforc-
ing the parallel execution of firings of actors lets the accuracy of the approximated
throughput increase steadily. The approach to throughput analysis that we present
in Chapter 6 tackles the complex relation between computational effort and com-
plexity of the schedule.

Exact and approximate techniques can be combined to compute the throughput
of a CSDF graph. In [2], an approximation technique, loosely based on the state-
space exploration approach of [42], is presented. The motivation for the presented
method is the exponential complexity of exact throughput analysis on the one
hand, and the potential poor accuracy of approximate methods such as [100]. The

47

2.
4
–
D
is
cu

ss
io
n

approach presented in [2] involves the simulation of a self-timed execution for
a fixed number of graph iterations. The authors claim that from such a partially
simulated execution, one may obtain a lower bound on the graph’s throughput.
Although the obtained approximation does converge to the graph’s throughput as
the number of graph iterations considered increases, no quantitative assessment of
the approximation error is given. Furthermore, as the paper lacks a formal proof,
it is not clear from the paper whether the computed throughput gives a lower or
upper bound on the actual throughput.

2.4 Discussion

Literature on SDF graphs has settled into two main schools: the first is concerned
with exact analysis, and the second sacrifices accuracy for computational complex-
ity, in methods that provide conservative approximations. The common ground of
these two schools is that an analysis, by transformingMRSDF andCSDF graphs into
an equivalent HSDF graph, is considered too costly for practical use. We believe
that one of the reasons that this conviction has become predominant in literature
is because the transformation that was initially proposed by Lee was motivated
from a functional perspective, rather than from a temporal one. The popularity and
the apparently convincing results obtained in comparably small experiments have
distracted researchers from pursuing a sound mathematical basis for the character-
isation of the behaviour of SDF graphs.

In this thesis, we propose to revisit a mathematical characterisation of the temporal
behaviour of SDF graphs. Such a mathematical basis should serve as a common
ground for both exact and approximate analysis. As a result, this thesis can be
regarded as one that closes the gap that now exists between exact and approximate
methods, by showing how they both derive from a solid, common, ground.

If we observe the state-of-the art approaches to analysingMRSDF andCSDF graphs,
then we may conclude that the relation between SDF graphs and discrete event
systems is not yet well-established. One particular example that serves to justify
this conclusion is the use of the termmaximum cycle mean in dataflow literature,
where it refers to a quantity that we defined in this chapter asmaximum cycle ratio.
Although using the same term under different definitions in different fields is harm-
less, this ambiguity becomes troublesome when the term has different meanings in
fields that are (becoming) closely linked. This is best illustrated by the experimental
study conducted in [42], which performed an unnecessary and time consuming
transformation prior to applying a maximum cycle-mean analysis. Regretfully,
the apparent dominant performance of the presented model-checking approach
has distracted researchers from pursuing a mathematical characterisation of the
dynamics of SDF graphs.

The terms and definitions given in this chapter are partially derived from the field
of synchronous dataflow, and partially from the field of discrete event systems.
This mixture may be confusing especially to readers that are primarily familiar

48

C
hapter

2
–
Background

and
related

w
ork

with the former: well-established mathematical concepts such as eigenvalues and
eigenvectors are typically not used in SDF parlance. Although SDF terms such as
throughput, periodic schedules, self-timed execution, etc., are all intuitive concepts
with a well-understood interpretation, a mathematical characterisation of these
concepts provides a perspective that unifies concepts known from the two said
fields.

The main principle underlying this thesis is that analysis of SDF graphs should
be based on a solid, mathematical foundation. This is a principle that is success-
fully applied in many fields that study the dynamics of a system. In areas such
as mechanical and electrical engineering, telecommunications and physics, linear
time-invariant systems play an important role. Although the systems studied in
these areas are typically non-linear and / or time-varying, linearisation techniques
often allow them to be analysed, at the expense of reduced accuracy. The char-
acterisation of SDF graphs as discrete event systems allows one to apply similar
techniques to cope with the complexity of analysing large systems.

49

50

513

the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis.
the mathematical characterisation of a synchronous dataflow

graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis. the
mathematical characterisation of a synchronous dataflow graph is the
basis for the rest of the thesis, and allows approximate as well as exact
analysis. the mathematical characterisation of a synchronous dataflow
graph is the basis for the rest of the thesis, and allows approximate
as well as exact analysis. the mathematical characterisation of a
synchronous dataflow graph is the basis for the rest of the thesis,
and allows approximate as well as exact analysis. the mathematical
characterisation of a synchronous dataflow graph is the basis for the
rest of the thesis, and allows approximate as well as exact analysis.A mathematical

characterisation of
Synchronous Dataflow Graphs

Abstract – There are different ways to define the semantics of a synchronous
dataflow graph. One may define the graph as a function that evolves a state
over time, specify how the number of tokens on a given channel depends on the
number of times actors have fired, etc. In this chapter, we present a mathemat-
ical characterisation of synchronous dataflow graphs that allows one to make
formal statements by reasoning over their admissible schedules. The character-
isation serves as a basis for the transformations and approximations that we
discuss in subsequent chapters.

If we take an operational perspective on an SDF graph, and consider it as a process
in which actors fire and tokens flow through channels, then the “behaviour” of
an SDF graph is largely determined by only two simple rules. These rules state
that (1) an actor may fire as soon as the required data is available on each of its
incoming channels, and (2) that such a firing takes an amount of time. Here, the
term required data relates to the number of tokens, which must be at least as high
as the consumption rate associated with the firing.

The two rules given above define the order inwhich firingsmay occur. In Section 3.1,
we specify this ordering formally. We introduce so-called predecessor functions,
which specify the dependencies that govern the consumption and production of
tokens, in terms of the properties of the channels in an SDF graph. Predecessor
functions serve as the basis for the approximations and transformations described
in the following two chapters.

Large parts of this chapter have been published in [RdG:3].

52

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

f
x2 x1 1 1

f
1 1 f (x2) f (x1)

Figure 3.1 – This thesis views SDF graphs as monotonic dataflow process networks. Any
sequence of actor firings is functional: the sequence of data produced by them is a function
of the sequence of data they consume. This means that the ordering of the stream of input
tokens is maintained in the stream of corresponding output tokens, regardless of the time
of the computation.

Theordering of firings gives rise to a system-theoretic characterisation of SDF graphs.
In this view, an SDF graph is regarded as a system that transforms input sequences
of timestamps into output sequences of timestamps. In Section 3.2, we show that
for consistent SDF graphs, this system is linear and periodically shift-varying, when
expressed in max-plus algebra. This perspective allows us to relate different SDF
graphs to each other and identify common properties, through their input-output
behaviour. In particular, this gives rise to the notions of equivalence and abstraction,
which we introduce in Section 3.3. In subsequent chapters we use these notions
when proving certain relations between graphs and their transformations.

3.1 Dataflow processes and firing order

In an SDF graph, firings of actors follow the dataflow principle[32, 60]: An actor
may fire if sufficient data is available on its incoming channels, as specified by the
consumption rates. This data is made available by firings of upstream actors. A
sequence of actor firings is referred to as a dataflow process [32, 61]. In this thesis we
restrict our attention to SDF graphs in which the dataflow process associated with
each actor is functionally determinate. That is, a sequence of actor firings always
maps the same sequence of input tokens to the same sequence of output tokens,
regardless of the duration of a firing (see Figure 3.1). These SDF graphs are called
monotonic dataflow process networks [61].

A sufficient condition for a dataflow process to be functionally determinate is that
each actor firing is functional, and that firings are strictly ordered [61]. This means
that the data produced by a single firing is a function of the data it consumes,
and that the mapping between the input and output sequences is prefix-monotonic:
given a prefix of the input sequence, part of the output sequence may already be
computed. Furthermore, tokens are produced onto and consumed from channels
in a first-in-first-out fashion.

Formulated differently, we assume that firing k of actor v consumes and produces
its input and output tokens before its next firing, k + 1, does. The effect of this
assumption is that the index of an actor’s firings expresses the order in which these
firings occur. Second, this assumption guarantees that the dataflow processes we

53

3.1
–
D
at
af

lo
w
pr
oc

es
se
sa

nd
fi
ri
ng

or
de

r

consider are prefix-monotonic. We refer to a specific firing of an actor, by the index
in the dataflow process associated with the actor, written in subscript: we denote
firing k of actor v by vk . The above gives rise to a strict partial ordering on actor
firings, defined as follows:

Definition 3.1 (Functional ordering of firings). Let G be an SDF graph. The func-
tional ordering of firings of actors in G is a relation, denoted ≺, between the firings
of actors in G, and defined as follows. The functional ordering of firings of the same
actor, v, follows from their index in the dataflow process associated with v:

k < m⇒ vk ≺ vm .

The functional ordering of firings of different actors, v and w, is defined for actors
that are connected by a channel vw:

vk ≺ wm ,

if the mth firing of w can not consume its tokens before the kth firing of v has completed.

This definition is best illustrated with an example, see Figure 3.2. In the MRSDF
graph of Figure 3.2(a), the first firing of actor b requires that (at least) two tokens
have been produced onto channel ab. This condition is satisfied as soon as actor
a has completed its first firing. We thus have a1 ≺ b1. Examples of other relations
that hold are a1 ≺ b2 and b1 ≺ c1. Figure 3.2(b) gives an overview of all the relations,
in the form of a directed acyclic graph: it contains an edge vw if and only if v ≺ w.

Clearly, the relation ≺ is transitive. For example, in Figure 3.2 we have a2 ≺ c2
because a2 ≺ b2 and b2 ≺ c2. Firings for which ≺ is undefined are said to be
unrelated. Unrelated firings may occur in any order, such as for example a2 and
b1 in Figure 3.2. A second property of ≺ is that it is irreflexive. That is, for no firing
v i we have v i ≺ v i . Furthermore, ≺ is anti-symmetric: if v i ≺ w j , then not w j ≺ v i .
Hence, the functional ordering defined by Definition 3.1 is indeed a strict partial
ordering.

The functional ordering between the producing and consuming actors of a channel
follows from the channel’s production and consumption rates, as well as its initial
tokens. We make the relation between ≺ and these properties specific, starting
with the introduction of the following token balance function ∆vw(i , j), which
gives the number of tokens on a channel vw, in terms of the number of completed
producing firings, i, and consuming firings, j. For the sake of completeness, we let
the definition allow for a negative numbers of firings.

∆vw(i , j) = δvw −
0
∑
l=i+1

ρ+vw(l) +
i
∑
l=1
ρ+vw(l) +

0
∑
l= j+1

ρ−vw(l) −
j

∑
l=1
ρ−vw(l). (3.1)

A consuming actor may start its next firing if all of its incoming channels contain
sufficiently many tokens. Formulated differently, each producing actor must have

54

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

a

b

c

d

3
2 3

3

4
31

4
2

(a)MRSDF graph.

a1

a2

b1

b2

b3

c1

c2

c3

d1

d2

d3

d4

a3

a4

(b) Functional ordering of firings, rep-
resented as a directed acyclic graph.

Figure 3.2 – The functional ordering of firings of actors follows from properties of the
channels. The rates and initial tokens determinewhich producing firing precedes a particular
consuming firing.

completed at least as many firings such that the consuming firing leaves a non-
negative number of tokens, on each of its incoming channels. We formalise this
dependency between the number of completed consuming firings on the one hand,
and the required number of producing firings on the other hand, into the concept
of a (firing) predecessor function. This function generalises the above formulation
from channels to paths. It is defined as follows:

Definition 3.2 (Firing predecessor function). The firing predecessor function asso-
ciated with a path P = v1 . . . vn gives the number of producing firings of v1 that must
precede the kth consuming firing of vn , such that aminimum, non-negative number
of tokens is left on each of the path’s channels. Formally,

πvw(k) = min{m ∈ Z∣∆vw(m, k) ≥ 0} ,
πv1 . . .vn(k) = (πv1v2 ○ πv2 . . .vn) (k), if n > 2.

(3.2)

As an illustration of the (firing) predecessor function, consider its graphical rep-
resentation, shown in Figure 3.3. If there are three initial tokens on the channel
of Figure 3.3(a), then no producing firings of actor a need completion to start the
first firing of actor b. We thus have (for d = 3) πab(1) = 0. As another example,
consider the third firing of actor b. If d = 5, then the first two firings of b can start,
but the third requires the production of two more tokens by a. These two tokens
are produced by the first firing of a, thus πab(3) = 1. Note that πab(k) may be
negative. A negative value indicates that “undoing” one or more producing firing
still leaves sufficiently many tokens for the kth consuming firing. For example, for
d = 5 the figure gives πab(1) = πab(2) = −2. This means that the last two firings

55

3.1
–
D
at
af

lo
w
pr
oc

es
se
sa

nd
fi
ri
ng

or
de

r

a

b

⟨2, 0, 1⟩

d

⟨3, 1⟩

(a) CSDF channel.

1 2 3 4 5 6 7 8 9
-2

0

2

4

6

8

10

12

14

16

k

πab(k)

d = 5
d = 3

(b)The channel’s predecessor function, for different values
of the initial tokens on the channel, given by d.

Figure 3.3 – A CSDF channel and a graphical representation of its predecessor function.

(these correspond to the second and third phase) of a can be undone, which reduces
the number of tokens on ab, by one, from five to four. These four tokens are still
sufficient to start the first two firings of a.

An obvious property of πvw(k) is that it is non-decreasing in k. This is a result of
the fact that firing an actor never results in the removal of tokens from its outgoing
channels. The firing predecessor function is a so-called resource-class-wise affine
function (see Definition A.1): the increase in πvw(k) follows a repetitive staircase
pattern, the shape of which is non-trivially determined by the rates and initial
tokens associated with the channel. We use this repetitive nature to simplify the
predecessor function, by rewriting the free variable m into an integer number of
periods, and a non-negative remainder. That is, we substitute m′φv + i for the free
variablem in the set-builder notation of Definition 3.2. This allows the predecessor
function to be written as the minimum over a number of ceiling terms, in the

56

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

following way:

πvw(k)
(3.1)
= min{m ∈ Z∣⌊

m
φv
⌋ PΣ+

vw + ∆vw(m mod φv , k) ≥ 0}

(m→m′φv+i)
= min

i<φv
{min{m′ ∈ Z∣m′PΣ+

vw + ∆vw(i , k) ≥ 0}φv + i}

(A.1b)
= min

i<φv
{⌈
−∆vw(i , k)

PΣ+
vw

⌉φv + i} .

(3.3)

Each firing of an actor has, per incoming channel, a uniquely defined predecessor.
The inverse relation, however, is not well-defined, as the predecessor function is
not injective. That is, if πvw(k) = πvw(m), then this does not imply that k = m.
In order to allow some reasoning over the inverse relation between the domain
and co-domain of π, we define a pseudo-inverse of the firing predecessor function,
which we name firing successor function and define as follows.

Definition 3.3 (Firing successor function). Let p = v1 . . . vn be a path in an SDF
graph. The firing successor function, associated with p and denoted σp , maps a firing
of v1 to the first firing of vn that depends on it:

σp(m) = min{k ∈ Z∣πp(k) = m} .

We conclude this section with a property that is heavily relied on in forthcoming
chapters. As mentioned earlier, the predecessor function follows an increasing and
repetitive staircase pattern. If the SDF graph is consistent, then the predecessor
function is residue-class-wise affine, modulo the repetition vector entry of the con-
suming actor. This is proven in the proposition that follows. We return to this
property in the following section.

Proposition 3.1 (π and σ are residue-class-wise affine mappings). Let G be a consis-
tent SDF graph. The predecessor and successor function, associated with any path inG,
are both residue-class-wise affine, modulo the repetition vector entry of, respectively,
the last and first actor in the path. That is, for any path P = v1v2 . . . vn , the following
holds:

πv1 . . .vn(k +mqvn) = πv1 . . .vn(k) +mqv1 ,
σv1 . . .vn(k +mqv1) = σv1 . . .vn(k) +mqvn .

Proof. We prove the property for the predecessor function, π. Let vw be a channel
in G, and let qv = rvφv and qw = rwφw . We have:

∆vw(i , k +mqv)
(3.1)
= ∆vw(i , k) −mrwPΣ−

vw
(2.1)
= ∆vw(i , k) −mrvPΣ+

vw ,

57

3.2
–
Te

m
po

ra
l
dy

na
m
ic
s

v1 v2 v3 v4 v5 v6 v7 v8

sv(1) sv(2)
sv(3)

sv(4)
sv(5)

sv(6)
sv(7)

sv(8)

firing

time

Figure 3.4 – The temporal ordering of the firing times of actors preserves their functional
ordering. Whereas firings are strictly ordered, the times at which they occur are not; multiple
firings may complete simultaneously.

and, consequently, (3.3) gives πvw(k + mqw) = πvw(k) + mqv . The proposition
readily follows by induction over the channels in P. The proof for the successor
functions follows in a similar fashion.

As a direct consequence of the above proposition, it follows that the composition of
the (firing) successor and predecessor function is residue-class-wise affine modulo
the repetition vector entry of the last actor in the path. If p = v1 . . . vn is a path in a
consistent SDF graph, then the following holds:

σp(πp(k + qvn)) = σp(πp(k) + qv1) = σp(πp(k)) + qvn . (3.4)

3.2 Temporal dynamics

A firing of an actor involves the consumption of tokens from its incoming channels,
and the production of tokens onto its outgoing channels. When reasoning over the
functional determinacy of sequences of actor firings, only the order in which firings
occur is relevant: firings are treated as indivisible, no notion of time is involved.

We now move from the functional ordering of firings to a temporal one, which
interrelates the times at which firings may take place. The mapping from firings
to time should be order-preserving. That is, if one firing precedes another in the
functional ordering (see Definition 3.1), then the former must not occur later in
time than the latter. Production and consumption of tokens, as well as their transfer
over a channel, is instantaneous. Consequently, whereas the functional ordering is
strict (for any two related firings vk and wm we have either vk ≺ wm or wm ≺ vk),
the times at which firings occur is not; subsequent firings may start and complete
simultaneously (see Figure 3.4).

We can associate several events with a firing. There is the start of the firing, which
involves with the consumption of tokens, and its completion, which coincides with
the production of tokens. Furthermore, we may consider the production of each
of the individual tokens as a separate event as well. In this section, we derive, from
the functional ordering described in the previous section, a temporal ordering

58

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

of different events associated with a firing. This gives rise to two mathematical
characterisations of an SDF graph. Both are linear dynamical systems, formulated in
max-plus algebra. These systems are named, in order of appearance, the actor firing
and token transfer perspective. The former follows from the functional ordering
defined in the previous section. In the latter, we derive, from the functional ordering
of actor firings, a temporal ordering on the times at which individual tokens are
transferred over a channel.

3.2.1 The actor firing perspective

The previous section treated firings as indivisible and instantaneous events. Firings,
however, take time. Whereas the functional ordering of firings is strict, their tempo-
ral ordering is not: As the production and consumption of tokens is instantaneous,
firings may complete or start at the same time.

Actors may start a firing once sufficiently many tokens are available for consump-
tion. A firing starts with the consumption of tokens, and completes with the pro-
duction of tokens. Tokens may only be produced as soon as all (functionally)
preceding firings have completed. As a result, the execution time associated with
an actor firing only gives a minimum duration of the firing. If a firing k + 1 of an
actor starts simultaneously with firing k, but has a shorter execution time, then it
must postpone the production of its tokens until firing k has completed.

It is more straightforward to express the above constraint in terms of completion
times of firings, rather than start times. If we denote by tv(k) the time at which
actor v completes its kth firing, then we have:

vk ≺ vm ⇒ tv(k) ≤ tv(m).

The firing completion times of an actor thus preserves their functional ordering. In
a similar fashion, the constraints on firing (completion) times of actors connected
by a channel follow fromDefinition 3.1. Again, the temporal ordering preserves the
functional ordering, and takes into account the execution time of the firing. Token
travel along channels is instantaneous; tokens become available for consumption
as soon as they are produced. This gives the following constraint, which is imposed
by every channel vw in the SDF graph (recall that τw(m) denotes the execution
time of the mth firing of actor w):

∀k,m ∶ vk ≺ wm ⇒ tv(k) + τw(m) ≤ tw(m).

Together, these two constraints give rise to the following definition..

Definition 3.4 (Admissible schedule). Let G be an SDF graph, and t a function that
maps firings, of each actor in G, to time, where tv(k) denotes the time at which actor
v completes its kth firing. Function t is called an admissible schedule if the following
relation holds for all actors v in G:

∀k,m ∈ Z ∶ k ≥ m⇒ tv(k) ≥ tv(m), (3.5)

59

3.2
.1
–
Th

e
ac

to
r
fi
ri
ng

pe
rs
pe
ct

iv
e

and the following relation holds for all channels vw in G:

∀k,m ∈ Z ∶ πvw(k) ≥ m⇒ tw(k) ≥ tv(m) ⊗ τw(k). (3.6)

The set of constraints imposed by the channels of a graph, on the firing comple-
tion times of its actors, can be expressed as linear recurrence relations in max-plus
algebra. The actor firing perspective gives a mathematical characterisation of the in-
terdependencies between the firing times of actors, formulated as a set of recurrence
relations in max-plus algebra.

Definition 3.5 (Actor firing perspective). Let G be an SDF graph with m source
actors u1 , . . . um and p sink actors y1 , . . . , yp. Furthermore, let Gin and Gout be sub-
graphs of G that are induced by channels that are incident to, respectively, source
actors and sink actors, andH = G − Gin − Gout. The actor firing perspective of G is
the max-plus system defined by the following set of higher-order recurrence relations:

tw(k) =⊕
vw∈H

tv (πvw(k)) ⊗ τw(k) ⊕ tw(k − 1) ⊕⊕
u iw∈Gin

u i (πu iw(k)) ⊗ τw(k),

y j(k) =⊕
v y j∈Gout

tv (πv y j(k)) ,

where u i(k) and y j(k) denote the times at which the source, respectively sink actors,
complete their kth firing, and tv(k) denotes the times at which actor v ∈ S completes
its kth firing. Furthermore, tv(k) = ε for all v ∈ H and k ≤ 0, and u i(k) ≥ u i(k − 1)
for all k.

In the mathematical characterisation given by Definition 3.5, we regard an SDF
graph as a discrete event system. The events in this system are the completion times
of actor firings. The actor firing perspective is thus the dynamical max-plus system
describing the evolution of event times of the discrete event system. Note that in
this perspective, the temporal dynamics are slightly different from the usual notion
of self-timed execution, which reflects the dataflow principle: an actor may fire
as soon as sufficiently many tokens are available. If we were to apply this notion
to graphs that have source actors, then these source actors, since they have no
incoming channels, would fire infinitely often, in zero time. In a system-theoretic
perspective, however, the firing times of source actors serve as an external input,
from which the firing times of other actors follow. In this view, a true data-driven
execution, in the sense that actors may fire as soon as they are enabled, is obtained
by setting the input u to a sequence of zeroes, i.e., in themax-plus sense, so u(i) = ε,
for all i ∈ Z.

Note that the above definition applies to graphs that have source and sink actors.
In the view of Definition 3.5, we regard graphs without sources and sinks as an
autonomous system. Chapter 6 is dedicated to the performance analysis of au-
tonomous systems.

60

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

Of particular interest is the relation between the input and output of the system
given by Definition 3.5. For this, we must consider the dependencies between fir-
ing (completion) times of sink actors on the one hand, and source actors, on the
other hand. These dependencies follow from the transitive closure of the constraints
given by Definition 3.4. This means that constraints imposed by channels gener-
alise naturally to constraints imposed by paths. The following function gives this
generalisation.

Definition 3.6 (Predecessor latency). Let G be an SDF graph, and p = v1 . . . vn
a path in G, with n ≥ 2. The predecessor latency associated with p is a function
that maps the kth firing of actor vn to the minimum amount of time between the
completions of and that firing, and firing πp(k) of actor v1, imposed by the execution
times of actors on p.

Tvw(k) = τw(k),
Tv1 , . . . ,vn(k) = τvn(k) ⊗ Tv1 . . .vn−1 (πvn−1vn(k)) , if n > 2.

For consistent SDF graphs, the predecessor latency function is a periodic function.
The total execution time along a path from a firing k of actor v to its predecessor,
varies periodically in k, with the period given by the repetition vector entry of v.
This property follows from the periodicity of the execution time of an actor, and
the fact that the firing predecessor function is resource-class-wise affine, as is stated
by the following proposition.

Proposition 3.2 (Periodicity of predecessor latency). Let G be a consistent SDF
graph, with repetition vector q. The predecessor latency associated with any path
p = v1 . . . vn in G, is a periodic function, with period qvn . That is:

Tp(k + qvn) = Tp(k).

Proof. Observe that the execution time of an actor is periodic in the number of
phases of that actor. In particular, this gives: τw(k+mqw) = τw(k). Theproposition
now follows directly from Proposition 3.1.

The predecessor latency function is derived from the transitive closure of Equa-
tion 3.6. As such, it gives rise to a necessary condition for firing completion times,
but not a sufficient one. A condition that is both necessary and sufficient is ob-
tained by taking into account Equation 3.5 as well. If two consecutive firings of the
same actor share the same predecessor, (i.e., πvw(k) = πvw(k − 1) = m), then the
minimum time between the kth firing of w and the mth firing of v is given by the
maximum of the predecessor latencies of firings k and k − 1 of actor w. The follow-
ing proposition formalises this reasoning in the relationship between the input and
output of the actor firing perspective.

61

3.2
.1
–
Th

e
ac

to
r
fi
ri
ng

pe
rs
pe
ct

iv
e

Proposition 3.3 (Input-output relationship). Let G be an SDF graph, with n sources
u1 , . . . un , and m sinks y1 , . . . , ym . Furthermore, let Pi j denote the set of paths in G,
from u i to y j . The jth output of the actor perspective of G is given by:

y j(k) =
n
⊕
i=1
⊕
p∈Pi j

⎛

⎝
u i (πp(k)) ⊗

(σp○πp)(k)

⊕
l=k

Tp(l)
⎞

⎠
.

Proof. The proposition follows from the transitive closure of the constraints that
hold for an admissible schedule, as expressed through the predecessor and prede-
cessor latency functions.

From the relationship between the input and output of the actor perspective, we
derive two important properties. The first property of the system given by Def-
inition 3.5 is linearity. Linearity means that the output of a system satisfies the
superposition principle: if y1(t) and y2(t) are the system’s responses to inputs
x1(t) and x2(t), then its response to ax1(t) + bx2(t) is ay1(t) + by2(t). In the
max-plus sense, linearity means a propagation of delay: delaying a particular firing
of input u by max{α, β} time units causes the corresponding firing of output y to
be delayed by max{α, β} time units as well.

A second property of the actor firing perspective relates to the output of the system
as a response to a shift in the input sequence. For consistent SDF graphs, specific
shifts in the input sequence cause an identical output, but one that is shifted as well.
The two properties are formalised in the following proposition.

Proposition 3.4 (SDF and linear periodically shift-varying systems). The actor fir-
ing perspective of a consistent SDF graph is a linear and periodically shift-varying
system.

Proof. To prove linearity, let y1 and y2 be outputs of the system, due to inputs u1
and u2. That is, for i ∈ {1, 2} we have:

y i(k) = ⊕
p∈P

u i (πp(k)) ⊗
(σp○πp)(k)

⊕
i=k

Tp(i).

The response to the system to a linear combination of the inputs, i.e., a⊗u1⊕b⊗u2,
with a, b ∈ Rmax, is then given by:

⊕
p∈P
(a ⊗ u1 (πp(k)) ⊕ b ⊗ u2 (πp(k))) ⊗

(σp○πp)(k)

⊕
i=k

Tp(i)

=
⎛

⎝
a ⊗ ⊕

p∈P
u1 (πp(k)) ⊗

(σp○πp)(k)

⊕
i=k

Tp(i)
⎞

⎠
⊕
⎛

⎝
b ⊗ ⊕

p∈P
u2 (πp(k)) ⊗

(σp○πp)(k)

⊕
i=k

Tp(i)
⎞

⎠

= a ⊗ y1(k) ⊕ b ⊗ y2(k)

62

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

The response of the system to a linear combination of inputs is thus equal to the
linear combination of responses to each of the individual inputs. In other words,
the system is linear.

To show that the system is periodically shift-varying, consider any path p from
an input (source) actor, u i to an output (sink) actor, y j . By Proposition 3.1, the
predecessor function associated with p satisfies πp(k +mqy j) = πp(k) +mqu i . As
before, let P denote the set of all paths from source actor u to sink actor y. By
Proposition 3.3, the input-output relationship is given by:

y(k + qy) = ⊕
p∈P

u(πp(k + qy)) ⊗
(σ○π)(k+q y)

⊕
i=k+q y

Tp(i)

= ⊕
p∈P

u(πp(k) + qu) ⊗
(σ○π)(k)

⊕
i=k

Tp(i).

In words, shifting the input sequence by qu i causes a shift in the output sequence
of qy j . The system between source actor u i and sink actor y j thus corresponds to a
(qu i , qy j)-shift-invariant system, i.e. a periodically shift-varying system.

Note that by Proposition 3.4, any HSDF graph corresponds to a shift-invariant sys-
tem: in an HSDF graph, each actor has a repetition vector entry of one. Shifting
the input by one thus causes the output to be shifted by one. Any shift in the input
sequence thus causes the output sequence to be equally shifted - the system is thus
shift-invariant. Transforming an SDF graph into its single-rate equivalent is thus
analogous to transforming a periodically shift-varying system into a shift-invariant
one. We describe this perspective on transforming aCSDF graph into an equivalent
HSDF graph, in more detail, in Section 4.3.

3.2.2 The token transfer perspective

There is a natural counterpart to the actor firing perspective described in the pre-
vious section. The completion of an actor firing involves the production of tokens
onto the actor’s outgoing channels. This production of tokens is instantaneous; the
completion of the firing coincides with the production of each of the correspond-
ing tokens. Instead of describing the evolution of firing completion times, we may
thus analogously describe the evolution of token production times. The relation
between the completion of an actor firing and the tokens it produces are given by:

ψvw(k) = min{m ∈ Z∣∆vw(m, 0) − δvw ≥ k} . (3.7)

Function ψvw(k) gives the number of firings that must be completed by the pro-
ducing actor v, such that (at least) k tokens are produced onto vw.

As a natural dual to the actor firing perspective described in the previous section, we
introduce the concept of a predecessor function. This function gives the number of
tokens that need to be produced on an upstream channel, such that a given number

63

3.2
.2
–
Th

e
to

ke
n
tr

an
sf
er

pe
rs
pe
ct

iv
e

of tokens can be produced onto a downstream channel. Its definition follows the
same principle that underlies Definition 3.2: the number of tokens that remains
on each channel, after the necessary firings have completed, must be non-negative.
We use a black dot to distinguish this transfer predecessor function from the firing
predecessor function defined earlier.

Definition 3.7 (Transfer predecessor function). The transfer predecessor function
gives the number of tokens that must be produced onto the first channel of a path, such
that k tokens may be produced onto the path’s last channel. The transfer predecessor
function associated with path P = v1 . . . vn is denoted π●P and defined for n ≥ 3 by:

π●uvw(k) = −∆uv (0,ψvw(k)) ,

π●v1 . . .vn(k) = (π
●
v1v2v3 ○ π

●
v2 . . .vn) (k), if n > 3.

(3.8)

Figure 3.5 shows the transfer predecessor function associated with the path of two
CSDF channels ab and bc. As an example, consider the eighth token produced
onto bc, by the sixth firing of b. Up to and including this firing, eight tokens are
consumed from ab. In order to ensure that this leaves a non-negative number of
tokens on ab, in case d = 2, six tokensmust be produced onto the channel by actor a.
For d = 2, we thus have π●abc(8) = 6. The figure furthermore shows how tokens that
are produced by the same firing of b all map to the same value: for d = 0, we have
π●abc(1) = π

●
abc(2) = 1 and π

●
abc(5) = π

●
abc(6) = 5. Also, for d = 2, the transfer of

the fifth, sixth and seventh token over bc each requires the transfer of three tokens
over channel ab.

The graph of Figure 3.5 shows a number of similarities with the graph of the firing
predecessor function, shown earlier in Figure 3.3. Analogous to its counterpart,
the transfer predecessor function is a resource-class-wise affine function. Whereas
the former is resource-class-wise affine modulo the repetition vector entry of the
consuming actor, the latter is resource-class-wise affine modulo the number of
tokens, consumed in a single graph iteration, from the last channel in the path:

Proposition 3.5 (π● is a residue-class-wise affine mapping). Let G be a consistent
SDF graph, and P = v1v2 . . . vn a path in G, with n ≥ 3. The transfer predecessor
function associated with P is residue-class-wise affine modulo the number of tokens
consumed, during a single graph iteration, from the last channel in P. Formally,

π●v1 . . .vn (k +m
PΣ−
vn−1vqvn
φvn

) = π●v1 . . .vn(k) +m
PΣ+
v1v2qv1
φv1

. (3.9)

The two predecessor functions, given by Definitions 3.2 and 3.7, are closely related.
This relationship can be stated formally in terms of (3.7). For a path that consists of
at least two channels, there are two equivalent ways to relate the number of firings
that must be completed, by the first actor of the path, to the number of tokens

64

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

a

b

c

d
⟨1, 0, 3⟩

⟨2, 1, 1⟩

1 2 3 4 5 6 7 8 9 10 11 12

-1
0
1
2
3
4
5
6

7
8

9

k

π●abc(k)

d = 2
d = 0

Figure 3.5 – The transfer predecessor function associated with path abc, for different values
of the number of initial tokens on ab, as specified by d.

that can be produced, onto the last channel. These two ways are expressed by the
following equality:

ψv1v2 (π
●
v1 . . .vn(k)) = πv1 . . .vn−1 (ψvn−1vn (k)) , (3.10)

for all paths P = v1 . . . vn with n ≥ 3.

In a procedure similar to the one followed for the firing predecessor function in
Section 3.1, we reformulate the transfer predecessor function π●uvw as a minimum
over as many terms as actor v has phases. Substituting the integer variable m that
appears in (3.8) with an integer number of periods, m′, and a phase i, gives:

π●uvw(k) = −∆uv (0,min{m ∈ Z∣
m
∑
l=1
ρ+vw(l) ≥ k})

= −∆uv (0,min
i<φv
{min{m′ ∈ Z∣m′PΣ+

vw +
i
∑
l=1
ρ+vw(l) ≥ k}φv + i})

= −∆uv (0,min
i<φv
{⌈

k −∑i
l=1 ρ+vw(l)
PΣ+
vw

⌉φv + i}) .

As a next and final step, we use the fact that ∆(i , j) decreases monotonically in j.
This allows us to eliminate ∆ from the above, rewriting it into:

π●uvw(k) = min
i<φv
{⌈

k −∑i
l=1 ρ+vw(l)
PΣ+
vw

⌉ PΣ−
uv +

i
∑
l=1
ρ−uv(l) − δuv} . (3.11)

65

3.2
.2
–
Th

e
to

ke
n
tr

an
sf
er

pe
rs
pe
ct

iv
e

In the token transfer perspective, we characterise the interdependencies between
the times at which tokens are transferred over channels as a linear autonomous
max-plus system. The inputs of this system control the times at which tokens may
be transferred over the graph’s channels. We assume that the sequence of inputs is
non-decreasing. That is, the transfer of the kth token does not occur earlier than
the transfer of token k − 1. Outputs of the system serve to “observe” the times of
specific actor firings. The system is defined as follows:

Definition 3.8 (Token transfer perspective). Let G be an SDF graph with m source
actors u1 , . . . , um and p sink actors y1 , . . . , yp . Furthermore, let Gin be the subgraph
of G induced by channels that are incident to a source actor, andH = G − Gin. The
token transfer perspective of G is the max-plus system that is defined by the following
set of higher-order recurrence relations.

t●vw(k) = ⊕
uv∈G

t●uv (π
●
uvw(k)) ⊗ τv(ψvw(k)) ⊕ t●vw(k − 1),

t●u iv(k) = u i(ψu iv(k)),

y j(k) = ⊕
v y j∈G

t●v y j
(−∆v y j(0, k)) ,

where t●vw(k) denotes the time at which the kth token is transferred over channel vw,
and y j(k) (resp. u i(k)) the time of the kth firing of actor y j (resp. u i). Furthermore,
t●vw(k) = ε for all vw ∈ H and k ≤ 0, and u i(k) ≥ u i(k − 1) for all k.

The token transfer perspective is a linear dynamical max-plus system. Furthermore,
if the graph it describes is consistent, then the system is periodically shift-varying.
This readily follows from the strong relationship with the actor firing perspective:

Proposition 3.6 (Linearity and shift-variance of the transfer perspective). The token
transfer perspective of a consistent SDF graph is a linear and periodically shift-varying
system.

Proof. The times at which tokens are transferred over channels coincide with the
times at which corresponding producing firings complete. Since, by Proposition 3.4,
the actor firing perspective of a consistent SDF graph is both linear and periodically
shift-varying, it follows that the token transfer perspective is linear and periodically
shift-varying as well.

Analogous to the actor firing perspective, the token transfer perspective of an SDF
graph is a max-plus system, with multiple inputs and outputs. Whereas the state
of the system corresponds to times at which tokens are transferred, the inputs and
outputs of the system map to firing times of (source and sink) actors. In this sense,
the inputs and outputs of the two perspectives are equivalent. In Section 3.3, we
prove their equivalence in a stronger sense.

66

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

3.2.3 Comparing the two perspectives

The actor firing and token transfer perspectives describe different but strongly re-
lated kinds of events in an SDF graph: the times at which actors complete their fir-
ings, and the times at which tokens that are produced by these firings are transferred
over channels. For an HSDF graph, these two kinds of events are indistinguishable,
as each actor firing corresponds with the transfer of a single token over each of
the actor’s outgoing channels. As a result, for HSDF graphs, the two perspectives
are identical. In MRSDF graphs, multiple tokens are transferred over a channel
simultaneously. The constraints on the transfer times of these tokens are identical,
and thus the token transfer perspective adds some redundancy over the actor fir-
ing perspective. In CSDF graphs, some firings may produce no tokens at all. For
these graphs, the difference between the two perspectives, in terms of redundancy,
depends on the rate vectors of the graph’s channels.

A clear difference between the two perspectives is the size of the systems in the
two perspectives. The actor firing perspective has one recurrence relation for each
actor, whereas the token transfer perspective has one relation for each channel. The
token transfer perspective is thus at least as large, in terms of system size, as the
actor firing perspective, and typically larger.

Whether one perspective should be preferred over the other depends on the con-
text in which they are used. In the firing perspective, multiple token transfers are
grouped into a single, indivisible, event: the firing that produces them. In the token
perspective, individual token transfers are separate events. This fits the view that
is taken in several approaches where the focus lies on token arrival curves [48, 95].
In particular, it allows one to approximate the temporal dynamics of the graph by
assuming conservative linear bounds on these curves. Such an approximation may
be applied to the actor firing perspective as well, but by constructing linear bounds
on curves that describe the completion times of consecutive firings. We cover the
differences in the approximations obtained from each of the perspectives in more
detail in Chapter 5.

3.3 Equivalent systems

Classical system theory studies the relationship between the input of a system, and
its output. The system is treated as a black box: when observing two systems that
are fed with the same input, it may be impossible to tell them apart. For example, a
system that models an electronic circuit can be replaced by an equivalent system
by combining multiple resistors into a single, resultant, resistance (see Figure 3.6);
when feeding the circuit with the same voltage, the observed current is the same for
both systems. This indicates that the two configurations of resistors are equivalent:
the series-parallel configuration in Figure 3.6(a) has the same resistance as the
single resistor in Figure 3.6(b).

For discrete event systems formulated in max-plus algebra, inputs and outputs
correspond to times at which events occur. By studying the relationship between

67

3.3
–
Eq

ui
va

le
nt

sy
st
em

s

U(t)

A

y(t)

100Ω 150Ω

80Ω 120Ω

R1 R2

R3 R4

(a) Series-parallel configuration

U(t)

A

y(t)

108ΩRs

(b) Equivalent configuration

Figure 3.6 – An example of two equivalent systems: if we consider the voltage as the system’s
input, and the current as its output, then both systems produce the same output when fed
with the same input.

such a system’s inputs and outputs, we gain insight in the performance of the system.
That is, the input-output behaviour gives the time the system needs to provide a
response to some input, and the rate at which it can process input events. For
example, a source actor in an SDF graph could represent the periodic arrival of
frames in a digital movie, and a sink actor the refresh of the screen on which the
movie is to be displayed. When analysing the output in terms of the input, the
SDF graph that models the (temporal dynamics of the) processing of the movie
frame, is treated as a black box. If we have another movie-processing graph that,
when fed with the same frame arrival times, always gives the same screen refresh
times, we may conclude that the two systems have an equivalent performance.
In the following sections, we give a formal definition for this temporal notion of
equivalence of SDF graphs. Similar to how the equivalence of the two electronic
circuits implied an equivalent resistance, we describe how equivalence of max-plus
systems relates to the schedules of the SDF graphs they describe.

We relate two systems to each other by comparing their outputs, while feeding
them with the same sequence of inputs. Two systems are equivalent if they have
the same output when fed with the same input. Before we give a formal definition,
we introduce a weaker notion of equivalence, which we name temporal abstraction.

Definition 3.9 (Temporal abstraction). Let S1 and S2 be max-plus linear systems,
with respective inputs u1 and u2, and respective outputs y1 and y2. System S1 is a tem-
poral abstraction of S2, if output events of S1 never occur sooner than corresponding
output events of S2. That is, S1 ⊆T S2 if the following holds:

∀k ∈ Z ∶ u1(k) = u2(k) ⇒ y1(k) ⊕ y2(k) = y1(k),

68

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

A,1

B,2u1 y1

3

3

22

1

3

1 2

(a) SDF graph.

a,1

b,2u2 y2

1

1 2

(b) Temporal abstraction.

0 3 6 9 12 15 18 21 24 27 30 33 36
0
1
2
3
4
5
6
7
8
9
10

time

fir
in
gi
nd

ex

u1 , u2
y1
y2

(c) Response, T = 3.

0 3 6 9 12 15 18 21 24 27 30 33 36
0
1
2
3
4
5
6
7
8
9
10

time

fir
in
gi
nd

ex
u1 , u2
y1
y2

(d) Response, T = 2.

Figure 3.7 – The graph shown in (b) temporally abstracts the graph depicted in (a). The
source actors fire simultaneously and strictly periodically, with a period of T . For T = 3,
both systems have identical output sequences: the sink actors fire simultaneously.

In terms of performance, a system that is a temporal abstraction of another system,
conservatively models that other system: the performance of the former is never
better than the performance of the latter. A temporal abstraction relates both the la-
tency (that is, the difference between the kth firing times of input and output actors)
and the rates at which output actors fire of two graphs. If a system is temporally
abstracted by another system, then this reveals some information about the maxi-
mum possible rates at which events in the systems can occur, in the following way.
Suppose G ⊇T H. This means in particular that even the output produced by G at
its fastest possible rate, never precedes (in time) the corresponding output ofH. In
other words, H can always “keep up” with the rate of G, and thus the maximum
rate at whichH can produce data must be at least as high as the maximum rate G.

As an example of a temporal abstraction, consider Figure 3.7. The figure shows
an SDF graph (Figure 3.7(a)) that is temporally abstracted by another SDF graph
(Figure 3.7(b)). Output (i.e., sink actor) y2(k) never occurs earlier than output

69

3.3
–
Eq

ui
va

le
nt

sy
st
em

s

y1(k). When fed with strictly periodic inputs, u1(k) = u2(k) = T(k − 1), both
systems give an identical output for T = 3. This is shown in Figure 3.7(c). Increasing
the rate at which input events occur only affects the output of the leftmost system
(see Figure 3.7(d)).

If the rate at which input events occur is low enough, then this input rate deter-
mines the rate at which output events occur. That is, firings of output actors in
both the temporally abstracted graph and the abstraction occur at the same rate.
The latency imposed by the abstraction is at least as high as the latency imposed
by the abstracted graph. This finds a useful application in the approximation of
performance characteristics of graphs. If these characteristics are difficult to assess
for some graph G, but easy to obtain for graphH withH ⊇T G, then we may, for
example, obtain a bound on the throughput of G from the throughput of H. We
further elaborate on this in Chapter 5.

We conclude this section with a formal definition and some examples of temporal
equivalence. Two systems are temporally equivalent, if, when fed with the same
input, their outputs are identical. In terms of the above definition of temporal
abstraction, thismeans that two graphs are temporally equivalent if they temporally
abstract each other.

Definition 3.10 (Temporal equivalence). Two max-plus systems S1 and S2 are tem-
porally equivalent, denoted S1 ≡T S2, if S1 temporally abstracts S2, and vice versa.
That is, S1 ≡T S2 if S1 ⊆T S2 and S2 ⊆T S1.

Examples of temporally equivalent systems are the actor firing and token transfer
perspective defined earlier. Their equivalence follows from the strong relationship
between the completion time of a firing, and the time at which the produced tokens
are transferred over a channel.

Proposition 3.7 (Temporal equivalance of perspectives). LetG be an SDF graph. The
actor firing perspective and token transfer perspective of G are temporally equivalent.

Proof. Tokens are produced and transferred over a channel instantaneously at the
completion of a firing. Consequently, a token’s transfer over a channel coincides
with the completion of its producing firing. A token is mapped to its producing
firing by (3.7). This means that we token transfer times and actor firings are related
through:

t●vw(k) = tv(ψvw(k)).

Now, let y●j (k) denote the k
th firing time of sink actor y j , as determined by the

token transfer perspective of G. Similarly, let y j(k) denote the kth firing time of y j
in the actor firing perspective of G. The equality of y●j (k) and y j(k) follows from

70

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

the following rewriting steps:

y●j (k) =⊕ t●v y j
(−∆v y j(0, k))

=⊕ tv (ψv y j (−∆v y j(0, k)))

=⊕ tv (πv y j(k))

= y(k).

Thus, the two perspectives are equal.

As an example, Figure 3.8 shows two graphs that are temporally equivalent. To see
this, observe that, in the MRSDF graph, every odd firing of the source actor, u2,
enables a next firing of s1, and every even firing of u2 enables a next firing of s2. A
similar relationship exists between output y2 and s1 and s2: odd firings of y2 are
enabled by the next firing of s1, and even firings are enabled by the next firing of s2.
As a result, a next firing of the output actor, y2, requires a next firing of the source
actor, u2. The fastest possible rate at which the sink actors of both graphs can fire
is the same for both graphs. In the HSDF graph, actor s may fire once every single
time unit. Consequently, actor y1 may fire at most once per time unit as well. The
maximum firing rate of actors in theMRSDF graph is bounded by the loop s1s2s1:
actor s1 and s1 may both fire once every two time units. As a result, actor y2 may
fire at most once per time unit. In other words, if the firing times of the two source
actors are given by u1(k) = u2(k) = u(k), then the firing times of both sink actors
are given by:

y1(k) = y2(k) = u(k) ⊗ 1⊕ 1⊗k .

and thus the systems are temporally equivalent.

The system-theoretic view on SDF graphs gives rise to a notion of throughput that
differs from the classical definition given in [40, 60]. Classically, throughput of an
SDF graph is defined as the number of graph iterations (see Section 2.1.6) completed
per time unit, in a self-timed execution of the graph. From a system-theoretic per-
spective, (maximum) throughput of a system relates to the input-output behaviour
of the system: it quantifies the response (output) of a system to an infinitely high
load. In this view, the classical definition of throughput falls short. In fact, we may
construct two systems that are temporally equivalent but, by the classical definition,
have different throughputs. This is illustrated in Figure 3.8: the throughput of the
MRSDF graph is a half iteration per time unit, whereas the throughput of theHSDF
graph is one iteration per time unit.

3.4 Discussion

The characterisation of the temporal dynamics of an SDF graph, as presented in
this chapter, is based on two principles. The first is that the SDF graphs are func-
tionally determinate: given the same sequence of input values, a sequence of actor

71

3.4
–
D
is
cu

ss
io
n

u1 s,1 y1

1

(a) HSDF graph.

u2

s1 ,1

s2 ,1

y2

1 2

2

2

2 1

1

(b) Temporally equivalentMRSDF graph.

Figure 3.8 – Temporal equivalence does not imply equal throughput. The actor firing per-
spectives of the HSDF andMRSDF graphs are temporally equivalent. In the classical defini-
tion of throughput, the HSDF graph has a throughput of one, and theMRSDF graph has a
throughput of one half.

firings produces the same sequence of output values. In other words, tokens in the
graph may not “overtake” each other. The second principle is the dataflow princi-
ple, which states that a computation may commence as soon as its input data is
available. The actor firing and token transfer perspectives presented in this chapter
are mathematical embodiments of these two principles, formulated in max-plus
algebra.

Our mathematical characterisation differs from the semantics given by other au-
thors. For example, the operational semantics formulated in [6, 40, 42, 60, 91]
embed only the second principle, and do not enforce functional determinacy. For
HSDF andMRSDF graphs, the second principle suffices to ensure functional deter-
minacy. This follows from the fact thatHSDF andMRSDF actors have non-varying
execution times. As a result, firings that have started earlier than consecutive fir-
ings, complete earlier as well. For CSDF graphs where actors are permitted to fire
auto-concurrently, these operational semantics lead to a temporal dynamics that
differs from the dynamics given in this chapter. This is best illustrated by an exam-
ple, which is shown in Figure 3.9. The graph shown in this figure has no self-loops.
As a result, if sufficient tokens are present on an actor’s input channels, an actormay
start multiple firings simultaneously. Under the operational semantics described
above, a self-timed execution allows the fifth firing of a to complete and produce
its output tokens, before the fourth firing of a has completed. In other words, the
dataflow process associated with a is not functionally determinate, as tokens have
“overtaken” each other. The firing times given by the actor firing perspective satisfy
the constraint imposed by functional determinacy: the completion of the fifth firing
of a is postponed until the moment the fourth firing of a has completed. Functional
determinism leads to a lower actor firing rate: the schedule of Figure 3.9(b) gives a
throughput of 1

5 , whereas the schedule of Figure 3.9(c) gives a higher throughput,
of 2/7.

In the original definition of CSDF this problem is solved by letting each actor have

72

C
hapter

3–
A
m
athem

atical
characterisation

of
SD

F

a b

⟨1, 3⟩ ⟨2, 2⟩⟨1, 1⟩ ⟨1, 1⟩

⟨1, 1⟩2⟨1, 1⟩

(a) A simple CSDF graph.

a1

a2

b1 b2

a3

a4

b3

b4

a5

a6

b5

b6

a7 b7

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time

(b) Self-timed schedule, obeying functional ordering.

a b a b a b a b a b

a b a b a b

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time

(c) Self-timed schedule when ignoring functional ordering.

Figure 3.9 – A CSDF graph in which actors are free to fire multiple firings simultaneously.
When restricting executions to monotonic dataflow processes, maximum throughput is
limited to 1

5 (the last block of four firings forms a single period), as illustrated by the self-
timed schedule shown in (b). Figure (c) shows the resulting self-timed schedule when we
ignore the functional ordering. In this case, the graph’s maximum throughput is 4

15 (the
schedule shows a single period), which is higher.

an implicit self-loop with a single-token. This restriction forbids auto-concurrency.
Furthermore, due to this restriction,CSDF, in the definition of [11], does not strictly
generaliseMRSDF. This means that not everyMRSDF graph is also a CSDF graph,
which breaks the typically assumed taxonomy of SDF graphs.

A self-loop enforces a stronger constraint than functional determinacy. Weaker
constraints may be enforced by carefully adding cycles to the graph. However,
the weakest constraint that still ensures functional determinacy is difficult, if not
impossible, to enforce solely by manipulating the graph. The actor firing and token
transfer perspective defined in this chapter both allow auto-concurrent execution
of firings of a CSDF actor. Furthermore, they enforce functional determinacy in
a straightforward way, by including a constraint on the completion time of actor
firings (or a similar constraint on the transfer times of tokens).

The system-theoretic perspective that we introduce in this chapter allows two SDF

73

3.4
–
D
is
cu

ss
io
n

graphs to be compared in terms of their performance characteristics. The notions
of abstraction and equivalence are useful as they allow for the computation of perfor-
mance characteristics of a complex system, through the analysis of a simpler system.
In the chapters that follow, equivalence and abstraction are the guiding principles
in, respectively, the transformation and approximation of SDF graphs.

74

754

this chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several ways
to transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow

graph into a larger graph, and ways to prune the resulting graph this
chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several ways
to transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow

graph into a larger graph, and ways to prune the resulting graph this
chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several ways
to transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow

graph into a larger graph, and ways to prune the resulting graph this
chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several ways
to transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow

graph into a larger graph, and ways to prune the resulting graph this
chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several ways
to transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow

graph into a larger graph, and ways to prune the resulting graph this
chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several ways
to transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow

graph into a larger graph, and ways to prune the resulting graph this
chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several
ways to transform a dataflow graph into a larger graph, and ways
to prune the resulting graph this chapter describes several ways to
transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow

graph into a larger graph, and ways to prune the resulting graph this
chapter describes several ways to transform a dataflow graph into
a larger graph, and ways to prune the resulting graph this chapter
describes several ways to transform a dataflow graph into a larger
graph, and ways to prune the resulting graph this chapter describes
several ways to transform a dataflow graph into a larger graph, and
ways to prune the resulting graph this chapter describes several
ways to transform a dataflow graph into a larger graph, and ways
to prune the resulting graph this chapter describes several ways to
transform a dataflow graph into a larger graph, and ways to prune
the resulting graph this chapter describes several ways to transform
a dataflow graph into a larger graph, and ways to prune the resulting
graph this chapter describes several ways to transform a dataflow
graph into a larger graph, and ways to prune the resulting graphSynchronous dataflow

graph transformations

Abstract – For homogeneous synchronous dataflow graphs, efficient analy-
sis techniques have been available for a few decades. Multi-rate and cyclo-
static dataflow graphs may be analysed by transforming them into an equiva-
lent homogeneous synchronous dataflow (HSDF) graph. This transformation,
however, generally results in a much larger graph; in the worst case the size
of the equivalent graph grows exponentially in the size of the original graph.
In this chapter, we revisit the construction of an equivalent homogeneous syn-
chronous dataflow (HSDF) graph, and present a transformation algorithm that
produces smaller graphs. We furthermore present an algorithm to transform a
cyclo-static dataflow (CSDF) graph into an equivalent multi-rate synchronous
dataflow (MRSDF) graph.

The different classes of SDF graphs introduced in Chapter 2, e.g. cyclo-static, multi-
rate and homogeneous SDF, vary in the richness of their properties. Where for
HSDF graphs these properties are restricted to execution times and intitial tokens,
in a CSDF graph actors have execution time vectors and channels have, along with
initial tokens, production and consumption rate vectors. The three classes are
equally expressive, as both MRSDF and CSDF graphs may be transformed into
an equivalent HSDF graph [11, 60, 62, 88]. Here, “equivalence” lacks a formal defini-
tion. In literature, intuitive notions of equivalence are used rather than formal ones.
These notions stem from either a functional or a temporal perspective. To illustrate
these different interpretations of the word equivalence, consider the CSDF graphs
depicted in Figure 4.1 and Figure 4.2.

Large parts of this chapter have been published in [RdG:3].

76

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

a b c2 1 3 2 4 2

(a)MRSDF graph.

a1

a2

a3

b1

b2

c1

c2

(b) Single-rate equivalent.

Figure 4.1 – The de facto transformation from MRSDF to HSDF, as originally proposed
in [60, 62].

Both figures show a transformation of an SDF graph into an HSDF graph. In the
first figure (Figure 4.1), the input to the transformation is anMRSDF channel. For
every three firings of actor a, actor bmay fire twice . A single iteration of theMRSDF
channel thus consists of three firings of a and two of b. TheHSDF graph constructed
by the transformation has an actor for every firing that occurs in a single iteration.
Furthermore, the graph has a channel for every token that is produced in a single
iteration; since every firing of actor a produces two tokens, the three actors a1, a2
and a3 each have two outgoing channels. Likewise, the two actor corresponding
to firings of actor b each have three incoming channels. The resulting HSDF graph
is called the single-rate equivalent of theMRSDF graph. Note that, as some tokens
may be both produced by the same firing and consumed by the same firing, the
single-rate equivalent is amulti-graph.

The above transformation can be understood from a functional perspective; there
is a correspondence between the data that is processed by the firings of the actors
of the two graphs. Suppose an actor firing in theMRSDF graph consumes values
x1 , . . . xn , from some incoming channel, and produces y1 , . . . ym onto some outgo-
ing channel. In the single-rate equivalent, the HSDF actor corresponding to that
firing consumes and produces the same values, be it that a different set of channels
it involved. As a result of the transformation, the former and latter have the same
number of initial tokens.

Theprinciple behind the transformation fromMRSDF into its single-rate equivalent,
as depicted in Figure 4.1, differs from the principle that underlies the transformation
illustrated in Figure 4.2(b). The latter figure shows the transformation of a CSDF
graph into anHSDF graph, using the algorithm outlined in [11]. In the CSDF graph,
the number of tokens produced and consumed by each actor varies cyclically; a
single iteration of the graph consists of six firings of each actor.

The difference between this transformation and the previous one is illustrated by
the fact that the number of tokens, produced and consumed by firings of the CSDF
actors in Figure 4.2, does not correspond with the number of tokens consumed and

77

C
ha

pt
er

4
–
Sy
nc

hr
on

ou
sd

at
af

lo
w
gr

ap
h
tr

an
sf
or

m
at

io
ns

a b
⟨2, 3, 1⟩ 1 ⟨1, 3⟩

1 1

(a) CSDF graph.

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

(b) Equivalent HSDF graph.

Figure 4.2 – A CSDF graph and an equivalent HSDF graphs, derived by the transformation
described in [11]. Here, equivalence can be understood from a functional perspective.

produced by the HSDF actors in the transformation. For example, the first firing
of actor a produces a total of three tokens: two onto channel ab, and one onto its
self-loop. In the HSDF graph, the corresponding actor, a1, produces a total of two
tokens. Still, theCSDF graph and its transformation are equivalent, in the sense that
the times at which actors in the equivalent HSDF graph fire, can be mapped to the
times at which the CSDF actors fire. Consequently, a schedule for the CSDF graph
can be constructed by constructing a schedule for the equivalent HSDF graph.

The CSDF-to-HSDF transformation depicted in Figure 4.2 can be understood from
a dependency perspective: channels represent data dependencies and thus impose
precedence relations between the firings of actors. The channels in theHSDF graph
should reflect these precedence relations. Thus, the transformation connects two
HSDF actors v and w with a channel if actor w consumes at least one of the tokens
produced by actor v; the precise number of tokens is irrelevant.

Note that, despite the difference in perspective of the two transformations outlined
above, they have in common that the number of actors in the single-rate equivalent
is equal to the number of firings that occur in a single graph iteration. This number
may be large; the size of a single-rate equivalent grows exponentially in the size of
the original graph, in the worst case.

Both transformations imply a different intuitive notion of equivalence, without
defining it precisely. In this chapter we describe transformations that yield tempo-
rally equivalent graphs, in the system-theoretic perspective (see Definition 3.10)
outlined in the previous chapter: the input-output relation of the graph and its trans-
formation is identical. That is, when feeding both systemswith the same input, their
outputs are the same, and thus their temporal dynamics can not be distinguished

78

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

from each other.

In this chapter we introduce a number of novel transformations. Section 4.1 de-
scribes the transformation of a CSDF graph into itsmulti-rate equivalent. The latter
is anMRSDF graph that is temporally equivalent to theCSDF graph. This technique
is generalised in Section 4.2, to arbitrary unfoldings of CSDF and MRSDF actors,
where the transformation replaces each actor by a number of actors, each of which
represents a subset of the firings of the original actor. For example, an MRSDF
graph can be unfolded into a larger MRSDF graph, where actors in the latter dis-
tinguish between even and odd firings of actors in the former. This more general
transformation subsumes the transformations of CSDF and MRSDF graphs into
their single-rate equivalents. Each transformation is accompanied with a formal
proof that the graph it produces is temporally equivalent to the graph it transforms.

4.1 Transforming CSDF into MRSDF

The novel approach that we take to transforming CSDF graphs intoMRSDF graphs,
is similar to the transformation fromMRSDF into HSDF, where several firings of
anMRSDF actor are each represented by a single HSDF actor, as described earlier.
TheHSDF graphs obtained by these existing transformations are named single-rate
equivalents. We follow this naming, and refer to the MRSDF graphs constructed
from a CSDF graph asmulti-rate equivalents.

An intuitive first step into deriving a multi-rate equivalent from a CSDF graph is
to let each CSDF actor be represented by as manyMRSDF actors as it has phases.
As we shall see later, the rates and tokens that must be assigned to channels in
the multi-rate equivalent follow from this choice. The principle underlying the
transformation from CSDF intoMRSDF is that the actors and channels of the latter
must, as a whole, impose the same set of functional constraints as their cyclo-static
counterparts in the former do. Since these constraints are described in terms of pre-
decessor functions, rewriting these functions leaves the set of imposed precedence
constraints effectively unchanged. In Section 4.1.1, we outline how this process of
rewriting allows us to derive the annotations for the channels in theMRSDF graph.
Section 4.1.3 provides the formal proof that the CSDF graph and its multi-rate
equivalent are indeed temporally equivalent, in the sense that their corresponding
discrete event systems are undistinguishable.

The multi-rate equivalents obtained by the transformation given in Section 4.1.1
may consist of many channels, of which some may impose redundant constraints;
omitting them does not change the graph’s temporal dynamics. Section 4.1.4 de-
scribes how these channels are identified, and presents an algorithm that constructs
aminimalmulti-rate equivalent, which leaves out redundant channels.

79

4.
1.1

–
M
ap

pi
ng

ac
to

rs
an

d
ch

an
ne

ls
fr
om

C
SD

F
to

M
RS

D
F

v z w
P+vz

δvz

P−vz P+zw

δzw

P−zw

(a) CSDF graph

v

z1

zk

zT

w

P+vz1

δvz1

P−vz1 P+z1w
δz1w

P−zw
P+vzk

δvzk P−vzk P+zk w
δzk w P−zk w

P+vzT

δvzT
P−vzT P+zT w

δzT w

P−zT w

(b) Unfolded actor z into T actors

Figure 4.3 – A partial transformation of actor z.

4.1.1 Mapping actors and channels from CSDF to MRSDF

An intuitive relation between a CSDF graph and its multi-rate equivalent is to let
actors in the latter represent individual phases of actors in the former. We follow this
idea, and indicate the phase that is represented by theseMRSDF actors in subscript;
actor v in the CSDF graph is represented by actors v1 , v2 , . . . , vφv in the MRSDF
graph.

For the sake of argument, we restrict ourselves to the specific case that only a single
CSDF actor is transformed into a set ofMRSDF actors (see Figure 4.3). This means
that all other CSDF actors and non-incident channels are maintained in the new
graph. We refer to this specific transformation as a partial transformation from
CSDF intoMRSDF (see Figure 4.3). In order to reason about this transformation
formally, we use the following definition:

Definition 4.1 (Partial transformation). A partial transformation of a CSDF actor
z in CSDF graph G yields a graphH, where actor z is replaced by actors z1 , . . . , zT .
Formally, we denote the transformation byH = ETz (G), and define it by

ETz (G) = Gz ∪ G
∗
z ,

where Gz , with actorsAz and channels Cz , is the graph induced by z and its (direct)
successors and predecessors in G, Gz = G − Gz , and G∗z the graph with actors and
channels respectively given by

A∗z = {z i ∣1 ≤ i ≤ T}
C∗z = {z iw∣zw ∈ Cz , 1 ≤ i ≤ T} ∪ {vz i ∣vz ∈ Cz , 1 ≤ i ≤ T}

80

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

A partial transformation replaces a single actor by a set of actors. We refer to the
size of this set as the unfolding factor of the transformed actor. Note that the partial
transformationH = ETz (G) only defines the structure ofH. It does not specify the
annotations (rates, initial tokens and execution times) of channels and actors inH.
AsMRSDF actor z i inH represents phase i of actor z in G, the execution time for
actor z i (which is independent of the firing index) is defined as

τz i = τz(i),

and for all other actors inH the execution time is unchanged by the transformation.

When partially transforming a graph, the parameter T may be chosen arbitrarily.
In the remainder of this section, we assume that the CSDF actor, z, is transformed
into as many actors as it has phases. That is, we assumeH = Eφz

z (G).

The approach that we follow to derive annotations for channels inH is rooted in the
fact that the completion of k firings ofMRSDF actor z i in E

φz
z (G) corresponds to

the completion of i+(k−1)φz firings¹ ofCSDF actor z. This alsomeans that a single
firing ofMRSDF actor z i consumes PΣ−

vz tokens from each incoming channel vz i ,
and produces PΣ+

zw tokens onto each outgoing channel z iw. The production rates
of said incoming channels is essentially left unchanged, i.e., the production rate of
channel vz i inH is equal to the production rate of channel vz inG (and analogously,
consumption rates of outgoing channels follow). Guided by an intuitive translation
between the predecessor functions of channels in G andH, we may now derive the
last unknown property, which is the number of initial tokens of the channels in the
transformed graph.

For an incoming channel vz i inH, the associated predecessor function πvz i maps a
number of consuming firings of z i to the required number of producing firings of v.
Making the correspondence between z i and z explicit gives the following relation
between πvz i and πvz :

πvz i (k) = πvz(i + (k − 1)φz). (4.1)

By expanding the terms πvz i (k) and πvz(k) (see Definition 3.2, in particular (3.2)),
we obtain the following equation:

min{m∣
m
∑
l=1
ρ+vz(l) + δvz i − kP

Σ−
vz ≥ 0}=min{m∣

m
∑
l=1
ρ+vz(l) + δvz − (k − 1)P

Σ−
vz ≥ 0} .

The initial tokens of channel vz i are now found by solving this equation for δvz i ,
which gives:

δvz i = δvz +
φz

∑
l=i+1

ρ−vz(l).

1The clumsy subtraction of one is necessary to let the first firing of z1 correspond to the first firing
of z.

81

4.
1.2

–
Te

m
po

ra
l
eq

ui
va

le
nc

e

To determine the annotations for the outgoing channels of the unfolded MRSDF
actors, we take a slightly different approach: we first derive the relationship that
should hold between predecessor functions of these channels and the original chan-
nel, zw, and then determine the annotations such that this relationship holds. Recall
that, in the original graph, in order to enable the kth firing of actor w, actor z must
complete at least πzw(k) firings. In the transformed graph, enabling the kth firing
of actor w requires that each actor z i has completed at least πz iw(k) firings, which
corresponds to i + (πz iw(k) − 1)φz firings of z. To ensure that the earliest times at
which w may fire are left invariant by the transformation, the following relations,
between πz iw and πzw , must thus hold:

πzw(k) = max
i
{i + (πz iw(k) − 1)φz} (4.2a)

πz iw(k) = ⌈
πzw(k) − i + 1

φz
⌉ . (4.2b)

The equality of (4.2a) and (3.2) (see Section 3.1) now allows us to solve for δz iw ,
which gives

δz iw = δzw +
i−1
∑
l=1
ρ+zw .

This completes the partial transformation; channels not incident to actor z sim-
ply have their annotations unchanged. Note that the partial transformation allows
us to transform a CSDF graph into anMRSDF graph, simply by applying the par-
tial transformation to every actor in the CSDF graph. Algorithm 1 combines this
sequence of partial transformations into a single transformation. As an example,
Figure 4.4 depicts a CSDF graph and its equivalent MRSDF graph, obtained by
applying Algorithm 1.

The density of the equivalentMRSDF graph is higher than the density of the CSDF
graph, as a single CSDF channel vw is transformed into φvφw channels. In Sec-
tion 4.1.4, we demonstrate how the number of channels in the equivalentMRSDF
graph may be reduced.

4.1.2 Temporal equivalence

Using the transformation presented in the previous section, we can transform one
system into another. In this view, a CSDF graph represents a component that con-
nects inputs and outputs (i.e., source and sink actors). The transformation replaces
a CSDF component with an MRSDF component. This new system must be tem-
porally equivalent to the old system. That is, the system constructed around the
multi-rate equivalent should be such that, in terms of temporal dynamics, the two
systems are indistinguishable. We now turn to proving that this is indeed the case.

In the following, we consider again the partial transformation, of a single CSDF
actor into multiple MRSDF actors. That is, we let G be a CSDF graph, and H =

82

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

a b

⟨2, 0⟩ d ⟨2, 1⟩

⟨0, 3⟩⟨1, 1⟩

(a) CSDF graph.

a1

a2

b1

b2

a1

a2

2
d + 1

3

2

d 32

d + 3 3

2
d + 2

3

3
1

2

3

2
3

1 2

3 2

(b) EquivalentMRSDF graph.

Figure 4.4 – A CSDF graph and its equivalentMRSDF graph. The equivalentMRSDF graph
has been unrolled such that all channels point from left to right, and implicit self-loops have
been omitted for the sake of clarity.

Algorithm 1: Transforms a CSDF graph into anMRSDF graph.
1 input :A CSDF graph G.
2 output :AnMRSDF graph.

3 GMR ←Ð empty graph
4 foreach actor v in G do
5 for i = 1 to φv do
6 Add actor v i to GMR

7 τv i ←Ð τv(i)

8 foreach channel vw in G do
9 for j = 1 to φw do
10 for i = 1 to φv do
11 Add channel v iw j to GMR

12 ρ+v iw j ←Ð PΣ+
vw

13 ρ−v iw j ←Ð PΣ−
vw

14 δv iw j ←Ð δvw +∑i−1
l=1 ρ

+
vw +∑φw

l= j+1 ρ
−
vw

15 return GMR

83

4.
1.2

–
Te

m
po

ra
l
eq

ui
va

le
nc

e

E
φz
z (G) its partial transformation. We furthermore consider a single input and a
single output, connected to actor z in graph G. Let the input u be connected to z
in G, and z i inH. Sink actor y1 is the output of G, and y2 forms the output ofH.

For G, the relation between the output of the system and its input is fully specified
by

y1(k) = tz (πz y(k)) ,
tz(k) = tv (πvz(k)) ⊗ τz(k) ⊕ tv (k − 1) ⊕ u (πuz(k)) ,

(4.3)

and the relation between the input and output ofH is defined by:

y2(k) =
φz

⊕
i=1

tz i (πz i y(k)) ,

tz i (k) = ⊕
uz i∈H

u (πuz i (k)) ⊗ τz i (k) ⊕ tz i (k − 1).
(4.4)

In order to prove thatG andH are temporally equivalent, we first rewrite the output,
y2, ofH. The following lemma expresses the output ofH in terms of the predecessor
functions associated with channels uz and zy in G.

Lemma 4.1 (Output of the multi-rate equivalent). Let m(k) and r(k) be functions,
such that m(k)φz + r(k) = πz y(k)The output of theMRSDF system can be written
in terms πuz(k), r(k) and m(k), as follows:

y2(k) =
r(k)

⊕
i=r(k)−φz+1

u (πuz (m(k)φz + i)) ⊗ τz(i).

Proof. Using (4.1), (4.2a) and (4.2b), the predecessor function associated with a
path uz i y can be written in terms of the predecessor function πuz , and functions
m(k) and r(k):

πuz i (πz i y(k))
(4.2b)
= πuz i (1 + ⌊

πz y(k) − i
φz

⌋)

= πuz i (m(k) + 1 + ⌊
r(k) − i
φz

⌋)

(4.1)
= πuz (m(k)φz + r(k) − (r(k) − i) mod φz) .

(4.5)

The output of theMRSDF system is given by:

y2(k) =
φz

⊕
i=1

tz i (πz i y) =⊕
j∈N

φz

⊕
i=1
u (πuz i (πz i y(k) − j)) ⊗ τz(i).

84

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

By assumption, the input sequence u is non-decreasing. Furthermore, since the
predecessor function is non-decreasing, the composition of u and πuz i is non-
decreasing as well. The summation over jmay thus be eliminated from the above
expression, giving:

y2(k) =
φz

⊕
i=1
u (πuz i (πz i y(k))) ⊗ τz(i)

(4.5)
=

φz

⊕
i=1
u (πuz (r(k) +m(k)φz − (r(k) − i) mod φz)) ⊗ τz(i).

Next, we split this into two summations, which eliminates the modulo term (note
that τz(i) = τz(i − φz)):

y2(k) =
r(k)

⊕
i=1

u (πuz (m(k)φz + i)) ⊗ τz(i)

⊕
φz

⊕
i=r(k)+1

u (πuz (m(k)φz + i − φz)) ⊗ τz(i − φz).

The lemma is obtained by a substitution of i −φz for i in the rightmost summation,
followed by a rearrangement of terms.

The equivalence of the two systems, associated with G and H, now follows from
the equality of their outputs, y1 and y2, as formulated in the following lemma.

Lemma 4.2 (System equality). The systems given by (4.3) and (4.4) are temporally
equivalent. That is, for all possible input sequences u, and for all k ∈ Z, we have
y1(k) = y2(k).

Proof. For the CSDF graph we expand the input-output recurrence relation given
by (4.4), into:

y1(k) =⊕
j∈N

u (πuz (m(k)φz + r(k) − j)) ⊗ τz (r(k) − j) .

Since both the input sequence (u(k))k∈Z and the predecessor function is non-
decreasing, their composition is non-decreasing as well. Furthermore, τz(i) =
τz(i−φz). We therefore may limit the domain of variable j in the above expression,
in the following way:

y1(k) =
φz−1

⊕
j=0

u (πuz (m(k)φz + r(k) − j)) ⊗ τz (r(k) − j) .

Substituting r(k) − j for j in the above expression for y1(k) gives an expression
that, by Lemma 4.1, satisfies y1(k) = y2(k), which completes the proof.

85

4.
1.3

–
M
ap

pi
ng

ad
m
is
si
bl
e
sc
he

du
le
s

This concludes the proof for the temporal equivalence of graph G, and its partial
transformation,H. The multi-rate equivalent of G may be obtained by repeatedly
applying the partial transformation to its CSDF actors, until they have all been re-
placed by a number ofMRSDF actors. Since every partial transformation yields a
graph that is temporally equivalent, the multi-rate equivalent is temporally equiva-
lent as well. This is formally stated by the following theorem.

Theorem 4.1 (Temporal equivalence). Let G be a CSDF graph, andH be theMRSDF
graph obtained by applying Algorithm 1 to G. Graphs G andH are temporally equiv-
alent.

Proof. By Lemma 4.2, any partial transformation, of a single actor in G, to a num-
ber ofMRSDF actors, yields an equivalent system. Graph G can be regarded as a
composition of systems. Since any composition of equivalent systems is again equiv-
alent [22], the theorem holds true. The stated theorem now follows by induction
on the structure of G.

4.1.3 Mapping admissible schedules

The transformation from aCSDF graph into anMRSDF graph, as described in Algo-
rithm 1, provides a mapping between the firings of actors in the former and firings
of actors in the latter: if v is an actor in the CSDF graph, and v i is a corresponding
actor in the multi-rate equivalent, then firings of v i map to firings i , i + φv , . . . of
v. Since, by Theorem 4.1, theMRSDF graph is temporally equivalent to the CSDF
graph, the mapping between firings also provides a mapping between the sched-
ules of the two graphs. In order to reason about this relation, we first prove the
following relation between the predecessor functions of a channel in a CSDF graph,
and corresponding channels in its multi-rate equivalent.

Proposition 4.1 (Predecessor function relation). Let G be a CSDF graph, andH the
MRSDF graph obtained by applying Algorithm 1. Furthermore, let vw be a channel in
G and v iw j a channel inH that corresponds to vw. The following equivalence relation
holds:

πv iw j(m) ≥ k⇔ πvw(j + (m − 1)φw) ≥ i + (k − 1)φv . (4.6)

Proof. Using equations (4.1) and (4.2a), function πv iw j can be rewritten in the fol-
lowing way:

πv iw j(m) = πv iw(j + (m − 1)φw) = 1 + ⌊
πvw(j + (m − 1)φw) − i

φv
⌋ .

The proposition now readily follows from (A.4) (see Appendix A).

Every schedule that is admissible for the CSDF graph can be mapped to a sched-
ule for the MRSDF graph, through the mapping implied by the transformation.

86

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

Such a mapped schedule is admissible for theMRSDF graph. The following lemma
provides a proof for this statement.

Lemma 4.3 (Multi-rate schedules). LetG be aCSDF graph, andH theMRSDF graph
obtained by applying Algorithm 1. Furthermore, let t be an admissible schedule for G,
and let s be a schedule forH, obtained by the following mapping:

sv i (k) = tv(i + (k − 1)φv), (4.7)

for every actor v i inH. Then schedule s is admissible forH.

Proof. Admissibility of t gives:

k ≥ m⇒ tv(k) ≥ tv(m), (4.8a)
πvw(k) ≥ m⇒ tw(k) ≥ tv(m) ⊗ τw(k). (4.8b)

In particular, we have:

k ≥ m⇒ tv(i + (k − 1)φv) ≥ tv(i + (m − 1)φv)

⇒ sv i (k) ≥ sv i (m),
(4.9)

and

πvw(j + (m − 1)φw) ≥ i + (k − 1)φv ⇒ sw j(m) ≥ sv i (k) ⊗ τv(i)
⇔

πv iw j(m) ≥ k⇒ sw j(m) ≥ sv i ⊗ τv(i).
(4.10)

Together, the implied relations (4.9) and (4.10) state that s is admissible, which
completes the proof.

The mapping between firings of a CSDF graph and its multi-rate equivalent give
rise to a mapping, from schedules of the latter, to schedules of the former. This
mapping maps firings ofmultipleMRSDF actors onto firings of a single CSDF actor.
Since consecutive phases of the sameCSDF actor are represented by different actors
MRSDF graph, care must be taken that functional determinacy is not invalidated
when mapping an admissible schedule from theMRSDF graph to the CSDF graph,
especially when actors in the latter can fire auto-concurrently. To see this, consider
Figure 4.5, which depicts a situation in which a single firing of actor a enables a
single period of b. Functional determinacy ensures that in the CSDF graph, the
first phase of b cannot complete later than its second phase. In the transformed
MRSDF graph, however, no such ordering is imposed on actors b1 and b2, and the
first phase may perfectly well complete later than the second phase.

The mapping defined by the following lemma ensures that any schedule that is
admissible for the multi-rate equivalent, is mapped to a schedule that is admissible
for the CSDF graph.

87

4.
1.3

–
M
ap

pi
ng

ad
m
is
si
bl
e
sc
he

du
le
s

a b c5 ⟨2, 3⟩ ⟨1, 1⟩ 1

a(1) b(1) b(2) c(1)
time

(a) CSDF graph and an admissible schedule.

a
b1

b2

c
5

3 5

5
5

2
1

2 1
1

a(1) b2(1) b1(1) c(1)
time

(b)Themulti-rate equivalent, with an admis-
sible schedule.

Figure 4.5 – Whenmapping an admissible schedule for the equivalentMRSDF graph to the
original CSDF graph, care must be taken that functional determinacy is not invalidated.

Lemma 4.4 (Cyclo-static schedules). Let G be a CSDF graph, and H the MRSDF
graph obtained by applying Algorithm 1. The following relation maps every schedule
s that is admissible forH to an admissible schedule t for G:

tv(k) =
φv

⊕
i=1

sv i (⌊
k − i
φv
⌋ + 1) , (4.11)

where v is an actor in G, and v i are corresponding actors inH.

Proof. Let s be an admissible schedule forH, and t be the schedule obtained from
s by (4.11). The first implication of the fact that s is admissible is:

k ≥ m⇒ sv i (k) ≥ sv i (m),

which holds for 1 ≤ i ≤ φv . This directly implies the first necessary condition for
the admissibility of t:

k ≥ m⇒
φv

⊕
i=1

sv i (k) ≥
φv

⊕
i=1

sv i (m),

The second implication of the admissibility of s relates to the constraints imposed
by the channels ofH. This is stated by:

πv iw j(m) ≥ k⇒ sw j(m) ≥ sv i (k) ⊗ τw(j).

Predecessor function πv iw j(m) is non-increasing in j (see Proposition 4.1). This
means that the above premise implies πvnw j(m) ≥ k for 1 ≤ n ≤ i. Furthermore,
the same premise implies πvnw j(m) ≥ k − 1 for i < n ≤ φv . The above implication
can thus be replaced by the following, more elaborate, implication:

πv iw j(m) ≥ k⇒ sw j(m) ≥
i
⊕
l=1

sv l (k) ⊗ τw(l) ⊕
φv

⊕
l=i+1

sv l (k − 1) ⊗ τw(j). (4.12)

88

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

We rewrite the second (and last) necessary constraint for the admissibility of t,
using Proposition 4.1 and (4.11), into the following formulation:

πv iw j(m) ≥ k⇒
φw

⊕
l=1

sw l (⌊
j − l
φw
⌋ +m) ≥

φv

⊕
l=1

sv l (⌊
i − l
φv
⌋ + k) ⊗ τw(j).

This is equivalent to the following implication:

πv iw j(m) ≥ k⇒
φw

⊕
l=1

sw l (⌊
j − l
φw
⌋ +m) ≥ (

i
⊕
l=1

sv l (k) ⊕
φv

⊕
l=i+1

sv l (k − 1)) ⊗ τw(j),

which holds, since, by (4.12):

φw

⊕
l=1

sw l (⌊
j − l
φw
⌋ +m) ≥ sw j(m) ≥ (

i
⊕
l=1

sv l (k) ⊕
φv

⊕
l=i+1

sv l (k − 1)) ⊗ τw(j).

Thus, schedule t is admissible for G.

This completes the mapping between the admissible schedules of a CSDF graph
and its multi-rate equivalent. A result of Theorem 4.1 and the above two lemmas,
is that any (temporal) analysis technique that is applicable toMRSDF graphs, may
be applied to CSDF graphs, by applying the analysis to its multi-rate equivalent.
Analysis results obtained for the equivalentMRSDF graphs can thus be translated
back to the CSDF graph through the mapping defined by Lemma 4.4.

4.1.4 Pruning

The admissible schedules of an SDF graph are defined in terms of the predecessor
functions of the graph’s channels (see Definition 3.4). Some channels may impose
constraints that are not binding, i.e., removing the channel has no effect on the
admissible schedules of the graph. Pruning these channels simplifies the graph.
In particular, it reduces the number of cycles that occur in the graph. As a result,
the graph may no longer be strongly, or even weakly, connected. In the following
sections, we discuss different types of pruning, and their effects on the graph’s
admissible schedules.

Pruning non-binding Channels

A channel imposes a precedence constraint on the times at which its consuming ac-
tor may fire. In some cases, this constraint is non-binding; omitting the constraint
does not relax the constraints on the consumer’s admissible firing times. An exam-
ple of such a case is depicted in Figure 4.6(a), where, in any admissible schedule,
path abc imposes a stronger constraint on firings of actor c than channel ac does.
As a result, the latter may be pruned from the graph, without changing the set of
admissible schedules. The annotations of the channels matter; consider for example
Figure 4.6(b), which differs from Figure 4.6(a) only by the consumption rates of

89

4.
1.4

–
Pr

un
in
g

a

b

c

(a) HSDF: ac is non-binding

a

b

c
⟨1, 0⟩

⟨0, 1⟩

(b) CSDF: ab and ac are both
binding

Figure 4.6 – Non-binding channels are identified from triangles in the graph.

the two incoming channels of c. The result of these consumption rate vectors is that
c alternately depends on a and b, and hence none of the channels may be pruned.

In some cases, channels are only non-binding if we restrict the admissible schedules,
e.g. by enforcing extra constraints. As an example, consider the MRSDF graph
shown in Figure 4.7. Here, if we consider the subset of admissible schedules in
which each actor fires as soon as it is enabled (i.e., self-timed schedules), then
channel u1v1 never imposes any extra delay on actor u1, as the kth firing of u2 never
precedes the kth firing of u1. This restricted notion of a non-binding channel is
captured by the following definition:

Definition 4.2 (Non-binding channel). Let G be an SDF graph, and T a set of
schedules of G. A channel vw in G is non-binding in T, if the precedence constraints
that are imposed on the channel’s consumer, by some other channel, are at least as
strong. That is, channel vw is non-binding in T if there exists an incident channel zw,
such that for all t ∈ T:

∀k ∈ Z ∶ tz(πzw(k)) ≥ tv(πvw(k)).

Graphs that are obtained from the CSDF-to-MRSDF transformation (see the previ-
ous section) contain potentially many non-binding channels, if we consider only
those schedules that are obtained, through the mapping given by Lemma 4.3, from
the schedules of the original CSDF graph. This restricted set of schedules allows
one to analyse the schedules of a CSDF graph via the schedules of its multi-rate
equivalent.

In the remainder of this section, we assume that CSDF actors either have a self-
loop, or a non-varying execution time. This means that functional determinacy
is guaranteed, as firings that start later than other firings, never complete earlier.
Consequently, the identification of non-binding channels is based solely on the
constraints they impose through the availability of tokens, as expressed through
their associated predecessor function.

90

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

u v
⟨1, 2, 3⟩ 2 4

(a) CSDF channel.

u1

u2

u3

v

6
2

4
6 3 4

6
5

4

(b) Equivalent MRSDF
graph.

u1

u2

u3

v
6 3 4

6
5

4

(c) Pruned.

Figure 4.7 – Channels in (parts of) the equivalentMRSDF graph may be pruned if they are
non-binding in a specific subset of the graph’s admissible schedules.

The channels that we prune from the multi-rate equivalent are those channels that
are created from the sameCSDF channel, i.e., in lines 11 – 14 ofAlgorithm 1. These in-
cident channels have similar properties: since they are derived from the sameCSDF
channel, they have the same production and consumption rates, but their number
of initial tokens differs. The following lemma describes how the non-bindingness
of a channel in the multi-rate equivalent may be determined from its predecessor
functions.

Lemma 4.5. Let G be a CSDF graph, andH = ETv (G) be the partially transformed
CSDF graph. Furthermore, let v iw be a channel inH, and S be the set of schedules
obtained by mapping each schedule in S(G) toH, using the mapping given by (4.7).
Channel v iw is non-binding in S if the following holds for all k:

⊕
k∈Z
{πv iw(k) − πv i+1w(k)} ≤ 0, (4.13)

Proof. Channel v iw is non-binding if the maximum of the terms sv i+1(πv i+1w(k))
and sv i (πv iw(k)) is attained by the former, for all s ∈ S and for all k ∈ Z. We
rewrite this maximum of firing times in s to a maximum of firing times in t, in the
following way:

sv i (πv iw(k)) ⊕ sv i+1 (πv i+1w(k))
(4.7)
= tv (i + (πv iw(k) − 1)T) ⊕ tv (i + 1 + (πv i+1w(k) − 1)T)
(3.5)
= tv (i + (πv iw(k) − 1)T ⊕ i + 1 + (πv i+1w(k) − 1)T) .

Given the premise, that is, πv iw(k) ≤ πv i+1w(k) for all k ∈ Z, the last expression
reduces to:

tv (i + 1 + (πv i+1w(k) − 1)T)
(4.7)
= sv i+1 (πv i+1w(k)) .

91

4.
1.4

–
Pr

un
in
g

Thus, the maximum of the terms sv i+1(πv i+1w(k)) and sv i (πv iw(k)) is attained by
the former, for all k ∈ Z. By Definition 4.2, channel v i is thus non-binding.

Using the steps outlined in the previous section, together with Lemma 4.5, we
may transform a CSDF graph into an equivalentMRSDF graph and prune its non-
binding channels. A more efficient approach avoids creating these non-binding
channels in the first place, rather than pruning them in a later step. If we were to
use Lemma 4.5 to determine which channels in the multi-rate equivalent are non-
binding, then the pruning phase would have quite some overhead; every channel
that is created by the transformation needs to be “checked” for non-bindingness,
and this check is relatively expensive. Rather than determining whether a channel
is non-binding, the following theorem characterises those channels that are not
(known to be) non-binding. The theorem uses identity (A.9) (see Appendix A).

Theorem 4.2. Let G be a CSDF graph, and H be the partial transformation of G,
given byH = Eφv

v (G). Let vw be a channel in G, and v iw a corresponding channel
inH. Channel v iw is not non-binding if, for some n < φw , the following inequality is
satisfied:

⌊
∆vw(i , n)

gcd (PΣ−
vw , PΣ+

vw)
⌋ > ⌊

∆vw(i − 1, n)
gcd (PΣ−

vw , PΣ+
vw)
⌋ ,

Proof. By Lemma 4.5 and (3.3), channel v iw is non-binding if

max
n<φw

max
k∈Z
{⌈

kPΣ−
vw − ∆vw(i − 1, n)

PΣ+
vw

⌉ − ⌈
kPΣ−

vw − ∆vw(i , n)
PΣ+
vw

⌉} ≤ 0.

this can be simplified using (A.1a) into:

max
n<φw
{⌊

∆vw(i , n)
gcd (PΣ−

vw , PΣ+
vw)
⌋ − ⌊

∆vw(i − 1, n)
gcd (PΣ−

vw , PΣ+
vw)
⌋} ≤ 0. (4.14)

The negation of this gives the inequality stated by the theorem.

Theorem 4.2 leads to a revised version of Algorithm 1, listed as Algorithm 2. The
algorithm transforms a CSDF graph into anMRSDF graph that has as many actors
as the CSDF actors have phases. The number of edges in the multi-rate equivalent
constructed by Algorithm 2 is, in the worst case, equal to the number of edges in the
graph constructed by Algorithm 1. This is illustrated in Figure 4.8, which depicts an
example CSDF graph along with the twoMRSDF graphs obtained by Algorithm 1
and Algorithm 2. As the figure shows, the latter prunes 6 of the 20 channels of the
former.

92

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

a b c

⟨1, 2⟩ ⟨0, 3⟩

⟨3, 0⟩4⟨2, 1⟩

⟨2, 1⟩ ⟨3, 1⟩

⟨2, 2⟩4⟨1, 2⟩⟨1, 1⟩

1

⟨1, 1⟩

(a) CSDF graph

a1

a2

b1

b2

c1

c2

3

3
3

3

1
3

3

3
3

4

3

353

3
4

3
3

8

3

373

3
1

4

3

2
4

3

4
3

3

4

463

4
4

3
4

8

3

463

2

1

2
2

3

2

2
2 2

22
2

(b) EquivalentMRSDF graph, obtained by Algorithm 1

a1

a2

b1

b2

c1

c2
3 1 3

3
4

3

353

3
4

3

3
1

4

3

2
4

3

4
3

3

4

463

4
4

3
4

8

3

463

2

1

2
2

3

2

(c) PrunedMRSDF graph, obtained by Algorithm 2

Figure 4.8 – A CSDF graph, its equivalentMRSDF graph obtained by applying Algorithm 1,
and its pruned multi-rate equivalent, obtained by applying Algorithm 2 to the CSDF graph.

93

4.
1.4

–
Pr

un
in
g

Algorithm 2: Transforms a CSDF graph into a pruned and temporally equiv-
alentMRSDF graph.
1 input :A CSDF graph G.
2 output :A temporally equivalentMRSDF graph with∑v φv actors.

3 GMR ←Ð empty graph
4 foreach actor v in G do
5 for i = 1 to φv do
6 Add actor v i to GMR

7 τv i ←Ð τv(i)

8 foreach channel vw in G do
9 for j = 1 to φw do
10 for i = 1 to φv do

11 cmin ←Ð ⌊ ∆vw(i , j)+PΣ−
vw

gvw
⌋

12 cmax ←Ð ⌊ ∆vw(i−1, j)+PΣ−
vw

gvw
⌋

13 if cmin > cmax then
14 Add channel v iw j to G′
15 ρ+v iw j ←Ð PΣ+

vw

16 ρ−v iw j ←Ð PΣ−
vw

17 δv iw j ←Ð δvw +∑i−1
l=1 ρ

+
vw(l) +∑φw

l= j+1 ρ
−
vw(l)

18 return GMR

Pruning non-critical actors

Due to the pruning of channels from a graph, the graph may no longer be strongly
connected. In particular, some actors may no longer lie on a cycle. Since the
maximum rate at which actors may fire in any feasible schedule is determined by
the cycles in the graph, actors that do not lie on a cycle do not impact the throughput
of the graph. When the sole purpose of transforming a CSDF graph into its multi-
rate equivalent is to analyse the resulting graph for its throughput, these non-critical
actors may thus be pruned from the graph.

Pruning non-critical actors may decrease the size of the graph significantly, whilst
leaving its throughput invariant. Although in a graph’s multi-rate equivalent typ-
ically a few non-critical actors may be pruned, the number of non-critical actors
is often higher for single-rate equivalents. Construction of single-rate equivalents
is described in more detail in Section 4.3. Chapter 6 describes how the pruning
of non-critical actors from single-rate equivalents leads to an efficient method for
computing a graph’s throughput.

94

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

4.2 Unfolding CSDF actors

Transforming a CSDF graph into its multi-rate equivalent, as presented in the previ-
ous sections, replaces each CSDF actor with as manyMRSDF actors as it has phases.
The correspondence between theMRSDF and CSDF actors is natural;MRSDF actor
v i corresponds to firings i , i + φv , . . . of CSDF actor v. If we consider the firing
times of CSDF actor v as a (discrete-time) signal, then each of the corresponding
MRSDF actors can be regarded as downsampled (or decimated) signals. In this view,
the transformation from CSDF toMRSDF or HSDF can be seen as downsampling,
where the sampling period for an actor is equal to its number of phases. There is,
however, no restriction on this sampling period. In this section, we show how an
actor may be unfolded an arbitrary number of times. In case an actor the unfolding
factor is not an integer multiple of the actor’s period, the result will not be a set of
MRSDF actors, but CSDF actors with periods at most equal to the original actor’s
period. This is described in the following section, which follows an approach that
is similar to the one followed in Section 4.1. We describe pruning of arbitrarily un-
foldedCSDF graphs in Section 4.2.2. A final result of the transformations presented
in this section is the transformation of a CSDF graph into its single-rate equivalent,
which differs from the transformation of [60, 88] and [11].

4.2.1 Mapping channels and actors

To determine the production and consumption rates of the outgoing and incoming
channels of the actors in an unfolded graph, we follow an approach similar to the
one followed in the previous section. We consider first the partial transformation
(see Definition 4.1) H of CSDF graph G, but now choose an arbitrary unfolding
factor. That is, we letH = ETz (G).

An actor z i inH represents firings {i+mT ∣m ∈ N}. If we choose T to be an integer
multiple of the number of phases of z, then the behaviour (i.e., execution times
and production and consumption rates) of z i does not vary; the behaviour of z i is
defined by phase i mod1 φz of actor z. If T is not an integer multiple of φz , then
the behaviour of z i varies cyclically. The period of this cyclically varying sequence
is determined by the greatest common divisor of T and φz , and is given by:

φz i =
φz

gcd(T , φz)
, (4.15)

for all i ∈ {1, . . . , T}.

Given the relation between actors inH and those in G, we now turn to deriving the
annotations of the channels inH. In graphH, the number of tokens on a channel
z iw, after k producing firings, is equal to the number of tokens on CSDF channel
zw after i − 1 + kT producing firings. On an incoming channel vz i , the number of
tokens after k consuming firings is equal to the number of tokens after i + (k − 1)T
firings of actor z. In other words, we have the following relations between the

95

4.
2.
1–

M
ap

pi
ng

ch
an

ne
ls

an
d
ac

to
rs

balance functions in G andH:

∆z iw(m, k) = ∆zw(i − 1 +mT , k) (4.16a)
∆vz i (m, k) = ∆vz(m, i + (k − 1)T). (4.16b)

The token balance function ∆vw(i , j) gives the number of tokens on a channel vw
after i producing and j consuming firings. We may thus obtain the number of
initial tokens of channels inH from (4.16a) and (4.16b), using ∆(0, 0):

δz iw = ∆z iw(0, 0) = δzw +
i−1
∑
l=1
ρ+zw(l) (4.17a)

δvz i = ∆vz i (0, 0) = δvz +
T−i
∑
l=1

ρ−vz(1 − l). (4.17b)

Finally, the production and consumption rate vectors for outgoing and incoming
channels of the actors z i in H can now be obtained by solving equations (4.16a)
and (4.16b) for periodic functions ρ+z iw and ρ

−
vz i . Expanding the difference of the

token balance functions ∆z iw(m, k) and ∆zw(i − 1 +mT , k) gives, after cancelling
and rearranging terms:

m
∑
l=1
ρ+z iw(l) =

mT
∑
l=1
ρ+zw(i − 1 + l)

=
m
∑
l=1

T
∑
n=1

ρ+zw(i − 1 + n + (l − 1)T).

In a similar way, by expanding ∆vz i (m, k) − ∆vz(m, i + (k − 1)T), we obtain the
sequence of consumption rates associated with incoming channels of actors z i in
H:

k
∑
l=1
ρ−vz i (l) =

0
∑

l=1−T
ρ−vz(i + l) +

(k−1)T

∑
l=1

ρ−vz(i + l)

=
k
∑
l=1

T
∑
n=1

ρ−vz(i + n + (l − 2)T).

The production and consumption rate vectors now readily follow:

ρ+z iw(l) =
Tz

∑
n=1

ρ+zw(i − 1 + n + (l − 1)T) (4.18a)

ρ−vz i (l) =
Tz

∑
n=1

ρ−vz(i + n + (l − 2)T). (4.18b)

96

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

v w
⟨2, 1, 1, 0⟩ 1 ⟨3, 1, 1⟩

Tv = ⟨1, 2, 3, 4⟩ Tw = ⟨2, 4, 6⟩

(a) CSDF channel.

v1

v2

w1

w2

⟨3, 1⟩
2 ⟨4, 2, 4⟩

⟨3, 1⟩
1

⟨4, 4, 2⟩⟨2, 2⟩
4

⟨4, 2, 4⟩

⟨2, 2⟩
3 ⟨4, 4, 2⟩

T = ⟨2, 6, 4⟩

T = ⟨4, 2, 6⟩

T = ⟨1, 3⟩

T = ⟨2, 4⟩

(b) Equivalent CSDF graph.

Figure 4.9 – An example CSDF channel, and an equivalent graph in which both actors are
unfolded twice.

Given the number of phases of actors z i by (4.15), the sums of the production and
consumption rate vectors associated with incoming and outgoing channels of z i
are the following:

PΣ+
z iw = P

Σ+
zw

T
gcd(φz , T)

, (4.19a)

PΣ−
vz i = P

Σ−
vz

T
gcd(φz , T)

. (4.19b)

Note that, the sums of the rate vectors associated with channels of vz i inH are all
the same. This is illustrated in Figure 4.9, which depicts an example of unfolding
an actor using the procedure outlined in this section.

Theorem 4.3 (Temporal equivalence of unfoldings). Let G be a CSDF graph, and
H be the CSDF graph obtained by applying Algorithm 3 to G. Then graphs G andH
are temporally equivalent.

Proof. Consider the partial transformation of G, G∗ = ETz (G). A straightforward
generalisation of Lemma 4.2, where φz is replaced by T , gives that the two graphs
G and G∗ are temporally equivalent. The stated theorem now follows, analogous to
Theorem 4.1, by induction on the structure of G.

4.2.2 Pruning the unfolded graph

In the same spirit as we did earlier for multi-rate equivalents of CSDF graphs, we
may prune non-binding channels from the graph obtained by applying Algorithm 3.
Although the approach is similar, it is slightly more involved than the procedure
outlined in Algorithm 1. Rather than pruning channels from the unfolded graph,

97

4.
2.
2
–
Pr

un
in
g
th

e
un

fo
ld

ed
gr

ap
h

Algorithm 3: Transforms a CSDF graph into another CSDF graph by unfold-
ing actors an arbitrary number of times.
1 input :A CSDF graph G, and vector T where Tv gives the number of firings of actor

v that are to be unfolded.
2 output :A CSDF graph with∑v (Tvφv) actors.
3 H ←Ð empty graph
4 foreach actor v in G do
5 for i = 1 to Tv do
6 Add actor v i toH with execution time τv(i)

7 foreach channel vw in G do
8 for j = 1 to Tw do
9 for i = 1 to Tv do
10 for k = 1 to φw

gcd(Tw ,φw)
do

11 ρ+(k) ←Ð ∑Tv
n=1 ρ

+
vw(i − 1 + n + (k − 1)Tv)

12 for k = 1 to φv
gcd(Tv ,φv)

do
13 ρ−(k) ←Ð ∑Tw

n=1 ρ
−
vw(j + n + (k − 2)Tw)

14 δ ←Ð δvw +∑i−1
l=1 ρ

+
vw(l) +∑Tw− j

l=1 ρ−vw(φw − l + 1)
15 Add channel v iw j , with production rates ρ+, consumption rates ρ− and

tokens δ toH

16 returnH

we first describe which channels may be pruned in case each actor is unfolded an
integer multiple of its period. That is, we consider the graph obtained by applying
Algorithm 3, where the unfolding factor Tv for actor v satisfies Tv = mvφv , withmv
a non-zero positive integer. The following lemma is a generalisation ofTheorem 4.2.

Lemma 4.6. Let G be a CSDF graph, andH be the partial transformation of G, given
byH = Emφv

v (G). That is, an integer number of periods of CSDF actor v is unfolded.
Let vw be a channel in G, and v iw a channel inH. Channel v iw is not non-binding
if i satisfies the congruence relation

i ≡ k (mod1
gv iwφv

gvw
) ,

where k is constrained by:

k ∈ { j + cxφv ∣⌈
−∆vw(j, n)

gvw
⌉ ≤ c < ⌈

−∆vw(j − 1, n)
gvw

⌉ , 0 ≤ n < φw , 1 ≤ j ≤ φv} .

Proof. By Lemma 4.5 and (3.3), channel v i+kφvw is non-binding if

max
n<φw

max
l∈Z
{⌈

lPΣ−
vw − kPΣ+

vw − ∆vw(i − 1, n)
mPΣ+

vw
⌉ − ⌈

lPΣ−
vw − kPΣ+

vw − ∆vw(i , n)
mPΣ+

vw
⌉} ≤ 0.

98

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

this can be simplified using (A.1a) into:

max
n<φw
{⌊

kPΣ+
vw + ∆vw(i , n)

gcd (PΣ−
vw ,mPΣ+

vw)
⌋ − ⌊

kPΣ+
vw + ∆vw(i − 1, n)
gcd (PΣ−

vw ,mPΣ+
vw)

⌋} ≤ 0. (4.20)

The negation of this says that channel v i+kφvw is not non-binding, if there exists
n < φw such that

⌊
kPΣ+

vw + ∆vw(i − 1, n) + ρ+vw(i)
gcd (PΣ−

vw ,mPΣ+
vw)

⌋ > ⌊
kPΣ+

vw + ∆vw(i − 1, n)
gcd (PΣ−

vw ,mPΣ+
vw)

⌋ , (4.21)

which holds for those values of k that satisfy the set of congruence relations

(kPΣ+
vw + ∆vw(i − 1, n) + ρ+vw(i)) ∈ {0, . . . , ρ

+
vw(i) − 1} (mod gm) , (4.22)

where gm = gcd (PΣ−
vw ,mPΣ+

vw). Since the congruence relation ax ≡ b (mod m) has
a solution x if and only if b is a multiple of the greatest common divisor of a andm,
the solutions k that adhere to (4.22) are given by (note that gcd (gm , PΣ+

vw) = gvw)

k
PΣ+
vw
gvw
∈ {⌈
−∆vw(i , n)

gvw
⌉ , . . . , ⌊

−1 − ∆vw(i − 1, n)
gvw

⌋} (mod
gm
gvw
) .

Multiplying both sides of the equation with the multiplicative inverse of PΣ+
vw
gvw

mod-
ulo gm

gvw
yields the solutions for k. The theorem follows from substitution of these

solutions into i + kφv .

Lemma 4.6 does not directly allow one to prune graphs that are obtained by unfold-
ing an actor an arbitrary number of times. In order to obtain a general procedure
for pruning non-binding channels, we formulate it in terms of a pruning procedure
for multi-rate equivalents, as provided by Lemma 4.6. To describe this general
procedure, we introduce three graphs: a CSDF graph, G, its partial transformation,
H = ETz (G), and the (pruned) multi-rate equivalent of H, obtained using Algo-
rithm 1, which we denoteM. As usual, we denote the actors inH that correspond
to actor z in G by z i (where 1 ≤ i ≤ T). Corresponding actors inM have a double
subscript; actor z ik inM corresponds to the kth phase of actor z i inH. This means
that an actor z ik inM corresponds to phase (i + (k − 1)T) mod1 φz of actor z in
G.

Now, the presence or absence of certain channels inM reflects the fact whether the
corresponding channels inH are binding or not, in the following way. A channel
z ikw inM corresponds to the dependency between phases (i+(k− 1)T) mod1 φv
of actor z and phases of actor v. If the channel was pruned by Algorithm 1, then
this would imply that the dependency between these phases is not binding.

Theorem 4.4 (Pruning arbitrary unfoldings). Let G be a CSDF graph,H = ETz (G)
be the partial transformation of G, where actor z is unfolded T times. Furthermore,

99

4.
3–

Si
ng

le
-r
at

e
eq

ui
va

le
nt

s

letM be the multi-rate equivalent ofH, obtained by applying Algorithm 1 toH. Let
zw be a channel in G, and z iw a channel inH.

Channel z iw is non-binding, if z i+kTwm is non-binding inM, for all k,m ∈ Z such
that i + kT ≤ Tφz

gcd(T ,φz)
and 1 ≤ m ≤ φw .

Proof. This is a straightforward generalisation of the proof of Lemma 4.6.

Theorem 4.4 gives rise to Algorithm 4, which allows one to choose arbitrary un-
folding factors for actors, and construct a pruned and temporally equivalent CSDF
graph.

4.3 Single-rate equivalents

The transformation outlined in the previous section serves as a first step in the trans-
formation of a consistent CSDF graph into a temporally equivalent HSDF graph.
Let G be a consistent CSDF graph, with repetition vector q, and letH be the graph,
obtained from G, by unfolding each actor v as many times as it fires in a single iter-
ation, i.e., qv , times. As a result, the production and consumption rate, associated
with each channel inH, are now the same (this follows from the balance equations,
see Section 2.1.3). Consequently, every actor inH has a repetition vector entry of
one. Thus, each actor fires at an equal rate, which implies that the temporal dynam-
ics of the graph matches that of an HSDF graph. Technically, though, the graph
is not an HSDF graph, as this requires, by the usual definition, that the rates asso-
ciated with each channel are one. However, we may use a simple transformation
(see also [8, 65]) to transform the graph into an HSDF graph. This transformation
is related to the following identity that holds for the predecessor function of an
MRSDF channel vw:

πvw(k) = ⌈
kρ−vw − δvw

ρ+vw
⌉
(A.6)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢

kρ−vw
gvw
+ ⌈−δvwgvw

⌉

ρ+vw
gvw

⎤
⎥
⎥
⎥
⎥
⎥
⎥

(A.5)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢

kρ−vw
gvw
− ⌊ δvwgvw

⌋

ρ+vw
gvw

⎤
⎥
⎥
⎥
⎥
⎥
⎥

The above identity can be interpreted as follows: for anyMRSDF channel vw, we
may divide the rates and initial tokens by the greatest common divisor of the chan-
nel’s rates (rounding the quotients down to the next integer), without changing the
predecessor function (and thus the graph’s temporal dynamics). Since, for each
channel inH, the production rate equals the consumption rate, applying this trans-
formation results in a graph in which all rates are one. In other words, the resulting
graph is an HSDF graph. We refer to this graph as the single-rate equivalent of G.

The single-rate equivalent of a CSDF graph may thus be obtained by unfolding
every actor as many times as it fires in a single graph iteration, followed by a scaling
and rounding of rates and tokens, as described above. Due to the pruning of non-
binding channels, each actorw j in the unfolded graph has one incoming channel for

100

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

Algorithm 4: Transforms a CSDF graph into an equivalent and pruned CSDF
graph by unfolding actors an arbitrary number of times.
1 input :A CSDF graph G, and vector T where Tv gives the number of firings of actor

v that are to be unfolded.
2 output :A CSDF graph with∑v Tv actors.

3 H ←Ð empty graph
4 foreach actor v in G do
5 for i = 1 to Tv do
6 Add actor v i toH
7 τv i ←Ð τv(i)
8 φv i ←Ð

φv
gcd(Tv ,φv)

9 foreach channel vw in G do
10 g1 ←Ð gcd (PΣ+

vw , Tw
gcd(Tw ,φw)

PΣ−
vw)

11 g2 ←Ð gcd (Tv
gcd(Tv ,φv)

PΣ+
vw , Tw

gcd(Tw ,φw)
PΣ−
vw)

12 x ←Ð solution to: PΣ+
vw x ≡ g1 (mod g2

g1
)

13 for j = 1 to Tv do
14 S ←Ð empty set
15 for n = 1 to φw j do
16 for l = 1 to φv do
17 cmin ←Ð ⌈−∆vw(l , j+(n−1)Tw)

g1
⌉

18 cmax ←Ð ⌈−∆vw(l−1, j+(n−1)Tw)
g1

⌉
19 for c = cmin to cmax − 1 do
20 S ←Ð S ∪ {(l + cxφv) mod1 gcd (Tv , φv

g2
g1
)}

21 foreach r in S do
22 foreach i = r to Tv step gcd (Tv , φv

g2
g1
) do

23 Add channel v iw j toH
24 ρ+v iw j ←Ð

Tv
gcd(Tv ,φv)

PΣ+
vw

25 ρ−v iw j ←Ð
Tw

gcd(Tw ,φw)
PΣ−
vw

26 δv iw j ←Ð δvw +∑i−1
l=1 ρ

+
vw(l) +∑mw φw

l= j+1 ρ
−
vw(l)

27 returnH

101

4.
4
–
U
nf

ol
di
ng

M
RS

D
F
gr

ap
hs

each incoming channel vw of actor w in the CSDF graph. The source actor for this
channel is given by the predecessor function associated with vw: the channel in the
unfolded graph connects v i withw j , with i = πvw(j) mod1 qv . The production and
consumption rates associated with channel v iw j are equal to the number of tokens
produced onto vw, during a single graph iteration. In the following, we denote this
number by Nvw . The number of tokens, on a channel v iw j in the unfolded graph,
is given by line 26 of Algorithm 4, and may be rewritten into the following:

δvπvw (j) mod1 qv w j = ∆vw (πvw(j) mod1 qv − 1, j) + Nvw

(A.3)
= ∆vw (πvw(j) − 1, j) − Nvw (⌊

πvw(j) − 1
qv

⌋ − 1) .

Note that in the above, the expression ∆vw(. . .) satisfies:

−Nvw ≤ ∆vw (πvw(j) − 1, j) < 0.

Dividing the initial number of tokens of channel v iw j by the greatest common
divisor of the production and consumption rate of v iw j , which is Nvw , rounding
the result down to the nearest integer, gives:

⌊
δvπvw (j)w j

Nvw
⌋ = −⌊

πvw(j) − 1
qv

⌋
(A.5)
= ⌈

1 − πvw(j)
qv

⌉
(A.2)
= ⌊

qv − πvw(j)
qv

⌋ .

The transformation of a CSDF graph into a graph in which each actor is unfolded
as many times as it fires in a single graph iteration, followed by the scaling (and
rounding) of rates and tokens described above, is combined into Algorithm 5, listed
below. This algorithm is a generalisation of the algorithm, presented in [11], to
construct the single-rate equivalent of a CSDF graph.

4.4 Unfolding MRSDF graphs

EveryMRSDF graph is a CSDF graph, and thus the transformations presented ear-
lier may be applied to MRSDF graphs as well. This is illustrated by Figure 4.10,
which depicts anMRSDF graph that is partially unfolded. Two transformations are
applied: the unfolding of actor a, respectively b, by a factor of two. Although the
transformation gives a graph that is temporally equivalent to the original graph, the
throughput of the graph may change as a result of the transformation. This is due
to the fact that the unfolding may cause the graph’s repetition vector to change: a
single iteration of the graph obtained when unfolding actor a (Figure 4.10(c)) con-
sists of ten firings. In particular, the repetition vector entry of actor b has changed
from two in the original graph, to four in the unfolded graph. Consequently, as the
length of an iteration has doubled, the throughput of the graph is halved.

One may view the unfolding of MRSDF graphs as a two-step process: in the first
step, we replace each scalar (production and consumption) rate by a vector that
repeats the rate as many times as the corresponding actor is to be unfolded. This

102

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

Algorithm 5: Transforms a CSDF graph into a pruned and temporally equiv-
alent HSDF graph.
1 input :A CSDF graph G.
2 output :A temporally equivalent HSDF graph.

3 H ←Ð empty graph
4 foreach actor v in G do
5 for i = 1 to qv do
6 Add actor v i toH
7 τv i ←Ð τv(i)

8 foreach channel vw in G do
9 for j = 1 to qw do
10 i ←Ð πvw(j) mod1 qv
11 Add channel v iw j toH
12 δv iw j ←Ð ⌊

qv−πvw(j)
qv

⌋

13 returnH

a,2 b,1
2 3

3
4

21
2

1

(a)MRSDF graph.

a

b1

b2

2

3 6

2

6

6
4

2

67
21

2
1

(b) Unfolded actor b.

a1

a2

b

4

3

4 2

3

364

3
44

1
1

1

1
1

1

(c) Unfolded actor a.

Figure 4.10 – The unfolding transformation, applied to different actors in anMRSDF graph.

first step transforms the MRSDF graph into a CSDF graph, which may then, as
a second step, be transformed into its multi-rate equivalent. We may adapt this
transformation slightly, by grouping several firings together in the first step. This
is analogous to enforcing that certain firings are executed in parallel. For example,
consider the cycle aba, in theMRSDF graph depicted in Figure 4.10(a), in isolation
(that is, ignore the restriction imposed by the self-loop). Actor a fires three times in
a graph iteration, the first two of these three can run in parallel. We model this (see
Figure 4.11(a)) by replacing the scalar rates associated with the actor with a vector
of length two. The first entry in this vector reflects the number of tokens that are
produced or consumed by two parallel executions, the second entry is equal to the
original rate. Actor b can’t start more than one firings in parallel, as the number of
tokens in the cycle is insufficient for that (this requires that the cycle has at least six
tokens). We model this by a vector of length two, matching the repetition vector

103

4.
5–

D
is
cu

ss
io
n

a,2 b,1

⟨4, 2⟩ ⟨3, 3⟩

⟨3, 3⟩4⟨4, 2⟩⟨2, 1⟩

2

⟨2, 1⟩

(a) CSDF graph.

a1

a2

b1

b2

11

(b) Equivalent HSDF graph.

Figure 4.11 – Grouping together the first two, out of every three, firings of actor a in Fig-
ure 4.10(a), by transforming the graph into an CSDF graph. This forces firings to be executed
in parallel, without changing the graph’s temporal dynamics.

entry of actor b.

The throughput of the resulting CSDF graph may be analysed from its single-rate
equivalent, given in Figure 4.11(b). Maximum cycle ratio of the latter is attained
by cycle a1b1a2b2a1, and equals six. The throughput of the graph is thus one sixth,
which is equal to the throughput of the CSDF graph. In other words, the grouping
of firings is feasible, i.e., it has not changed the graph’s throughput.

The grouping of specific firings, modelling their (forced) parallel execution, has
been presented earlier in [80], in the context of scalable synchronous dataflow. The
authors apply a technique, which is similar to the grouping of firings outlined in
this section, toMRSDF graphs, but restrict it to replacing rates with scalar integer
multiples, rather than vectors. This scaling of rates is called vectorization in [80],
and is used to decrease the switching overhead of task activations by increasing the
extent of vector processing.

Grouping several firings of an actor together restricts the scheduling freedom for
that actor. As a result, schedules that are admissible for theMRSDF graph may not
be admissible for the CSDF graph. The difficulty in obtaining an equivalent CSDF
graph with this transformation lies in choosing which firings to group together.
Making this choice requires more information than can be obtained from the struc-
ture of the graph. It requires knowledge of the graph’s schedule. In Chapter 6 we
show how this parallelism can be inferred in an iterative fashion, and how identify-
ing this parallelism plays a crucial role in composing the throughput of connected
MRSDF cycles.

4.5 Discussion

This chapter builds upon the mathematical characterisation of SDF graphs pre-
sented in the previous chapter. The transformations presented in this chapter allow

104

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

one to replace one SDF graph by one that is temporally equivalent. This means that
the (temporal) behaviour of the graph, as observed from its input and output, is
the same.

Graphs are transformed by rewriting the predecessor functions associated with its
channels. This view on constructing equivalentHSDF orMRSDF graphs differs fun-
damentally from existing SDF graph transformations. In particular, Algorithm 1,
which transforms a CSDF graph into its multi-rate equivalent, is the first such
transformation. While the known transformation of CSDF into its lumped repre-
sentation (see [45, 75] and Section 2.3.1) gives anMRSDF graph that is functionally,
but not temporally equivalent, the transformation outlined in Section 4.1 is proven
to yield a temporally equivalent graph.

The difference between transformations that exist in literature and those presented
in this chapter is further emphasised by the fact that those presented in this thesis
allow initial tokens to be parameterised. In particular, whereas the current con-
vention in literature is that the initial token distribution affects the structure of the
graph’s single-rate equivalent, our transformations allow the single-rate equivalent
to be constructed even if the number of tokens is specified by a parameter. This
allows optimisation techniques (such as the minimisation of initial tokens under a
throughput constraint) that work for HSDF graphs to be applied to CSDF graphs.
Another (but perhaps less useful) property of the transformation is that it may be
applied to graphs that are not consistent.

The transformations presented in this chapter differ from the transformations of
MRSDF into HSDF, as described in [60, 88], and also from the transformation of
CSDF into HSDF described in [11]. As the main goal of all our presented transfor-
mations is the construction of temporally equivalent graphs, we have ignored the
functional aspect of SDF graphs. A formal treatment of the effect of the transforma-
tion on these functional aspects is beyond the scope of this thesis. Instead, we argue
that the transformation leaves the functional behaviour intact, if the transformation
includes simple adaptations of the way in which data is consumed and produced.
We motivate this proposition with an illustrative example. For this, consider the
graphs that are depicted in Figure 4.12.

The graphs in figures 4.12(a) and 4.12(b) show the processing of input tokens x1 and
x2, by actor f. The actor applies a function f to the data represented by the token.
The dataflow process associated with actor f thus maps an input stream x1 , . . . xn to
an output stream f (x1), . . . f (xn). If we apply Algorithm 3 to unfold actor f into
two actors, we obtain the graphs shown in figures 4.12(c) and 4.12(d). Here, actors
f1 and f2 represent odd and even firings of actor f. The transformation assigns
a token to channel x f1, and also one to channel f2 y. To distinguish these added
tokens from tokens that represent data, they are coloured red in Figure 4.12(c).

In the unfolded graph, a single firing of actor f1 or f2 consumes and produces two
tokens, instead of one. The first firing of f1 first consumes a red token, followed by
the token that represents x1. Actor f1 may thus discard the first of these two tokens,
processing only x1, and producing f (x1). The actor must produce two tokens, so

105

4.
5–

D
is
cu

ss
io
n

x f y
x2

x1

(a) After two firings of x.

x f y

f (x2)

f (x1)

(b) After two firings of f.

x

f1

f2

y

2

2

2

2

x1x2

(c) After two firings of x.

x

f1

f2

y

2

2

2

2

x2 f (x1)f (x2)

(d) After one firing of f1 and f2 .

Figure 4.12 – When unfolding an actor, the processing of input and output data must be
adapted aswell. Empty tokens (represented by red dots) are used to ensure that the processing
of data is analogous to that of the original graph.

we let the actor produce f (x1) twice. We apply the same reasoning to the first firing
of actor f2: we let the actor discard the first of its two consumed tokens, such that
it processes only x2, producing f (x2) twice. As a result of the firings of f1 and f2
(see Figure 4.12(d)), two firings of actor y are enabled. The first firing reads a red
token and the token representing f1. If we let consecutive firings of y discard one of
these two tokens, in an alternating fashion, then y processes the sequence of tokens
f (x1), . . . , f (xn). That is, the sequence of tokens processed by y in the unfolded
graph is equivalent to the sequence processed by y in the original graph.

The above example shows how, with a simple adaptation of the processing of data,
the functional behaviour of the unfolded graph may be aligned with that of the
original graph. This adaptation is simple, and is characterised by two rules: first,
unfolded actors discard a prefix of the token sequence they consume, and dupli-
cate their output. Second, actors that consume data from unfolded actors do so
in an alternating fashion. In this view, the tokens assigned to unfolded channels
(coloured red in the example figures), by the unfolding transformation, serve to
shift the input and output token sequences in such a way that these two rules yield
functionally equivalent behaviour.

Although an example is not a formal proof, the above provides evidence that given
this slight adaptation of the reading and writing of data, the graphs produced by
the (non-pruning) transformation algorithms listed in this chapter are, in fact,
both temporally and functionally equivalent. That is, the dataflow process network
associated with the transformed graph is the same as the one associated with the

106

C
hapter

4
–
Synchronousdataflow

graph
transform

ations

original graph. Again, note that this functional view on the transformations differs
from the one put forward by Lee in [60]. Whereas in the transformation of Lee
(see also Section 2.3.1) the produced data is distributed over outgoing channels, in
our view (see Figure 4.12) data is copied onto each outgoing channel.

The purpose of the transformations presented in this chapter is to reveal dependen-
cies between firings in greater detail. In this sense, the transformation is exact: all
dependencies that are imposed by channels in the original graph, are also imposed
by the channels in the transformed graph, and vice versa. The next chapter presents
another kind of transformation, which has a different purpose. It is approximate
rather than exact: the graphs it yields are temporal abstractions, rather than equiva-
lents, of the original graph. Together, these exact and approximate transformations
form the ingredients of an incremental approach to throughput analysis, which we
present in Chapter 6.

107

108

1095

this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphs
this is a chapter about single-rate approximations of synchronous
dataflow graphs, which can be used to bound the performance
of cyclo-static dataflow graphs this is a chapter about single-rate

approximations of synchronous dataflow graphs, which can be used
to bound the performance of cyclo-static dataflow graphs this is a
chapter about single-rate approximations of synchronous dataflow
graphs, which can be used to bound the performance of cyclo-static
dataflow graphs this is a chapter about single-rate approximations
of synchronous dataflow graphs, which can be used to bound the
performance of cyclo-static dataflow graphs this is a chapter about
single-rate approximations of synchronous dataflow graphs, which

can be used to bound the performance of cyclo-static dataflow graphsSingle-rate approximations

Abstract – An exact analysis of a non-homogeneous synchronous dataflow
graph suffers from the length of a single graph iteration, which is exponential
in the size of the graph. Because the typical aim of dataflow analysis is to
provide guarantees with respect to performance, a conservative estimation of
the graph’s performance is often sufficient. In this chapter, we describe how
such an estimation may be obtained, and how its error may be assessed. The
approximations that we derive are homogeneous synchronous dataflow graphs,
which may be analysed efficiently using existing techniques.

Synchronous dataflow graphs find their application in themodelling and analysis of
real-time systems. The typical purpose of analyses is to provide the systems designer
with guarantees regarding the system’s performance. For example, an analysis of the
real-time system that controls the engine thrust of a rocket may reveal whether the
engine is guaranteed to respond, in time, to its control system. These guarantees
can be given if the system’s worst-case behaviour is known. Analysing the worst-
case behaviour may be computationally expensive; the analysis of a CSDF graph
has a worst-case complexity that is exponential in the size of the graph [71, 77]. This
justifies the use of analyses that are conservative with respect to the “exact” worst-
case performance; if the braking system of a car is guaranteed to respond within
five milliseconds, then we may safely dimension the rest of the system under the
assumption that the response time is precisely five milliseconds.

The cost of using conservative performance estimates to design a system, is that
the system will be over-dimensioned: buffers used for communication links are
larger than necessary, and processing elements are configured to run at higher
frequencies than required. To minimise these costs, an assessment of the extent

Large parts of this chapter have been published in [RdG:3] and [RdG:2].

110

C
hapter

5–
Single-rate

approxim
ations

to which the estimates are conservative is highly desirable. This can be achieved
by computing both a conservative upper bound and an optimistic lower bound on
the worst-case behaviour; the tightness of the conservative estimate is never worse
than the difference between the two bounds.

Abstraction of a model such that its analysis becomes cheaper, at the expense of a
loss in accuracy, is common in various fields where mathematical models serve to
model real-world phenomena. In this chapter, we introduce such an abstraction
for CSDF graphs: we show how a CSDF graph can be transformed into an HSDF
graph that is either pessimistic (that is, conservative), or optimistic with respect to
the CSDF graph. This transformation comes at the expense of a loss in accuracy:
the temporal constraints on the firings of actors are, depending on the kind of
approximation, relaxed or tightened with respect to the constraints imposed by the
approximated graph.

The approximation involves the computation of linear bounds on the predecessor
functions (see Chapter 3) associated with actors and channels. We give approxima-
tions for both the actor firing and the token transfer perspective, and compare their
quality in terms of their estimation error.

The conservative approximations are temporal abstractions of the original graph:
when feeding input to a system at a low enough rate, their temporal behaviour
is indistinguishable from that of the approximated graph. At higher input rates,
however, the system’s lower throughput becomes visible. Its performance is never
better than that of the original graph. We highlight a particular application of
such a temporal abstraction: any of its admissible schedules can be mapped to one
that is admissible for the original graph. This provides a computationally cheaper
approach to computing admissible schedules for CSDF graph, at the expense of
their not attaining maximum throughput.

We start this chapter with a brief discussion on a class of discrete event systems
that are relatively easy to analyse: those that are linear and shift-invariant. This
sets a goal for the approximating transformations: they must yield linear and shift-
invariant systems. The transformation is described in Sections 5.2 and 5.3. Sec-
tion 5.4 discusses the quality of the approximations, and the chapter concludes
with a discussion on related approaches in Section 5.5.

5.1 Linear shift-invariant systems

Linearity and shift-invariance are two most welcome properties of a discrete event
system. A discrete event system is linear and shift-invariant if it can be described
by the following set of equations in max-plus algebra (see Chapter 2):

t(k + 1) = A⊗ t(k) ⊕ B ⊗ u(k),
y(k) = C ⊗ t(k),

(5.1)

where A, B and C are matrices, u is the system’s input, t is the system’s state, and
y the system’s output. Matrix A is the system’s state matrix. From this matrix, we

111

5.1
–
Li
ne

ar
sh

if
t-
in
va

ri
an

t
sy
st
em

s

may analyse the maximum possible rate at which events may occur in the system,
and compute an eigenschedule that attains this maximum rate.

Every HSDF graph corresponds to a shift-invariant system (see Section 3.2.1), but
non-homogeneous SDF graphs may correspond to shift-invariant systems as well.
Whether an SDF graph corresponds to a shift-invariant system may be deduced
from the (firing) predecessor functions, associated with the channels in the graph.
If the firing predecessor function of every channel vw in the graph can be written
as a translation, i.e.,

∀k ∈ Z ∶ πvw(k) = k − c, (5.2)

for some constant c ∈ Z, then the corresponding system is shift-invariant. To
illustrate this, consider the CSDF graph depicted in Figure 5.1(a). No execution
times are specified for actors a and b (the execution times of u and y is assumed to
be zero); we simply assume that the execution times are independent of the firing
index. The actor firing perspective associated with the graph is shift-invariant. To
see that this is indeed the case, consider the predecessor function associated with
channel ab. It is resource-class-wise affine modulo two (see Definition 3.2), and the
function satisfies:

πab(2k) = min
i<2
{2 ⌈
−∆ab(i , 2k)

6
⌉ + i} = 2k +min{0, 1} = 2k

πab(2k + 1) = min
i<2
{2 ⌈
−∆ab(i , 2k + 1)

6
⌉ + i} = 2k +min{2, 1} = 2k + 1,

and thus the predecessor function associated with channel ab is fully defined by
the simpler function πab(k) = k. If we apply the same reasoning to channel ba,
we find that πba(k) = k − 1. The predecessor function associated with channels
ua and by is the identity function, i.e., πua(k) = k. Since all predecessor functions
are translations, the system is shift-invariant. Consequently, the system may be
represented by a simpler HSDF graph, which is depicted in Figure 5.1(b). Observe
that the predecessor functions associated with the channels in the HSDF graph
match those derived from the CSDF graph.

If the autonomous part of a system is not shift-invariant but periodically shift-
varying, then we may replace it with one that is shift-invariant, and approximates
the shift-varying one. A useful approximation allows one to translate analysis re-
sults, such as throughput, obtained for the latter, to results that hold for the for-
mer. We distinguish between approximations that are conservative, and those that
are optimistic. The performance of the conservative approximation translates to
guarantees on the performance of the approximated system, and the optimistic
approximation gives an upper bound on the original system’s performance.

Computing a conservative or optimistic approximation involves replacing prede-
cessor functions with functions that are translations. These translations must be
such that the temporal dynamics of the approximation is either not better (for a

112

C
hapter

5–
Single-rate

approxim
ations

a bu y

⟨4, 2⟩ ⟨3, 3⟩

⟨3, 3⟩4⟨4, 2⟩

(a) A shift-invariant CSDF graph.

a bu y

1

(b) An equivalent HSDF graph.

Figure 5.1 – An example of a CSDF graph that corresponds to a shift-invariant system. The
same system can be described by a simpler HSDF graph.

conservative approximation), or not worse (for an optimistic approximation), than
that of the original graph.

As an illustration of how a CSDF graph that is not shift-invariant may be conserva-
tivelymodelled by anHSDF graph, consider theCSDF graph shown in Figure 5.2(a).
Note that the graph is only slightly different from Figure 5.1(a); the only difference
is the number of tokens placed on channel ba. The graph does not correspond to a
shift-invariant system. To see this, consider the dependency imposed by channel
ba on firings of a and b: both the first and the second firing of actor a depend on the
same firing of actor b. This is reflected by the predecessor function of the channel:
it is not a translation, since πba(2k) = 2k − 2 and πba(2k + 1) = 2k.

If we let every three consecutive firings of actor â correspond to a single firing
of actor a, and every three consecutive firings of b̂ to a single firing of b, then
the predecessor function associated with channel b̂â forms an upper bound on the
predecessor function associated with channel ab: πb̂â(3k) ≥ 3πba(k). Given the
correspondence between firings of the two graphs, the predecessor functions of the
other three channels are equivalent. For example, we have πûâ(3k) = 3πua(k) and
πb̂ŷ(k) = 3πby(k).

As a result of the bounding relation between the predecessor functions of the two
graphs, the temporal dynamics of the graph of Figure 5.2(a) is reflected in the graph
of Figure 5.2(b), which forms a temporal abstraction of the CSDF graph. In both
graphs, the sink actor fires once for every firing of the source actor, and, if the latter
fires at a low enough rate, the time between the kth firings of u and y is equal to
three. At a higher firing rate of source actor u, however, the three tokens in cycle
aba cause the firings of the sink actor of the temporal abstraction to lag behind the
firings of the sink actor in the CSDF graph.

Furthermore, given the above correspondence between firings of actors in the two
graphs, we may map any schedule that is admissible for Figure 5.2(b) to one that is
admissible for Figure 5.2(a). That is, we may compute a schedule for the temporal
abstraction, and map every third firing of actor â to a single firing of a, and every
third firing of b̂ to a firing of b. Observe that in any schedule that is obtained for

113

5.2
–
Tr

an
sf
or

m
in
g
th

e
pr
ed

ec
es
so
r
fu

nc
ti
on

a, 1 b, 2u y

⟨4, 2⟩ ⟨3, 3⟩

⟨3, 3⟩6
⟨4, 2⟩

(a) A CSDF graph that is not shift-invariant.

â, 1 b̂, 2û ŷ3 3

3

(b) A temporal abstraction.

Figure 5.2 – A CSDF subgraph that does not correspond to a shift-invariant system may be
conservatively approximated by a simpler graph that does correspond to a shift-invariant
system.

the CSDF graph in this way, actors a and b fire in a strictly sequential fashion.

This example sets the stage for the transformations described in the following sec-
tions, where we derive both conservative and optimistic shift-invariant representa-
tions from CSDF graph, in a systematic manner.

5.2 Transforming the predecessor function

The novel approach that we take to transforming a CSDF graph into an approximat-
ingHSDF graph involves twomain steps. As a first step, we derive linear bounds on
the predecessor function associated with each channel in the CSDF graph. Here we
differ from existing approaches: rather than making assumptions on the temporal
behaviour of the graph (such as assuming strictly periodic arrival of tokens), and
deriving approximations from these assumptions, we take, as a starting point, the
mathematical characterisation as presented in Chapter 3, from which which the
temporal behaviour follows.

The derivation of linear bounds on the predecessor function involves basic integer
arithmetic, in particular identities (A.13b) and (A.13a) described in Appendix A.
These linear bounds change the discrete system into one that is continuous, also
called fluid by some authors [23]. This continuous system is not shift-invariant, as
events occur at different rates. Analysis of such a system may still be performed
by formulating and solving a linear program [48, 69]. However, we take an extra
step, which is the second main step in our approach, to transform the system into
one that is linear, discrete and shift-invariant. This step involves changing the
system’s counting units in such a way, that the predecessor functions of the system
are translations.

As a result of the second step, the systemmay be represented by anHSDF graph. As
such, existing, well-known analysis techniques may be applied, and analysis results
obtained for the HSDF graph can be naturally translated back to the CSDF graph.

114

C
hapter

5–
Single-rate

approxim
ations

In the following two sections, we apply this approach to both the actor firing and
token transfer perspective, which we introduced in Chapter 3.

5.2.1 The actor firing perspective

The actor firing perspective (see Chapter 3) is the periodically shift-varying system
that captures the interdependencies between individual firings of actors. The per-
spective is formulated in terms of the firing predecessor function (see Definition 3.2,
which is associated with each of the graph’s channels. We derive a linear and shift-
invariant approximation of the autonomous system of the firing perspective, by
computing linear bounds on the predecessor function. The predecessor function
of a CSDF channel may be formulated as the following maximum:

πvw(k) = max
1≤i≤φv

{(⌈
−∆vw (i − 1, k)

PΣ+
vw

⌉ − 1)φv + i} . (5.3)

The function is residue-class-wise affine (see Proposition 3.1), and its graph follows
a repetitive staircase pattern. Tight upper and lower linear bounds may be con-
structed by choosing an appropriate slope and intercept, where the slope of both
bounds is the same. These linear bounds thus have the following form:

γ̂vw(k) = αvwk − β
up
vw (5.4a)

γ̌vw(k) = αvwk − βlovw . (5.4b)

The predecessor function is residue-class-wise affine, modulo qv . The (average)
slope of the staircase pattern is given by the ratios of the repetition vector entries
associated with the actors connected by the channel, in the following way (see
Proposition 3.1):

πvw(k +mqw) = πvw(k) +mqv .

We thus set the slope of the linear bounds on the channel’s predecessor function to
the ratio of the repetition vector entries of the actors connected by the channel:

αvw =
qv
qw

,

Computation of the intercepts, βup and βlo, requires more effort. These intercepts
should be chosen such that the linear bounds are tight, i.e., the minimum error
between the predecessor function and its linear bound must be zero. Figure 5.3
gives an illustration of how the linear bounds, which we construct in the following
two sections, relate to the predecessor function.

115

5.2
.1
–
Th

e
ac

to
r
fi
ri
ng

pe
rs
pe
ct

iv
e

Constructing an upper bound

We construct a tight linear upper bound by choosing βup such that, for all k ∈ Z, we
have γ̂vw(k) ≥ πvw(k), and for at least one k, γ̂vw(k) = πvw(k). This is achieved
by setting βup to:

βupvw = min
k∈Z
{αvwk − πvw(k)} . (5.5)

Rather than defining βupvw as a minimum over the set of integers, as expressed by the
above formulation, we may exploit the fact that πvw is resource-class-wise affine
modulo the repetition vector of w, and compute βupvw over a smaller set. The repe-
tition vector entry of w depends on the sums of the production and consumption
rate vectors of vw; in the worst case, the number of values over which theminimum
(5.5) must be taken, is equal to the least common multiple of PΣ+

vw and PΣ−
vw .

The following rewriting steps reduce the complexity of this computation to one that
depends solely on the lengths of the production and consumption rate vectors. As
a first step, we expand (5.5) into:

βupvw = min
k
{
qv
qw

k −max
i<φv
{⌈
−∆vw (i , k)

PΣ+
vw

⌉φv + i}} + φv − 1

= min
k
{min
i<φv
{(

kPΣ−
vw

φwPΣ+
v
− ⌈
−∆vw (i , k)

PΣ+
vw

⌉)φv − i}} + φv − 1.

We further reduce the complexity of the computation by exploiting the periodicity
of ∆vw(i , k) in k. Substituting k′φw + j for k gives:

βupvw = min
k′

min
i<φv
j<φw

{(
k′PΣ−

vw
PΣ+
vw
− ⌈

k′PΣ−
vw − ∆vw (i , j)

PΣ+
vw

⌉)φv − i + j
qv
qw
}+ φv − 1

= min
i<φv
j<φw

{min
k′
{
k′PΣ−

vw
PΣ+
vw
− ⌈

k′PΣ−
vw − ∆vw (i , j)

PΣ+
vw

⌉}φv − i + j
qv
qw
}+ φv − 1

(A.13a)
= min

i<φv
j<φw

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gvwφv ⌈
∆vw(i , j)+1

gvw
⌉

PΣ+
vw

− i + j
qv
qw

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

− 1.

Putting everything together gives the following linear predecessor function:

γ̂vw(k) =
qv
qw

k −min
i<φv
j<φw

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gvwφv ⌈
∆vw(i , j)+1

gvw
⌉

PΣ+
vw

− i + j
qv
qw
− 1
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (5.6)

A tight linear bound on the predecessor function associated with CSDF channel vw
may thus be computed in time proportional to the product of the periods of actors
v and w, i.e., φvφw . Note that in case the greatest common divisor gvw equals one,
the bound may be computed in time proportional to φv + φw , by separating the
terms in i from the terms in j.

116

C
hapter

5–
Single-rate

approxim
ations

a b
⟨1, 2⟩ ⟨1, 1⟩

(a) CSDF channel ab.

b c
⟨1, 2⟩ ⟨2, 1⟩

(b) CSDF channel bc.

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

k

γ̂ab(k) = 2
3 k +

2
3

γ̌ab(k) = 2
3 k

(c) Linear bounds on πab.

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9
10
11
12

k

γ̂bc(k) = k + 1

γ̌bc(k) = k

(d) Linear bounds on πbc.

Figure 5.3 – Tight linear lower and upper bounds on the predecessor functions of channels
ab and bc.

Constructing a lower bound

We may construct a lower bound, in a way similar to the construction of an up-
per bound, described above. Rather than using the max-formulation (5.3) of the
predecessor function, we now use its formulation as a minimum, given by (3.2):

πvw(k) = min
0≤i<φv

{⌈
−∆vw (i , k)

PΣ+
vw

⌉φv + i} .

For the lower bound, we compute the intercept βlovw using:

βlovw = max
k
{αvwk − πvw(k)} , (5.7)

which we expand into:

βlovw = max
k
{
qv
qw

k −min
i<φv
{⌈
−∆vw (i , k)

PΣ+
vw

⌉φv + i}}

= max
k
{max

i<φv
{(

kPΣ−
vw

φwPΣ+
vw
− ⌈
−∆vw (i , k)

PΣ+
vw

⌉)φv − i}} .

117

5.2
.1
–
Th

e
ac

to
r
fi
ri
ng

pe
rs
pe
ct

iv
e

Again, by substituting k′φw + j for k, we rewrite this into:

βlovw = max
k′

max
i<φv
j<φw

{(
k′PΣ−

vw
PΣ+
vw
− ⌈

k′PΣ−
vw − ∆vw (i , j)

PΣ+
vw

⌉)φv − i + j
qv
qw
}

= max
i<φv
j<φw

{max
k′
{
k′PΣ−

vw
PΣ+
vw
− ⌈

k′PΣ−
vw − ∆vw (i , j)

PΣ+
vw

⌉}φv − i + j
qv
qw
}

(A.13b)
= max

i<φv
j<φw

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gvwφv ⌊
∆vw(i , j)

gvw
⌋

PΣ+
vw

− i + j
qv
qw

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

This gives the following tight linear lower bound on theCSDF predecessor function:

γ̌vw(k) =
qv
qw

k −max
i<φv
j<φw

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gvwφv ⌊
∆vw(i , j)

gvw
⌋

PΣ+
vw

− i + j
qv
qw

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (5.8)

Figure 5.3 depicts two sets of linear bounds, constructed using (5.6) and (5.8), for
the predecessor function of two different channels.

Changing counting units

The linear bounds that we derived in the previous section do not adhere to (5.2).
That is, they do not correspond to translations, and as such, can not directly be used
to construct a shift-invariant system. Shift-invariance signifies that firing times
progress at the same rate. As the rates at which CSDF actors fire are interrelated
through the graph’s repetition vector, counting the number of iterations an actor
has completed, rather than its completed firings, yields a shift-invariant system.

Such a change in counting is obtained by scaling both the domain and co-domain
of (5.6) and (5.8). We scale down the domains of γ̂vw and γ̌vw by a factor of qw , and
the co-domain by a factor qv . This gives the following transformed linear bounds:

1
qv
γ̂vw (kqw) = k −min

i<φv
j<φw

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gvwφv ⌈
∆vw(i , j)+1

gvw
⌉

qvPΣ+
vw

−
i + 1
qv
+

j
qw

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (5.9a)

1
qv
γ̌vw (kqw) = k −max

i<φv
j<φw

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

gvwφv ⌊
∆vw(i , j)

gvw
⌋

qvPΣ+
vw

−
i
qv
+

j
qw

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (5.9b)

These two transformed functions are translations, but not integer: they map an
integer to a rational number, as the intercept (i.e., the term min{. . .}) in (5.9a)
and (5.9b) is, in general, not an integer. We again perform a scaling, of both the do-
main and co-domain, such that the right-hand sides in (5.9a) and (5.9b) are integer

118

C
hapter

5–
Single-rate

approxim
ations

translations. As a scaling factor, we use the scalar structural invariant associated
with a graph,N (see Section 2.1.3). This gives the following linear upper bound:

π̂vw(k) =
N

qv
γ̂vw (k

qw
N
)

= k − svw min
i<φv
j<φw

{gvw ⌈
∆vw(i , j) + 1

gvw
⌉ −
(i + 1)PΣ+

vw
φv

+
jPΣ−

vw
φw
} .

(5.10)

Note that the min-term in this expression is indeed an integer, by definition of the
flow conservation vector, (2.2). In a similar fashion, we derive the following linear
lower bound:

π̌vw(k) =
N

qv
γ̌vw (k

qw
N
)

= k − svw max
i<φv
j<φw

{gvw ⌊
∆vw(i , j)
gvw

⌋ −
iPΣ+

vw
φv
+
jPΣ−

vw
φw
} .

(5.11)

The scaling performed above is analogous to multiplying the number of tokens, on
each channel in an HSDF graph, with the same factor. Multiplying each channel’s
number of tokens by a factor f scales the cycle ratio of each cycle (and thus the
graph’s maximum cycle ratio) by a factor of 1

f . As we shall see later, the throughput
computed for theHSDF graphs constructed from the derived predecessor functions,
π̂ and π̌, must thus be scaled byN , to obtain (a bound on) the throughput of the
original CSDF graph.

5.2.2 The token transfer perspective

For the token transfer perspective, we have the transfer predecessor function as
given by Definition 3.7, which we repeat here for convenience:

π●uv ,vw(k) = min
i<φv
{⌈

k −∑i
l=1 ρ+vw(l)
PΣ+
vw

⌉ PΣ−
uv +

i
∑
l=1
ρ−uv(l) − δuv} .

It may be formulated as a maximum, by:

π●uv ,vw(k) = max
i<φv
{⌊

k − 1 −∑i
l=1 ρ+vw(l)

PΣ+
vw

⌋ PΣ−
uv +

i+1
∑
l=1
ρ−uv(l) − δuv} . (5.12)

This function is resource-class-wise affine, modulo the number of tokens produced
(and consumed) from the corresponding channel, qvPΣ+

vw
φv

. We thus set the slope of
the linear bound to:

αuvw = φv

π●uvw (k +
qvPΣ+

vw
φv
) − π●uvw(k)

qvPΣ+
vw

(3.9)
=

φvquPΣ+
uv

φuqvPΣ+
vw

(2.1)
=

PΣ−
vw
PΣ+
vw

.

119

5.2
.2
–
Th

e
to

ke
n
tr

an
sf
er

pe
rs
pe
ct

iv
e

The computation of upper and lower bounds on the transfer predecessor function
follows the same steps as those applied, in the previous section, to the firing prede-
cessor function. We denote these upper and lower bounds by γ̂● and γ̌●. Similar to
the bounds obtained in the previous section, they are formulated as follows:

γ̂●uvw(k) = αuvwk − β
up
uvw (5.13a)

γ̌●uvw(k) = αuvwk − β
lo
uvw . (5.13b)

We derive each of the above two linear bounds in a separate section, below. Because
of the overlap between this and the previous section and for the sake of compactness,
we explain the derivations that follow in fewer steps.

We compute the intercept βlouvw using the formulation of the predecessor function
as a maximum, (5.12). To eliminate the variable k, we use the same approach as we
did for the actor perspective. That is, we use (A.13a) to compute the minimum of
the difference between the bound and the predecessor function:

βupuvw = min
k∈Z
{αvwk − π●uvw(k)}

= min
k
{αvwk −max

i<φv
{⌊

k − 1 −∑i
l=1 ρ+vw(l)

PΣ+
vw

⌋ PΣ−
uv − ∆uv(0, i + 1)}}

= min
k
{min
i<φv
{(

k
PΣ+
vw
− ⌊

k − 1 −∑i
l=1 ρ+vw(l)

PΣ+
vw

⌋) PΣ−
uv + ∆uv(0, i + 1)}}

(A.13a)
= min

i<φv
{PΣ−

uv (
∑

i
l=1 ρ+vw(l) + 1

PΣ+
vw

) + ∆uv(0, i + 1)} .

In a similar fashion, this time using (A.13b) to eliminate k, we compute the intercept
βlouvw :

βlouvw = max
k
{αvwk − π●uvw(k)}

= max
k
{αvwk −min

i<φv
{⌈

k −∑i
l=1 ρ+vw(l)
PΣ+
vw

⌉ PΣ−
uv − ∆uv(0, i)}}

(A.13b)
= max

i<φv
{PΣ−

uv (
∑

i
l=1 ρ+vw(l)
PΣ+
vw

) + ∆uv(0, i)} .

In the previous section we changed the counting units of the linear bounds in such
a way that the linear bounds are functions that map completed iterations of one
actor to completed iterations of another actor. If we follow the same argument for
the token perspective, then we must rather scale by the number of tokens, produced
onto or consumed from a channel, during a single iteration. We thus have, for the
linear upper bound:

φv

PΣ−
uv qv

γ̂●uvw (
kPΣ+

vw qv
φv

) = k −
φv

qv
min
i<φv
{
∑

i
l=1 ρ+vw(l) + 1

PΣ+
vw

+
∆uv(0, i + 1)

PΣ−
uv

} .

120

C
hapter

5–
Single-rate

approxim
ations

a b c

⟨1, 2⟩ ⟨1, 1⟩

⟨2, 0⟩2⟨2, 1⟩

⟨1, 2⟩ ⟨2, 1⟩

⟨2, 1⟩3⟨1, 2⟩

(a) CSDF graph.

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5
6

7
8

9

k

γ̂●abc(k) =
2
3 k +

2
3

γ̌●abc(k) =
2
3 k

(b) Linear bounds on π●abc.

1 2 3 4 5 6 7 8 9 10 11 12

-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13

k

γ̂cba(k) = 3
2 k −

7
2

γ̌cba(k) = 3
2 k − 5

(c) Linear bounds on π●cba.

Figure 5.4 – Tight linear lower and upper bounds on the transfer predecessor functions of
paths abc and cba.

Figure 5.4 gives an illustration of the construction of linear upper and lower bounds,
for two different paths in a graph, using the steps given in this section.

If we again multiply the shift with the scalar structural invariantN , we obtain the
following predecessor function in Z:

π̂●uvw(k) = suv γ̂
●
uvw (

k
svw
) = k −min

i<φv
{svw

i
∑
l=1
ρ+vw(l) + svw + suv∆uv(0, i + 1)} .

(5.14)

For the linear lower bound, we obtain, after changing counting units and scaling
byN , the following integer-valued predecessor function:

π̌●uvw(k) = suv γ̌
●
uvw (

k
svw
) = k −max

i<φv
{svw

i
∑
l=1
ρ+vw(l) + suv∆uv(0, i)} . (5.15)

121

5.3
–
Si
ng

le
-r
at

e
ap

pr
ox

im
at

io
ns

5.3 Single-rate approximations

The two pairs of predecessor functions constructed in the previous section give
rise to four shift-invariant systems. To obtain such a system, we need, as a final
step, to replace each actor’s execution time vector by a scalar. A pessimistic system
is obtained by replacing each execution time vector by its maximum. Similarly, by
replacing each vector with its minimum, we obtain an optimistic system.

5.3.1 Optimistic and pessimistic systems

For the actor firing perspective, we obtain a pessimistic and optimistic system by
replacing the predecessor function, associated with each channel in the original
CSDF graph, with its upper and lower bound, given by (5.10) and (5.11). If we
furthermore replace, for each actor, the vector of execution times with, respectively,
its maximum and minimum, then we obtain the following two systems:

t̂w(k) =⊕
vw

t̂v (π̂vw(k)) ⊗max
i
τw(i) (5.16a)

ťw(k) =⊕
vw

ťv (π̌vw(k)) ⊗min
i
τw(i), (5.16b)

where t̂w(k) and ť denote the time at which actor w completes its kth firing, in
respectively the pessimistic and optimistic system. These two systems may be rep-
resented by HSDF graphs: each predecessor function of the form πvw(k) = k −m
corresponds to anHSDF channel withm tokens. We refer to theseHSDF graphs as
single-rate approximations. Algorithm 6 gives the transformation of a CSDF graph
into its single-rate approximation, in a procedural way.

As an example, consider the graph of Figure 5.5. It is consistent: its repetition vector
is given by: qa = 4, and qb = qc = 6, and its flow normalisation vector is as follows:
sab = sba = 6, and sbc = scb = 4, and saa = 9. If we compute linear bounds on
each of the channels’ predecessor functions, and replace each CSDF channel by
the HSDF channel that corresponds to a linear bound, we obtain the optimistic
and pessimistic single-rate approximations, shown in Figure 5.6. In these figures,
we have followed a naming convention for actors in the single-rate graphs, which
indicates their correspondence to actors in the original graph: an actor v in the latter
corresponds to actor v̂ in the pessimistic, and actor v̌ in the optimistic single-rate
approximation.

Actors in the single-rate approximation represent partial iterations: a single firing in
the originalCSDF graph corresponds to a set of consecutive firings in the single-rate
approximation. This is due to the change in counting units, which was necessary
to obtain shift-invariance. The relation between the number of HSDF actor firings
and the number of firings of the corresponding CSDF actor is determined by the
graph’s scalar invariant, N , and its repetition vector. A single graph iteration of
the CSDF graph corresponds to the completion ofN firings of each of the HSDF
actors, in the single-rate approximation. In other words, qv firings of CSDF actor v
correspond toN firings of HSDF actors v̂ and v̌.

122

C
hapter

5–
Single-rate

approxim
ations

Algorithm6:Transforms aCSDF graph into optimistic and pessimistic single-
rate approximations, derived from the graph’s actor firing perspective.
1 input :A consistent CSDF graph G, with flow normalisation vector s.
2 output :An optimistic and pessimistic single-rate approximation of G.
3 Hopt ←Ð empty graph
4 Hpess ←Ð empty graph
5 foreach actor v in G do
6 Add actor v̂ toHpess

7 Add actor v̌ toHopt

8 τv̂ ←Ð maxφvi=1 τv(i)
9 τv̌ ←Ð minφv

i=1 τv(i)
10 foreach channel vw in G do
11 Add HSDF channel v̂ŵ toHpess

12 Add HSDF channel v̌w̌ toHopt

13 δv̂ŵ ←Ð svw min i<φv
j<φw
{gvw ⌈ ∆vw(i , j)+1

gvw
⌉ − (i+1)P

Σ+
vw

φv
+ jPΣ−

vw
φw
}

14 δv̌w̌ ←Ð svw max i<φv
j<φw
{gvw ⌊ ∆vw(i , j)

gvw
⌋ − iPΣ+

vw
φv
+ jPΣ−

vw
φw
}

15 returnHopt ,Hpess

a b c

⟨1, 2⟩ ⟨1, 1⟩

⟨2, 0⟩2⟨2, 1⟩

⟨1, 2⟩ ⟨2, 1⟩

⟨2, 1⟩3⟨1, 2⟩

⟨1, 1⟩

1
⟨1, 1⟩

Ta = ⟨2, 3⟩ Tb = ⟨2, 2⟩ Tc = ⟨3, 4⟩

Figure 5.5 – An example of a consistent CSDF graph.

ǎ, 2 b̌, 2 č, 3

18 12

9

(a) Optimistic HSDF graph

â, 3 b̂, 2 ĉ, 4

-6

9

-6

12

9

(b) Pessimistic HSDF graph

Figure 5.6 – Optimistic and pessimistic single-rate approximations derived from the actor
firing perspective of the CSDF shown in Figure 5.5, using Algorithm 6.

123

5.3
.1
–
O
pt
im

is
ti
c
an

d
pe
ss
im

is
ti
c
sy
st
em

s

The scalar invariant, N , of the graph shown in Figure 5.5, equals 36. Thus, every
N

qa
= 9 consecutive firings of actor â in the graph of Figure 5.6(b), correspond to a

single firing of CSDF actor a in Figure 5.5. Similarly, six firings of b̂ correspond to
a single firing of CSDF actor b.

The correspondence between firings, illustrated above, is a consequence of the
relation between the predecessor function associated with channels in the CSDF
graph, and the linear lower and upper bounds derived earlier. This relation may be
generalised to paths in a straightforward manner, by applying Equation 5.10 to the
definition of the predecessor function. This gives rise to the following proposition.

Proposition 5.1. Let G be a consistent CSDF graph, with repetition vector q, and
scalar invariantN . Furthermore, letHpess andHopt be the pessimistic and optimistic
single-rate approximations of G, obtained from G by applying Algorithm 6. The fol-
lowing relation, between the predecessor functions associated with paths in the three
graphs, holds:

∀k ∈ Z ∶
qv1
NG

πv̂1 . . .v̂n (
kNG
qvn
) ≥ πv1 . . .vn(k) ≥

qv1
NG

πv̌1 . . .v̌n (
kNG
qvn
) ,

for any path p = v1 . . . vn in G.

For the token transfer perspective, we obtain, in a similar way, two systems that are
formulated in terms of the transfer predecessor functions given by (5.15) and (5.14).
We denote by t̂ the state of the pessimistic system, and by ť the state of the optimistic
system:

t̂●vw(k) =⊕
uv
t̂●uv (π̂uvw(k)) ⊗max

i
τv(i) (5.17a)

ť●vw(k) =⊕
uv
ť●uv (π̌uvw(k)) ⊗min

i
τv(i). (5.17b)

In the single-rate approximations, derived from these two systems, each actor corre-
sponds to a channel in the CSDF graph. Again, there is a correspondence, between
firings of actors in the approximation on the one hand, and transfer of tokens over
channels in theCSDF graph. The completion of a single graph iteration corresponds
to the completion ofN firings of each actor in the single-rate approximation. That
is, the number of tokens transferred over a channel vw in the CSDF graph, during
a single graph iteration, corresponds to N firings of actor vw in the approxima-
tion. This means that svw firings of actor vw (in the approximation) correspond to
the transfer of a single token over CSDF channel vw. Again, the pessimistic and
optimistic systems, given above, correspond to single-rate approximations. The
transformation of a CSDF graph into its single-rate approximation, derived from
the token transfer perspective of the former, is given in Algorithm 7.

Figure 5.7 illustrates the single-rate approximations derived from the token transfer
perspective. Every actor in these graphs corresponds to a channel in the original

124

C
hapter

5–
Single-rate

approxim
ations

Algorithm 7:Transforms aCSDF graph into optimistic and pessimistic single-
rate approximations, derived from the graph’s token transfer perspective.
1 input :A consistent CSDF graph G, with flow normalisation vector s, repetition

vector q, and scalar invariantNG .
2 output :An optimistic and pessimistic single-rate approximation of G.
3 Hopt ←Ð empty graph
4 Hpess ←Ð empty graph
5 foreach channel vw in G do
6 Add actor ˆvw toHpess

7 Add actor ˇvw toHopt

8 τ ˆvw ←Ð maxφvi=1 τv(i)
9 τ ˇvw ←Ð minφv

i=1 τv(i)
10 foreach channel vw in G do
11 foreach incoming channel uv of v in G do
12 Add HSDF channel ûv , ˆvw toHpess

13 Add HSDF channel ǔv , ˇvw toHopt

14 δûv ˆvw ←Ð mini<φv {svw ∑i
l=1 ρ

+
vw(l) + svw + suv∆uv(0, i + 1)}

15 δǔv ˇvw ←Ð maxi<φv {svw ∑i
l=1 ρ

+
vw(l) + suv∆uv(0, i)}

16 returnHopt ,Hpess

ǎa, 2

ǎb, 2

b̌a, 2

b̌c, 2

čb, 3

9

612 12

12

20

9

(a) Optimistic HSDF graph

âa, 3

âb, 3

b̂a, 2

b̂c, 2

ĉb, 4

3

6 -48

9

-4

14

9

(b) Pessimistic HSDF graph

Figure 5.7 – Optimistic and pessimistic single-rate approximations derived from the token
transfer perspective of the CSDF graph of Figure 5.5.

125

5.3
.2
–
C
om

pu
ti
ng

st
ri
ct

ly
pe
ri
od

ic
sc
he

du
le
s

CSDF graph. The optimistic and pessimistic graphs are larger than their counter-
parts in the actor firing perspective, since the CSDF graph has more channels than
actors.

If we compare the cycles in the single-rate approximations of the two perspectives,
then we find that for the optimistic approximations, the number of tokens on the
cycles are the same: for example, cycle aba in the graph of Figure 5.6(a) has 18 tokens,
which corresponds to the number of tokens on cycle ab, ba, ab in Figure 5.7(a).
Likewise, cycle ab, ba, aa, ab (in Figure 5.7(a)) has 27 tokens, and so does cycle
abaa (in Figure 5.6(a)). However, if we compare the pessimistic approximations,
then there are differences: cycle aba in Figure 5.6(b) has three tokens, whereas the
corresponding cycle in Figure 5.7(b) has six. Also, cycle bcb in the former has six
tokens, whereas the corresponding cycle in the latter has four.

This difference in the number of tokens on channels translates to a difference inmax-
imum cycle ratio, of the pessimistic approximations: in the graph of Figure 5.6(b),
the critical cycle is aba, and has a (maximum) cycle ratio of 5

3 . For Figure 5.7(b),
we find a lower maximum cycle ratio, of 6

4 , attained by critical cycle bc, cb, bc. To
translate these maximum cycle ratios to a throughput for the CSDF graph, we must
take their inverse, and multiply it byN , to undo the scaling step of the transforma-
tion. From the single-rate approximation of the actor firing perspective, we now
learn that the throughput, of the CSDF graph of Figure 5.5, is at least 3

5⋅36 =
1
60 .

Likewise, the token transfer perspective gives a lower bound of 1
54 . The latter is

higher, which means that, for this example, the token transfer perspective gives
a tighter lower bound on throughput than the actor firing perspective (the exact
throughput, computed from the graph’s single-rate equivalent, equals 1

24). In Sec-
tion 5.3.4, we study the difference in the approximation accuracy, obtained by the
two perspectives, in more detail.

We conclude this section with the following proposition, which is the dual to Propo-
sition 5.1, and gives the relationship between the transfer predecessor functions, of
a CSDF graph, and its single-rate approximations constructed using Algorithm 7:

Proposition 5.2. Let G be a consistent CSDF graph, with flow normalisation vector
s, and scalar invariantN . Furthermore, letHpess andHopt be the pessimistic and op-
timistic single-rate approximations of G, obtained from its token transfer perspective.
Each channel vw in G maps onto an actor ˆvw inHpess, and ˇvw inHopt. The following
relation, between the predecessor functions associated with paths in the three graphs,
holds:

∀k ∈ Z ∶
1

sv1v2
π ˆv1v2 . . . ˆvn−1vn (ksvn−1vn) ≥ π

●
v1 . . .vn(k) ≥

1
sv1v2

π ˇv1v2 . . . ˇvn−1vn (ksvn−1vn) ,

for any path p = v1 . . . vn , with n > 2, in G.

5.3.2 Computing strictly periodic schedules

Using the correspondence between the firings of actors, in the CSDF graph and
its single-rate approximations, we can derive a schedule for the former, from the

126

C
hapter

5–
Single-rate

approxim
ations

â â â

â â â â â â â â â â â â
â â â â â â â â â â â â

â â â â â â â â â â âb̂ b̂ b̂ b̂

b̂ b̂ b̂ b̂ b̂ b̂ b̂ b̂ b̂
b̂ b̂ b̂ b̂ b̂ b̂ b̂ b̂ b̂

b̂ b̂ b̂ b̂ b̂ b̂ b̂ b̂ b̂

ĉ ĉ ĉ

ĉ ĉ ĉ ĉ ĉ ĉ ĉ
ĉ ĉ ĉ ĉ ĉ ĉ

ĉ ĉ ĉ ĉ ĉ ĉ

time
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

(a) The eigenschedule of the pessimistic single-rate approximation of Figure 5.6(b).

a a a ab b b b bc c c

c

time
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

(b) A strictly periodic schedule for the CSDF graph of Figure 5.5.

Figure 5.8 – A strictly periodic schedule for a CSDF graph can be constructed by sampling
the eigenschedule of its pessimistic single-rate approximation.

schedule of the latter. We compute this schedule from the pessimistic single-rate
approximation, as themaximum rate at which actors in this graph fire, gives a lower
bound on throughput. We start this section with an example that continues the
example of the previous section.

Consider again the graph depicted in Figure 5.6(b). The graph has a maximum
cycle ratio of 5

3 . This means that, in the associated eigenschedule (see Section 2.2.4),
each actor fires in a strictly periodic fashion, completing a firing every 5

3 time units.
This eigenschedule is shown in Figure 5.8(a). The schedule shows that actor â must
complete several firings, before actors b̂ and ĉ may start their firings: the first firing
of b̂ starts at time 13, and the first firing of ĉ starts at time 25.

Not every firing that appears in the eigenschedule of the single-rate approximation
corresponds to a firing of an actor in the approximated CSDF graph. Every nine
consecutive firings of HSDF actor â correspond to a single firing of CSDF actor a.
For both actors b̂ and ĉ, six of their firings correspond to a single firing of theirCSDF
counterparts, b and c. This correspondence allows us to derive a schedule for the
CSDF graph, by an appropriate sampling of the eigenschedule of the approximation.
To illustrate this sampling in Figure 5.8(a), firings that correspond to firings in
the CSDF graph are highlighted. If we now translate the schedule such that the
first firing of CSDF actor a starts at time zero, we obtain the schedule depicted in
Figure 5.8(b).

127

5.3
.2
–
C
om

pu
ti
ng

st
ri
ct

ly
pe
ri
od

ic
sc
he

du
le
s

aa
ab
ba
bc
cb

time
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

(a) Token transfer schedule, obtained from the pessimistic approximation. Colours indicate the
corresponding producing actor, squares indicate tokens that mark the completion of a firing.

a a aa ab b bb bc c c

c

time
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

(b) Schedule for the CSDF graph, obtained from the token transfer schedule.

Figure 5.9 – Construction of an admissible schedule for the CSDF graph of Figure 5.5, from
the strictly periodic token transfer eigenschedule computed from its pessimistic single-rate
approximation (shown in Figure 5.7(b)).

For the token transfer perspective, the construction of a schedule for the CSDF
graph is slightly more involved. As a starting point, we again take the eigenschedule
of the pessimistic approximation (shown in Figure 5.7(b)), and sample it in such a
way, that we obtain a schedule for the transfer of tokens in theCSDF graph. Now, the
sampling is given by the graph’s flow normalisation vector, s: every nine consecutive
firings of actor âa in Figure 5.7(b) correspond to the transfer of a single token
over CSDF channel aa in Figure 5.5. For actors âb, b̂a, b̂c and ĉb, this number
is, respectively, six, six, four and four. The sampled eigenschedule is shown in
Figure 5.9(a), where each dot indicates the scheduled transfer of a single token, and
colours indicate the producing actor.

In the CSDF graph, a single actor firing involves the (production and) transfer
of multiple tokens over outgoing channels. As such, we map the token transfer
schedule of Figure 5.9(a) to a schedule for actor firings, by letting the completion
time of a firing coincide with the latest transfer of the tokens it produces. For
example, the second firing of CSDF actor a produces two tokens onto channel ab,
and one token onto channel aa. From Figure 5.9(a), we derive that the last of the
two tokens, produced onto ab, is transferred at t = 21, and the token produced onto
aa is transferred at t = 16.5. Hence, we let the second firing of a complete at the
maximum of these two timestamps, at t = 21. Applying this reasoning to the full
eigenschedule yields the schedule for the CSDF, depicted in Figure 5.9(b).

128

C
hapter

5–
Single-rate

approxim
ations

We now formalise the illustrated relation between the schedules of a CSDF graph
and its pessimistic approximation. In the remainder of this section, we shall prove
that the pessimistic approximations are temporal abstractions of the CSDF graph,
and that the latter is a temporal abstraction of the optimistic approximation. Fur-
thermore, in the spirit of Chapter 4, wherewe showed that amapping exists between
the schedules of a CSDF graph and its unfolding, we describe and prove a relation
between the schedules of a CSDF graph and its four different single-rate approxi-
mations. Let G be a consistent CSDF graph, with m source actors u1 , . . . , um , and
p sink actors y1 , . . . , yp .

The actor firing perspective

Any schedule that is admissible for the pessimistic approximation may be mapped
to a schedule that is admissible for the approximated CSDF graph. This mapping
follows from the correspondence between the firings of the CSDF graph and its
single-rate approximation, as illustrated in the example at the beginning of this
section. The following lemma proves the validity of this mapping.

Lemma 5.1 (Schedule mapping). Let G be a consistent CSDF graph, andH be the
pessimistic single-rate approximation of G, derived from the actor firing perspective
of G, using Algorithm 6. Furthermore, let t be an admissible schedule forH, and s a
schedule for G, which is defined in terms of t, for every actor v in G, as follows:

sv(k) = tv̂ (k
NG
qv
) , (5.18)

for all k ∈ Z. Schedule s is admissible for G.

Proof. By Definition 3.4, schedule s is admissible, if the following two conditions
hold:

(i) k ≥ m⇒ sv(k) ≥ sv(m).
(ii) πvw(k) ≥ m⇒ sw(k) ≥ sv(m) ⊗ τw(k).

We derive condition (i) from the admissibility of t:

k ≥ m⇒ tv̂ (k
NG
qv
) ≥ tv̂ (m

NG
qv
) ⇒ sv(k) ≥ sv(m).

This leaves condition (ii). By Proposition 5.1, the former implies:

πvw(k) ≥ m⇒ πv̂ŵ (k
NG
qw
) ≥ m

NG
qv

.

Using the fact that t is admissible, we may now derive the following conclusion
(observe that τŵ ≥ τw(k), for all k ∈ Z):

tŵ (k
NG
qw
) ≥ tv̂ (m

NG
qv
) ⊗ τŵ ⇒ sw(k) ≥ sv(m) ⊗ τw(k).

129

5.3
.2
–
C
om

pu
ti
ng

st
ri
ct

ly
pe
ri
od

ic
sc
he

du
le
s

This proves that (ii) holds, which completes the proof.

The optimistic single-rate approximation has a temporal dynamics that is never
worse than that of the CSDF graph. This implies that a relation between the sched-
ules of the former and the latter exists, similar to the relation between the schedules
of the pessimistic approximation and the CSDF graph, given by Lemma 5.1. Indeed,
every schedule that is admissible for the CSDF graph may be mapped to one that
is admissible for the optimistic approximation. This mapping is such that a single
firing in the former is mapped to multiple, parallel executing, firings in the latter.
We characterise and prove the mapping in the following lemma.

Lemma 5.2 (Optimistic schedule mapping). Let G be a consistent CSDF graph, and
H be the optimistic single-rate approximation of G, derived from the actor firing
perspective of G, using Algorithm 6. Furthermore, let t be an admissible schedule for
G. Let s be a schedule forH, defined in terms of t, for every actor v̌ inH, as follows:

sv̌(k) = tv (⌈
kqv
NG
⌉) , (5.19)

for all k ∈ Z. Schedule s is admissible forH.

Proof. The temporal ordering of firings, of the same actor, in graphH satisfies:

k ≥ m⇒ tv (⌈
kqv
NG
⌉) ≥ tv (⌈

mqv
NG
⌉) ⇒ sv̌(k) ≥ sv̌(m). (5.20)

From (5.11), and by the linearity of γ̌, we have:

qv
NG

πv̌w̌(k) = γ̌vw (k
qw
NG
) ≤ γ̌vw (⌈

kqw
NG
⌉) ≤ πvw (⌈

kqw
NG
⌉) .

This allows us to derive the following relation between the predecessor functions
of G andH:

πv̌w̌(k) ≥ m⇒ πvw (⌈
kqw
NG
⌉) ≥ m

qv
NG

(A.4)
⇒ πvw (⌈

kqw
NG
⌉) ≥ ⌈

mqv
NG
⌉ ,

Since t is admissible for G, this implies, by Definition 3.4, the following:

tw (⌈
kqw
NG
⌉) ≥ tv (⌈

mqv
NG
⌉) ⊗ τw (⌈

kqw
NG
⌉) ⇒ sw̌(k) ≥ sv̌(m) ⊗ τw̌ ,

which, with (5.20) and by Definition 3.4, states that schedule s is admissible. This
completes the proof.

130

C
hapter

5–
Single-rate

approxim
ations

The token transfer perspective

As we have seen in the example that we discussed in the beginning of this section,
a schedule for token transfers, derived from the pessimistic single-rate approxi-
mation, may be mapped to a schedule for actor firings. In the remainder of this
section, we formalise and prove this mapping. The following lemma proves that
any schedule that is admissible for the pessimistic token transfer approximation
can be mapped to an admissible schedule for the CSDF graph.

Lemma 5.3 (Pessimistic schedule mapping - token transfers). Let G be a consistent
CSDF graph, and Hpess be the pessimistic single-rate approximation of G, derived
from G using Algorithm 7. Furthermore, let t be an admissible schedule forHpess. Let
z be a token transfer schedule for G, defined in terms of t, for every channel vw in G,
as follows:

z●vw(k) = t ˆvw (svwk) , (5.21)

for all k ∈ Z. Schedule z is admissible for G.

Proof. Due to the admissibility of t, we have:

k ≥ m⇒ t ˆvw (svwk) ≥ t ˆvw (svwm) ⇒ z●vw(k) ≥ z
●
vw(m), (5.22)

and, by Proposition 5.2 and admissibility of t, we have:

π●uvw(k) ≥ m⇒ πûv ˆvw(svwk) ≥ suvm
⇒ t ˆvw(svwk) ≥ tûv(suvm) ⊗ max

1≤i≤φv
τv(i)

⇒ z●vw(k) ≥ z
●
uv(m) ⊗ τv(k).

(5.23)

By Definition 3.4, (5.22) and (5.23) together imply that z is admissible forH, which
completes the proof.

In line with Lemma 5.2, which gives a mapping from a schedule for the optimistic
approximation, to a schedule for the CSDF graph, we give such a mapping for the
token transfer perspective, in the following lemma. This completes the mapping
between schedules of the four different single-rate approximations and the CSDF
graph.

Lemma 5.4 (Optimistic schedule mapping - token transfers). Let G be a consistent
CSDF graph, andH be the optimistic single-rate approximation of G, derived from G,
using Algorithm 7. Furthermore, let t● be an admissible token transfer schedule for
G. Let z be a token transfer schedule forH, defined in terms of t, for every actor ˇvw
inH, as follows:

z ˇvw(k) = t●vw (⌈
k
svw
⌉) , (5.24)

for all k ∈ Z. Schedule z is admissible forH.

131

5.3
.2
–
C
om

pu
ti
ng

st
ri
ct

ly
pe
ri
od

ic
sc
he

du
le
s

Proof. The proof is analogous to the proof of Lemma 5.2.

Given the mappings between schedules of a CSDF graph and its single-rate ap-
proximations, we may derive a relation between the throughputs of the graphs.
Recall that the throughput of a graph is attained by a self-timed schedule, and the
throughput of a graph is related to the throughput of an actor, through a scaling
by the actor’s repetition vector entry. Using this relation, and the relation between
the admissible schedules of the graphs, as given by the previous four lemmas, we
can derive bounds on the throughput of the approximated CSDF graph, as stated
by the following theorem.

Theorem 5.1 (Bounds on throughput). Let G be a consistentCSDF graph, with scalar
invariant NG . Furthermore, let Hopt, Hpess, H●opt and H●pess be the optimistic and
pessimistic single-rate approximations of G, obtained by applying, respectively, Al-
gorithm 6 and Algorithm 7. Let Th(G) denote the throughput of graph G. The
throughputs ofHpess andH●pess bound the throughput of G, in the following way:

max{Th(Hpess), Th(H●pess)} ≤ NGTh(G) ≤ min{Th(Hopt), Th(H●opt)} .

Proof. This follows from lemmas 5.1, 5.2, 5.3, and 5.4. In the following, let q and s
be the repetition and flow normalisation vector of G. Any admissible schedule for
Hpess can be mapped to a schedule that is admissible for G. Let t be a self-timed
schedule ofHpess, which is mapped through (5.18) to schedule s for G. In t, actor
v̂ fires at an average rate of Th(Hpess), and in s, corresponding actor v fires at a
rate of Th(H) qv

NG
. This means that, in s, the number of graph iterations of G that

are completed per time unit, is equal to Th(Hpess)

NG
. Actors in G may fire at a higher

rater than schedule s prescribes. The rate at which actors fire in schedule s thus
gives a lower bound on the throughput of G. In other words, we obtain, from the
mapping of schedule t to schedule s, that NGTh(G) ≥ Th(Hpess). Following a
similar reasoning, we may derive that the optimistic approximation,Hopt, gives an
upper bound on the throughput of G.

Next, consider an admissible schedule t● forH●pess, which is mapped to an admis-
sible schedule s for G, through (5.21). In t●, actor ˆvw fire at an average rate of
Th(H●pess). This corresponds to an average rate at which tokens are produced onto

channel vw in G of, on average,
Th(H●pess)

svw
. The average number of tokens produced,

per firing of actor v, onto vw, is given by PΣ+
vw
φv
. Thus, the average rate at which actor

v must fire, in s, is Th(H●pess)φv

svwPΣ+
vw

. If we divide this by the repetition vector entry of
v, we obtain the average number of graph iterations of G, completed per time unit,
which is equal to:

Th(H●pess)
NG

. This rate gives a lower bound on the throughput of G.
An upper bound on the throughput of G may be obtained fromH●opt by following
a similar reasoning.

132

C
hapter

5–
Single-rate

approxim
ations

From the above, we have two upper bounds and two lower bounds. By taking
the minimum of the former and the maximum of the latter we obtain the stated
theorem.

The pessimistic bound on throughput is useful in the sense that, given that the
execution times of actor firings are conservative, the bound gives a guarantee on the
performance of the system that ismodelled by the approximatedCSDF graph. In the
modelled system, these conservative execution times may never be attained. This
means that the optimistic bound pertains to the model (i.e., the CSDF graph), not
to the modelled system: the bound gives a lower bound on performance, given that
actor firings take as long as their associated execution times specify. In this sense,
the optimistic bound primarily gives an indication of the error of the estimated
throughput; if this error is (too) large, an exact transformation into a larger graph
(see Chapter 4), which exposes interactions between individual phases of the CSDF
actors, may give a more accurate estimation (see Chapter 6).

5.3.3 Constructing temporal abstractions

The pessimistic and optimistic single-rate approximations provide bounds on the
performance of the approximated CSDF graph. This implies a temporal abstraction
relation (see Section 3.3). However, a temporal abstraction relation between two
graphs implies that, at an input rate that is low enough, the output of the two
graphs have the same rate. Such is not the case for the single-rate approximations
of a CSDF graph: as the mapping between the admissible schedules of the graphs
has indicated, output actors in the former fire at a higher rate than those in the
latter. Consequently, by definition, a temporal abstraction relation between the
approximations and the CSDF graph does not hold. We may, however, obtain a
temporal abstraction, by appropriately setting rates, on channels connecting source
actors, which we refer to as input channels, and channels connecting sink actors,
which we refer to as output channels. Here, consumption rates (on output channels)
serve to sample the output, and production rates (on input channels) increase the
rate at which input is fed into the system. These rates must be such that they reflect
the relations, between the input and outputs of the CSDF graph and its single-rate
approximations, as given in the following lemma.

Lemma 5.5. Let G be a consistent CSDF graph, andHopt andHpess be the optimistic
and pessimistic single-rate approximation of G, derived using Algorithm 6. Further-
more, let u and y be the input and output of the actor firing perspective of G, and û
(resp. ǔ) and ŷ (y̌) the corresponding input and output to the actor firing perspective
ofHpess (Hopt). The following relations hold, for all k ∈ Z:

u(k) = û (k
NG
qu
) ⇒ y(k) ≤ ŷ (k

NG
qy
) , (5.25a)

ǔ(k) = u (⌈
kqu
NG
⌉) ⇒ y̌(k) ≤ y (⌈

kqy
NG
⌉) . (5.25b)

133

5.3
.3
–
C
on

st
ru

ct
in
g
te
m
po

ra
l
ab

st
ra

ct
io
ns

a,1 a,2

u y

3 2 2

223

(a)MRSDF graph,N = 6.

â,1 b̂,2

û ŷu* y*
3 2

1

(b) Temporal abstraction.

â,1 b̂,2

û ŷ

1

3 2

(c) Simplified.

Figure 5.10 – AnMRSDF graph and its single-rate approximation (indicated by the dotted
line), extended with channels such that the graph forms a temporal abstraction.

Proof. This follows from the mappings between the admissible schedules of the
three graphs, given by lemmas 5.2 and 5.1. Any self-timed schedule t for Hpess is
mapped to an admissible schedule s for G. Schedule s may not be a self-timed
schedule: some firings are not scheduled to occur as soon as they are enabled, but
rather somewhat later. This means that an output ŷ(k) of the system associated
withHpess, in response to the mapped input of G, occurs no later than s ŷ(k). Con-
sequently, (5.25a) holds. The fact that (5.25b) holds is derived following a similar
reasoning.

The above lemma implies that the pessimistic single-rate approximation, obtained
by Algorithm 6, becomes a temporal abstraction of the approximated CSDF graph,
if we transform its inputs and outputs, in the manner given by (5.25a) and (5.25b).
This transformation is analogous to a change in the rates associated with source and
sink actors in the single-rate approximation. To illustrate this, consider Figure 5.10.
The graph shown in Figure 5.10(b) is a supergraph of the pessimistic single-rate
approximation of the graph shown in Figure 5.10(a). The subgraph corresponding
to the approximation is indicated by the dotted line. The graph’s sink actor, y*,
essentially samples the output, ŷ, of the single-rate approximation, and a single
firing of the graph’s source actor, u*, is mapped to three firings of actor û of the
single-rate approximation. As a result, the output of the graph of Figure 5.10(b) is
given by y∗(k) = ŷ(2k), where ŷ is the output of the pessimistic approximation
of theMRSDF graph. The input of the pessimistic approximation is now given by
û(k) = u∗ (⌈ k3 ⌉). By Lemma 5.5 (note that the MRSDF graph has N = 6, qa = 2
and qb = 3), the graph of Figure 5.10(b) is a temporal abstraction of the graph of
Figure 5.10(a).

The graph of Figure 5.10(b) may be further simplified. Observe that, since actors û
and ŷ have an execution time of zero, we may replace the path u*ûâ by a single chan-
nel that has a production rate of three, and a consumption rate of one. Similarly,
we may replace the path b̂ŷy* with a path that has a production rate of one, and

134

C
hapter

5–
Single-rate

approxim
ations

a consumption rate of two. These replacements results in the graph shown in Fig-
ure 5.10(c). In a similar fashion, we may apply the same reasoning to the optimistic
approximation of the graph of Figure 5.10(a), to obtain a graph that is temporally
abstracted by it. The following theorem formalises the illustrated transformation
of the single-rate approximations of a graph, and their temporal interrelationships.

Theorem 5.2 (Temporal abstraction relation - actor firings). Let G be a consistent
CSDF graph, andHopt andHpess be the optimistic and pessimistic single-rate approx-
imation of G, derived from the actor firing perspective of G. Let H∗pess be the graph
obtained from Hpess by setting the production rate of each channel v̂ŵ, where v̂ is
a source, to NGqv , and the consumption rate of each channel ûv̂, where v̂ is a sink, to
NG
qv
. Likewise, letH∗opt be the graph obtained fromHopt in an equivalent way. Graph

H∗pess is a temporal abstraction of G, and the latter is a temporal abstraction ofH∗opt.
Formally:

H∗pess ⊇T G ⊇T H
∗
opt .

Proof. This follows from Lemma 5.5. By appropriate substitutions, of k, in the
conclusion of (5.25b) and the premise of (5.25a), we obtain:

ǔ(k) = û(k) = u (⌈
kqu
NG
⌉) ⇒ ŷ (k

NG
qy
) ≥ y(k) ≥ y̌ (k

NG
qy
) ,

which, by Definition 3.9, proves the theorem.

5.3.4 Comparing the two perspectives

Consider the single-rate approximations (Figures Figure 5.6 and Figure 5.7) of the
CSDF graph depicted earlier in Figure 5.5, as obtained from each of the two perspec-
tives. The optimistic throughput approximations they provide are the same, but the
pessimistic approximations differ; the bounds on throughput obtained from the
token transfer perspective are tighter than those obtained from the actor firing per-
spective. An obvious question is whether this holds in general. The answer to this
question is negative, which we illustrate with an example comparison. Rather than
exploring the accuracy of the two perspectives in full, we highlight the difference in
accuracy for two graphs that are small enough to serve as intuitive examples, and
different enough to give widely varying outcomes for each of the perspectives.

These two graphs are depicted in Figure 5.11. For the first graph, shown in Fig-
ure 5.11(a), the pessimistic approximation derived from the actor firing perspective
has 2 − 2p tokens on channel ab, and 3 tokens on channel ba. As a result, cycle
aba has a total of 5 − 2p tokens, and its throughput is estimated to be negative. If
we approximate using the token transfer perspective, we find that the cycle has 4
tokens, regardless of the value of p. This means that increasing p decreases the
accuracy of the throughput estimation, obtained from the actor firing perspective,
whereas the accuracy of the token transfer perspective is unaffected.

135

5.3
.4
–
C
om

pa
ri
ng

th
e
tw

o
pe
rs
pe
ct

iv
es

a b

⟨1, p⟩ ⟨1, p + 1⟩

⟨p + 1, 1⟩
p + 1

⟨p , 1⟩

(a) Poor results in the actor firing perspec-
tive.

a b

⟨1, p⟩ ⟨1, p⟩

⟨1, p⟩
p + 1

⟨1, p⟩

(b) Poor results in the token transfer perspec-
tive.

Figure 5.11 – Two CSDF graphs that show two extremes for the approximation error in the
actor firing and token transfer perspective.

For the other graph, depicted in Figure 5.11(b), we find the opposite: if we choose
p = 1, then both single-rate approximations have a total of 2 tokens on the cycle.
Increasing pmonotonically decreases the number of tokens in the pessimistic ap-
proximation; for p = 8 the pessimistic approximation has −10 tokens, whereas
the actor firing perspective has 18 tokens. This means that for this graph, the to-
ken transfer gives a worse accuracy than the actor firing perspective. Again, the
difference in approximation accuracy increases, as p increases.

When comparing the two perspectives for the approximations they deliver, there
is no clear winner, as illustrated by these two examples. There are cases where one
gives tighter bounds than the other, and vice versa. This is true for CSDF graphs.
ForMRSDF graphs, however, the conclusion is different. To see this, consider the
predecessor functions of the pessimistic single-rate approximations for anMRSDF
graph, for respectively the token transfer and actor firing perspectives:

π̂●uvw(k) = k − svw − suvδuv + suvρ
−
uv

(2.2)
= k − svw(1 − ρ+vw) − suvδuv .

(5.26)

π̂vw(k) = k − svw (gvw − ρ+vw + gvw ⌊
δvw + gvw

gvw
⌋) . (5.27)

These two functions are similar in case gvw = 1. For this case, the bounds on
throughput provided by the two functions are the same. In case gvw > 1, the bounds
obtained from the actor firing perspective are never worse than those obtained from
the token transfer perspective. This is stated and proven by the following theorem.

Theorem 5.3 (Actor firing perspective forMRSDF). Let G be anMRSDF graph, and
H and H● its pessimistic single-rate approximations derived from, respectively, the
actor firing and token transfer perspective of G.

GraphH gives a tighter lower bound on throughput thanH●.

136

C
hapter

5–
Single-rate

approxim
ations

Proof. First note that there is a natural correspondence between the cycles of H
andH●; a cycle v1 , . . . vn inH corresponds to a cycle v1v2 , v2v3 , . . . , vn−1vn inH●.
With this correspondence, we can compare the maximum cycle ratios of H and
H●. A higher maximum cycle ratio means a lower throughput.

Consider a cycle C = v1 , . . . , vn H, and the corresponding cycle C● in H●. The
cycle ratio of C●, denoted λ(C●), is given by

λ(C●) = ∑uvvw∈C τv
∑uvvw∈C svw(δvw + 1 − ρ+vw)

.

For the cycle ratio of C, we derive an upper bound:

λ(C) = ∑vw∈C τv
∑vw∈C svw (gvw ⌊

δvw+gvw
gvw
⌋ − ρ+vw)

≤
∑vw∈C τv

∑vw∈C svw (δvw + 1 − ρ+vw)
.

With the natural correspondence given above, we have λ(C) ≤ λ(C●) for any pair
of corresponding cycles C and C● inH andH●. In particular, this relation holds
for the cycle that attains maximum cycle ratio. In other words, the maximum cycle
ratio ofH is at most the maximum cycle ratio ofH●. Since the throughput of an
HSDF graph is the inverse of the graph’s maximum cycle ratio, the throughput ofH
is at least the throughput ofH●. By Theorem 5.1, the throughput of G is bounded
from below by the maximum of the throughputs of H and H●. Thus, the stated
theorem is true.

The accuracy offered by each of the perspectives is just one aspect to consider when
deciding which one to use. Another is the size of the single-rate approximations
they yield. A single-rate approximation obtained from the actor firing perspective
has the same number of actors and channels as the original graph has. The token
transfer perspective, however, leads to a larger single-rate approximation, with an
actor for every channel in the CSDF graph. As a result, the size of these graphs is
in the order of the square of the size of the CSDF graph. This has an effect on the
efficiency of analyses applied to the single-rate approximation. For example, com-
putation of the maximum cycle ratio of the resulting graphs has a time complexity
that is quadratic in the number of actors in the graph, and linear in the number
of channels. This means that the potentially better accuracy of the token transfer
perspective must be weighed against the increase in runtime of its analysis.

Any CSDF graph can be transformed into an equivalent MRSDF graph, and, by
Theorem 5.3, forMRSDF graphs, the actor firing perspective never yields a worse
conservative bound than the token transfer perspective does. Furthermore, con-
sidering the sizes of the single-rate approximations, the actor firing perspective
scales better than the token transfer perspective. In the remainder of this thesis we
therefore restrict our attention to the actor firing perspective.

137

5.4
–
Q
ua

li
ty

of
th

e
ap

pr
ox

im
at

io
n

a b c

m n

n
d1

m

n p

p
d2

n

Figure 5.12 – The error in the estimated throughput of the graph depends on the graph’s
structural invariants and the number of tokens in the graph’s critical subgraph. Here, d2 is
much larger than d1 ; as a result, cycle aba is the bottleneck of the graph.

5.4 Quality of the approximation

The simplification of the analysis of a CSDF graph, through its single-rate approx-
imation, comes at the expense of a loss in accuracy with respect to the temporal
dynamics of the former graph. For example, schedules derived from the pessimistic
approximation may not attain the throughput of the CSDF graph. The error in
throughput depends for one part on the execution time vectors of actors; if the
maximumof a vector ismuch larger thanmost of its entries, then the conservatively
estimated throughput will be rather pessimistic. Another factor that the estimated
throughput depends on consists of the rates and tokens on the graph’s channels.
To explore this relationship, we consider an example that is simple enough to be
explored in detail, yet sufficient to understand how rates and tokens affect the esti-
mated throughput.

In Figure 5.12, a simple MRSDF graph is shown, with execution times, rates and
tokens left unspecified. If we take p = 1, then the repetition vector entries for actors
a, b and c are respectively n, m, and mn. The normalisation vector entries are all
one, and the scalar invariantN for the graph is equal to the least commonmultiple of
m and n: N = lcm(m, n). The estimated period (i.e., the inverse of its throughput)
λaba of the leftmost cycle is bounded as follows:

lcm(m, n)(τa + τb)

d1 −m − n + 2 gcd(m, n)
≤ λaba ≤

lcm(m, n)(τa + τb)

d1
.

If we now choose p such that p is relatively prime to the product mn, then the
repetition vector entries for a, b and c are pn, pm, and pmn, andN = p lcm(m, n).
This means that, for p such that gcd(p,mn) = 1, the difference between the bounds
on the throughput of cycle aba is p times the difference that is obtained when
considering the cycle in isolation.

To summarise, the error in the throughput, computed from the bounds provided
by the optimistic and pessimistic approximations, depends both on the structural
invariants of the graph and the rates and number of tokens in the cycle. As a result,
the accuracy of an initial estimation of a graph’s throughput may be increased
by considering the cycle in isolation. This, however, implicitly assumes that the

138

C
hapter

5–
Single-rate

approxim
ations

throughputs of cycles are composable, which, in general, is not true. In Chapter 6,
we present an approach that tackles this problem.

5.5 Discussion

Single-rate approximations ofCSDF graphs have an important practical application:
they allow for conservative analyses of the performance characteristics of a system,
avoiding the computational costs of analysing the system’s equivalent shift-invariant
system. As such, many approaches to approximate the temporal dynamics of CSDF
graphs have been presented in literature.

One of the most straightforward transformations of a CSDF graph into anMRSDF
graph is obtained by replacing each actor by a so-called “lumped” actor, replacing
each vector by the sum of its elements [45, 88]. The benefit of this transformation
is that it simplifies the analysis, while still giving guarantees. It is obvious that this
transformation allows for conservative analyses; the transformation sacrifices the
scheduling freedom of the individual phases of a CSDF actor for simpler analysis.
However, the approximation error made by the lumped representation may be
considerable.

The predominant approach to approximate analysis involves the assumption of
so-called strict periodicity. Under this assumption, the time between either two
subsequent firings of an actor [5, 14], or between the production of two tokens onto
a channel [38, 48, 98], is assumed to be constant. To the best of our knowledge, it
is not known how these two subtly different approaches differ in accuracy. In this
chapter, these two approaches are developed from the two different characterisa-
tions of the temporal dynamics of a CSDF graph that were introduced in Chapter 3:
Section 5.3 shows how the actor firing and token transfer perspectives give rise to
related but different single-rate approximations. In Section 5.3.4 we show that, for
CSDF graphs, neither of the two approaches is to be preferred over the other. For the
approximation ofMRSDF graphs, though, interrelating actor firings is the preferred
approach, as the systems it yields not only give tighter bounds on throughput, but
are also smaller than those obtained when interrelating the transfer of individual
tokens.

A disadvantage of existing approximate analyses is their restriction to the computa-
tion of a single, conservative, bound on throughput. Although such a conservative
bound allows one to give guarantees on the performance of the modelled system,
it leaves the error of the approximation unknown. The single-rate approximations
described in this chapter allow for the computation of both a conservative and an
optimistic bound. This gives a designer the ability to assess the approximation error,
by taking the difference between these bounds.

A further contribution of this thesis over existing work is that our approximation of
aCSDF graph is anHSDF graph, whichmay be analysed using existing, well-known
efficient techniques. This is in contrast to the approach followed, for example, in

139

5.5
–
D
is
cu

ss
io
n

[48], where a throughput-optimal schedule is computed by formulating and solving
a linear program.

The presented approximations combine naturally with the graph transformations
given in the previous chapter. Transforming a graph by unfolding several firings
of an actor, followed by an approximation, gives more scheduling freedom to the
unfolded actors. In schedules computed from these unfolded approximations, the
scheduling period of an actor may span multiple firings (these schedules are called
K-periodic schedules in [13]). As such, the schedules may better approximate those
schedules that attain the graph’s throughput. This gives rise to an incremental
approach, where the bounds on throughput are tightened in an incremental fashion.
The next chapter describes this approach in more detail.

140

1416
the incremental analysis algorithm that combines exact with
approximate analysis the incremental analysis algorithm that

combines exact with approximate analysis the incremental analysis
algorithm that combines exact with approximate analysis the

incremental analysis algorithm that combines exact with approximate
analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm
that combines exact with approximate analysis the incremental
analysis algorithm that combines exact with approximate analysis
the incremental analysis algorithm that combines exact with
approximate analysis the incremental analysis algorithm that

combines exact with approximate analysis the incremental analysis
algorithm that combines exact with approximate analysis the

incremental analysis algorithm that combines exact with approximate
analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm that
combines exact with approximate analysis the incremental analysis

algorithm that combines exact with approximate analysis the
incremental analysis algorithm that combines exact with approximate

analysis the incremental analysis algorithm that combines exact
with approximate analysis the incremental analysis algorithm
that combines exact with approximate analysis the incremental
analysis algorithm that combines exact with approximate analysisThroughput analysis

Abstract – The throughput of a synchronous dataflow graph gives the max-
imum rate at which actors in the graph may fire. This maximum rate is de-
termined by the properties of cyclic dependencies in the graph. Whereas for
homogeneous synchronous dataflow graphs the throughput of a graph can be
computed from its simple cycles, this is not the case for multi-rate and cyclo-
static dataflow graphs. Classically, throughput analysis requires a graph to
be transformed into its single-rate equivalent. In this chapter, we present a
method that avoids this costly transformation, by explicitly grouping parallel
actor firings into a single firing. The presented method combines the transfor-
mations described in chapter 4, and the approximate methods presented in
chapter 5.

The throughput of a system is a measure of the maximum amount of work the
system can do in a given time period. For a discrete event system, throughput
refers to the maximum rate at which events may occur; this could refer to the
production speed of parts in a manufacturing system, or the rate at which data is
processed in a stream processing system.

For an SDF graph, throughput relates to the fastest (average) rate at which the
graph may complete iterations; a single iteration consists of a set of actor firings,
the size of which is given by the graph’s repetition vector. The throughput of an SDF
graph is limited by cyclic dependencies; a graph that has no cycles has an unlimited
throughput, as the sources of such a graph do not depend on any other vertices
they may simultaneously start an infinite number of firings.

When computing the throughput of a graph, we may restrict the analysis to its
strongly connected components. Throughout this chapter, we assume that SDF

Large parts of this chapter have been published in [RdG:8] and [RdG:7].

142

C
hapter

6
–
Throughput

analysis

a,5 b,2 c,1
p1 p2

p2
p1 + p2

p1

p3 p1

p1
p1 + p3

p3

Figure 6.1 – The single-rate equivalent of the composition of two cycles has, in the best case,
at least as many actors as the single-rate equivalents of the individual cycles have in total.
In the worst case, however, its size is in the order of the product of the sizes of the smaller
single-rate equivalents.

graphs are strongly connected. In case this condition does not hold one may com-
pute the graph’s throughput by composing the throughputs of the strongly con-
nected components, in a straightforward way [40, 41, 49].

Throughput is tightly coupled with the eigenvalue associated with the state tran-
sition matrix of a max-plus system (see Chapter 2): the eigenvalue is given by
the maximum cycle ratio of the system’s graphical representation, and through-
put is the (multiplicative) inverse of the graph’s maximum cycle ratio. For HSDF
graphs, throughput can be computed from the simple cycles in the graph [78]. For
non-homogeneous SDF graphs, throughput may be computed from the graph’s
single-rate equivalent. This is a potentially expensive (in terms of computing time)
approach to computing throughput, as the size of the single-rate equivalent grows
exponentially in the size of the original graph [77].

For example, consider the graph depicted in Figure 6.1, which consists of two cycles,
with rates given by p1, p2 and p3. Assume that these rates are, pairwise, relatively
prime. The sizes (number of actors) of the single-rate equivalents of the two cycles
are then respectively p2 + p1 and p3 + p1. The single-rate equivalent of their com-
position has (p1 + p2)p3 + p1p2 actors, which is in the order of the product of the
sizes of the individual single-rate equivalents.

In Section 6.2 we describe how the highly regular structure of a graph’s single-
rate equivalent may be exploited to optimise its analysis, by restricting the search
for the graph’s maximum cycle ratio to a potentially much smaller subgraph. In
particular, the presented method allows for efficient throughput analysis of SDF
cycles, avoiding a full expansion of the cycle into its single-rate equivalent. The
improvement in efficiency one obtains using the approach is strongly dependent
on the structure of the single-rate equivalent of the graph it is applied to. In the
worst case, only a few channels in the single-rate equivalent are pruned by the
analysis. We therefore introduce a second, novel, approach in Section 6.3. This
approach is incremental: it selectively analyses cycles in the SDF graph that are
estimated to be critical, and composes the schedules and throughputs of these cycles
bymaking assumptions onwhich firings of an actor can be joined into parallel firing
groups. The approach builds upon the various transformations and approximations
presented in the previous two chapters.

143

6.
1–

Th
ro

ug
hp

ut
,p
ar

al
le
li
sm

,a
nd

m
ax

im
um

cy
cl
e
ra

ti
o

a,5 b,1

2

1

(a) HSDF graph.

a,5 b,1
2 1

1
2

2

1

1
1

(b)MRSDF graph.

Figure 6.2 – The throughput of the composition of two non-homogeneous cycles depends
not only on the throughputs of the cycles considered in isolation, but on their parallelism as
well.

We discuss and compare the two methods with each other and with related ap-
proaches, in Section 6.4.

6.1 Throughput, parallelism, and maximum cycle ratio

The throughput of a cycle in an HSDF graph is computed as the ratio between
the number of tokens on the cycle, and the total execution time of actors on the
cycle. As Reiter showed, the throughput of cycles in anHSDF graph composes: the
throughput of the composition of the two cycles (i.e., the graph induced by the
two cycles) is equal to the minimum of the throughputs of the cycles considered in
isolation [78]. This is not true forMRSDF graphs. Whereas the throughput of an
HSDF graph is fully determined by (one or more) simple cycles, the throughput of
anMRSDF graph is attained by a closed walk.

We give a small example to illustrate this. Consider the two graphs depicted in
Figure 6.2. The only difference between the graphs shown in Figure 6.2(a) and
Figure 6.2(b) is the number of tokens that is consumed and produced by actor a.
In the HSDF graph of Figure 6.2(a), maximum cycle ratio is equal to three, and is
attained by cycle aba. Any admissible schedule for this graph forbids the parallel
execution of two firings of actor b, due to the self-loop bb.

For theMRSDF graph of Figure 6.2(b), cycle aba attains maximum throughput only
if the two tokens produced by firings of actor a are consumed by two parallel firings
of actor b. This is, however, not possible, again due to the self-loop, which enforces
strictly sequential scheduling of firings of b. Hence, the throughput of theMRSDF
graph is given by neither of the two simple cycles, but rather by the non-simple
cycle abba, which has a throughput of 1/7: it involves two sequential executions of
actor b, followed by one execution of actor a. In order to compute the throughput
of the composition of cycles aba and bb, this restriction of parallelism must thus
be taken into account.

The most straightforward way to deal with the non-trivial composition ofMRSDF
cycles, is to transform theMRSDF graph into its single-rate equivalent. Since the

144

C
hapter

6
–
Throughput

analysis

latter is an HSDF graph, its analysis is again straightforward, albeit that its size
might be prohibitively large. In order to reduce the size, we may prune its actors
and channels: when analysing the single-rate equivalent for its maximum cycle
ratio, actors and channels that do not lie on a cycle in the graph may be pruned
safely. Furthermore, actors that do not lie on a critical cycle (i.e., a cycle that attains
maximum cycle ratio) in the graph may be pruned as well.

This is roughly the approach described in Section 6.2: rather than constructing and
analysing the full single-rate equivalent, it optimises the search for the critical cycle
by restricting it to a possibly small subgraph, by pruning actors and channels that
do not lie on a cycle.

Section 6.3 describes a more effective means to reduce the size of the analysed
graph. It may prune actors and channels that do lie on one of the cycles in the
single-rate equivalent, but never prunes actors or channels that lie on a critical
cycle. This approach involves joining actors in the single-rate equivalent, forming
parallel executing groups. This gives an iterative approach, where assumptions are
made, verified, and possibly revised. As a result, only a small part of the single-
rate equivalent needs to be constructed. Furthermore, as the approach uses the
approximations described in the previous chapter, it provides bounds on the graph’s
throughput that are tightened in an iterative fashion.

6.2 Analysis of the single-rate equivalent

The throughput of an MRSDF graph is equal to the reciprocal of the maximum
cycle ratio of its single-rate equivalent. There are several efficient algorithms that
compute the maximum cycle ratio in time polynomial in the size of the graph [29].
However, when applied to the single-rate equivalent of anMRSDF graph, the main
bottleneck in the analysis is not the efficiency of the algorithm, but rather the graph’s
size, which is exponential in the size of theMRSDF graph. Therefore, pruning the
single-rate equivalent, which discards channels and actors that do not impact the
graph’s throughput, has a strong potential to speed up the analysis. In this section
we show that many channels may be pruned from a graph’s single-rate equivalent.
As a result, the analysis may be restricted to a, typically much smaller, subgraph.

In the following sections, we formalise the structure of single-rate equivalents of
MRSDF graphs of increasing complexity. This allows one to reason about redundant
channels, paths and subgraphs. We start with the simplest structure, which is
the single-rate equivalent of an MRSDF channel, and conclude with single-rate
equivalents of strongly connectedMRSDF graphs.

6.2.1 Structure: parallel and crossing channels

Consider a consistentMRSDF graph G, with repetition vector q and its single-rate
equivalent, H. The latter may be obtained from the former using Algorithm 5,
presented earlier in Chapter 4. We restrict our attention to the subgraph ofH that

145

6.
2.
1–

St
ru

ct
ur

e:
pa
ra

ll
el

an
d
cr

os
si
ng

ch
an

ne
ls

corresponds to a single channel vw in G, and denote this subgraph byHvw . This
subgraph consists of qv + qw actors, and qw channels (see Chapter 4 for details).
Each actor inHvw corresponds to a single firing of actor v or w in G; as before we
denote the qv actors corresponding to firings of v by v1 , . . . vqv , and the qw actors
corresponding to firings of w by w1 , . . .wqw . In the remainder of this section, we
use the shorthand notation π̃vw , defined by:

π̃vw(k) = πvw(k) mod1 qv . (6.1)

Note that for each channel v iw j inHvw , we have i = π̃vw(j), and δv iw j = ⌊
qv−πvw(j)

qv
⌋.

Both equalities follow from Algorithm 5.

The structure ofHvw emerges from the in-order token consumption, as given by
the predecessor function πvw , and the balance equations (see Chapter 2). The
latter states that the number of tokens produced onto vw by qv firings of actor v
are consumed by qw firings of actor w. Due to the presence of initial tokens on
the channel, these qw consuming firings may span at most two consecutive graph
iterations (such is the case if the number of initial tokens on vw is not a multiple
of the channel’s consumption rate). In other words, the number of tokens on any
two channels inHvw can not differ by more than one.

The in-order token consumption gives rise to a non-decreasing number of tokens
on channels leaving actors in Hvw , in the following way. Consider actors v i and
v j inHvw , with i < j. The number of tokens on any channel leaving v j can not be
lower than the number of tokens on any channel leaving v j .

The above means that for channels inHvw that are disjoint, meaning that they share
neither source nor sink, their number of initial tokens may be inferred simply by
looking at the firing indices of their sources and sinks. We introduce the following
terminology to formalise the structure ofHvw :

Definition 6.1 (Parallel and crossing channels). Let G be a consistentMRSDF graph,
vw a channel in G, andHvw the single-rate equivalent of channel vw. Furthermore,
let e1 = v i1w j1 and e2 = v i2w j2 be two channels (with i1 = π̃vw(j1) and i2 = π̃vw(j2)
inHvw). The relations parallel and crossing are defined as follows:

» e1 is crossing with e2, denoted e1 ∦ e2, if:

(i2 > i1 ∧ j2 < j1) ∨ (i2 < i1 ∧ j2 > j1).

» e1 is parallel with e2, denoted e1 ∥ e2, if:

(i1 > i2 ∧ j1 > j2) ∨ (i1 < i2 ∧ j1 < j2).

Note that our definition of parallel channels should not be confused with parallel
channels found in a multigraph (where they refer to multiple edges connecting the
same two nodes).

146

C
hapter

6
–
Throughput

analysis

Two crossing channels can not have the same number of tokens, since in that case
tokens would be consumed out of order. Therefore, one of the two crossing chan-
nels must have precisely one token more than the other. This is formalised in the
following proposition:

Proposition 6.1 (different delays on crossing edges). Let vw be a channel in a con-
sistent MRSDF graph, and Hvw its single-rate equivalent. Let v i1w j1 and v i2w j2 be
two crossing channels in Hvw , with initial tokens k1 and k2, respectively, and with
i2 > i1 (and thus j2 < j1). Then k2 = k1 + 1.

Proof. First of all, since i1 = π̃vw(j1) and i2 = π̃vw(j2), we have π̃vw(j2) > π̃vw(j1).
Furthermore, since j2 < j1, we have πvw(j2) < πvw(j1). From the definition of the
predecessor function (see Equation 3.3 in Chapter 3) it then follows that δv i2w j2

<
δv i1w j1

. Channel v i2 j j2 thus has more tokens than channel v i1w j1 . The fact that the
number of tokens on the two channels can not differ by more than one completes
the proof.

Following a similar reasoning, we may infer that two parallel channels inHvw have
the same number of tokens:

Proposition 6.2 (same delays on parallel edges). Let vw be a channel in a consistent
MRSDF graph, andHvw its single-rate equivalent. Let v i1w j1 and v i2w j2 be two par-
allel edges inHvw , with initial tokens k1 and k2, respectively, and with i2 > i1 (and
thus j2 > j1). Then k2 = k1.

Proof. j2 > j1 gives πvw(j2) > πvw(j1) and i2 > i1 gives π̃vw(j2) > π̃vw(j1). It then
follows that δv i2w j2

= δv i1w j1
.

The relationship between parallel (and crossing) channels and their number of
initial tokens can be extended to disjoint paths (two paths are disjoint if no actor
is shared between the paths) in the single-rate equivalent of a path in a consistent
MRSDF graph. Instead of a single channel between actors v andw, we now consider
the situation of having n actors a1, a2 , . . . , an , and a path consisting of MRSDF
channels a1a2, a2a3 , . . . , an−1an . In the single-rate equivalent of this path, this
sequence of channels is represented by several paths, the indices of which are now
denoted in superscript, so (a i11 a

i2
2 . . . a in−1n−1a

in
n) denotes such a path inwhich channel

akak+1 is represented by channel a ikk a
ik+1
k+1 .

We refer to a path by the sequences of its actors and denote the number of tokens on
a path P by ∣P∣d . Paths are assumed to be simple, i.e., no actors is repeated in a path.
Similar to the definitions for channels in the single-rate equivalent, we introduce
the following terminology:

Definition 6.2 (Parallel and crossing paths). Let HP be the single-rate equivalent
of a path P = (a1a2 . . . an) in a consistent MRSDF graph G. Furthermore, let Pi =
(a i11 a

i2
2 . . . a inn) and Pj = (a i11 a

i2
2 . . . a inn) be two disjoint paths inHP . Then Pi and Pj

are:

147

6.
2.
1–

St
ru

ct
ur

e:
pa
ra

ll
el

an
d
cr

os
si
ng

ch
an

ne
ls

» parallel, denoted Pi ∥p Pj , if (j1 > i1 ∧ jn > in) ∨ (j1 < i1 ∧ jn < in).
» crossing, denoted Pi ∦p Pj , if (j1 > i1 ∧ jn < in) ∨ (j1 < i1 ∧ jn > in).

Analogous to the case of disjoint channels, the relative number of tokens on parallel
and crossing paths depends only on the indices of the first and last actors of the
paths. This property can be derived from Propositions 6.1 and 6.2 in a straightfor-
ward way, using induction on the number of actors represented by the paths:

Lemma 6.1 (relative tokens on disjoint paths). LetHP be the single-rate equivalent
of a path P = (a1a2 . . . an) in a consistentMRSDF graph G, and let Pi = (a i11 . . . a inn)
and Pj = (a

j1
1 . . . a jn

n) be two paths inHP , with i1 > j1. Then:

(1) ∣Pi ∣d = ∣Pj ∣d if Pi and Pj are parallel;

(2) ∣Pi ∣d = ∣Pj ∣d + 1 if Pi and Pj are crossing.

Proof. We prove this by induction on the number of actors n of the paths. First
of all, note that a ikk ≠ a jk

k for all k = 1, 2, . . . , n since two disjoint edges do not
have the same sink (and by assumption the inequality holds for k = 1). In case
n = 2 both paths are in fact channels and we obtain the result from Propositions 6.1
and 6.2. Next, suppose the result holds for all paths with at most n actors, and
consider two paths Pi and Pj with n > 2 actors and with final edges e i = a inn a

in+1
n+1

and e j = a
jn
n a

jn+1
n+1 , respectively. We assume again that i1 > j1. There are four cases to

consider, depending on the relative orders of in , jn and in+1 , jn+1. If jn < in (jn > in)
and jn+1 < in+1, then the paths Pi − a in+1n+1 and Pj − a

jn+1
n+1 are parallel (crossing) and

a inn a
in+1
n+1 and a

jn
n a

jn+1
n+1 are parallel (crossing), and the claims follow by induction and

by Propositions 6.1 and 6.2. The other two cases are similar.

An important consequence of the above lemma is the following: If we have three
pairwise disjoint paths and each crosses at least one of the other two paths, then
two of these three paths must be parallel. Furthermore, if a path crosses two other
disjoint paths, then these two paths must be parallel. These two implications are
captured in the following corollary, which follows directly from the above lemma.

Corollary 6.1 (restrictions on disjoint paths). Let Pi , Pj and Pk be three disjoint
paths in the single-rate equivalent of a path P in a consistent MRSDF graph, with
k1 > j1 > i1. Furthermore let Pi cross Pj . Then:

(1) if Pj and Pk cross, then Pi and Pk do not cross;
(2) if Pj and Pk are parallel, then Pi and Pk cross.

Proof. Both claims may be easily proven by contradiction using Lemma 6.1. As the
proofs for both claims is similar, it suffices to prove claim (1). Assume paths Pi and
Pk do cross. Then by Lemma 6.1, Pi , Pj and Pk must all have different numbers of
tokens, in particular ∣Pi ∣d ≠ ∣Pj ∣d . But since k1 > j1 and k1 > i1, by the same lemma

148

C
hapter

6
–
Throughput

analysis

we have ∣Pk ∣d = ∣Pi ∣d + 1 and ∣Pk ∣d = ∣Pj ∣d + 1, which implies the contradiction
∣Pi ∣d = ∣Pj ∣d .

Note that the results of the above lemma and its corollary also hold if we consider
walks instead of paths (so actors may be repeated) in the MRSDF graph. In par-
ticular, the result also holds for closed walks, i.e., walks for which the first and last
actor are the same. In the following two sections, we describe how this leads to an
efficient analysis ofMRSDF graphs.

6.2.2 The throughput of closed walks

Consider again the single-rate equivalentH of a consistentMRSDF graph G with
repetition vector q. Let C be a cycle in G, consisting of actors a1 , a2 , . . . , an and
channels a1a2 , a2a3 , . . . , an−1an , ana1.

As before, we denote by HC the subgraph of H that corresponds to C. This sub-
graph has a sequence of qk = qak actors a

1
k , a

2
k , . . . , a

qk
k for every actor ak , and

channels a ika
j
k+1 (and a

i
na

j
1) representing the channels in C, as defined before. For

convenience, we repeat the sequence of q1 nodes for actor a1 at the end and think
ofHC as an array of n+ 1 columns, where the sequences of actors are ordered from
left to right, and where the leftmost and rightmost sequences are identical, repre-
senting the actor a = a1 (see Figure 6.3(b)). To distinguish these two sequences, we
denote the leftmost sequence by L = L(a) and the rightmost by R = R(a).

Now consider the cycle-induced subgraph of the single-rate equivalent. This graph
is obtained by removing all actors and channels that do not lie on a cycle (see
Figure 6.3(c)) and consists of a number of disjoint (since each actor has an indegree
of one) paths, each of which starts in L and ends in R. Furthermore, if there are n
paths in the subgraph, each column contains precisely n actors. Because each path
has the same length and the (relative) number of tokens on a path is (by Lemma 6.1),
fully determined by its start and end vertices, we choose to compactly represent
the cycle-induced subgraph by a permutation ρ ∶ {1, . . . , n} → {1, . . . , n}. This
permutation maps the index of an actor in L to the index of an actor in R, where
the index of an actor is based on the superscripts of the actors (i.e., a ik < a

j
k if i < j).

In the remainder of this section, we shall refer to actors (in L and R) by their said
index; paths in the cycle-induced subgraph then start in an actor i ∈ {1, . . . , n} and
terminate in ρ(i) ∈ {1, . . . , n}.

Representing the cycle-induced subgraph as a permutation on a set of integers
reveals a clear structure in the single-rate equivalent of anMRSDF cycle. Consider
the case where two parallel paths start in subsequent actors, indexed i and i + 1.
Using the lemma stated above and its corollary we may derive that these paths also
terminate in subsequent vertices, or ρ(i + 1) = ρ(i) + 1 (see Figure 6.4(a)), which
leads to the following proposition:

149

6.
2.
2
–
Th

e
th

ro
ug

hp
ut

of
cl
os
ed

w
al

ks

a b c8 7 5 3 8 4

5
5

6

(a)MRSDF graph

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

b6

b7

b8

c1

c2

c3

c4

c5

c6

a1

a2

a3

a4

a5

(b) Equivalent HSDF graph

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

b6

b7

b8

c1

c2

c3

c4

c5

c6

a1

a2

a3

a4

a5

(c) Cycle-induced subgraph with two (disjoint) cycles

Figure 6.3 – An MRSDF graph, its single-rate equivalent in column representation (with
actor a duplicated), and the cycle-induced subgraph of the single-rate equivalent. The two
cycles of the latter have the same cycle ratio.

150

C
hapter

6
–
Throughput

analysis

1

i
i + 1

n

1

ρ(i)
ρ(i) + 1

n

(a) parallel paths.

1

i
i + 1

n

1

ρ(n)
ρ(1)

n

(b) crossing paths.

Figure 6.4 – Structure of the permutation ρ.

Proposition 6.3. Consider the single-rate equivalent,HC of a cycle C in a consistent
MRSDF graph. Let Pi and Pi+k be two parallel paths in HC , which start in actors
indexed i and i + k, respectively, with k > 0. Then ρ(i + k) = ρ(i) + k.

Proof. Let k = 1. Note that since Pi and Pi+1 are parallel, we have ρ(i + 1) > ρ(i).
Assume ρ(i + 1) > ρ(i) + 1. There must exist j such that ρ(j) = ρ(i) + 1. Let Pj
be the path that connects j with ρ(i) + 1. In case j < i, we have Pj ∦p Pi and
Pj ∥p Pi+1. By Corollary 6.1 however, we have Pj ∦p Pi+1, which is a contradiction.
The assumption that j > i + 1 leads to a contradiction in a similar way. We thus
have ρ(i + 1) = ρ(i) + 1, and by straightforward induction on k it follows that
ρ(i + k) = ρ(i) + k.

For crossing paths, a similar relation in terms of ρ exists. This is illustrated in
Figure 6.4(b) and may be understood by considering two crossing paths Pi and
Pi+1 that start in subsequent vertices i and i + 1, respectively. We may divide the
set of paths in two subsets: the first subset contains all paths starting in actors
indexed 1, 2, . . . , i, and the second contains all paths starting in actors i + 1, . . . , n.
By Corollary 6.1, both subsets contain pairwise parallel paths. Furthermore, each
path in one subset crosses all other paths in the other subset. As a consequence, we
must have ρ(i) = n and ρ(i+1) = 1. The following proposition formally generalises
this conclusion:

Proposition 6.4. Let HC be the single-rate equivalent of a cycle C in a consistent
MRSDF graph. Furthermore, let Pi and Pi+1 be two crossing paths in HC , which
start in actors indexed i and i + 1, respectively. Then ρ(i + k) = k for k > 0 and
ρ(i − k) = n − k for k ≥ 0.

Proof. Assume ρ(i + 1) > 1. There must exist j such that ρ(j) = 1. Let Pj be the
path that connects j with ρ(j). In case j < i, we have Pj ∥p Pi+1 and Pj ∥p Pi .

151

6.
2.
2
–
Th

e
th

ro
ug

hp
ut

of
cl
os
ed

w
al

ks

By Corollary 6.1 however, we have Pi ∦p Pj , which is a contradiction. In case
j > i + 1, we have Pj ∦p Pi and Pj ∦p Pi+1, which again contradicts Corollary 6.1,
thus ρ(i + 1) = 1. Following a similar reasoning it follows that ρ(i) = n. By
straightforward induction on k it follows that ρ(i+k) = k and ρ(i−k) = n−k.

We are now ready to move from paths inHC to cycles. A simple cycle inHC may
be constructed by repeatedly applying the permutation ρ until the start actor is
reached again. For this, let ρk+1(i) = ρ(ρk(i)) and ρ0(i) = i. Due to the structure
of the single-rate equivalent, the cycle ratio (i.e., the ratio between execution time
and tokens, see Chapter 2) from a cycle inHC may be deduced from the number
of cycles inHC , and the number of tokens on a path inHC . The following theorem
formally states and proves this, by exploiting the definition of ρ.

Lemma 6.2 (Paths infer cycle ratio). LetHC be the cycle-induced subgraph of the
single-rate equivalent of a cycle C in a consistentMRSDF graph. LetHC consist of N
paths. Furthermore, let C i = {i , ρ(i), . . . , ρn i (i)} with ρn i (i) = i be a simple cycle
inHC , with ρ(i) ≥ i. As before, let Pj denote the path that starts in an actor indexed
j. The cycle ratio of C i , denoted λ(C i), satisfies

λ(C i) =
N ∣C∣τ

N ∣Pi ∣d + ρ(i) − i
.

Proof. LetHC consist of N paths. We may define ρ as follows:

ρ(a) = (a + k) mod1 N ,

for some k ∈ {1, . . . ,N}. Using this definition of ρ, the length l of a cycle starting at
an actor indexed amay be calculated by finding the minimum positive (i.e., greater
than zero) value of l that satisfies the linear congruence: a + l ⋅ k ≡ a (mod N).
This solution l is given by:

l =
N

gcd(k,N)
.

Cycle C i thus comprises l paths. We may divide these l paths into two subsets,
S0 and S1: S0 contains paths Pj with ρ(j) ≥ j, and S1 contains those paths Pj for
which ρ(j) < j. Both sets contain pairwise parallel paths and each of the paths in
S1 crosses every path in S0. By Lemma 6.1, each path in S0 has ∣Pi ∣d tokens, and
each path in S1 has ∣Pi ∣d + 1 tokens. Furthermore, set S1 contains precisely

k
gcd(N ,k)

paths. The total number of tokens on cycle C i is thus given by:

∣C i ∣d =
N ∣Pi ∣d + ρ(i) − i

gcd(k,N)
.

The total execution time of actors on cycle C i follows from the l paths inHC that
compose C i . Cycle C i thus has a total execution time ∣C i ∣τ of:

∣C i ∣τ =
N ∣C∣τ

gcd(k,N)
.

152

C
hapter

6
–
Throughput

analysis

The quotient of ∣C i ∣τ and ∣C i ∣d , with k substituted for ρ(i) − i, gives the cycle ratio
stated by the lemma.

A straightforward result from this lemma is that any two (simple) cycles in HC
must have the same cycle ratio. The following theorem formally states and proves
this. Note that the theorem is not restricted to simpleMRSDF cycles, but applies to
any closed walk in theMRSDF graph.

Theorem 6.1 (Two cycles have the same cycle ratio). LetHC be the cycle-induced
subgraph of the single-rate equivalent of a cycle C in a consistentMRSDF graph, and
let C i = {i , ρ(i), . . . , ρn i (i)} with ρn i (i) = i and C j = { j, ρ(j), . . . , ρn j(j) = j} be
two disjoint simple cycles inHC . Then λ(C i) = λ(C j).

Proof. This follows directly from Lemma 6.2: without loss of generality, assume
ρ(i) ≥ i and ρ(j) ≥ j. Consider the paths Pi and Pj , which start in actors indexed
i and j, respectively. By assumption, these paths are parallel, thus by Lemma 6.1,
they have the same number of tokens. By Lemma 6.2, C i and C j then have the
same cycle ratio.

6.2.3 Efficient subgraph analysis

Theorem6.1 provides an efficient approach to compute the throughput of anMRSDF
cycle G. In the single-rate equivalent,H of G, each actor has precisely one incoming
channel. An actor may either lie on a cycle, or on a path that is reachable from
actors that lie on a cycle. In order to find a cycle in H, we may thus, rather than
fully constructing H, pick a random actor in H, and follow channels in reverse
direction until a cycle is detected. ByTheorem 6.1, this cycle must then be (one of)
the graph’s critical cycle(s).

A straightforward question is whether the same approach works for an arbitrary
MRSDF graph: Can we choose a random actor in the single-rate equivalent and
restrict the search for a critical cycle to the subgraph reachable (by following chan-
nels in reverse direction) from it? In this section we show that this is indeed the
case for strongly connectedMRSDF graphs (note that the throughput of anMRSDF
graph that is not strongly connected may be calculated from the throughputs of its
strongly connected components, as is described in [40]).

An important property in understanding why this approach works, concerns the
reachability of vertices in anMRSDF. This is formalised in Proposition 6.5, which
immediately follows from the fact that in a strongly connectedMRSDF graph each
actor has at least one incoming channel.

Proposition 6.5 (reachability). Let a and b be actors in a consistent and strongly
connected MRSDF graph G, and let H be the single-rate equivalent of G. Then for
each vertex b j inH there exists an i such thatH contains a path from a i to b j .

153

6.
2.
3–

Ef
fi
ci
en

t
su
bg

ra
ph

an
al
ys
is

In words, Proposition 6.5 states that if, in anMRSDF graphG, by following channels
in reverse, actor a is reachable from actor b, then, in the single-rate equivalent of
G, from any actor that represents a firing of actor b we may reach a vertex that
represents a firing of actor a. We use this fact together withTheorem 6.1 to derive
the important result that only a subgraph of the single-rate equivalent of anMRSDF
graph needs to be explored for its critical cycle:

Theorem 6.2 (Subgraph analysis). LetH be the single-rate equivalent of a consistent
and strongly connectedMRSDF graphG, and s an arbitrary vertex inH. Furthermore,
letHs be the induced subgraph ofH that consists of those vertices from which a path
to s exists. The maximum cycle ratio ofHs is equal to the maximum cycle ratio ofH.

Proof. Let the cycle attaining maximum cycle ratio inH be C = (a i11 . . . a inn = a
i1
1).

Cycle C is contained in the single-rate equivalent of a cycle W in G, with W =
(a1 , a2 , . . . , an = a1) (Note that this cycle may be a walk in G, i.e., vertices may be
repeated).

We prove the theorem by contradiction. LetHs not contain C. Then s obviously
does not lie on C. Furthermore, there is no path from a vertex on C to s, since if
this were the case, C would be inHs .

Now choose an actor v = a im1 that is not reachable from C, but from which there is
a path to s (i.e., v is inHs). By Proposition 6.5, such an actor can always be found.
If in the single-rate equivalent ofW we follow channels in reverse direction from
v, then eventually a cycle C′ will be found. ByTheorem 6.1, C′ has the same cycle
ratio as C. Since C′ is inHs andHs is a subgraph ofH, the maximum cycle ratio
ofHs is equal to the maximum cycle ratio ofH. We may thus restrict our search
toHs .

Theorem 6.2 implies that it is not necessary to explore the entire single-rate equiva-
lent for its critical cycle. More specifically, it does notmatter whether the single-rate
equivalent is strongly connected or not. We may thus, in a similar way to the ap-
proach for MRSDF cycles proposed in the previous section, choose an arbitrary
root actor in the single-rate equivalent and search the subgraph that is induced by
the actor and channels from which the root actor is reachable, for its critical cycle.

As an example, consider theMRSDF graph and its single-rate equivalent depicted in
Figure 6.5. The latter (Figure 6.5(b)) consists of nineHSDF actors. We chooseHSDF
actor a4 as a root actor, and follow channels in reverse to construct the subgraph
induced by those actors and channels from which a4 can be reached. This results
in a subgraph of six HSDF actors and eight channels. Note that the choice of root
actor matters; had we chosen actor a2, then the subgraph would have consisted of
only three actors: a2, b1 and c3.

The example just discussed raises the point that the choice of root actor has an
important impact on the size of the subgraph that is eventually analysed for its
maximum cycle ratio. We now turn to the final result of this section, which allows

154

C
hapter

6
–
Throughput

analysis

a b c
1 2

2
4

1

3
3

2

2
3

3

(a)

a1

a2

a3

a4

b1

b2

c1

c2

c3

(b)

Figure 6.5 – The throughput of anMRSDF graph may be computed from a subgraph of its
single-rate equivalent. This subgraph consists of those actors and channels from which an
arbitrary, fixed, root actor can be reached.

one to decrease the size of the analysed subgraph even further. For this, we consider
again the single-rate equivalentH of a consistent and strongly connectedMRSDF
graph G. Furthermore, we choose an arbitrary actor s inH, and letHs denote the
subgraph induced by paths that terminate in s.

Recall that H was obtained by Algorithm 5, which has omitted from H those
channels that do not impose a binding constraint on the schedules ofH (see Sec-
tion 4.1.4). This means that any admissible schedule for H can be mapped to an
admissible schedule for G. Now consider the strongly connected components of
H. Each strongly connected component has its own maximum cycle ratio; this
means that some of these components may process tokens faster than other ones.
In particular, the component withmaximum cycle ratio is in this sense the “slowest”
component. It processes tokens at most as fast as upstream components do. As a
result, if we let actors inH fire as soon as they are enabled, tokens will accumulate
on channels leading into the slowest component. If wemap this self-timed schedule
to a schedule for G, then in G there must also be some channel on which channels
keep on accumulating. This is a contradiction: since G is strongly connected, the
number of tokens that accumulate on any channel is bounded [40].

From the above we may conclude that the computation of the maximum cycle
ratio of Hs can be restricted to a specific strongly connected component. This is
the component that has no upstream components, because if it would have had
one, the reasoning detailed above leads to a contradiction. As a result, we may
restrict the analysis of H even further, by topologically sorting the strongly con-
nected components, and choosing the component that topologically precedes all
other components. We refer to this particular strongly connected component as
a feeding component. The feeding component corresponds to a source node in the
condensation ofH, which is the graph obtained by contracting each strongly con-
nected component to a single node [92]. The following theorem formalises this

155

6.
2.
3–

Ef
fi
ci
en

t
su
bg

ra
ph

an
al
ys
is

reasoning.

Theorem 6.3 (Feeding components are bottlenecks). Let G be a strongly connected
MRSDF graph, and H its single-rate equivalent. Furthermore, let s be an arbitrary
actor inH, andHs the subgraph ofH induced by paths that terminate in s.

The throughput of G is equal to the throughput of each of the strongly connected
components that correspond to source nodes in the condensation ofHs .

Proof. The proof follows the same lines as the reasoning in text above. Let S∗ be
the strongly connected component in Hs that has maximum cycle ratio, and let
S0 be a strongly connected component inHs that precedes S∗ in the topological
ordering of the strongly connected components of Hs . Note that since Hs ⊆ H,
these components are also present inH.

Now consider a self-timed schedule ofH. Since the throughput of S0 is higher than
the throughput of S∗, and there is a path from S0 to S∗, the rate at which tokens
are produced onto this path is higher than the rate at which they are consumed
from the path by actors in S∗. Since firings of actors in H correspond to firings
of actors in G, the accumulation of tokens onto a channel inH corresponds to the
accumulation of tokens on some channel in G. This accumulation is unbounded,
which contradicts the fact that the capacity of each channel in a strongly connected
MRSDF graph can be upper-bounded [40].

Theorem 6.3 translates to an efficient algorithm for computing the throughput of an
MRSDF graph by computing the maximum cycle ratio of its single-rate equivalent.
The algorithm is listed in Algorithm 8. To illustrate the algorithm, consider again
the single-rate equivalent depicted in Figure 6.5(b). The subgraph that is eventu-
ally analysed for its maximum cycle ratio consists of the following three strongly
connected components, in topological order: {a2 , b1 , c3}, {c2} and {a4 , b2}. The
analysis may thus be restricted to the subgraph induced by actors a2, b1 and c3.

Note that computation of strongly connected components may be done in time lin-
ear in the size of the graph, using either of the well-known algorithms of Tarjan [92]
or Kosaraju [85]. These algorithms both essentially perform a depth-first search
on the graph (Kosaraju’s algorithm performs two). Furthermore, the construction
of the subgraph, denoted Hs in Algorithm 8, induced by paths that terminate in
a specific actor may be done with a single depth-first search as well, and may be
combined with the computation of the strongly connected components. Obviously,
the construction of the subgraphHs does not require the full single-rate equivalent
to be constructed first.

In Chapter 7 we compare the performance of Algorithm 8 with state-of-the art
throughput analysis methods, on a set ofMRSDF graphs.

156

C
hapter

6
–
Throughput

analysis

Algorithm 8: Computes the throughput of an MRSDF graph by computing
the maximum cycle ratio of the graph’s single-rate equivalent.
1 input :A strongly connectedMRSDF graph G.
2 output :The throughput of G.
3 LetH be the single-rate equivalent of G
4 Let s be an arbitrary actor inH
5 LetHs be the subgraph ofH induced by paths terminating in s
6 Compute a list Lscc of strongly connected components ofHs

7 Topologically sort L
8 Compute λ∗, the maximum cycle ratio of the first element of L
9 return 1

λ∗

6.3 An incremental approach

In an HSDF graph, composition of the throughput of cycles is straightforward: the
throughput of the composition of two cycles is the minimum of the throughputs of
the individual cycles. For non-homogeneous SDF graphs this is generally not true,
as was illustrated in the beginning of this chapter with the graph of Figure 6.2: in
MRSDF and CSDF graphs, parallelismmust be taken into account.

Computing the throughput of an SDF graph by analysing the single-rate equivalent
for its maximum cycle ratio is a potentially costly approach, as the size of the single-
rate equivalent is exponential in the size of the original graph [77]. Although the
approach outlined in the previous section improves the efficiency of such an analysis
by exploring only a part of the single-rate equivalent, it avoids, rather than targets,
the nature of the problem, which is the incorporation of parallelism in composing
the throughput of cycles. In this section, we further elaborate on the interplay
between throughput and parallelism in the composition of cycles.

Section 6.3.2 develops this concept into a transformation that compresses single-
rate equivalents into smaller graphs by enforcing the parallel execution of groups
actor firings.

We show how, by appropriately grouping firings into parallel executing groups, and
unfolding actor firings, an MRSDF graph is transformed into a graph in which
the throughput is attained by a single cycle. This gives rise to an approach to the
computation of throughput by incrementally transforming the graph, while keeping
its size to a minimum. We present this approach in Section 6.3.3.

6.3.1 Estimated throughput

The single-rate approximations, which we presented in the previous chapter, pro-
vide a means to compute lower and upper bounds on the throughput of an SDF
graph. By Theorem 5.1, the maximum cycle ratio of the optimistic approximation
gives an upper bound on the throughput, and the pessimistic approximation gives

157

6.
3.1

–
Es
ti
m
at

ed
th

ro
ug

hp
ut

a lower bound. The difference between these bounds gives an indication of the
error made by the approximation. If the bounds are equal, then we say that the
approximation is exact.

In the remainder of this section, we restrict our attention to graphs that are (consis-
tent) SDF cycles, in which actors have a non-varying execution time. The through-
put of such a graph is thus bounded by the cycle ratios of its single-rate approxi-
mations. The approximation is exact, if every actor in the single-rate equivalent of
the cycle lies on a cycle. This is a consequence of the structural properties of the
single-rate equivalent, which we described in detail in Section 6.2.

Theorem 6.4 (Exact cycle approximations). Let G be a consistent CSDF cycle, where
each actor has a non-varying execution time, and with single-rate equivalent H.
Furthermore, let λ̂ and λ̌ be the cycle ratios of the pessimistic and optimistic single-rate
approximation of G. If every actor inH lies on a cycle, then the approximations are
exact, that is: λ̂ = λ̌.

Proof. By propositions 6.3 and 6.4, every pair of cycles in H is disjoint. That is,
every actor inH lies on precisely on cycle; the in-degree and out-degree of every
actor is equal to one. This implies that every actor v in G is represented by the
same number of HSDF actors, v1 , . . . , vqv , inH. In other words, all entries in the
repetition vector of G are equal.

Now, consider a channel vw in G. Observe that, due to the above, the predecessor
function associated with vw, πvw , is a bijection. Again by propositions 6.3 and 6.4,
this bijection must be a translation, of the form πvw(k) = k − c, for some constant
c ∈ Z. From the construction of the single-rate approximations of G (see Chapter 5),
it follows that the predecessor functions of the associated channels, v̂ŵ and v̌w̌, are
then given by π̂vw(k) = π̌vw(k) = k − β (for some constant β ∈ Z). Hence, v̂ŵ
and v̌w̌ have the same number of tokens. Since, also, actors v̂ and v̌ have the same
execution time, the cycle ratios of the single-rate approximations are the same, as
well.

The above theorem gives a relation, between the accuracy of the single-rate approxi-
mations of a cycle, and the structure of its single-rate equivalent. The contrapositive
of the theorem implies that, if the approximations are not exact, there is at least one
actor in the single-rate equivalent that does not lie on a cycle. These actors may
be pruned. As they do not lie on a cycle, pruning these actors does not change the
maximum cycle ratio of the graph. Rather than removing the actors from the graph,
we prune them by contracting several actors into a new actor. This transformation
is defined as follows.

Definition 6.3 (Actor contraction). Let G be an HSDF graph, and let the set S =
{v1 , . . . , vn} be a subset of the actors in G. The contraction of the actors in S produces
a graph,H, in which actors v1 , . . . , vn are replaced with a single actor, z, such that z
is adjacent to the union of actors to which actors in S were originally adjacent. That

158

C
hapter

6
–
Throughput

analysis

is, for every channel ab in G, where a ∈ S, there is precisely one channel zb in H,
with δzb = δab , and, likewise, for every channel ab with b ∈ S, there is precisely one
channel az in H, with δaz = δab . Furthermore, the execution time of z is given by
τz = maxv∈S τv .

The contraction of actors in anHSDF graph may yield a multigraph: if v1 and v2 are
contracted into a single actor z, then a pair of channels v1w and v2w is mapped to a
pair of parallel channels, both connecting actor z with actor w. These two parallel
channels both impose a constraint on the firing times of w: if the channels have
the same number of tokens, then the constraints they impose are strong, and we
may safely prune either of the channels without changing the temporal dynamics
of the graph. If the number of tokens on these two parallel channels differs, then
the one with the fewest tokens imposes the stronger constraint on the firing times
of w. Consequently, we may safely prune the channel that has the most tokens,
without changing the temporal dynamics of the graph. By repeating this for as
long as the graph has parallel edges, we obtain a simple graph (see also [88] and
[52], which describe a similar procedure). The following definition formalises this
transformation.

Definition 6.4 (Simplified graph). Let G be anHSDFmultigraph. The simplification
of G is an HSDF graph,H, which has the same actors as G. GraphH has a channel e
from actor v to w, if vw is a channel in G. The number of tokens on e are given by:
δe = min{δc ∣c ∈ G ∧ target(c) = w ∧ source(c) = v}.

In the remainder of this section, we shall assume that an actor contraction is al-
ways applied to the simplification of a graph, and that it is always followed by a
simplification of the resulting graph. That is, we assume that a contraction always
transforms a simple graph into a simple graph.

An actor contraction changes the structure of the graph. Valid contractions are
those that leave the maximum cycle ratio of the graph unaffected. The following
theorem relates valid contractions, of actors in the single-rate equivalent of a graph
G, to the predecessor function of corresponding channels in G.

Theorem 6.5 (Admissible firing contractions). Let G be a consistent SDF cycle, with
single-rate equivalentH, and let vw be a channel in G. Furthermore, let all actors in
G have non-varying execution times.

Let w j and w j+1 be actors in H, with j such that πvw(j) = πvw(j + 1). We may
contract w j and w j+1 into a new actor, ẘ, which has the same execution time as the
two contracted actors. This contraction does not affect the maximum cycle ratio ofH.

Proof. Every actor inH has precisely one incoming, and one outgoing channel. The
connectivity ofH is determined by the predecessor function: if πvw(k) = m, thenH
has a channel from vm mod1 qv to wk mod1 qv . Thus, the fact that πvw(j) = πvw(j+ 1),
implies that actors w j and w j+1 do not lie on two different cycles. This means that

159

6.
3.2

–
C
yc

le
an

al
ys
is
by

it
er

at
iv
e
ve

ct
or

is
at

io
n

the contraction of the two actors leaves the number of cycles in the graph intact.
Without loss of generality, letw j lie on a cycle C inH. As ẘ has the same execution
time as w j , the contraction does not increase the execution time along C. As a
result, the cycle ratio of C is unaltered by the contraction, and thus the maximum
cycle ratio ofH is unaffected.

6.3.2 Cycle analysis by iterative vectorisation

There is a natural correspondence between admissible contraction of actors, in
the single-rate equivalent of an SDF cycle, and the manipulation of production
and consumption rates associated with actors in that SDF cycle. Actors in the
single-rate equivalent correspond to individual firings, and their contraction thus
essentially joins them together in a single firing. From a functional perspective, this
new firing thus performs a composition of the functions of the contracted firings.
Consequently, production and consumption rates associated with the new firing
are obtained by taking the sums of the rates associated with the contracted firings.

A similar transformation of an actor’s rates has been applied in the context of vector
processing in digital signal processing tasks, where it is called vectorisation [80].
The vectorisation transformation replaces the rates associated with anMRSDF ac-
tor with an integer multiple, thereby modelling a processing of vectors of samples,
rather than individual samples. In [80], vectorisation is used to decrease the num-
ber of task activations (by letting tasks process more data), which reduces the over-
head of context-switching. One may thus regard actors in theseMRSDF graphs as
having parametric rates, the number of firings that compose a single graph iteration
are controlled by varying the parameters. These graphs are referred to as scalable
synchronous dataflow [79]. In this context, the parameters that control the num-
ber of firings that are grouped together are called blocking factors, since grouping
together firings exploits opportunities to process blocks of data.

We generalise the notion of vectorisation, by defining its application toCSDF actors.
This means that, rather than replacing non-varying rates with an integer multiple,
the transformation operates on vectors. Following the naming convention of [80],
blocking factors thus become blocking vectors. We define this transformation as
follows.

Definition 6.5 (Vectorisation). Let G be a CSDF graph, and v an actor in G, with
a non-varying execution time, τv . Furthermore, let B = (b1 , . . . , bn) be an integer
vector, such that the sum of the elements in B is an integer multiple of φv . The vectori-
sation of v with blocking vector B results in a new graphH, which is obtained from
G by replacing v with v′, with τv′ = τv . Furthermore, the consumption rate vector
associated with each incoming channel uv′ of v′ inH, and the production rate vector
associated with each outgoing channel v′w, are given by:

ρ−uv′(i) =
b i

∑
l=1
ρ−uv(l) ρ+v′w(i) =

b i

∑
l=1
ρ+vw(l).

160

C
hapter

6
–
Throughput

analysis

a b c
3 ⟨2, 0, 1, 4⟩ ⟨1, 2, 1, 3⟩

4
1 a b̊ c

3 ⟨3, 4⟩ ⟨4, 3⟩

4
1

Figure 6.6 – Applying the vectorisation transformation to an actor groups together several
consecutive firings into a single firing, by replacing the rates of these firings with their sums.
In the graph above, actor b is vectorised by applying a blocking vector of (3, 1).

An example of a vectorisation is given in Figure 6.6. Actor b has cyclically varying
production and consumption rates. The period of this varying pattern is four, i.e.,
φb = 4. A blocking vector of (3, 1) indicates that, out of every four firings, the first
three are grouped together into a single firing. Applying this blocking vector in the
vectorisation of b results in a graph inwhich firings of actor b̊ have cyclically varying
rates, with a period of two: in the original graph, the first three firings of actor b
consume a total of three tokens from channel ab, and produce four tokens onto
channel bc. Consequently, in the vectorised graph, the first firing of b̊ consumes
three tokens, and produces four tokens. The second firing of b̊ corresponds to the
fourth firing of b.

The vectorisation transformation groups together several consecutive firings into
a single firing. Firings that originally depended on one of these merged firings,
now depend on this new firing. For careful choices of the blocking vector, the
vectorisation transformation corresponds to the contraction of actors (followed by
a simplification of the graph), given by definitions 6.3 and 6.4. We give an example
to illustrate this correspondence.

Consider the graph in Figure 6.7(a). In a single iteration of this graph, actor b fires
twice. The single-rate equivalent of the graph, which is shown in Figure 6.7(c), thus
has two actors corresponding to the two firings of b. As the single-rate equivalent
shows, both firings of b depend on the first firing of a that occurs in that same graph
iteration. This fact may also be obtained from the predecessor function associated
with channel ab: each odd firing has the same predecessor as the following even
firing, i.e., πab(2k + 1) = πab(2k + 2). ByTheorem 6.5, this means that the contrac-
tion of the two firings of b is safe, i.e. it does not change the maximum cycle ratio
of the graph. The HSDF graph obtained by the contraction of b1 and b2 is shown
in Figure 6.7(d).

If we apply a vectorisation to the graph, by grouping together every two consecutive
firings of actor b, then we obtain the graph shown in Figure 6.7(b). The single-rate
equivalent of the transformed graph, which is shown in Figure 6.7(d), is equivalent
to the graph that is obtained by the contraction of b1 and b2 in Figure 6.7(c). Ob-
serve that if, instead, we would have grouped two firings of c together, by replacing
the consumption rate, associated with c, with two, then the single-rate equivalent
we would obtain does not correspond to the graph obtained by contracting actors

161

6.
3.2

–
C
yc

le
an

al
ys
is
by

it
er

at
iv
e
ve

ct
or

is
at

io
n

a b c2 1 1 1 1

(a)MRSDF graph.

a b̊ c2 2 2 1 1

(b) Grouped firings of b.

a1
b1

b2

c1

c2

(c) Single-rate equivalent of (a).

a1 b̊1

c1

c2

(d) Single-rate equivalent of (b).

Figure 6.7 – Under specific circumstances, grouping together consecutive firings of an
actor corresponds to a contraction, of the corresponding actors in the graph’s single-rate
equivalent, into a single actor.

c1 and c2.

The grouping of firings, by applying a vectorisation transformation, corresponds to
a contraction, if the grouped firings depend (in terms of the predecessor function)
on the same producing firing. This means that contractions that are safe, in the
sense that they leave a graph’smaximumcycle ratio unaffected, on the one hand, and
the vectorisation transformation, on the other hand, are equivalent. The following
lemma states this equivalence in a formal manner.

Lemma 6.3 (Contraction and grouping firings). Let G be a CSDF graph, in which
actors have non-varying execution times, and let H be the single-rate equivalent
of G. Furthermore, let GB be the graph obtained by vectorising actor v in G, with
blocking vector B of length n. Also, let S = (s1 . . . sn) be the vector obtained from
B, with s i = ∑i

l=1 b l , and let graphHC be the graph obtained fromH, by iteratively
contracting the set of actors {v j ∣sk − bk < j ≤ sk} into actor v̊k , for k = 1, . . . , n.

If, for 1 ≤ i ≤ n, we have:

∀m ∈ {1, . . . , b i} ∶ πuv(s i − b i +m) = πuv(s i),

then the single-rate equivalent of GB andHC are equal.

Proof. Let v̊ be the actor in GB that corresponds to actor v in G. Observe that the
following relations, between the predecessor functions associated with incoming
and outgoing channels of v and v̊, hold:

∆v̊w(m, k) = ∆vw(sm , k), ∆uv̊(m, k) = ∆uv(m, sk).

162

C
hapter

6
–
Throughput

analysis

Let v iw j be a channel inH, andm such that sm−1 < i ≤ sm . There is a channel v̊mw j
inHB .

πvw(j) = i ⇒ sm−1 < min{k ∈ Z∣∆vw(k, j) ≥ 0} ≤ sm .

This implies that ∆vw(sm−1 , j) < 0, and ∆vw(sm , j) ≥ 0, and thus:

min{k ∈ Z∣∆vw(sk , j) ≥ 0} = m⇒ πv̊w(j) = m,

which implies thatHB has a channel v̊mw j .

Next, let u iv j be a channel inH, andm such that sm−1 < j ≤ sm . Note that πuv(j) =
πuv(sm).

πuv(sm) = i ⇒ min{k ∈ Z∣∆uv(k, sm) ≥ 0} = i ⇒ πuv̊(m) = i ,

which implies thatHB has a channel u i v̊m .

Finally, let v iw j and vkw j be two channels, and k such that sk−1 < i < j ≤ sk . Both
channels are mapped to channel v̊kw j . The number of tokens on this channel is
equal to the maximum of the number of tokens on v i and w j .

The above implies that admissible actor contractions may be performed implicitly,
by an appropriate adaptation of the rates of actors. An admissible contraction
may be performed if the gain of a channel (see Section 2.1.3) is higher than one.
This implies that for that channel, on average, every single producing firing requires
more than one consuming firing, and thus some consuming firingsmay be grouped
together into a single one. We may thus apply the vectorisation transformation
iteratively, grouping firings of different actors at each step, until the gain of each
channel is equal to one.

A gain that is higher than one is by itself not sufficient to allow for a safe vec-
torisation of the channel’s consumer. Consider the example in Figure 6.8. In the
depicted graph, actor b has a repetition vector entry of five. This means that, in the
graph’s single-rate equivalent, there are five actors that correspond to actor b. The
gain of channel ab is equal to 5/2, which is higher than one, and indeed we have
πab(2) = πab(3) = πab(4) and πab(5) = πab(6). This implies that actors b2, b3,
and b4 can be safely contracted, and also b5, and b6. The latter, however, is not an
actor in the single-rate equivalent. If we first simulate a single firing of b, which
consumes two out of the three tokens from ab, producing one token onto bc, then
we obtain πab(1) = πab(2) = πab(3) and πab(4) = πab(5). This gives rise to an
admissible contraction, which can be represented by a vectorisation of b with a
blocking vector of (3, 2).

Definition 6.6 (Retiming). A retiming of G, by simulating n firings of v, yields a
graphH, which is obtained from G by changing the number of initial tokens on chan-
nels incident to v. For every incoming channel of uv inH, let uv̊ be the corresponding
channel inH. The number of tokens on uv̊ is given by:

δuv̊ = ∆uv(n, 0).

163

6.
3.2

–
C
yc

le
an

al
ys
is
by

it
er

at
iv
e
ve

ct
or

is
at

io
n

a b c
5 3 2 1 1 1 a b̊ c

5 1 ⟨6, 4⟩ ⟨3, 2⟩ 2 1

Figure 6.8 – A safe vectorisation transformation may require a retiming of the graph, by
simulating a number of firings. In the graph above, actor b is vectorised by applying the
blocking vector (3, 2), after simulating a single firing of b.

Similarly, the number on tokens on a channel v̊w in H, which corresponds to an
outgoing channel, vw of v, in G, is given by:

δv̊w = ∆vw(0, n).

Algorithm 9 lists a procedure to perform the retiming and vectorisation, of the
consumer of a particular channel, in a systematic manner.

Algorithm 9: Vectorises the consumer of a channel.
1 input :A consistentMRSDF graph G, and a channel vw in G.
2 output :A blocking vector for actor w, which indicates which firings of w may be

grouped together into a single firing.
3 Let q be the repetition vector of G
4 Bw ←Ð empty vector
5 j ←Ð 1
6 idx ←Ð 0
7 while ∆vw(0, 1) ≥ 0 do
8 Simulate a firing of w in G
9 for i = 1 to qv

gcd(qv ,qw)
do

10 k ←Ð j
11 while ∆vw(i , k + 1) ≥ 0 do
12 k ←Ð k + 1
13 if k > j then
14 idx ←Ð idx + 1
15 Bw[idx] ←Ð k − j
16 j ←Ð k

17 return Bw

If all channels in a cycle have a gain equal to one, then the optimistic and pessimistic
approximations imply whether the graph’s single-rate equivalent allows for more
admissible actor contractions: if the optimistic and pessimistic approximations
differ, then, by the contrapositive of Theorem 6.4, there must be an actor in the
single-rate equivalent that does not lie on a cycle. This actor must be the consumer
of a channel for which the number of tokens on the corresponding channels in the

164

C
hapter

6
–
Throughput

analysis

optimistic and pessimistic approximations differ. For this channel, uv, there exists
an integer j, such that πuv(j) = πuv(j + 1), which, by Theorem 6.5, implies that
actors, v j and vk , with k = (j+ 1) mod1 qv , may be safely contracted. Consequently,
after a suitable retiming of v, we may safely apply a vectorisation transformation to
v, which prunes v j from the single-rate equivalent, by contraction. We may repeat
this process until the cycle ratios of the optimistic and pessimistic approximations
are equal, at which point we have computed the exact throughput of theMRSDF
cycle.

Figure 6.9 illustrates this approach, by applying it to two different graphs. As a
first example, consider the graph in Figure 6.9(a). Channel ab has a gain of 3/2:
the rates of the channel are such, that the first firing of a enables a single firing of
b, and the second firing of a enables two more firings of b. Consequently, actor
b may execute the second and third, out of every three firings, simultaneously.
This is enforced by vectorising the actor with a blocking vector of (1, 2), which
results in the graph CSDF depicted in Figure 6.9(b). Note that, in the CSDF graph,
actor b has a constant execution time, which is why we do not explicitly depict
an execution time vector. The optimistic and pessimistic approximations for the
graph, obtained by applying Algorithm 6, are embedded in the figure, in the form
of a pair of integers, associated with every channel. These integers give the number
of initial tokens, on the corresponding channel, in the pessimistic and optimistic
approximation, respectively. Both approximations of the graph of Figure 6.9(b)
thus have the same cycle ratio, which is one. Multiplying this by the scalar invariant
(which is six) of the MRSDF graph, thus gives the maximum cycle ratio, of the
graph’s single-rate equivalent, which is equal to six. The throughput of the graph is
thus 1/6.

A second example is given in figures 6.9(c) through (e): Following the same reason-
ing as we did in the previous example, actor d in Figure 6.9(c) can be vectorised,
with a blocking vector of (1, 2). This gives the graph shown in Figure 6.9(d). The
optimistic and pessimistic single-rate approximations of this graph differ. This is
due the channel dc: in the optimistic approximation, this channel has six tokens,
whereas in the pessimistic approximation it has only three. By the contrapositive of
Theorem 6.4, this implies that actor c can be vectorised without affecting the graph’s
throughput. Indeed, after simulating two firings of c, we have πdc(1) = πdc(2), and,
by Theorem 6.5 we may thus safely group every two consecutive firings of c into
a single firing. That is, we may vectorise actor c with a blocking vector of (2),
which results in the graph shown in Figure 6.9(e). The optimistic and pessimistic
approximations for this graph are identical, and have a cycle ratio of 1/2. Again,
by multiplying this byN we learn that the maximum cycle ratio of the single-rate
equivalent of Figure 6.9(c) is three (and thus the throughput is 1/3).

6.3.3 Incremental throughput analysis of graphs

We now move from the incremental analysis of cycles to the incremental analysis
of SDF graphs. In the previous section, we have seen how certain vectorisations

165

6.
3.3

–
In
cr

em
en

ta
l
th

ro
ug

hp
ut

an
al
ys
is
of

gr
ap

hs

a, 1 b, 2
3

-2,0 2

2
4

3,43

(a)MRSDF graph.

a, 1 b, 2
3

0:0
⟨2, 4⟩

⟨2, 4⟩
4

3:33

(b) Shift-invariant CSDF graph.

c, 1 d, 2
3

-2:0 2

2
6

5:6
3

(c)MRSDF graph.

c, 1 d, 2
3

0:0
⟨2, 4⟩

⟨2, 4⟩
6

3:6
3

(d) Vectorised graph.

c, 1 d, 2
6

6
6:6

⟨2, 4⟩

⟨2, 4⟩
0:0

6

(e) Shift-invariant graph.

Figure 6.9 – By repeatedly applying the vectorisation transformation, a graph is obtained
for which the pessimistic and optimistic approximations are exact. The throughput of an
MRSDF cycle may thus be analysed without transforming it into its single-rate equivalent.

a,5 b,2 c,1
3

-2,0 2

2
4
3,43

2
2
1,2

3

3
2
0,22

(a)MRSDF graph.

a,5 b,2 c,1
3

0,0
⟨2, 4⟩

⟨2, 4⟩
4

3,33

⟨2, 4⟩
2
0,0

3

3
2

0,3
⟨2, 4⟩

(b) Vectorised b.

Figure 6.10 – An example of a graph for which the incremental analysis of its cycles is not
independent.

of an actor, and the corresponding contractions in the single-rate equivalent, are
safe in the sense that they do not affect the throughput of the given cycle. These
transformation may however affect the throughput of other cycles. Consider, for
example, the graph shown in Figure 6.10. Again, we represent the single-rate ap-
proximations of the graphs by annotating the tokens on the corresponding channels
in the respective approximations: the annotation x , ymeans that in the pessimistic
and optimistic single-rate approximations, the corresponding channels have x and
y initial tokens, respectively.

Maximumcycle ratio of the pessimistic approximation of the graph of Figure 6.10(a)
is attained by cycle aba. If we treat this cycle in isolation, then the vectorisation of b
with blocking vector (1, 2) is safe (following the same reasoning as the example we

166

C
hapter

6
–
Throughput

analysis

described in the previous section). In the resulting graph (shown in Figure 6.10(b)),
cycle bcb is now deadlocked: because the second firing of b now requires that
four tokens are available on channel cb, it can never become enabled. This is also
expressed in the single-rate approximations of the graph: the number of tokens in
cycle bcb, of the pessimistic approximation, is negative, which indicates a possible
deadlock.

Given a cycle C1 in an MRSDF graph, the fact that a vectorisation of an actor is
safe is based on the assumption that the throughput of theMRSDF graph is fully
determined by C1. As the example has shown, this assumption may not hold. The
throughput of theMRSDF graph may be fully determined by another cycle. This
cycle may be simple, or may be a closed walk, which is a cycle in which an actor
is traversed multiple times. If the throughput is attained by another simple cycle,
C2, then, at some point during the incremental analysis of C1, maximum cycle
ratio of the pessimistic approximation of the graph will be attained by the cycle
corresponding to C1. Furthermore, if cycles C1 and C2 do not share an actor, then
the incremental analysis of C1 and C2 is independent: vectorisation of an actor in
C1 does not change the throughput of C2, and vice versa.

In case two cycles share one or more actors, then their incremental analysis is not
independent. This was shown in the example above: vectorising an actor may leave
one cycle’s throughput unaffected, while decreasing the throughput of another. In
the remainder of this section, we present an approach that copes with this problem
by unfolding those actors for which a vectorisation is not safe.

If an actor is shared by two (ormore) cycles of an SDF graph, then, in the single-rate
equivalent of that graph,HSDF actors corresponding to firings of that actor may lie
on several cycles. When treating one of the cycles in isolation, and transforming
it in the way described in the previous section, we consider only a subset of these
cycles. The transformation may correspond to a contraction of two actors, which
both lie on the same simple cycle, into a single actor. As a result, the cycle C is
transformed into a closed walk,W , in the single-rate equivalent of the vectorised
graph. The cycle ratio, of each of the simple cycles that composeW , may be higher
or lower than the cycle ratio of C. However, one of the composing cycles must have
a cycle ratio that is at least the cycle ratio of C. This is illustrated by Figure 6.11, and
stated formally by the following lemma.

Lemma 6.4 (Contraction and maximum cycle ratio). Let H be an HSDF graph,
and let v and w be two actors in H. Also, let Hc be the graph obtained from H by
contracting v and w into a single actor z.

The maximum cycle ratio ofHc is at least the maximum cycle ratio ofH.

Proof. Note that the lemma holds if the contraction of any two actors v and w
in a cycle C introduces a cycle Cc with λ(C∗) ≥ λ(C). We prove this sufficient
condition as follows.

167

6.
3.3

–
In
cr

em
en

ta
l
th

ro
ug

hp
ut

an
al
ys
is
of

gr
ap

hs

a, 1
b, 2

d, 2
c, 4

(a) HSDF graph.

a, 1 bd, 2 c, 3

(b) Contraction of b and d.

Figure 6.11 – Contracting two actors, which lie on the same simple cycle, into a single actor,
transforms the cycle into a closed walk that is composed of two simple cycles. The cycle
ratio of one these simple cycles must have a cycle ratio that is at least the cycle ratio of the
original cycle.

Let P1 be a (simple) path inH that starts in v and terminates inw. Furthermore, let
P2 be a (simple) path from w to v inH. The path that is formed by concatenating
P1 and P2 is a (simple) cycle, which we denote by C. Denote by ∣P∣w the weight of a
path P, and by ∣P∣δ the number of tokens on P. The lemma may now be stated as:

max{
∣P1∣w
∣P1∣δ

,
∣P2∣w
∣P2∣δ

} ≥
∣P1∣w + ∣P2∣w
∣P1∣δ + ∣P2∣δ

=
∣C∣w
∣C∣δ

, (6.2)

which we prove by contradiction. Assume that (6.2) is false. Then we must have
both ∣P1∣w ∣C∣δ < ∣P1∣δ ∣C∣w and ∣P2∣w ∣C∣δ < ∣P2∣δ ∣C∣w . These two inequalities imply
the following two inequalities:

∣P1∣w
∣P1∣δ

<
∣C∣w
∣C∣δ

⇒
∣P1∣w
∣P1∣δ

<
∣P2∣w
∣P2∣δ

∧
∣P2∣w
∣P2∣δ

<
∣C∣w
∣C∣δ

⇒
∣P2∣w
∣P2∣δ

<
∣P1∣w
∣P1∣δ

,

which contradict each other. This proves the lemma.

A result of the above lemma is that, if the throughput of an SDF graph is attained
by a closed walk in the graph, the incremental analysis of one of the cycles that
compose the walk will, at some point, cause another cycle in the walk to attain a
higher pessimistic approximation. This was illustrated earlier in this section, in
Figure 6.10. In the figure, there is a conflict in the firings of actor b that must be
executed in parallel, in order to let each of the cycles attain its throughput. In cycle
aba, actor b may be vectorised with blocking vector (1, 2), but in cycle bcb, actor b
must fire once before it may be vectorised with the same blocking vector. To resolve
this conflict, we unfold the actor for which there is a vectorisation conflict, using
the transformation presented in Chapter 4. The number of firings that we unfold
is given by the sum of the elements of the blocking vector that was initially applied
to the actor. For the example of Figure 6.10, we thus unfold b three times, using
Algorithm 3. This results in the graph shown in Figure 6.12(a). The graph is again
an MRSDF graph, the throughput of which we may analyse again by finding the

168

C
hapter

6
–
Throughput

analysis

a,5

b1 ,2

b2 ,2

b3 ,2

c,1
3

4
3,3

6

3 2
0,0

6

3

0,0
6

6
4

0,3

3

6
8
3,6

3

6 2
-3,0

3
6

4
0,3

3 36

6,6
6

34

3,3
6

3

2

0,0

6

(a) Unfolded actor b, 7 ≤ λ ≤ 20.

a,5

b1 ,2

b2 ,2

b3 ,2

c,1
6

7

6,6

6

6 5
0,0

6

6

3
0,0 3

6
1
0,0

6

6

5
0,0

6

6 2
-3,0

3
6

4
0,3

3 36

6,6
6

34

3,3
6

3

2

0,0

6

(b) Retimed and vectorised a,∞ ≤ λ ≤ ∞.

a1 ,5

a2 ,5

b1 ,2

b2 ,2

b3 ,2

c,1

6

4
0,0

6

6

5
0,0

6

6 3
0,0 6

6

4
0,0

6

6

11
6,6

6

6 2
-3,0

3
6

4
0,3

3 36

6,6
6

34

3,3
6

3

2

0,0

6

(c) Unfolded actor a, 14 ≤ λ ≤ 20.

a1 ,5

a2 ,5

b1 ,2

b2 ,2

b3 ,2

c1 ,1

c2 ,1

6

4
0,0

6

6

5
0,0

6

6 3
0,0 6

6

4
0,0

6

6

11
6,6

6

6
5
0,0 6

6

4
0,0

6

6
4
0,06

6

9
6,6

6

6

5
0,0

6

(d) Fully unfolded, λ = 17.

Figure 6.12 – Resolving the conflict in safe vectorisations of actor b in Figure 6.10, by un-
folding three firings of the actor.

cycle that is estimated to be critical, and perform an incremental analysis until we
either find a conflict, or obtain the graph’s exact throughput.

The above example gives rise to an incremental approach, where we use the opti-
mistic and pessimistic single-rate approximations in the selection of cycles that are
estimated to form bottlenecks, and their incremental analysis, and use transforma-
tions to unfold actors for which there is a vectorisation conflict. This approach is
listed in Algorithm 10.

If we apply Algorithm 10 to the graph shown in Figure 6.12(a) (which was obtained
from Figure 6.10 by unfolding actor b), then we find that its pessmistic and opti-
mistic single-rate approximations have maximum cycle ratios of respectively 10/3
and 7/6. In the pessimistic approximation, the corresponding critical cycles are
ab1cb3a and ab2cb3a, and, in the optimistic approximation, these are ab1a and
ab3a. Multiplying the maximum cycle ratios of the two approximations by the
scalar invariant of theMRSDF graph, which is six, gives that the maximum cycle
ratio of the single-rate equivalent must lie between 7 and 20.

169

6.
3.3

–
In
cr

em
en

ta
l
th

ro
ug

hp
ut

an
al
ys
is
of

gr
ap

hs

Algorithm 10: Computes the throughput of anMRSDF graph, by incremen-
tally vectorising and unfolding actors.
1 input :A consistentMRSDF graph G, with scalar invariantNG .
2 output :The throughput of G.
3 repeat
4 Hpess ,Hopt ←Ð pessimistic and optimistic single-rate approximation of G
5 λ̌ ←ÐMaximum cycle ratio ofHopt

6 λ̂ ←ÐMaximum cycle ratio ofHpess

7 Cpess ←Ð critical cycle ofHpess

8 Let C be the cycle in G that corresponds to Cpess inHpess

9 if there is an actor v in C that was vectorised then
10 Let Bv be the blocking vector of v
11 Undo the retiming of v
12 Undo the vectorisation of v
13 Unfold actor v into∑i Bv[i] actors using Algorithm 3

14 else if C has a channel vw with PΣ+
vw
φv
> PΣ−

vw
φw

then
15 Retime and vectorise w using Algorithm 9

16 else if C has a channel vw with δv̂ŵ > δv̌w̌ then
17 Retime and vectorise w using Algorithm 9

18 until λ̂ = λ̌
19 return (NG λ̂)−1

Wemay improve the throughput estimation of one of the two cycles that are critical
in the pessimistic approximation. We may either vectorise a, or c. Let’s choose a. It
may be vectorised by applying blocking factor 2, which results in the graph shown
in Figure 6.12(b). Due to the vectorisation, the two channels in cycle ab3c now have
insufficient tokens to enable their consumer. As a result, the cycle is deadlocked.
This is reflected in the single-rate approximations: in both the optimistic and the
pessimistic single-rate approximation, the corresponding cycle has zero tokens,
which gives a maximum cycle ratio of∞.

Since, due to the vectorisation of a, cycle ab3c became critical, there is conflict in the
assigned grouping of firings of a. We thus undo the retiming and vectorisation of a,
and unfold the actor into two actors. This gives the graph shown in Figure 6.12(c),
the single-rate approximations of which have maximum cycle ratios of 73 and 103:
maximum cycle ratio of the pessimistic approximation equals 10/3, and is attained
by cycle a1b1cb3a1. The optimistic pessimistic approximation has amaximum cycle
ratio of 7/3. Consequently, the graph’s maximum cycle ratio lies between 14 and 20.

The only actor that we may vectorise in the graph of Figure 6.12(c), is actor c, with
a blocking factor of two. However, doing so gives a graph in which cycle b1cb1 is
deadlocked (not shown). We must therefore unfold actor c into two actors. The
graph that we then obtain is fully unfolded: it represents a single iteration of the orig-

170

C
hapter

6
–
Throughput

analysis

inal graph, shown in Figure 6.10(a). For each channel in the graph, corresponding
channels in the optimistic and pessimistic approximation have an equal number of
initial tokens. This means that the throughput estimated from these graphs is exact.
Maximum cycle ratio of the single-rate equivalent is equal to 17, and is attained by
the critical cycle a1b1a2b2c2b3a1.

6.4 Discussion

The classical approach to computing the throughput of an SDF graph, by analysing
the maximum cycle ratio of its single-rate equivalent, is an approach that has been
declared impractical in several papers [28, 42, 77, 102]. The argument used in these
papers is the potentially huge increase in graph size, when one transforms an SDF
graph into its single-rate equivalent. A positive result of this conviction is that it
has lead to the development of several alternative approaches to the analysis of
throughput, such as the approach based on a state-space exploration of a self-timed
execution [42], or approximate methods such as those based on the assumption
of periodic execution [13, 98]. An unfortunate effect of these alternatives, though,
is that their apparent success has distracted research from a careful revision of
apparently unsuccessful approaches.

In the chapter, we have restricted the analysis of throughput toMRSDF graphs, or
to CSDF graphs in which actors have non-varying execution times. This does not
restrict the scope of the presentedmethods, asCSDF graphsmay be subject to these
methods, by applying them to their multi-rate equivalents (see Chapter 4).

The single-rate equivalents, of MRSDF graphs, that we analyse are smaller than
those analysed in the classical approach: they are obtained from the original graph
by unfolding each actor asmany times as it fires in a single graph iteration, following
the transformation presented in Chapter 4. In the classical approach, an actor w j ,
in the single-rate equivalent of graph G, has a single incoming channel for every
token that is consumed by the jth firing of actorw in G. In the single-rate equivalent
that are subjected to maximum cycle ratio analysis, in our approach, each actor w j
has a single incoming channel for every incoming channel ofw in G. As algorithms,
for computing the maximum cycle ratio of a graph, scale linearly in the number of
edges in the graph, this decrease in the number of channels contributes to a more
efficient throughput analysis.

The relatively small number of channels in single-rate equivalents reveals a specific
structure. This chapter shows the potential of a thorough understanding of this
structure. Section 6.2 introduces a novel approach to throughput analysis, which
exploits this regular structure. Our method shows how the analysis of the single-
rate equivalent may be restricted to one of its strongly connected components,
which we refer to as the graph’s feeding component.

In spite of efficient methods for computing a graph’s throughput by analysing a
graph’s single-rate equivalent, scalability of these methods is limited, due to the fact

171

6.
4
–
D
is
cu

ss
io
n

that the transformation of a graph into its single-rate equivalent gives an exponen-
tial increase in size. Approximate methods, on the other hand, provide upper and
lower bounds on a graph’s throughput. This offers a trade-off, between the compu-
tational complexity and accuracy of the analysis. Existing methods, however, offer
no ways to control this trade-off: if the computation of an exact result is computa-
tionally too demanding, then the only alternative is a, potentially too inaccurate,
conservative approximation. Section 6.3 presents a novel incremental approach that
addresses this problem. It is the first method that combines both exact and approx-
imate analyses, and gives a practical application of the theory that we put forward
in chapters 3, 4, and 5. The method allows for the analysis of graphs for which the
single-rate equivalent is too large to be represented explicitly, by unfolding only
relevant subgraphs of the single-rate equivalent.

In the following chapter, we compare the efficiency of our first approach to through-
put analysis, by computing the maximum cycle ratio of the feeding component of
the single-rate equivalent, with existingmethods, on different classes of graphs. For
the incremental approach, we evaluate its effectiveness in controlling the trade-off
between approximation accuracy on the one hand, and keeping the analysed graph
small, on the other hand.

172

1737results obtained on several case studies results obtained on several
case studies results obtained on several case studies results obtained
on several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained on
several case studies results obtained on several case studies results
obtained on several case studies results obtained on several case
studies results obtained on several case studies results obtained
on several case studies results obtained on several case studiesCase studies

Abstract – The proof of the pudding is in the eating. In this chapter, we
therefore apply the theory presented in the previous chapters to two common
problems in the design-space exploration of real-time systems. The first of these
problems is throughput analysis, for which we introduced two approaches
in Chapter 6. The second is the optimisation of buffer capacities under a
throughput constraint. We compare our two approaches to throughput analysis
with current state-of-the-art approaches by applying them to a number of
benchmark sets. In particular, we include a particular benchmark set that
has been used in literature, in a previous study, but in our evaluation leads
to a conclusion that opposes results reported in literature. The experimental
evaluation shows that our approach to the computation of throughput is, in
terms of runtime, one to three orders of magnitude faster than state-of-the-art
methods.

We furthermore show how throughput analysis and buffer capacity optimisa-
tion may be approached in an incremental fashion, by applying the single-rate
approximations of Chapter 5 to graphs that are iteratively expanded using the
transformations of Chapter 4. The evaluation shows how unfolding specific
actors in a graph increases the accuracy of the estimations derived from their
single-rate approximations.

There are two common problems that are addressed by analysis techniques for
SDF graphs. The first of these two is the computation of throughput, for which we
described an approach in Chapter 6. A second problem, which we did not cover
thus far in this thesis, is the determination of sufficient buffer capacities, such that a
given throughput is attained. This problem occurs in the design-space exploration
of stream-processing systems, where communication links have a bounded buffer
capacity, as opposed to the unbounded buffer capacities of channels in an SDF
graph.

We address these two related problems in different sections: Section 7.1 evaluates the

174

C
hapter

7
–
C
ase

studies

efficiency of our two approaches to throughput analysis, and Section 7.2 describes
how sufficient buffer capacities may be conservatively estimated using the theory
presented in Chapter 4 and Chapter 5.

7.1 Throughput analysis

The throughput of a system is an important performance characteristic. It expresses
the average amount of work that the system can perform, per unit of time. For
HSDF graphs, throughput is equal to the inverse of the graph’s maximum cycle
ratio, which may be computed in polynomial time, using well-established algo-
rithms [19, 29, 49, 54, 78, 101]. For non-homogeneous SDF graphs, the classical
approach to throughput analysis is to compute the maximum cycle ratio of the
single-rate equivalent [39, 51]. The efficiency of this approach depends on the size
of the latter. Since the transformation of a graph into its single-rate equivalent has
an exponential complexity [77], scalability of the classical approach is limited. This
has lead to the introduction of several new approaches to throughput analysis. The
most notable of these approaches is the state-space exploration (SSE) method pre-
sented in [42] and [41]. This method operates by simulating a self-timed execution
of the SDF graph, which eventually settles in a periodic phase. The method iden-
tifies this periodic phase from the firing times of the actors in the graph, and the
distribution of tokens over the channels. A potential problem of the state-space
exploration method is that the transient phase, which is the phase that precedes
the periodic phase, may be very long. In an experimental study, presented in [42],
state-space exploration was compared with the classical approach, and the former
was found to convincingly outperform the latter. The conclusion of the evaluation
was clear: in the classical approach, the construction of the single-rate equivalent
formed the bottleneck in the analysis: for some graphs, the construction of their
single-rate equivalents took more than half an hour.

Since the approach to throughput analysis that we presented in Chapter 6 is similar
to the classical approach, in the sense that we analyse the single-rate equivalent,
we repeat the study of [42], and include our approach in the evaluation. In line
with the experiment reported on in [42], we must thus expect that our method will
perform less well on graphs for which the single-rate equivalent is relatively large.
We furthermore include the approach introduced in [35] and later described in
more detail in [36]. This method, which we shall refer to as the timestamped tokens
(TT) approach, simulates the self-timed execution of only a single graph iteration.
During this iteration, the temporal dependencies between tokens are recorded (see
Section 2.3.1) as a max-plus linear system, which can subsequently be analysed
by standard tools. Especially for graphs that contain relatively few tokens, this
method may be very effective, although currently, literature lacks an experimental
evaluation. We compare our approach with the state-space exploration (SSE) and
the timestamped tokens (TT) method in Section 7.1.2.

Our second approach to throughput analysis, presented in Section 6.3, avoids the

175

7.1
.1
–
Be

nc
hm

ar
k
se
ts

costly transformation of the graph into its single-rate equivalent, by vectorising
actors and performing only partial transformations (see Section 6.3 for more de-
tails). As this is a new approach, a comparison with state-of-the-art methods can
not be performed. Instead, we evaluate its effectiveness on increasing the approxi-
mation accuracy, while keeping the graph as small as possible. We report on this
experiment in Section 7.1.3.

Before we describe the experiments and their results, we describe the benchmark
sets that we used in the experiments, in the following section.

7.1.1 Benchmark sets

The sets of graphs that we use to evaluate our approaches to throughput analysis,
consist of four benchmark sets used in the previous study of [42], which was used
to compare the classical and state-space exploration approaches. Of these four
benchmark sets, the first test set consists of five models of stream-processing appli-
cations: an h.263 decoder [42, 89], modem [10],MP3 decoder [42, 89], sample rate
converter [10], and satellite receiver [81].

Each of the other three sets used in the previous study consists of one hundred
randomly generated graphs. The generation of these graphs is parameterised in
such a way that each of the three sets represents a distinct class ofMRSDF graphs.
The three sets are the following:

Long transient contains HSDF graphs, which may have a long transient phase
and thus pose a difficulty for state-space exploration techniques. Standard
combinatorial algorithms for computing the maximum cycle ratio perform
efficiently on these graphs.

DSP-like containsMRSDF graphs thatmimic digital signal processing applications.
Actors in these graphs have small rates, as well as small execution times,
which makes the graphs representative for SDF graphs of DSP applications.

Large HSDF containsMRSDF graphs in which channels have relatively high pro-
duction and consumption rates. Consequently, their single-rate equivalents
tend to be several orders ofmagnitudes larger. In [42], the classical approach
showed poorest performance when applied to graphs from this set.

All of the three test sets were generated using the state-of-the-art tool SDF3, de-
scribed in [90], and available from [1].

Because the generation of randomMRSDF graphs, using SDF3, is rather slow, es-
pecially for larger graphs, we have used the theory put forward in Chapter 5 to
generate another 5000 randomMRSDF graphs, of different sizes and with different
characteristics. The structure of these graphs, and the properties of their actors
and channels, are controlled by four parameters. The number of actors in a graph
is given by the parameter n, and the expected number of channels by E(m). Each
actor has a repetition vector entry with the same expected value, given by E(q).
Finally, the number of tokens in each of the graphs is controlled by parameter p.

176

C
hapter

7
–
C
ase

studies

The procedure that we follow to generate these graphs, and the role of these four
parameters, is as follows: we first generate the structure of the MRSDF graph, by
generating a directed graph using the Erdős-Rényi model, which means that for
each pair of vertices v and w, a directed edge vw is included in the graph with a
fixed probability (see [4] for more details). This procedure gives a graph for which
the number of vertices and the expected number of edges is fixed. Rather than
controlling the probability of including an edge, we control the expected number
of edges by fixing E(m). The three combinations that we use are n = 25, E(m) = 50,
n = 25, E(m) = 200, and n = 50, E(m) = 400. As a final step in this procedure, the
graph is made strongly connected by adding a directed cycle that connects each of
the graph’s strongly connected components.

After generating a directed graph, we assign repetition vector entries to the graph’s
vertices, by drawing, for each vertex, an integer from, depending on the choice
for the parameter E(q), either the uniform distribution U(25, 375), or U(25, 975).
This controls the size of the graph’s single-rate equivalent: as a result of the assign-
ment of repetition vector entries, the single-rate equivalents have an expected size
(i.e., number of actors) of either E(q) = 200n or E(q) = 500n. The directed graph
is subsequently transformed into anMRSDF graph, by assigning rates to channels
such that they correspond to the assigned repetition vector entries. Furthermore,
actors are assigned a random (integer) execution time from the uniform distribu-
tion U(2, 48).

The generation of a randomMRSDF graph concludes with the distribution of initial
tokens in the graph. Rather than controlling the number of tokens that are present
in the graph directly, we control the graph’s throughput by varying the tokens:
by increasing the number of tokens placed on channels in cycles of a graph G,
the maximum cycle ratio of the graph’s pessimistic single-rate approximation (see
Chapter 5),H, increases, which corresponds to an increase in the lower bound on
the throughput of G. We use the parameter p to control the graph’s lower bound
on throughput. If the sum of the execution times of the actors of a graph G is equal
toW , then we assign as few initial tokens as possible to channels of G, such that
the lower bound on the throughput of G is equal to W/p. For p = 0, we add tokens
to guarantee that the graph is deadlock free.

The process followed to ensure that the generatedMRSDF graphG has a throughput
of at leastNGλ, is the following:

1. We compute the maximum cycle ratio, λ∗, and the associated critical cycle,
C∗, of the pessimistic approximation,H, of G.

2. If λ∗ > λ, we add as few tokens as necessary to a single channel in C∗,
such that the cycle ratio of C∗ is at least λ, and repeat the process. The
channel to which we add tokens is the one that has the highest associated
flow normalisation vector (see Section 2.1.3).

3. If λ∗ ≤ λ, then, by Theorem 5.1, graph G has a throughput of at leastNGλ,
and the process terminates.

177

7.1
.2
–
A
na

ly
si
so

f
th

e
si
ng

le
-r
at

e
eq

ui
va

le
nt

Using the procedure above, we have generated 20 sets of graphs, using 20 different
combinations of the parameter values. These 20 sets consists of the following five
different combinations of the parameters n, E(m) and E(q):

25-Sparse-200 n = 25, E(m) = 50, and E(q) = 200.

25-Sparse-500 n = 25, E(m) = 50, and E(q) = 500.

25-Dense-200 n = 25, E(m) = 200, and E(q) = 200.

50-Sparse-200 n = 50, E(m) = 200, and E(q) = 200.

10-Large-HSDF n = 10, E(m) = 50, and E(q) = 10, 000.

From each of the above five parameter combinations, we obtain four sets of 250
graphs each, by combining the three parameters with p = 0, p = 1, p = 4 and p = 16.
This gives a total of 5000 graphs. Note that, especially for the “sparse” graphs, the
average number of channels in the graphs in the set may be higher than E(m),
due to the fact that extra channels are added in order to make the graph strongly
connected.

7.1.2 Analysis of the single-rate equivalent

Our first approach to throughput analysis, which we described in Section 6.2, analy-
ses the single-rate equivalent of a graph, for its maximum cycle ratio. There are two
differences between our approach and the classical approach that was evaluated
in [42]. First of all, the single-rate equivalents that we construct (using Algorithm 5,
see Chapter 4) typically contain fewer channels than those constructed in the classi-
cal approach. In our approach, eachHSDF actor in the single-rate equivalent has as
many incoming channels as its corresponding SDF actor has in the original graph.
In the classical approach, on the other hand, the in-degree of an HSDF actor is
equal to the number of consumed tokens per firing.

A second difference between our approach and the classical approach is that we
restrict the analysis of the single-rate equivalent to a feeding component (see Theo-
rem 6.3) of the graph. In the worst case, the single-rate equivalent may be strongly
connected, in which case the restriction to its feeding component does not give any
benefit.

We have implemented our approach in C, following the procedure listed as Al-
gorithm 8 in Chapter 6. We compute the throughput of an MRSDF graph, G, by
analysing the feeding component of the single-rate equivalentH of G, for its max-
imum cycle ratio. To compute the feeding component, we use the well known
algorithm of Tarjan [92]. Tarjan’s algorithm finds strongly connected components
in reversed topological order: no strongly connected component is identified before
any of its successors. Since we perform the algorithm by following edges in reverse,
we essentially run Tarjan’s algorithm on a transposed graph. Consequently, the
first strongly connected component that is found by the algorithm is the feeding
component.

178

C
hapter

7
–
C
ase

studies

After identifying the feeding component, S, of H, we compute the throughput
of G by computing the maximum cycle ratio of S (recall that the throughput of a
graph is the inverse of the maximum cycle ratio of its single-rate equivalent). The
algorithm that we use to compute themaximum cycle ratio of S is themethod based
on longest parametric paths, described by Young, Tarjan and Orlin in [101], and
experimentally evaluated in [29]. Note that themethod presented in [101] computes
a graph’sminimum, rather than itsmaximum cycle ratio, but the adaptation of the
method to compute a maximum cycle ratio is straightforward (see [29] for more
details).

An important aspect of our implementation is that we do not store the channels
of the graph’s single-rate equivalent, but rather compute them. Each actor w j inH
has one incoming channel for each incoming channel of the corresponding actor,
w in G (see also Section 4.3). The source actor v i , of the incoming channel v iw j
of w j , is determined from the predecessor function associated with channel vw:
i = π̃vw(j) (see Chapter 6 for details). If the single-rate equivalent H is a dense
graph with n actors, then avoiding the storage of the channels of H reduces the
memory used to store the graph data structure by a factor of n. Although this
reduction in memory is traded for an extra computational effort, given the fact that
the size of the single-rate equivalent is exponential in the size of the SDF graph,
we believe that the trade-off is advantageous to the overall running time of the
implementation.

Throughout the remainder of this section, we refer to the implementation of our ap-
proach as YTO, which is an acronym for Young, Tarjan and Orlin’s algorithm [101],
which we use to compute the maximum cycle ratio. In the previous study, the same
algorithm (and others) was used in the context of the classical approach.

We compare the running time of our algorithm with the following two algorithms
offered by SDF3:

throughput (SSE) Computes the throughput of a graph by exploring the state-
space of a simulated self-timed execution, until a periodic phase is found.
This is the method that is described and evaluated in [42].

mpthroughput (TT) Executes a single graph iteration, during which the temporal
dependencies between the arrival times of tokens is recorded and captured
by a max-plus system [35, 36]. The max-plus system has a single recurrence
relation for each token in the graph. After constructing themax-plus system,
its eigenvalue of the max-plus system is then computed, which gives the
inverse of the graph’s throughput.

We refer to the first algorithm as SSE (for state-space exploration), and to the second
algorithm as TT (for timestamped tokens).

The first test that we evaluated the three methods, YTO, SSE, and TT, on, is the set
of five graphs that model stream-processing applications. For each graph, we mea-
sured the runtime required to compute the throughput. The measured results are

179

7.1
.2
–
A
na

ly
si
so

f
th

e
si
ng

le
-r
at

e
eq

ui
va

le
nt

h.263
decoder modem mp3

decoder
sample
rate conv. satellite

Statistics

actors 4 16 13 6 22
channels 10 54 37 16 74
tokens 4757 54 25 38 1564
HSDF: actors 4754 48 13 612 4515
SCC: rel. actors 1.0 1.0 1.0 1.0 1.0
SCC: rel. channels 0.75 0.80 1.0 0.58 0.72

YTO avg (ms) 1.2 < 0.01 < 0.01 0.18 0.91
std dev (ms) 0.58 < 0.01 < 0.01 0.39 0.29

SSE avg (ms) 3.1 0.36 0.091 0.73 0.43
std dev (ms) 1.0 0.48 0.29 0.62 0.64

TT avg (ms) 1.4 0.18 0.27 0.18 1.2
std dev (ms) 0.64 0.39 0.45 0.39 0.39

Table 7.1 – Statistics and running times of the three modes, on the five graphs that model
stream-processing applications.

listed in Table 7.1. Each graph was analysed ten times, the table reports the average
(avg) and sample standard deviation (std dev), of the running time, in milliseconds
(ms). Furthermore, the table reports the statistics of the graphs. Numbers of tokens
are listed in order to assess the effectiveness of TT in reducing the size of the anal-
ysed system. The number of actors in the full single-rate equivalent is given in the
row “HSDF: actors”. The final two rows that report on statistics give the relative size
of the feeding component, with respect to the size of the full single-rate equivalent
obtained in the classical approach.

Results for this first test set show that all three algorithms require a runtime of at
most a few milliseconds to compute the throughput of each of the five graphs in
the set. The hardest of the five graphs seems to be the one that models the h.263
decoder, even though this graph is the smallest. The density of the graph, however,
is relatively high, which may cause the state-space exploration method to require a
relatively long time to reach the periodic phase.

If we compare the results listed in Table 7.1 to those reported in the previous study
of [42], then the runtime of our approach (YTO) forms a notable exception. In
the previous study, the classical approach only completed the modem and MP3 de-
coder within the time limit of half an hour. For the modem, the classical approach
required 81 milliseconds, and the MP3 decoder took one millisecond. State-space
exploration, on the other hand, required one millisecond for the modem and sam-
ple rate converter, four milliseconds for the satellite receiver, eleven for the MP3
decoder, and four seconds for the h.263 decoder. Although our approach improves
over the classical approach by limiting the size of the graph that is analysed, this can
not fully explain the extreme improvement in running times over those observed
in the previous study.

180

C
hapter

7
–
C
ase

studies

Long transient DSP-like Large HSDF

YTO
N 100 91 46
avg (ms) < 1 1 8
std dev (ms) < 1 < 1 < 1

SSE
N 100 100 100
avg (ms) 912 < 1 < 1
std dev (ms) 277 < 1 < 1

Table 7.2 – Average and standard deviations in the running times of state-space exploration
(SSE), and the algorithmof Young, Tarjan andOrlin (YTO), as reported in the previous study
of [42]. Running times reported for YTO exclude the time required for the transformation
of the graphs into their single-rate equivalents.

To the best of our knowledge, this is the first experimental evaluation of throughput
analysis using the timestamped token approach. From Table 7.1, we conclude that
it is on par with both our approach and state-space exploration. Note that the mea-
sured sample standard deviations are too high to declare any of the three methods
a clear winner.

The other three test sets that were used in the previous study, consist of randomly
generated graphs. In the previous study, especially the “Large HSDF” set proved
to be problematic for the classical approach: out of the 100 graphs, ten could not
be transformed, into their single-rate equivalents, within 30 minutes. For the 90
graphs that could be transformed, the transformation took, on average, two seconds.
In other words, the transformation from the graph into its single-rate equivalent
formed a clear bottleneck in the procedure. State-space exploration, on the other
hand, completed the analysis of the graphs in the “Mimic DSP” and “Large HSDF”
sets, within a millisecond, on average. For the HSDF graphs in the “Long tran-
sient” set, state space exploration required more time, which was due to the longer
transient time for these graphs. After transforming the graph into its single-rate
equivalent, the classical approach used in the previous study applied three different
algorithms, one of which (YTO) is the same method we have used in our imple-
mentation. Relevant results of the previous experiment are listed in Table 7.2.

We have repeated the experiment, including our approach and the timestamped
token approach of [35, 36]. Statistics for the test sets, and running times for the
algorithms, are listed in Table 7.3.

From the table, we observe several differences with the results collected in [42].
While the previous study reported that 10 of the graphs in the “Large HSDF” graph
could not be transformed into its single-rate equivalent within the time limit of 30
minutees, our method performed this transformation, and the subsequent maxi-
mum cycle ratio analysis, for each of the 100 graphs, within a few milliseconds.

A further striking result, obtained from the statistics reported by our method, is

181

7.1
.2
–
A
na

ly
si
so

f
th

e
si
ng

le
-r
at

e
eq

ui
va

le
nt

Long transient DSP-like Large HSDF

Statistics

actors 284 20 13
channels 359 24 21
tokens 48 500 41578
HSDF: actors 284 1008 8166
SCC: rel. actors 1.0 0.083 0.012
SCC: rel. channels 1.0 0.54 0.25

YTO avg (ms) 0.010 < 0.01 0.060
std dev (ms) 0.10 < 0.01 0.51

SSE avg (ms) 420 1.1 71
std dev (ms) 130 4.6 520

TT avg (ms) 2.2 1.7 730
std dev (ms) 0.78 11 5200

Table 7.3 – Statistics of the three sets of randomly generated graphs, used in [42], and run-
ning times of the three different algorithms.

that for each of the two hundredMRSDF graphs (that is, excluding theHSDF graphs
in long-transient), the size of the feeding component, of the graph’s single-rate
equivalent, is equal to the size of the original graph. As a consequence, the HSDF
graph that is analysed for its maximum cycle ratio is extremely small, compared
to the classical approach in the previous study, and thus the running time of our
approach is minimal, on each of the three test sets. In particular, the time required
to analyse each of the graphs in “DSP-like” fell below the resolution of the timer.

Because of this striking result, we have examined the graphs in the sets “Long
transient” and “Large HSDF” in more detail. As it turns out, for each of the cycles
in the 200 graphs, the total weighted (by the flow normalisation vector) number
of tokens in the cycle, is an integer multiple of the graph’s scalar invariant. That is,
the number of tokens on each cycle is such that each actor v may fire precisely qv
times in parallel, removing all tokens from its incoming channel onto its outgoing
channels. This means that the randomly generatedMRSDF graphs behave asHSDF
graphs, if (after a suitable retiming) we apply a vectorisation of each actor v, with a
blocking factor qv .

From the above we conclude that the benchmark sets used in [42] are not very
suitable for drawing conclusions, and biased towards a positive outcome for the
state-space exploration method. To obtain a fair comparison between the three
methods, we therefore also applied our approach and the two methods offered by
SDF3 to the 20 benchmark sets we generated, using the procedure described in
Section 7.1.1.

Table 7.4 shows the results for the four sets generated from set “25-Sparse-200”. For
the analysis of graphs in this set, we set a time limit of one minute. Graphs that
could not be analysed within this time limit, have been omitted from the results.

182

C
hapter

7
–
C
ase

studies

p = 0 p = 1 p = 4 p = 16

Statisics

Channels 61.3 61.5 60.9 60.7
Tokens 12655 239980 843127 3661108
HSDF size 12517 12496 12556 12644
avg HSDF actors 0.80 0.80 0.79 0.80
avg HSDF channels 0.0028 0.0029 0.0029 0.0028

YTO
N 250 250 250 250
avg 1.5 2.4 4.3 5.1
std dev 0.60 0.94 1.4 1.7

SSE
N 250 250 250 249
avg 72 73 228 967
std dev 22 175 1.3 × 103 3.7 × 103

TT
N 250 250 249 226
avg 85 631 2.9 × 103 12 × 103

std dev 52 2.0 × 103 5.7 × 103 11 × 103

Table 7.4 – Statistics of the graphs, and running times for the three methods, measured on
the set “25-Sparse-200”.

For each of the three methods, the row denoted “N” reports the number of graphs
that could successfully be analysed within the time limit.

Ourmethod is the only one that was able to complete the analysis of each of the 1000
graphs within the time limit. The table furthermore shows that running times for
our algorithm are low, compared with those observed for state-space exploration
and the timestamped token approach: on average, our approach (YTO) is between
30 and 189 times faster than state-space exploration, and the latter is faster than
the timestamped token approach. Moreover, the standard deviation of the running
time of our approach remains very low compared to the other methods.

The running time of all three approaches increases as the graphs contain more to-
kens: for our approach, this increase is modest: for p = 16, running times are about
three and a half times as high as for p = 0. For the state-space exploration method,
running time increases by a factor of more than twelve, and the timestamped token
approach suffers most from the increase in tokens, which is to be expected.

If we increase the average repetition vector entries, such that the single-rate equiva-
lent is about two and a half times larger, then we observe that all three methods see
an increased running time, of at least that factor: Table 7.5 shows the results obtained
for the set “25-Sparse-200”. The table shows that, similar to the set “25-Sparse-200”,
as the number of tokens in the graphs increases, running times increase for all three
methods, but both the increase in the average and standard deviation, of the run-
ning times for the algorithms implemented in SDF3, is significantly steeper than
for our algorithm.

In the third class of generated graphs, set “25-Dense-200”, graphs have the same

183

7.1
.2
–
A
na

ly
si
so

f
th

e
si
ng

le
-r
at

e
eq

ui
va

le
nt

p = 0 p = 1 p = 4 p = 16

Statisics

Channels 61.3 61.5 60.9 60.7
Tokens 12655 239980 843127 3661108
HSDF size 12517 12496 12556 12644
avg HSDF actors 0.80 0.80 0.79 0.80
avg HSDF channels 0.0028 0.0029 0.0029 0.0028

YTO
N 250 250 250 250
avg 4.8 8.5 13 15
std dev 1.3 2.9 4.6 4.9

SSE
N 250 250 249 233
avg 180 193 805 3003
std dev 62 618 1960 7117

TT
N 250 246 196 87
avg 520 4004 20970 37980
std dev 147 5230 12100 11250

Table 7.5 – Statistics of the graphs, and running times for the three methods, measured on
the set “25-Sparse-500”.

number of actors, but a higher number of channels: each of the 25 actors is, on
average, connected to 20 other actors. Results for the four benchmark sets generated
from this class are shown in Table 7.6. When comparing these results with those
reported for the sparse graphs in Table 7.4, we see that all three methods have
a higher average running time. Our approach is again the fastest method, and
significantly outperforms the other two: our approach is between 29 and 470 times
faster than state-space exploration. The timestamped token approach again suffers
from an increase in tokens: for p = 16, it fails to analyse 112 of the 250 graphs
within the time limit of one minute. An interesting observation from Table 7.6
is that, whereas the running times of our algorithm and the timestamped token
approach increases as the number of tokens increase, the running time of state-
space exploration decreases for p = 1 and p = 4, and then increases again for p = 16.
We do not have a clear explanation for this observation.

In order to evaluate the scalability of our approach in the number of actors, the
fourth class of graphs that we consider contains of sparse graphs that have 50 ac-
tors, and on average a little over 200 channels. Results for this class are shown in
Table 7.7. If we compare these results with those for the graphs with fewer actors
but (relatively) more channels, then we observe lower running times, which is to
be expected considering that we doubled the number of actors, but multiplied the
number of channels by 10. Interestingly, we again observe a decrease in the running
time of state-space exploration, when moving from p = 0 to p = 1 and p = 4. Also,
the timestamped token approach is again significantly faster on the set with p = 0.
Again, our approach (YTO) is the clear winner for this class of graphs: it is between
24 and 41 times faster than the other two methods.

184

C
hapter

7
–
C
ase

studies

p = 0 p = 1 p = 4 p = 16

Statisics

Channels 503 503 503 503
Tokens 114999 1124422 4056866 15995505
HSDF size 5023 5034 4982 4986
rel. HSDF actors 1.0 1.0 1.0 1.0
rel. HSDF channels 0.0070 0.0070 0.0071 0.0070

YTO
N 250 250 250 250
avg (ms) 15 19 29 52
std dev (ms) 1.8 4.1 7.5 29

SSE
N 250 250 250 250
avg (ms) 7053 1122 860 1126
std dev (ms) 1178 306 329 489

TT
N 250 250 250 138
avg (ms) 798 1601 7050 38280
std dev (ms) 203 627 3306 11170

Table 7.6 – Analysis running times for the three different methods, onMRSDF graphs of
25 actors, (expected) 50 channels, 5000 actors in the single-rate equivalent, and varying
numbers of initial tokens.

p = 0 p = 1 p = 4 p = 16

Statisics

Channels 207 204 205 205
Tokens 34731 175379 597551 2410259
HSDF size 9998 10002 10008 10025
rel. HSDF actors 0.94 0.95 0.94 0.95
rel. HSDF channels 0.0070 0.0071 0.0070 0.0069

YTO
N 250 250 250 250
avg (ms) 7.4 9.7 15 23
std dev (ms) 1.0 2.2 3.6 5.8

SSE
N 250 250 250 250
avg (ms) 1655 449 363 578
std dev (ms) 312 218 208 475

TT
N 250 250 250 244
avg (ms) 306 724 2593 14220
std dev (ms) 55 391 1605 7400

Table 7.7 – Analysis running times for the three different methods, onMRSDF graphs of
25 actors, (expected) 50 channels, 5000 actors in the single-rate equivalent, and varying
numbers of initial tokens.

185

7.1
.3
–
In
cr

em
en

ta
l
an

al
ys
is

As a final experiment, we analysed graphs of which the single-rate equivalent is
several orders of magnitude larger than the graph itself. This serves as a proper
repetition of the study of the performance of state-space exploration and our ap-
proach, on a set like the “Large HSDF” set of [42]: these graphs form worst-case
instances for our approach. Results are shown in Table 7.8. The table shows that
running times of the state-space exploration are in line with those observed in the
experiments for the other test sets, but running times for the timestamped token
approaches are dramatic: for only 12 of the 1000 graphs, the algorithm completed
within the time limit of one minute: the only graphs for which we can report the
results of TT are those for which p = 0.

Our algorithm, on the other hand, completed all 1000 graphs within the time limit,
outperforming the other two methods. However, if we compare the results for this
set of graphs with the results reported above for the other sets, then we observe
that the gap between our approach and state-space exploration has decreased sig-
nificantly: for the set with p = 1, our algorithm is only about three times faster
than SSE. For p = 4 and p = 16, the gap widens again. Note that, on these two sets,
state-space exploration did not complete the analysis of 72 of the graphs within the
time limit. This means that the reported sample standard deviation is, in reality,
much larger.

We expect that, for graphs that have even larger single-rate equivalents, the gap be-
tween the average running time of SSE and our approach will become even smaller,
better revealing the potential effectiveness of state-space exploration. However,
extrapolating the observed standard deviation, we also expect that SSE will often
perform on at least some of the graphs analysed. For graphs that are too large to be
analysed efficiently by our approach, though, the estimated throughput will likely
be quite accurate, and as such, the cost for performing an exact analysis will no
longer outweigh the potential error of a rough approximation. This brings us to the
next study that we cover in this chapter, which is the relationship between graph
size and approximation accuracy.

7.1.3 Incremental analysis

Graphs, for which the single-rate equivalent is too large to be analysed efficiently,
may be analysed for their throughput in an approximate way: the maximum cycle
ratios, of the optimistic and pessimistic single-rate approximations of a graph, give
upper and lower bounds on the graph’s throughput (seeTheorem 5.1). Furthermore,
both the construction and the analysis of the single-rate approximations may be
done in time polynomial in the size of the graph, and are thus, computationally,
relatively cheap compared to a time consuming exact analysis. The error of an
approximation may be significant. If the error is unacceptably large, then we may
apply the techniques presented inChapter 6 to increase the approximation accuracy
by vectorising actor firings, and unfolding actors into multiple actors, using the
transformations given inChapter 4. In this section, we evaluate the relation between
the accuracy of the approximation, and the size of the graph. That is, we apply

186

C
hapter

7
–
C
ase

studies

p = 0 p = 1 p = 4 p = 16

Statisics

Channels 52 52 52 52
Tokens 4.4 × 105 4.3 × 108 1.8 × 109 6.7 × 109

HSDF size 101313 97740 99939 100140
rel. HSDF actors 0.98 0.97 0.98 0.98
rel. HSDF channels 1.5 × 10−4 1.6 × 10−4 1.5 × 10−4 1.6 × 10−4

YTO
N 250 250 250 250
avg (ms) 96 743 2.9 × 103 6.4 × 103

std dev (ms) 21 401 4.0 × 103 15 × 103

SSE
N 250 250 247 181
avg (ms) 1.1 × 103 2.2 × 103 12 × 103 34 × 103

std dev (ms) 308 3.1 × 103 8.0 × 103 12 × 103

TT
N 12 - - -
avg (ms) 4.8 × 104 - - -
std dev (ms) 7.7 × 103 - - -

Table 7.8 – Graph statistics and algorithm running times for the test set that consists of
graphs forwhich the transformation into a single-rate equivalent yields a graph that is around
10,000 times larger.

Algorithm 10 to incrementally analyse graphs for their throughput, and report on
the relative size of the analysed graph.

We have implemented the procedure listed in Algorithm 10 in Java. In our im-
plementation, we select actors that may be vectorised in the following way: if the
critical cycle C∗ contains channels with a positive gain, we select from these chan-
nels the channel vw for which qv is minimal, and apply the vectorisation to w. If
w was already vectorised during the analysis of another cycle than C∗, then we
undo the vectorisation and retiming of w (see lines 10 – 13 of Algorithm 10). For
the analysis of the optimistic and pessimistic single-rate approximations for their
maximum cycle ratios we again used the algorithm of Young, Tarjan and Orlin,
as we did in the previous section. Note that, whereas in the implementation of
exact throughput analysis, which we evaluated in the previous section, we avoided
storing the channels in the single-rate equivalent, we do not apply this optimisation
in our implementation of the incremental analysis, due to the dynamic nature of
the graph.

We evaluate the relation between accuracy and graph size on two of the test sets
used in the previous section. The reason for not including more test sets, is that the
accuracy of the approximation for the excluded sets is below one percent: for the
sets with p = 4 and p = 16, the accuracy is even below one permille.

Graph size is expressed as a relative, rather than an absolute number: we report
the number of actors of the analysed graph, divided by the number of actors in the
graph’s single-rate equivalent. Consequently, graph size is a number greater than
zero, and at most one. In the worst case the entire graph needs to be unfolded into

187

7.1
.3
–
In
cr

em
en

ta
l
an

al
ys
is

0 0.2 0.4 0.6 0.8 1

100

101

102

103

104

105

Relative size of the unfolded graph

Re
la
tiv
e
er
ro
r

Sparse
Dense

Figure 7.1 – Accuracy of the approximation versus size of the analysed graph.

its single-rate equivalent, in which case the reported graph size is one.

Approximation accuracy is defined as the relative difference between the graph’s
upper and lower bound on throughput, respectively computed from its optimistic
and pessimistic single-rate approximation. Thismeans that an exact approximation
is reported as an accuracy of one. Figure 7.1 shows how the approximation accuracy
decreases as the graph is unfolded.

The figure shows that the first throughput estimate has an extremely large error: for
the sparse graphs, the maximum cycle ratio of the pessimistic single-rate approx-
imation was, on average, around 5000 times as high as the maximum cycle ratio
of the optimistic approximation. In order to decrease this error such that it falls
below 100% (i.e., a relative error of 2), about 30% of the single-rate equivalent is con-
structed. For dense graphs, a significantly larger part of the single-rate equivalent
must be constructed: almost 60%.

We furthermore observed that vectorisations of actors (lines 15 – 17 of Algorithm 10)
was often corrected in a subsequent iteration of the algorithm. This was especially
true for the dense graphs. Another observation that wemade during the evaluation,
is that the running time of our implementation of the incremental analysis is high.
Whereas the running time for the exact analysis, reported in the previous section,
is in the order of milliseconds, the running time for the incremental analysis is
in the order of tens of seconds. We believe that this is primarily due to the fact
that, single-rate approximations and their maximum cycle ratios are recomputed at
every step in the approach: after vectorising or unfolding a single actor. Although
the running time of these two procedures is in the order of tens to hundreds of

188

C
hapter

7
–
C
ase

studies

Relative graph size
HSDF size 0.01 0.05 0.1 0.5 1.0

h.263 decoder 4757 2.0 × 103 2.0 × 103 2.0 × 103 2.0 × 103 1.0
modem 48 - - - 1.0 1.0
mp3 decoder 13 - - - - 1.0
sample rate conv. 612 1.6 1.0 1.0 1.0 1.0
satellite 4515 1.1 1.0 1.0 1.0 1.0

Table 7.9 – Results showing relative errors, obtained from different graph sizes, for the incre-
mental throughput analysis of the five graphs representing stream-processing applications.

milliseconds, their repeated application (the average number of steps required for
the incremental analysis of the two test sets is around one hundred) adds up to
several seconds. Also, the management of large and evolving graph data structures,
as well as the runtime overhead of Java (compared to C), seems to give a further
performance penalty.

Finally, the graphs that we have used to evaluate the incremental analysis are simply
too difficult to analyse incrementally: because of the procedure used to generate
the graphs in the test set, many cycles in the graph have a comparable throughput.
As such, in the single-rate approximation, many different cycles are identified as po-
tentially critical, and unfolded. Since the generated graphs we used may not be rep-
resentative of graphs that occur in practice, as models of actual stream-processing
applications, we have applied the incremental analysis to the five applications used
in the previous section. Results are listed in Table 7.9.

The table shows varying results. Running times (which we do not show in the
table) were in the order of a few hundred milliseconds, for all five graphs. Of the
five graphs, only one graph (the h.263 decoder) needed to be unfolded into its full
single-rate equivalent (the size of which is shown in the second column), in order to
obtain an acceptable throughput estimation: up to the point where the graph is fully
unfolded, the error in the estimation remains constant, at a factor of 2000. Note
that the h.263 decoder consists of only four actors, which means that the increase
in graph size per step is already relatively high.

For the other four graphs, the incremental analysis was more effective. No actors
needed to be unfolded in the graphs representing the modem and sample rate
converter. Since the modem has 16 actors, and its single-rate equivalent has 48
actors, an exact approximation is obtained for a relative size of 1/3. Themp3 decoder
is an HSDF graph, which means that the initial throughput estimation is exact.

For the graphs representing the sample rate converter and satellite receiver, the nec-
essary unfolding was minimal: the initial rough approximation for these graphs,
based on their single-rate approximations, is 60% and 10%. After only a few iter-
ations, which, in both cases, unfold less than five percent of the full single-rate
equivalent, an exact approximation was obtained.

189

7.2
–
Bu

ff
er

ca
pa
ci
ty

op
ti
m
is
at

io
n

To conclude the evaluation of our incremental approach to throughput analysis,
we remark that its efficiency, in terms of avoiding the construction of most of the
single-rate equivalent, very much depends on the graph that it is applied to: some
graphs may have a clear performance bottleneck, in the form of cycles that have a
significantly lower throughput than other cycles in the graph. For such graphs, the
incremental approach quickly converges, as it only needs to unfold the bottleneck
cycle. The graphs representing the modem, sample rate converter, and satellite
receiver, are examples for which this is true, while the h.263 decoder has a less
prominent bottleneck.

7.2 Buffer capacity optimisation

The second problem that we address as a case study, is the optimisation problem
of determining sufficient buffer capacities, such that a given throughput is attained.
This problem occurs in the design-space exploration of stream-processing systems,
where communication links have a bounded buffer capacity, as opposed to the
unbounded buffer capacities of channels in an SDF graph.

We take a simple CSDFmodel and transform it, using Algorithm 1, into an equiv-
alent MRSDF graph, after which we can apply analysis techniques designed for
MRSDF graphs. We compare the results obtained from this equivalent MRSDF
graph with analysis results computed directly for the CSDF graph using a CSDF-
specific algorithm.

We use a model of an MP3 playback application (see Figure 7.2), which has been
used as a case study in several other studies [7, 98, 99]. The application consists of
three tasks, each of which is modelled by a single CSDF actor: the MP3 decoder
(modelled in Figure 7.2 by the actor labelledmp3) processes a 48 kHz variable bitrate
MP3 file, and the sample rate converter (modelled by actor src) converts this to a
44.1 kHz stream to match the frequency of the digital-to-analog-converter, which
is modelled by the actor labelled dac. Communication channels between the tasks
are FIFO buffers with a finite capacity, whereas channels in a synchronous dataflow
graph have unbounded capacity. The approach that is often used to model the
bounded capacity of a channel vw, is to add a reverse channel wv to the graph, the
number of initial tokens of which indicates the capacity of the forward channel, vw.
To leave these buffer capacities unspecified, the number of tokens on these reversed
channels are captured by variables.

The worst-case execution time of the ten different phases of the sample rate con-
verter task are (in order): 136577, 133824, 133760, 133750, 133748, 133863, 133844,
133955, 133882, and 133862 clock cycles. The MP3 decoder task has a worst-case
execution of 1603621 clock cycles, and the digital-to-analog-converter samples its
input every 5000 clock cycles. The latter gives a minimal required throughput; in
order not to stall the digital-to-analog-converter, data should arrive in time.

The throughput of the graph is dependent on the capacity of the two buffers between
the three tasks, i.e., the variables d1 and d2. If we approximate these buffer sizes

190

C
hapter

7
–
C
ase

studies

MP3 SRC DAC

1152 ⟨48, 9 ∗ 48⟩

⟨48, 9 ∗ 48⟩d11152

⟨45, 9 ∗ 44⟩ 1

1d2⟨45, 9 ∗ 44⟩

1

Figure 7.2 – A Cyclo-Static dataflow graph model of an MP3 playback application. The
capacities of the buffers between the tasks are captured by (integer) variables d1 and d2 . The
compact notation ⟨45, 9 ∗ 44⟩ specifies the statically varying sequence “45, followed by nine
times 44”.

MP3

SRC1

SRC2

SRC3

SRC4

SRC5

SRC6

SRC7

SRC8

SRC9

SRC10

SRC1

SRC2

SRC3

SRC4

SRC5

SRC6

SRC7

SRC8

SRC9

SRC10

SRC1

SRC2

SRC3

SRC4

SRC5

SRC6

SRC7

SRC8

SRC9

SRC10

DAC

432 480

384 480

336 480

288 480

240 480

192 480

144 480

96 480

48 480

480

480 d1

480 d1 + 48

480 d1 + 96

480 d1 + 144

480 d1 + 192

480 d1 + 240

480 d1 + 288

480 d1 + 336

480 d1 + 384

480 d1 + 432

441

441 45

441 89

441 133

441 177

441 221

441 265

441 309

441 353

441 397

d2 + 396 441

d2 + 352 441

d2 + 308 441

d2 + 264 441

d2 + 220 441

d2 + 176 441

d2 + 132 441

d2 + 88 441

d2 + 44 441

d2 441

Figure 7.3 – TheMRSDF graph that is temporally equivalent to the CSDF graph from Fig-
ure 7.2.

required to reach the required throughput, using the techniques from [98], we find
that d1 must be at least 1536 and d2 must be at least 90. Note that this algorithm
is applied to the CSDF graph, and does not require a transformation of the graph
into an equivalentMRSDF graph.

Transforming the CSDF graph into an equivalentMRSDF graph “unfolds” the sam-
ple rate converter into ten actors, each representing one of the ten phases of the
CSDF actor. Because the other two actors in the CSDF graph are basicallyMRSDF
actors, they do not need to be unfolded. The equivalentMRSDF graph is not easily
represented in a compact way. We have therefore unfolded the cycles of the graph,
such that all channels point from left to right. Furthermore, we omitted the self-
loops and the production and consumption rates of the MP3 actor (which are 1152)
and the DAC actor (which produces and consumes data with a rate of one). The
resultingMRSDF graph is depicted in Figure 7.3.

If we analyse the equivalentMRSDF graph, using the techniques described in [97],
for the minimum buffer sizes (i.e., d1 and d2), the results are the following: For the

191

7.3
–
D
is
cu

ss
io
n

Table 7.10 – Minimum buffer capacities (d1 and d2) and their sum, computed for different
choices of unfolding factors for the three actors in the graph of Figure 7.2.

mp3 src dac d1 d2 d1 + d2
1 10 1 1488 73 1561
1 10 3 1488 72 1560
1 10 21 1488 71 1559
1 10 49 1488 69 1557
1 10 147 1488 59 1547
1 10 441 1488 45 1533
5 10 441 1488 45 1533
5 30 1323 1440 45 1485
5 60 2646 1392 45 1437
5 120 5292 1152 45 1197

size of the buffer between the MP3 decoder and the sample rate converter, we find
d1 = 1488. This is an improvement over the buffer size found by the CSDF-specific
algorithm by 3.1%. For the size of the buffer between the sample rate converter and
the digital-to-audio converter we find d2 = 73, which is an improvement of 18.9%.

An exact computation, using the tool sdf3 [90], yields that the required capacities
d1 and d2 are respectively 1152 and 45. This means that the minimum buffer sizes,
computed from the equivalentMRSDF graph, are 29.2% (d1) and 62.2% (d2) higher
than the exact capacities. In order to improve the estimated capacities, we apply
Algorithm 1 to transform several periods of the actors in the graph, rather than a
single period. As the error in the buffer capacity estimates depends on the greatest
common divisor of the channel’s production and consumption rate, we choose the
number of periods in such a way that these greatest common divisors increase.
Table 7.10 lists the resulting buffer capacities, for different unfolding factors. The
first six rows show that the capacity d2 decreases from 73 to 45 (which equals the
exact required capacity). Similarly, the last four rows show how the estimate for d1
decreases from 1488 to the optimum, 1152. The three unfolding factors (5, 120 and
5292) in the last row correspond to the repetition vector entries of the three actors;
this means that with these factors, Algorithm 1 produces an HSDF graph. The
estimated buffer capacities for this final casematch the optimal capacities computed
using SDF3. Note that, by unfolding theMRSDF graph further, the estimated sum
of the capacities decreases by 23.3% from 1561 to 1197.

7.3 Discussion

The evaluation of throughput, by analysing the feeding component of a graph’s
single-rate equivalent for its maximum cycle ratio, clearly outperforms state-of-the-
art methods. On the various test sets that we included in our study, our approach
is between one to three orders of magnitude faster than the methods offered by
the widely used state-of-the-art tool SDF3. Furthermore, the evaluation of our

192

C
hapter

7
–
C
ase

studies

approach on the benchmark sets that were used in the previous study reported
in [42], calls for a revision of the conclusions drawn in that study. In [42], the
classical approach was considered inefficient due to the transformation of a graph
into its single-rate equivalent, our current study shows that this transformation
may be performed in very little time, because we may compute the graph’s channels,
rather than represent them explicitly.

Furthermore, the graphs that we have included in our evaluation proved to be
more challenging than those used in [42]. In fact, the graphs used in [42] showed a
structure that could easily be exploited by our approach. On themost challenging of
the four test sets, our algorithm still outperforms state-space exploration by almost
an order of magnitude.

To the best of our knowledge, this experimental evaluation is the first to evaluate
the timestamped token approach described in [35, 36]. Results confirm that for
graphs with relatively few tokens, the method is competitive with the state-space
exploration approach, although, on these graphs, its running time is between 40
and 60 times higher than our approach.

Despite the confirmed efficiency of our approach on challengingMRSDF graphs,
the scalability of our approach (and other exact approaches) is limited by the size of
the single-rate equivalent. As such, the incremental approach that we introduced
in Section 6.3 offers a trade-off between complexity of the analysis on the one hand,
and accuracy of the estimated throughput on the other hand.

The sets of graphs on which we evaluated the relation between the accuracy of esti-
mated throughput and the size of the graph that was analysed, show that the error
of an initial approximation may be extreme. Increasing the size of the graph by un-
folding those actors that are critical gives a steep drop in the estimated throughput.
The experiments indicate that the relation between the decrease in approximation
error, as the size of the analysed graph increases, is exponential.

A disadvantage of (the current implementation of) our incremental approach to
throughput analysis is its high running time. We believe that this may be improved
in several ways. First, the approach demands that maximum cycle ratio is com-
puted in a dynamic fashion: a change in the graph should lead to an update in the
parametric longest paths tree maintained by the algorithm, rather than recomput-
ing it from scratch. A second improvement in the approach is to combine it with
an exact analysis of cycles. Cycle analysis is relatively cheap (see Section 6.2.2), and
gives an upper bound on the graph’s throughput. This upper bound may be tighter
than the bound obtained from the graph’s optimistic approximation, and thus gives
a faster convergence of the throughput bounds.

193

194

1958

a concluding conclusion chapter that concludes, with a conclusion
in the form of a summary, a list of contributions, and some

recommendations for future work. a concluding conclusion chapter
that concludes, with a conclusion in the form of a summary, a
list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future
work. a concluding conclusion chapter that concludes, with a

conclusion in the form of a summary, a list of contributions, and
some recommendations for future work. a concluding conclusion

chapter that concludes, with a conclusion in the form of a summary,
a list of contributions, and some recommendations for future work.Conclusions and future work

Abstract – This chapter gives an overview of the research results presented
in this thesis, and gives recommendations for future work.

This thesis provides a mathematical characterisation of SDF graphs, in the form of
linear, periodically shift-varying, discrete event systems, formulated in max-plus
algebra. With this representation, the thesis introduces several transformations,
which are finally combined to the problem of computing a graph’s throughput. This
chapter provides an overview of the research results presented in the thesis, and
gives recommendations for future work.

8.1 Summary and conclusions

SDFwas introduced about 30 years ago, as a programming paradigm for the design
and implementation of stream-processing systems. Its main purpose was to aid in
the design of DSP applications for concurrent implementation on parallel hardware,
by making concurrency explicit. Classically, analysis of the temporal dynamics of
SDF graphs involves the transformation of the graph into its single-rate equivalent,
which is an HSDF graph that shows identical behaviour. The size of this graph
depends on the ratios between the production and consumption rates associated
with channels in the graph, and is exponential in the size of the SDF graph. This
affects the scalability of classical methods, and has caused a separation in literature,
creating two main schools of thought.

The first of these two schools is primarily concerned with exact analysis, computing
the same results as the classical method, but avoiding its computational burden by
using clever heuristics. The main analysis method that is applied in this line of re-
search is state-space exploration, which is used both for analysing the throughput
of a graph, and for the optimisation of buffer capacities under a throughput con-
straint. In the influential earlier study of [42], which experimentally evaluated the

196

C
hapter

8
–
C
onclusionsand

future
w
ork

classical approach and state-space exploration, on the task of throughput analysis,
the latter was shown to outperform the former. The perspective taken in this school
of thought is an operational one: SDF graphs are treated as formalisms defined by a
set of rules, which specify the behaviour of the graph in terms of valid transitions
between its states. In this view, the state of a graph consists of the distribution of
tokens over its channels, and the active firings of its actors.

The focus of the second school is on the development of computationally efficient
methods, to analyse, and optimise for, performance characteristics of SDF graphs.
Efficiency comes at the expense of a loss in accuracy: analysis results are conser-
vative with respect to the performance of the application modelled by the graph,
whichmeans that its actual performance can be guaranteed to be no worse than the
analysis indicates. Conservatively approximating methods have found many appli-
cations in the computation of throughput, the optimisation of buffer capacities, and
the analysis of data parallelism. However, any (conservative) approximation is only
useful if its error can be assessed. Existing work does not provide any such assess-
ment. Consequently, the extent to which systems designed using these conservative
methods are over-dimensioned can not be quantified.

The two schools described above form two extremes in the trade-off between the
computational complexity and accuracy of the analysis. However, this trade-off
can not be chosen freely: if the computation of an exact result is computationally
too demanding, then the only alternative is a potentially inaccurate conservative
approximation. This is due to the fact that the two schools of thought operate on
different and incompatible levels of mathematical abstraction: methods of the first
school can not improve the approximation computed by methods of the second.
This misalignment of abstractions is caused by the difference in perspective, taken
in the different approaches. The conservative approximations of the second school
are founded on abstractions of the temporal dynamics of an SDF graph, but are not
formulated in terms of these temporal dynamics: methods either assume periodic
arrival times, of tokens on channels, or periodic schedules, of firings of actors. For
the “exact” school, the apparent success of the developed state-space exploration
approach has distracted research from further developing the classical view, despite
the fact that the classical view has its roots in the related and well-matured field of
Petri nets.

This thesis therefore revisits the more classical viewpoint, laying a mathematical
basis that allows for the unification of the two schools of thought. Our perspec-
tive, which we describe in detail in Chapter 3, regards SDF graphs as linear systems.
That is, a graph is a mathematical structure that transforms an input sequence, of
timestamps, into an output sequence of timestamps. The primary difference with
existing systems that are used to describe, for example, mechanical or electric sys-
tems, is that SDF graphs are described inmax-plus algebra, in which the operators
max and + respectively correspond to conventional addition andmultiplication. In
this system-theoretic view, a consistent SDF graph is regarded as a periodically shift-
varying linear system. We give two dual perspectives on the temporal dynamics

197

8.
1–

Su
m
m
ar

y
an

d
co

nc
lu

si
on

s

of an SDF graph: in the actor firing perspective, we capture the interdependencies
between the firing times of actors, and the token transfer perspective describes
the times at which tokens are transferred over channels. These two perspectives
correspond to the notions of token arrival curves and periodic schedules used in
literature.

The system-theoretic perspective that we introduce is fundamental in the sense
that it allows for the unification of the two existing perspectives, by providing a
solid level of abstraction from which both exact and approximate analyses may be
derived. As such, graph transformations forma key result built upon this foundation.
They form the body of this thesis, and are described in chapters 4, 5 and 6.

Chapter 4 presents several exact transformations, in the sense that graphs are trans-
formed into graphs that provably have the same temporal dynamics. These trans-
formations allow CSDF actors to be unfolded into actors that represent a specific
sampling of the firings of the original actor. For example, an actor may be unfolded
into two actors, which represent the odd and even firings of that actor. In par-
ticular, such an unfolding transformation allows CSDF graphs to be transformed
in multi-rate equivalents: MRSDF graphs that have the same temporal dynamics.
Furthermore, in line with the classical view, we show how CSDF graphs may be
transformed into their single-rate equivalent.

The presented transformations highlight a difference between our perspective and
the classical view. Classically, the single-rate equivalent of an SDF graph is con-
structed by ensuring that the distribution of data (in the form of tokens), in the
former and latter, is identical. The de facto transformation achieves this by leaving
the amount of data processed by the graph invariant by the transformation. In our
view, the transformation duplicates the data: actors in the single-rate equivalent
process the same stream of data as their corresponding actors in the original graph.
In this view, the construction of a single-rate equivalent can be understood as an
appropriate unfolding of actors, followed by a pruning of non-binding channels
that impose a non-binding constraint on the graph’s admissible schedules, and a
scaling of production and consumption rates.

Chapter 5 introduces four more transformations. While the transformations pre-
sented in Chapter 4 are exact, in the sense that they result in temporally equivalent
graphs, the transformations put forward in Chapter 5 are approximate: they result
in graphs, of which the performance characteristics either give a lower, or an upper
bound on the performance characteristics of the original graph. Using the notion
of temporal abstraction, we prove the validity of these transformations. Further-
more, we demonstrate and prove that any schedule computed for the pessimistic
approximation may be mapped to a valid schedule for the original graph, and any
schedule for the original graphmay bemapped to a valid schedule for the optimistic
approximation.

A further aspect that we treat in Chapter 5 is the difference between the two per-
spectives taken in existing approaches. The quality of conservative approximations,
derived from the token-transfer and actor-firing perspective, may differ. We have

198

C
hapter

8
–
C
onclusionsand

future
w
ork

illustrated how, when applied to CSDF graphs, neither of the two perspectives is
better in the sense that it provides a tighter estimate on a graph’s performance.
More importantly, we have proven that, for MRSDF graphs, the estimations de-
rived from the actor-firing perspective are never worse than those derived from
the token-transfer perspective.

Chapter 6 is dedicated to the problemof computing the throughput of an SDF graph.
Classically, the throughput of an SDF graph is computed from the maximum cycle
ratio of its single-rate equivalent. The single-rate equivalents that we analyse are
smaller than those constructed by the de facto transformation used in the classi-
cal approach: our transformation creates a simple graph, with significantly fewer
channels than the multi-graphs constructed by the classical transformation. The
chapter shows, and thoroughly proves, how the single-rate equivalent has a regular
structure, which may be exploited. In fact, in case the single-rate equivalent is not
strongly connected, its analysis may be restricted to a single strongly connected
component, which we refer to as a feeding component.

Since the size of a graph’s single-rate equivalent is exponential in the size of the
original graph, the computation of a graph’s throughput through its single-rate
equivalent does not scale. In Chapter 6 we therefore introduce a second approach
to throughput analysis, which combines the transformations of Chapter 4, and the
approximations of Chapter 5, into an incremental approach. This approach starts
with an initial throughput estimation, computed from the graph’s pessimistic single-
rate approximation, and an initial identification of a potentially critical cycle. We
show how the accuracy of the estimation of the throughput of a graph depends on
the structure of its single-rate equivalent, and how the accuracy may be improved
by changing this structure implicitly, through the vectorisation of actors. Our incre-
mental approach is the first demonstration of a method that combines exact and
approximate analyses, and gives a practical application of the theory presented in
chapters 3, 4 and 5. Moreover, it serves as a justification of our system-theoretic
perspective, and proves that it gives a sound level of abstraction that unifies the
viewpoints of the two existing schools of thought.

Chapter 7 contains an extensive experimental study of the performance of our exact
throughput analysis method. It furthermore studies the validity and effectiveness
of our incremental approach, to compute increasingly tighter bounds on a graph’s
throughput, and an application of the graph transformations and approximations
to the problem of computing sufficient buffer sizes under a throughput constraint.
The evaluation of our exact throughput analysis method is partially a repetition of a
previous study, which compared the classical approach to throughput analysis with
a method based on state-space exploration. We have used the same benchmark
sets of graphs used in the previous study, and included the same method of state-
space exploration in our evaluation. Furthermore, we have included a more recent
approach, which is based on a max-plus characterisation of the temporal dynamics
between the individual tokens in an SDF graph. To the best of our knowledge, this is
the first experimental evaluation of this method on the task of throughput analysis.

199

8.
2
–
C
on

tr
ib
ut

io
ns

The results of our experimental evaluation, of the three methods on the benchmark
sets used in the previous study, lead to a conclusion that is the opposite of the con-
clusion drawn in the earlier study: while, in the earlier study, the classical method
was significantly outperformed by the state-space exploration method, our study
shows that the computation of a graph’s throughput, by analysing its single-rate
equivalent, outperforms state-space exploration. In fact, the running time of our
method was often several orders of magnitude lower than the time required by
state-space exploration.

Results obtained for the incremental approaches confirm the validity of the ap-
proach, on both the throughput analysis and buffer capacity optimisation task: as
the graph is partially transformed into a larger graphs, with approximations identi-
fying which of the actors to unfold, the estimated throughput or buffer capacities
become more accurate. Especially on SDF graphs that model real applications,
from the digital signal processing and multimedia domain, the incremental analy-
sis shows its effectiveness. An observed disadvantage of the incremental analysis
is its running time, which is partially due to the fact that the analysis is applied
to evolving graphs. For throughput analysis, this means that the relatively naive
but simple approach of analysing the full single-rate equivalent is faster than the
smarter incremental approach. Several of the problems attributing to the high run-
ning time may be overcome by a smarter choice of algorithms, and we believe that
there are many opportunities for future research to improve upon the incremental
approach, maturing it into a state-of-the-art method that increases the scalability,
and consequently the applicability, of SDF graph analysis methods.

8.2 Contributions

This thesis addresses the shortcomings of current approaches to the analysis of SDF
graphs. The research results presented in this thesis contribute to addressing the
main research question:

How can we combine exact and approximate analysis of synchronous data-
flow graphs into an approach that offers a trade-off between accuracy and
complexity?

We have approached this question by taking a system-theoretic perspective, in
which we have given a mathematical characterisation of the temporal dynamics of
an SDF graph, and demonstrated how both exact and approximate analyses can be
derived. In particular, the incremental approach to throughput analysis, which we
presented in Chapter 6, serves as a justification of our system-theoretic perspective,
and proves that it gives a sound basis for approximate and exact analyses. This
forms the primary contribution of this thesis.

This first and foremost theoretical contribution is the product of several other con-
tributions of this thesis, both practical and theoretical, listed below:

200

C
hapter

8
–
C
onclusionsand

future
w
ork

» The actor-firing and token-transfer perspective, introduced in Chapter 3,
give an explicit formal characterisation of the two predominant existing
approaches: state-of-the-art approximate methods either assume periodic
arrival times of tokens on channels, or periodic firing times of actors, with-
out assessing the quality of the estimations that are derived from them. We
contribute to the field by demonstrating how approximations derived from
these two viewpoints relate to each other in terms of accuracy: we show
that for CSDF graphs, neither of the two perspectives is consistently better
than the other, but forMRSDF graphs, the actor-firing perspective is to be
preferred. This means that the existing approaches based on the analysis of
token arrival times is, in the best case, as accurate than approaches based on
the periodic firing of actors.

» Existing approaches to the approximation of performance characteristics
of SDF graph lack a quantitative assessment of its accuracy. This due to
their focus on computing a conservative approximation. The four single-
rate approximations that we introduce in Chapter 5 provide a conservative
(pessimistic), as well as an optimistic approximation. Tight bounds on a
graph’s throughput may be computed from these approximations, and the
difference between these bounds provides an upper bound on the error
made by the conservative approximation.

» The concept of themulti-rate equivalent of CSDF graph is a novel one: cur-
rently, the only transformation from CSDF into (“lumped”)MRSDF that is
currently known is temporally conservative, and may introduce deadlock.
We prove that our transformation gives a graph that is temporally equivalent
to the original graph, and show how schedules for the CSDF graph map to
the multi-rate equivalent, and vice versa. This contributes to the field by
generalising the scope of existing analysis techniques forMRSDF graphs to
CSDF graphs.

» An important property of the transformations presented in Chapter 4 is
that they can deal with SDF graphs in which the rates and initial tokens of
channels are parameterised, whereas existing transformations can not. This
contributes to the field by putting the current conviction, that the structure
of a graph’s single-rate equivalent depends on the number of initial tokens
placed on its channels, into a new perspective.

» The construction of the single-rate equivalent of an SDF graph allows ap-
proximate analyses to be applied within the same mathematical abstraction.
Currently, approximate methods typically operate by formulating the analy-
sis as a linear program, which is subsequently solved by a state-of-the art
solver. Representing the approximated temporal dynamics of an SDF graph
as an HSDF graph maintains the structure of the analysis or optimisation
problem, which aids in the interpretation of the approximation, in terms of
the properties of the original graph.

» Our perspective on SDF graphs allows the study of CSDF graphs where
actors with varying execution times are free to start several consecutive

201

8.
3–

R
ec

om
m
en

da
ti
on

sf
or

fu
tu

re
w
or

k

executions in parallel. Currently, this scheduling freedom is either disal-
lowed, which means that CSDF does not, taxonomically speaking, gener-
alise MRSDF, or it is allowed, in which case functional determinacy is no
longer guaranteed. We show how firings with differing execution times may
be executed in parallel, while maintaining functional determinacy.

» The incremental approach to throughput analysis, which combines the trans-
formations of Chapter 4 and Chapter 5, bridges the gap between current
approximate and exact approaches. We describe how the error of an ap-
proximation depends on the structure of the graph’s single-rate equivalent,
and how, by vectorisation of actors, the throughput of anMRSDF cycle may
be analysed without unfolding it into its single-rate equivalent. We further
show how, forMRSDF graphs, an initial rough estimate may be improved
upon, by unfolding critical actors in the graph. This contributes to the field
by giving a solid foundation, based upon which the two currently separated
lines of research may be unified.

» Our experimental evaluation of throughput analysis confirms the validity
of methods based on the analysis of the single-rate equivalent. The results
of this study, as presented in Chapter 7, clearly reveal the efficiency of our
method, compared to the state-of-the-art. This contributes to the field by
improving the scalability of throughput analysis.

» We have implemented all SDF graph transformations described in chapters
4, 5 and 6, in a Python library. The library is available at http://caes.ewi.
utwente.nl/sdf. The throughput analysis algorithms and benchmark sets
used in the evaluation are available from the same link.

8.3 Recommendations for future work

The theoretical foundation put forward in this thesis provides a basis for future re-
search directions. We believe that the most promising line of research is opened up
by our novel incremental analysis techniques, to both throughput analysis and the
optimisation of buffer capacities. Although the experimental evaluation confirmed
the validity of these incremental techniques, the high running times leave many op-
portunities for improvements. Future work may investigate different combinations
of exact analyses, of the single-rate equivalent of anMRSDF subgraph, on the one
hand, and the heuristic identification of critical cycles and associated throughput,
provided by the single-rate approximations, on the other hand. We foresee several
improvements over the ideas presented in this thesis, such that the scalability of
SDF graph analysis is increased, and therewith its applicability.

The mathematical characterisation that we have introduced in this thesis, and for
which we have developed approximation and transformation methods, is not lim-
ited to CSDF graphs. Several models that extend SDFmay be described using the
same approach. A model that is close to CSDF, and for which the theory set forth
in this thesis may be applied without too much effort, is the phased computation

http://caes.ewi.utwente.nl/sdf
http://caes.ewi.utwente.nl/sdf

202

C
hapter

8
–
C
onclusionsand

future
w
ork

graph [96]. Phased computation graphs extend CSDF graphs with an initial set of
phases, which an actor executes prior to entering its cyclically varying behaviour,
and allows a threshold to be associated with each phase. The threshold gives the
number of tokens that must be present on the particular incoming channel, before
tokens may be consumed from it, similar to the computation graphs introduced by
Karp and Miller [55]. By generalising the theory of this thesis to phased computa-
tion graphs, theymay be transformed intomulti-rate equivalents, and consequently
be analysed using available methods.

Another example of a model that may be attractive to model in a system-theoretic
way is multi-dimensional synchronous dataflow (MDDF) [59, 70], which forms
an extension of MRSDF graphs, by generalising scalar production and consump-
tion rates to tuples that specify multidimensional index spaces. Multi-dimensional
dataflow graphs find their application in the exploitation of data parallelism in
image processing. In order to apply the approximating and unfolding transforma-
tions of Chapter 5 and Chapter 4 to these graphs, one must specify a predecessor
function for channels in an MDDF graph, in the same spirit as we did, in Chap-
ter 3, for CSDF graph. Although finding a suitable mathematical characterisation
of anMDDF channel may be far from trivial, it may enable a transformation from
MDDF graphs into multi-rate equivalents, and therewith bring analysis techniques
toMDDF.

Extending the theory of this thesis to other models can be regarded as a widen-
ing of its scope. We believe that there is also much to gain in a deepening of the
scope: extending the range of problems that wemay approach using the theory. The
incremental nature of the approach we presented for throughput analysis (Chap-
ter 6), and buffer capacity optimisation (Chapter 7), may be applied to several other
(optimisation) problems. For example, a natural generalisation of the buffer opti-
misation problem is the problem of optimising the (production and consumption)
rates associated with an actor: the transformations presented in chapters 4 and 5
may safely be applied in case these rates are parameterised. Rate parameters will
appear in the form of tokens in the graphs produced by the transformations. An
example of this idea is shown in Figure 8.1: Figure 8.1(b) depicts the pessimistic
single-rate approximation of the parameterisedMRSDF graph of Figure 8.1(a). Note
that the problem of optimising these rates, for example, under a throughput con-
straint, is more involved than the buffer capacity optimisation problem. This is due
to the fact that increasing the rate, p, associated with actor b, has a non-linear effect
on the throughput of cycle aba, as the term gcd(p, 3) is equal to 3 in case p is a
multiple of three, and 1 otherwise.

Another interesting problem for which applications of the theory of this thesis may
be worthwhile to explore, is the computation of static order schedules, given that
the number of processors is limited. This can be approached by adding cycles made
up of HSDF channels to the graph, the role of which is to enforce a strictly sequen-
tial execution of consecutive firings of actors, essentially partitioning the graphs
into subgraphs that are each associated with a particular processor. Again, this

203

8.
3–

R
ec

om
m
en

da
ti
on

sf
or

fu
tu

re
w
or

k

a b c
3 p

p
d

3

p 1

1
4

p

(a) ParameterisedMRSDF graph.

a b c

gcd(p, 3) − 3

gcd(p, 3) + d − p

1 − p

4

(b) Pessimistic single-rate approximation.

a

b1

b2

c
3

p 2p

2p
d

3

2p

1
1p + 4

2p

3 2p

2pp + d

3 2p p
1
1

42p

(c) Unfolded b into its odd and even firings.

Figure 8.1 – Both a single-rate approximation, and the transformation of a graph by unfold-
ing an actor, allow one to transform SDF graphs where rates and actors are parameterised.
This allows one to explore the design space spanned by the parameters, in an iterative fashion.

problem can be approached in an incremental fashion: in the coarsest approxima-
tion, the obtained static order schedule schedules each of an actor’s firing on the
same processing element. In an unfolded graph, for example, odd and even firings
could be scheduled onto different processors, in an alternating fashion. Costs (i.e.,
time) of inter processor communication may be modelled by adding actors with
an appropriate execution time.

In conclusion, we believe that the work presented in this thesis, in particular the
system-theoretic characterisation of SDF graphs and the transformations and ap-
proximation built upon it, serves as a fertile basis for future research.

204

205A

appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etcetera
appendix filled with all kinds of relations and properties of integer
functions - minima and maxima over sets of integers, differences
between resource-class-wise-affine functions, etcetera appendix

filled with all kinds of relations and properties of integer functions
- minima and maxima over sets of integers, differences between

resource-class-wise-affine functions, etcetera appendix filled with all
kinds of relations and properties of integer functions - minima and

maxima over sets of integers, differences between resource-class-wise-
affine functions, etcetera appendix filled with all kinds of relations
and properties of integer functions - minima and maxima over sets
of integers, differences between resource-class-wise-affine functions,
etcetera appendix filled with all kinds of relations and properties
of integer functions - minima and maxima over sets of integers,
differences between resource-class-wise-affine functions, etceteraInteger Arithmetic

The predecessor functions defined in Chapter 3 capture the dependency between the
number of producing and consuming firings, associated with a channel in an SDF
graph. When manipulating these functions, integers play an important role. This
chapter gives several relations and properties that hold for integer functions, which
find their application throughout the thesis. Most of the relations are explained
in [44]. For those that are not, we give a short proof or a brief explanation.

The floor and ceiling functions map the reals onto the integers. The floor of x,
denoted ⌊x⌋, and the ceiling of x, denoted ⌈x⌉, are defined as:

⌊x⌋ = max {n ∈ Z∣n ≤ x} , (A.1a)
⌈x⌉ = min{n ∈ Z∣n ≥ x} . (A.1b)

They may be interchanged using (n,m ∈ Z, n positive):

⌊
m
n
⌋ = ⌈

m − n + 1
n

⌉ ⌈
m
n
⌉ = ⌊

m + n − 1
n

⌋ . (A.2)

The modulo function gives the remainder after division of an integer by another
integer. It is defined in terms of the floor function as:

a mod b = a − b ⌊
a
b
⌋ . (A.3)

Note that the modulo function always yields a non-negative integer.

The floor and ceiling function may be used to derive an equivalent inequality be-
tween integers, from an inequality where one of the involved terms is non-integer:

⌊x⌋ < n⇔ x < n, (A.4a)
⌈x⌉ ≤ n⇔ x ≤ n, (A.4b)
⌈x⌉ > n⇔ x > n, (A.4c)
⌊x⌋ ≥ n⇔ x ≥ n. (A.4d)

206

A
ppendix

A
–
Integer

A
rithm

etic

The negation of the floor function equals the ceiling of the negated argument:

−⌊x⌋ = ⌈−x⌉. (A.5)

From (A.1) and (A.4), the following equalities may be derived, where n is a positive
integer, m ∈ Z, and x ∈ R:

⌊
m + x
n
⌋ = ⌊

m + ⌊x⌋
n
⌋ ⌈

m + x
n
⌉ = ⌈

m + ⌈x⌉
n
⌉ , (A.6)

Of particular interest is the composition of the floor and ceiling functions with
affine functions. An affine function f is a function that can be written as:

f (x) = mx + b,

where m and b are constants. If we compose the floor (or ceiling) functions with
an affine function f ∶ Q→ Q, we obtain functions of the following form:

f (k) = ⌊
ak + b
m
⌋ , (A.7)

When composed in this way, the resulting function is no longer (guaranteed to be)
affine. However, if we substitute k′n+ r for k, where n and r are integers, chosen in
such a way that m divides the product of a and n, we obtain the function (k′ ∈ Z):

gr(k′) ≡ f (k′n + r) = ⌊
ak′n + ar + b

m
⌋ =

ak′

m
+ ⌊

ar + b
m
⌋ , (A.8)

which is again affine. In fact, function gr(k′) as defined by (A.8) is affine for every
r ∈ {0, . . . , n − 1}. In other words, a function of the form (A.7) is affine when
restricted to the so-called residue classes of the integersmodulo n, where the residue
class m is the set {m + kn∣k ∈ Z}. This gives rise to the following definition, which
is taken from [56].

Definition A.1 (Residue-class-wise-affine mapping). A mapping f ∶ Z → Z is
residue-class-wise-affine if there is a positive integer m such that all m restrictions
of f to the residue classes of Z/mZ are affine. That is, f is residue-class-wise-affine
modulo m if:

∃b, n ∈ Z.∀a ∈ {0, . . . ,m − 1} ∶ f (a + km) = b + jn.

The graph of a residue-class-wise-affine mapping follows a staircase pattern. A
residue-class-wise-affine mapping f ∶ Z/mZ→ Z/nZ has a slope of n

m .

The graphs of two affine functions f (x) and g(x) that have the same slope are
parallel; the difference f (x)− g(x) is constant for all x in the domain of f . If f and
g are residue-class-wise affine mappings, then their difference, f (k) − g(k), may

207

A
pp
en

di
x
A
–
In
te
ge

r
A
ri
th

m
et
ic

not be constant for all k ∈ Z, even if they have equal slopes. The maximum and
minimumdifference between two suchmappings depends on the greatest common
divisor, of the numerator and denominator, of their slopes. The following identities
give the difference between two equally-sloped residue-class-wise affine mappings
depends:

max
k∈Z
{⌈
km − c1

n
⌉ − ⌈

km − c2
n
⌉} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

gm ,n (⌊
c2
gm ,n
⌋ − ⌊ c1

gm ,n
⌋)

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥

, (A.9)

where gm ,n = gcd(m, n).

Proof. Let m′ = m
gm ,n

and n′ = n
gm ,n

. We rewrite the left-hand side in the above
identity into the following:

max
k∈Z

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢

k′ − gm ,n ⌊
c1

gm ,n
⌋

n′

⎤
⎥
⎥
⎥
⎥
⎥
⎥

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢

k′ − ⌊ c2
gm ,n
⌋

n′

⎤
⎥
⎥
⎥
⎥
⎥
⎥

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

Now, choose functions q, r ∶ Z → Z, with 0 ≤ r(k) < n′ for all k, such that
k′ − gm ,n ⌊

c2
gm ,n
⌋ = q(k′)n′ + r(k′). Then k′ − gm ,n ⌊

c1
gm ,n
⌋ = q(k)n′ + r(k′) −

gm ,n ⌊
c2
gm ,n
⌋ + gm ,n ⌊

c1
gm ,n
⌋. Substituting this into the above gives:

max
k∈Z

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎡
⎢
⎢
⎢
⎢
⎢
⎢

r(k′) − gm ,n ⌊
c1

gm ,n
⌋ − gm ,n ⌊

c2
gm ,n
⌋

n′

⎤
⎥
⎥
⎥
⎥
⎥
⎥

− ⌈
r(k′)
n′
⌉

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Since k′ and n′ are relatively prime, r(k′) can attain the values 0, . . . , n′−1. The two
possible values for r(k′) at which the above maximum is attained, are r(k′) = 0
and r(k′) = n′ − 1. The former of these two is easily verified to give the desired
maximum.

In a similar fashion, the following identities may be derived:

max
k∈Z
{⌈
km − c1

n
⌉ − ⌈

km − c2
n
⌉} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

gm ,n (⌊
c2
gm ,n
⌋ − ⌊ c1

gm ,n
⌋)

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥

(A.10)

min
k∈Z
{⌊
km − c1

n
⌋ − ⌊

km − c2
n
⌋} =

⎢
⎢
⎢
⎢
⎢
⎢
⎣

gm ,n (⌈
c2
gm ,n
⌉ − ⌈ c1

gm ,n
⌉)

n

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.11)

max
k∈Z
{⌊
km − c1

n
⌋ − ⌊

km − c2
n
⌋} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢

gm ,n (⌈
c2
gm ,n
⌉ − ⌈ c1

gm ,n
⌉)

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥

, (A.12)

208

A
ppendix

A
–
Integer

A
rithm

etic

with again gm ,n = gcd(m, n).

Two identities that are related to those above, involve the minimum and maximum
of the difference between an affine function, and its composition with the ceiling
(or floor) function. These are:

min
k∈Z
{
km
n
− ⌈

km − d
n
⌉∣k ∈ Z} =

gcd(m, n) ⌈ d+1
gcd(m ,n)⌉

n
− 1, (A.13a)

max
k∈Z
{
km
n
− ⌈

km − d
n
⌉∣k ∈ Z} =

gcd(m, n) ⌊ d
gcd(m ,n)⌋

n
, (A.13b)

with m, n, d ∈ Z and n positive.

Proof. Using the definition of the modulo operator (A.3), in terms of the floor
function, and the negation of the ceiling function (A.5), we may reformulate the
set that appears on the left-hand sides of the two identities as:

{
d − (d − km) mod n

n
∣k ∈ Z} . (A.14)

Minimum and maximum values of this set are attained at the respective maximum
and minimum possible value of (d − km) mod n. We have [44]:

max
k∈Z
{(d − km) mod n} = n − gcd(m, n) + d mod gcd(m, n),

min
k∈Z
{(d − km) mod n} = d mod gcd(m, n).

Bywriting the mod operator in terms of the floor or ceiling operator, the two stated
identities now readily follow. This completes the proof.

209

210

211Bibliography

[1] SDF3. http://www.es.ele.tue.nl/sdf3/. Accessed: 2015-05-30. (Cited on
page 175).

[2] P. Aubry, M. Benazouz, and R. Sirdey. An ApproximateMethod forThroughput Eval-
uation of Cyclo-static Dataflow Programs. In Proceedings of the eighth International
Conference on Complex, Intelligent and Software Intensive Systems, pages 433–438.
IEEE, July 2014. ISBN 978-1-4799-4325-8. doi: 10.1109/CISIS.2014.61. (Cited on
pages 46 and 47).

[3] N. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhattacharyya. Intermediate
Representations for Design Automation of Multiprocessor DSP Systems. Design
Automation for Embedded Systems, 7(4):307–323, 2002. ISSN 1572-8080. doi:
10.1023/A:1020307222052. (Cited on page 38).

[4] V. Batagelj and U. Brandes. Efficient generation of large random networks. Physical
Review E, 71(3):036113, mar 2005. ISSN 1539-3755. doi: 10.1103/PhysRevE.71.036113.
(Cited on page 176).

[5] A. Benabid-Najjar, C. Hanen, O. Marchetti, and A. Munier-Kordon. Periodic Sched-
ules for Bounded Timed Weighted Event Graphs. IEEE Transactions on Automatic
Control, 57(5):1222–1232, May 2012. ISSN 0018-9286. doi: 10.1109/TAC.2012.2191871.
(Cited on pages 21 and 138).

[6] M. Benazouz and A. Munier-Kordon. Cyclo-static DataFlow phases scheduling op-
timization for buffer sizes minimization. In Proceedings of the 16th International
Workshop on Software and Compilers for Embedded Systems (M-SCOPES), pages
3–12, New York, NY, USA, June 2013. ACM Press. ISBN 9781450321426. doi:
10.1145/2463596.2463602. (Cited on page 71).

[7] M. Benazouz, O. Marchetti, A. Munier-Kordon, and T. Michel. A new method for
minimizing buffer sizes for Cyclo-Static Dataflow graphs. In 8th IEEE Workshop
on Embedded Systems for Real-Time Multimedia, pages 11–20. IEEE, oct 2010. ISBN
978-1-4244-9084-4. doi: 10.1109/ESTMED.2010.5666980. (Cited on page 189).

[8] M. Benazouz, A. Munier-Kordon, T. Hujsa, and B. Bodin. Liveness evaluation of a
cyclo-static DataFlow graph. In Proceedings of the 50th Annual Design Automation
Conference on - DAC ’13, page 1, New York, New York, USA, May 2013. ACM Press.
ISBN 9781450320719. doi: 10.1145/2463209.2488736. (Cited on pages 41, 42, and 99).

[9] E. Best and R. Devillers. State space axioms for T-systems. Acta Informatica, Feb.
2015. ISSN 0001-5903. doi: 10.1007/s00236-015-0219-0. (Cited on page 21).

http://www.es.ele.tue.nl/sdf3/
http://dx.doi.org/10.1109/CISIS.2014.61
http://dx.doi.org/10.1023/A:1020307222052
http://dx.doi.org/10.1023/A:1020307222052
http://dx.doi.org/10.1103/PhysRevE.71.036113
http://dx.doi.org/10.1109/TAC.2012.2191871
http://dx.doi.org/10.1145/2463596.2463602
http://dx.doi.org/10.1145/2463596.2463602
http://dx.doi.org/10.1109/ESTMED.2010.5666980
http://dx.doi.org/10.1145/2463209.2488736
http://dx.doi.org/10.1007/s00236-015-0219-0

212

Bibliography

[10] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of Embedded Software
from Synchronous Dataflow Specifications. Journal of VLSI signal processing systems
for signal, image and video technology, 21(2):151–166, 1999. ISSN 1573-109X. doi:
10.1023/A:1008052406396. (Cited on page 175).

[11] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-Static dataflow.
IEEE Transactions on Signal Processing, 44(2):397–408, 1996. ISSN 1053587X. doi:
10.1109/78.485935. (Cited on pages 4, 12, 13, 14, 15, 17, 18, 39, 72, 75, 76, 77, 94, 101,
and 104).

[12] B. Bodin. Analyse d’Applications Flot de Données pour la CompilationMultiprocesseur.
PhD thesis, Université Pierre et Marie Curie - Paris VI, Dec. 2013. (Cited on pages 19
and 20).

[13] B. Bodin, A. Munier-Kordon, and B. de Dinechin. K-periodic schedules for evaluat-
ing the maximum throughput of a synchronous dataflow graph. In Proceedings of the
International Conference on Embedded Computer Systems (SAMOS), pages 152–159,
July 2012. doi: 10.1109/SAMOS.2012.6404169. (Cited on pages 139 and 170).

[14] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. Periodic schedules for Cyclo-
Static Dataflow. In Proceedings of the 11th IEEE Symposium on Embedded Systems for
Real-time Multimedia, pages 105–114. IEEE, Oct. 2013. ISBN 978-1-4799-1284-1. doi:
10.1109/ESTIMedia.2013.6704509. (Cited on pages 45, 46, and 138).

[15] B. Bodin, Y. Lesparre, J.-M. Delosme, and A. Munier-Kordon. Fast and effi-
cient dataflow graph generation. In Proceedings of the 17th International Work-
shop on Software and Compilers for Embedded Systems - SCOPES ’14, pages 40–49,
New York, New York, USA, June 2014. ACM Press. ISBN 9781450329415. doi:
10.1145/2609248.2609258. (Cited on page 42).

[16] A. Bouakaz, J.-P. Talpin, and J. Vitek. Affine Data-Flow Graphs for the Synthesis of
Hard Real-Time Applications. In Proceedings of the 12th International Conference on
Application of Concurrency to System Design, pages 183–192. IEEE, June 2012. ISBN
978-0-7695-4709-1. doi: 10.1109/ACSD.2012.16. (Cited on page 22).

[17] C. Cassandras. Introduction to discrete event systems. Springer Science+Business
Media, New York, N.Y, 2008. ISBN 0387333320. (Cited on pages 12 and 22).

[18] D. Chao, M. Zhou, and D. Wang. Multiple weighted marked graphs. In Proceedings
of the 12th IFAC World Congress, Sydney, Australia, volume 4, pages 259–263, 1993.
(Cited on page 21).

[19] J. Cochet-terrasson, G. Cohen, S. Gaubert, M. M. Gettrick, and J.-P. Quadrat. Nu-
merical Computation of Spectral Elements in Max-Plus Algebra, 1998. (Cited on
pages 30 and 174).

[20] G. Cohen and P. Moller. Algebraic Tools for the Performance Evaluation of Discrete
Event Systems, 1989. (Cited on page 12).

[21] G. Cohen, D. Dubois, J.-P. Quadrat, and M. Viot. A linear-system-theoretic view of
discrete-event processes and its use for performance evaluation in manufacturing.
IEEE Transactions on Automatic Control, 30(3):210–220, Mar. 1985. ISSN 0018-9286.
doi: 10.1109/TAC.1985.1103925. (Cited on page 19).

http://dx.doi.org/10.1023/A:1008052406396
http://dx.doi.org/10.1023/A:1008052406396
http://dx.doi.org/10.1109/78.485935
http://dx.doi.org/10.1109/78.485935
http://dx.doi.org/10.1109/SAMOS.2012.6404169
http://dx.doi.org/10.1109/ESTIMedia.2013.6704509
http://dx.doi.org/10.1109/ESTIMedia.2013.6704509
http://dx.doi.org/10.1145/2609248.2609258
http://dx.doi.org/10.1145/2609248.2609258
http://dx.doi.org/10.1109/ACSD.2012.16
http://dx.doi.org/10.1109/TAC.1985.1103925

213

Bi
bl
io
gr

ap
hy

[22] G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and linearity: an algebra
for discrete event systems. Wiley New York, 1992. (Cited on pages 12, 13, 22, 23, 25, 27,
28, 30, 31, and 85).

[23] G. Cohen, S. Gaubert, and J.-P. Quadrat. Timed-event graphs with multipliers and
homogeneous min-plus systems. IEEE Transactions on Automatic Control, 43(9):
1296–1302, 1998. ISSN 00189286. doi: 10.1109/9.718621. (Cited on pages 21, 41,
and 113).

[24] G. Cohen, S. Gaubert, and J.-P. Quadrat. Max-plus algebra and system theory: Where
we are and where to go now. Annual Reviews in Control, 23:207–219, Jan. 1999. ISSN
13675788. doi: 10.1016/S1367-5788(99)90091-3. (Cited on pages 12 and 29).

[25] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs. Journal
of Computer and System Sciences, 5(5):511–523, 1971. ISSN 0022-0000. (Cited on
page 29).

[26] B. Cottenceau, L. Hardouin, and J.-L. Boimond. Modeling and Control of Weight-
Balanced Timed Event Graphs in Dioids. IEEE Transactions on Automatic Control,
59(5):1219–1231, May 2014. ISSN 0018-9286. doi: 10.1109/TAC.2013.2294822. (Cited
on page 21).

[27] B. Cottenceau, S. Lahaye, and L. Hardouin. Modeling of Time-Varying (max, +)
Systems by Means of Weighted Timed Event Graphs. In Discrete Event Systems,
volume 12, pages 465–470, May 2014. ISBN 978-3-902823-61-8. (Cited on pages 21
and 31).

[28] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. Modeling
static-order schedules in synchronous dataflow graphs. In Proceedings of the Con-
ference on Design, Automation & Test in Europe (DATE), pages 775–780. IEEE, Mar.
2012. ISBN 978-1-4577-2145-8. doi: 10.1109/DATE.2012.6176588. (Cited on page 170).

[29] A. Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean algo-
rithms. ACM Transactions on Design Automation of Electronic Systems (TODAES),
9(4):385–418, 2004. ISSN 1084-4309. (Cited on pages 30, 144, 174, and 178).

[30] A. Dasdan, S. S. Irani, and R. K. Gupta. Efficient algorithms for optimum cycle mean
and optimum cost to time ratio problems. Proceedings of the 36th annual ACM/IEEE
Design Automation Conference (DAC’99), pages 37–42, 1999. (Cited on page 30).

[31] A. Davis and R. Keller. Data Flow ProgramGraphs. Computer, 15(2):26–41, Feb. 1982.
ISSN 0018-9162. doi: 10.1109/MC.1982.1653939. (Cited on page 11).

[32] J. B. Dennis. First version of a data flow procedure language. In B. Robinet, editor,
Programming Symposium, volume 19 of Lecture Notes in Computer Science, pages
362–376. Springer Berlin Heidelberg, 1974. ISBN 978-3-540-06859-4. doi: 10.1007/3-
540-06859-7_145. (Cited on page 52).

[33] M. Engels, G. Bilson, R. Lauwereins, and J. Peperstraete. Cycle-static dataflow: model
and implementation. In Proceedings of the 28th Asilomar Conference on Signals,
Systems and Computers, volume 1, pages 503–507. IEEE Comput. Soc. Press, 1994.
ISBN 0-8186-6405-3. doi: 10.1109/ACSSC.1994.471504. (Cited on page 17).

http://dx.doi.org/10.1109/9.718621
http://dx.doi.org/10.1016/S1367-5788(99)90091-3
http://dx.doi.org/10.1109/TAC.2013.2294822
http://dx.doi.org/10.1109/DATE.2012.6176588
http://dx.doi.org/10.1109/MC.1982.1653939
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1109/ACSSC.1994.471504

214

Bibliography

[34] Z. Ésik, P. Chrzastowski-Wachtel, and M. Raczunas. Liveness of weighted circuits
and the diophantine problem of Frobenius - Fundamentals of ComputationTheory
- Lecture Notes in Computer Science, 1993. (Cited on page 21).

[35] M. Geilen. Reduction techniques for synchronous dataflow graphs. In Proceedings
of the 46th ACM/IEEE Design Automation Conference (DAC), pages 911–916. IEEE,
2009. (Cited on pages 35, 36, 37, 38, 39, 45, 174, 178, 180, and 192).

[36] M. Geilen. Synchronous dataflow scenarios. ACM Transactions on Embedded Com-
puting Systems, 10(2):1–31, Dec. 2010. ISSN 15399087. doi: 10.1145/1880050.1880052.
(Cited on pages 21, 37, 45, 174, 178, 180, and 192).

[37] M. Geilen and S. Stuijk. Worst-case performance analysis of synchronous data-
flow scenarios. In Proceedings of the eighth IEEE/ACM/IFIP international confer-
ence on Hardware/software codesign and system synthesis - CODES/ISSS ’10, page
125, New York, New York, USA, Oct. 2010. ACM Press. ISBN 9781605589053. doi:
10.1145/1878961.1878985. (Cited on pages 21 and 35).

[38] M. Geilen, S. Tripakis, and M. Wiggers. The earlier the better. In Proceedings of the
14th international conference on Hybrid systems: computation and control - HSCC ’11,
page 23, New York, New York, USA, Apr. 2011. ACM Press. ISBN 9781450306294.
doi: 10.1145/1967701.1967707. (Cited on page 138).

[39] S. Gerez, S. Heemstra de Groot, and O. Herrmann. A polynomial time algorithm for
the computation of the iteration-period bound in recursive data flow graphs. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39(1):
49–52, 1992. ISSN 10577122. doi: 10.1109/81.109243. (Cited on pages 30 and 174).

[40] A. Ghamarian, M. Geilen, T. Basten, B. Theelen, M. Mousavi, and S. Stuijk. Liveness
and boundedness of synchronous data flow graphs. In Proceedings of the 6th confer-
ence on Formal Methods in Computer Aided Design (FMCAD), pages 68–75. IEEE,
Nov. 2006. (Cited on pages 14, 19, 28, 70, 71, 142, 152, 154, and 155).

[41] A. H. Ghamarian. Timing Analysis of Synchronous Data Flow Graphs. PhD thesis,
Technische Universiteit Eindhoven, July 2008. (Cited on pages 28, 142, and 174).

[42] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D.Theelen, M. R. Mousavi,
A. J. M. Moonen, and M. J. G. Bekooij. Throughput Analysis of Synchronous Data
Flow Graphs. In Proceedings of the 6th International Conference on Application of
Concurrency to System Design (ACSD), pages 25–36. IEEE, 2006. (Cited on pages 18,
33, 43, 44, 46, 47, 71, 170, 174, 175, 177, 178, 179, 180, 181, 185, 192, and 195).

[43] S. V. Gheorghita, T. Basten, and H. Corporaal. Scenario Selection and Prediction
for DVS-Aware Scheduling of Multimedia Applications. Journal of Signal Processing
Systems, 50(2):137–161, July 2007. ISSN 1939-8018. doi: 10.1007/s11265-007-0086-1.
(Cited on page 22).

[44] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Addison Wesley, Jan. 1994. ISBN 0201558025. (Cited on
pages 205 and 208).

http://dx.doi.org/10.1145/1880050.1880052
http://dx.doi.org/10.1145/1878961.1878985
http://dx.doi.org/10.1145/1878961.1878985
http://dx.doi.org/10.1145/1967701.1967707
http://dx.doi.org/10.1109/81.109243
http://dx.doi.org/10.1007/s11265-007-0086-1

215

Bi
bl
io
gr

ap
hy

[45] S. Ha and H. Oh. Decidable Dataflow Models for Signal Processing: Synchronous
Dataflow and its Extensions. In S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and
J. Takal, editors, Handbook of Signal Processing Systems, pages 1083–1109. Springer,
2013. ISBN 978-1-4614-6858-5. doi: 10.1007/978-1-4614-6859-2. (Cited on pages 38,
40, 104, and 138).

[46] S. Hamaci, J.-L. Boimond, and S. Lahaye. Modeling and Control of Discrete Timed
Event Graphs with Multipliers using (Min,+) Algebra. In ICINCO 2004 - Interna-
tional Conference on Informatics in Control, Automation and Robotics, volume 3,
pages 32–37, Setubal, Portugal, Aug. 2004. (Cited on page 21).

[47] M. Hartmann and J. B. Orlin. Finding minimum cost to time ratio cycles with
small integral transit times. Networks, 23(6):567–574, 1993. ISSN 1097-0037. doi:
10.1002/net.3230230607. (Cited on page 30).

[48] J. P. Hausmans, S. J. Geuns, M. H. Wiggers, and M. J. Bekooij. Compositional tem-
poral analysis model for incremental hard real-time system design. In Proceedings
of the 10th ACM International Conference on Embedded Software (EMSOFT), pages
185–194, New York, NY, USA, Oct. 2012. ACM Press. ISBN 9781450314251. doi:
10.1145/2380356.2380390. (Cited on pages 22, 42, 66, 113, 138, and 139).

[49] B. Heidergott, G. J. Olsder, and J. van der Woude. Max Plus at Work: modeling
and analysis of synchronized systems. Princeton University Press, 2006. ISBN
9780691117638. (Cited on pages 13, 18, 20, 22, 23, 25, 27, 28, 43, 142, and 174).

[50] H. P. Hillion and A. H. Levis. Timed event-graph and performance evaluation of
systems. Technical Report LIDS-P; 1639, Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, 1987. (Cited on page 19).

[51] K. Ito and K. Parhi. Determining the iteration bounds of single-rate and multi-
rate data-flow graphs. In Proceedings of the 1994 Asia Pacific Conference on Circuits
and Systems, pages 163–168. IEEE, 1994. ISBN 0-7803-2440-4. doi: 10.1109/APC-
CAS.1994.514543. (Cited on pages 12, 34, 35, and 174).

[52] K. Ito and K. K. Parhi. Determining the minimum iteration period of an algorithm.
Journal of VLSI Signal Processing, 11(3):229–244, Dec. 1995. ISSN 0922-5773. doi:
10.1007/BF02107055. (Cited on pages 30, 34, 35, and 158).

[53] G. Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information Processing, pages 471–475.NorthHolland, Amsterdam,
Aug 1974. (Cited on pages 3 and 16).

[54] R. Karp. Parametric shortest path algorithms with an application to cyclic staffing.
Discrete AppliedMathematics, 3(1):37–45, Feb. 1981. ISSN0166218X. doi: 10.1016/0166-
218X(81)90026-3. (Cited on pages 30 and 174).

[55] R. M. Karp and R. E. Miller. Properties of a Model for Parallel Computations: De-
terminancy, Termination, Queueing. SIAM Journal on Applied Mathematics, 14(6),
Sept. 1966. (Cited on pages 3, 14, 19, and 202).

[56] S. Kohl. A simple group generated by involutions interchanging residue classes of
the integers. Mathematische Zeitschrift, 264(4):927–938, Mar. 2009. ISSN 0025-5874.
doi: 10.1007/s00209-009-0497-8. (Cited on page 206).

http://dx.doi.org/10.1007/978-1-4614-6859-2
http://dx.doi.org/10.1002/net.3230230607
http://dx.doi.org/10.1002/net.3230230607
http://dx.doi.org/10.1145/2380356.2380390
http://dx.doi.org/10.1145/2380356.2380390
http://dx.doi.org/10.1109/APCCAS.1994.514543
http://dx.doi.org/10.1109/APCCAS.1994.514543
http://dx.doi.org/10.1007/BF02107055
http://dx.doi.org/10.1007/BF02107055
http://dx.doi.org/10.1016/0166-218X(81)90026-3
http://dx.doi.org/10.1016/0166-218X(81)90026-3
http://dx.doi.org/10.1007/s00209-009-0497-8

216

Bibliography

[57] S. Lahaye, J.-L. Boimond, and J.-L. Ferrier. Just-in-time control of time-varying
discrete event dynamic systems in (max, +) algebra. International Journal
of Production Research, 46(19):5337–5348, Oct. 2008. ISSN 0020-7543. doi:
10.1080/00207540802273777. (Cited on page 31).

[58] E. L. Lawler. Combinatorial optimization: networks and matroids. Courier Corpora-
tion, 1976. (Cited on page 30).

[59] E. Lee. Representing and exploiting data parallelism using multidimensional data-
flow diagrams. In Proceedings of the IEEE International Conference on Acoustics
Speech and Signal Processing, volume 1, pages 453–456 vol.1. IEEE, 1993. ISBN 0-7803-
0946-4. doi: 10.1109/ICASSP.1993.319153. (Cited on page 202).

[60] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the IEEE, 75(9):
1235–1245, 1987. (Cited on pages 3, 11, 12, 14, 19, 21, 33, 35, 52, 70, 71, 75, 76, 94, 104,
and 106).

[61] E. Lee and T. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):
773–801, May 1995. ISSN 00189219. doi: 10.1109/5.381846. (Cited on pages 3, 16,
and 52).

[62] E. A. Lee. A Coupled Hardware and Software Architecture for Programmable Digital
Signal Processors. PhD thesis, University of California, Berkeley, 1986. (Cited on
pages 33, 39, 75, and 76).

[63] E. A. Lee and D. G. Messerschmitt. Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing. IEEE Transactions on Computers, C-36(1):
24–35, Jan. 1987. ISSN 0018-9340. doi: 10.1109/TC.1987.5009446. (Cited on page 11).

[64] O. Marchetti and A. Munier-Kordon. Minimizing Place Capacities of Weighted
Event Graphs for Enforcing Liveness. Discrete Event Dynamic Systems, 18(1):91, 2008.
ISSN 0924-6703. (Cited on page 15).

[65] O. Marchetti and A. Munier-Kordon. A sufficient condition for the liveness of
weighted event graphs. European Journal of Operational Research, 197(2):532–540,
Sept. 2009. ISSN 03772217. doi: 10.1016/j.ejor.2008.07.037. (Cited on pages 21, 41,
and 99).

[66] O. Marchetti and A. Munier-Kordon. Complexity results for Weighted Timed
Event Graphs. Discrete Optimization, 7(3):166–180, Aug. 2010. ISSN 15725286. doi:
10.1016/j.disopt.2010.03.006. (Cited on page 21).

[67] D. Meyer. A new class of shift-varying operators, their shift-invariant equivalents,
andmultirate digital systems. IEEETransactions onAutomatic Control, 35(4):429–433,
Apr. 1990. ISSN 00189286. doi: 10.1109/9.52295. (Cited on pages 31 and 32).

[68] T. Miyawaki and C. Barnes. Multirate recursive digital filters–A general approach
and block structures. IEEE Transactions on Acoustics, Speech, and Signal Processing,
31(5):1148–1154, Oct. 1983. ISSN 0096-3518. doi: 10.1109/TASSP.1983.1164200. (Cited
on pages 31 and 32).

http://dx.doi.org/10.1080/00207540802273777
http://dx.doi.org/10.1080/00207540802273777
http://dx.doi.org/10.1109/ICASSP.1993.319153
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1016/j.ejor.2008.07.037
http://dx.doi.org/10.1016/j.disopt.2010.03.006
http://dx.doi.org/10.1016/j.disopt.2010.03.006
http://dx.doi.org/10.1109/9.52295
http://dx.doi.org/10.1109/TASSP.1983.1164200

217

Bi
bl
io
gr

ap
hy

[69] O. Moreira and H. Corporaal. Scheduling Real-Time Streaming Applications onto an
Embedded Multiprocessor, volume 24 of Embedded Systems. Springer International
Publishing, Cham, 2014. ISBN 978-3-319-01245-2. doi: 10.1007/978-3-319-01246-9.
(Cited on pages 28, 39, and 113).

[70] P. Murthy and E. Lee. Multidimensional synchronous dataflow. IEEE Trans-
actions on Signal Processing, 50(8):2064–2079, aug 2002. ISSN 1053-587X. doi:
10.1109/TSP.2002.800830. (Cited on page 202).

[71] M. Nakamura and M. Silva. Cycle time computation in deterministically timed
weighted marked graphs. In Proceedings of the 7th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA ’99), volume 2, pages 1037–
1046. IEEE, Oct. 1999. ISBN 0-7803-5670-5. doi: 10.1109/ETFA.1999.813105. (Cited
on pages 21, 35, and 109).

[72] T. W. O’Neil. Unfolding Synchronous Data-Flow Graphs. In Proceedings of the In-
ternational Conference on Parallel and Distributed Computing and Systems, pages
278–283, Dallas, USA, Dec. 2011. ACTAPRESS. ISBN 978-0-88986-907-3. doi:
10.2316/P.2011.757-098. (Cited on pages 38 and 39).

[73] K. Parhi. Algorithm transformation techniques for concurrent processors. Proceed-
ings of the IEEE, 77(12):1879–1895, 1989. ISSN 00189219. doi: 10.1109/5.48830. (Cited
on page 19).

[74] K. Parhi and D. Messerschmitt. Static rate-optimal scheduling of iterative data-flow
programs via optimum unfolding. IEEE Transactions on Computers, 40(2):178–195,
1991. ISSN 00189340. doi: 10.1109/12.73588. (Cited on pages 38 and 39).

[75] T. Parks, J. Pino, andE. Lee. AComparison of Synchronous andCyclo-staticDataflow.
In Proceedings of the 29th Asilomar Conference on Signals, Systems and Computers,
volume 1, pages 204–210. IEEE Comput. Soc. Press, 1995. ISBN 1-55937-533-7. doi:
10.1109/ACSSC.1995.540541. (Cited on pages 16, 18, 40, and 104).

[76] T. M. Parks. Bounded Scheduling of Process Networks. PhD thesis, University of
California, Berkeley, Dec. 1995. (Cited on page 16).

[77] J. Pino, S. Bhattacharyya, and E. Lee. A hierarchical multiprocessor scheduling sys-
tem for DSP applications. In Conference Record of The Twenty-Ninth Asilomar Con-
ference on Signals, Systems and Computers, volume 1, pages 122–126. IEEE Comput.
Soc. Press, Oct. 1995. ISBN 1-55937-533-7. doi: 10.1109/ACSSC.1995.540525. (Cited
on pages 12, 38, 109, 142, 156, 170, and 174).

[78] R. Reiter. Scheduling Parallel Computations. Journal of the ACM, 15(4):590–599, Oct.
1968. ISSN 00045411. doi: 10.1145/321479.321485. (Cited on pages 3, 12, 14, 30, 33, 42,
142, 143, and 174).

[79] S. Ritz, M. Pankert, and H. Meyr. High level software synthesis for signal processing
systems. In Proceedings of the International Conference on Application Specific Array
Processors, pages 679–693. IEEE Comput. Soc. Press, 1992. ISBN 0-8186-2967-3. doi:
10.1109/ASAP.1992.218536. (Cited on page 159).

http://dx.doi.org/10.1007/978-3-319-01246-9
http://dx.doi.org/10.1109/TSP.2002.800830
http://dx.doi.org/10.1109/TSP.2002.800830
http://dx.doi.org/10.1109/ETFA.1999.813105
http://dx.doi.org/10.2316/P.2011.757-098
http://dx.doi.org/10.2316/P.2011.757-098
http://dx.doi.org/10.1109/5.48830
http://dx.doi.org/10.1109/12.73588
http://dx.doi.org/10.1109/ACSSC.1995.540541
http://dx.doi.org/10.1109/ACSSC.1995.540541
http://dx.doi.org/10.1109/ACSSC.1995.540525
http://dx.doi.org/10.1145/321479.321485
http://dx.doi.org/10.1109/ASAP.1992.218536
http://dx.doi.org/10.1109/ASAP.1992.218536

218

Bibliography

[80] S. Ritz, M. Pankert, V. Zivojinovic, and H. Meyr. Optimum vectorization of scalable
synchronous dataflow graphs. In Proceedings of International Conference on Applica-
tion Specific Array Processors (ASAP ’93), pages 285–296. IEEE Comput. Soc. Press,
1993. ISBN 0-8186-3492-8. doi: 10.1109/ASAP.1993.397152. (Cited on pages 38, 39,
103, and 159).

[81] S. Ritz, M.Willems, andH.Meyr. Scheduling for optimumdatamemory compaction
in block diagram oriented software synthesis. In 1995 International Conference on
Acoustics, Speech, and Signal Processing, volume 4, pages 2651–2654. IEEE, 1995. ISBN
0-7803-2431-5. doi: 10.1109/ICASSP.1995.480106. (Cited on page 175).

[82] S. Saha, S. Puthenpurayil, and S. Bhattacharyya. Dataflow Transformations in
High-level DSP System Design. In Proceedings of the International Symposium on
System-on-Chip, pages 1–6. IEEE, Nov. 2006. ISBN 1-4244-0621-8. doi: 10.1109/IS-
SOC.2006.321985. (Cited on pages 37 and 38).

[83] N. Sauer. MarkingOptimization ofWeightedMarkedGraphs, 2003. ISSN 0924-6703.
(Cited on page 21).

[84] R. Schoenen, V. Zivojnovic, and H. Meyr. An upper bound of the throughput of mul-
tirate multiprocessor schedules. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, volume 1, pages 655–658. IEEE Comput.
Soc. Press, 1997. ISBN 0-8186-7919-0. doi: 10.1109/ICASSP.1997.599853. (Cited on
page 41).

[85] M. Sharir. A strong-connectivity algorithm and its applications in data flow analysis.
Computers & Mathematics with Applications, 7(1):67–72, 1981. (Cited on page 155).

[86] R. Shenoy, D. Burnside, and T. Parks. Linear periodic systems and multirate filter de-
sign. IEEE Transactions on Signal Processing, 42(9):2242–2256, 1994. ISSN 1053587X.
doi: 10.1109/78.317847. (Cited on page 31).

[87] F. Siyoum, M. Geilen, O. Moreira, and H. Corporaal. Worst-case throughput
analysis of real-time dynamic streaming applications. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software codesign and system
synthesis - CODES+ISSS ’12, page 463, New York, New York, USA, Oct. 2012. ACM
Press. ISBN 9781450314268. doi: 10.1145/2380445.2380517. (Cited on pages 21 and 37).

[88] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Syn-
chronization. CRC Press, Feb. 2009. ISBN 9781420048018. (Cited on pages 33, 34, 35,
39, 40, 75, 94, 104, 138, and 158).

[89] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In Proceedings of the 43rd
annual conference on Design automation - DAC ’06, page 899, New York, New York,
USA, jul 2006. ACM Press. ISBN 1595933816. doi: 10.1145/1146909.1147138. (Cited
on page 175).

[90] S. Stuijk, M. C. W. Geilen, and T. Basten. SDF3 : SDF For Free. In Proceedings of the
6th International Conference on Application of Concurrency to System Design (ACSD),
pages 276–278. IEEE Computer Society Press, Los Alamitos, CA, USA, June 2006.
doi: 10.1109/ACSD.2006.23. (Cited on pages 42, 175, and 191).

http://dx.doi.org/10.1109/ASAP.1993.397152
http://dx.doi.org/10.1109/ICASSP.1995.480106
http://dx.doi.org/10.1109/ISSOC.2006.321985
http://dx.doi.org/10.1109/ISSOC.2006.321985
http://dx.doi.org/10.1109/ICASSP.1997.599853
http://dx.doi.org/10.1109/78.317847
http://dx.doi.org/10.1145/2380445.2380517
http://dx.doi.org/10.1145/1146909.1147138
http://dx.doi.org/10.1109/ACSD.2006.23

219

Bi
bl
io
gr

ap
hy

[91] S. Stuijk, M. Geilen, and T. Basten. Throughput-Buffering Trade-Off Exploration for
Cyclo-Static and Synchronous Dataflow Graphs. IEEE Transactions on Computers,
57(10):1331–1345, Oct. 2008. ISSN 0018-9340. doi: 10.1109/TC.2008.58. (Cited on
pages 18 and 71).

[92] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Comput-
ing, 1(2):146–160, 1972. doi: 10.1137/0201010. (Cited on pages 154, 155, and 177).

[93] E. Teruel, P. Chrzastowski-Wachtel, J. M. Colom, and M. Silva. On Weighted T-
Systems. Application and Theory of Petri Nets, pages 348–367, June 1992. (Cited on
pages 15 and 21).

[94] B. Theelen, M. Geilen, T. Basten, J. Voeten, S. Gheorghita, and S. Stuijk. A scenario-
aware data flow model for combined long-run average and worst-case performance
analysis. In Fourth ACM and IEEE International Conference on Formal Methods
and Models for Co-Design (MEMOCODE), pages 185–194. IEEE, July 2006. ISBN
1-4244-0421-5. doi: 10.1109/MEMCOD.2006.1695924. (Cited on page 21).

[95] L.Thiele and N. Stoimenov. Modular performance analysis of cyclic dataflow graphs.
In Proceedings of the seventh ACM international conference on Embedded software
- EMSOFT ’09, pages 127–136, New York, New York, USA, Oct. 2009. ACM Press.
ISBN 9781605586274. doi: 10.1145/1629335.1629353. (Cited on page 66).

[96] W.Thies, J. Lin, and S. Amarasinghe. Phased computation graphs in the polyhedral
model. Technical report, Technical Report, MIT Laboratory for Computer Science
Cambridge, MA 02139, 2002. (Cited on pages 19 and 202).

[97] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient computation of buffer
capacities for multi-rate real-time systems with back-pressure. In Proceedings of
the 4th international conference on Hardware/software codesign and system synthesis
- CODES+ISSS ’06, page 10, New York, New York, USA, 2006. ACM Press. ISBN
1595933700. doi: 10.1145/1176254.1176260. (Cited on page 190).

[98] M. Wiggers, M. Bekooij, and G. Smit. Efficient Computation of Buffer Capacities
for Cyclo-Static Dataflow Graphs. In Proceedings of the 44th ACM/IEEE Design
Automation Conference (DAC), pages 658–663. IEEE, 2007. ISBN 978-1-59593-627-1.
doi: 10.1109/RTAS.2007.12. (Cited on pages 18, 138, 170, 189, and 190).

[99] M. H. Wiggers. Aperiodic Multiprocessor Scheduling for Real-Time Stream Processing
Applications. PhD thesis, University of Twente, Enschede, The Netherlands, June
2009. (Cited on page 189).

[100] M. H. Wiggers, M. J. Bekooij, P. G. Jansen, and G. J. Smit. Efficient Computation
of Buffer Capacities for Cyclo-Static Real-Time Systems with Back-Pressure. In
Proceedings of the 13th IEEE Symposium on Real Time and Embedded Technology
and Applications (RTAS), pages 281–292. IEEE, Apr. 2007. ISBN 0-7695-2800-7. doi:
10.1109/RTAS.2007.12. (Cited on page 46).

[101] N. E. Young, R. E. Tarjant, and J. B. Orlin. Faster parametric shortest path and
minimum-balance algorithms. Networks, 21(2):205–221, mar 1991. ISSN 00283045.
doi: 10.1002/net.3230210206. (Cited on pages 30, 174, and 178).

http://dx.doi.org/10.1109/TC.2008.58
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1109/MEMCOD.2006.1695924
http://dx.doi.org/10.1145/1629335.1629353
http://dx.doi.org/10.1145/1176254.1176260
http://dx.doi.org/10.1109/RTAS.2007.12
http://dx.doi.org/10.1109/RTAS.2007.12
http://dx.doi.org/10.1109/RTAS.2007.12
http://dx.doi.org/10.1002/net.3230210206

220

Bibliography

[102] G. F. Zaki, W. Plishker, S. S. Bhattacharyya, and F. Fruth. Partial Expansion Graphs:
Exposing Parallelism and Dynamic Scheduling Opportunities for DSP Applications.
In Proceedings of the 23rd IEEE International Conference on Application-Specific Sys-
tems, Architectures and Processors, pages 86–93. IEEE, July 2012. ISBN 978-1-4673-
2243-0. doi: 10.1109/ASAP.2012.14. (Cited on page 170).

[103] V. Zivojnovic, S. Ritz, and H. Meyr. High performance DSP software using data-flow
graph transformations. In Proceedings of the 28th Asilomar Conference on Signals,
Systems and Computers, volume 1, pages 492–496. IEEE Comput. Soc. Press, Nov.
1994. ISBN 0-8186-6405-3. doi: 10.1109/ACSSC.1994.471502. (Cited on page 19).

http://dx.doi.org/10.1109/ASAP.2012.14
http://dx.doi.org/10.1109/ACSSC.1994.471502

221List of Publications

[RdG:1] Daniel Rubio Bonilla, ColinW. Glass, Jan Kuper, and Robert de Groote. Introduc-
ing and Exploiting Hierarchical Structural Information. In Proceedings of the 2015
IEEE International Conference on Cluster Computing (CLUSTER), pages 777–784.
IEEE, September 2015.

[RdG:2] Robert De Groote, Philip K. F. Hölzenspies, Jan Kuper, and Gerard J. M. Smit.
Incremental analysis of cyclo-static synchronous dataflow graphs. ACM Transac-
tions on Embedded Computing Systems, 14(4):68:1–68:26, December 2015. ISSN
1539-9087. doi: 10.1145/2792981.

[RdG:3] Robert de Groote, Philip K. F. Hölzenspies, Jan Kuper, and H. J. Broersma. Back
to Basics: Homogeneous Representations of Multi-Rate Synchronous Dataflow
Graphs. In Proceedings of the 11th ACM-IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), pages 35–46, October 2013.

[RdG:4] Robert de Groote, Philip K. F. Hölzenspies, Jan Kuper, and Gerard J. M. Smit.
Single-Rate Approximations of Cyclo-Static Synchronous Dataflow Graphs. In
Proceedings of the 17th International Workshop on Software and Compilers for
Embedded Systems (SCOPES), pages 11–20, June 2014.

[RdG:5] Robert de Groote, Philip K. F. Hölzenspies, Jan Kuper, and Gerard J. M. Smit.
Multi-rate Equivalents of Cyclo-Static Synchronous Dataflow Graphs. In Proceed-
ings of the 14th International Conference on Application of Concurrency to System
Design (ACSD), pages 62–71. IEEE Computer Society, June 2014.

[RdG:6] Waheed Ahmad, Robert de Groote, Philip K. F. Hölzenspies, Mariëlle I. A.
Stoelinga, and Jaco C. van de Pol. Resource-constrained optimal scheduling
of synchronous dataflow graphs via timed automata. In Proceedings of the 14th
International Conference on Application of Concurrency to System Design (ACSD),
pages 72–81, USA, June 2014. IEEE Computer Society.

[RdG:7] Robert de Groote, Jan Kuper, Hajo Broersma, and Gerard J. M. Smit. Max-Plus
Algebraic Throughput Analysis of Synchronous Dataflow Graphs. In Proceedings
of the 38th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pages 29–38. IEEE, September 2012. ISBN 978-0-7695-4790-9. doi:
10.1109/SEAA.2012.20.

[RdG:8] Robert de Groote, Jan Kuper, and Gerard J. M. Smit. Efficient worst-case timing
analysis of synchronous dataflow graphs. In Proceedings of the Work in Progress
Session at the 37th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 5–6. Johannes Kepler University Linz, 2011. ISBN
978-3-902457-30-1.

http://dx.doi.org/10.1145/2792981
http://dx.doi.org/10.1109/SEAA.2012.20
http://dx.doi.org/10.1109/SEAA.2012.20

ISBN 978-90-365-4041-4

9 789036 540414

	Front cover
	Colophon
	Abstract
	Samenvatting
	Dankwoord
	Contents
	1 Introduction
	1.1 Models of computation
	1.2 Performance Analysis
	1.3 Problem statement and approach
	1.4 Contributions
	1.5 Outline

	2 Background and related work
	2.1 Cyclo-static SDF
	2.1.1 Multi-Rate SDF
	2.1.2 Homogeneous SDF
	2.1.3 Structural invariants
	2.1.4 Functional determinacy
	2.1.5 Auto-concurrency
	2.1.6 Self-timed execution and throughput
	2.1.7 Related Models

	2.2 Discrete event systems
	2.2.1 Max-plus algebra
	2.2.2 Vectors and matrices
	2.2.3 Linear dynamical max-plus systems
	2.2.4 Spectral theory and scheduling
	2.2.5 Graphical representations
	2.2.6 Shift-invariant and shift-varying systems

	2.3 Temporal analysis of synchronous dataflow graphs
	2.3.1 Synchronous dataflow graph transformations
	2.3.2 Approximations
	2.3.3 Throughput analysis

	2.4 Discussion

	3 A mathematical characterisation of SDF
	3.1 Dataflow processes and firing order
	3.2 Temporal dynamics
	3.2.1 The actor firing perspective
	3.2.2 The token transfer perspective
	3.2.3 Comparing the two perspectives

	3.3 Equivalent systems
	3.4 Discussion

	4 Synchronous dataflow graph transformations
	4.1 Transforming CSDF into MRSDF
	4.1.1 Mapping actors and channels from CSDF to MRSDF
	4.1.2 Temporal equivalence
	4.1.3 Mapping admissible schedules
	4.1.4 Pruning

	4.2 Unfolding CSDF actors
	4.2.1 Mapping channels and actors
	4.2.2 Pruning the unfolded graph

	4.3 Single-rate equivalents
	4.4 Unfolding MRSDF graphs
	4.5 Discussion

	5 Single-rate approximations
	5.1 Linear shift-invariant systems
	5.2 Transforming the predecessor function
	5.2.1 The actor firing perspective
	5.2.2 The token transfer perspective

	5.3 Single-rate approximations
	5.3.1 Optimistic and pessimistic systems
	5.3.2 Computing strictly periodic schedules
	5.3.3 Constructing temporal abstractions
	5.3.4 Comparing the two perspectives

	5.4 Quality of the approximation
	5.5 Discussion

	6 Throughput analysis
	6.1 Throughput, parallelism, and maximum cycle ratio
	6.2 Analysis of the single-rate equivalent
	6.2.1 Structure: parallel and crossing channels
	6.2.2 The throughput of closed walks
	6.2.3 Efficient subgraph analysis

	6.3 An incremental approach
	6.3.1 Estimated throughput
	6.3.2 Cycle analysis by iterative vectorisation
	6.3.3 Incremental throughput analysis of graphs

	6.4 Discussion

	7 Case studies
	7.1 Throughput analysis
	7.1.1 Benchmark sets
	7.1.2 Analysis of the single-rate equivalent
	7.1.3 Incremental analysis

	7.2 Buffer capacity optimisation
	7.3 Discussion

	8 Conclusions and future work
	8.1 Summary and conclusions
	8.2 Contributions
	8.3 Recommendations for future work

	A Integer Arithmetic
	Bibliography
	List of Publications
	Back cover

	clickableplot0:
	clickableplot0-result:
	clickableplot0-result2:
	clickableplot0-resultmark:
	clickableplot0-result2mark:
	clickableplot0-slope:

