
A GOAL-BASED FRAMEWORK FOR 
SEMANTIC SERVICE PROVISIONING
Luiz Olavo Bonino da Silva Santos

Lu
iz

 O
la

vo
 B

on
in

o 
da

 S
ilv

a 
Sa

nt
os

A 
GO

AL
-B

AS
ED

 F
RA

M
EW

OR
K 

FO
R 

SE
M

AN
TI

C 
SE

RV
IC

E 
PR

OV
IS

IO
N

IN
G



A Goal-Based Framework for
Semantic Service Provisioning
Luiz Olavo Bonino da Silva Santos

Enschede, The Netherlands, 2011

CTIT Ph.D.-Thesis Series, No. 11-195



Cover Design: Ana Luiza Moori, Amsterdam
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Ipskamp, Enschede, the Netherlands

Graduation commitee:
Chairman, secretary: prof.dr. ir. A. J. Mouthaan (University of Twente)
Promotor: prof.dr.ir. M. Akşit (University of Twente)
Assistant Promotors: dr. L. Ferreira Pires (University of Twente)

dr.ir. M. J. van Sinderen (University of Twente)
Members: prof.dr.ir. M. Aiello (University of Groningen)

prof.dr. W. J. A. M. van den Heuvel (Tilburg University)
prof.dr.ir. C. A. Vissers (University of Twente)
prof.dr.ir. L.J.M. Nieuwenhuis (University of Twente)
dr. G. Guizzardi (Federal University of Espirito Santo)

CTIT Ph.D.-Thesis Series, No. 11-195
ISSN 1381-3617
ISBN 978-90-365-3174-0
Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Copyright c©2011, Luiz Olavo Bonino da Silva Santos, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this
publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without the prior written permission of the copyright owner.
No part of this publication may be adapted in whole or in part without the
prior written permission of the author.



A GOAL-BASED FRAMEWORK FOR
SEMANTIC SERVICE PROVISIONING

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 08 December 2011 om 12.45 uur

door
Luiz Olavo Bonino da Silva Santos

geboren op 08 Juli 1973
te Vitória, Espírito Santo, Brazilië



Dit proefschrift is goedgekeurd door:
prof.dr.ir. M. Akşit (promotor) , dr. L. Ferreira Pires (assistent-promotor),
en dr.ir. M. J. van Sinderen (assistent-promotor)



Abstract
Service-Oriented Computing (SOC) is a paradigm for the design,
use and management of distributed system applications in the
form of services. The vision of SOC is that services represent
distributed pieces of functionality that can be combined (or com-
posed, in SOC terms) to generate new functionality with more
added-value. In an ideal scenario based on this vision, a service
client expresses requirements to a software infrastructure, and the
infrastructure discovers, selects and invokes services with no need
for further human interaction. Non-functional requirements such
as cost, trust and privacy, amongst others, should also be stated
by the service client and resolved automatically by the infrastruc-
ture.

The SOC vision also overlaps with some of the characteristics
of Pervasive Computing. In his seminal paper about Pervasive
Computing (also known as Ubiquitous Computing), Weiser fore-
saw that computing, sensing and communication devices would be
transparently embedded in our surrounding environment. These
computer-enriched environments would grant access to informa-
tion and services everywhere and anytime. Readily available in-
formation can contribute to the realization of the SOC vision spe-
cially by allowing a software infrastructure to gather information
related to service execution without needing direct user interac-
tion.

Although completely automatic service provisioning is the ul-
timate objective of SOC, much work still has to be done to realize
this objective. Furthermore, the spreading of SOC and Perva-
sive computing will require these technologies to become more
appealing to non-technical users in their daily life. Scenarios with
significant numbers of available services, service providers and ser-
vice clients, may give rise to issues such as: (i) how to express
service requests in an intuitively appealing way (suited for non-
technical end-users); (ii) how to tackle semantic interoperability
issues among service requests, service descriptions and the internal



vi Abstract

interpretation of terms in the service operation that use different
conceptual models; (iii) how to support the discovery, selection
and invocation of services that fulfill the service client’s goals in
the least disruptive and invasive manner; and (iv) how to combine
services executed by humans with services executed by computa-
tional systems.

In our work we have addressed scenarios where non-technical
users are surrounded by communication-enabled intelligent de-
vices and sensors, and where a large number of services is avail-
able. In these scenarios, additional support should be provided to
the end-users to help them deal with the (possibly) overwhelming
amount of decisions and interactions regarding service provision-
ing steps, namely, service request specification, service discovery,
selection, agreement, composition and invocation.

In this thesis we present a conceptual framework to support
dynamic service provisioning to non-technical users. The main
contributions of our framework are: (i) to allow service clients
to express their service requests using goals, which is a concept
closer to their intuitive understanding than technical artifacts as,
for instance, a WSDL document; (ii) to reduce the need of direct
user interactions with the services through the use of information
automatically gathered from the environment; (iii) to provide a
domain specification language that supports domain specialists
in modeling both domain concepts and services. Moreover, this
domain specification language provides modeling primitives that
allows the distinction between computational and social services,
which are provided by computing systems and humans, respec-
tively.

The concrete results of this thesis are: (i) the description and
design of the goal-based framework for dynamic service provi-
sioning; (ii) the design and the implementation of a prototype
of the framework’s software platform supporting the dynamic ser-
vice provisioning; (iii) the definition of a foundational ontology
providing the ontological grounding for the (iv) domain specifica-
tion language.

The framework proposed in this thesis has been evaluated with
representative case studies that cover the use of the framework
in modeling application domains and the operation of the soft-
ware platform to support dynamic service provisioning in these
domains.



Acknowledgements
La riconoscenza è la memoria del
cuore.
Gratitude is the memory of the heart.
– Italian proverb

Some say that a PhD is a lonely endeavor. Others, that the
title earned after completing it should be your focus. Personally,
I agree with the Buddhist teaching in which the path is the goal.
About the loneliness, I could not disagree more. Although there
is only one name as the author of a PhD thesis, it could have
never been written without the support, collaboration, incentive
and help of many people. Therefore, people has been an essential
part of the path I took towards the PhD, and in this section I
would like to acknowledge and thank those who were directly or
indirectly involved in this accomplishment.

I would like to start by thanking my daily supervisors Luís
Ferreira Pires and Marten van Sinderen for having the confidence
to give me the opportunity to pursue the PhD at the University
of Twente, and guided me all the way through. They gave me the
freedom to research, and their attitude towards science inspired
me. More than supervisors I consider them friends. And that says
it all.

I would also like to thank my promoter Mehmet Akşit for re-
ceiving us in his Software Engineering research group and allowing
us to continue the researches we were conducting. The transition
from our extinct group to the Software Engineering group was
smooth, in big part due to Mehmet’s warm and welcoming atti-
tude.

I would like to thank the members of my defense committee:
Prof. dr. ir. Marco Aiello, Prof. dr. Willem-Jam van den Heuvel,
Prof. dr. ir. Bart Nieuwenhuis, Prof. dr. Chris Visser, and Dr.
Giancarlo Guizzardi. I am honored and grateful for devoting your
time to read my dissertation and to participate in my defense.

It all started back in 2003, while I was doing my Masters,



viii Acknowledgements

and my supervisor José Gonçalves sent me information about the
work he was conducting during his sabbatical at the University of
Twente. I got interested and at the end my Master’s dissertation
was based on that research. At that time he started to incentive
me to pursue a PhD abroad. As a trial, he suggested me to come
to Enschede to finish my dissertation under the local supervision
of Luís and Marten. Although short (only three months), this
period was very productive and I could also have a hint of how
would be the life if I would decide to go for the PhD. Zegonc, thank
you very much for all your incentive, support and guidance. Our
supervision meeting at a bar eating crabs were memorable. You
are an example of leadership and inspiration earned by respect
instead of by imposition.

Besides the support from the University of Twente, this short
stay in the Netherlands would not have been possible without
the participation of Giancarlo and Renata. Thanks so much for
having me at your home and for everything else you helped me
with in Brazil, in Italy and in the Netherlands. Without you none
of this would have been possible.

The path from Brazil to the Netherlands was not straight,
though. Before ultimately moving to Enschede, we took a 2-year
“detour’ through Trento, Italy. When we moved to Trento, we
met Marco and Maira, who became our friends and helped us to
cope with the adaptation to a new country and life circumstances.
Gladly we are still in touch. I’ll never forget our almost trip to
Switzerland, the parties, the asparagus harvest, and all the help
you gave us. Another friend we kept from this period is Yudis-
tira (Yudis) Asnar. Your permanent smile and positive attitude
towards life, together with the talent for cooking delicious Indone-
sian food will always mark our time in Italy.

We have also enjoyed a lot the international parties and the
trips to nice places in the north of Italy with the colleagues from
the University of Trento, and the wine tasting and dinners with
the people from LOA. I have fond memories of the work at LOA.
The philosophical discussions and the endless search for the most
suitable and intuitive term to express a concept, and the constant
pursuit of the intrinsic nature of things made me see the world in
a different way.

From this period in Trento I would like to specially mention
John Mylopoulus, Paolo Giorgini, Nicola Guarino, Laure Vieau,
Claudio Masolo, Laurent Prevot, Stefano Borgo, Roberta Ferrario,
Anna Perini, Maria Luisa Guerriero, Truong Thu Huong, Robert
Trypuz, Mariana Doria, Ismênia Galvão, Michele Armano and



ix

G.R. Gangadharan.
Then we moved to Enschede and the years I worked at the

University of Twente for my PhD were simply great. Besides the
period when our ASNA group was (unfairly, to say the least)
dismantled, I cannot recall any down point. And a major part of
having enjoyed so much is, certainly, due to the people I spent this
period with. Therefore, I have a long list of people to thank for
making my PhD time so enjoyable. From the ASNA group I would
like to thank Professors Chris Vissers and Bart Nieuwenhuis, my
supervisors Luís and Marten, the staff members Val Jones, B. van
Beijnum, Dick Quartel (who I have the pleasure to work together
again at BiZZdesign), I. Widya, Maarten Wegdam, our great sec-
retary Annalies Klos, our software engineers Richard Bults and L.
Helthuis, and, last but certainly not least, my PhD colleagues Pa-
trícia Dockhorn Costa, Ricardo Neisse, Laura Daniele, Eduardo
Gonçalves da Silva, Tom Broens, Hailiang Mei, Teduh Dirgahayu,
Rodrigo Mantovaneli Pessoa, Kamran Sheikh and Pravim Pawar.

The major part of these over four years at the University of
Twente were shared with my two paranymphs, friends and office
neighbors Laura and Eduardo. Your friendship and support is
important for me. Thank you for everything.

Besides the research work, the PhD has been an opportunity
for social activities, like the funny conversations during and after
lunch, the conference trips and group uitjes. I should thank the
tchês Ricardo Neisse, Tiago and Ricardo Schmidt, as well as Gio-
vane, Rafael, Laura, Eduardo, Anna Sperotto, Anna Kolesnichenko,
Ramon, Idilio, Zambon, Ramin, Aiko, and other members of the
DACS and the Formal Methods groups for these enjoyable mo-
ments.

After the ASNA group has been dismantled, Luís, Laura, Ed-
uardo and I joined the Software Engineering group. I would like
to thank all the members of the Software Engineering group for
welcoming us in your group. “Professore” Ivan, thank you for the
cheerful (and probably loud) chats and for sharing your metamod-
eling knowledge. Jeanette, thank you for all your help, support
and kind words, the arrangements for the defense would not have
been possible without you.

I have also been very lucky with my officemates Patrícia and
Vikram. I could not expect to share so many hours with better
people. Patrícia, you have been an inspiration for your compe-
tence, hard working and research skills. Vikram, your incentive
and help have been valuable for my work. The delicious dinners
at both Patrícia and Vikram houses together with their spouses



x Acknowledgements

João Paulo and Asmita were memorable.
Family is important. The ties that have been established by

genetic similarities have enduring consequences, easing the prox-
imity of the relatives. I have been blessed by the family I was
given. They were always by my side supporting me in whatever I
was pursuing. I should start with my parents Martha and Luiz,
and my stepfather Tarcísio. Unfortunately they are not here any-
more to witness the end of the phase, but without their support,
incentive, invaluable lessons, and inestimable love, I could never
have started. A would also like to thank my brother Ricardo, his
wife Fernanda, my sisters Barbara and Julia, and my grandpar-
ents Zelzy and Ricardo. I also consider mine the family of my wife
and, therefore, would like to thank Marcelo, Agar, Ricardo, Ana,
Carlo, Tina, Carlos, Rafael, Felipe, Célio, Lumena and Fernanda.
This families are incredible. A special appreciation goes to my
sister Barbara and my cousin Liana Mara. I know how hard it is
to travel all the way from Brazil to the Netherlands. And you did
it just to attend to my defense.

For all their support, I would also like to thank our extended
“European” family Lothar, Laura, Eduardo and Nayeli, Ricardo
and Kasia, Giovane, Rafael and Sanjka, Pablo and Flávia, Mar-
cia and Ralph, Tiago and Liga, Idilio and Suen, Raida and Rob,
Jailza and Henk, Fran and Henk, Lia and Robin, Sharon and Dick,
Ramon and Rita, Zambon, Ricardo, Mariana, Mayra and Rocco,
Ismênia and Riemer, Mariana and Anton.

I also would like to share this moment with my friends in
Brazil and other parts of the world, specially Cesar, Juliana,
Giancarlo, Renata, Gustavo Varejão, Rodrigo, Luiz Sergio, Fer-
nanda, Zegonc, Ricardo Machado, Tarek, Talib, Tamer, André
Bona, Marcelo Vasconcelos, Patrícia, João Paulo, Dede, Gustavo
Demoner, Cynthia, Pablo and Flávia. Even far away your support
and friendship are very important.

Among all these people, there is one single person with the
biggest share of responsibility and participation during this jour-
ney, my wife Luciana. Your love, patience, support, incentive and
well-placed observations were fundamental to give me the emo-
tional balance I needed to overcome all obstacles. When things
were difficult, you made them easy, when I thought things were
easy, you made me realize that nothing is so simple. Not only this
adventure would not have been possible without you, but also a
big part of the accomplishments of these last 20 years we are to-
gether. And you gave me the best gift of all, our daughter Anna
Martha. This book is for you.



Contents
Abstract v

Acknowledgements vii

Chapter 1 : Introduction 1
1.1 Background 2
1.2 Motivation 4
1.3 Research Design 6
1.4 Scope and Non-Objectives 10
1.5 Structure 10

Chapter 2 : Goal Definition and Usage 13
2.1 Informal definition 13
2.2 Artificial intelligence 14
2.3 Agent-Oriented Computing 16
2.4 Requirements Engineering 21
2.5 Service-Oriented Computing 40
2.6 Conclusions 51

Chapter 3 : Dynamic Service Provisioning Framework
Architecture 53

3.1 Use Case Scenarios 54
3.2 Service Stakeholders’ Roles 56
3.3 Service Mediation 60
3.4 Service Provisioning Support Requirements 70
3.5 Framework’s Architectural Design 74

Chapter 4 : Goal-Based Service Ontology 87
4.1 The Unified Foundational Ontology 88
4.2 Service stakeholders in GSO 97
4.3 Goals, Tasks and Services 101
4.4 Service 107

Chapter 5 : Context-Aware Service Platform 125
5.1 Platform Users and Requirements 125
5.2 Platform Users Interaction Patterns 127



xii CONTENTS

5.3 Architecture Overview 132
5.4 Users’ Interface Components 133
5.5 Context-Aware Components 155
5.6 Service Provisioning Components 162

Chapter 6 : Case Study and Evaluation 171
6.1 Home Health Care Usage Scenarios 171
6.2 Domain Modeling 174
6.3 Software Platform Support of Service Provision-

ing 184
6.4 Evaluation of CASP’s service provisioning sup-

port 192

Chapter 7 : Conclusion 195
7.1 General Considerations 195
7.2 Research Contributions 197
7.3 Directions for Future Research 200

Bibliography 203

Publications by the Author 223

Resumo 227



List of Figures

1-1 Thesis structure and relation between chapters and research
questions 11

2-1 An example of the KAOS goal model 24
2-2 An example of the KAOS operation model 25
2-3 The graphical representation of the Tropos main concepts 28
2-4 The graphical representation of the Actor concepts and its spe-

cializations 29
2-5 An example of the Tropos goal dependency 30
2-6 The Tropos dependency metamodel 31
2-7 TOGAF Architecture Development Method 36
2-8 ArchiMate modeling framework 36
2-9 An example model using ArchiMate Motivation Extension 40
2-10 GoalMorph’s architectural design 46
2-11 The SM4All software platform architecture 49

3-1 OASIS’ simplified service participants 57
3-2 Main service stakeholders’ roles 60
3-3 Service stakeholders’ roles 60
3-4 Web services architectural model 62
3-5 OASIS’ service participants 62
3-6 OASIS’ mediation facility 63
3-7 Service mediator roles 64
3-8 Interaction pattern for the service matchmaker role 65
3-9 Example of a matchmaker platform architecture with service

composition on client’s side 66
3-10 Example of a matchmaker platform architecture with service

composition on matchmaker’s side 67
3-11 Interaction pattern for the service broker role 69
3-12 Example of a broker platform architecture 69
3-13 Platform support for service producers and consumers 74
3-14 Service supporting platform with Context Provider 76
3-15 Categories of ontologies 77
3-16 The CASP stakeholders including the Domain Specialist 78



xiv LIST OF FIGURES

3-17 The 2-layer architecture of the service provisioning framework 79
3-18 Ullman’s triangle 80
3-19 Relations between domain conceptualization, domain abstrac-

tion, modeling language and domain ontology 82
3-20 Service provisioning framework including the domain specifica-

tion language 83
3-21 Main components of the Service Provisioning Framework 85
3-22 Components of the Goal-Based Service Framework 86

4-1 UFO-A fundamental distinction between universals and individ-
uals 89

4-2 UFO-A - Moments and substantials 90
4-3 UFO-A - Externally dependent moment 91
4-4 UFO-B - The Perdurant concept 92
4-5 The Agent concept from UFO-C 93
4-6 The UFO-C types of agents 93
4-7 Agent and its intrinsic moments 94
4-8 Intentional moment and its propositional content 96
4-9 UFO-C’s action concept 96
4-10 Rigid and anti-rigid agent types 97
4-11 GSO’s stakeholders types 98
4-12 GSO’s stakeholders types 99
4-13 Relations between human, institutional and artificial service

clients 100
4-14 Relations between human, institutional and artificial service

beneficiaries 101
4-15 Relations between human, institutional and artificial service

providers 102
4-16 Relations between human, institutional and artificial service ex-

ecutors 103
4-17 The Context Provider agent role 103
4-18 Relations between goals, tasks and services 104
4-19 Goal composition 105
4-20 Goal satisfaction 106
4-21 The OASIS’ Service concept 109
4-22 The WSMO’s Service concept 111
4-23 The Open Group’s Service concept 112
4-24 GSO’s service concept 114
4-25 Service provisioning events 116
4-26 Service offering 116
4-27 Service negotiation 117
4-28 Service triggering and execution 118
4-29 Service IOPE 119



LIST OF FIGURES xv

4-30 OWL-S’ top level elements 119
4-31 Service description 120
4-32 Social and computational services 123

5-1 The CASP and its users 126
5-2 The domain specialist general interaction pattern 128
5-3 The service provider general interaction pattern 129
5-4 The context provider general interaction pattern 130
5-5 The service client general interaction pattern 132
5-6 The CASP’s architectural design 133
5-7 The interfaces of the Domain Specialist Interface component 134
5-8 The Domain Specialist Interface component’s interfaces to man-

age domain specialists 135
5-9 The Domain Specialist Interface component’s interfaces to man-

age domain ontologies 136
5-10 Overview of the transformation tool 137
5-11 Ontology editor transformations from GSO to domain ontologies 137
5-12 The architectural design of the transformation tool 138
5-13 Detailed view of the Construction Tracer component 139
5-14 Sequence of interaction for the GDSL editor generation 140
5-15 Detailed view of the editor generation 142
5-16 The interfaces of the Producer Interface component 143
5-17 The Producer Interface component’s interfaces to manage ser-

vice producers’ registrations 144
5-18 The Producer Interface component’s interface to retrieve do-

main ontologies 145
5-19 The Producer Interface component’s interface to manage service

descriptions’ registrations 146
5-20 The Producer Interface to request service execution and inform

of unfulfilled service demands 146
5-21 The interfaces of the Context Provider Interface component 148
5-22 The interface of the Context Provider Interface component to

manage context provider’s registrations 149
5-23 The interface of the Context Provider Interface component to

manage registrations of contextual information descriptions 150
5-24 The interfaces of the Context Provider Interface component to

request and receive contextual information 151
5-25 The interfaces of the Consumer Interface component 152
5-26 The interfaces of the Consumer Interface component to manage

the registration of service consumers 153
5-27 The interfaces of the Consumer Interface component to request

services 154
5-28 Example of a Service Client Client Application GUI 155



LIST OF FIGURES 1

5-29 The CASP’s context-aware components 155
5-30 Internal structure of the Context Manager 156
5-31 The RDF representation of the context ontology’s ContextPa-

rameter concept 157
5-32 Example of a contextual information representation 157
5-33 Sequence of interactions for monitoring rule subscription 159
5-34 The CASP’s service provisioning steps 162
5-35 Overview of the interactions for service request creation 164
5-36 The architecture of the DynamiCoS service composition platform 165

6-1 The identified agents classified as human, institutional or artifi-
cial agents 175

6-2 The service clients 176
6-3 The service providers 176
6-4 The instance-level model with service clients 177
6-5 Identified goals for COPD patients 179
6-6 Identified goals for patients needing assisted medication 180
6-7 Identified goals for epileptic patients 180
6-8 Identified goal for traveler patients and a general goal for all

patients 180
6-9 Identified goals and their owners 181
6-10 The tasks supporting the COPD patient’s goals 182
6-11 The medication-related tasks 183
6-12 The tasks supporting the epileptic patient’s goals 183
6-13 The tasks supporting the goal of getting a medical consultation

and medical insurance 184
6-14 An excerpt of the domain ontologies depicting the services re-

lated to the medication monitoring scenario 186
6-15 The model of services offered to the CASP for the medication

monitoring scenario 187
6-16 An excerpt of the medical services added to the health care

domain ontology 189
6-17 The services offered by physicians registered to the CASP 190
6-18 The model of services offered by physicians registered to the

CASP 190
6-19 Computational service support for a social service 192



Chapter1
Introduction
This thesis contributes to the area of Semantic Service-Orien-
ted Computing by proposing an integrated solution for semantic
service provisioning in Pervasive Computing environments. The
main objective is to provide dynamic service discovery, selection,
composition (if necessary) and invocation based on end-users’
needs. In this work we aim at providing abstractions that fos-
ter the expression of users’ needs in a way that is closer to their
intuitive perception (regarding non-technical end-users) than to
technical terms such as data types, document format, etc. Much
of this work is based on the use of ontologies that are applied at
two distinct levels of abstraction, namely, to provide the concep-
tual model underlying a domain specification language (upper-
level ontology) and to provide shared semantics throughout spe-
cific domains (domain ontology).

Moreover, by associating the target usage scenarios of our ap-
proach with Pervasive Computing environments, the issue of man-
aging a large number of services and computing devices emerges.
To tackle this issue we propose the integration of context-aware
components aiming at transparently gathering users’ contextual
information to be used on service discovery, selection and compo-
sition as well as for supplying input information for service exe-
cutions.

This chapter is organized as follows: Section 1.1 presents the
background of this work; Section 1.2 presents the motivation for
the work proposed in this thesis; Section 1.3 states the problem
and the research questions, and presents the approach adopted
in the research; Section 1.4 elaborates on the scope of this thesis
and on the non-objectives, and finally Section 1.5 presents the
structure of this thesis.



2 Chapter 1 Introduction

1.1 Background

Service-Oriented Computing (SOC) is a paradigm for distributed
systems’ architecture, design and deployment. The vision of SOC
is that services represent distributed pieces of functionality that
can be combined (composed, in SOC terms) to generate new (and
more complex) functionality [Papazoglou et al., 2006]. In an ide-
alistic scenario based on this vision, a service requester expresses
requirements and a software infrastructure automatically discov-
ers, selects and invokes services, without the need for further hu-
man interaction. Non-functional properties such as cost, trust,
privacy, quality of service (QoS), and availability should also be
taken into account and resolved automatically.

In business environments, the SOC vision translates into au-
tomatic cooperation among enterprises. One enterprise seeking
business interactions with another enterprise can rely on its soft-
ware infrastructure to automatically discover, select and invoke
the appropriate services relying on selection policies and corpo-
rate objectives. For instance, one enterprise seeking alternatives
for its supply chain partners could discover and select in a supply
chain service directory new partners that provide the supplies it
needs, based on its policies regarding supplier’s availability, price,
environmental certification, labor conditions, etc.

Although this vision is the ultimate goal of SOC, more work
still has to be done to realize this vision. For instance, in scenar-
ios with significant numbers of available services, service providers
and service service requesters, issues related to semantic interoper-
ability may rise. Below we present a (non-exhaustive) list of open
questions in Service-Oriented Computing that are closely related
to the objectives and interests of our research.
1. How to express service requests and, specially for non-technical

service requesters, how to express these requests in an intu-
itive way?

2. How to tackle semantic interoperability issues among services
and service requests that use different conceptual models and,
therefore adopt concepts and terms with different meanings?

3. What sort of tooling is necessary to realize the SOC vision?
This question includes:
(a) How to supply service providers with appropriate tools

to support the specification of (semantic) description of
their services in a way that facilitates service discovery
and invocation?

(b) How to supply service requesters with tools to support



Background 3

the expression of service requests and provide service
discovery, selection, composition, invocation and adap-
tation?

(c) How to supply domain specialists and designers with
tools to support the definition of domain-specific con-
ceptual models? These domain-specific conceptual mod-
els aim at providing a shared knowledge about specific
domains. Service providers and service requesters can
share this knowledge, helping tackle the semantic in-
teroperability issue.

Characteristics of Pervasive Computing can help achieve the
SOC vision. In his seminal paper about Pervasive Computing
(also known as Ubiquitous Computing) [Weiser, 1991] Weiser fore-
saw that computing, sensing and communication capable devices
would be transparently embedded in our surrounding environ-
ment. These computer-enriched environments would grant access
to information and services everywhere, anywhere. This easily
available information can contribute to the realization of the SOC
vision, specially by allowing a software infrastructure to gather
information related to service execution without needing direct
user interaction.

In recent years, the adoption of mobile communication and
computing devices had an unprecedented increase and has moved
us closer to the computer-populated environments described in
[Weiser, 1991]. These devices evolved from rudimentary and lim-
ited (in terms of computing power, memory, battery life and com-
munication capabilities) mobile phones and personal digital assis-
tants (PDAs), to the current crop of smart phones, PDAs, lap-
tops and netbooks. Moreover, it is not uncommon that one per-
son uses more than one of these devices. Add to this scenario
other computing-empowered appliances and accessories, such as
Internet-enabled TV sets, digital pens, refrigerators, home media
centers, network-attached storage (NAS), sensors, etc., and we
have users facing difficulties to interact with, and to control and
manage this plethora of devices and services. One possible solu-
tion for this issue is to provide infrastructural support to facilitate
the access and management of these services and devices.

In this thesis we are particularly interested in scenarios where
non-technical users are surrounded by computer-enabled devices
and sensors, as well as have access to a large number of services.
In such scenarios, additional support should be provided to the
users to help them deal with the (possibly) overwhelming amount
of decisions and interactions regarding service provisioning steps,



4 Chapter 1 Introduction

namely, service request specification, service discovery, selection,
agreement, composition and invocation.

1.2 Motivation

Since the emergence of Service-Oriented Computing, the availabil-
ity of a large number of services has been identified as a challenge.
In a scenario where a user has to search and select among a few
(dozens of) services it is still feasible to carry out this search and
selection manually. However, as the number of available service
increases, additional support becomes necessary. Among the sup-
port possibilities for this issue we can mention the addition of se-
mantics to service requests and service descriptions, which allows
semantic reasoning [Domingue et al., 2005, Farrell and Lausen,
2007, SOA, 2008, Ope, 2010], and software support to discover,
select and invoke services on behalf of the user [Fensel and Bus-
sler, 2002, A-M, Ami]. Merging these two support possibilities, a
software platform can perform service discovery, selection and in-
vocation using semantic queries and/or semantic inference. This
enriches the search and increases its accuracy, while automating
the process.

However, adding semantics is not enough if the semantics for
the terms in different artifacts (e.g., service requests and service
descriptions) is not shared. For instance, if the semantics for the
term bermuda in a service request refers to the set of islands in the
Caribbean and the same term in a service description refers to a
knee-length walking shorts, the resulting service discovery will be
erroneous, resulting in a semantic interoperability problem. To
tackle this issue, ontologies have been used in SOC to provide
shared semantics [Berners-Lee et al., 2001].

The increasing adoption of mobile communication and com-
puting devices together with the availability of a large number of
services, raised issues regarding information overload and man-
agement. To tackle this problem, Weiser [Weiser, 1991] suggests
that these computing-enriched environments should transparently
act on users’ behalf, by gathering and processing information, and
should use this information to pursue the users’ objectives. In or-
der to achieve this suggested transparency, computers should be
able to gather the users’ needs, understand them and find means
to satisfy these needs.

In the realm of Service-Oriented Computing, service users’
needs are satisfied by executing services, while in order to prop-



Motivation 5

erly gather the user’s needs service requirements have to be ex-
plicitly expressed by the service requester. In order to understand
these requirements we need to answer two questions: (i) how to
semantically interpret requirements?, and (ii) how to relate the
requirements to service offering descriptions?

Currently, many approaches, ontologies and languages are be-
ing developed to tackle requirements gathering and understanding
[Rolland et al., 2007, Bresciani et al., 2004, Domingue et al., 2005,
Van Lamsweerde et al., 1995], as well as providing platform sup-
port for service provisioning activities [Haselwanter et al., 2006,
Ami, A-M, U-C, Goncalves da Silva et al., 2011]. However, they
either lack a clear and comprehensive definition of service and
its related concepts, do not provide an integrated solution or ig-
nore the relations between computational services and services in
the real world. These limitations hinder the applicability of these
approaches in complex real world scenarios.

Following the increasing adoption of the service paradigm in
Computer Science, several research efforts aim at providing ref-
erence architectures [Arsanjani et al., 2007, Laskey et al., 2009,
Arsanjani et al., 2009], or providing shared conceptualization for
services [de Bruijn et al., 2006, Martin et al., 2004]. These ap-
proaches consider the services as computer-executable processes
(computational services), which are the realization of business
processes. In this view we have a division between the social
level, represented by the business processes, and the computa-
tional level, represented by the computational services. However,
in some cases, business processes cannot be mapped onto compu-
tational services, but can be mapped onto services provided and
executed by humans. For instance, the process of a heart trans-
plant can only be mapped onto a service provided and executed
by a heart transplant team, including the heart surgeon, anesthe-
siologist, assistant surgeons, nurses, etc.

In this heart transplant example, while the main service of ac-
tually performing the transplant cannot be automated by a com-
putational service, some activities and events related to this ser-
vice can be automated, such as booking the surgery (e.g., through
the hospital’s information system), being informed of the avail-
ability of the new heart (e.g., through the national organ donor’s
information system) and retrieving the patient’s medical history
(e.g., through an electronic medical record system). From this
example we can conclude that there is a need for means to distin-
guish social and computational services, as well as to define the
relations between the services at these two levels.



6 Chapter 1 Introduction

The widespread of Service-Oriented Computing leads to ser-
vices being disseminated in environments where their users are
not always technically literate. For instance, in the Ambient In-
telligence and Home Health Care areas, devices and services are
deployed in home environments, where the inhabitants generally
do not have a technical background. In these environments, the
service users would need a way of expressing their needs (that
should be satisfied by services) closer to their expression capabil-
ities than, for instance, a service request written in a technical
language like the Web Services Description Language (WSDL).

The concept of goal has been used in different fields of study
as a way of expressing what someone wants to be achieved. In the
context of Service-Oriented Computing, this concept is also being
used as a way to express service requirements. However, each
approach defines the concept of goal and uses this concept in its
own way. Therefore, a more thorough investigation of the concept
of goal, its nature and its use is needed. In the scope of this
thesis, this investigation is particularly necessary to evaluate the
suitability of the concept of goal to be used (directly or indirectly)
as a way to express service requirements by service users.

1.3 Research Design

In the work reported in this thesis, we have adopted the principles
and guidelines of Design Sciences [Hevner et al., 2004]. Our work
has been carried out following the steps of (i) defining the research
problem, (ii) designing our research approach, and (iii) evaluating
the research.

From the discussion of the motivation of our work (see Section
1.2), we have identified that the problem we intended to address
is the support to service provisioning. From this problem we have
defined that the main objective of this thesis is to “create facilities
to service provisioning”. More specifically, we intend to facilitate
the service provisioning in an environment with multiple services
and devices targeting a class of service users with poor technical
knowledge.

Since we consider complex environments with a (potentially)
large number of services and devices to interact with these ser-
vices, we also consider the distinction between social and compu-
tational services. Therefore, our objective of facilitating service
provisioning is not limited to computational services but also en-
compasses social services and the relationships between computa-



Research Design 7

tional and social services.

1.3.1 Research questions
By defining non-technical service users as the main target group
in our objective, we have assumed that, to reach our objective of
facilitating service provisioning, we could not be restricted to ser-
vice requests being expressed in terms of technical solutions such
as WSDL, SAWSDL or OWL-S, but should allow these users to
express their requirements in terms that are closer to their com-
mon conceptualization. We have observed that the concept of
goal is used in several areas of Computer Science to represent
requirements of system users. We have extrapolated this obser-
vation to service provisioning, and considered that the concept
of goal should be useful to express service requirements because
it represents an abstraction that is closer to the purposes of the
users as opposed to the technical solutions used to express service
requirements.

The goal concept has been used in different areas of Computer
Science, and it has been conceptualized, used and defined in dif-
ferent ways. Therefore, the following research question has been
raised:

RQ1: What are the best practices in using the
concept of goal to capture user requirements?

Having an adequate conceptualization and usage strategy for
goal is only part of the solution. From our objective, the ser-
vice provisioning support should facilitate not only the service
request but also other activities and events related to service pro-
visioning. A comprehensive solution to service provisioning would
require a set of components to provide the intended support. To
adequately design such solution, the following research question
has been raised:

RQ2: Can we devise components to provide facili-
ties for service provisioning in multiple domains?

Our solution includes a software platform to automate activi-
ties related to service provisioning and, therefore, facilitating ser-
vice users to access services. Software platforms can support ser-
vice users in discovering, selecting, negotiating and invoking ser-
vices. In order to be more effective in supporting these activities,
the software platform should have the means to understand the
service user’s requests and the service descriptions. This under-
standing allows the software platform to reason about the terms



8 Chapter 1 Introduction

included in the user requests and service descriptions, and achieve
not only syntactic matches between terms in these artifacts, but
also semantic matches, which, in most cases, improves the success
rates of the matches. Semantic matching and reasoning can be
realized by means of semantic annotations on the terms contained
in service requests and service descriptions.

Our proposed software platform performs reasoning based on
semantic annotations in the service requests and service descrip-
tions. These annotations are based on semantic domain specifi-
cations, expressed in terms of domain ontologies. The need for
semantic annotations and semantic domain specifications raised
the following research questions:

RQ3: Which techniques are capable of supporting
and enabling domain specifications and semantic an-
notations?

RQ4: How to structure a platform to support dy-
namic service provisioning using domain specifications
and semantic annotations?

Finally, after designing and implementing our solution, we need
a strategy to evaluate our framework and the knowledge obtained
from this research. We should define whether our solution prop-
erly and satisfactorily solves the problem and analyze what we
have learned from this process. These issues lead to our last re-
search question:

RQ5: How can we assert whether our proposed
framework satisfies the objectives of our research?

1.3.2 Approach
We have defined a research approach to answer our research ques-
tions, and, by answering them, reach the objectives of this thesis.
To answer the research question on the best practices in using the
concept of goal to capture user requirements (RQ1), we have con-
ducted a literature investigation on how the goal concept is defined
and used. This investigation aimed at learning and clarifying the
conceptualization for goal and providing inspiration for how we
should define and use this concept in the scope of our work and ob-
jectives. This study has been conducted on several areas of Com-
puter Science such as Artificial Intelligence, Agent-Oriented Com-
puting, Requirements Engineering and Service-Oriented Comput-
ing.



Research Design 9

The research question on the components to facilitate service
provisioning (RQ2), has been answered through a literature study
on the areas of Service Ontologies, Service Supporting Platforms,
Semantic Service Discovery and Composition, Context-Awareness
and Pervasive Computing.

From our service-related study, we observed that a comprehen-
sive conceptualization for services is still missing. Moreover, the
study showed us that current approaches in the Service-Oriented
Computing area mainly focus on defining services as computer-
executable processes, and the relations between computational
services and social services are either not defined or are unclear.

From the understanding gathered in these literature studies, we
could devise a high-level solution for the problem of facilitating
service provisioning. In this solution we have designed a frame-
work for semantic service provisioning. We use the term frame-
work as a conceptual structure to define a solution for a problem,
i.e., the framework defines boundaries as to what is suitable for
addressing particular problems. More specifically, our proposed
framework defines a set of technologies and techniques to cope
with dynamic service provisioning.

To guide the design of the framework we have defined a set of
usage scenarios involving dynamic service provisioning in environ-
ments containing a large number of services and devices. From
the analysis of current solutions in the literature and of our usage
scenarios, we have defined the requirements for the framework and
justified its architectural design.

To answer the research questions on the techniques to support
semantic annotations (RQ3), we have proposed a domain specifi-
cation language. To provide the conceptual model underlying the
domain specification language, we have proposed a foundational
ontology by extending an existing one. Our foundational ontol-
ogy defines primitives necessary for domain specification, such
as agent, goal, resource, action and event, as well as primitives
necessary for service specification, such as service, task, service
provider, service client and service commitment. This domain
specification language also distinguishes between social and com-
putational services and defines the relations between these two
types of services.

From the literature study and the framework requirements,
we have defined the architectural design of a software platform,
answering the research question on the structure of a platform to
support dynamic service provisioning (RQ4).

To answer the research question on how to assert the framework



10 Chapter 1 Introduction

compliance with our objectives (RQ5), we have defined a case
study based on a set of usage scenarios. In this case study we have
evaluated whether the domain specification language is capable of
defining domain specifications, and whether the prototype of our
software platform supports service provisioning.

1.4 Scope and Non-Objectives

In this thesis we focus on the architectural design of a frame-
work for semantic service provisioning and on the definition of
the service-related concepts of the foundational ontology and its
derived domain specification language. The acknowledgment of
two different classes of services whose related tasks are performed
by computational devices and services whose tasks are performed
by humans, the understanding of the relationships between these
two classes of services, and the support for modeling domains with
this distinction explicitly and clearly defined has also been a focus
of our work.

Regarding the software infrastructure for the realization of the
proposed framework, we focus on the architectural design of the
infrastructure, reusing when possible existing software compo-
nents and technologies.

In this thesis we did not extensively addressed implementation
issues of Web services or any other middleware technology, such as
concurrency, quality of service, conflicts, etc. Since the proposed
domain modeling language aims at supporting the definition of
domain ontologies for annotation purposes, we did not focus on
the underlying foundational ontology formalization. Although a
significant part of the foundational ontology has been formalized,
the event and social aspects of the ontology still lacks a thorough
formalization in terms of theories and axioms.

1.5 Structure

The structure of this thesis reflects the approach we followed in
this research. The remainder of this thesis is structured as follows:
– Chapter 2 - Goal Definition and Usage. This chapter investi-

gates the definition of the goal concept and its usage in differ-
ent areas of Computer Science. This chapter discusses the goal
definition based on the evaluation of the different approaches
and their applicability to the objectives of this thesis.



Structure 11

– Chapter 3 - Goal-Based Service Framework. This chapter mo-
tivates and presents our framework for service provisioning
support. The chapter discusses the frameworks architectural
components, related techniques and methods, and the rela-
tionships among the components.

– Chapter 4 - Goal-Based Service Ontology. This chapter dis-
cusses the Goal-Based Service Ontology concepts and relations
in details, and introduces and justifies their ontological foun-
dation.

– Chapter 5 - Context-Aware Service Platform. This chapter
presents and discusses the architectural components of the
Context-Aware Service Platform.

– Chapter 6 - Case Study and Evaluation. This chapter eval-
uates the applicability of the the Goal-Based Service Frame-
work by means of a case study. In the case study we modeled
scenarios in the scope of the Health Care application domain,
and defined service provisioning support to the service clients
in this domain.

– Chapter 7 - Conclusions and Future Work. This chapter con-
cludes this thesis by discussing the main results of this work
and the drawbacks we have encountered. Finally, we identify
topics that require further investigation as part of future work.
Figure 1-1 depicts the structure of this thesis, and it shows in

which chapters the research questions are answered.

Figure 1-1
Thesis
structure
and relation
between
chapters
and
research
questions

Chapter 2 - Goal Definition and Usage

Chapter 3 - Dynamic Service Provisioning Framework Architecture

Chapter 4 - Goal-Based Service Ontology

Chapter 5 - Context-Aware Service Platform

Chapter 6 - Case Study and Evaluation

Chapter 7 - Conclusion

Research question 1:
Best practices in using the goal concept

Research question 2:
Components to facilitate service provisioning

Research question 3:
Techniques to support semantic domain specification

Research question 4:
Platform for supporting dynamic service provisioning

Research question 5:
Framework evaluation



12 Chapter 1 Introduction



Chapter2
Goal Definition and Usage
The concept of goal is pivotal for the work reported in this the-
sis. It has been used as an abstraction to represent what service
clients want from the services but also to guide service discovery,
selection, composition and execution. During the development of
the work reported in this thesis, we have studied, analyzed and
discussed several different approaches that are also based on the
concept of goal. This process helped us decide which definition
to follow or extend based on the usage we wanted to give to the
concept of goal in our framework.

This chapter discusses the concept of goal, its various defini-
tions in different areas where the concept has been applied and
the usage of the concept in these areas. This chapter begins by
briefly introducing the concept of goal in Section 2.1. After this
introduction, the concept of goal and its usage are discussed in
the areas of Artificial Intelligence in Section 2.2, Agent-Oriented
Computing in Section 2.3, Requirements Engineering in Section
2.4 and Service-Oriented Computing in Section 2.5. Finally in
Section 2.6 we conclude the chapter by analyzing the suitability
of the different definitions and uses for the concept of goal in the
scope of this thesis objectives.

2.1 Informal definition

The concept of goal has several different definitions varying from
“the result of scoring” and “the physical structure that defines
where the score is achieved” in some ball games to “a statement of
intent for the direction of the business” in business administration.

The definitions strongly depend on the application area to
which this term is applied. Narrowing down to the Computer
Science domain, a variety of definitions of the goal concept can
also be found. The concept of goal has been used in Computer



14 Chapter 2 Goal Definition and Usage

Science in many different areas such as Artificial Intelligence, Re-
quirements Engineering, Formal Ontologies and, more recently,
Service Oriented Computing. Goal-based analysis has been used
in different areas of Computer Science to identify stakeholder’s ob-
jectives, determine requirements for software systems and guide
system’s behavior. This generic approach ranges from techniques
to accurately identify goals as presented in [Bresciani et al., 2004,
Anton, 1996] to the use of goals for service composition presented
in [Padgham and Liu, 2007, Vukovic and Robinson, 2005a, Zhang
et al., 2006].

In the following sections we present and discuss different ap-
proaches defining and using the concept of goal. The approaches
discussed have been selected based on their relevance in their re-
spective fields and the relation they have with the main objective
of this thesis, namely, to facilitate service provisioning. More-
over, the sequence of the research areas in which the presented
approaches are related follow a historical, chronological and incre-
mental evolution. For instance, the approaches presented in the
area of Artificial Intelligence were used as foundations for the work
carried out in the areas of Agent-Oriented Computing, Require-
ments Engineering and Service-Oriented Computing. In some of
the presented approaches we have included parts of the formaliza-
tion of the defined concepts and relations. However, since some of
these formalizations are extensive and complex, we have included
only the parts that are relevant for our analysis and discussion.

2.2 Artificial intelligence

In the Artificial Intelligence (AI) realm, goals are considered in
problem solving research. The main motivation for problem solv-
ing research is that in order to achieve their goals, agents fre-
quently need to act on the world. Considering computational
agents, approaches and techniques were necessary to support the
generation of appropriate actions. The AI community has de-
veloped two complimentary approaches to generate these actions:
planning and situated actions [Weld, 1994]. Planning is mostly
used when a number of actions must be executed in a coherent
way (pattern) to achieve a goal or when there are complex in-
terferences of one action on others. Conversely, situated actions
are used when the best possible action can be easily computed
from the current state of the world, i.e., when no look ahead is
necessary because actions do not interfere with each other. These



Artificial intelligence 15

approaches differ, since planning uses a partial description of the
state of the world while situated actions use the complete state.

Artificial Intelligence planning focuses on automated techniques
for determining plans by combining several operators for solving
complex problems. A plan is defined as a sequence of actions that
transforms the world from an initial state of a problem description
into the final desired state [Nau et al., 2004, Russell and Norvig,
2009].

Planning can be divided in two branches, namely classical plan-
ning and neoclassical planning [Nau et al., 2004]. The former
defines planning techniques within environments that are fully
observable, deterministic, finite, static and discrete, while the
later define planning techniques within partially observable and
stochastic environments.

The classical planning approach considers the initial state of
the world, a set of actions and their (deterministic) effects, and
a sequence of actions (a plan) to achieve a certain goal state.
Forward and backward chaining can be applied as the underlying
inference mechanisms for classical planning algorithms. Forward
chaining iteratively applies a possible operator O to a set of input
parameters and preconditions defined by the initial state aiming
to reach the goal G. If applying the operator O does not solve
the problem, i.e., the desired goal state is not reached, then a new
query can be computed from G and O′, and the whole process
is iterated. Backward chaining starts from the desired goal state
G (the final state) and iterates back to the initial state using the
operator O2 to provide at least one of the required parameters.
Applying the operator O2 may result in new parameters being
required, which can be formalized as a new goal G′ and, once
more, the process is iterated until a solution is found. The solution
is a plan defined in terms of a sequence of actions.

In these approaches, goal is defined as a “description of a world
state that is expected to be realized” [Russel and Norvig, 2002].
More specifically, in planning a goal is defined as a partially spec-
ified state, represented by a conjunction of positive ground lit-
erals [Fikes and Nilsson, 1971]. In other words, a state S sat-
isfies a goal G if S contains all the atoms in G (and possibly
others as well) [Russel and Norvig, 2002]. For example, the state
Rich ∧ Famous ∧ Unhappy satisfies the goal Rich ∧ Famous.



16 Chapter 2 Goal Definition and Usage

2.3 Agent-Oriented Computing

Agent-Oriented Computing deals with systems in which autono-
mous computational elements called agents sense their environ-
ment and act on it by pursuing their own agenda [Franklin and
Graesser, 1997]. The research in this field started in the early
1970’s and aimed at developing a new paradigm for system design
along with related technologies incorporating socio-psychological
insights [Shoham, 1993, Wooldridge et al., 2000]. Mimicking the
problem solving behavior of humans, a software agent acts au-
tonomously on its environment and collaborate with other agents,
if this collaboration and acting is beneficial for achieving the
agent’s individual objectives.

2.3.1 Agent properties
The operation of agents is based on the following properties de-
fined according to models from socio-psychology on human behav-
ior [Wooldridge and Jennings, 1995]:
– Autonomous - an agent acts self-directed and controls its own

actions;
– Social ability - an agent interacts by communicating with hu-

mans or other agents for collaborative problem solving;
– Reactivity - an agent observes its environment and reacts to

changes in this environment;
– Pro-activity - an agent performs its tasks in a goal-driven man-

ner, i.e., it acts according to its goals.
In the agent-oriented research, intelligent agent architectures

have been developed using artificial intelligence techniques to sim-
ulate human behavior in software agents. In this context, a goal-
based agent model is used to determine multiple agent’s behav-
ior by means of goals as the desired final state to be reached.
Moreover, by relating actions and goals, these models also pro-
vide knowledge about the effects of applicable actions.

2.3.2 BDI Model
From the approaches developed based on goal-based agent models,
one that is relevant to the scope of this thesis is the Belief-Desire-
Intention (BDI) model. The BDI model is a philosophical the-
ory on the motivation and behavior of rationale action by humans
[Bratman, 1987]. In summary, beliefs represent information about
the world that an agent considers to be true, desires represent the
objectives that the agent wants achieved, and intentions repre-



Agent-Oriented Computing 17

sent desires for which the agent is committed to have achieved by
means of actions. These three concepts are mental states whose
interrelations determine the rationale of the agent’s behavior. In
other words, by understanding the beliefs, desires and intentions
of an agent, one can comprehend this agent’s behavior and the
reasons for this behavior.

One relevant feature of the BDI model for rationale action is
that an agent does not determine a complete (and fixed) resolu-
tion plan for a goal starting from its initial state and ending at
the desired final state represented by its desire. Instead, at each
performed action, more knowledge is gained, which may change
the agent’s beliefs and drive the agent towards different (and not
previously planned) actions. For instance, one agent may consider
that driving through a certain route is the best way for achieving
its desire of fastly arriving at a certain location fast. However,
during the trajectory, the agent is informed of a traffic jam in a
part of the route he had planned to follow. With this new infor-
mation the agent may change its beliefs about the fastest route
towards the intended location and decide to follow an alternative
path which, under normal circumstances would not be the optimal
choice.

The BDI approach has been specified through logical formalisms
such as Intention Logic [Cohen and Levesque, 1990] and BDI logics
[Rao and Georgeff, 1991], providing the basis for practical reason-
ing about agent structures. As an alternative, practical reason-
ing is directed towards actions, contrarily to theoretical reasoning
which is directed towards beliefs, and is defined in [Bratman, 1987]
as “a matter of weighing conflicting considerations for and against
competing options, where the relevant considerations are provided
by what the agent desires/values/cares about and what the agent
believes”.

Both Intention Logic and BDI Logics adopt possible world se-
mantics. For instance, possible worlds are used to represent that
when an agent believes in something, this means that there is a
world W accessible to the agent in which his belief holds.

Intention Logic
In Cohen and Levesque’s Intention Logic, intentions are consid-
ered as a mental state, determining the goal resolution behavior.
The Intention Logic’s goal resolution behavior has the following
properties:
1. Intentions pose problems for agents and the agents need to

determine solutions for these problems;



18 Chapter 2 Goal Definition and Usage

Table 2-1
Atomic
modalities
in Intention
Logic

Operator Meaning
(Bel i ϕ) agent i believes ϕ
(Goal i ϑ) agent i has goal ϑ
(Happens α) action α will happen
(Done α) agent action α just happened

2. Intentions may be used as “filters” for adopting other inten-
tions, and they must not conflict. For instance, if an agent has
an intention a, the agent is not expected to adopt intention b
such that a and b are mutually exclusive;

3. Agents aim at satisfying their intentions and they can try
again if an attempt fails;

4. Agents believe their intentions can be satisfied, i.e., an agent
believes that there is at least a course of action in which the
intention can be satisfied;

5. Agents do not believe they will not satisfy their intentions.
For instance, , i.e, an agent would not adopt an intention if
it believes that the intention is not satisfiable;

6. Under normal circumstances, agents believe they will satisfy
their intentions.

7. Agents do not necessarily intend all the expected side effects
of their intentions. For instance, a patient may intend to
treat his tooth but not necessarily intends the pain that may
be caused by the treatment.

The three first properties have been adopted from Bratman’s
philosophical model [Bratman, 1987].

Intention Logic (as well as BDI Logics, presented further in
this section) uses modal logics associated with possible world se-
mantics. The modalities are used to express constructs that could
not be expressed in first-order logic. Table 2-1 shows the core
modalities of Intention [Cohen and Levesque, 1990].

For convenience, Intention Logic adopted a set of abbreviations
for the several logic expressions, among which we highlight the
Eventually (♦) and the Always(") abbreviations. Eventually is
defined as ♦α ≡ ∃x(Happensx;α?). In other words, ♦α is true in
a possible world if there is some sequence of events after which α
will hold. Always is defined as "α ≡ ¬♦¬α, and "α means that
α is henceforth true in the course of events.

For instance, the expression (Bel john % hasWife(mary))
denotes that John believes that he eventually will have Mary as his
wife. In this example, the primitive Bel is a modality representing
a belief of an agent, and the symbol %, a common symbol for



Agent-Oriented Computing 19

eventuality.
To talk about propositions that are not true now, but will

become true, Intention Logic defines (Later p) ≡ ¬p ∧
%p [Cohen and Levesque, 1990]. Moreover, to state constraints
on courses of events, Intention Logic defines (Before p q) ≡
∀c(Happens c; q?) ⊃ ∃a(a ≤ c) ∧ (Happens a; p?).
The Before definition states that p comes before q if, whenever
q is true in a course of events, p has been true.

Intention Logic also defines a construct that determines ratio-
nal behavior of agents, namely the persistent goal (P-Goal). A
persistent goal represent an agent’s desire that will be kept un-
til it is achieved or considered unachievable. The expression 2.1,
represents the definition of persistent. This definition captures
the “fanatical” commitment between an agent and its goal, which
establishes that an agent will not give up fulfilling its goal until it
believes that the goal has been fulfilled, or until it believes that
the goal will never be fulfilled.

(P −Goal x p) ≡ (Goal x (Later p))

∧ (Bel x ¬p) ∧
[Before((Bel x p) ∨
(Bel x "¬p))
¬(Goal x (Later p))] (2.1)

Intention is defined in Intention Logic as a “a kind of persistent
goal”. In [Cohen and Levesque, 1990], the authors present two
different definitions of intention. In the first, the subject of the
intention is an action and is expressed as (Intend x a), where
x is the agent and a is the action. In this definition the agent
intends to perform an action and it is committed to perform it.
However, to avoid the situations where an agent would perform an
action accidentally or unknowingly, the Intend definition entails
that the agent commits to believe in performing the action and
then performing it.

The second definition of intention has a state of affairs as its
subject as is expressed as (Intend x p), where x is the agent
and p is the intended state of affairs.

The definition of intention in Intention Logic has been crit-
icized as either not being fully compliant with the theoretical
model of Bratman, or for not being able to represent the intended
properties and relationships. According to Hoek and Wooldridge
[van der Hoek and Wooldridge, 2003], in Intention Logic inten-



20 Chapter 2 Goal Definition and Usage

tions are reducible to beliefs and desires, only denoting temporal
sequences of these two concepts. However, Bratman’s model place
intentions as first-class mental attitudes influencing rational be-
havior as much as desires and beliefs.

BDI Logics
Rao and Georgeff’s BDI logics aims at overcoming the deficien-
cies of Intention Logic. BDI logics is based on (branching time)
temporal logic (CTL*). Similar to the Intention Logic, the BDI
logics define the modal operators Bel (agent believes), Des (agent
desires) and Intend (agent intends), and the temporal operators
X (next), U (until), F (sometime in the future or eventually) and
E (some path in the future or optionally). However, the main
difference in BDI logics is that this approach treats intentions as
first-class constructs, and that beliefs, desires and intentions are
understood in terms of possible worlds.

In BDI logics, the mental states of the agents are represented
in structures named time trees. A time tree represents the current
situation of an agent at a point in time, having one single past
(the known behavioral history of the agent) and a branching fu-
ture [Rao and Georgeff, 1998]. This branching future, also called
accessible worlds, represents the set of all possible situations ac-
cessible to the agent with its current knowledge. The transition
between accessible worlds are represented by events. Therefore, at
any point in time, an agent has possibly multiple belief-, desire-,
and intention-accessible worlds. Using BDI logics, one is able to
express how the beliefs, desires and intentions of an agent evolve
over time (or rather over possible time lines).

In BDI logics, a set of relationships holds between an agent’s
mental states, supporting practical reasoning, e.g., belief-desire
compatibility and desire-intention compatibility. While the former
states that if an agent desires ϕ it also believes ϕ ((Des x ϕ) ⇒
(Bel x ϕ)), the later states that if an agent intends ϕ it also
desires ϕ ((Intend x ϕ) ⇒ (Goal x ϕ)). Being accessi-
ble worlds, when an agent “believes” in a desire, it means that the
agent believes that the state of the world representing the desire
is reachable.

Assuming that in BDI logics, desire is equivalent to a goal
[Meyer, 2003], we can say that both BDI logics and Intention Logic
consider goal as a state intended to be achieved by an agent. In
other approaches within the agent-oriented computing community
the term goal does not have a standard definition. In [Moghadasi
et al., 2007], a goal is defined as a “state with highest utility and



Requirements Engineering 21

an agent must choose the course of actions to reach that goal”.
In [Rosenschein and Zlotkin, 1994], two types of goal models are
presented, namely the task-oriented goal model and the state-
oriented goal model. The former defines goal as a “fixed list of
tasks” and the goal satisfaction is achieved when the agent finishes
all these tasks. The later defines goal as a “final state that the agent
tries to achieve by moving from its initial state through a defined
and finite sequence of intermediary states”.

Goals and tasks
Although these definitions of goal differ, a common agreement in
the agent community is that goals are part of an agent’s inten-
tional properties and that the goal owner is committed to satisfy
the goal. This satisfaction can be achieved either by the agent act-
ing itself to satisfy the goal or by delegating the goal satisfaction
to other agents. Agents commonly represent the stakeholders of
a domain, being these stakeholders humans, organizations or au-
tomated systems. Agents can delegate the fulfillment of a goal or
the execution of a task. A goal delegation represents a situation
where an agent has a goal, but for some reason it is not capable
of fulfilling this goal, and delegates it to be fulfilled by another
agent. Task delegation occurs similarly. The main difference be-
tween goal and task delegation is that while in the goal delegation
the goal owner wants his goal fulfilled no matter how, in task del-
egation the task should be carried out in the way defined by the
task owner [Castelfranchi and Falcone, 1998].

2.4 Requirements Engineering

Requirements engineering (RE) can be understood as “process
of discovering the purpose of a system, by identifying stakehold-
ers and their needs, and documenting these in a form that is
amenable to analysis, communication, and subsequent implemen-
tation” [Nuseibeh and Easterbrook, 2000]. In [Zave, 1997], the
author presents the following definition for RE:

Requirements Engineering is the branch of Software
Engineering concerned with the real-world goals for
functions of and constraints on software systems. It
is also concerned with the relationship of these factors
to precise specifications of software behavior, and to
their evolution over time and across software families.



22 Chapter 2 Goal Definition and Usage

This definition highlights the relationship between real-world
goals system specifications. These goals represent the rationale,
or the why, for system development and the real-world denotes
that systems are developed to satisfy goals from stakeholders in
the real-world.

In contrast with Requirements Engineering, in the Agent-Ori-
ented Computing area goals are elements that are part of the
system, i.e., the agents that comprise the system have their be-
havior guided by their goals. In the Requirements Engineering
area, goals are identified and studied to represent the purpose of
the system under development and are translated into artifacts
that guide the development of systems that may or may not in-
corporate these identified goals as their internal elements. For
instance, requirements engineering artifacts may be used to de-
velop systems under the agent-oriented paradigm. In this case,
the identified real-world goals are translated into goals of the sys-
tem’s agents. Alternatively, the same requirements engineering
artifacts may support the development of a system using func-
tional or object-oriented paradigms. In this case the real-world
goals are (indirectly) translated into functions or objects, i.e., if
one traces the documentation from the code to the requirements
artifacts, he should be able to identify that a certain function or
object has been defined because it contributes to the fulfillment
of a given goal.

From the requirements engineering definition above, several
approaches related to area emerged aiming at providing meth-
ods and techniques to explicitly represent goals. Among these
approaches, we have selected KAOS, i*/Tropos and GBRAM to
discuss, because they are the most prominent approaches in this
area.

2.4.1 KAOS
The Knowledge Acquisition in autOmated Specification (KAOS)1
[Dardenne et al., 1993] is a goal-oriented approach aiming at the
formal modeling of functional and non-functional system require-
ments. The KAOS approach is based on three main components:
(i) a conceptual model and a language for acquiring and struc-
turing requirements models, (ii) a set of strategies for elaborating
requirements models, and (iii) an automated assistant to provide
guidance in the acquisition process.

1Lately the KAOS acronym stands for Keep All Objects Satisfied



Requirements Engineering 23

Main components
The KAOS conceptual model is the metamodel for the language
used in the approach and includes concepts and relations used in
the requirements models, such as goal, agent, assignment relation,
etc. The acquisition strategies correspond to the methodological
aspect of the approach, and define the steps for creating and for
acquiring the components of the requirements models. These com-
ponents of a requirements model are domain-specific instances of
the concepts and relations defined in the metamodel.

An acquisition strategy specifies a way of traversing the me-
tamodel graph to acquire instances of its nodes and links, i.e., it
prescribes a way to follow the concepts and relations of the me-
tamodel in order to identify elements of the application domain
that match these concepts and relations. For instance, the me-
tamodel can be traversed backwards from the agents available in
the system to the objectives to be fulfilled. The strategies can be
automated by the acquisition assistant.

Methodology
The KAOS methodology aims at supporting the whole process of
requirements elaboration, from the high-level goals to be fulfilled
by a system, to the requirements, objects and operations to be
assigned to the various agents in the system. The KAOS language
supports requirements modeling in terms of goals, constraints,
objects, actions, agents, events, etc.

In KAOS, goals are specified at a high-level, and then each
high-level goal is decomposed into a set of sub-goals. This decom-
position process continues until the goals cannot be further de-
composed. KAOS introduces AND/OR decompositions, so that
each level of decomposition is either disjunctive (OR) or conjunc-
tive (AND). A disjunctive high-level goal is satisfied when a single
sub-goal is satisfied, whereas a conjunctive high-goal is satisfied
when all of its sub-goals are satisfied. KAOS also specifies that
satisfaction of goals can contribute to or degrade the satisfaction
of other goals in the system. These effects occur when agents in
the system have different motivations, perceive information differ-
ently or when goals interact with each another. The KAOS model
allows information to be specified in such a way that enables the
system to determine which agents in the system are best capable
of pursuing specific goals.



24 Chapter 2 Goal Definition and Usage

Conceptual metamodel
In KAOS, the software under construction is specified as an in-
stance of a conceptual metamodel where abstractions such as
goals, requirements, operations, agents, or entities are semanti-
cally linked. Moreover, KAOS provides a formal assertion layer
(Darimont and van Lamsweerde, 1996) for inferring specifications
from requirements (van Lamsweerde and Willemet, 1998) and rea-
soning about goal satisfaction (Letier and van Lamsweerde, 2004).

A KAOS model (an instance of its conceptual model) comprises
four complementary and interrelated views that are iteratively
prepared [Letier and van Lamsweerde, 2002b]:
1. A goal model the defines goals to be achieved by the software

and their refinements;
2. An object model that defines the domain entities, relation-

ships and attributes that are relevant to goal formulations;
3. An agent model that defines the responsibilities and interfaces

of the various agents forming the system (humans, devices or
software); and

4. An operation model that defines input-output relationships
between operationalizations of requirements and identified
objects.

In the goal model, the identified goals are represented as a hi-
erarchical graph using AND/OR-decompositions of discrete high-
level goals down to precise leaf-level requirements [Van Lamsweerde
et al., 1995]. Figure 2-1 provides an example of a KAOS goal
model for a library system where the high-level goal “Have the
book location in the library” is decomposed into the sub-goals “The
title of the book is entered”, “The location is searched” and “The
location is displayed”. In this example an AND decomposition has
been used.

Figure 2-1
An example
of the
KAOS goal
model

Have the book 
location in the 

library

The title of the 
book is 

entered (Input)

The location is 
searched 
(Search)

The location is 
displayed 
(Output)

(And)

Once the goals are identified and modeled, the object and
the agent models can be created. The object model collects ob-
jects, attributes, and their relationships, while in the agent model,
agents are assigned responsibility for achieving the goals [Letier



Requirements Engineering 25

and van Lamsweerde, 2002a]. Agents and objects are used when
the operation model is prepared. In this last step, operations
that describe the behavior of the system in specific situations are
derived from requirements [van Lamsweerde and Willemet, 1998].
Situations in which operations work are determined by events (ar-
rowed rectangle) that cause the operation (oval) and entities (rect-
angles) that serve as information input. Each operation must be
performed by an agent (hexagon). Figure 2-2 provides an example
of an operation model.

Figure 2-2
An example
of the
KAOS
operation
model

The location is 
searched 
(Search)

Search location 
of book

Library System

Location

Title

Title is 
completely 

entered

Input

Cause

Refines

Responsible

Performs

Output

Goal concept
The concept of goal is defined in KAOS as a “nonoperational ob-
jective to be achieved by the composite system” [Dardenne et al.,
1993].

The KAOS approach combines different levels of expression
and reasoning. A semi-formal level is used for modeling and
structuring goals, a qualitative level is used for alternative se-
lection, and a formal level is used for more accurate reasoning
[Lapouchnian, 2005]. To support these different levels, the KAOS
language combines semantic networks for conceptual modeling of
goals, assumptions, agents, objects and operations in the system,
and linear-time temporal logic for the specification of goals and
objects, and for state-base specifications for operations.

The models in KAOS normally have a two-level structure: the
outer graphical semantic layer and the inner formal layer. Con-
cepts are declared together with their attributes and the relation-
ships between the concepts at the graphical layer, while concepts
are formally defined at the formal layer. For instance, the formal
layer of the graphical layer shown in Figure 2-1 is:



26 Chapter 2 Goal Definition and Usage

Goal Achieve[Have the book location in the library]
Concerns Title, Location
RefinedTo Input, Search, Output

InformalDef . The location of a book is found if it is displayed
FormalDef .∀t : Title, l : Location : Output(l)∧

SearchedT itle(t) ∧ IsLocationOfBook(l, t)

⇒ BookFound(t)

2.4.2 i* and Tropos
Traditionally, software development methodologies have been in-
spired and driven by the dominant programming paradigm of
the day. Examples are structured programming, which inspired
structured analysis and design [DeMarco, 1979] or more recently,
object-oriented programming, which originated object-oriented ana-
lysis and design [Wirfs-Brock et al., 1990]. Because development
methodologies follow predominantly the programming paradigms,
a conceptual gap is created between the software system and the
operational environment where the software runs. This is because
the concepts used to model the environment of the software system
being developed are constrained by the concepts of the program-
ming paradigm, and are often distant from the environment itself.
This gap follows from the difference between the conceptualization
used express the technical aspects involved in computer systems
(e.g., classes, objects, tables, functions, among others) and the
conceptualization necessary to express the operational environ-
ment of organizations (e.g., roles, strategic goals, stakeholders,
among others).

Using the same concepts to align requirements analysis with
system design and implementation should reduce the aforemen-
tioned conceptual gap between the concepts used in artifacts of
the different development phases. This also permits the use of
coherent toolsets and techniques for system development. For in-
stance, one can choose whether to perform the conceptual align-
ment based on the concepts used in artifacts of the implementa-
tion phase, or based on the concepts used in the artifacts of the
requirements phase.

In this scenario i* and Tropos [Yu, 1997, Bresciani et al., 2004]
have been created, aiming at offering a requirements-driven de-
velopment framework based on the concepts used during early
requirements analysis.



Requirements Engineering 27

i* models and concepts
i* is a framework designed for modeling and reasoning about or-
ganizational environments and their information systems. The
framework comprises two main modeling components, namely the
Strategic Dependency (SD) model and the Strategic Rationale
(SR) model. The SD model describes the dependency relation-
ships among the stakeholders in an organizational context, while
the SR model describes the stakeholders’ interests and concerns,
and how they might be addressed by systems.

i* focuses on the early requirements phase of Requirements En-
gineering, and applies the concept of intentional agents from the
Agent-Oriented community. In i*, intentional agents are called
actors and have intentional properties such as goals, beliefs, abili-
ties and commitments. Actors depend on each other for achieving
goals, performing tasks and providing resources.

In 2008, the Telecommunication Standardization Sector of the
International Telecommunication Union (ITU-T) gave final ap-
proval for recognizing the User Requirements Notation (URN) as
an international standard [ITU-T, 2008]. The URN is a language
consisting of Use Case Maps (UCM) [Buhr and Casselman, 1996],
a scenario modeling notation, and the Goal Requirement Lan-
guage (GRL) [Liu and Yu, 2004], a variant of the i* framework.

Tropos
Tropos is a software development methodology, in which concepts
of the agent paradigm are used along the whole software devel-
opment process. Tropos is built on top of i*, i.e., it uses the i*
modeling notation as modeling tool in the methodology.

Tropos follows the agent-oriented approach by qualifying in-
tentional entities with properties such as autonomy and social
ability, mental states such beliefs, intentions and goals, among
others. These abstractions are claimed to allow a more natural
understanding of organizations, their members and the social re-
lationships present in these environments.

In Tropos, the modeling activities start at the knowledge level
instead of at the procedural level, like other traditional software
development methodologies. Two of the distinctive features of
Tropos are:
1. Use of the mentalistic notions founded on belief, desire and in-

tention (BDI) agent architecture in all software development
phases, from early requirements down to implementation;

2. Central role of the early requirements analysis phase.



28 Chapter 2 Goal Definition and Usage

In the early requirements phase, models the organizational en-
vironment, in which the system will be embedded, are created.
These models convey information like the stakeholders and their
strategic goals and interrelationships. This phase precedes the
requirements specification of the system under development. By
confronting the models of the early requirements phase with the
models of the specification of system under development, it is
possible to assess whether this system meets the identified organi-
zational goals and why the functionality has been assigned to the
system.

The main concepts in Tropos are actor, goal, task, resource
and social dependency. Figure 2-3 depicts the Tropos’ graphical
representation of actor, goal, task and resource.

Figure 2-3
The
graphical
representa-
tion of the
Tropos
main
concepts

Actor TaskGoal Resource

Tropos actors
The Tropos concept of Actor matches the agent-oriented concept
of an autonomous and social entity. An actor can represent a
physical person, an organization, an organizational role, a type
of intentional entities, a software system or component, or any
other entity having strategic goals and intentions. In order to
distinguish individuals and classes, the concept of actor can be
primarily specialized into agent and agent kind.

An agent represents an individual, a particular instance which
cannot have further instances, e.g., John Smith or company Acme.
Agent kind is a generic classification of agents, which is further
specialized into agent type and abstract role. An agent type is a
necessary classification, i.e., it is a rigid classification [Guizzardi
et al., 2004]. A type T is rigid iff every instance of T is necessarily
(in the modal sense) an instance of T, i.e., if it cannot cease to be
an instance of T without ceasing to exist.

An abstract role is an abstract class specialized into role and
position. A role is an anti-rigid classification [Guizzardi et al.,
2004]. A type T is anti-rigid when an instance of T is not es-
sentially an instance of T, i.e., the entity can contingently be of
type T, but not necessarily. In Tropos, a role characterizes the
behavior of an agent within some specialized context or domain,



Requirements Engineering 29

i.e., while an agent is playing a role it has its behavior bounded to
the behavior associated with the role. For example, suppose John
Smith in a given time of his life plays the role of a teacher. While
John Smith is playing the role of a teacher, he has to perform the
behaviors associated with the teaching role, such as give lectures,
apply exams, correct the exams and grade the students. The im-
portant fact here is that there are occasions in his life when he is
not playing the role of teacher, and, therefore, not bounded to the
behavior associated to this role.

A position represents an aggregation of two or more roles (or
positions) played by an agent. For example, suppose that John
Smith occupies a position of Head of Department, which includes
the role of teacher and some administrative role. In the Tropos
terminology, a position covers two or more roles (or positions),
an agent occupies a position and, therefore, the agent plays the
roles covered by the position. Figure 2-4 depicts the graphical
representation of the Actor concept and its specializations.

Figure 2-4
The
graphical
representa-
tion of the
Actor
concepts
and its spe-
cializations

Actor
(Agent 
Kind)

Agent Agent 
Type Position Role

Tropos goal concept
In Tropos, a goal represents an intended state of affairs that an
actor desires to be achieved. An actor will act accordingly to have
the goal fulfilled. The goal represents actor’s strategic interests
and can be divided into hard goals and soft goals. The main
difference between them is that a soft goal is typically a non-
functional attribute or a quality, with no clear-cut criteria as to
when it is achieved, while a hard goal precisely defines achievement
criteria. Since it is not clear whether a soft goal is fulfilled, one
can say that soft goals are satisficed while hard goals are satisfied
[Chung et al., 1999].

Goals can be fulfilled by means of tasks, resources or a combi-
nation of both. A task represents a particular course of action that
produces a desired effect. By performing a task, one can totally
or partially satisfy a goal, or can totally or partially satisfice a
soft goal. A resource represents a physical or an informational en-
tity without intentionality, e.g., data, a file, a computer, amongst



30 Chapter 2 Goal Definition and Usage

others. A resource can be consumed or produced by a task.

Tropos dependencies
Actors can be linked to each other through dependency relations.
A dependency relation represents an agreement between two ac-
tors. An actor can depend on another actor to fulfill a goal, to
perform a task or to deliver a resource. The former actor is named
depender, while the later is named dependee. The object (goal,
task or resource) around which the dependency lays is called de-
pendum. Every dependency involves a speech act [Winograd and
Flores, 1987], meaning that a dependency is an agreement upon
a dependum. In the goal dependency, the speech act represents
the agreement that the depender intends the goal (the dependum),
but is not going to fulfill it by himself, the dependee adopts the
goal and the dependee commits to procure a way to fulfill it.

Figure 2-5 presents an example of the Tropos goal dependency,
where a patient (a role) depends on the hospital to fulfill his goal
of receiving medical treatment.

Figure 2-5
An example
of the
Tropos goal
dependency

Patient Receive medical 
treatment Hospital

Regarding tasks, the speech act represents the agreement that
the depender is unable to perform the task, the dependee is able
to perform it, and the dependee commits with the depender to
perform the task. Tropos does not make any assumption whether
the depender has the capacity to fulfill a goal or to perform the
task, only that it will not fulfill it or perform it for some reason.
For example, it may be cheaper if the dependee does it, or it may
not be convenient that the depender does it, among other reasons.

Finally, the speech act in the resource dependency represents
the agreement that the dependee controls a given resource, the
depender needs it and the dependee will provide access to the
resource to the depender.

When one actor depends on another actor for a dependum,
the depender is able of achieving goals, performing tasks, or using
resources that otherwise would not be able to on its own. Fur-
thermore, the depender becomes vulnerable because in the case of
the dependee fails to deliver the dependum, the depender would
be adversely affected. Figure 2-6 depicts the Tropos’ dependency
metamodel [Susi et al., 2005].



Requirements Engineering 31

Figure 2-6
The Tropos
dependency
metamodel

Task

Resource

DependencyActor

Task Dependency
Resource 

Dependency
Goal Dependency

depender

dependee

dependum

performedBy

dependum

performs

delivers

deliveredBy

Goal

Hard Goal Soft Goal

adoptedBy

adopts dependum

Tropos development phases
Although it focuses on the early requirements phase, the Tropos
methodology aims at covering the full range of the software devel-
opment phases, namely Early Requirements, Late Requirements,
Architectural Design, Detailed Design and Implementation [Bres-
ciani et al., 2004]. The first two phases of requirements analysis
share the same conceptual and methodological approach. In the
early requirements phase, organizational analysis and modeling
are performed . During this phase, the domain stakeholders are
identified and modeled as social actors that depend on each other
for goals to be achieved, tasks to be performed and resources to
be made available. The objective of this phase is to understand
the organizational context within which the system under devel-
opment will eventually function. At the end of the early require-
ments, an organizational model is produced, including the relevant
actors with their associated dependencies. The clear definition of
these dependencies allows the assessment of the rationale for as-
signing some functionality to the system. This phase also enables
the verification of whether the final implementation matches the
initial goals.

In the late requirements phase, the conceptual model is ex-
tended. The system is represented as an actor and a number of
dependencies with other actors of the environment are defined.
These dependencies specify all the functional and non-functional
requirements of the system under development, which are the
main concerns of this phase.

The design phases, i.e., Architectural Design and Detailed De-
sign, focus on the specification of the software system, and are
based on the requirements gathered in the previous phases. The



32 Chapter 2 Goal Definition and Usage

architectural design phase concerns with the system’s global ar-
chitecture, how it is subdivided in sub-systems and how the sub-
systems are interconnect through data and control flows. Here,
the sub-systems are represented as actors, and dependencies rep-
resent the data and control interconnections. This phase also pro-
vides a correlation between system actors and a set of software
agents, each characterized by their specific capabilities. In short,
the architectural design is composed of three steps: (i) introduc-
tion of new actors (the sub-systems), (ii) capability identification
and (iii) the transformation of some actors into software agents.

The main concerns of the detailed design phase are specifying
and detailing the agent’s capabilities and interactions. Here, each
architectural component is analyzed and the agents are specified
in terms of their capabilities, goals, beliefs and tasks. Usually the
implementation platform has been already chosen and the plat-
form’s particularities can be taken into account to facilitate the
code in the next phase. In this phase existing agent communica-
tion languages such as FIPA-ACL [Labrou et al., 1999] or KQML
[Finin et al., 1994] can be used.

Finally, the implementation phase follows the detailed design
specification based on the mapping between the detailed design
concepts and the implementation platform constructs.

Tropos modeling activities
The Tropos methodology involves several modeling activities dur-
ing its phases. However, we discuss only the activities involved in
the early requirements phase, as described below:
– Actor modeling consists of identifying and analyzing the ac-

tors of the environment, and the system’s actors and agents.
In the early requirements phase, actor modeling focuses on
modeling the application domain stakeholders and their inten-
tions as social actors which want to achieve goals. During late
requirements phase, actor modeling focuses on the definition
of the system under development as an actor, while during
the architectural design phase it focuses on the structure of
the system under development as an actor, by specifying it in
terms of sub-systems (also modeled as actors) interconnected
through data and control flows. In the detailed design, the
system’s agents are defined and all the notions required by
the target implementation platform are specified accordingly.
Finally, during implementation, actor modeling corresponds
to the actual agent coding.



Requirements Engineering 33

– Dependency modeling consists of identifying the goal, task and
resource dependencies among actors. During the early require-
ments phase, dependency modeling focuses on modeling the
goal dependencies among social actors of the organizational
setting. In the late requirements phase, the focus is on the
dependencies raised by the introduction of the system under
development. In architectural design, the data and control
flows identified during actor modeling activity are modeled
in terms of dependencies among the sub-actors of the sys-
tem under development, providing the basis for the capability
modeling that starts in the detailed design together with the
mapping of system actors to agents.

– Goal modeling consists of the analysis of an actor’s goals, con-
ducted from the point of view of the actor, by using three
basic reasoning techniques: means-end analysis, contribution
analysis, and AND/OR decomposition. In particular, means-
end analysis aims at identifying plans, resources and soft goals
that provide means for achieving a (hard) goal. Contribution
analysis identifies goals that can contribute positively or neg-
atively to the fulfillment of the goal to be analyzed. AND/OR
decomposition consists of decomposing a root goal into sub-
goals using AND/OR decomposition links in order to produce
a finer goal structure. Goal modeling is applied to early and
late requirement models, aiming to refine them and to elicit
new dependencies. During architectural design, it contributes
to motivate the first decomposition of the actors of the system
under development into a set of sub-actors.

– Task modeling consists of an analysis technique complemen-
tary to goal modeling. It applies reasoning techniques analo-
gous to those used in goal modeling, namely, means-end, con-
tribution analysis and AND/OR decomposition.

2.4.3 Goal-Based Requirements Analysis Method
The Goal-Based Requirements Analysis Method (GBRAM) [An-
ton, 1996, 1997] is focused on the initial identification of goals
from various sources of information. It assumes that no goals
have been documented or elicited from stakeholders and thus one
uses existing diagrams, textual statements, interview transcripts,
etc. for goal elicitation. In this approach, the concept of goal is
defined as “high level objectives of the business, organization or
system” [Anton, 1996]. A goal captures the reasons for needing
the system, and guide decisions across enterprises. Goals can be
classified into achievement and maintenance goals.



34 Chapter 2 Goal Definition and Usage

GBRAM prescribes the following activities: goal analysis and
goal refinement. The goal analysis activity is further divided
into the exploration, identification and organization sub-activities.
The exploration sub-activity carries out the examination of the
available input information (diagrams, statements, transcripts,
etc.). During the exploration of the input information, the analyst
identifies goals and their responsible agents from this information,
and organizes these goals, by classifying these goals and grouping
them according to goal dependency relations.

The goal refinement activity concerns the evolution of goals
from the moment they are first identified, to the moment they
are translated into operational requirements for the system spec-
ification. This activity is further divided into the refine, elabo-
rate and operationalize sub-activities. In the refine sub-activity,
the analyst prunes the goal set by eliminating redundant goals
and reconciling synonymous goals. The refined goal set obtained
in the refine sub-activity is then analyzed, by considering possi-
ble goal obstacles and constructing scenarios to uncover hidden
goals and requirements. Goal obstacles are identified by analyz-
ing statements that illustrate an example of a goal being blocked
by another goal or conditions which prevent its completion [An-
ton, 1997]. Finally, in the operationalization sub-activity goals
are translated into operational requirements, which specify how a
goal can be fulfilled by a proposed system.

During the goal refinement phase, GBRAM requires the iden-
tification of goal precedence. This means that it is necessary to
identify the order in which goals must be fulfilled. The method
suggests answering questions like “What goal(s) must follow this
goal?” and so on. Another useful method for determining prece-
dence relations between goals is to search for agent dependen-
cies. For instance, if a physician depends on a nurse to admin-
ister medicine to a patient in order to provide a proper medical
treatment, there is an agent dependency, and a goal precedence
relation can also be identified. Once goal precedence has been
established, tables are produced with goals ordered according to
this precedence.

Similar to other goal-based approaches, a system and its en-
vironment in GBRAM are represented as a collection of agents.
Here, agents are defined as entities or processes that seek to fulfill
goals within an organization or system, based on their assumed
responsibility for the goals.

The GBRAM approach provides guidelines for goal elicitation
and refinement by providing requirements engineers with standard



Requirements Engineering 35

questions. For instance, a question to determine if a goal can be
classified as a maintenance goal is “Is continuous achievement of
this goal required?”.

2.4.4 ArchiMate and its Motivation Extension
Enterprise Architecture (EA) is a set of principles, methods, and
models that are used in the design and realisation of an enter-
prise’s organizational structure [Lankhorst, 2009]. Enterprise Ar-
chitecture aims at clarifying the relationships between products,
processes, organizations, information services and technological
infrastructure. To accomplish this, EA relies on guidelines, as-
sumptions, principles and preferences to produce a set of simpli-
fied representations of the organization, from different viewpoints.

Enterprise Architecture modeling techniques commonly focus
on modeling architectures that have been or are being imple-
mented in terms of information, behavioral and structural model
elements. These model elements convey the information about
what the enterprise does or should do. However, equally impor-
tant information is the explicit representation of the rationale, or
the why, the architecture has been defined in some specific way.
Principles and techniques of Requirements Engineering can be ap-
plied to provide the rationale for Enterprise Architecture.

ArchiMate layers and aspects
ArchiMate [The Open Group, 2009a] is an enterprise architecture
modeling language fostered by The Open Group. ArchiMate com-
plements The Open Group Architecture Framework (TOGAF)
[The Open Group, 2009b] by defining a modeling language for en-
terprise architecture. However, in the current version 1.0, Archi-
Mate does not provide language primitives to support require-
ments modeling. The Open Group Architecture Framework (TO-
GAF) [The Open Group, 2009b] acknowledges the need for ex-
plicit architecture rationale representation, and prescribes the use
of goals and requirements as central drivers for the architecture
development process. The TOGAF’s Architecture Development
Method (ADM) applies requirements management to all phases
of the ADM cycle, as depicted in figure 2-7.

The ArchiMate enterprise modeling language is underlined by
a modeling framework that decomposes an enterprise along two
dimensions: (i) layers, representing successive abstraction levels
at which an enterprise is modeled, and (ii) aspects, representing
different concerns of the enterprise that should be modeled. Fig-



36 Chapter 2 Goal Definition and Usage

Figure 2-7
TOGAF Ar-
chitecture
Develop-
ment
Method

Preliminary

A
Architecture 

Vision
B

Business 
Architecture

Requirements 
Management

C
Information 

Systems 
Architecture

E
Opportunities 
and Solutions

G
Implementation 

Governance

H
Architecture 

Change 
Management

F
Migration 
Planning

D
Technology 
Architecture

ure 2-8 depicts the ArchiMate’s modeling framework [Engelsman
et al., 2011, Quartel et al., 2009].

Figure 2-8
ArchiMate
modeling
framework

Business

Application

Technology

Information Behavior Structure

la
ye
rs

aspects

Motivation
extension

The layer dimension consists of the following layers:
– business layer, containing products and services to external

customers that are realized in an organization by business pro-
cesses;

– application layer, containing application services supporting
the business layer that are realized by (software) application
components;

– technology layer, containing infrastructural services necessary



Requirements Engineering 37

to run applications that are realized by computer and com-
munication devices and system software.
The aspect dimension comprises the following modeling as-

pects:
– structure aspect, representing the actors involved and how

they are related. Actors can be systems, components, peo-
ple, departments, etc.;

– behavior aspect, representing the behavior (processes and ser-
vices) presented by the actors and how the actors interact;

– information aspect, representing the problem domain knowl-
edge used by and communicated between the actors through
their behaviors.

Motivation extension
The ArchiMate 1.0 specification [The Open Group, 2009a] focuses
on modeling the extensional aspects of the enterprise, i.e., its ap-
pearance as an operational entity from an external perspective.
To allow the modeling of the intentional aspects of an enterprise,
i.e., the business goals, principles and requirements that motivate
the design of the enterprise, an extension for ArchiMate, named
Motivation Extension, has been proposed [Engelsman et al., 2011,
Quartel et al., 2009]. The ArchiMate Motivation Extension sup-
ports the modeling of motivational properties by extending the
ArchiMate 1.0 framework with the motivation aspect.

In the motivation aspect, the intentions of the enterprise are
defined in terms of goals, principles and requirements. Intentions
are pursued by the stakeholders, having certain areas of interest
called concerns. These concerns organize the stakeholders’ inten-
tions, and assessments of the concerns are used to decide whether
the intentions need to be adjusted or not. Table 2-2 presents the
modeling elements of the Archimate Motivation Extension.

Following the TOGAF specification, the stakeholder concept
represents an individual, team or organization interested in the
outcome of the architecture. The concern concept represents a
key interest that is important to certain stakeholders, and that
determines the acceptability of the system. The analysis of a con-
cern produces as outcome an assessment, revealing the strengths,
weaknesses, opportunities and threats (SWOT) that affect the
enterprise architecture, which are addressed by new or modified
business goals.

The goal concept represents an end intended by a stakeholder,
which can represent different concepts such as an effect, a state of
the problem domain, a produced value, tasks or a realized system



38 Chapter 2 Goal Definition and Usage

Table 2-2
The
modeling
elements of
Archi-
Mate’s
Motivation
Extension

Concept Notation Relation Notation

Stakeholder
Stakeholder

Aggregation

Concern
Concern

Realization

Assessment
Assessment

Conflict

Goal
Goal

Contribution +/-

Principle
Principle

!

Specialization

Requirement
Requirement

Association

property [Engelsman et al., 2011]. The goals justify the enterprise
architecture choices, by providing the motivations for the choices
for the structure and functionality of the architecture. In other
words, the enterprise architecture has been defined in some specific
way so that it fulfills the business goals.

The requirement concept represents “a desired property that
must be realized by a system”. In this definition, the term system
is used with a large scope and may refer to different elements
of a enterprise architecture, including information systems, data
objects and business actors.

Finally, the concept of principle represents a generally desired
property that is used to guide the design of systems. Principles
are related to goals and requirements. Principles are motivated
by goals, i.e., the stakeholder intends some state of the world (the
goal), and the means to achieve this state are constrained by the
principles. For instance, with the goal of increasing the productiv-
ity of its employees, an organization defines as a guiding principle
that the software applications used by these employees should by
easy to use. This principle is based on the assumption that easy-
to-use applications allow the employees to perform better.

The concept of principle is more abstract and broader in scope
than the concept of requirement. A principle defines desired prop-
erties that applies to any system in a given context, while a re-
quirement usually applies to a specific system or a group of sys-



Requirements Engineering 39

tems. To enforce the conformity of a system to a principle, it is
necessary to specialize the principle in terms of a requirement to
be applicable to the given system.

Regarding relations, besides the association, specialization, ag-
gregation and realization relations that have similar meaning as
their UML counterparts, the ArchiMate Motivation Extension de-
fines the conflict and contribution relations.

The association relation is used to relate stakeholders to con-
cerns and concerns to assessments. The aggregation relation allow
the modeling of intention decomposition, i.e., goals, requirements
or principle can be decomposed into more fine-grained intentions
[Quartel et al., 2010].

The realization relation allows the modeling that an end is re-
alized by some means. It is used to denote that a goal is realized
by a principle or a requirement, or that a requirement is realized
by a system. This system can be represented by an ArchiMate’s
information, behavior or structure element, such as a business ac-
tor, application component, business process or application service
[Quartel et al., 2010].

The conflict relation allows the modeling that the realization
of two intentions are mutually exclusive. For instance, an airline
corporation could model that the goal of increasing seat availabil-
ity is in conflict with the goal of reducing the number of operated
airplanes (assuming a fixed number of seats per airplane).

The contribution relation allows the modeling that the realiza-
tion of an intention causes a positive or negative contribution to
the realization of another intention. For instance, in the airline
example, the goal of optimizing flight operations may contribute
positively to the goal of increasing seat availability, while reducing
in flight entertainment options may negatively contribute to the
goal of increasing customer satisfaction.

Figure 2-9 presents an example of model created with the
Archimate Motivation Extension. This model has been adapted
from the Archimate Motivation Extension whitepaper [Quartel
et al., 2010] and depicts an excerpt of the stakeholder’s view of an
insurance company enterprise architecture. Figure 2-9 shows two
stakeholders, namely the Board and the Customer. Each stake-
holder is associated with the concerns Profit (which comprises the
Costs and Sales concerns) and Customer satisfaction, respectively,
and the concern Customer satisfaction is shared between these two
stakeholders. We assume that the analysis of the Customer satis-
faction concern revealed a degree of customer dissatisfaction and
lead to the assessment Complaining customers. This assessment



40 Chapter 2 Goal Definition and Usage

can be decomposed into a set of other assessments as depicted in
Figure 2-9.

Figure 2-9
An example
model using
ArchiMate
Motivation
Extension

Board Customer

Profit Customer 
satisfaction

Complaining 
customersCosts Sales

Lack of insight in 
portfolio

Inconvenient claim 
submission

Lack of insight in 
claim status

Information is 
incomplete and 

inconsistent

Improve portfolio 
management

Provide online 
portfolio service

Systems should be  
customer-accessible

!

Among the (sub-)assessments, the Lack of insight in portfolio
assessment can be addressed by the goal Improve portfolio man-
agement. The principle Systems should be customer-accessible re-
alizes the goal of improving the portfolio management and is spe-
cialized into the requirement Provide online portfolio service.

2.5 Service-Oriented Computing

The area of Service-Oriented Computing (SOC) has also been
using the concept of goal, particularly to formulate users’ require-



Service-Oriented Computing 41

ments to services, and to guide the service composition process.
For instance, in [Kaabi et al., 2004], both these objectives are
pursued by using a goal-driven approach to elicit functional re-
quirements for inter-organizational processes and to identify which
services should be provided by each organization. This approach
uses a labeled directed graph with intentions as nodes and strate-
gies as edges between intentions. Strategies are defined as ways
to achieve intentions. An edge entering a node defines that the
given strategy (the edge) can be used to achieve the corresponding
intention (the node). Multiples edges entering a node represent
alternative strategies that can be used to achieve an intention. In
[Kaabi et al., 2004], Intention is defined as a “goal to be achieved
by performing a process”, and a process consists of a sequence
of intentions and strategies that should be followed to achieve a
particular intention.

A benefit of adopting the concept of goal in Service-Oriented
Computing to formulate user’s requirements is the possibility of
specifying the user’s objectives at the knowledge level without
having to deal with their technical solutions. For instance, in-
stead of specifying the service requirements in terms of a WSDL
document specifying the intended service, a user could express
his goal, i.e., what he expects to reach as a result of the service
execution.

To identify and characterize the use of the goal concept in the
area of SOC, we discuss below a set of approaches that make
use of this concept, namely, the Web Service Modeling Ontology
(WSMO), GoalMorph, the goal and task-based approach for ser-
vice composition presented in [Zhang et al., 2006] and the SM4All
project.

2.5.1 WSMO
The Web Service Modeling Ontology (WSMO) [De Bruijn et al.,
2005] is an ontology-based conceptual model for describing Seman-
tic web services. WSMO aims at describing all relevant aspects
related to services in order to enable (total or partial) automation
of the service-provisioning tasks, such as service discovery, selec-
tion, composition, mediation, execution and monitoring [Roman
et al., 2005].

WSMO is founded on the Web Service Modeling Framework
(WSMF) [Fensel and Bussler, 2002] and refines and extends WSMF
by means of a formal ontology and a family of languages. Being
an initiative in the scope of Semantic Web Services, WSMO aims
at integrating principles from the World Wide Web, the Semantic



42 Chapter 2 Goal Definition and Usage

Web [Sem, 2011], as well as design principles for Service-Oriented
Computing. These integrated design principles are:
– Web compliance: WSMO inherits from the World Wide Web

the concept of URI (Universal Resource Identifier) as the unique
identification of resources. Moreover, WSMO applies names-
paces for denoting consistent information spaces, supports XML
and other W3C Web technology recommendations, as well as
the decentralization of resources inherent to the Internet.

– Ontology-base: ontologies are used as data models in WSMO,
i.e., all resource descriptions and all data interchanged during
service usage are based on ontologies. The usage of ontologies
in WSMO allows semantically-enhanced information process-
ing as well as interoperability. WSMO also supports the on-
tology languages defined for the Semantic Web, such as RDF
and OWL.

– Strict decoupling: in WSMO, resources are defined in isolation,
i.e., each resource is specified independently without regard
to possible usage or interactions with other resources. This
complies with the open and distributed nature of the Web.

– Central mediation: mediation addresses the heterogeneity that
naturally arise in open environments as a complement to strict
decoupling. Heterogeneity can occur in terms of data, underly-
ing ontology, protocol or process. WSMO tackle heterogeneity
by making mediators first class components of the framework.

– Ontological role separation: users exist in specific contexts
which may not completely coincide with the context of the
available Web services. For instance, a service user may wish
to book a holiday according to preferences for weather, cul-
ture and childcare, whereas available travel Web services may
only cover airline travel and hotel availability. The underlying
epistemology of WSMO differentiates between the desires of
users and available services.

– Description versus implementation: WSMO differentiates be-
tween the descriptions of Semantic Web Services elements
(description) and executable technologies (implementation).
While descriptions require a concise and sound description
framework, implementations are concerned with the support
of existing and emerging execution technologies for the Se-
mantic Web and Web services.

– Execution semantics: reference implementations such as WSMX
[Bussler et al., 2005], should allow verification of the WSMO
specification and provide formal execution semantics.

– Service versus Web service: WSMO differentiates between a



Service-Oriented Computing 43

service and a Web service. The Web service is a computational
entity which is able to achieve a user’s goal when invoked,
while a service is the actual value provided by this invocation.
WSMO provides means to describe Web services that provide
access to services.
Following the WSMF guidelines, WSMO prescribes four main

elements to describe semantic web services, namely ontologies,
goals, web services and mediators. Ontologies provide (domain-
specific) terminology for the other elements as well machine-pro-
cessable formal definitions of terms, Web services represent com-
putational entities capable of providing access to services, goals
define intentions of the service users that should be solved by web
services, and mediators define elements that resolve interoperabil-
ity problems between other components.

The WSMO conceptual model is supported by a family of
languages called the Web Service Modelling Language (WSML)
[de Bruijn et al., 2005]. This family of languages consists of
WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-
Full, which offer different levels of expressiveness, varying from the
minimal level supported by WSML-Core (intersection of Descrip-
tion Logics and Logic Programs [Grosof et al., 2003]) to the max-
imum level expected to be supported by the WSML-Full (First-
Order Logic combined with Logic Programs).

In WSMO, a goal is defined in [Roman et al., 2005] as a de-
scription of the service user’s desires and in [Domingue et al.,
2005] as specifying “the objectives that a client may have when
consulting a Web service, and describing aspects related to user
desires with respect to the requested functionality”. A goal in
WSMO is described by non-functional properties, imported on-
tologies, used mediators, requested capabilities and a requested
interface as shown below (in a MOF notation).

Class goa l
hasNonFunct iona lPropert ies

type nonFunct iona lProper t i e s
importsOntology type onto logy
usesMediator

type {ooMediator , ggMediator}
r eque s t sCapab i l i t y

type c apab i l i t y mu l t i p l i c i t y = ←↩
↪→ s i n g l e−valued

r e q u e s t s I n t e r f a c e
type i n t e r f a c e

In WSMO, goals and Web services descriptions have similar
structures, which facilitates service discovery and matching. In



44 Chapter 2 Goal Definition and Usage

the goal description, the capability section is used to express what
the requester would like to achieve, and the interface describes
how the requester would like to interact with a web service. Goal
descriptions can be viewed as the counterparts of Web service de-
scriptions, in the sense that a goal description states what the
service requester wants to get achieved, and a Web service de-
scription specifies what a Web service can achieve.

2.5.2 GoalMorph
GoalMorph [Vukovic and Robinson, 2005b] is a context-aware goal
transformation framework. The framework uses planning tech-
niques and combines goals and contextual information to derive
service compositions. GoalMorph transforms goals into problem
that can be solved by the planner. A service composition is
obtained in GoalMorph by using goals to represent information
about the planning problem (or composition request), and to limit
the inference space in the planning process. Reasoning on goals
provides criteria for creating a successful plan.

The main contributions of GoalMorph are (i) a model that
represents context-aware goals; (ii) analysis and taxonomy of goal
types and corresponding transformations; (iii) a model that allows
reasoning about partial satisfaction of goals; and, (iv) a utility
model to reason about goal transformations and the corresponding
partial success in achieving one goal against the partial success in
achieving another goal.

Goal taxonomy
GoalMorph classifies goal into core and context goals. Core goals
arise from a user’s request, while context goals are side-effects of
the current user’s context. The following classes of goals have
been identified based on core and context goals:
– Core goal: a goal that purely describes the user’s task inten-

tion. A task intention describes which tasks the user intends
to be performed.

– Base core goal: the absolute minimal core goal that needs to
be satisfied to achieve a solution. Other core goals that are
not base core goals can be suppressed from a plan to achieve
a partial goal satisfaction.

– Dependent context goal: a context goal that can be seen as
an attribute of a core goal or is directly related to it. If the
core goal is removed from the goal set, the related dependent
context goals are also removed.



Service-Oriented Computing 45

– Independent context goal: a context goal that does not directly
affect the user’s request and, therefore, is not removed in case
a core goal is removed.
An example of this goal taxonomy is a scenario where a service

user named Miles has access to a set of services provided by his
mobile network provider, and would like to locate and receive
the directions to a Spanish restaurant. Furthermore, he wants to
have these directions delivered in speech while he is driving to the
restaurant.

In this example, Miles’ goals have been defined as (restau-
rant_found spanish amsterdam), (directions_found current_ad-
dress restaurant_address) and (directions speech_out). The goals
(restaurant_found) and (directions_found) can be classified as
core goals, since they express the essence of Miles’ intention. The
goal (restaurant_found) can also be classified as a base core goal,
because even if he does not get the directions for the restaurant,
having the address enables him, for instance, to take a taxi and ask
to be taken to that address instead of driving himself. The goal
(directions speech_out) can be classified as a dependent context
goal, because it relies on the presence of the directions obtained
from the core goal (directions_found). Moreover, it would be use-
ful for Miles to add an additional goal condition that lowers the
car-audio system while reading out the route directions. Since
this added goal does not directly affect the service user’s request,
it can be classified as an independent context goal.

Architectural design
The starting point of GoalMorph is the user’s request for a com-
posite service. A user selects a goal from the GoalRepository and
this goal forms the basis to obtain a composite service. The Goal-
Repository stores the available core goal templates that have been
defined by domain engineers using the Planning Domain Descrip-
tion Language (PDDL) [Ghallab et al., 1998], which is a planning
language to represent goals.

In the GoalMorph’s architecture depicted in Figure 2-10, Con-
textService is a general middleware infrastructure for context bro-
kering from a number of different context sources to context con-
sumers. The context source used in GoalMorph to retrieve con-
textual information is based on the solution proposed in [Lei et al.,
2002]. The ContextProxy component generates context goal condi-
tions that constrain the composition request based on contextual
information of the user provided by the ContextService.

Based on the core goal conditions from the GoalRepository and



46 Chapter 2 Goal Definition and Usage

Figure 2-10
Goal-
Morph’s
architec-
tural
design

Goal Repository

select goal

Context Service

Service Registry

ContextMesh
Goal Transformation 

Engine

Context Proxy

Planner Composition 
Engine

Execution & 
Monitoring

retrieve context

retrieve
context

transform core goal

transform context goal

plan found,
instantiated, deployed

domain
definition

problem definition

contextual
goal conditions

core goal conditions

no plan found

feedback

the context goal conditions from the ContextProxy, the final com-
position request is assembled. The Planner Composition Engine
then receives the problem definition (the final composition re-
quest) and the domain definition from the ServiceRegistry, and
uses knowledge about available actions and their consequences to
identify a solution, i.e., to create a plan. The creation of the plan
fails if the goal cannot be satisfied or if the domain knowledge is
incomplete.

If the Planner Composition Engine fails to create a plan for the
problem definition, control is transferred to the Goal Transforma-
tion Engine, which transforms the goal into a problem solvable
by the Planner Composition Engine. The transformation is per-
formed on the core goal(s) and, by interacting with the GoalRepos-
itory, the Goal Transformation Engine attempts to find forms of
the original goal that can be satisfied. An ontology consisting of
a number of hierarchies for the goals stored in the GoalRepository
is used to support goal transformation.

When a transformation ends successfully, the transformed goal
is passed to the ContextMesh for context layering, i.e., for refining
the context goal conditions by context unfolding or relaxing the
context goal conditions by context folding. Users provide context



Service-Oriented Computing 47

importance measures through a GUI, and these measures are used
as guidelines for the context layering operations. The final step is
to feed the transformed goal to the Planner Composition Engine,
and the resulting composition is evaluated by the user to refine
the goal transformation utilities.

2.5.3 A Goal and Task-based Approach for Service Com-
position

Another approach to goal-based service composition is presented
in [Zhang et al., 2006]. This approach starts by building a task-
oriented semantic representation model of web services. In this
model, application scenarios and task goals are defined at a higher
abstraction level. Dynamic service discovery and matching, and
goal-based composition are performed to achieve the user’s goals.
A Task Definition Language (TDL) has been specified. In TDL
tasks can be decomposed into sub-tasks, and tasks are defined to
achieve goals. An ontology is used to provide an uniform vocabu-
lary for the description of concepts and tasks. A goal consists of
activities, and each activity can be defined more specifically (de-
composed). A basic activity can be matched directly to a concrete
service and does not need to be further specified.

The approach divides the service composition life-cycle into
three phases: definition, construction and execution. The defi-
nition phase allows designers to define goals and abstract tasks
to achieve the goals. The difference between the abstract defini-
tion and concrete service composition is that service providers and
control information are not specified in the abstract definition. In
the construction phase, the task is decomposed, concrete services
are matched and bound, and an executable service process is gen-
erated. In the execution phase, the concrete Web services are
invoked and the process is executed to achieve the user’s goal.

2.5.4 Smart Home for All
The Smart Home for All (SM4All) is an European project aiming
at investigating “middleware platforms for inter-working of smart
embedded services in immersive and person-centric environments,
through the use of composability and semantic techniques for dy-
namic service reconfiguration” [SM4, 2008-2011]. The project is
being developed in the scope of private houses and home-care as-
sistance in presence of users with different abilities and needs.

The SM4All project considers scenarios where users are offered
a number of services that are selected depending on the user’s



48 Chapter 2 Goal Definition and Usage

goals. Some of these services are completely automated by means
of sensors, appliances and actuators, while other services are re-
alized through the collaboration of human agents [Catarci et al.,
2009].

Software platform
In the SM4All project, a software platform has been designed to
support the integration of heterogeneous home devices, the infer-
ence of the home context, and service composition as a response
to a user’s request or a home event [Kaldeli et al., 2010].

The software platform design has been driven to the solution of
handling domestic events. These domestic events can be generated
by a user’s goal or by some situation in the house that needs to
be handled, and the software platform addresses these events by
creating service compositions specific to the event and the current
house context.

The software platform architecture is composed of three lay-
ers, namely the user layer, the composition layer and the perva-
sive layer, as depicted in Figure 2-11. The user layer provides the
interface between the users and the house. Besides the regular
screen-based interfaces, SM4All also provides a Brain-Computer
Interface (BCI) [Guger et al., 2009]. The composition layer is re-
sponsible for inferring the state of the home, by receiving informa-
tion from the components of the pervasive layer and coordinating
these components on behalf of the user. Finally, the pervasive
layer consists of heterogeneous sensors, actuators and devices.

The central component of this software platform architecture
is the Composition Engine. Its task is to compute a plan (i.e., a
sequence of actions) that needs to be performed to satisfy a given
user goal. The Composition Engine first retrieves the home de-
scription from the Repository and generates the planning domain,
by mapping each UPnP action (from the elements of the pervasive
layer) to a planning-level action. After that, the generation of the
planning domain only needs to be repeated when a new service is
discovered, or when an existing service is removed.

The planning-level actions are specified in terms of precondi-
tions and effects [Kaldeli et al., 2010]. For instance, the planning-
level action turn-on-ventilator is defined as:

turn-on-ventilator
Preconditions:

ventilator := OFF
Effects:

ventilator := ON



Service-Oriented Computing 49

Figure 2-11
The SM4All
software
platform
architecture

User layer
Brain-Computer 

Interface
Traditional 
Interface

Goal(s) / Desiderata
Service(s) templates

Composition Engine

(P2P) 
Repository

User Profiler & 
Context Manager

Composition layer

Context

Domain
description

Plan

Pervasive layerActuaros Devices Sensors

Orchestrator

The Composition Engine is continuously informed about chan-
ges in the house’s context, and once new contextual information
is received, the state of the house is updated. Whenever a user
selects one goal to be satisfied, the Composition Engine searches
for the services that can be composed, and, as such, can trans-
form the house from its current state to the state represented by
the goal. When a composition is found, the Composition Engine
generates the plan and submits this plan to the Orchestrator.

The Orchestrator maps the planning-level actions back to the
concrete UPnP actions to be executed in the pervasive level. For
instance, if the turn-on-ventilator planning-level action is used in a
plan, the Orchestrator maps this action to the appropriate UPnP
action from the actuator that switches on the ventilator.

The SM4All approach offers a loose-coupled strategy to encode
actions by means of planning-level and UPnP actions. In this way,
the planning-level actions can be common to all deployments in a
given application domain, needing only to establish the mappings
between planning-level actions and the UPnP actions that are
particular to a certain deployment. For instance, planning-level
actions such as increase-heating, close-garage-door and turn-on-
lights are common in the domotics domain and the deployment
of the system in a particular house needs to map these common
actions to the UPnP actions of the actuators in the house that
actually perform the actions.



50 Chapter 2 Goal Definition and Usage

Goal definition
SM4All uses a goal language to allow the specification of goals
by means of numeric variables, temporal constructs and main-
tainability properties. The goal is expressed in a declarative way,
i.e. it specifies what properties should be satisfied for the goal
to be fulfilled, and under which conditions. The syntax of a goal
specification is defined as [Kaldeli, 2009]:

goal ::= ∧i(condition-goali | subgoali)
condition-goal ::= (subgoal)under_condition

subgoal ::= achieve-maint(∧ipropi) |
achieve(∧ipropi) |
find_out-maint(∧ik-propi) |
find_out(∧ik-propi)

prop ::= var , value | var1 , var2 |
(var1 % var2), value

k-prop ::= k-var , value | k-var1 , k-var2
| (k-var1 % k-var2), value |
k-var_known = true (2.2)

In the listing 2.2, var ∈ (V ar \ Par), where V ar is a set of
variables and Par is another set of variables that play the role of
input parameters. k-var stands for the knowledge variables and
value represents some boolean or numeric constant, depending on
the type of the related variable [Kaldeli et al., 2009]. , represents
relational operators (, ∈ {<,>, .=,≤,≥,=}) and % represents a
numeric operator (% ∈ {+,−}. The knowledge proposition k −
prop refers only to knowledge variables. Knowledge propositions
and knowledge variables are related to sensing actions, i.e., actions
that are responsible to gather knowledge by means of the context-
aware components.

The achieve(∧ipropi) subgoal implies that the Composition
Engine can try any action having the potential to contribute to
the propositions’ satisfaction. The find_out(∧ik-propi) means
that a state that satisfies ∧ik-propi has to be reached without
using any action that include effects that change the state of
the world on the variables in ∧ik-propi. For instance, the goal
find_out(account_balance > 100) is satisfied if the sensed value
for account_balance is greater than 100 without allowing any ac-
tion to alter the variable’s value before the sensing action. Con-



Conclusions 51

trarily, with the goal achieve(account_balance > 100), the Com-
position Engine may invoke the action transfer_in that transfer
a given amount to the account, increasing its balance.

The maint (maintenance) suffix used in the syntax presented
in listing 2.2 adds the requirement that once the related propo-
sition becomes true at some state, it should remain true in all
subsequent states. The under_condition primitive imposes that
some conditions should be assured before the fulfillment of the
subsequent subgoal.

An example of goal defined using the SM4All’s goal language
is the following (from [Kaldeli et al., 2009]:

achieve-maint (bookedHotel ∧ bookedF light)
under_condition
(find_out-maint(hotelPrice + flightPrice ≤ 400)
In this example, a user wants to book an air ticket and make a

hotel reservation. However, the condition imposed by this goal is
that the price of the air ticket and the hotel room cannot exceed
400 euros.

The goal concept is defined as the conjunction of condition
goals and subgoals, which can be reduced to its constituent propo-
sitions. Therefore we can conclude that in SM4All, a goal is con-
sidered as a set of propositions that represent a state of affairs
intended to be achieved.

2.6 Conclusions

The concept of goal has been used in several areas of Computer
Science. Since targeted to different stakeholders, with different
objectives, the approaches do not share a common conceptualiza-
tion and definition. However, it is possible to identify some trends
among the several approaches discussed in this chapter. One of
these trends is the definition of goal as a state of affairs that is in-
tended by the user. However, in some cases the same approaches
that define goal as an intended state of affairs use another concept
to explicitly refer to the state of the world. This is the case, for
instance, for the approaches in the scope of Artificial Intelligence,
as well as in BDI logics (assuming that the concept of desire can
be considered as a goal), Intention Logic and KAOS. By having
two (or more) concepts referring to the state of the world, it is
not clear whether the goal is a special type of of state of affairs,
or if it is some kind of relation between an agent, an intention
and a state of affairs. In the scope of our work, we believe that



52 Chapter 2 Goal Definition and Usage

this distinction is important and our foundational ontology should
clarify the relations between goal, state of affairs, intention and
agent.

In some other approaches, we have found that their definition
for the goal concept is not precise and, in some cases, inconsis-
tent. For instance, in the seminal paper of KAOS [Dardenne et al.,
1993], the term goal is frequently used interchangeably with the
term objective. Moreover, the goal definition includes the term
objective, making the definition self-referenced. In [Zhang et al.,
2006], it is unclear how a goal should be defined, and the terms
goal and task are used interchangeably. The approach presented
in [Kaabi et al., 2004] considers that goals and intentions as equiv-
alent concepts. In these two approaches, a designer may not be
sure of which concept to use and under which situations one con-
cept should be chosen and not the other.

In the ArchiMate Motivation Extension there are several dif-
ferent concepts collapsing onto the concept of goal. For instance,
a goal represents an end, and this end can represent different con-
cepts such as an effect, a state, a produced value, a task or a
realized system property. Regarding the entities that are related
to a goal, the difference between stakeholder and actor is not clear,
and there is an overload on the realization relation because the
relation can relate either a goal with a principle or a requirement,
or a requirement with a core concept like, for instance, a system.

In WSMO, there is a clear issue on the goal concept being
closely related to a service, so that one could consider that a
WSMO goal description corresponds to an abstract service de-
scription.

After the analysis of these several definitions for the goal con-
cept and how the concept is used in the related approaches, we can
conclude that the conceptualization for goal is not a consensus.
The lack of concept comes from the fact that the goal concept has
been defined according to the objectives of each approach, which
are different among themselves and most of them different also
from the objectives of our work. However, we could get inspi-
ration from these approaches on the conceptualization for goals.
Moreover, the relation between goal, intention and state of affairs
should be clarified as well as causality consequence of adopting
a goal, i.e., when adopting a goal, what are the consequences in
terms of commitments that are inherited by the adopter.



Chapter3
Dynamic Service Provisioning
Framework Architecture
In this chapter we present our framework to support dynamic
service provisioning, by giving an overview of the framework’s el-
ements and justifying their purpose. This overview aims at posi-
tioning the framework’s elements and facilitating the understand-
ing of the framework as a whole and the role of each individual
element. This chapter is structured as follows.

Section 3.1, presents and discussess use case scenarios. These
use case scenarios characterize situations of service provisioning in
different domains and were used to identify the stakeholder’s roles
presented in Section 3.2. The use case scenarios consist of situa-
tions in which service clients may need support to service provi-
sioning activities such as service discovery, selection, composition
and invocation. This support mediates the interactions between
service clients and service providers. Section 3.3 discusses service
mediation and motivates the software support to realize service
mediation.

Based on the analysis of the use case scenarios and the discus-
sion on service mediation, Section 3.4 presents a set of require-
ments for a software-based solution to dynamic service provision-
ing. These requirements motivated the development of our service
provisioning framework. Section 3.5, presents the architectural
design of our service provisioning framework, which starts from a
software platform to mediate service provisioning, and has been
incrementally enhanced with the other framework’s elements that
were needed to comply with the identified requirements.



54 Chapter 3 Dynamic Service Provisioning Framework Architecture

3.1 Use Case Scenarios

The main objective of our framework is to support dynamic service
provisioning in Pervasive Computing environments, i.e., environ-
ments surrounding users and populated by a multitude of services
and computing devices. To identify classes of stakeholders in-
volved in service provisioning and their interaction patterns, we
have selected a set of use case scenarios. These use case scenarios
have been selected from the ones identified, investigated and vali-
dated in the scope of the Amigo [Ami], A-Muse [A-M] and U-Care
[U-C] projects.

In our work we have focused on the areas of Ambient Intel-
ligence and Health Care. These areas offer application scenarios
that are appealing and generally seen as useful. For instance, it is
generally acceptable that a higher degree of automation (associ-
ated with ease of use) in home, working and health care scenarios
may improve quality of life. Moreover, contrarily to specialized
areas where one needs specific knowledge to understand the is-
sues and scenarios of these areas, Ambient Intelligence and Health
Care, for their wide-spread reach allow that more people can per-
ceive the usefulness of their application scenarios. The chosen use
case scenarios represent situations that can be realized with the
currently available technologies, situations that should be possible
with the technologies and techniques that are being researched or
developed and are expected to be launched in the next few years.

The following use case scenarios have been used to identify the
service provisioning stakeholders and the initial requirements for
dynamic service provisioning:

Scenario #1: Nomadic ambient comfort
John is a professional who lives in a city apartment but also

owns a beach house and a mountain cabin. He has ambient com-
fort preferences such as light intensity, light color, temperature
and humidity that he expects to be automatically applied on all
houses and working environments he uses. Moreover, everyday
John receives several phone calls, e-mails, SMS and instant mes-
sages. However, in some situations some types of messages are
more suitable than others. For instance, when he is in a meeting,
voice messages should be transcribed and delivered in textual form
on his smartphone, or when he is driving text messages should
be delivered in an audible form through his car’s audio system.
Therefore, John would like that incoming messages are delivered
according to his current activities. This use case was identified in
the Amigo project [Ami].



Use Case Scenarios 55

Scenario #2 Automatic adjustment of weekly menu based on
diet requirements

Anna lives in a smart home. Every morning, when she wakes
up and washes her face in the bathroom, sensors on the floor in
front of the sink weight her and measure the percentage of fat,
water and muscles in her body. With this information, a weekly
menu is set according to her needs for more or less calories and
the availability of groceries in her house. If an adequate menu
could not be established with the groceries in stock, a shopping
list is compiled. The shopping list is either automatically sent
to a supermarket that provides delivery services or uploaded to
Anna’s smartphone so she can shop herself. Additionally, more
recipes should be gathered to vary the weekly menus based of
Anna’s eating preferences. This use case was identified in the
Amigo project [Ami].

Scenario #3: Receive emergency assistance for epilepsy
Maria has a chronic epileptic condition. However, she wants to

carry on with her life as normally as possible. As a daily routine,
every morning she runs in the park near her house. Nowadays it
is possible to detect an imminent epileptic seizure based on body
signals. Therefore she wants to be warned if her body signals
reach a critical point so she can stop running and try to put her-
self in a resting position. Concurrently, the relative or friend who
is closest to her location and available to help should be warned of
her potentially incoming seizure and head on to her whereabouts.
The assigned or on-duty caregiver should also receive information
about her body signals, her location, which relative or friend has
been warned and when and how far he/she is from Maria’s loca-
tion. This information is used by the caregiver to decide to send
an ambulance (depending on the severity of the body signals) or
to contact the warned relative or friend to provide further assis-
tance instructions and receive extra situation assessment. This
use case was identified in the A-Muse project [A-M].

Scenario #4: Control the use of medicine by home-bound
elderly patients

Peter and Sofia are an elderly couple living alone at their home.
Peter suffers from high blood pressure and has to take some con-
trolled medicine. His medicines have fixed and determined fre-
quency and schedule to be taken. Sofia suffers from a mild di-
abetes that can be normally managed through a controlled diet
and only in exceptional cases she needs to take insulin shots. Both
of them are in the initial phase of senility, presenting occasional
memory lapses. However, it is preferable to keep them at home.



56 Chapter 3 Dynamic Service Provisioning Framework Architecture

For them it is advantageous to stay at home instead of in a health
care facility because they prefer to stay as long as possible in
their well-known environment. For their health insurance provi-
der, keeping them at home is cheaper than transferring them to
a nursing facility or to a hospital. Therefore, the health insur-
ance provider hires a home health care specialized company to
support the couple with their medical needs. To allow them to re-
main living in their house, the home health care company provides
mechanisms to control their body signals such as his heart rate
and blood pressure, and her glucose level. Her diet is controlled
and, according to what she eats, the need for an insulin shot is
evaluated by monitoring her glucose level. In case her diet can not
be controlled, for instance, when she eats out, her glucose level is
assessed using the glucose meter. Moreover, both of them are re-
minded of the time to take their medicines and only the correct
amount is made available on their automatic medicine dispenser.
This use case was identified in the U-Care project [U-C].

Scenario #5: Nomadic medical consultation
Lucia is a professional who is frequently required to go on busi-

ness trips. In one of these trips, a health-related event occurs and
she needs a medical consultation. However, since she is abroad
and, consequently not near her general practitioner, she needs to
find a nearby doctor so that the consultation and treatment costs
are covered by her health insurance. During the consultation the
doctor abroad should be able to assess her medical history. More-
over, during the consultation, the doctor abroad requested further
medical tests and prescribed some medication. Again, Lucia needs
to find laboratories that can perform the requested tests and phar-
macies that provide the prescribed medicines, and are covered by
her health insurance. We devised this scenario by combining ele-
ments of the former scenarios.

3.2 Service Stakeholders’ Roles

Taking into account the above use case scenarios we have identi-
fied services to fulfill the needs of the presented subjects. Some
of the identified services were directly extracted from the use case
scenarios’ descriptions, such as the home health care service im-
plied in the use case scenario # 4. Other services were identified
because the needs of the subjects presented in the scenarios could
have been fulfilled through services (and have been fulfilled by
services developed in the referred projects), such as the message



Service Stakeholders’ Roles 57

adaptation services and ambient comfort adjustment services ex-
tracted from use case scenario #1. The stakeholders’ roles that
we have identified from the analysis of the services should be gen-
eral in the sense that they are applicable not only for a particular
service instance but also for other service provisioning instances.

In a simple service provisioning activity, two types of stake-
holders interact. On one side there is a stakeholder that plays the
role responsible for defining and offering services. On the other
side another stakeholder plays the role responsible for requesting
the delivery of a service. While the former is commonly called
service provider, the later is often called service client. In the
related literature, besides the terms service client and service pro-
vider [Papazoglou and Georgakopoulus, 2003] these two roles are
also referenced with different terms, such as requester and pro-
vider entities [Booth et al., 2004], service requester and service
provider [Burbeck, 2000], service consumer and service provider
[Laskey et al., 2009], or service customer and service trustee [Fer-
rario and Guarino, 2008]. Regardless the used terms, the conveyed
concept is one stakeholder offering (or providing) the service and
another stakeholder requesting and using the service. Figure 3-1
presents an excerpt of OASIS’ Service-Oriented Reference Archi-
tecture [Laskey et al., 2009] modeling the relations between Ser-
vice Consumer, Service and Service Provider.

Figure 3-1
OASIS’
simplified
service
participants

Stakeholder

Service Consumer

Participant

Service Provider

Service
uses offers

Following we list and describe the stakeholders’ roles involved
in service provisioning that we have identified from the use case
scenarios presented in Section 3.1:
– Service Client. Responsible for requesting services. The Ser-

vice Client also deals with possible negotiations over the ser-
vice provisioning terms. For example, a frequent traveler can
negotiate with an airline for discounts on a bulk purchase of



58 Chapter 3 Dynamic Service Provisioning Framework Architecture

tickets or a company can get a faster delivery of supplies af-
ter negotiating a transport service. With the service contract,
commitments are established between the Service Client and
the entity providing the service. These commitments define
the Service Client’s rights and obligations in the scope of the
contracted service. Examples of Service Client’s obligations
are the payment of a specified amount for the service delivery
or the availability of some information required for the service
execution. Our definition of Service Client is similar to the
concepts of service customer in [Ferrario and Guarino, 2008],
service client in [Papazoglou and Georgakopoulus, 2003], ser-
vice consumer in [Laskey et al., 2009] and service requester in
[Booth et al., 2004, Burbeck, 2000].

– Service Beneficiary. In our work we distinguish a Service
Client, which requests and contracts a service, from a Service
Beneficiary, which receives the benefit of the service delivery.
The Service Beneficiary may or may not be the same entity
as the Service Client for some service provisioning instances.
For example, a parent contracts the education services of a
school for his child while the direct beneficiary of the service
is the child. In our use case scenario #4, although the health
insurance company (in this instance acting as a service client)
hires the home health care company, the direct beneficiaries
of the service are Peter and Sofia. Entities can benefit from
service delivery even if the Service Client is unaware of it.
For instance, if one resident of a street contracts a service for
cleaning his street from snow, all the inhabitants of this street
benefit from the service. However, in this example the Service
Client also directly benefits from the service delivery. The ben-
efit perceived by his neighbors is more like a side-effect of the
delivery of his contracted service. In other words, the house-
holder that contracted the snow cleaning service aimed at hav-
ing a personal benefit from the service although his neighbors
also perceived some benefits. In our work, we categorize as
Service Beneficiary the entities benefiting from a service as ex-
plicitly intended by the Service Client, i.e., the Service Client
requests a service with the explicit intention of benefiting the
Service Beneficiary.

– Service Provider. We define the Service Provider as the stake-
holder accountable and liable for the service offering. The Ser-
vice Provider advertises its offered services and commits with
the performance of the activities described in the service ad-
vertisement once a service is contracted by the Service Client.



Service Stakeholders’ Roles 59

Our definition of Service Provider is similar to the concepts
of service trustee in [Ferrario and Guarino, 2008] and service
provider in [Booth et al., 2004, Burbeck, 2000, Laskey et al.,
2009].

– Service Executor. Similarly to the differentiation between Ser-
vice Client and Service Beneficiary, we also differentiate be-
tween Service Provider and Service Executor. The former is
the actual responsible (and liable) entity for the service from
the point of view of the Service Client. The later is the stake-
holder that actually performs the activities that allow the ser-
vice to be effectively provided. For instance, suppose a clean-
ing company X (Service Provider) offers corporate cleaning
services and has been contracted by bank Y (Service Client)
to clean its headquarters. Due to internal personnel problems
of company X, the cleaning of the bank’s headquarters is be-
ing performed by freelancers (Service Executor) temporarily
hired by company X. The freelance cleaners are the service
executors from the bank Y’s point of view, since the cleaning
service has been offered, negotiated and contracted by com-
pany X. At the same time, from the company X’s point of
view, the freelance cleaners are the service providers of tem-
porary cleaning services. In this example we have two differ-
ent services, with the stakeholders playing different roles in
each one. The first is the corporate cleaning service that bank
Y (the service client and the service beneficiary) contracted
company X (the service provider) to perform, but is actually
performed by the assigned freelance cleaners (the service ex-
ecutors). The second service is the temporary cleaning service
that company X (the service client) hired the freelance clean-
ers (the service providers and service executors) to perform at
the premises of bank Y (the service beneficiary). The distinc-
tion between these two services allows the clear separation of
responsibilities and obligations between Service Providers and
Service Executors. Our definition of Service Executor is sim-
ilar to the concept of service producer presented in [Ferrario
and Guarino, 2008].
In our work we consider that the term service consumer con-

veys an intuitive notion of a stakeholder that contracts a service
and/or benefits from the service’s execution. Since in our con-
ceptualization we have these two roles separated, we refined the
OASIS’ classification by introducing our specializations to the Ser-
vice Consumer, namely the Service Client and the Service Bene-
ficiary. To be consistent with the hierarchy of generalization and



60 Chapter 3 Dynamic Service Provisioning Framework Architecture

specialization, we also refined the service’s offering counterpart
by introducing the concept of Service Producer that can be spe-
cialized into Service Provider and Service Executor. Figure 3-2
depicts the hierarchy of the Service Consumer (Figure 3-2a) and
of the Service Producer (Figure 3-2b).

Figure 3-2
Main
service
stakehold-
ers’
roles Service Client

Service Consumer

Service Beneficiary

(a) Service consumers

Service Provider

Service Producer

Service Executor

(b) Service producers

Figure 3-3 depicts the relationship among the identified types
of stakeholders’ roles. These roles are played by individual actors
circumstantially, i.e., one actor can play the role of a Service Pro-
vider in one service provisioning instance and play the role of a
Service Client in another service provisioning instance. The same
applies to Service Beneficiary and Service Executor.

Figure 3-3
Service
stakehold-
ers’
roles

Se
rv

ic
e 

Co
ns

um
er

s Service Producers

Service Client

Service 
Beneficiary

Service Provider

Service Executor

surrogates
service execution

executes service for the benefit of 

contracts service
for the benefit of

offers service

contracts service

3.3 Service Mediation

In scenarios with a small amount of services and service providers,
or when the need for a service can be fulfilled by a previously used
and known service, a service client can select the service by himself
because (i) of the small amount of available services and provi-
ders; (ii) the service request is known and has been previously
applied, or (iii) there is a previously established relationship be-
tween the client and the provider(s) facilitating the interaction.
An example of this situation is a company that has an established



Service Mediation 61

contract with a provider of transportation services. In this case,
only the types of transportation services offered by the contracted
company are available to the employees of the delivery depart-
ment. Moreover, the parameters of these available services (e.g.,
cost, pickup time and delivery time) have been pre-determined in
the transportation service contract, so that the possible choices of
services for the employee are limited and, therefore, can be made
manually. Another example is the selection of energy supplying
services. Normally there are only a few available companies pro-
viding this service in a given geographical area, easing the service
selection.

However, whenever there is a need for a new service, and one
requires the selection of the most appropriate service (based on a
given criteria), and/or there is a large amount of available services
and providers to consider, some sort of service mediation becomes
necessary.

In the context of Service-Oriented Computing (SOA) [Erl, 2005]
the term service mediation is often used as a reference to trans-
formation components that tackle heterogeneity issues (e.g., se-
mantic, process, data, etc) between services or between services
and service clients [Barros et al., 2005, Confalonieri et al., 2005,
Cimpian et al., 2006]. In this thesis we use service mediation
in a broader sense, following the definition presented in [Laskey
et al., 2009] of service mediator as “a participant that facilitates
the offering or use of services in some way". Examples of ser-
vice mediators are service registries that allow the registration of
service descriptions by service providers, facilitating the discovery
of the available services, or proxies that actively stand for some
party in an interaction. The yellow pages of the telephone di-
rectory can be considered as a service registry since it facilitates
service discovery by organizing service providers in categories.

3.3.1 Software-based service mediation
The Web services architectural model (a SOA implementation)
[Huhns and Singh, 2005] has three main parts: a provider, a client
and a registry as depicted in Figure 3-4 . The registry is where ser-
vice providers publish their service descriptions and where service
clients search for services. A service client queries the service reg-
istry for services matching some criteria. Once found, the registry
returns a list of matching service descriptions. It is the responsi-
bility of the service client to selected a service from this list and
to establish a connection with the service provider, so that the se-
lected service can be provided. In other words, the service registry



62 Chapter 3 Dynamic Service Provisioning Framework Architecture

supports the client on the service discovery activity, leaving other
activities, such as service selection, negotiation and activation, for
the service client. This pattern of a service registry to store de-
scriptions (service offers) was already prescribed in ODP, in the
specification of the ODP trading function [ISO/IEC-ITU/T, 1998]

Figure 3-4
Web
services ar-
chitectural
model

Service Registry

Service Provider Service Client

publish find

bind

Figure 3-5 depicts the mediator in the Oasis’ Service Refer-
ence Architecture. In this reference architecture, a mediator is
mainly considered as an awareness facilitator, i.e., a participant
that facilitates the awareness of service descriptions by service
clients (or service consumers in Oasis terminology) This aware-
ness is achieved by means of registry and repository facilities as
depicted in Figure 3-6. The registry contains links or pointers to
the service descriptions stored in the repository. Moreover, the
Oasis approach considers the possibility of federated registries.

Figure 3-5
OASIS’
service
participants

Stakeholder

Service Consumer

Participant

Service Provider

Service
uses offers

Mediator

facilitates

In summary, a service client should be able to search for ser-
vices in the available registries, decide which service best fits its
needs, and invoke the service using the interface definitions defined
in the service description. To facilitate these tasks, mediation en-
tities can play a role supporting the interactions between service



Service Mediation 63

Figure 3-6
OASIS’
mediation
facility

Mediation Facility

Service Consumer Service Provider

Service Description

discover services

creates

Registry

interaction

Repository

publish description

clients and service providers. On the provider’s side, a mediation
entity can be beneficial by providing mechanisms for rapid cre-
ation, deployment and advertisement of services, such as in the
examples presented in [Agarwal et al., 2005] and [Srinivasan et al.,
2005]. On the client’ s side, the mediation entity can support dis-
covery, selection, composition and invocation of services, amongst
others [Preist, 2004].

The characteristics of a service mediator varies according to
the functionality it offers. The architecture of the mediation en-
tities can be defined in terms of the type of interaction they offer
to their users (in our case, service consumers and service produc-
ers). Following this approach, the level of support offered and
the choice of the mediation functions determine the mediator’s
requirements. Here, we define as level of support the subset of
the service provisioning activities offered by the service mediation
entity (e.g., service discovery, selection and invocation).

Among the alternative types of roles for a service mediator we
focus on two types, namely broker and matchmaker. The match-
maker provides a service discovery function by trying to match the
client’s service requirements with the service descriptions available
at service registries. The broker can provide not only service dis-
covery but also service selection, composition, invocation, trans-
formation, amongst others, offering a higher level of support to
the client [Bonino da Silva Santos et al., 2007].

Figure 3-7 shows different interaction patterns applied in three
service architectures. In the basic service architecture depicted in
Figure 3-7a the service provider publishes the service descriptions
in a registry, the client queries the registry for the descriptions
of available services and, after selecting an available service, the
client invokes the appropriate service. The service architecture
depicted in Figure 3-7b places a matchmaker between the client
and the registry (or the set of accessible registries). In this way
the client sends the criteria of the desired service to the match-
maker, which searches the available registries for service descrip-
tions matching these criteria. In the case of a positive match, the
matchmaker returns the description of the discovered service to



64 Chapter 3 Dynamic Service Provisioning Framework Architecture

be invoked by the client. The service architecture depicted in Fig-
ure 3-7c presents an example of the broker role. In this example,
the software platform not only provides matchmaking facilities
but also invokes the discovered services on behalf of the client. If
necessary, the platform playing the role of a broker also performs
transformations on the results received from the invoked services
to comply with the data format requested by the client and only
then sends the results to the client.

Figure 3-7
Service
mediator
roles

Service Registry

Service Provider

Service Client

publish

find

bind

(a) Service registry

Service Registry

Service Provider

Service Client

publish

find

bind

M
at

ch
m

ak
er

find

(b) Matchmaker

Service Registry

Service Provider

Service Client

publish

find

bind

Br
ok

er

find
results

(c) Broker

3.3.2 Matchmaker
In service matchmaking we identify three distinct roles: a re-
quester (service client), a matchmaker and a provider (service pro-
vider) [Decker et al., 1996]. The requester aims at finding services
that offer the capabilities dictated by criteria provided in terms
of the desired service interfaces and properties [Vasudevan, 1998].
The matchmaker has access to a set of services descriptions made
available by providers, and provides facilities to discover services
based on the requester’s criteria.

Early computational directories offer matchmaking facilities
that provide mappings between names and addresses similarly to
the white pages in telephone directories. Later on, a more ad-
vanced form of matchmaking emerged that supports search based
on entry’s attributes, allowing matches based on certain desired
characteristics. This form of matchmaking resembles the yellow
pages in telephone directories. One shortcoming of this approach
is that the selection criteria are completely supplied by the re-
quester, providing an asymmetric form of selection [Facciorusso
et al., 2003].[Hoffner et al., 2000] suggests the introduction of
symmetry in the selection process, in which the requester pro-



Service Mediation 65

vides a description of the requested service and its capabilities as
a service client. The provider specifies its demand to the clients
of its services, thus limiting the range of his service’s potential
clients. This allows the provider to select clients just as clients se-
lect services, fostering the establishment of relationships between
compatible business partners. Otherwise, a client could select a
service and, during the negotiation phase, find out that he is not a
compatible client according to the provider’s restrictions, wasting
time and effort that could have been spared if the client-provider
incompatibility issues have been addressed in earlier steps.

A matchmaker acts like as if it were a provider of services of
different providers. The requester does not have to interact with
several providers or several service registries querying them for the
descriptions of their services and then try to match the descrip-
tions with the needed criteria. In a matchmaking environment,
the requester sends the criteria to the matchmaker, which searches
services descriptions for a positive match. Having found services
that comply with the given criteria, the matchmaker sends the
service descriptions back to the client. The client then analyzes
the services descriptions and selects suitable ones. After that, the
client directly interacts with the services by invoking the service
operations and receiving results. Figure 3-8 depicts an example
of a sequence of interactions between a client, a service provider
and a matchmaker platform.

Figure 3-8
Interaction
pattern for
the service
match-
maker
role

: Service Provider : Matchmaker

publishServiceDescription()

: Service Client

requestServiceList(criteria)

discoverService(criteria)

serviceList

selectService(serviceList)

invokeService(inputParameters[])

results[]

adjustResults(results[])

composeServices(serviceList)

The level of support of the matchmaker indicates the architec-
tural components of the platform. In case some functionality is
not supported by the matchmaker, e.g., selection or composition,
other applications or the client application itself have to supply
this functionality. Figure 3-9 depicts a possible architecture for



66 Chapter 3 Dynamic Service Provisioning Framework Architecture

both the matchmaker and the client [Bonino da Silva Santos et al.,
2007] complying with the sequence diagram presented in Figure
3-8. The matchmaker supports service publishing by the service
provider through the Service Publisher component. The Service
Publisher sends the received service description to the Content
Manager component, which is responsible for storing it in an avail-
able service registry. The Content Manager shields the internal
components from interactions with registries. The Content Man-
ager can have access to several registries and can also act as a
client to other matchmakers.

Figure 3-9
Example of
a match-
maker
platform
architecture
with service
composition
on client’s
side

Service Provider

Service Client Application

request
service

invoke / results publish

Coordinator

Service
Invoker

Service
Requester

Service
Composer

Matchmaker Platform

Service
Finder

Service
Publisher

Content
Manager

Service 
Registry

In the architecture depicted in Figure 3-9 to illustrate the
matchmaking process, a service client (through its client appli-
cation) requests the discovery of services by calling the Service
Finder component. Using the search criteria provided by the ser-
vice client, the Service Finder requests a list of candidate services
to the Content Manager. The Content Manager queries the avail-
able service registries for services matching the given criteria. If
positive matches are found, the service descriptions of the discov-
ered candidate services are sent back to the client.

Since in this architecture the matchmaker does not support
service composition, this task is expected to be performed by the
client. Therefore, it is possible that the matches have been ob-
tained by a partial satisfaction of the criteria, i.e., some of the
properties given by the service client have been satisfied but not
completely by a single service. In this case, the service client needs
to perform service composition. In Figure 3-9, the service com-
position task is performed by the Service Composer, which is a
component internal to the service client application. The Service
Composer component is responsible to find a service composition
that fully matches the service client’s criteria.

We consider now another example of matchmaker with a higher



Service Mediation 67

level of support than the one in Figure 3-9. In this example, the
service composition functionality is provided by the matchmaker.
Figure 3-10 shows that the Service Composer component can be
moved from the client application to the matchmaker platform
but its functionality remains the same. The Service Composer
still tries to compose the services that partially match the ser-
vice client’s criteria into a service composition that fully matches
the criteria. In case additional component services are required
to complete the composition, the Service Composer needs to re-
quest the new services by providing other criteria. In the example
where the service composition is performed by the client, the Ser-
vice Composer requests the additional services to the Coordinator
component. The Coordinator component forwards the request to
the Service Requester component, which calls the Service Finder
of the matchmaker with the new criteria.

Figure 3-10
Example of
a match-
maker
platform
architecture
with service
composition
on match-
maker’s
side

Service Provider

Service Client Application

request
service

invoke / results

publish

Coordinator

Service
Invoker

Service
Requester

Matchmaker Platform

Service
Finder

Service
Publisher

Content
Manager

Service 
Registry

Service
Composer

In Figure 3-10, the composition is performed by the match-
maker and the criteria of the additional services to complete the
composition are passed by the Service Composer directly to the
Service Finder. Once the Service Finder discovers services that
comply with the criteria, it returns their service descriptions to
the Service Composer, which creates the composition and returns
its description to the client.

The flexibility to assign functionality to the matchmaker or to
the client shown in the examples in Figures 3-9 and 3-10 also holds
for other functional components, such as the Content Manager or
the Service Finder. Therefore, generic components can in principle
be developed to support these functions, and the desired level of
support for the service platform dictates where those components
should be allocated [Bonino da Silva Santos et al., 2007].



68 Chapter 3 Dynamic Service Provisioning Framework Architecture

3.3.3 Broker
In this role, besides the discovery functions discussed in the match-
maker role, the broker offers a service selection mechanism, in-
vokes the services on behalf of the client, monitors the service
execution and parses the results, possibly translating the output
to client’s required format. The broker can also perform service
composition based on the client’s service requirements and the
available service descriptions.

Service brokers may also consider the semantics of the terms
present in service descriptions, service requirements and message
exchanges. For instance, if the service description contains se-
mantic annotations, the broker should be able to perform a set of
complex reasoning tasks [Sycara et al., 2004], which includes in-
terpreting service provider capabilities (service descriptions) and
client applications’s requirements. Similarly, the interpretation of
the terms used in message exchanges can be performed by the
broker platform.

Considering the broker role, in an example usage scenario the
platform can be available to clients that may request immediate
provisioning of a service. In this case, a service has to be dis-
covered and consumed as soon as it is found, as opposed to a
service to be discovered immediately and consumed when certain
conditions hold at some point in future. The sequence diagram in
Figure3-11 shows the interaction pattern between clients, service
providers and the broker platform in this example situation. Sim-
ilarly to the matchmaker, the broker provides facilities for service
publishing by the service providers. A critical difference between
the matchmaker and the broker is that the latter acts as a sur-
rogate of the service client, i.e., the service client requests the
provisioning of a given service and the broker performs the neces-
sary steps until the final result of the service, on client’ s behalf.
Even if the output request by the service client is somewhat dif-
ferent from the output received by the broker after the invocation
of the necessary services, the broker can perform data transfor-
mations to comply with the client’s requirements. Examples of
these transformations are:
1. The client requests a service that returns the postal address

for a given point of interest. The broker finds a service that
provides the geographical coordinates for points of interest
in a given region. Since the client wants the address instead
of the geographical coordinates, the broker can perform the
output transformation by composing this service with another
one that takes geographical coordinates and returns the re-



Service Mediation 69

lated address;
2. The client requests a service that produces a given value in

long number format. The broker finds the appropriate ser-
vice but the output is in integer number format. The broker
can perform the transformation of the output by simply pars-
ing the integer value into long and returning the transformed
value to the client.

Figure 3-11
Interaction
pattern for
the service
broker role

: Service Provider : Broker

publishServiceDescription()

: Service Client

requestServiceList(criteria)

discoverService(criteria)

selectService(serviceList)

invokeService(inputParameters[])

results[]

adjustResults(results[])

composeServices(serviceList)

results[]

Figure 3-12 presents an example architecture of a broker [Bonino da
Silva Santos et al., 2007]. Here we see the components responsible
for the functionality provided by the platform, namely the Service
Publisher (service publishing), the Content Manager (service reg-
istry access and semantic repository access), the Service Finder
(service discovery), the Service Composer (service composition)
and the Semantic Mediator (semantic mediation).

Figure 3-12
Example of
a broker
platform
architecture

Broker Platform

Service Providerrequest service
 / results

publish
Coordinator

Service
Invoker

Service
Finder

Service
Publisher

Content
Manager

Service
Composer

Service Client 
Application

Semantic 
Mediator

invoke / results

Additional characteristics of the broker platform role can be
identified, such as:



70 Chapter 3 Dynamic Service Provisioning Framework Architecture

1. Fault tolerance and robustness: if a service becomes unavail-
able, the platform can try to find another suitable provider
for a similar service;

2. Privacy, security and billing: since we assume that clients and
service providers have agreed to trust the platform, the plat-
form is the trusting central point for these entities. Therefore,
clients and providers do not have to directly interact, and the
platform can provide anonymization for both parties.

Nonetheless, being a central point, the platform can become a
single point of failure as well. Techniques, such as redundancy and
clustering, among others, can be used to increase the platform’s
availability.

Unlike the matchmaker, since the broker role isolates clients
from providers, it has less opportunities for exchanging functional-
ity between the client and the platform. Although some auxiliary
functionality, such as transformation of results could be placed
on the client side, most of the functionality should remain on the
platform side in order to preserve the essential purpose of the
broker as a surrogate.

3.4 Service Provisioning Support Requirements

Based on the use cases and roles defined so far, we have identi-
fied a set of requirements for an approach aiming at supporting
dynamic service provisioning, which are discussed in the following
subsections. Although this is a non-exhaustive set of requirements
for service discovery, these requirements are relevant for the pur-
poses of our work in the areas of ambient intelligence and remote
health care.

3.4.1 Domain independence and interoperability
The use case scenarios presented in Section 3.1 refer to different
domains, namely, Ambient Intelligence, Health Care and Home
Health Care. Other application domains in which Service-Oriented
and Pervasive Computing can be applied should also be supported
by the service mediation platform. Therefore, the proposed soft-
ware platform should be able to support different domains while
keeping the same functional and non-functional properties, and
providing the same level of support for its users.

To provide service provisioning support in different domains,
the software platform needs to be able to handle the specific char-
acteristics of each of the required domains and also the aspects



Service Provisioning Support Requirements 71

aspects that are common to all domains. Issues such as a com-
mon vocabulary, types of stakeholders and the roles they play are
among the domain-specific aspects that the supporting platform
should be able to handle. To support different application do-
mains, the software platform requires access and understanding
to the knowledge necessary for the platform to properly operate
in the domains. Domain-specific knowledge should be represented
in the form of artifacts that are intelligible to the platform.

Moreover, the conceptualization of each supported domain should
be shared among the platform’s stakeholders to foster interoper-
ability. To allow inference and reduce issues related to semantic
interoperability, the interactions between the supporting software
platform and its users should be semantically-enriched, i.e., the
messages and description artifacts used by the platform’s users
should be semantically annotated with the concepts defined in
the domain specifications. Furthermore, the internal operation of
the platform is expected to benefit from the provided semantics.
For instance, when searching for a service using a set of parame-
ters, the platform can find a candidate service whose parameters
are not exact matches but are similar, by applying subsumption
[McGuinness and Borgida, 1995]. In order to interpret the pa-
rameters in a service offering, service providers should be able to
use these conceptualizations to semantically annotate the terms in
their service descriptions [Cimpian et al., 2008] enabling machine-
driven service matchmaking. In other words, it is necessary that
conceptualizations for each supported domain are available to the
platform and these conceptualizations should be shared among
the platform’s stakeholders [Gruber, 1993].

3.4.2 Abstract service request
By targeting our service mediation support to non-technical end-
users, we impose a restriction on how the users request service pro-
visioning. We claim that non-technical end-users would have dif-
ficulties specifying service requests using current computer-based
service technologies such as WSDL [WSD], WSMO/ WSML [de Bru-
ijn et al., 2006, Haselwanter et al., 2006] and OWL-S [Martin et al.,
2004]. It is fair to assume that non-technical users are not capable
of using technical elements, such as data types, XML formatting,
URLs, URIs, ports, among others, to specify a service request and
interact with the discovered services [Rolland et al., 2007].

Moreover, we aim at facilitating the provisioning of services in
a broader sense and not only of computational services. Therefore,
users should be able to express requests that can be satisfied by



72 Chapter 3 Dynamic Service Provisioning Framework Architecture

either computational or social services.

3.4.3 Limited user interaction
Since we are considering Pervasive Computing and Services sce-
narios, constant requests for user interaction when devices and
services need some information would lead to undesirable disrup-
tions of the users’ routine. Limited user interaction is therefore
required because end-users (service consumers) should not have to
frequently and obstructively interact with the supporting service
platform to have services provisioned. Therefore, mechanisms to
automatically and transparently gather information required by
service discovery, selection, composition, triggering and execution
should be offered by the framework, relieving the users of constant
and disruptive interactions. The objective of this requirements is
to limit the need and the number of direct end-user’s interaction
allowing the service provisioning to occur as transparently as pos-
sible.

3.4.4 Service provisioning automation
Our service mediation approach should be supported by a soft-
ware platform that fully or partially automates service provision-
ing steps such as service discovery, selection, composition, negoti-
ation, activation, triggering, execution and delivery. This software
platform should support heterogeneous hardware and software, al-
lowing connectivity from different devices so users can seamlessly
interact with the platform using their desktop computers, note-
books, netbooks, PDAs, smartphones or other computing-capable
devices.

This requirement relates to the requirement of limiting user
interaction in Section 3.4.3 in the sense that it aims at facilitating
end-users in having (fully or partially) automated service provi-
sioning. By automating some of the steps of service provisioning,
a limitation of the number of interactions the end-user need to
have with services and service providers can be achieved.

3.4.5 Stakeholder support
The platform should support all its stakeholders with interfaces,
APIs and tooling according to each stakeholder’s objectives. Ser-
vice Client stakeholders should be supported according to their
technical expertise and based on typical needs of users in the ap-
plication domain. For instance, a service client in the home health
care domain, such as Peter and Sofia from the use case scenario



Service Provisioning Support Requirements 73

#3, could interact with the supporting platform through their TV
screen, facilitating the visualization of the interface items. Since
they may have some sight impairments, a simple and familiar GUI
is advisable. In contrast, Maria (from the use case scenario #2)
who is technologically savvy, interacts with the supporting ser-
vice platform through a web interface on her computer as well as
through her smartphone.

Service Provider stakeholders require supporting tools for tasks
such as service description publishing and maintenance (insertion,
update and deletion) and semantic annotation of the service de-
scriptions.

Besides the provided user interfaces and tooling, the support-
ing platform should also define APIs to allow third-party client
applications to interact with the platform. For instance, if in
one deployment setting the provided service client’s user interface
is not appropriate, third-party developers can implement another
user interface that interacts with the supporting platform through
its defined APIs.

3.4.6 Maintainability and customization
To support maintainability and customization, the platform should
have a modular design [Baldwin and Clark, 2000]. The modular
design allows the substitution of particular elements according to
evolution of the requirements, changes in the available technolo-
gies and specificities of applications domains. For instance, the
platform’s service composition component can be transparently
upgraded for another component that implements a more efficient
composition algorithm as long as it keeps the same interfaces and
APIs.

Regarding customization, the modular design supports the use
of different components based on the technical characteristics of
a specific deployment setting. For instance, in a particular set-
ting, the organization responsible for the service support plat-
form chooses to use OWL as ontology representation language.
Therefore, the domain ontologies defined using our supporting lan-
guages should be represented using OWL and stored in an OWL-
compatible repository without affecting the operation of the rest
of the platform.



74 Chapter 3 Dynamic Service Provisioning Framework Architecture

3.5 Framework’s Architectural Design

The objective of our work is to facilitate service provisioning to
non-technical service clients. In order to accomplish this objective
and comply with the presented service provisioning requirements,
we started by defining a conceptual framework.

To define the framework architecture and its components we
have analyzed the requirements for service provisioning discussed
in Section 3.4 and identified elements that allow these require-
ments to be fulfilled. Since the main objective was the develop-
ment of a concrete software platform, we adopted a bottom-up
approach starting from this software platform. Then we moved
up towards enabling technologies and techniques that could sup-
port the operation of the software platform and comply with the
discussed requirements.

3.5.1 Software Platform
To realize service provisioning support, we propose a software pro-
visioning platform to facilitate the interactions between service
consumers and service producers. From the service consumer’s
perspective, the platform facilitates service provisioning by (fully
or partially) automating service discovery, composition, invoca-
tion and monitoring, among others. From the service producer’s
perspective, the platform supports the publication of service de-
scriptions. Figure 3-13 depicts the role of the software platform
in supporting service producers and consumers.

Figure 3-13
Platform
support for
service
producers
and
consumers

Service Producers

Se
rv

ic
e 

Co
ns

um
er

s

Service Client

Service 
Beneficiary

Service Provider

Service Executor

surrogates
service execution

service results

contracts service
for the benefit of

offers servicerequests service

Service Provisioning 
Support Platform

executes service

The requirement discussed in Section 3.4.3 states the need for
reduced user interaction. To have services provisioned, service
consumers would need to interact with a service supporting plat-
form in order to provide to the platform information such as cri-
teria for service discovery, selection and composition, triggering



Framework’s Architectural Design 75

conditions and inputs for service execution. Some of this infor-
mation relates to contextual information, i.e., information char-
acterizing the service client’s context. For instance, when John
(from use case scenario # 1) is at his beach house, the contextual
information of his current location is used to activate the comfort
services available at his beach house and not the services available
at his city house or mountain cabin.

By including contextual information in our service supporting
platform we have identified a new stakeholder role, namely, the
Context Provider. A service that provides contextual information
can be seen as a specialized kind of information service and, there-
fore, one could use contextual information services as component
services in a service composition. This composition would use
the outputs of the contextual information services as inputs for
the other non-contextual services. However, in our work we chose
to distinguish Context Provider from the more general-purpose
Service Provider and consequently distinguish contextual infor-
mation services from other services. This choice is related to the
role that contextual information services play in our service sup-
porting platform. We consider that non-contextual services are
selected, contracted and executed to fulfill the service client’s re-
quest. Therefore, we assume that contextual information services
are used not to directly fulfill the service client’s request, but as
auxiliary services for other services and for the service platform.

In our service supporting platform, contextual information is
used in three ways: (i) as input information for service execution
(e.g., a temperature regulation service requires the temperature
of a room to regulate the room’s heating); (ii) as triggering of
a service execution (e.g., a fire extinguishing service is triggered
when a fire notification is received); (iii) as criteria for service
discovery and selection (e.g., a service that lists the restaurants
in a given region should only be discovered and/or selected if the
service consumer is located or has interest in that region).

Whenever possible, information that would be directly given
by the service consumer should be transparently gathered from
the service consumer’s context. Therefore, the Context Provi-
der stakeholder role has the responsibility of supplying mecha-
nisms that allow the supporting software platform to request and
gather contextual information of service clients. These mecha-
nisms should gather digitalized information from service client’s
software-based data such as profiles, calendar events, appoint-
ments, travel bookings, etc., or from sensor devices such as loca-
tion (from motion detectors, GPS receivers, etc.), blood pressure,



76 Chapter 3 Dynamic Service Provisioning Framework Architecture

heart rate and weight, among others.
Since the use of contextual information characterizes the plat-

forms, we have named our service provisioning support platform
the Context-Aware Service Platform (CASP). Figure 3-14 depicts
the CASP interactions with service consumers, service producers
and the Context Provider.

Figure 3-14
Service
supporting
platform
with
Context
Provider

Service Producers

Se
rv

ic
e 

Co
ns

um
er

s

Service Client

Service 
Beneficiary

Service Provider

Service Executor

surrogates
service execution

service results

contracts service
for the benefit of

offers servicerequests service

Context-Aware 
Service Platform

executes service

Context Provider

provides
contextual
information

3.5.2 Domain knowledge sharing
According to the requirement presented in Section 3.4.1 the frame-
work (and consequently, the CASP) should support dynamic ser-
vice provisioning in different application domains. Operating in
different domains implies that the supporting platform and its
stakeholders should share the specific knowledge of each of these
domains. To tackle this issue, the CASP and the involved stake-
holders (service consumers, service producers and context-aware
providers) should agree on the content of the shared knowledge
[Gruber, 1995].

The objects, concepts, relations and other entities that exist in
a given universe of discourse represent the domain knowledge and
are formalized based on a conceptualization of that domain [Gru-
ber, 1991]. A conceptualization is a set of concepts used to artic-
ulate abstractions of state of affairs in a given domain [Guizzardi,
2005]. However, these conceptualizations are abstract entities that
only exist in the mind of its user(s). To be documented, commu-
nicated and analyzed, these conceptualizations must be captured
in terms of concrete artifacts [Guizzardi, 2005].

Ontologies allow shared conceptualizations to be represented
and manipulated [Gruber, 1993, Colomb, 2007, Guarino, 1998].



Framework’s Architectural Design 77

An ontology can be defined as an explicit specification of a con-
ceptualization [Gruber, 1991] and has been applied in several areas
in computer science. In [Mena et al., 1998, Hruby, 2005, Chan-
drasekaran et al., 1999, Falbo et al., 2002] the authors claim that
ontologies can play a critical role in supporting semantic informa-
tion brokering. In [Guarino, 1998] ontologies are classified in the
following four categories according to their generality level (Figure
3-15):
– Top-level ontology, also referred to as upper-level ontology,

core ontology or foundational ontology, describes general and
domain-independent concepts and relations such as time, mat-
ter, endurants (objects), events, part-whole, among others,
which can be used to construct models of specific domains
[Guarino, 1998, Guizzardi, 2005].

– Domain ontology can be defined as a set of objects and the
relationships among these objects of a particular domain of
discourse [Gruber, 1993]. The domain knowledge captured in
this ontology is reflected in the representational vocabulary
that the domain ontology offers [Guarino, 1998].

– Task ontology describes domain-independent generic tasks or
activities through the specialization of the terms defined in
the top-level ontology [Guarino, 1998].

– Application ontology specializes the terms of both domain on-
tologies and task ontologies to describe concepts that depend
of a particular domain and of a particular task. Normally,
these concepts refer to roles played by a domain entity while
performing a given task [Guarino, 1998].

Figure 3-15
Categories
of
ontologies

Top-level ontology

Domain ontology Task ontology

Application 
ontology

We use ontologies in our approach in order to provide sharable



78 Chapter 3 Dynamic Service Provisioning Framework Architecture

knowledge to the CASP’s stakeholders and enable computer infer-
ence. Therefore, to support different domains the framework must
have access to domain ontologies related to each domain intended
to be supported. Having access to domain ontologies, the CASP
is able to understand the concepts defined for each domain and
reason about them.

The existence of domain ontologies implies that a stakeholder
is responsible for defining and specifying these ontologies and
supplying them to the CASP. This stakeholder gathers relevant
knowledge of a particular domain and represents this knowledge
in terms of a domain ontology. In the context of our framework we
call this stakeholder role Domain Specialist. Figure 3-16 depicts
the CASP interactions with service consumers, service producers,
the Context Provider and the Domain Specialist.

Figure 3-16
The CASP
stakehold-
ers
including
the Domain
Specialist

Service Producers

Se
rv

ic
e 

Co
ns

um
er

s

Service Client

Service 
Beneficiary

Service Provider

Service Executor

surrogates
service execution

service results

contracts service
for the benefit of

offers servicerequests service

Context-Aware 
Service Platform

executes service

Context Provider

provides
contextual
information

Domain Specialist

provides
domain

ontologies

In the requirement discussed in Section 3.4.5, some of the user
support is given through semantic annotation of service descrip-
tions and exchanged messages. Semantic annotation refers to as-
signing links to the terms in some text that point to semantic
descriptions related to these terms [Kiryakov et al., 2004]. Since
domain ontologies can be considered as semantic descriptions of
the concepts in a given domain, we can use these ontologies to
semantically annotate the terms in service descriptions and ex-
changed messages.

Similar terms may be used in different domains for different
concepts or different terms may be used in different domains for
similar concepts. For instance, in the geography domain Bermuda
refers to a British archipelago in the North Atlantic Ocean while
in the clothing or fashion domain the same term bermuda refers to
knee-length walking shorts. Therefore, in our framework seman-



Framework’s Architectural Design 79

tic annotation of service description, service requests, contextual
information descriptions, etc. is performed in the scope of each
domain ontology. For instance, a location context information
may refer to geographical coordinates in a mapping domain and
to an office number in a ambient intelligence domain. This domain
dependency avoids semantic ambiguity issues.

Figure 3-17 depicts a layered view of the service provisioning
framework in which the CASP supports semantically annotated
services.

Figure 3-17
The 2-layer
architecture
of the
service
provisioning
framework

Context-Aware Service Platform

ServicesDomain OntologiesDomain knowledge

Software platform support

Available services

An
no

ta
te

Supported By

Semantic annotation is also beneficial for supporting Context
Providers and for the use of contextual information by the sup-
porting platform. Context Providers are expected to register the
description of their offered contextual information to the platform.
Similarly to the service descriptions, the contextual information
descriptions are semantically annotated with the concepts defined
in the domain ontologies. The semantic annotation of the contex-
tual information description is used by the CASP for inferencing.
For instance, a Context Provider offers GPS positioning informa-
tion about selected service clients. When registering this offering
to the platform, the Context Provider selects a domain ontology
describing a domain that is applicable to his localization informa-
tion and annotates the context information description with the
concepts defined in this domain ontology. In the domain ontology
that the Context Provider used to semantically annotate his con-
text information description, a section containing concepts and re-
lations related to contextual information defines GPS positioning
as a specialization of location. Therefore, if the supporting soft-
ware platform needs location information about a service client,
GPS positioning services could be selected by applying subsump-
tion.

3.5.3 Domain specification language
When modeling a domain, domain specialists construct in their
minds an abstraction of that domain, i.e., a simplification of the



80 Chapter 3 Dynamic Service Provisioning Framework Architecture

reality aimed at representing the part of the real world that is of
interest for the modeler’s purpose. The set of relevant concepts
used to create abstractions of a given universe of discourse is a
conceptualization [Guizzardi, 2007]. However, conceptualizations
and abstractions are immaterial entities that only exist in the
mind of a user or a community of users. These immaterial entities
should be represented in terms of concrete artifacts if they are
intended to be communicated, analyzed and documented. In order
to represent these mind-related entities in concrete artifacts, a
language is necessary.

Figure 3-18 presents the Ullman’s triangle [Ullmann, 1972] that
depicts the relationships between a language, a conceptualization
and the portion of reality that the conceptualization abstracts.
The represents relation is related to the real-world semantics of a
language, i.e., the interpretation of the language’s primitives given
by their connection with real-world entities. The relation between
a language and the reality is depicted as a dotted line to indicate
that this relation is intermediated by a certain conceptualization.
In other words, the relation between a language’s primitives and
the real-world entities to which these primitives should be related
is indirectly given through the conceptualization of the reality
created by the language’s designer.

Figure 3-18
Ullman’s
triangle

Concept
(conceptualization)

Symbol
(language)

Thing
(reality)

represents abstracts

refers to

In the scope of SOC, standardized languages such as WSDL
(for service description) and SOAP (for exchanged messages) do
not provide semantics for the described operations and messages,
but focus on the syntax of the messages. However, to use a service
the client must understand the semantics of the service’s opera-
tions and messages, their intended purpose and the intended con-
tent of all elements of their parameters [Verma and Sheth, 2007].

To address these issues, the Semantic Web Services (SWS)
initiative builds upon Semantic Web and Web services technolo-
gies to provide semantic interoperability for services by allowing



Framework’s Architectural Design 81

semantic annotation of service descriptions. Among the most
prominent Semantic Web Services technologies are the Web On-
tology Language for Services (OWL-S) [Martin et al., 2004] and
the Web Service Modeling Ontology (WSMO) [De Bruijn et al.,
2005]. OWL-S was proposed as an ontology for semantic markup
of Web services with the objective to automate the discovery, in-
vocation, composition and monitoring of services. WSMO was
proposed with similar objectives but focuses on application inte-
gration problems [de Bruijn et al., 2006]. Some other efforts focus
on more pragmatic solutions, considering the benefits of light-
weight approaches, such as the Semantic Annotation for WSDL
(SAWSDL) [Sheth et al., 2008] and the Web Services Semantics
(WSDL-S) [Akkiraju et al., 2005]. SAWSDL and WSDL-S provide
the mechanisms for semantic annotation of service descriptions as-
suming the availability of referral service ontologies.

However, since the objectives of these SWS approaches are
to either provide mechanisms for semantic annotation on exist-
ing Web service interfaces (e.g., SAWSDL and WSDL-S) or to
provide a ontology for services (e.g., WSMO and OWL-S), they
lack capabilities to describe the concepts related to the domain in
which the annotated service should operate. In these approaches,
the semantics of the domain concepts used in service descriptions
and exchanged messages are assumed to be defined somewhere
else. This decoupling between domain and service-related seman-
tics can lead to issues such as:
1. Semantic conflict. With two distinct semantics basis (one

for the service-related concepts and other for domain-related
concepts), the annotated service descriptions and exchanged
messages may raise semantic conflicts [Ram and Park, 2004].
For instance, the service-related concepts may be based in a
logical formalism that is incompatible with the formalism of
the domain-related concepts preventing proper reasoning.

2. Design effort. The domain ontologies are generally defined
by domain experts as a completely disjointed effort from the
development of service ontologies. These two ontologies may
have been defined using different languages and different tools
or editors. Therefore, some harmonization efforts should be
carried out to annotate services with these two ontologies.

3. Domain appropriateness. In some domains services must com-
ply with specific regulations (service compliance)[Weigand
et al., 2011]. Example of such domains are health care, de-
fense, military, nuclear, among others. In these domains it is
beneficial to specify a domain ontology that includes abstract



82 Chapter 3 Dynamic Service Provisioning Framework Architecture

services or abstract tasks that can be performed by concrete
services. For instance, in the health care domain, health ser-
vices should comply with several regulations concerning pri-
vacy, confidentiality, reporting the occurrences of certain dis-
eases, requirements for service provisioning (e.g., mandatory
health insurance coverage), etc. Annotating services with
integrated ontologies containing domain-related and service-
related concepts fosters the enforcement of such regulations
for all services implementing those abstract services or per-
forming these abstract tasks.

As suggested in [Korotkiy, 2009], SWS efforts should consider
shifting from ontology-enabled services to service-enabled ontolo-
gies. In other words, the SWS approaches should include and
integrate service concepts in the domain specifications.

Domain ontologies can be used as concrete artifacts to repre-
sent domain abstractions. The abstraction of a domain defined
by a domain specialist is based on his conceptualization of the
reality. Since our framework is intended to operate in the scope
of SOA, this conceptualization should be enriched with service-
related concepts and relations. Therefore, the conceptualization
includes primitives related to service-orientation such as service,
service provider, service client, service description, etc. Conse-
quently, the language that represents this conceptualization and
is used to realize the domain abstraction in terms of domain on-
tologies contains these service-related concepts as primitive con-
structs. Figure 3-19 depicts the relations between the service-
oriented conceptualization, domain abstractions, service-oriented
modeling language and domain ontologies.

Figure 3-19
Relations
between
domain
conceptual-
ization,
domain
abstraction,
modeling
language
and domain
ontology

(Service-oriented)
conceptualization

Domain abstraction
Domain abstraction

Domain abstraction

Domain ontology
Domain ontology

Domain ontology

Domain ontology
Domain ontology

(Service-oriented) 
modeling 
language

represented by

interpreted as

represented by

interpreted as

instance of used to
compose instance of used to

compose

The specification of domain ontologies requires that the domain
specialists utilize a language having primitives capable of repre-



Framework’s Architectural Design 83

senting concepts and relations of different domains, i.e., the lan-
guage should be domain-independent. Our framework prescribes
ontologies and the associated tooling, and offers a language with
which domain specialists can create the necessary ontologies. Fig-
ure 3-20 depicts the layered view of our service provisioning frame-
work including the domain specification language.

Figure 3-20
Service
provisioning
framework
including
the domain
specifica-
tion
language

Context-Aware Service Platform

ServicesDomain OntologiesDomain knowledge

Software platform support

Available services

An
no

ta
te

Supported By

Domain Specification Language

Used to
Model

Domain modeling language

3.5.4 Foundational ontology
An ontology representation language such as the one we proposed
for defining domain ontologies has a description of worldview em-
bedded in its modeling primitives, i.e., the description of the con-
ceptual model underlying the language [Guizzardi, 2005]. The
conceptual model underlying a modeling language is called the
ontology of the language in [Milton and Kazmierczak, 2004]. The
ontology of a language explicitly describes the ontological com-
mitments of the language.

In [Masolo et al., 2003, Guizzardi, 2005, 2006], it has been ar-
gued that ontology representation languages should be grounded
on a meta-ontology that describes a set of real-world categories
that can be used to talk about reality. In other words, an ontology
representation language should commit to a domain-independent
theory of real-world categories that account for the ontological
distinctions underlying language and cognition [Guizzardi, 2005].
This meta-ontology (or domain-independent theory of real-world
categories) is called a foundational ontology [Guizzardi, 2007]. A
foundational ontology is sometimes also called upper-level ontol-
ogy or top-level ontology.

Our domain specification language (an ontology representation
language) is grounded on an extension of the Unified Founda-
tional Ontology (UFO) [Guizzardi, 2005, 2007]. UFO has been
developed based on theories from Formal Ontology, Philosoph-



84 Chapter 3 Dynamic Service Provisioning Framework Architecture

ical Logics, Philosophy of Language, Linguistics and Cognitive
Psychology. UFO is derived from a synthesis of two other founda-
tional ontologies, namely, the General Formal Ontology (GFO),
which underlies the General Ontological Language (GOL) [Heller
and Herre, 2003, Degen et al., 2001], and the OntoClean ontol-
ogy [Welty and Guarino, 2001] and the Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE) [Gangemi et al.,
2002]. While GFO/ GOL focuses on natural sciences and Onto-
Clean/ DOLCE focuses on linguistic and cognitive engineering,
UFO’s main purpose is to provide a foundation for conceptual
modeling [Guizzardi and Wagner, 2005].

Our extension to UFO added service-related concepts and re-
lations to this foundational ontology. Therefore, the abstract syn-
tax of our domain specification language is defined in terms of the
language’s metamodel derived from the extended foundational on-
tology. In other words, our domain specification language has its
abstract syntax defined by its metamodel, and its ontological com-
mitments are made explicit by the foundational ontology of which
the language’s metamodel is derived.

Figure 3-21 depicts the layered architectural components of our
proposed framework, which are summarized as follows:
– Foundational service ontology. The foundational ontology de-

fines domain-independent concepts such as service, service
client, service provider, goal, task and their relations, among
others. The extension of the UFO with service-related con-
cepts allows the specification of service-oriented domain on-
tologies.

– Domain modeling language. Derived from the foundational on-
tology, the domain modeling language layer is comprised of the
Foundational Service-Oriented Metamodel and the Service-
Oriented Domain Specification Language. The Foundational
Service-Oriented Metamodel represents the concepts and rela-
tions defined in the service foundational ontology and defines
the abstract syntax of the Service-Oriented Domain Specifi-
cation Language. The Service-Oriented Domain Specification
Language is an ontology representation language that allows
domain specialists to define and model domain ontologies, in-
cluding the services available in a domain.

– Domain knowledge. Our proposed framework can be used in
different domains, such as Health Care, Ambient Intelligence,
etc. For each of these domains a specialist defines a domain
ontology, namely the concepts and relations relevant to the
domain, goals that users can have, valid tasks in the domain,



Framework’s Architectural Design 85

etc. The domain ontologies provide shared knowledge about
particular material domains.

– Offered services. The services offered by Service Providers
are semantically annotated with the concepts defined in the
domain ontologies.

– Software platform support. The Context-Aware Service Plat-
form (CASP) supports the interaction between service con-
sumers, service producers and service clients. From the service
producer’s perspective, the platform supports the semantic
annotation and publication of service descriptions. From the
service consumer’s perspective, the platform provides mecha-
nisms for service discovery, composition, invocation and mon-
itoring, among others.

Figure 3-21
Main
components
of the
Service
Provision-
ing
Framework

Service-Oriented extension of UFO

Foundational Service Metamodel

Domain Specification Language

Context-Aware Service PlatformSoftware platform support

Domain modeling language

Foundational service ontology

Is
Transformed To

Defines

Used to
Model

Supported By

ServicesDomain OntologiesDomain knowledge Available services

An
no

ta
te

3.5.5 Role of the goal concept
In industry, SOC has been seen as an approach to integrate legacy
and new systems with a standardized set of protocols and in-
terfaces in a distributed manner. Semantically enriched service
client’s requirements can be expressed in terms of inputs, out-
puts, pre-conditions and effects, also known as IOPE. However,
end-users, i.e., human service clients, may have difficulties to ex-
press such requirements, as they would have to deal with technical
issues such as the request’s language, and the type, format and
coding of the IOPE. Additionally, if we consider the use of services
in a Pervasive Computing environment where the end-users would
have to deal with a significant number of services, computing de-



86 Chapter 3 Dynamic Service Provisioning Framework Architecture

vices, sensors, interfaces and actuators, the problem of expressing
service requirements and providing the service inputs increases.

To fulfill the framework’s requirement of allowing the abstract
definition of service requests, we propose the use of the goal con-
cept to express what service clients want to get accomplished by
services. The use of goals aims at raising the abstraction level of
the definition of service client’s requirements and, therefore, facil-
itating service provisioning for end-users. By expressing service
requests by means of goals, a service client defines what he wants
to get accomplished, and the supporting service platform tries to
discover and select services that could fulfill these goals.

Since the use of the goal concept is a central point in our frame-
work, we have named it Goal-Based Service Framework (GSF).
Similarly, the elements in the architectural layers depicted in Fig-
ure 3-21 are named stressing the use of goal as a central con-
cept. Figure 3-22 depicts the architectural design of our proposed
framework. In Figure 3-22, the framework components have been
grouped into layers, which represent their purpose. The software
platform support is realized in terms of the Context-Aware Service
Platform, the the domain knowledge is realized by the domain on-
tologies, the domain specification language is realized by the Goal-
Based Domain Specification Language and its related metamodel,
and the foundational ontology is realized by the Goal-Based Ser-
vice Ontology.

Figure 3-22
Compo-
nents of the
Goal-Based
Service
Framework

Goal-Based Service Ontology

Goal-Based Service Metamodel

Goal-Based Domain Specification Language

Context-Aware Service PlatformSoftware platform support

Domain specification language

Foundational service ontology

Is
Transformed To

Defines

Used to
Model

Supported By

ServicesDomain OntologiesDomain knowledge Available services

An
no

ta
te



Chapter4
Goal-Based Service Ontology
In this chapter we present the Goal-Based Service Ontology (GSO).
The main objective of the GSO is to provide the ontological foun-
dation for a domain specification language (introduced in Chap-
ter 3), which allows domain specialists to define domain ontolo-
gies. These domain ontologies are intended to be registered in
the Context-Aware Service Platform to provide domain-specific
knowledge to the platform. To satisfy this objective, the GSO is
defined based on ontologically sound concepts and relations, com-
bining conceptual elements from the Service-Oriented Computing
area such as Service Provider, Service Client, Service Agreement
and Service, with conceptual elements pertinent to our goal-based
approach, such as the Goal, Task, Intention, among others.

Additionally, in this thesis aim at demonstrating that dynamic
and automatic service provision requires not only the modeling
of the services, but also of the application domain where these
services are to be offered and operate. Therefore, to characterize
these service-populated domains, additional domain-independent
concepts and relations are necessary, such as Agent, Intention,
Material Relation, among others.

This thesis aims at defining service-related concepts that al-
low services to be more precisely described. Instead of defining
from scratch the non-service concepts, we chose to reuse general-
purpose concepts and relations (non service-related) from an ex-
isting foundational ontology. Therefore, GSO extends a founda-
tional ontology, namely the Unified Foundational Ontology (UFO)
[Guizzardi, 2005], by adding service-oriented and goal-based con-
cepts and relations.

In Section 4.1 we briefly introduce the UFO, focusing on the
concepts and relations that are relevant for understanding our
GSO extensions, i.e., concepts and relations that either form the
basis of the UFO such as Universals, Individuals, Moments, among
others, and concepts which GSO directly extends. Section 4.2 in-



88 Chapter 4 Goal-Based Service Ontology

troduces the GSO concepts related to the stakeholders identified
in Chapter 3; Section 4.3 discusses how goals, tasks and services
are related to each other in our ontology; and Section 4.4 justifies
our modeling choices for the concepts related to services.

To present the concepts we have used UML class diagrams
because of the widespread understanding of UML classes and re-
lations, and their suitability for our purposes of illustrating how
the presented concepts are organized, and how they relate to each
other.

4.1 The Unified Foundational Ontology

The Unified Foundational Ontology (UFO) [Guizzardi, 2005] is a
foundational ontology that has been defined based on a number
of theories from Formal Ontology, Philosophical Logics, Philos-
ophy of Language, Linguistics and Cognitive Psychology. UFO
combines elements of two other foundational ontologies, namely
the General Formal Ontology (GFO) [Degen et al., 2001], which
underlies the General Ontological Language (GOL) [Heller and
Herre, 2003], and OntoClean/DOLCE [Welty and Guarino, 2001,
Gangemi et al., 2002].

UFO is divided into three incrementally layered compliance
sets, namely UFO-A, UFO-B and UFO-C [Guizzardi and Wagner,
2005]. UFO-A is the core of UFO and defines concepts related to
endurants. An endurant is an entity that is present as a whole at
any given point in time, i.e., it does not have temporal parts and
persists in time while keeping its identity. Examples of endurants
are a house, an apple, and a person. If we say that in a given
circumstance c1 an endurant e has a property P1 and in circum-
stance c2 it has the property P2, we refer to the same endurant e
in each of these circumstances. For instance, we can say that one
apple is green in one given day and is red five days later, but we
still refer to the same apple even though some properties (in this
case the color) have changed over time.

UFO-B builds upon UFO-A and defines concepts related to
perdurants. Contrarily to endurants, a perdurant is an entity
composed of temporal parts, i.e., its existence extends in time ac-
cumulating temporal parts. Examples of perdurants are a meet-
ing, a concert presentation, an anniversary party and a business
process. It is not always the case that whenever a perdurant is
present all of its temporal parts are also present. With a perdu-
rant, if we freeze time we can only see a limited number of parts of



The Unified Foundational Ontology 89

the perdurant and not the whole. For instance, in a “buy product"
business process, if we take a snapshot at the point in time when
the buyer is having its credit card validated in order to complete
the payment, we cannot determine that this activity is part of the
“buy product" business process. Finally, UFO-C extends UFO-B
and defines social and intention-related concepts.

The UFO concepts and relations presented in this chapter are
restricted to the ones relevant for understanding the extensions
introduced in GSO. The Unified Foundational Ontology is more
extensive than what we present here.

4.1.1 UFO-A: Individuals, Universals and Moments
UFO’s main objective is to provide a foundation for conceptual
modeling, aiming at describing things in the real-world. There-
fore, the root concept of UFO, and UFO-A in particular, is Thing.
From this concept, UFO-A defines two sub-concepts, namely Uni-
versal and Individual, as depicted in Figure 4-1. Universals and in-
dividuals are represented in conceptual modeling by the constructs
of types (classes or classifiers in some modeling techniques) and
their instances, respectively [Guizzardi, 2005]. Individuals are en-
tities that possess unique identities, while universals are patterns
of features, which can be realized in a number of different indi-
viduals [Guizzardi et al., 2008]. Therefore, considering that the
symbol :: denotes the instantiation relation, we can define that
[Guizzardi, 2005]:

∀x, U x :: U → Individual(x) ∧ Universal(U ) (4.1)

Figure 4-1
UFO-A fun-
damental
distinction
between
universals
and
individuals

Thing

Universal Individual

{disjoint, complete}

instance of

1..* 1..*

Being a pattern of feature, a universal can represent types such
as an airplane or a dog, attributes such as being fuel-efficient or
being loyal, and relations such as flies the route X and belongs to.
To distinguish between these sorts of universals, UFO-A defines
the concepts of Substantial Universal, Moment Universal and Re-
lation, as depicted in Figure 4-2. Substantials are existentially



90 Chapter 4 Goal-Based Service Ontology

independent entities and they persist in time while keeping their
identities [Guizzardi, 2005, Guizzardi et al., 2008]. Moments rep-
resent individualized properties. Moments are existentially de-
pendent of other entities, i.e., they can only exist in other entities,
which are their bearers. Examples of Substantial Universals in-
clude chair, person or building, while examples of Moment Univer-
sals include color, height or electric charge. Relations are entities
that connect other entities together [Guizzardi et al., 2008] and
are divided into Material Relations and Formal Relations. Formal
relations hold between two or more entities directly, without any
further intervening individual. Examples of formal relations in-
clude John is taller than Mary, and Pluto is an instance of Dog.
Contrarily, material relations have a material structure of their
own and have their relata mediated by individuals called relators.
For instance, an employment is a relator that connects an em-
ployer and an employee, and a marriage is a relator that connects
a husband and his wife.

Figure 4-2
UFO-A -
Moments
and
substantials

Universal

Monadic Universal Relation

{disjoint, complete}

Moment Universal
Substantial 
Universal

{disjoint, complete}

Material RelationFormal Relation

{disjoint, complete}

Given the employment example, let John be an instance of em-
ployee and Acme be an instance of employer. In this case, there is
an individual relator emp1 of the type employment that connects
John to Acme. When this relationship between John and Acme is
established, John acquires a set of moments because he becomes
an employee of Acme, for instance, legal liability for disclosing
classified information from the company, or his entitlement for
the agreed salary. These new acquired moments are instinsic mo-
ments of John, i.e., these moments are existentially dependent of
him. However, these moments not only depend on the existence
John but also on the existence of Acme. In UFO-A, intrinsic
moments that inhere in a single individual but are existentially
dependent on (possible multiple) other individuals are named Ex-
ternally Dependent Moments. Figure 4-3 depicts the Externally
Dependent Moment concept and its relations with the Intrinsic



The Unified Foundational Ontology 91

Moment, the Relator and the Substantial concepts of UFO-A.

Figure 4-3
UFO-A -
Externally
dependent
moment

Universal

Relation

Material RelationFormal Relation

{disjoint, complete}

Individual
instance of

MomentSubstantial

{disjoint, complete}

existential dependency

1..* 1..*

1..*1

Intrinsic MomentRelator
derived from

* 1

Externally 
Dependent Moment

2..*

externally
dependent
of

1..*

*

For more details of UFO-A, see [Guizzardi, 2005] and [Guiz-
zardi et al., 2008].

4.1.2 UFO-B: Perdurants
UFO-B is an ontology of events and, for that, it defines the distinc-
tion between endurants and perdurants. The fundamental point
of this distinction is the behavior of these concepts with respect
to time. Endurants are in time, meaning that they are wholly
present whenever they are present even if some of their properties
vary in time [Guizzardi et al., 2008]. For instance, a specific person
John weighted 15 kg when he was 3 years old and weighted 80 kg
when he was 20 years old. Although the weight property changed
over time, it is the same individual we are referring to. Contrarily,
perdurants are individuals said to happen in time, meaning that
they are composed of temporal parts and they extend in time by
accumulating these temporal parts [Guizzardi et al., 2008]. Ex-
amples of perdurants are a lecture, a football match, a racing or
a concert presentation.

As depicted in Figure 4-4, depending on how they are struc-
tured in terms of their parts (their mereological structure), Perdu-
rants can be specialized into Atomic Perdurant or Complex Per-
durant. Atomic Perdurants have no improper parts while Com-
plex Perdurants are aggregations of at least two perdurants (ei-
ther atomic or complex). A perdurant can transform a portion
of reality from an initial situation (pre-state) to another situation
(post-state). Perdurants are ontologically dependent entities, i.e.,
perdurants existentially depend on their participants in order to



92 Chapter 4 Goal-Based Service Ontology

exist. For instance, a lecture is a perdurant that only exists with
the participation of the lecturer, the attendees and the venue (the
substantial in the model). Therefore, according to the Figure 4-4,
UFO-B’s Perdurants can be seen from two perspectives: as time
extended entities with certain (atomic or complex) mereological
structures, and as ontological dependent entities which can com-
prise a number of different participations [Guizzardi et al., 2008].

Figure 4-4
UFO-B -
The
Perdurant
concept

Individual

Concrete Individual

Endurant Perdurant

SituationSubstantial

pre-state

pos-state

Complex Perdurant

2..*

Atomic Perdurant

Participation

participation of

4.1.3 UFO-C: Social concepts
UFO-C builds on top of UFO-A and UFO-B, and focuses on social
entities in order to distinguish between agentive and non-agentive
substantials. As depicted in Figure 4-5, the UFO-A concept of
Substantial is specialized into Agent and Object [Guizzardi et al.,
2008]. Agents are intentional agents that can be physical (e.g., a
person, a pet), social (e.g., an organization, a society) or artificial
(e.g., a software assistant application). Objects can be further
specialized into Resources (e.g., a book, a desk, an information)
and Social Objects. A Resource is an object that is used by an
agent with specific purpose, and is owned by this or by another
agent. For instance, an agent Peter uses a resource pen which is
owned by agent Mary. In UFO-C, and consequently in GSO, the
use of concepts related to agents does not imply the use of agent
technology.

Social Objects include money, language, etc.. A special case
of Social Object is a Normative Description, which defines a set



The Unified Foundational Ontology 93

Figure 4-5
The Agent
concept
from
UFO-C

Agent

UFO-A: 
Substantial

Object

Resource

owns*

1..*

uses

*

1..*

Social Object

Normative 
Description

Institutional Agent Artificial AgentPhysical Agent

recognized by 1..*

of rules and norms recognized by social agents (e.g., institutional
agents). The rules and norms of a Normative Description can de-
scribe other universals, such as moment universals, social objects
and social roles (not represented in the Figure 4-5) [Guizzardi
et al., 2008]. For instance, a country’s law (a normative descrip-
tion) defines, by means of a set of rules and norms, social roles
such as president, senators and governors. Other examples of nor-
mative descriptions, which are explicitly described, such as laws,
or implicitly recognized, such as social conventions can also de-
fine the use of social objects, such as crowns, flags, money, among
others.

As depicted in Figure 4-6, the specializations of Agent allow
the distinction between human agents, artificial agents (software
or hardware agents), and agents representing organizations or or-
ganization sub-parts, namely, the Institutional Agent. An Insti-
tutional Agent is composed of at least two internal agents, which
can be again physical, artificial or institutional agents.

Figure 4-6
The UFO-C
types of
agents

Agent

Institutional Agent Human Agent Artificial Agent

2..*

InternalAgent

In UFO-C, the characteristic that differentiates an agent from



94 Chapter 4 Goal-Based Service Ontology

an object is that agents are the substantials that can bear special
kinds of moments called Intentional Moments. According to John
Searle in [Searle, 1998], intentionality should be understood as the
“...the various forms by which the mind can be directed at, or be
about, or of, objects and states of affairs in the world”. In other
words, intentionality is “the capacity of some properties of cer-
tain individuals to refer to possible situations of reality” [Guizzardi
et al., 2008]. As depicted in Figure 4-7, the UFO-A’s Instrinsic
Moment is specialized into the Intentional Moment concept, which
is further specialized into Mental Moment and Social Moment.

Figure 4-7
Agent and
its intrinsic
moments

Agent

UFO-A: Instrinsic 
Moment

inheresIn

1..* *

UFO-A: Moment

UFO-A: Relator
mediates

* 2..*

Social Moment Mental Moment

Belief

Intention

Perception

Desire

Social Claim

Social 
Commitment

Social Relator

Intentional 
Moment

UFO-A: Externally 
Dependent Moment

Commitment

Social Moment is defined in UFO-C as a specialization of the
UFO-A concept of Externally Dependent Moment. Social mo-
ments represent intentional moments that are created as conse-
quence of social interactions between agents and are further spe-
cialized into the concepts of Social Commitment and Social Claim
[Guizzardi et al., 2008]. These concepts are used to regulate so-
cial relations among agents. As an example, a defendant hires a
lawyer to represent him in court. When this social relationship
is established (the hiring), the defendant commits to supply his
lawyer with relevant information regarding a particular case. This
commitment, or the promise to provide relevant information is a
social commitment from the client towards his lawyer. This so-
cial relationship also creates a claim from the lawyer towards the
defendant in which the lawyer can claim the information received
from the defendant. A pair of commitment and claim relations
constitutes a Social Relator, which is a specialization of the UFO-
A Relator.

The agents in UFO-C follow the Belief, Desire and Intention
(BDI) model [Rao and Georgeff, 1991] discussed in Section 2.3.



The Unified Foundational Ontology 95

A Mental Moment is defined in UFO-C as an existentially depen-
dent moment of a particular agent, i.e., it is an inseparable part
of its mental state and, therefore, inheres in the agent. Mental
moments can be further specialized into Desire, Intention, Belief
and Perception. Belief is defined in UFO as any knowledge an
agent has about the world. Examples include my belief that the
Moon orbits the Earth, and my belief that Paris is the capital of
France. Perception is a mental moment that expresses the relation
between agents and events that are sensed from the environment
and from other agents [Silva Souza Guizzardi, 2006]. Desire and
Intention express a will of an agent towards a state of affairs in
reality. In UFO-C, the difference between desires and intentions
is that by intending something, an agent commits at pursuing it,
i.e., an intention represents a desire plus an internal commitment
[Silva Souza Guizzardi, 2006, Bonino da Silva Santos et al., 2009].

Every intentional moment has a type (e.g., belief, desire, inten-
tion, perception) and some propositional content [Guizzardi et al.,
2008]. The propositional content is an abstract representation of
the types of situations referred to by the related intentional mo-
ment. As depicted in Figure 4-8, situations can satisfy the propo-
sitional content of an intentional moment. In other words, a situ-
ation in reality can satisfy - in the logical sense - the proposition
representing that propositional content [Guizzardi et al., 2008].

In UFO-C, the propositional content of an Intention is a Goal.
Therefore, when an agent has an intention, it means that there
is a goal that is the propositional content of that intention and
the agent is committed to pursue its fulfillment. Alternative sit-
uations can satisfy (in the logical sense) the goal. For instance,
if one has a goal of having a vehicle to go to work, a situation
where he uses a car satisfies the goal as well as a situation where
he uses a bicycle, unless additional constraints such as speed or
comfort are defined in the goal. The definition for the concept of
goal in UFO-C provides a clear distinction between goal, state of
affairs (situation) and intention. As discussed in Section 2.6, the
clarification of this distinction was one of the issues we intended
to be solved in our goal conceptualization.

Because of the internal commitment that an agent has of pur-
suing the fulfillment of an intention, intentions cause the agent to
perform actions. As depicted in Figure 4-9, an Action is a perdu-
rant that is an individual instance of an Action Universal, with
the purpose of satisfying the propositional content of an inten-
tion. As specializations of perdurants, actions can be atomic or
complex. A Communicative Act is a type of atomic action. An



96 Chapter 4 Goal-Based Service Ontology

Figure 4-8
Intentional
moment
and its
proposi-
tional
content

Intentional Moment Proposition
propositional content of

GoalIntention
propositional content of

Mental Moment

1..* 1..*

1*

Situation

satisfies

Perdurant
pre-state

pos-state

example of communicative act is a speech act, such as a promise
or the act of informing something. Complex actions are composed
of at least two participations. Participations can be intentional or
unintentional events. For instance, the winning of the 1993 For-
mula 1 Monaco Grand Prix by Ayrton Senna driving a McLaren
car includes the intentional participation of Ayrton Senna and the
unintentional participation of his Formula 1 car. UFO-C only con-
siders the intentional participation of agents as an action, which is
termed Action Contribution, while the term Participation is used
to represent the unintentional participation of objects. When a
complex action is composed of action contributions of different
agents it is termed an Interaction.

Figure 4-9
UFO-C’s
action
concept

Perdurant

Perdurant UniversalAction Universal

instanceOf

Action

instance of

Intention

determinedBy

Atomic Action Complex PerdurantComplex Action

InteractionCommunicative Act

Participation2..*

Substantial

participationOf

Action Contribution

Agent

performanceOf

Object



Service stakeholders in GSO 97

Concerning the principle of identity, agents can be either rigid
or anti-rigid types. For instance, if we classify an agent as a per-
son, and since a person is a rigid type, we have that an instance
of a person cannot seize to be a person without seizing to exist.
Conversely, an agent can be classified as a student (an anti-rigid
type) in a period of his life and a non-student in another period
without seizing to be the same agent. Therefore, in this last exam-
ple, although the circumstantial classification of being a student
incorporates some characteristics to the agent, it cannot be the
main identification of this individual, since it does not persist in
his whole existence. To allow the distinction of rigid and anti-rigid
types for agents, UFO-C defines two specializations for Agent Uni-
versal, namely Agent Kind (rigid type) and Agent Role (anti-rigid
type) [Silva Souza Guizzardi, 2006] as depicted in Figure 4-10.

Figure 4-10
Rigid and
anti-rigid
agent types

Agent

Social Moment

1
Agent Universal

<<instance>> 1

Agent Kind Agent Role

Social Moment 
Universal

defines *

1..*
1 <<instance>>

1

Figure 4-10 also depicts the concept of Social Moment Univer-
sal associated with the Agent Role concept. A social moment type
defines the agent’s role by describing the set of general commit-
ments and general claims that the agent has when playing this
role [Silva Souza Guizzardi, 2006]. For instance, when agreeing to
play the role of a “professor”, one is committing oneself to “teach
courses” and “supervise students”.

For more information on UFO-C, see [Silva Souza Guizzardi,
2006] and [Guizzardi et al., 2008].

4.2 Service stakeholders in GSO

In Chapter 3.2 we have identified the stakeholders that partici-
pate in service provisioning, namely the Service Provider, Service
Executor, Service Client and Service Beneficiary. In real-world
situations involving these stakeholders, we can observe that being
a service provider, a service executor, a service client or a service



98 Chapter 4 Goal-Based Service Ontology

beneficiary is circumstantial, i.e, at one point in time an individ-
ual could play the role of a service client and, at another point
in time the same individual could play the role of a service pro-
vider. For instance, when a person who has a job as consultant
travels to meet a client, he can be the service client of transporta-
tion and lodging service at one moment, and a service provider
of the related consultancy services when he meets with his client.
Therefore, in our work, we decided to relate these stakeholders to
the UFO-C concept of Agent Role. Moreover, we have aggregated
these stakeholders into two categories, namely, Service Producer
and Service Consumer as depicted in figure 4-11. Service con-
sumers are specialized into Service Client Universal and Service
Beneficiary Universal, while service producers are specialized into
Service Provider Universal and Service Executor Universal.

Figure 4-11
GSO’s
stakehold-
ers
types

UFO-C: Agent 
Role

Service Consumer 
Universal

Service Producer 
Universal

Service Client 
Universal

Service Beneficiary 
Universal

Service Provider 
Universal

Service Executor 
Universal

As discussed in Section 4.1.3, agent roles are defined by a set of
general commitments and claims described by an associated Social
Moment Universal. These commitments and claims define obli-
gations and rights that individuals inhere when playing an agent
role. Figure 4-12 depicts that each of the GSO’s stakeholders
has a social moment type associated to it that defines the obliga-
tions and rights of the stakeholder. The Service Client Universal
is associated with a Service Client Social Moment Universal de-
scribing that when individuals play this role they are responsible
for searching, negotiating and contracting a service. The Service
Beneficiary Social Moment Universal associated with the Service
Beneficiary Universal describes that the individual playing this
role is entitled to perceive the benefits of the execution of the ser-
vice contracted by the service client. The Service Provider Social
Moment Universal associated with the Service Provider Universal
describes that the individual playing this role is responsible and
liable for the service it offers. Moreover, the service provider can
negotiate conditions and parameters related to its offered services,



Service stakeholders in GSO 99

such as triggering conditions, costs, quality of service, among oth-
ers. Finally, the Service Executor Social Moment Universal defines
that an individual playing the role of a Service Executor Univer-
sal is responsible for the execution of a service on behalf of the
service’s Service Provider Universal. Consequently, the service ex-
ecutor is liable for the service execution with respect to the service
provider that hired it. However, this does not imply that the ser-
vice executor is liable with respect to the service client, since the
service provider is the liable entity in this case. In other words,
although a third-party (the service executor) actually executes the
service, from the service client’s perspective, the service provider
is responsible and liable for the services it offers.

Figure 4-12
GSO’s
stakehold-
ers
types

Agent Role
Social Moment 

Universal

defines

* 1..*

Service Client 
Universal

Service Beneficiary 
Universal

Service Provider 
Universal

Service Executor 
Universal

Service Client Social 
Moment Universal

Service Beneficiary 
Social Moment Universal

Service Provider Social 
Moment Universal

Service Executor Social 
Moment Universal

defines

*

defines

*

defines

*

defines

*

1..*

1..*

1..*

1..*

As in UFO-C, GSO also distinguishes human, artificial and
institutional agents. However, in our work we consider artificial
agents as surrogates of the human or institutional ones. In other
words, we adopt the notions of BDI, but extended these notions
by considering that artificial agents act on behalf of the individ-
ual humans or institutions that own, deploy and use them. Thus,
these artificial agents’ beliefs, desires and intentions have been
given by their designers and/or owners. The consequence of this
approach is that we are able to capture the rationale behind the
use of an artificial agent, i.e., we can assess and represent the mo-
tivations of the humans or institutions behind the artificial agent.
Figure 4-13 depicts how Human, Institutional and Artificial Ser-
vice Client Universals are defined in GSO. In this figure, when a
Human Agent Universal plays the role of a Service Client Univer-



100 Chapter 4 Goal-Based Service Ontology

sal, the human agent is classified as a Human Service Client Uni-
versal. Analogously, when an Institutional Agent Universal plays
the role of a Service Client Universal, the institutional agent is
classified as an Institutional Service Client Universal. Both the
human and institutional service clients can make use of artificial
agents for the purposes of their role as service clients. When this
happens, the Artificial Agent Universal they use is classified as an
Artificial Service Client Universal.

Figure 4-13
Relations
between
human,
institutional
and
artificial
service
clients

Agent Role

Service Client 
Universal

Agent Universal

Human Agent 
Universal

Institutional Agent 
Universal

Artificial Agent 
Universal

Human Service 
Client Universal

Institutional Service 
Client Universal

uses

*

0..*

Artificial Service 
Client Universal

*

uses0..*

Agent Kind

The same relations we defined for Human, Institutional and
Artificial Service Client Universals apply for Human, Institutional
and Artificial Service Beneficiary Universals; Human, Institutional
and Artificial Service Provider Universals; and Human, Institu-
tional and Artificial Service Executor Universals as depicted in
Figures 4-14, 4-15, and 4-16, respectively.

In our work, besides the regular service consumers and service
providers, we have defined a special type of stakeholder, namely
the Context Provider. The Context Provider Universal is a special-
ization of the Service Provider Universal that provides informa-
tional services. Differently from the Service Provider Universal,



Goals, Tasks and Services 101

Figure 4-14
Relations
between
human,
institutional
and
artificial
service ben-
eficiaries

Agent Role

Service Beneficiary 
Universal

Agent Universal

Human Agent 
Universal

Institutional Agent 
Universal

Artificial Agent 
Universal

Human Service 
Beneficiary Universal

Institutional Service 
Beneficiary Universal

uses

*

0..*

Artificial Service 
Beneficiary Universal

*

uses0..*

Agent Kind

which provides a variety of services that can directly satisfy the
Service Client’s goal, the informational services provided by the
Context Provider Universal are used by our proposed Context-
Aware Service Platform to support either the discovery, selection,
composition and triggering of services or to provide input informa-
tion for these services. Therefore, the context-aware informational
services are not used directly to satisfy a service client’s goal but
are used to support the provisioning of these goal-satisfying ser-
vices. Figure 4-17 depicts the Context Provider Universal defined
as a sub-type of the Service Provider Universal. Since the Context
Provider Universal is a specialization of Service Provider Univer-
sal, it can also be further specialized into Human Context Provider
Universal or Institutional Context Provider Universal, and both
can use an Artificial Context Provider Universal.

4.3 Goals, Tasks and Services

Figure 4-18 depicts the Goal concept of GSO and how it is related
to the concepts of Task and Service. In GSO, we have extended



102 Chapter 4 Goal-Based Service Ontology

Figure 4-15
Relations
between
human,
institutional
and
artificial
service
providers

Agent Role

Service Provider 
Universal

Agent Universal

Human Agent 
Universal

Institutional Agent 
Universal

Artificial Agent 
Universal

Human Service 
Provider Universal

Institutional Service 
Provider Universal

uses

*

0..*

Artificial Service 
Provider Universal

*

uses0..*

Agent Kind

the UFO’s goal concept to define that a Goal can be owned by a
Service Client Universal. This ownership relation defines a meta-
commitment, so that individual instances of the Service Client
Universal have a goal of a certain type. More specifically, let C
be a service client and g a goal, we have that C owns g iff for
every instance x of C there is an intention I which is an intrinsic
property of x (inheres in x) and g is the propositional content of
I. Since the concept of Goal is a specialization of the concept of
Proposition, the distinction between Universals and Individuals
does not apply.

A domain specialist can define goals for different types of ser-
vice client universals in a domain. For instance, in the health
care domain, a Doctor (in this example an instance of Service
Client Universal) can be specified as owing the goals BeAccredited-
ByHealthInsurance, KeepUpdatedWithMedicalAdvancements, etc.,
while Medical Patients (another instances of service client uni-
versals) own the goal GetHealthier. In this example, whenever an
individual plays the role of a doctor it inheres the goals BeAccredit-
edByHealthInsurance and KeepUpdatedWithMedicalAdvancements.



Goals, Tasks and Services 103

Figure 4-16
Relations
between
human,
institutional
and
artificial
service
executors

Agent Role

Service Executor 
Universal

Agent Universal

Human Agent 
Universal

Institutional Agent 
Universal

Artificial Agent 
Universal

Human Service 
Executor Universal

Institutional Service 
Executor Universal

uses

*

0..*

Artificial Service 
Executor Universal

*

uses0..*

Agent Kind

Figure 4-17
The
Context
Provider
agent role

Agent Role
Social Moment 

Universal

defines

* 1..*

Service Provider 
Universal

Context Provider 
Universal

Service Provider Social 
Moment Universal

Context Provider Social 
Moment Universal

defines

*

defines

*

1..*

1..*

Similarly, in the same example, whenever an individual plays the
role of a medical patient, it inheres the goal GetHealthier. More-
over, an individual instance of Doctor can be defined as being able
to circumstantially play both the roles of a service client and of a
service provider. When the doctor performs a medical treatment
he is providing a service that fulfills the patient’s GetHealthier
goal and, therefore, is playing the role of a service provider. Con-
versely, when the same doctor uses the accreditation services of a



104 Chapter 4 Goal-Based Service Ontology

health insurance company, the company is providing the service
that fulfill the doctor’s service client goal BeAccreditedByHealth-
Insurance.

Figure 4-18
Relations
between
goals, tasks
and services

UFO:Agent 
Universal

Service Client 
Universal

Goal

UFO:Goal

UFO:Proposition
UFO:Action 
Universal

Task Service Universal

Service Provider 
Universalowns

1..* 1..*

supports

1..*

*

AtomicTask ComplexTask

performs

2..*
* *

offers 1..*

1..*

*

A Task in GSO is defined as a specialization of the UFO con-
cept of Action Universal. An Action Universal in UFO is an in-
tentional event, i.e., an event performed by one or more agents in
order to accomplish a goal. In GSO we adopted the term task for
this concept to keep it aligned with the terminology used in i* and
Tropos to denote entities that are the means to accomplish and
fulfill goals. Therefore, to fulfill a goal an agent performs a task
or delegates its execution to another agent. In Figure 4-18, the re-
lation supports between task and goal represents that a successful
execution of that task satisfies that goal.

In the realm of SOA, we can say that the fulfillment of a ser-
vice client’s goal is achieved by means of a service. In Section
4.4 we argue that a service is more than just the task it per-
forms. However, every service is connected to a task the service
provider agrees to be performed when the service execution is
triggered. Consequently, in Figure 4-18, the relation performs be-
tween Service Universal and Task (Action Universal) represents
that instances of Task are executed when the associated service is
executed. From the SOA point-of-view the term task also com-
plies with the W3C’s Service-Oriented Model [Booth et al., 2004],
where a service performs a service task.

As depicted in upper half of Figure 4-19, a Goal can be spe-
cialized into Atomic Goals or Complex Goals. A Complex Goal is
composed of two or more goals that can be also atomic or complex
goals. However, the way a goal is composed (or decomposed) has
an impact on the goal’s fulfillment. For instance, if a given goal
G1 can be composed of two sub-goals SG1 and SG2, we can have
two possible situations: (i) the fulfillment of G1 is achieved by
the fulfillment of both SG1 and SG2, or (ii) the fulfillment of G1



Goals, Tasks and Services 105

is achieved with the fulfillment of either SG1 or SG2. To cope
with these two situations we have defined the Goal Composition
relation, which is a specialization of the UFO’s Formal Relation.

Figure 4-19
Goal
composition

Goal

Formal RelationGoal Composition

2..*

*

Goal AND 
Composition

Goal OR 
Composition

2..*

*

Atomic GoalComplex Goal

components

composes

As depicted in Figure 4-19, the Goal Composition relation can
be further specialized into the Goal AND Composition and Goal
OR Composition relations. The Goal AND Composition is used
to represent relations where the fulfillment of the goal is only
achieved with the fulfillment of all sub-goals, while the Goal OR
Composition is used to represent relations where the fulfillment of
the goal is achieved with the fulfillment of one of the alternative
sub-goals. In a model expressed using GSO, a mixture of these two
relations can be used. For instance, in a GSO model of the medical
domain, a high-level goal GetMedicalTreatment is fulfilled when
its sub-goals GetMedicalConsult and GetMedicinePrescription are
fulfilled, or when either one of the sub-goals GetHomeMedical-
Treatment and GetHospitalizedMedicalTreatment is fulfilled.

Figure 4-20 shows the causal chain of goal satisfaction. An
intention (of which a goal is its propositional content) causes an
action (an instance of a Task) to be performed, i.e., since the
agent is committed to the goal satisfaction, he acts accordingly to
pursue its satisfaction. The action creates a situation that satisfies
the goal.

The use of situations to characterize goal satisfaction opens
the possibility of using Fuzzy Logics mechanisms to assess par-
tial satisfaction of goals (if necessary). Depending on the domain
being specified using GSO, the domain specialists can define de-



106 Chapter 4 Goal-Based Service Ontology

Figure 4-20
Goal
satisfaction

Goal

Proposition

Intention

Intentional 
Moment

Agent

Action

Situation

< propositional content of

1..*1..*1..*

1..*
1..*

1..*

1

1

11 *

*

*

*
satisfies

creates

causes

< inheres in

participates
in

grees for the truth value of goals, i.e., goal satisfaction levels. For
instance, in a medical domain, cholesterol concentration in blood
can be classified as ideal if the concentration is below 200, low risk
if the concentration is between 200 and 240 and high risk if the
combined concentration of LDL and HDL exceeds 240. In this ex-
ample, an hypothetical goal of HavingAGoodCholesterolLevel can
be considered achieved even if the cholesterol concentration stays
in the range of the low risk level.

In GSO, the ownership relation entitles the owner agent, i.e.,
an agent instantiating the service client universal, to delegate the
fulfillment of the goal to another agent. Moreover, by delegating
a goal to an agent, the delegatee commits to the fulfillment of that
goal. Therefore, the delegation relationship implies also a com-
mitment between the delegator and the delegatee in relation to
a goal. This delegation relationship occurs when a service client
delegates the fulfillment of a goal to a service provider by means
of the execution of one of its offered services. In the scope of
our work we consider both open and close delegation [Guizzardi
et al., 2008] of a goal. In an open delegation, a service client dele-
gates the satisfaction of a goal to a service provider but does not
prescribe any specific way of reaching this satisfaction. In other
words, the service client only wants the goal to be satisfied without
caring about how it is going to be satisfied. In contrast, in a close
delegation the service provider should satisfy the service clients
goal by means of a specific task. The distinction between open
and close delegations affects how service are discovered, namely,
either by searching for services whose tasks, once performed, cre-
ate situations that fulfill the service client’s goal, or by searching
for services that perform tasks similar to the ones defined by the
service client.



Service 107

4.4 Service

In the design of the GSO we extended the UFO to cover the con-
cept of Service and its related concepts. However, to justify the
modeling choices we made, we discuss definitions of service taken
from the literature, starting from the Economics and narrowing
down to Computer Science and, more specifically, the definitions
found in the fields of Service-Oriented Computing, Formal Ontol-
ogy and Semantic Web.

When defining our concept of Service and its related concepts,
we have analyzed the conceptual models of the current praxis in
the area of Service-Oriented Computing, confronting them against
ontological principles and comparing with the seminal work on
service modeling in the area of Formal Ontologies [Gangemi et al.,
2003, Ferrario and Guarino, 2008]. As a result, in our definitions
we have tried to stay consistent with (at least) the terminology
used in the SOC-related conceptual models, but disambiguating,
clarifying or extending the concepts and relations, when needed.

4.4.1 Service definitions
The term service has been frequently used in Economics to repre-
sent immaterial and intangible products, while the term goods has
been used to represent its material and tangible counterpart. In
[Hill, 1999] the authors present an historical overview of the defi-
nitions of the concepts of services and goods, and after discussing
their relevant characteristics provide a taxonomy that differenti-
ates these two concepts, being goods either material and tangible
(e.g., a computer and a chair) or immaterial and intangible (e.g.,
a software program and a musical composition). According to
this paper, a service has one fundamental characteristic, namely
the mandatory existence of relationships between producers and
consumers. The authors claim that the idea of one entity (the
service producer as it is called in this paper) acting for the benefit
of another entity (the service consumer) is inherent to services.
Moreover, contrarily to goods, services are not entities that exist
independently of their producers and consumers and are defined as
“some (material of immaterial) change in the condition of one eco-
nomic unit produced by the activity of another unit". Although
we agree with the arguments given in [Hill, 1999] we believe that
their definition of service does not cover all the aspects defended
by the authors, especially the explicit and mandatory relationship
between the service producer and the service consumer.



108 Chapter 4 Goal-Based Service Ontology

4.4.2 Computer Science definitions
In Computer Science, and more specifically, in the area of Service-
Oriented Computing (SOC), several (and sometimes conflicting)
definition can be found in the literature. In [Preist, 2004] Preist
defines service as “the provision of something of value, in the con-
text of some domain of application, by one party to another”. Al-
though we agree that a service is expected to generate value for
the requester party it is not clear if the term “provision" is used in
the sense of being prepared beforehand or in the sense of the act
of providing something. This imprecision brings the ambiguity of
two possible interpretations for the definition, namely (i) that a
service is the actual act or process of providing something of value
or, (ii) that a service has the potential to provide this value in the
future.

In contrast with the Economics’ definitions, SOC focuses on
the computational aspects of services, as in [Papazoglou and Geor-
gakopoulus, 2003], which defines services as “self-describing, open
components that support rapid, low-cost composition of distributed
applications". In [Booth et al., 2004], the W3C defines that a ser-
vice is “the resource characterized by the abstract set of functional-
ity that is provided”. This definition implies that a service is some
kind of usable artifact (a resource) that is described by the func-
tionality it provides. Moreover, the W3C considers that different
implementations and deployments of services (possibly using dif-
ferent programming languages) that offer the same functionality
are the same service. For the W3C, a service is an abstract defini-
tion of functionality, and the concrete realization of this function-
ality is called an “agent”. The W3C also distinguishes between
the concept of service and Web service, being the later defined
as “a software system designed to support interoperable machine-
to-machine interaction over a network”. This distinction clearly
separates a more abstract concept of service from the concept of
Web service, which is one of the possible technological alternatives
to realize a service.

4.4.3 OASIS definitions
The Organization for the Advancement of Structured Information
Standards (OASIS) is a standardization body that has been work-
ing on a Reference Architecture Foundation for Service-Oriented
Architecture [Laskey et al., 2009]. The reference architecture for
SOA aims at identifying many of the key aspects and components
present in a SOA-based system. This reference architecture and its



Service 109

related Reference Model for Service Oriented Architecture [Oas,
2006] define service as “a mechanism to enable access to one or
more capabilities, where the access is provided using a prescribed
interface and is exercised consistent with constraints and policies
as specified by the service description”.

Figure 4-21 presents an excerpt of the OASIS’ reference archi-
tecture for SOA taken from [Laskey et al., 2009], depicting that a
Service Provider has a capability that is accessed by means of a
service. The capability is defined as “an ability to achieve a real
world effect” [Laskey et al., 2009]. This reference architecture con-
siders that a service provider is a stakeholder that is responsible
for providing a service. It encompasses not only the enabler that
exposes a capability by means of a service but also the provider
of this capability, a mediator that translates or manages the re-
lationship between service consumers and the service, or a host
that offers support for the service. Since the OASIS reference ar-
chitecture collapses all of these responsibilities in the concept of
Service Provider, it is not clear in the models whether a given ser-
vice provider is always responsible for all of them, none of them
or a subset of these responsibilities.

Figure 4-21
The OASIS’
Service
concept

Service Capability
accessed via

Service Provider

offers

Real World Effect

achieves

State

changes

uses

Service 
Consumer

Need

has
satisfies

has

On the consumer’s side, the OASIS’ reference architecture de-
fines that service consumers have a need, which is defined as “a
measurable requirement that a service consumer is actively seeking
to satisfy”. A need is expressed as a condition on the desired state
of the world and is satisfied by this state. The Real World Effect
is a change in the state of the world achieved by using capabilities.
Therefore, the service consumer uses a service with the objective
that the capability associated with this service produces a change



110 Chapter 4 Goal-Based Service Ontology

in the world state that satisfies its need. As reproduced in the
Figure 4-21, the OASIS’ reference architecture does not provide
cardinality for the relationships between concepts, limiting the
clarity of the presented models.

OASIS also defined the Reference Ontology for Semantic Service-
Oriented Architectures [Norton et al., 2008]. This ontology for-
malizes and extends parts of the OASIS’ Reference Model [Oas,
2006], such as service description and real world effect. This ontol-
ogy has been defined to support the specification of relationships
among service elements, and defines the concepts of service de-
scription, goal description and capability description. Behavioral
aspects are represented by the concept of behavioral model and
the concepts of orchestration and choreography.

4.4.4 Semantic Web definitions
In the realm of Semantic Web, the W3C has defined an ontology
for declaring and describing services named the Semantic Markup
for Web Services (OWL-S) [Martin et al., 2004]. In OWL-S, ser-
vice is defined as “a Web resource which allows one to effect some
action or change in the world”. The OWL-S ontology aims at
being used as a language for describing services by providing a
standard vocabulary that can be used with other aspects of the
OWL description language to create service descriptions. Since
its objective is to provide a language to semantically annotate
Web services’ descriptions, OWL-S does not provide primitives
for domain modeling. Moreover, the OWL-S concepts are closely
related to Web services as the service realization approach.

The Web Service Modeling Ontology (WSMO) [de Bruijn et al.,
2006] is another Semantic Web research initiative that provides
a framework for the semantic description of goals and the func-
tionality of Web Services. As depicted in the excerpt of WSMO
presented in Figure 4-22, WSMO defines the concepts of WS-
MOElement, WebService, Goal, Ontology and Mediator as its main
entities. The WSMO refers to the concepts it defines as ele-
ments. Therefore, its root concept is termed WSMOElement.
Each WSMO element has a set of annotations attached to it. Ex-
amples of annotations that can be applied to an element include
contributor, coverage, language, date, creator, description, type,
version, among others.

The WSMO concept of Ontology refers to an artifact that de-
fines an agreed terminology, which is used by other WSMO el-
ements to describe relevant aspects of the domains of discourse.
Ontologies are defined using the Web Service Modeling Language



Service 111

Figure 4-22
The
WSMO’s
Service
concept

WebService

Capability

has capability

WSMO Element

Goal MediatorOntology
imports

* *
* ** * imports

imports
* *

has mediation service

Annotation
has annotation

* *

has target

has source
*

*

* *

(WSML) [WSM, 2008]. The WSMO documentation is not always
consistent with the terminology. For instance, in [de Bruijn et al.,
2006], the authors extensively refers to the concept of Web ser-
vice, but in the model diagram this term is replaced with Service.
The WSMO defines that a Web service is “a computational entity
which is able (by invocation) to achieve a user goal” while Ser-
vice is “the actual value provided by this invocation”. Therefore,
a commitment is done already in the ontological level concerning
the specific technology to realize services.

As discussed in Section 2.5, a Goal in WSMO represents user
desires. WSMO closely ties goals to Web services since the goal
description model includes the interface of Web service that the
user could invoke to fulfill this goal. The concept of Mediator
describes elements designed to overcome interoperability issues
between other WSMO elements. A mediator can be introduced
between Web services, goals or ontologies to cope with the differ-
ences between these elements in other to guarantee their interop-
erability. WSMO also defines the concepts of function, instance,
relation, value, and attribute of Web services, amongst others.
WSMO addresses dynamic aspects by relating the concepts of
Goal and Interface with the concepts of Orchestration and Chore-
ography.

4.4.5 Open Group definitions
The Open Group has specified a Service-Oriented Architecture
Ontology (SOA Ontology) [Ope, 2010] and defined service as “a
logical representation of a repeatable activity that has a specified
outcome. It is self-contained and is a “black box” to its con-
sumers”. This definition of service is closely tied to the service
behavior or its functionality, reducing the concept of service as an
activity representation. Moreover, the Service-Oriented Architec-
ture Ontology does not provide a direct connection between the



112 Chapter 4 Goal-Based Service Ontology

actors that provide and request or consume the services with the
service itself. Instead the service concept is said to be performed
by the concept of Element. As depicted in Figure 4-23 (an excerpt
of the Open Group’s SOA Ontology), the concept of Element can
be specialized into the concepts of Task, System, Human Actor and
even by the Service concept itself. Although according to [Ope,
2010] a service can be performed by other elements but not by a
service, the model depicted in Figure 4-23 does not prevent this
situation and, therefore, allows the modeling of these undesirable
situations.

Figure 4-23
The Open
Group’s
Service
concept

Task

ElementService
*

performs

*

Human Actor

ServiceContract

*

does

0..1isPartyTo *

*
hasContract

*

1..*

Effect

specifies 1..*

1..*

System

Another issue in the Open Group’s SOA Ontology is that, al-
though the definition of service explicitly states that a service has
a specified outcome, the model links the concept of Effect with
the concept of ServiceContract. The relationship between Effect
and Service can thus only be established indirectly through the
concept of ServiceContract. One would expect that an effect is a
result of some activity, but the SOA Ontology does not represent
this intuitive notion, leaving the concept of Effect isolated. In
this ontology, the Effect concept is only linked to another concept
via the specifies relationship with the concept of ServiceContract.
Since the cardinality of the specifies relationship (0..n) indicates
that a service may not have a service contract, the indirect link
between service and effect may not be established, allowing some
services to not have any effect.

4.4.6 Formal Ontology definitions
In [Gangemi et al., 2003] and [Ferrario and Guarino, 2008], the
authors aim at providing ontological foundations for services and
service science, respectively. The work in [Ferrario and Guarino,
2008] provides an initial step towards a rigorous and principled



Service 113

understanding of Services Science based on an ontological analy-
sis.

In [Ferrario and Guarino, 2008], multi-level services are also
considered, which are services at the social level that have com-
putational services (or e-services, as called in the paper) that ul-
timately provide social benefits. In [Ferrario and Guarino, 2008],
the definition of service is given as: “A service is present at a time
t and location l iff, at time t, an agent is explicitly committed to
guarantee the execution of some type of action at location l, on the
occurrence of a certain triggering event, in the interest of another
agent and upon prior agreement, in a certain way". We consider
this ontological analysis relevant for our work as it provides a clear
understanding of the service concept and the intrinsic character-
istics of a service. This definition also enables the formalization
of the service concept to be used in computer-readable artifacts.

4.4.7 GSO definitions
From the discussion on the service concept in Section 4.4.1 we can
divide the research efforts in SOC into (i) proposals for reference
architectures [Arsanjani et al., 2007, Laskey et al., 2009, Arsanjani
et al., 2009], aiming at providing a canonical architectural pattern
for SOC implementations, and (ii) proposals for service ontologies
[de Bruijn et al., 2006, Martin et al., 2004], aiming at providing
a shared conceptualization for services. A commonality among
these efforts is that they consider services as computationally-
bound building blocks to realize processes defined in the business
level (business processes). In these approaches, the relationship
between services and business processes are perceived in a limited
distinction between social and computational levels. Moreover,
the social level is often populated by the business processes and the
computational level populated by the (Web) services. A business
process (or the part of this process that is to be automated) is then
mapped onto a process that can be performed by some process
execution engine.

In our work, we aim at giving the concept of Service a broader
meaning, without the commitment to a specific technology (e.g.,
Web services) nor even tied to a computational entity altogether.
Besides the computation-related definitions, a service is sometimes
referred to as an action, a type of action, or the capability to
perform an action. As defined in [Ferrario and Guarino, 2008],
we consider that a service encompasses a set of commitments that
determine that a service provider performs a task for the benefit
of a service client under certain conditions. Moreover, a service



114 Chapter 4 Goal-Based Service Ontology

can be represented as a specialization of the concept of Perdurant.
To illustrate the similarities between the concept of service and

the concept of perdurant, let us consider the example of the emer-
gency of a service. At some point in time, a service provider starts
designing a new service. At this moment there is only a sketch
of what the service is and what it should do. As the design of
the service progresses, the service provider refines the service de-
scription and targets it to a given type of potential clients. This
service design process continues until the service is comprehen-
sively specified, a target type of clients is defined and the service
is made available. In this example we can consider that the service
in the initial design phase has only a few elements, such as a high
level definition of what tasks it should perform. As the service is
refined, more elements are added, such as planned target clients,
service contract and terms of use.

Assuming that the service "exists" from the moment the ser-
vice provider starts thinking about it until the moment the ser-
vice provider removes it from the pool of offered services, the
service existence throughout these several phases is characterized
by different sets of elements and properties. Therefore, similar to
perdurants, a service accumulates temporal parts (functionality
definition, target service clients, terms of use, contracts, etc.) and
are existentially dependent of their service providers. Because
of these characteristics, in GSO we chose to define the concept
of Service Universal as a specialization of the UFO-B concept of
Perdurant as depicted in Figure 4-24.

Figure 4-24
GSO’s
service
concept

Service Universal

UFO:Perdurant
UFO:Social 

Commitment

Service Offer 
Universal

Service Provider 
Universal

offers1..*

1..*

1..*

1

hasProviderUniversal

hasServiceUniversal

1 1..*

Service Client 
Universal1..**

targets

UFO:Task
Service Task 

Universalperforms

1

1..*

commitsToPerform1..*

1..*

In GSO, whenever a service provider offers a service there is
a social commitment represented by the concept of Service Offer
Universal in which the service provider commits to perform a Ser-
vice Task Universal. This service offer is targeted to a class of ser-
vice clients represented by the concept of Service Client Universal.
For instance, in the real state domain, real state agents who play



Service 115

the role of Service Provider Universal, offer the real state broker-
age service for property buyers and sellers, which are two different
instances of the Service Client Universal concept. When offering
the real state brokerage service to property buyers, the real state
agents are committed to perform the task (or tasks) related to
supporting the service client in buying their target properties for
the minimum price possible. When the real state agents offer
the real state brokerage service to property sellers, they commit
to perform the task (or tasks) related to supporting the service
client in selling their properties for the maximum possible price.

The Service Offer Universal defines also a set of parameters for
the service offer, such as cost, service delivery conditions, service
triggering conditions, among others. Depending on the service,
these parameters can be negotiable. Moreover, even when the pa-
rameters are negotiable, only a subset of the parameters may be
open for negotiation. For instance, in a commercial airline trans-
portation service, parameters such as date of departure, class and
placement of the seat and type of the meal can be negotiated when
contracting the service, while other parameters such as the type
of aircraft, selection of crew members and flight length are usu-
ally not open for negotiation. Contrarily, in a private air charter
service, parameters such as the type of aircraft and selection of
the crew can be negotiated.

In the GSO, we consider a set of events that occur as part of the
service provisioning. Here, we use the term provisioning not in the
sense of preparation or contingency but in the sense of facilitating
and delivering the service. Therefore, as depicted in Figure 4-25,
provisioning a service involves offering the service, negotiating its
terms of usage, activating it, triggering its execution and finally
executing the task associated with the service.

Figure 4-26 shows that there is a relationship between the con-
cepts of Service Offer Universal, Service Provider Universal and
Service Offering Universal. This relationship represents that when
a ServiceProvider Universal performs the action Service Offering
Universal it creates an instance of the concept Service Offer Uni-
versal. Multiple service offering can be created with differences in
the offering’s parameters as, for instance, to target different types
of service clients.

When a service is offered by the service provider, it becomes
accessible to service clients. Once a service client discovers and
becomes interested in a service, a negotiation over the parameters
of the service offer can occur. As depicted in Figure 4-27, the
isPartyOf relationship between the concepts of Service Provider



116 Chapter 4 Goal-Based Service Ontology

Figure 4-25
Service
provisioning
events

Service Provisioning 
Event Universal

UFO:Event 
Universal

Service Triggering 
Universal

Service Provisioning 
Action Universal

Service Activation 
Universal

Service Execution 
Universal

Service Negotiation 
Universaltriggers

1..*

1..*

Service Offering 
Universal

Figure 4-26
Service
offering

Service Offering 
Universalperforms

1..*

Service Universal
Service Offer 

Universal

Service Provider 
Universal

offers1..*

1..*

1..*

1
hasProviderUniversal

hasServiceUniversal

1 1..*

1

creates
1..*

Service Provisioning 
Action Universal

Universal, Service Client Universal and Service Negotiation Uni-
versal represents the participation of service clients and service
providers in a negotiation action, which, when successful, causes
the creation of an instance of the Service Agreement Universal.
This service agreement is a specialization of the UFO concept of
Social Relator that represents the agreed terms of the negotiation.

The service agreement also establishes the parameters for the
service activation. In some situations, a service is agreed upon
but it is not available for delivery (active). For instance, in the
Netherlands, when someone moves from his current address to
another, this person can contract a surface mail rerouting ser-



Service 117

Figure 4-27
Service
negotiation

activatesServiceIn

Service Provisioning 
Event Universal

Service Provisioning 
Action Universal

Service Activation 
Universal

Service Negotiation 
Universal

UFO:Social Relator

Service Agreement 
Universalcreates

1..*

1..*

1..*

1..*

Service Universal
hasService

offers

11..*

Service Provider 
Universal

1..*

1..*

hasProvider

1

*

1

Service Client 
Universal

hasClient

*isPartyOf

isPartyOf

1..*

1..*

1..*

vice. This service reroutes the delivery of surface mail addressed
to the client’s old address to his new address. When setting up
this service, the service client can define a starting date for the
activation of the service. In this example, between the date of the
service setup (or the establishment of the service agreement) and
the activation date, the service is contracted but not active. After
the activation date the service becomes active. However, when a
service is active it is not necessarily executed or delivered. In this
example, the rerouting service is only executed when the surface
mail company receives surface mail addressed to the client’s old
address.

Some other services do not offer or require negotiation. For
instance, when a person moves to a new municipality, a firefighting
service becomes immediately active without any negotiation. The
service agreement is implicit in the sense that when one lives in
one municipality he is covered by the local fire brigade under a
predefined set of parameters. In this sense, this type of agreement
is similar to an adhesion contract, which is a contract between
two parties that does not require negotiation.

As depicted in Figure 4-28, a service agreement specifies trig-
gering conditions. In GSO, these triggering conditions are rep-
resented by the Pre-Condition concept, which is a specialization
of the UFO concept of Situation. The Service Triggering Event
Universal responds to these triggering conditions (when they ex-
ist), and when these conditions hold, the triggering event is raised
triggering the Service Execution Universal action to be performed
by the Service Executor Universal. For instance, in the surface
mail rerouting example, the service triggering event occurs when



118 Chapter 4 Goal-Based Service Ontology

the mail company receives a letter or package addressed to the
service client’s old address. This event triggers the execution of
the surface mail rerouting service, which relabels the letter with
the new address and resubmits the letter to the regular mailing
delivering service.

Figure 4-28
Service
triggering
and
execution

Service Provisioning 
Event Universal

Service Triggering 
Event Universal

Service Provisioning 
Action Universal

Service Execution 
Universaltriggers

1..*

1..*

performs

1..*

1

Service Executor 
Universal

Service Activation 
Universal

enables 1

1

Service Agreement 
Universal

UFO: Situation

Pre-Condition

specifiesTriggering
Conditions

1

1..*
respondsTo

0..* 1

The service task performed by a service must define how it can
be accessed, what it requires to be performed and what it pro-
duces after its execution. As depicted in Figure 4-29, GSO adopts
the input, output, precondition and effect (IOPE) approach. The
concepts of Input Universal and Output Universal represent the
informational artifacts that are required for and produced by the
service task execution, respectively. These input and output pa-
rameters are specified in the Service Interface Universal. Besides
the input parameters, a service task, requires that a certain sit-
uation holds in order to have its execution enabled, namely, the
Pre-Condition concept. Similarly, the service task execution pro-
duces a new situation termed here Effect. In other words, the
service task execution transforms the world from the initial state
defined in the Pre-Condition concept into a final state represented
by the Effect concept.

4.4.8 Service description
In a grocery supermarket, products are displayed in shelves and
each one has a label containing its description. Prospective buyers
use this information (and the price) to decide whether to buy the
product. Similarly, service providers make use of service descrip-
tions to convey information about their offered services, such as
the service content, contract requirements, activation and execu-
tion requirements, and information about the service task.

A service is not a monolithic entity, having many facets. There-
fore, different types of descriptions are necessary to describe differ-
ent parts of the service. Our conceptualization regarding service
descriptions has been inspired by the work on OWL-S [Martin



Service 119

Figure 4-29
Service
IOPE

Service Task 
Universal

Service Universal
performs

0..*

1..*1..*

UFO: Situation

Pre-Condition Effect

has produces1

Service Interface 
Universal

0..*

Input Universal Output Universal

requires produces0..*

0..*0..*

UFO: Resource

specifiesspecifies

1..*1
has

0..*0..*

0..* 0..*

Task Universal

et al., 2004]. Figure 4-30 depicts the top level elements of OWL-
S, in which the service profile describes what the service does,
the service grounding specifies the technical details (e.g., proto-
col, message format, transport, addressing and serialization) of
how to access the service, and the service model describes how
the service works.

Figure 4-30
OWL-S’
top level
elements

Service

Service 
Profile

Service 
Grounding

Service 
Model

describedBy

supports

presents

(what it does)

(how to access it)

(how it works)

Since our concept of service differs from the one in OWL-S, we
have adapted the concepts of Service Grounding, Service Ground-
ing and Service Model to match these differences. As depicted in
Figure 4-31, the Service Profile provides an overview of the ser-
vice for advertisement purposes. It describes what the service does
(normally, in a human readable form), its requirements and con-



120 Chapter 4 Goal-Based Service Ontology

ditions. Service-level agreement parameters can also be included,
and used in the service negotiation.

Figure 4-31
Service
description

Service Task 
Universal

Service Universal
performs

1..*1..*

Service Interface 
Universal1..*1

has

Service 
Description

Service ModelService Profile Service Grounding

describes

1..*

1 describes describes 11

1..* 1..*

Similarly to OWL-S, the Service Model in our case also de-
scribes how the service works. However, in GSO the behavior of
the service is defined by the Service Task. Therefore, the Service
Model describes the Service Task, providing information about the
activities involved in the Service Task execution. In other words,
the Service Model is used to inform about the service’s behavior,
describing the set of activities the service performs. The Service
Model can also be used for service monitoring and orchestration.
Moreover, the Service Model can be described at different gran-
ularity levels, allowing a more superficial or more in-depth view
of the Service Task. Although one of the objectives for using ser-
vices is to hide details of the internal behavior of tasks, in some
situations these details interest the service client. This interest is
commonly driven by security and trust concerns, such as when the
service client needs to guarantee that the service task or part of it
is performed by the service provider itself and not by a third-party
service executor, or when the service client needs details about the
service’s internal behavior for auditing purposes by external reg-
ulators.

Even when more details of the service’s internal behavior is
needed by some service clients, the service provider can have one
instance of the service model containing the necessary details to
satisfy a particular client and other instances of the service model
containing less details, targeted to less demanding service clients.

The Service Interface defines information necessary to invoke
the service, i.e., to trigger service execution. In the case of com-
putational services such as Web services, the Service Interface de-
fines the technology-specific information necessary to invoke the



Service 121

service, namely, the communication protocol, the types of input
and output parameters, network address, etc. While the Ser-
vice Interface concept defines which functions of the service task
are externally accessible and their relationships with input and
output parameters (see Figure 4-29), the Service Grounding con-
cept represents the informational artifact that describes the Ser-
vice Interface, providing information about how to use the service
(through its service task), including message sequence, message
dependency, choreography, etc.

The GSO does not commit to any particular language for
the realization of the service description’s specializations, such
as WSDL, OWL-S or SAWSDL. Any of these languages could be
used to instantiate the concepts defined in GSO. For instance, we
can have a document written in WSDL, and in the domain model
where this document is referred to as a Web service description,
this document can be considered as an instance of the GSO’s Ser-
vice Grounding concept.

4.4.9 Social and computational services
Among the research efforts discussed in Section 4.4.1) and Sec-
tion 4.4.7 are proposals for reference architectures, such as in [Ar-
sanjani et al., 2007, Laskey et al., 2009, Arsanjani et al., 2009],
aiming at providing canonical architectural pattern for SOC im-
plementations, and proposals for service ontologies, such as in
[de Bruijn et al., 2006, Martin et al., 2004], aiming at providing
a shared conceptualization for services. A commonality among
these efforts is that they consider services as building blocks to
realize business processes. The relationship between services and
business processes are perceived in a limited distinction between
social and computational levels. In these efforts, the social level is
often represented by the business processes and a computational
level represented by the (Web) services. The business process (or
the part of it that is to be automated) is then mapped into a
computer-executable process.

In our work, we claim that the distinction between services at
the computational and at the social level should be further ex-
plored, so that the dichotomy between social services and compu-
tational services, and the relationships between services at each
level should be made explicit and clarified. Our claim is moti-
vated by the assumption that from now on we will be involved
in an increasing number of scenarios with a complex mixture of
interrelated computational and social services. With the com-
plexity increase in such service-oriented scenarios, an explicit and



122 Chapter 4 Goal-Based Service Ontology

clear distinction between social and computational services be-
comes necessary. Clarifying this distinction should enable soft-
ware provisioning platforms to support not only the provisioning
of computational services but also (to some degree) social services,
and combinations of computational and social services.

When business processes are mapped onto computer-executable
processes, the relationship between social and computational ser-
vices are hard-coded. In this mapping, the computational service
becomes the business process and any change on one implies in a
change on the other. Contrarily, if we can manage the distinction
between social and computational services and how they related to
each other we would be able to establish different automation lev-
els, supporting dynamic reconfiguration, evolution, composition,
etc.

In our work, we aim at distinguishing and clarifying how social
and computational services relate to each other. For this purpose,
we have identified two main types of relations between social and
computational services, namely, (i) a computational service (fully
or partial) automates a social service, or (ii) a computational ser-
vice facilitates one or more of the service provisioning steps of a
social service.

The automation relation between a computational service and
a social service derives from the actual automation of the task
related to the social service, done by the task related to the com-
putational service. For instance, an online hotel booking service
performs a computational service task that interacts with a set of
hotel-related databases and returns availability, price and booking
confirmation based on given dates, location and room parameters.
This computational service automates the social hotel booking ser-
vice that provides equivalent results by performing its task at the
social level.

For some services it may be impossible to automate their core
functionality exclusively with computational services. For instance,
the air transportation service that moves people or goods from one
location to another cannot (yet) be automated by computational
services. However, in this case some steps of the service provision-
ing still can be facilitated by computational services. For example,
although the core functionality of the transportation service can-
not be automated, some of its provisioning steps, such as discovery
(e.g., through flight search services), negotiation (e.g., through on-
line flight booking services) and activation (e.g., through online
check-in services), are often facilitated by computational services.

Figure 4-32 shows a GSO excerpt that depicts the relation



Service 123

between computational and social services. The GSO’s concept
of Service Universal is then specialized into the concepts of Social
Service Universal and Computational Service Universal. It is also
possible to have a composite service composed of a mix of social
and computational services. Similarly, the Service Task Universal
is specialized into Social Service Task Universal or Computational
Service Task Universal.

Figure 4-32
Social and
computa-
tional
services

Task Universal

Service Task UniversalService Universal
performs

1..*

Social Service Task 
Universal

Social Service 
Universal

performs

1..*

Computational Service 
Task Universal

Computational Service 
Universal

performs

1..*

automates 0..*

0..*

Service Provisioning 
Event Universal

facilitates

1..*

1..*

1..*

0..*

0..*

Since the Service Universal performs the Service Task Univer-
sal, the Social Service Universal performs the Social Service Task
Universal and the Computational Service Universal performs the
Computational Service Task Universal. Figure 4-32 also shows the
automates relation between the Computational Service Task Uni-
versal and Social Service Task Universal, representing the possi-
bility that a computational service task automates a social service
task. In case a social service task cannot be automated by any
computational service task, still computational service tasks may
facilitate one or more of the service provisioning events depicted
in Figure 4-25



124 Chapter 4 Goal-Based Service Ontology



Chapter5
Context-Aware Service
Platform
In this chapter we present the Context-Aware Goal-Based Service
Platform (CASP). This software platform aims at supporting the
main classes of stakeholders identified in Chapters 3 and 4 in the
activities related to service provisioning. Moreover, the CASP
aims at reducing the need of direct user interaction, in particu-
lar from service clients. For this purpose, the platform contains
a set of context-aware components that gather user’s contextual
information. The contextual information is used by the CASP to
perform the discovery, selection and composition of services, iden-
tify whether service triggering conditions hold, fully or partially
supply the required service input information, and invoke services.

This chapter is organized as follows: Section 5.1 motivates
the proposed platform architecture design by identifying the plat-
form’s requirements under the perspective of its users; Section 5.2
identifies and discusses the patterns for interactions between the
CASP and its users; these interaction patterns justify the choices
made regarding the platform’s architecture design presented in
Section 5.3; Sections 5.4, 5.6 and 5.5 present the detailed design
of the CASP’s user interfaces, service provisioning and context-
aware components, respectively.

5.1 Platform Users and Requirements

The stakeholders’ roles supported by the Goal-Based Service Frame-
work (GSF) are the service client, the service beneficiary, the ser-
vice provider, the service executor, the context provider and the
domain specialist. To fulfill one of its main objectives of facilitat-
ing service provisioning, the GSF requires a service provisioning
support software platform, for which we developed the Context-



126 Chapter 5 Context-Aware Service Platform

Aware Service Platform (CASP). The CASP aims at supporting
the GSF’s stakeholders, offering facilities to these stakeholders to
carry out their activities related to service provisioning.

These stakeholder’s roles are played by the CASP’s users that
use the platform to request and consume services (the service
client and beneficiary), provide services and information (the ser-
vice provider, service executor and the context provider) and to
model domains in terms of domain ontologies (the domain spe-
cialist). Figure 5-1 presents the CASP (depicted as a black box)
and its users.

Figure 5-1
The CASP
and its
users

Service
Consumer

Service
Producer

Domain
Specialist

Context-Aware Service Platform

Context
Provider

requests service

consumes service

provides context
information

defines domains

provides services

From the analysis of the stakeholder’s roles behavior and their
characteristics presented in Chapter 3, we have identified a set of
requirements for supporting the interactions of these stakeholders
through the CASP. These CASP requirements can be divided ac-
cording to the four distinct functional areas based on the different
users’ roles depicted in Figure 5-1, namely service consumption,
service provisioning, context provisioning and domain knowledge
specification. The requirements, identified from the objectives of
the related users within the scope of the GSF’s requirements dis-
cussed in Section 3.4, are detailed as follows:
– Service Consumption. Service consumption is performed by

the service client and service beneficiary roles, with the former
being responsible for requesting services and deal with possi-
ble negotiations over the service provisioning terms, and the
later being the entity that perceives the benefits of the service
delivery. Service consumers’ requirements follow the steps for
service provisioning, namely, discovery, selection, composition,
negotiation, activation, triggering and execution. Therefore,
the service consumers require facilities to: (i) express their
service requests and constraints, by means of their goals for
service discovery, selection and composition; (ii) interact with
the supporting platform to provide additional information re-
quired for service discovery, selection, composition, activation



Platform Users Interaction Patterns 127

and execution, in case the CASP’s context-aware components
are not able to provide this required information; and (iii)
receive the results of the service execution.

– Service Provisioning. Service provisioning is performed by the
service provider and service executor roles, with the former
being responsible for the service itself and the later being re-
sponsible for executing the activities related to the service.
These users require from the supporting platform facilities to:
(i) publish service offerings by registering service descriptions
in service repositories accessible through the CASP; (ii) re-
trieve domain ontologies to semantically annotate the terms
in the service descriptions in order to facilitate service provi-
sioning; (iii) receive from the platform information about the
fulfillment of the conditions for service activation and execu-
tion; (iv) receive from the platform information required for
service execution (service inputs); and (v) provide the results
of service execution.

– Context Provisioning. Context providers are responsible for
designing and supplying contextual information about the ser-
vice consumers through context sources. The context provi-
ders require from the CASP facilities to: (i) retrieve domain
ontologies to semantically annotate the terms in the contex-
tual information descriptions; (ii) register context sources and
the contextual information provided by these context sources
by means of contextual information descriptions; (iii) interact
with the platform to provide the offered contextual informa-
tion through the context sources.

– Domain Knowledge Specification. Domain specialists are re-
sponsible for specifying domain ontologies. These users re-
quire from the platform facilities to add, update and delete
domain ontologies.

5.2 Platform Users Interaction Patterns

Based on the use case scenarios presented in Section 3.1 and the
service provisioning requirements discussed in Section 3.4, we have
sketched a set of interaction patterns between the CASP and its
users. These interaction patterns determined the functional re-
quirements of the CASP.



128 Chapter 5 Context-Aware Service Platform

5.2.1 Domain specialists
The CASP operation assumes the existence of domain ontologies
to describe a conceptualization of and domain and, as such, pro-
vide semantics for the terms used within these domains. There-
fore, we prescribe that domain ontologies are registered to the
platform by Domain Specialists. Figure 5-2 depicts an overview
of the interactions between Domain Specialists and the CASP.
First, a Domain Specialist must register itself to the platform (se-
quence 1 in Figure 5-2), receiving an unique identifier to be used
later when registering (sequence 2 in Figure 5-2) and maintaining
its domain ontologies (sequences 3 and 4 in Figure 5-2).

Figure 5-2
The domain
specialist
general
interaction
pattern

Domain Specialist CASP

1: registerDomainSpecialist(domainSpecialist)

1.1: domainSpecialistID

2: registerDomainOntology(domainSpecialistID, domainOntology)

2.1: domainOntologyID

3: updateDomainOntology(domainSpecialistID, domainOntology)

4: deleteDomainOntology(domainSpecialistID, domainOntologyID)

3.1: updateSuccess

4.1: deleteSuccess

5.2.2 Service providers
Once domain ontologies are available in the platform, services
can be offered so that their service descriptions are semantically
annotated with these domain ontologies. Figure 5-3 depicts an
overview of the interactions between Service Providers and the
CASP. The Service Provider registers itself in the CASP (sequence
1 in Figure 5-3) as one of the platform’s service providers to be au-
thorized to include and maintain its services in the platform. With
the received provider’s identifier, the Service Provider proceeds to
request a list of the available domain ontologies registered in the
platform (sequence 2 in Figure 5-3). With the list of the available
domain ontologies, the service provider selects the ontology that
best describes the domain in which the service is intended to op-
erate (sequence 2.2 in Figure 5-3). The selected domain ontology
is then used by the provider to semantically annotate the terms



Platform Users Interaction Patterns 129

in the service descriptions (sequence 2.3 in Figure 5-3). The ser-
vice is registered to the platform by submitting its semantically
annotated service descriptions to the platform so that the service
becomes available to the CASP’s service clients (sequence 2.4 in
Figure 5-3). The Service Provider receives an unique identifier of
the registered service from the platform (sequence 2.5 in Figure
5-3), with which the provider can update or delete the service
(sequences 3 and 4 in Figure 5-3, respectively).

Figure 5-3
The service
provider
general
interaction
pattern

Service Provider CASP

1: registerServiceProvider(serviceProvider)

1.1: serviceProviderID

2: queryDomainOntologies(serviceProviderID)

2.1: domainOntologies

2.2: selectDomainOntology(domainOntologies) : domainOntology

2.3: annotateService(domainOntology, service) : annotatedService

2.4: registerService(serviceProviderID, serviceDescriptions)

2.5: serviceID

3: updateService(serviceID, serviceDescriptions) : updateSuccess

4: deleteService(serviceID) : deleteSuccess

5: informUnmatchedServiceRequest(serviceRequest)

Moreover, in cases where service clients request a service and
the platform is unable to discover any service that can fulfill the
request, the platform can search for service providers that offer
services in the service client’s requested domain and inform them
of the unfulfilled request (sequence 5 in the Figure 5-3). In this
way the platform has a mechanism to inform service providers
about service demands, allowing the service providers to offer new
services.

The semantic annotation of the service descriptions may be
considered as part of the service offering or part of the service
design. In case a service has already been designed, one may con-
sider that adding semantic annotations to the service descriptions
is part of the activities to offer the service because the annotation



130 Chapter 5 Context-Aware Service Platform

is performed to make the service descriptions useful in a semantic-
based software platform like the CASP. However, in the case of
new services, the semantic annotation can be incorporated as a
step in the service design and development process.

5.2.3 Context providers
The Context Provider interacts with the CASP aiming to pro-
vide contextual information tho facilitate the platform’s service
provisioning. As depicted in Figure 5-4, the Context Provider
registers itself to the CASP and receives an unique identifier (se-
quence 1.1 in Figure 5-4). After receiving the available domain
ontologies registered in the platform (sequence 2.1 in Figure 5-4),
the Context Provider selects a domain ontology that properly de-
scribes the domain of interest (sequence 2.2 in Figure 5-4) and
annotates the description of the contextual information it intends
to register (sequence 2.3 in Figure 5-4). The annotated contextual
information description is registered in the CASP (sequence 2.4 in
Figure 5-4), which returns an unique identifier for the registered
contextual information (sequence 2.5 in Figure 5-4).

Figure 5-4
The
context
provider
general
interaction
pattern

Context Provider CASP

1: registerContextProvider(contextProvider)

1.1: contextProviderID

2: queryDomainOntologies(contextProviderID)

2.1: domainOntologies

2.2: selectDomainOntology(domainOntologies) : domainOntology

2.3: annotateContextInformationDescription(domainOntology, ctxtInfoDescription) : annotatedctxInfoDescription

2.4: registerContextInformation(contextProviderID, ctxtInfoDescription)

2.5: ctxtInfoID

3: requestCtxtInformation(ctxtInfoID, serviceClientID, conditions)

4: updateContextInformation(contextProviderID, ctxtInfoID, ctxtInfoDescription) : updateSuccess

5: deleteContextInformation(contextProviderID, ctxtInfoID) : deleteSuccess

3.1: submitContextInformation(contextProviderID, serviceClientID, ctxtInformation)

When contextual information of service clients is required, the
CASP requests the information to the Context Provider (sequence
3 in Figure 5-4). In this context information request, the CASP



Platform Users Interaction Patterns 131

specifies which information is required, and which service client
the context information is related. Contextual information can be
provided impromptu or through subscription.

The subscribed provisioning of contextual information occurs
when the activation and/or triggering conditions of the related ser-
vice are defined, and contextual information can be used to verify
whether these conditions hold. In this case, the CASP subscribes
with the context providers to receive updates of the contextual
information that is relevant to the activation and/or triggering
conditions. When the activation and/or triggering conditions can
be implied from the contextual information, the service is acti-
vated or triggered. For instance, if a service client contracts a
house security service to secure his home when he is traveling
on holidays, we can define that the triggering conditions is the
detection of an intruder. In this example, the CASP subscribes
to the contextual information that informs about an intruder in
the house by using motion sensors as context sources. When the
sensors detect the presence of someone in the house, the CASP
receives this (contextual) information, and triggers the execution
of the house security service.

Improptu provisioning occurs when the service for which the
contextual information is needed has an immediate execution, i.e.,
the service execution has been triggered immediately after the ser-
vice has been discovered and selected. For instance, when a ser-
vice client requests a taxi service to transport him from his current
location to a given hotel, the CASP does not subscribe to any con-
textual information, but requests the immediate provisioning of
relevant contextual information (e.g., his current location and the
address of the hotel the client wants to go to). While in the case
of context subscription the contextual information is commonly
used for assessing whether activation and/or triggering conditions
hold, in the case of impromptu context provisioning the contex-
tual information is commonly used as criteria in service discovery,
selection and negotiation, or used as input information for imme-
diate execution, without any activation or triggering conditions in
the future.

The Context Provider can also update the description and
delete its provided contextual information (sequences 4 and 5 in
Figure 5-4, respectively).

5.2.4 Service clients
With a set of available services registered in the CASP, the plat-
form is ready to support service provisioning to service consumers.



132 Chapter 5 Context-Aware Service Platform

Figure 5-5 depicts an overview of the expected interactions be-
tween Service Clients, the CASP and Service Beneficiaries in the
scope of service provisioning request. The Service Client requests
service provisioning to the platform by informing which goal it
wants to be fulfilled through the use of a service. The CASP
then tries to gather contextual information from the Service Ben-
eficiary that can facilitate the service provisioning according to
this goal. With the available contextual information, a (internal)
service request is created. This service request is used to search
for (discover) candidate services and, among them, select one for
provisioning. After the service execution, the CASP receives the
service output and forwards this output to the related Service
Beneficiary.

Figure 5-5
The service
client
general
interaction
pattern

Service Client CASP

requestService(goal)

createServiceRequest(goal, contextualInformation): serviceRequest

getAvailableContextualInformation(): contextualInformation

discoverService(serviceRequest, contextualInformation): services

selectService(service, contextualInformation): service

executeService(service, contextualInformation): serviceOutput

Service Beneficiary

serviceOutput

If no service is found that fulfills the informed goal, the CASP
informs the service client that no service is available for this re-
quest (not depicted in Figure 5-5). Moreover, as depicted in the
sequence 5 of Figure 5-3, the platform informs service providers
related to the domain of interest of the service client that a service
request has been submitted and no service was found.

5.3 Architecture Overview

From the CASP’s requirements in Section 5.1 and the interaction
patterns between the platform and its users in Section 5.2, we have
defined the CASP’s architectural design as depicted in Figure 5-6
[Bonino da Silva Santos et al., 2010a]. The architectural compo-
nents presented in Figure 5-6 aim at covering the requirements
of each of the identified users, and have been designed to provide
separation of concerns, flexibility and scalability. For this reason
the CASP has been designed according to the service paradigm,



Users’ Interface Components 133

in which all interactions among its constituent components take
place by means of service invocations. Therefore, each component
can be replaced or updated without interfering with the others,
provided their exposed service interface remains supported.

Figure 5-6
The
CASP’s ar-
chitectural
design

Service
Consumer

Service
Producer

Domain
Specialist

Context-Aware Service Platform

Consumer 
Interface

Service 
Composer

Domain 
Specialist 
Interface

Producer 
Interface

Registry 
Manager

Service 
Finder

Service 
Requester

Rule 
Manager

Service 
Invoker

CA 
Controller

Context 
Manager

Event 
Monitor

Service 
Registry

Ontology 
Repository

Context
Provider

User 
Repository

Context 
Provider 
Interface

In the deployment of the platform and its constituent compo-
nents (and services), we have used the OSGi framework [OSG,
2011], more specifically, the Knopflerfish OSGi Service Platform
[Kno, 2011]. This infrastructure allows the services to be updated
on the fly, and the OSGI bundle-model facilitates deployment by
providing some infrastructure features such as service discovery.
Since services do not need to be deployed in the same machine as
the services they interact with, we can monitor the services that
are consuming more computing resources and move them to other
machines or use a load-balancing schema to distribute the calls to
a service that demands heavy processing load from the machine.

We have separated the platform’s components in three main
areas, namely the users’ interface components, the service provi-
sioning components and the context-aware components, which are
discussed in the sequel.

5.4 Users’ Interface Components

Figure 5-6 shows that the CASP supports the interactions with
its users by providing a set of interface components, namely, Con-
sumer Interface (for Service Clients and Service Beneficiaries),
Producer Interface (for Service Providers and Service Executors),
Domain Specialist Interface (for Domain Specialists) and Context



134 Chapter 5 Context-Aware Service Platform

Manager (for Context Providers). These interface components
provide APIs that allow the user’s to interact with the platform.
The users interact with the platform by using either GUI appli-
cations or these APIs through their client applications.

5.4.1 Domain Specialist’s Interface Components
The Domain Specialist Interface component offers interfaces to
manage the registration of domain specialists and domain ontolo-
gies. Figure 5-7 depicts the Domain Specialist Interface compo-
nent and its interfaces with their associated components. In Fig-
ure 5-7, the Domain Specialist Client Application is represented
with a grayed fill to represent to this component is external to the
CASP.

Figure 5-7
The
interfaces
of the
Domain
Specialist
Interface
component

Domain Specialist Client 
Application

Domain Specialist Interface

Registry Manager

IManageDomainOntology IManageDomainSpecialist

IInternalManageDomainOntology IInternalManageDomainSpecialist

The Domain Specialist Interface offers the IManageDomain-
Specialist interface to receive requests to add, update or delete a
Domain Specialist from a Domain Specialist Client Application.
Once these requests are received, the Domain Specialist Interface
component forwards the requests to the Registry Manager compo-
nent through the IManageUser interface. The Registry manager
component is responsible for interacting with the CASP’s reg-
istries, namely the Service Registry, the Ontology Repository and



Users’ Interface Components 135

the User Repository. Since the request received from the Domain
Specialist Interface relates to a platform user type, namely the
Domain Specialist, the Registry Manager invokes the User Repos-
itory to add, update or delete the domain specialist.

Figure 5-8 depicts the operations defined in the interfaces that
are offered (IManageDomainSpecialist) and required (IManageUser)
by the Domain Specialist Interface component to manage domain
specialists.

Figure 5-8
The
Domain
Specialist
Interface
compo-
nent’s
interfaces
to manage
domain
specialists

<<interface>>
IManageDomainSpecialist

addDomainSpecialist(domainSpecialist: DomainSpecialist) : long
updateDomainSpecialist(domainSpecialistID: long, domainSpecialist: DomainSpecialist) : boolean
deleteDomainSpecialist(domainSpecialistID: long) : boolean

Domain Specialist Interface

<<use>>

<<interface>>
IManageUser

addUser(domainSpecialist: DomainSpecialist) : long
updateUser(domainSpecialistID: long, domainSpecialist: DomainSpecialist) : boolean
deleteUser(domainSpecialistID: long) : boolean

Once registered to the CASP, domain specialists can add, up-
date and delete domain ontologies. Similarly to managing do-
main specialists, the operations to manage domain ontologies are
received by the Domain Specialist Interface component and for-
warded to the Register Manager component. However, in the
case of managing domain ontologies, the Registry Manager inter-
acts with the Ontology Repository to store, retrieve and delete
domain ontologies on behalf of the domain specialist. Figure 5-9
depicts the operations of the interfaces that are offered and re-
quired by the Domain Specialist Interface component to manage
domain ontologies.



136 Chapter 5 Context-Aware Service Platform

Figure 5-9
The
Domain
Specialist
Interface
compo-
nent’s
interfaces
to manage
domain
ontologies

<<interface>>
IManageDomainOntology

addDomainOntology(domainOntology: DomainOntology, domainSpecialistID: long) : long
updateDomainOntology(domainOntologyID: long, domainOntology: DomainOntology, domainSpecialistID: long) : boolean
deleteDomainOntology(domainOntologyID: long, domainSpecialistID: long) : boolean

Domain Specialist Interface

<<use>>

<<interface>>
IInternalManageDomainOntology

addDomainOntology(domainOntology: DomainOntology, domainSpecialistID: long) : long
updateDomainOntology(domainOntologyID: long, domainOntology: DomainOntology, domainSpecialistID: long) : boolean
deleteDomainOntology(domainOntologyID: long, domainSpecialistID: long) : boolean

GDSL editor
The CASP offers a GDSL editor to help Domain Specialists define
domain ontologies [Nijenhuis, 2011]. The GDSL editor aims at
supporting domain specialists in defining and maintaining domain
ontologies written with the GDSL. Since the GDSL is derived from
the specification of the GSO, consistence between the concepts and
relations of GSO, and the derived concepts and relations of the
GDSL should be kept. However, we assume that the GSO can
be subjected to modifications, extensions and updates and these
changes should reflect in the GDSL specification.

Although a foundational ontology should be stable and, there-
fore, less (or never) susceptible to modifications, we assume that
some adjustments and/or extensions may be eventually necessary.
We consider our foundational ontology still under development,
and allow modifications on it. To cope with the possibility that
changes in the foundational ontology entail changes in the derived
domain specification language, we required facilities for automatic
generation of an updated editor for the GDSL. In order to provide
the automatic generation of the GDSL editor, we have designed a
transformation tool that receives a foundational ontology and gen-
erates an editor for the language derived from this foundational
ontology. Figure 5-10 presents an overview of the transformation
tool.

Since we used EMF/GMF [EMF, GMF] to develop our trans-
formation tool, the generation of the language’s editor from a



Users’ Interface Components 137

Figure 5-10
Overview of
the trans-
formation
tool

Transformation tool

GSO

GDSL Editor

CASP

Domain Specialist

supplied to

generates

interacts with

uses

foundational ontology requires some intermediate steps. As de-
picted in Figure 5-11, the GDSL is described by its metamodel.
Therefore, it is necessary to derive the GDSL’s metamodel from
the GSO and derive the language from its metamodel. The GDSL
can then be used to model domain ontologies.

Figure 5-11
Ontology
editor
transforma-
tions from
GSO to
domain
ontologies

Goal-Based Service Ontology

Goal-Based Domain 
Specification Language 

Metamodel

Goal-Based Domain 
Specification Language

Domain Ontology

is transformed into

describes

used to model

An additional requirement for our transformation tool is the
traceability between the constructs through the levels depicted in
Figure 5-11. If the GSO is changed and the editor for the derived
GDSL is generated again, the constructs specified in already ex-
isting domain ontologies (specified with previous versions of the
GDSL) might be inconsistent with the newly defined language.
Traceability indicates which concepts and properties of the do-
main ontologies correspond to which concepts and properties of
the GSO. With these mappings and the previous GDSL’s meta-



138 Chapter 5 Context-Aware Service Platform

models, the tool should be able to inform the domain specialists
which of their domain ontologies have been affected by changes in
the GSO and the effect these changes had in the models. With
the information about the effect that the GSO changes caused on
the domain ontologies, the language designer should be able to
evaluate whether to maintain the changes or to revert the GSO
to the previous version.

Figure 5-12 depicts the architectural design of our transforma-
tion tool. The input of the transformation tool is a foundational
ontology described in some ontology language. This foundational
ontology is received by the Translator component, which trans-
forms the ontology into a language metamodel using a metamo-
del language such as Ecore [EMF] or MOF [MOF]. The founda-
tional ontology-to-metamodel transformation follows transforma-
tion rules, which specifies the mappings between the constructs
of the language used to describe the foundational ontology and
the constructs of the language used to describe the metamodel to
be derived from the foundational ontology. For instance, in our
prototype the foundational ontology has been described in OWL
and the resulting metamodel is to be described in Ecore. There-
fore, we required an OWL-to-Ecore transformation rule to guide
the transformation.

Figure 5-12
The archi-
tectural
design of
the trans-
formation
tool

Foundational Ontology

Transformation Tool

Translator

DIagnostics
(log file)

Mapping and 
translation rules

Translation 
Repository

Metamodel
(DSL)

Version 
Repository

Previous version of a 
metamodel

Construction tracer

Editor generator Editor

List of impacted 
domain ontologies

Ontology 
Repository

In our Transformation Tool, we allow the generation of meta-
models described in different metamodel languages from foun-
dational ontologies written in different ontology description lan-
guages. To support this feature, we have designed the Trans-
lation Repository component, which stores transformation rules
and mappings from and to different ontology and metamodel lan-
guages, respectively.

After receiving the foundational ontology and the related trans-
formation rules, the Translator generates a metamodel for the do-



Users’ Interface Components 139

main specification language. This metamodel is then forwarded to
the Editor Generator component, which is responsible for generat-
ing an editor for the language specified in the received metamodel.
Every generated metamodel is stored in the Version Repository
component. Versioning of the generated metamodels is performed
when a language designer updates a source foundational ontology.
When this situation occurs, the transformation tool retrieves the
previous version of the related language’s metamodel and sends it
together with the newly generated metamodel to the Construction
Tracer component. This component requests from the Ontology
Repository a list of domain ontologies defined with the domain
specification language described by the received metamodels.

The Construction Tracer proceeds to determine the differences
between the two versions of the metamodels. The component then
analyzes the domain ontologies to identify whether these domain
ontologies have been affected by the changes in the specification
language. The Construction Tracer generates a list of affected
domain ontologies that can be used by domain specialists and
language designers. The language designer can assess whether
its modifications on the language caused undesired effects, while
the domain specialists are warned about the issues and are able
to update their affected domain ontologies to comply with the
new features of the domain specification language. The internal
structure of the Construct Tracer component is depicted in Figure
5-13.

Figure 5-13
Detailed
view of the
Construc-
tion Tracer
component

Construction Tracer

Previous metamodel Comparator

Affected 
constructs

List of impacted 
domain ontologies

New metamodel

Construct Locator

Related domain 
ontologies

Related domain 
ontologies

Related domain 
ontologies

Ontology 
Repository

Our prototype implementation of the transformation tool has
been developed as an Eclipse plug-in. This plug-in utilizes the
Eclipse’s EMF [EMF] and GMF [GMF] platforms to generate the
GDSL editor. The choice for the Eclipse set of tools has been
due to the availability of the tools, documentation and examples



140 Chapter 5 Context-Aware Service Platform

as well as for the maturity of the technologies. Since EMF and
GMF require the input metamodel to be written in Ecore [EMF],
we have used Ecore as the metamodel language in our prototype.
Due to availability of tools, documentation and popularity, we
have also chosen OWL [OWL, 2009] as the ontology description
language. Therefore, we have used an OWL-to-Ecore transforma-
tion tool named EMF4SW [Gronback, 2009]. The EMF4SW is
available as an Eclipse plug-in, which currently translates from
OWL to Ecore and vice-versa, from OWL to UML and vice-versa,
and from EMF to RDF and vice-versa.

Figure 5-14 presents a more detailed view of the operation of
the Editor Generator. This operation follows the requirements
and steps of the EMF/GMF platforms. The metamodel that the
Editor Generator receives from the Translator component is con-
sidered as a domain model in the EMF/GMF terminology. This
domain model is used to generate several other artifacts, such
as the Domain Generator Model, the Graphical Definition Model
and the Tooling Definition Model. The Domain Generator Model
is used to generate the Domain Code, which provides the do-
main’s primitives and a tree-based editor. The Graphical Defi-
nition Model defines the graphical elements that will be used as
visual modeling elements in the editor. The Tooling Definition
Model specifies which tools can be used in the editor.

Figure 5-14
Sequence of
interaction
for the
GDSL
editor
generation

Graphical Editor

Domain Model
(input)

Derive
Graphical Definition 

Model

CombineDerive

Domain Generator 
Model

Derive
Tooling Definition 

Model

Mapping Model

Transform
Diagram Editor 

Generator Model

Generate Domain Code Graphical Editor Code Generate

The Tooling Definition Model, the Graphical Definition Model
and the Domain Model (the language’s metamodel) are combined
to generate a Mapping Model. The Mapping Model specifies the



Users’ Interface Components 141

mappings between the elements of the three source models. The
Mapping Model is then transformed into a Diagram Editor Gener-
ator Model, which is used to generate the graphical editor’s code.
The Graphical Editor Code and the Domain Code together form
the Graphical Editor.

The steps from the Domain Model, the Graphical Definition
Model and the Tooling Definition Model to the Mapping Model
involve a set of decisions, such as which constructs in the me-
tamodel should become links, and which should become nodes
in the resulting graphical editor. An automatic approach can be
used to identify these links and nodes based on names or language
constructs. This approach is feasible if we consider a small and
pre-defined set of source ontology languages. However, since we
require the transformation tool to be language-agnostic and to
be used for multiple ontology languages and the formalisms be-
hind them, a fully automatic approach could not be used in our
prototype. We have adopted a semi-automatic approach where,
as much as possible, the decisions are taken automatically, but
leaving some specific choices to the language designer. Examples
of these choices are: validation of the foundational ontology-to-
metamodel translation, definition of the language elements that
are represented as nodes or links, and definition of which graphical
shapes represent which language elements.

Figure 5-15 depicts the sequence of interactions between the
language designer and the transformation tool to generate a graph-
ical editor. The language designer submits to the transformation
tool the foundational ontology from which he intends to derive a
domain modeling language editor (in the scope of this thesis the
foundational ontology is the GSO). The transformation tool for-
wards the GSO specification to the Translator component, which
translates the received ontology specification into a metamodel for
the GDSL. The Translator returns the generated metamodel to-
gether with a log file containing details about the translation, such
as the specific mappings and translations used according to the
rules retrieved from the Translation Repository. The translation’s
log file is forwarded to the language designer for validation.

If the language designer finds invalid translations in the trans-
lation’s log file, it implies that the transformation rules are not
correct. In this case, the translation should be canceled. Since the
generated metamodel is not fully compliant with the foundational
ontology, models created with the modeling language defined by
the generated metamodel do not properly represent the conceptu-
alization described in the foundational ontology, and should not



142 Chapter 5 Context-Aware Service Platform

Figure 5-15
Detailed
view of the
editor
generation

Language Designer Transformation tool
submitOntology(GSO)

validateTranslatorLogFile

validateLogFile(boolean)

getPreviousMetamodelVersion()

provideDesignerInput(input)

Translator

generateMetamodel(GSO)

GDSLMetamodel, translatorLogFIle

generateEditor(GDSLMetamodel)

Editor Generator

getDesignerInput(questions)
getDesignerInput(questions)

provideDesignerInput(input)

GDSLEditor

Construct Tracer

traceConstructs(currentMetamodel, previousMetamodel)

contructorTracerLogFile

contructorTracerLogFile

saveCurrentMetamodel(currentMetamodel)
GDSLEditor

be used. To tackle this issue, the transformation rules should be
analyzed, and the incorrect transformation should be fixed.

With the validation of the translation from the foundational
ontology to the metamodel, the transformation tool starts the ed-
itor generation by invoking the Editor Generator component and
supplying the GDSL metamodel. During the editor generation,
some decisions should be taken regarding details of the editor,
such as which concepts should be mapped to visual elements rep-
resenting nodes and which concepts should be mapped to elements
representing links. After receiving these decisions from the lan-
guage designer, the Editor Generator can finish the generation of
the GDSL editor. The transformation tool then retrieves the pre-
vious version of the language’s metamodel (if available) and sends
it together with the GDSL’s current metamodel to the Construct
Tracer component.

The Construct Tracer searches for the effects of the changes in
the new version of the language on the existing domain ontologies
modeled with the earlier version of the language. If any effects
are found, the Construct Tracer sends a log file containing details
of these effects to the language designer for evaluation. If the lan-
guage designer decides to maintain the changes in the language,
the new version of the GDSL’s metamodel is stored in the Ver-
sion Repository and the GDSL’s editor is made available for the
domain specialists.



Users’ Interface Components 143

5.4.2 Service Producers’ Interface Components
The Producer Interface component offers interfaces to manage the
registration of service providers and service executors, to retrieve
domain ontologies to be used on semantic annotation of service
descriptions, to manage the registration of service descriptions,
and to request the execution of services. Figure 5-16 depicts the
Producer Interface component and its interfaces with their asso-
ciated components. In Figure 5-16, the Service Provider Client
Application is represented with a grayed fill to represent to this
component is external to the CASP.

Figure 5-16
The
interfaces
of the
Producer
Interface
component

Service Provider Client Application

Producer Interface

Registry Manager

IManageSrvConsumer IGetDomainOntologies IManageService

IInternalManageSrvConsumer IRetrieve
DomainOntologies

IInternalManageService

The Producer Interface component offers the IManageSrvPro-
ducer interface for the management of the registration of service
providers and service executors by service providers. The ser-
vice provider interacts with the CASP through a Service Provider
Client Application. As depicted in Figure 5-17, this application
uses the addServiceProvider operation of the IManageSrvProducer
interface offered by the Producer Interface to request registration
as one of the CASP’s service providers. The Producer Interface re-
ceives the service provider’s registration request, and forwards this
request to the Registry Manager by calling the addUser method
defined in its IManageUser interface, which stores the provider’s
information in the User Repository. Similarly, when the Service



144 Chapter 5 Context-Aware Service Platform

Provider needs to update its registration information or remove
itself from the CASP, the Producer Interface component is used
and forwards the requests accordingly to the Registry Manager.
Service executors are added, updated and deleted in the same way
by service providers.

Figure 5-17
The
Producer
Interface
compo-
nent’s
interfaces
to manage
service
producers’
registra-
tions

<<interface>>
IManageSrvProducer

addServiceProvider(serviceProvider: ServiceProvider) : long
updateServiceProvider(serviceProviderID: long, serviceProvider: ServiceProvider) : boolean
deleteServiceProvider(serviceProviderID: long) : boolean
addServiceExecutor(serviceExecutor: ServiceExecutor, serviceProviderID: long) : long
updateServiceProvider(serviceExecutorID: long, serviceExecutor: ServiceExecutor, serviceProviderID: long) : boolean
deleteServiceProvider(serviceExecutorID: long, serviceProviderID: long) : boolean

Producer Interface

<<use>>

<<interface>>
IManageUser

addUser(serviceProducer: ServiceProducer) : long
updateUser(serviceProducerID: long, serviceProducer: ServiceProducer) : boolean
deleteUser(serviceProducerID: long) : boolean

In case the service provider has one or more activated services,
the CASP warns the service provider that the contracts related
to these services must be terminated before proceeding with the
provider’s removal. After the services’ contracts have been termi-
nated, the services are deactivated and removed, and only then
the service provider can be removed from the platform. If a ser-
vice executor is to be removed, and the user is assigned as the
executor of any activated service, the related service provider is
contacted to assign another executor to the service before the for-
mer executor can be removed.

The Producer Interface component’s IGetDomainOntologies in-
terface offers methods to retrieve available domain ontologies to
be used to semantically annotate the service descriptions. As de-
picted in Figure 5-18, the IGetDomainOntologies interface defines
the getDomainOntologies operation to retrieve the list of domain
ontologies registered to the CASP, and the getDomainOntology
operation to retrieve a specific domain ontology.

After retrieving the list of available domain ontologies, the
service provider selects the one that is appropriate to semanti-



Users’ Interface Components 145

Figure 5-18
The
Producer
Interface
compo-
nent’s
interface to
retrieve
domain
ontologies

<<interface>>
IGetDomainOntologies

getDomainOntologies(serviceProviderID: long) : List<DomainOntology>
getDomainOntology(domainOntologyID, serviceProviderID: long) : DomainOntology

Producer Interface

<<use>>

<<interface>>
IRetrieveDomainOntologies

getDomainOntologies(userID: long) : List<DomainOntology>
getDomainOntology(domainOntologyID, userID: long) : DomainOntology

cally annotate the terms in the service’s descriptions. As depicted
in Figure 5-19, the Service Provider Client Application uses the
addServiceDescription operation defined in the Producer Interface
component’s IManageService interface to add the semantically-
annotated service description as one of the platform’s available
services. The Producer Interface forwards the service registration
request to the appropriate operation defined in the Registry Man-
ager’s IInternalManageService interface, which stores the service
in the Service Registry and returns an unique identifier of the
registered service. Similarly, the Service Provider Client Applica-
tion calls the Producer Interface’s updateServiceDescription and
deleteServiceDescription operations to update or delete the service
descriptions, respectively.

Figure 5-20 depicts the Producer Interface component’s API,
exposing interfaces to request service execution and to inform un-
fulfilled service demands. When the service triggering conditions
are met, the Service Invoker component requests the service ex-
ecution to the Producer Interface component. The Producer In-
terface then interacts with the proper Service Executor to request
the execution of the service by invoking the service. In this event,
the Service Executor receives also the information to be used as
input parameters for the associated service task. After the service
execution, the Service Executor returns to the Producer Inter-
face the generated output information (if available), which is for-



146 Chapter 5 Context-Aware Service Platform

Figure 5-19
The
Producer
Interface
compo-
nent’s
interface to
manage
service de-
scriptions’
registra-
tions

<<interface>>
IManageService

addServiceDescription(serviceDescription: ServiceDescription, serviceProviderID: long) : long
updateServiceDescription(serviceDescriptionID: long, serviceDescription: ServiceDescription, serviceProviderID: long) : boolean
deleteServiceDescription(serviceDescriptionID: long, serviceProviderID: long) : boolean

Producer Interface

<<use>>

<<interface>>
IInternalManageService

addServiceDescription(serviceDescription: ServiceDescription, serviceProviderID: long) : long
updateServiceDescription(serviceDescriptionID: long, serviceDescription: ServiceDescription, serviceProviderID: long) : boolean
deleteServiceDescription(serviceDescriptionID: long, serviceProviderID: long) : boolean

warded back to the Service Invoker to be later sent to the service
consumer.

Figure 5-20
The
Producer
Interface to
request
service
execution
and inform
of
unfulfilled
service
demands

Service Executor
Client Application

Producer Interface

Service Invoker

IInvokeService

IRequestServiceExecution

Service Finder

Service Provider
Client Application

IInformServiceDemand

IInternalInformServiceDemand

Moreover, when the CASP receives a service request and the
Service Finder component does not find any service to fulfill this



Users’ Interface Components 147

request, the Service Finder sends the information about an unful-
filled service demand to the Producer Interface component. The
Producer Interface component forwards the information about an
unfulfilled service demand to service providers that provide ser-
vices in the domain in which a service is being requested.

In our prototype implementation, the service descriptions has
been written using the W3C’s Semantic Annotations for WSDL
and XML Schema (SAWSDL) [Farrell and Lausen, 2007]. The
SAWSDL defines how to add semantic annotations to service de-
scriptions written in WSDL and allows the existing WSDL docu-
ments to be semantic annotated. The semantic annotations refer
to concepts in the domain ontologies, and are applied to various
parts of the WSDL document, such as input and output message
structures, interfaces and operations.

For instance, Listing 5.1 shows a fragment of the service de-
scription of a service to set medical appointments. One of the op-
erations defined by this service is named checkAvailability, which
has one input message named checkAvailabilityRequest and one
output message name checkAvailabilityResponse. The checkAvail-
abilityRequest message is defined as having the complex type Ap-
pointment. This complex type represents a medical appointment
and consists of the physician designated for the appointment, and
the date and time of the appointment. In this example, we have
defined that the physician element of the complex type Appoint-
ment refers to the concept Physician defined in our health ontol-
ogy.

Listing 5.1 Example of semantic annotations in a SAWSDL document

...
<xsd:complexType name="Appointment">

<xsd:all >
<xsd:element name="physician " type="xsd:string"

sawsdl:modelReference ="http: //www.utwente .nl/ ←↩
↪→ trese /lolavo /healthontology #Physician "/>

<xsd:element name="date" type="xsd:date "/>
<xsd:element name="time" type="xsd:time "/>

</xsd:all >
</xsd:complexType >
...
<wsdl:message name="checkAvailabilityRequest ">

<wsdl:part name="tentativeAppointment " ←↩
↪→ type="tns:Appointment "/>

</wsdl:message >
<wsdl:message name="checkAvailabilityResponse ">

<wsdl:part name="dateTimeAvailability " ←↩
↪→ type="xsd:boolean"></wsdl:part >

</wsdl:message >



148 Chapter 5 Context-Aware Service Platform

...
<wsdl:operation name=" checkAvailability ">

<wsdl:input ←↩
↪→ message ="tns:checkAvailabilityRequest "/>

<wsdl:output ←↩
↪→ message ="tns:checkAvailabilityResponse "/>

</wsdl:operation >
...

5.4.3 Context Provider’s Interface Components
The Context Provider Interface component offers interfaces to
manage the registration of the Context Providers, to manage the
registration of the contextual information they offer to provide, to
receive contextual information from Context Providers, and to re-
trieve available domain ontologies, which are used to semantically
annotate the contextual information descriptions. Figure 5-21 de-
picts the Context Provider Interface component, and its interfaces
with their associated components.

Figure 5-21
The
interfaces
of the
Context
Provider
Interface
component

Context Provider
Client Application

Context Provider Interface

Registry Manager

IM
an

ag
eC

txP
ro

vi
de

r

IManage
CtxInformation

IManageUser

IGetDomain
Ontologies

IRetrieve
DomainOntologies

Context Manager

IInternalManage
CtxInformation

Context Source

IReceive
CtxInformation

IRequest
CtxInformation

IInternalRequest
CtxInformation

The Context Provider interacts with the CASP through its
Context Provider Client Application, which can request the reg-
istration, update and deletion of the Context Provider. These



Users’ Interface Components 149

requests are received by the Context Provider Interface compo-
nent through its IManageCtxProvider interface, and forwarded to
the Registry Manager through its IManageUser interface, which
is responsible for performing the requested operations on the User
Repository. Figure 5-22 depicts the interfaces offered and used by
the Context Provider Interface component to manage the regis-
tration of context providers.

Figure 5-22
The
interface of
the Context
Provider
Interface
component
to manage
context
provider’s
registra-
tions

<<interface>>
IManageCtxProvider

addContextProvider(contextProvider: ContextProvider) : long
updateContextProvider(contextProviderID: long, contextProvider: ContextProvider) : boolean
deleteContextProvider(contextProviderID: long) : boolean

Context Provider Interface

<<use>>

<<interface>>
IManageUser

addUser(contextProvider: ContextProvider) : long
updateUser(contextProviderID: long, contextProvider: ContextProvider) : boolean
deleteUser(contextProviderID: long) : boolean

The Context Provider Interface component offers the IGetDo-
mainOntologies interface to allow context providers request a list
of the available domain ontologies. This interface is similar to
the Producer Interface component’s interface depicted in Figure
5-18. The registered Context Provider requests to the Context
Provider Interface component a list of the available domain on-
tologies through its Context Provider Client Application. The
Context Provider Interface component then forwards the request
to the Registry Manager, which retrieves a list of available domain
ontologies. The context provider selects an appropriate domain
ontology, and semantically annotates the context information de-
scription with the concepts from the selected domain ontology.

After the context information description is semantically an-
notated, the context provider requests the registration of the con-
text information description through its Context Provider Client
Application. As depicted in Figure 5-23, this request is per-
formed through the addContextInformation operation defined in
the IManageCtxInformation interface, offered by the Context Pro-



150 Chapter 5 Context-Aware Service Platform

vider Interface component, and forwarded to the Context Man-
ager component through the appropriate operation defined in its
IInternalManageCtxInformation interface. Similarly, requests to
update and delete registered context information descriptions are
forwarded to the Context Manager component by the Context
Provider Interface.

Figure 5-23
The
interface of
the Context
Provider
Interface
component
to manage
registra-
tions of
contextual
information
descriptions

<<interface>>
IManageCtxInformation

addContextInformation(contextInformationDesc: ContextInformationDescription, contextProviderID: long) : long
updateContextInformation(contextInformationID: long, contextInformationDesc: ContextInformationDescription, contextProviderID: long) : boolean
deleteContextInformation(contextInformationID: long:, contextProviderID: long) : boolean

Context Provider Interface

<<use>>

<<interface>>
IInternalManageCtxInformation

addContextInformation(contextInformationDesc: ContextInformationDescription, contextProviderID: long) : long
updateContextInformation(contextInformationID: long, contextInformationDesc: ContextInformationDescription, contextProviderID: long) : boolean
deleteContextInformation(contextInformationID: long:, contextProviderID: long) : boolean

Since context information descriptions are only used by the
context-aware components and not by any other of the CASP’s
components, they are stored within the context-aware components
and not in a repository accessible by the Register Manager. Al-
though we risk to duplicate storage responsibility, we have made
this design choice to allow the substitution of the context-aware
components, and consequently, the method they use to store and
manage context information, without affecting the remaining of
the CASP’s components.

Moreover, the deletion of Context Providers or their offered
context information does not affect the current service contracts,
activation or execution. If one of these service-related activities
relied on deleted contextual information, the context-aware com-
ponents try to search for other providers of that information. In
case no other provider for the requested information is found, the
provisioning of the information is requested to the Service Bene-
ficiary.

Figure 5-24 depicts the interfaces of the Context Provider In-
terface component to request and receive contextual information.
When one of the CASP’s service provisioning components (de-
tailed later in Section 5.5) requires contextual information, the



Users’ Interface Components 151

Context Manager component uses the IInternalRequestCtxInfor-
mation interface of the Context Provider Interface component to
request for a specific type of contextual information. The Context
Provider Interface component then forwards the request to the
appropriate Service Provider Client Application through the IRe-
questCtxInformation interface, offered by the client applications.
The contextual information is returned to the CASP not directly
by the Context Provider Client Application, but by the associ-
ated Context Source. The Context Source uses the IReceiveCtx-
Information interface offered by the Context Provider Interface
component to submit the requested contextual information.

Figure 5-24
The
interfaces
of the
Context
Provider
Interface
component
to request
and receive
contextual
information

Context Provider Interface

<<use>>

<<interface>>
IRequestCtxInformation

requestContextInformation(contextInformationType: 
ContextInformationUniversal, serviceBeneficiary: ServiceBeneficiary)

<<interface>>
IReceiveCtxInformation

putContextInformation(contextInformation: ContextInformation)

<<interface>>
IInternalRequestCtxInformation

requestContextInformation(contextInformationType: ContextInformationUniversal, 
serviceBeneficiary: ServiceBeneficiary, contextProviderID: long) : ContextInformation

Context Provider
Client Application

Context Source

<<use>>

Here, we distinguish the Context Provider, the agent respon-
sible for offering contextual information, from the Context Source,
the entity that actually generates the contextual information. Con-
text Sources can be sensors or other information generation facility
such as software applications, services, etc., and a Context Provi-
der can offer many types of context information, which are gen-
erated by Context Sources. For instance, a meteorological agency
(the Context Provider) provides meteorological information for a
given location, which can be used as contextual information. This
contextual information is generated through a set of temperature,
wind, precipitation and atmospheric pressure sensors (the Context
Sources).



152 Chapter 5 Context-Aware Service Platform

5.4.4 Service Consumers’s Interface Components
The Consumer Interface component’s API offers interfaces and
operations to manage the registration of service consumers, to
allow Service Clients to submit their service requests, to return
the results of the service execution to Service Beneficiaries and
to request information required by the services that could not
have been gathered by the platform’s context-aware components.
Figure 5-25 depicts the Consumer Interface component and its
interfaces with their associated components.

Figure 5-25
The
interfaces
of the
Consumer
Interface
component

Service Client
Client Application

Consumer Interface

Registry Manager

IM
an

ag
eS

rv
Co

ns
um

er

IManageUser

IManageGoal

IRetrieveGoals

Service Requester

IFulfillGoal

Service Beneficiary
Client Application

IExchangeInfo

ICommSrvBeneficiary

Service Invoker

Before being able to request service provisioning support to
the CASP, service clients have to be registered to the platform.
Service clients interact with the CASP through Service Client
Client Applications, which requests the registration (or update) of
the service client to the Consumer Interface component. This re-
quest is received by the Consumer Interface component through its
IManageSrvConsumer interface, and is forwarded to the Registry
Manager using the IManageUser interface. The Registry Manager
stores the registered service client in the User Repository. If the
Consumer Interface receives a request for service client removal,
the CASP checks whether that service client has contracted any
service. If this is the case, the service client is requested to ter-
minate the service contracts before its removal. Similar interface



Users’ Interface Components 153

has been defined to add, update and delete Service Beneficiaries,
as depicted in Figure 5-26.

Figure 5-26
The
interfaces
of the
Consumer
Interface
component
to manage
the
registration
of service
consumers

<<interface>>
IManageSrvConsumer

addServiceClient(serviceClient: ServiceClient) : long
updateServiceClient(serviceClientID: long, serviceClient: ServiceClient) : boolean
deleteServiceClient(serviceClientID: long) : boolean
addServiceBeneficiary(serviceBeneficiary: ServiceBeneficiary, serviceClientID: long) : long
updateServiceBeneficiary(serviceBeneficiaryID: long, serviceBeneficiary: ServiceBeneficiary, serviceClientID: long) : boolean
deleteServiceProvider(serviceBeneficiaryID: long, serviceClientID: long) : boolean

Producer Interface

<<use>>

<<interface>>
IManageUser

addUser(serviceConsumer: ServiceConsumer) : long
updateUser(serviceConsumerID: long, serviceConsumer: ServiceConsumer) : boolean
deleteUser(serviceConsumerID: long) : boolean

The main utility of the Consumer Interface component is to
support the service request. In this way, the service clients sub-
mit to the platform the goals they intend to have fulfilled. The
Service Client Client Application component requests a service
to the Consumer Interface. The GSF uses the concept of Goal
as an abstraction for service request. Therefore, as depicted in
Figure 5-27, the Service Client Client Application uses the fulfull-
Goal operation defined in the Consumer Interface component’s
IManageGoal interface to request the fulfillment of a goal. How-
ever, to constrain the goal options and guide the client’s choice,
the Service Client Client Application component should present
to the Service Client a list of goals admissible for the domain in
which the client is operating. To present these options, the Ser-
vice Client Client Application component requests a list of the
available goals to the Consumer Interface component, using the
retrieveGoalList operation defined in the IManageGoal interface.
The Consumer Interface component forwards the request to the
Registry Manager, using the Registry Manager’s IRetrieveGoals
interface. The Registry Manager then retrieves the related do-
main ontology from the Ontology Repository, and extracts the
admissible goals defined in the ontology.

The goal received from the service client by the Consumer In-
terface is forwarded to the Service Requester to create the service



154 Chapter 5 Context-Aware Service Platform

Figure 5-27
The
interfaces
of the
Consumer
Interface
component
to request
services

<<interface>>
IManageManageGoal

retrieveGoalList(domain: Domain, serviceClient: ServiceClient) : List<Goal>
fulfillGoal(goal: Goal, serviceClientID: long)

Consumer Interface
<<use>><<interface>>

IRetrieveGoals

retrieveGoalList(domain: Domain) : List<Goal>

<<interface>>
IFulfillGoal

fulfillGoal(goal: Goal, serviceClientID: long)

<<interface>>
ICommSrvBeneficiary

requestInputInformation(information: Input, serviceBeneficiaryID: long) : Input
informSrvResult(srvResult: Output, serviceClientID: long)

<<interface>>
IExchangeInfo

requestInputInformation(information: Input) : Input
informSrvResult(srvResult: Output)

<<use>><<use>>

request (detailed later in Section 5.6.1). For this, the Service Re-
quester component offers the IFulfillGoal interface.

When the service is triggered to be executed, and the context-
aware components are unable to provide information to be used
as inputs for the service execution, the Service Invoker compo-
nent requests that this information is asked to the Service Benefi-
ciary. The Service Invoker component uses the requestInputInfor-
mation operation defined in the Consumer Interface component’s
ICommSrvBeneficiary interface. The Consumer Interface compo-
nent asks the input information to the service beneficiary by us-
ing the requestInputInformation operation defined in the Service
Beneficiary Client Application’s IExchangeInfo interface. This in-
terface is also used to retrieve to the service beneficiary the results
of the service execution.

Figure 5-28 depicts our prototype Service Client Client Ap-
plication’s GUI. In this example, first the Service Client selects
the domain of interest. After that, the client application retrieves
available goals for that domain and shows to the service client
options to define his goal. In our approach we describe a goal in-
directly by specifying the parameters for a situation that satisfies
the intended goal. In the example in Figure 5-28, the goal is to
have the service beneficiary’s ambient comfort preferences setup
whenever the beneficiary enters his home or office. To character-
ize a situation that fulfills the goal, the service client specifies the
room temperature, light color and intensity, and some auxiliary
parameters, such as adjusting these settings whenever the benefi-
ciary enters a room, allowing the settings to be implemented not
only in the current but also in remote ambients, and making the
beneficiary’s favorite media available in these ambients.



Context-Aware Components 155

Figure 5-28
Example of
a Service
Client
Client
Application
GUI

Light intensity

Light color

Temperature

Adjust when in a room

Epilepsy Control

Home Health Care

Ambient comfort

Allow roaming

Favorite media available

5.5 Context-Aware Components

Figure 5-29 depicts the CASP’s context-aware components. These
components support the registration of context providers, context
sources and contextual information, and the request and subscrip-
tion of contextual information. Once acquired, the relevant con-
textual information is forwarded to the CASP’s internal compo-
nent that requested the context information.

Figure 5-29
The
CASP’s
context-
aware
components

Context Provider 
Interface

Context Manager

Event Monitor

Rule Manager

Context-Aware 
Controller

Rule Repository

5.5.1 Context Manager
The Context Manager component is based on the Context Man-
agement Service (CMS) [Ramparany et al., 2007] developed in
the scope of the Amigo project [Ami]. The Context Manager pro-
vides the necessary middleware to manage context sources and
their contextual information. Figure 5-30 shows the internal com-
ponents of the Context Manager as well as the operations that are
invoked on and used by these sub-components.

The Context Manager consists of two main element: the Con-
text Broker (CB), and the Context Consumers (CC). The Con-
text Broker keeps track of all the registered context sources and
acts as a service directory of context sources, while the Context



156 Chapter 5 Context-Aware Service Platform

Figure 5-30
Internal
structure of
the Context
Manager

Context Manager

Context Broker

Context Consumer

registerContextSource

deregisterContextSource

receiveContextInformation

discoverContextProvider

requestContextInformation

Consumer finds the appropriate context sources by querying the
Context Broker and uses the context information provided by the
context source.

A context source provides two main modes of operation:
– Synchronous (request/response): the Context Consumer asks

for context matching certain specified criteria, and the context
source responds to the query by providing the appropriate
context information.

– Asynchronous (publish/subscribe): the Context Consumer in-
dicates to the context source that it wants to be informed of
the changes in context information that meet certain specified
criteria, and the context source informs the Context Consumer
of these changes whenever they occur.
The synchronous mode of operation corresponds to the im-

promptu provisioning of context information discussed in Section
5.2.3, while the asynchronous mode corresponds to the subscribed
provisioning of context information also discussed in Section 5.2.3.

5.5.2 Context Ontology
The Context Manager uses a context ontology (written in OWL)
for context representation. Figure 5-31 shows the RDF representa-
tion of the generic ContextParameter concept, from which all other
types of context information are derived. A ContextParameter has
one or more object type properties, which refer to a (subclass of
an) Entity. Each ContextParameter has also metadata associated
with it, in the form of data or object type properties, which tell
something about that particular ContextParameter, such as the
probability that this context parameter is still valid or its times-



Context-Aware Components 157

tamp.

Figure 5-31
The RDF
representa-
tion of the
context
ontology’s
ContextPa-
rameter
concept

Entity

0,8

ContextParameter

2011-01-17
11:45:28.000

isContextOf hasContext

probability timestamp

For specific types of context information, subclasses of the Con-
textParameter concept are derived. The isContextOf property is
also specialized for specific context information. The RDF repre-
sentation of Figure 5-32 shows an example in which the location
of a person is represented as context information. In this ex-
ample, a subclass of ContextParameter called PersonLocation is
represented, which has two subproperties of isContextOf: an isLo-
cationOf object property that refers to the location of the Person,
and a hasLocation object property that refers to the Space that
corresponds to the location of the person. The timestamp indi-
cates when this context information was determined. This specific
example represents that at 11:45 on January 17, 2011, Jerry was
in the Kitchen.

Figure 5-32
Example of
a
contextual
information
representa-
tion

PersonLocation

Jerry

hasLocation

identifier

Person Space

2011-01-17
11:45:28.000

isLocationOf

Kitchen

identifier

timestamp

The Context Consumer component uses SPARQL [Prud’hommeaux



158 Chapter 5 Context-Aware Service Platform

and Seaborne, 2008] for querying context sources, allowing a con-
text consumer to ask only for the specific context information of
interest. Taking the context from Figure 5-32 as example, Listing
5.2 presents the SPARQL query that asks for all the last known
locations of a person.

Listing 5.2 SPARQL query to retrieve known location of a person

SELECT ?username ?roomname WHERE {
?user rdf:type contextOntology :Person .
?user context :identifier ?personId .
?userloc rdf:type context :PersonLocation .
?userloc context :isLocationOf ?person .
?userloc context :isLocatedIn ?room .
?room context :identifier ?roomname

}

5.5.3 Context monitoring
When one of the CASP’s components needs contextual informa-
tion, it requests this information to the Rule Manager component
by defining a monitoring rule. This rule specifies the context to be
monitored and the notification to be sent once the expected con-
text holds. Once the requesting component has subscribed and
started the monitoring rule, the context-aware components start
gathering the required contextual information. In case the trig-
gering condition defined in the monitoring rule holds, the context-
aware components notifies the requesting component according to
the notification message specified in the rule. For example, a rule
can specify that a notification should be sent when John arrives
home. In this example, the context-aware components monitor
the John’s location, and notifies the requesting component when
he enters his home.

Following the Event-Control-Action pattern described in [Dock-
horn Costa et al., 2005], four of the context-aware components,
namely the Event Monitor, the Rule Manager, the Context-Aware
Controller and the Rule Repository, are responsible for managing
monitoring rules and notifying the requesting components when
the rules’ triggering conditions are met (see Figure 5-29). The
Event Monitor component receives context data events from con-
text sources through the Context Manager. The Event Moni-
tor sends these events to the Context-Aware Controller compo-
nent, which monitors them and evaluates the registered monitor-
ing rules. When the triggering condition of the monitoring rule is
evaluated to true, the Rule Manager is called to notify the request-
ing component. The subscribed monitoring rules are stored in a



Context-Aware Components 159

Rule Repository and made available for both the Rule Manager
and Event Monitor components.

The RuleManager component provides interfaces for subscribe,
unsubscribe, update, activate and deactivate rules. When a re-
questing component wants to register a rule, it sends the rule to
the Rule Manager that is responsible for parsing, validating and
storing the incoming rule. In the parsing and validating phases,
the Rule Manager translates the given user rules to reaction rules
that can be handled by the Context-Aware Controller.

The rules received by the Rule Manager from requesting com-
ponents are expressed in a domain-specific ECA language named
ECA-DL [Dockhorn Costa et al., 2006]. The Rule Manager com-
ponent transforms this ECA-DL rule into a rule that can be han-
dled by the underlying rule-engine. In our prototype, the context-
aware components use the JESS rule engine [JES].

Once a rule is registered, it is available to the context-aware
components but still not subject to monitoring, i.e., the rule is
only registered in the Rule Repository, but its triggering condi-
tion is not activated to be evaluated. A requesting component
has to activate the rule to start the evaluation of the rule’s trig-
gering condition. When a registered rule is activated, the Rule
Manager component sends it to the Context-Aware Controller.
The Context-Aware Controller component extracts the context
variables (the event part) of the rule and submits the extracted
events to the Event Monitor. Figure 5-33 shows a UML Sequence
Diagram that depicts the message exchange of the rule subscrip-
tion.

Figure 5-33
Sequence of
interactions
for
monitoring
rule
subscription

Requesting 
Component

Rule Manager

subscribe(rule, requesterId)

ruleId

startRule(ruleId)

Rule Repository Context-Aware 
Controller

Event Monitor

parseRule(rule)

storeRule(rule, requesterId)

monitorRule(ruleId)

retrieveRule(ruleId)

rule

extractEvent(rule)

subscribeEvent(event)

The main functionality of the Event Monitor component is to
facilitate the access to contextual data. The Event Monitor pro-
vides to other context-aware components a mechanism for sub-



160 Chapter 5 Context-Aware Service Platform

scribing to or querying for context data. For instance, if the
Context-Aware Controller needs to monitor the battery level of
a device, the Event Monitor searches for an appropriate context
provider (and its related context sources) that could supply this
information through the Context Manager component. Once a
context provider is found, the Event Monitor subscribes to the
request battery level data and informs the Context-Aware Con-
troller of events containing the requested data.

The Event Monitor maintains a subscription to the correspond-
ing context sources for each event that the Context-Aware Con-
troller has requested. A list relating events and context sources
should be maintained to avoid redundant subscriptions. To ac-
complish this, the Event Monitor analyzes the requested subscrip-
tions searching for overlaps in the subscription’s requirements. An
example of a requirement overlap is when different rules request
the same event from a single context source. In this, case the
Event Monitor keeps only one subscription to the context source.

After subscribing the events contained in the rule to the Event
Monitor, the Context-Aware Controller starts receiving notifica-
tions of the occurrence of these events. For each event notification
received, the Context-Aware Controller evaluates the new infor-
mation against the notification rules. When the rule’s condition
evaluates to true, the Context-Aware Controller informs the Rule
Manager, which then notifies the requesting component that pro-
vides the requested contextual information.

5.5.4 ECA-DL
The ECA-DL has been developed following the event-condition-
action (ECA) pattern [Dockhorn Costa et al., 2005]. Rules in
ECA-DL consist of an Event part that models an occurrence of
interest in the context, a Condition part that specifies a condition
that must hold for the execution of the action to be triggered,
and an Action part which consists of actions, typically service
invocations.

ECA-DL is defined upon two complementary information and
behavior foundations. Information foundation refers to the repre-
sentation of the applications’ universe of discourse, i.e., a domain
ontology. For example, we should be able to express within ECA-
DL rules whether people are in the house or not, whether objects
are plugged in or not, whether persons and objects are collocated,
among others. The behavior foundation of the ECA-DL language
refers to the dynamics of rule execution, i.e., how and when a rule
should be executed and what are the elements of the language that



Context-Aware Components 161

should be used to perform a particular piece of reactive behavior.
The context-aware components assume that one is only allowed

to use a piece of knowledge in the ECA-DL rule if this has been
previously defined in the domain ontology. For example, if the
domain ontology does not define the concept of co-location, this
concept cannot be referenced in ECA-DL rules [Dockhorn Costa
et al., 2005]. A simple, example to illustrate the structure of
ECA-DL rule is the following:

Upon ←↩
↪→ EnterFalse(isAtHome (ServiceBeneficiary .John))

When isAtHome (Device .Laptop123 ) and
isOwnedBy (Device .Laptop , ←↩

↪→ ServiceBeneficiary .John) and
hasMeeting( ServiceBeneficiary .John)

Do notify (ServiceInvoker ,
ServiceBeneficiary .John.location ,
Device .Laptop123 .Location )

Lifetime from ‘‘Monday ’’ to ‘‘Friday ’’

This rule is used to detect if John leaves his house without his
laptop on a day when he has a meeting. When this condition
holds, the rule should notify the location of John and his laptop,
so a proper communication method can be applied based on his
location to inform him that he should pick up his laptop, at the
laptop’s location, for the upcoming meeting. In our experiments
testing this rule in the scope of the Amigo project [Ami], we have
used a RFID tag inside John’s wallet to detect whether he is
at his home, the GPS capability of his mobile phone to assess
his location while outside his home, and the Bluetooth and WiFi
signal triangulation to detect the laptop’s location.

For the isAtHome event part of this example rule, the Event
Monitor asks the Context Manager for a context source that keeps
track of which service beneficiaries and devices are at home. When
the Context Manager returns the reference for a context source,
the Event Monitor subscribes to it with a query parameterized for
John and for Laptop123. After the Event Monitor subscribes to
the contextual information, the context source informs every time
the result of the query changes. This allows the Event Monitor to
test if the answer changed from TRUE to FALSE (the EnterFalse
part of the Upon clause). In this example, the transition Enter-
False is used to express when John is no longer at home. The
Event Monitor performs similar subscriptions to other contextual
information for the conditions in the When clause.

All the information from incoming events is evaluated by the
Context-Aware Controller by pushing it to its internal rule engine



162 Chapter 5 Context-Aware Service Platform

for evaluation. Since the triggering element is the event, i.e., the
element in the Upon clause, the conditions in the When clause are
only evaluated if the event occurs. Once all the events and con-
ditions specified in the ECA-DL rule are met, the Service Invoker
component is notified with the location of John and of his laptop.
In this example, the contextual information is used by the Service
Invoker to trigger the execution of a service.

5.6 Service Provisioning Components

5.6.1 Service request creation
As depicted in Figure 5-34, the CASP’s service provisioning starts
when the CASP’s Consumer Interface component receives the goal
that the Service Consumer wants to achieve. The Consumer Inter-
face forwards the goal to the Service Requester component, which
tries to match this goal with the goals defined in the domain on-
tology, with which the Consumer Goal has been semantically an-
notated. For the sake of clarity, we refer to Consumer Goal as
the goal which the Service Consumer submits to the platform to
be fulfilled, and we refer to Domain Ontology Goal as one of the
goals defined by the Domain Specialist for a given domain.

Figure 5-34
The
CASP’s
service
provisioning
steps

Service
Consumer

Consumer Goal

Consumer Context

Consumer Goal to 
Domain Ontology Goal 

Matching

Domain Ontology 
Task(s) Retrieval

Service Request 
Creation

Service
Provider

Service 
Description

Service Registry

Service Discovery and 
Composition

Service Request

Service Selection

Service Invocation

Service
Executor

Service ResultsService Results 
Adaptation

Adapted Service 
Results

Consumer Context

The match between a Consumer Goal and a Domain Ontology
Goal is assessed in two distinct ways:
1. When a Consumer Goal is selected directly from the set of



Service Provisioning Components 163

valid goals for that domain, a match does not have to be eval-
uated since the two goals refer to the same goal instance in
the domain ontology. In this situation the platform just lo-
cates the referred goal instance in the domain ontology. For
instance, suppose Service Consumer Alfred is going to a busi-
ness trip and, instead of defining his own goal, he selects
from the Travel domain ontology the goal instance GetLuxu-
ryHotelRoom as his goal.

2. When a Consumer Goal has been defined by the Service Con-
sumer, the platform looks for a matching goal by comparing
the situations that can satisfy the Consumer Goal with the
Situations satisfying each of the goals defined in the domain
ontology. In the hotel room example, suppose that instead of
selecting an already specified goal in the domain ontology, the
Service Consumer describes the goal of having a comfortable
accommodation at his trip’s destination by defining that his
goal is satisfied if he has a hotel suite booked at his destina-
tion in a hotel with a minimum of 4 stars. In this example the
platform tries to find domain ontology goals that can be sat-
isfied by the situation defined by the Service Consumer and
finds the goal GetLuxuryHotelRoom, whose satisfying situa-
tion matches the situation described by the service consumer.

To find a match between the Consumer Goal and the Domain
Ontology Goal, the Service Requester component retrieves the
Domain Ontology Goals and their satisfying situations from the
Registry Manager component. When a match between a Con-
sumer Goal and a Domain Ontology Goal is found, the Service
Requester component proceeds to retrieve from the Registry Man-
ager the tasks defined in the domain ontology that support the
goal. Once a task supporting the goal is found, the CASP is able to
create a service request specifying the task that the candidate ser-
vices should perform. Additionally, contextual information from
the Service Consumer is queried to the Rule Manager component,
and used to refine the service discovery and composition. An
overview of the interactions between the Service Requester, the
Registry Manager and the Rule Manager components that lead
to the creation of the service request is depicted in Figure 5-35.

5.6.2 Service discovery and composition
After the service request has been created, the Service Requester
component submits the created service request to the Service
Finder component. The Service Finder is responsible for querying
the Registry Manager for services complying with the service re-



164 Chapter 5 Context-Aware Service Platform

Figure 5-35
Overview of
the
interactions
for service
request
creation

Service Requester

matchConsumerGoalWithDomainOntologyGoal
(consumerGoal, domainGoals) : domainOntologyGoal

retrieveTasksFromDomainOntolgyGoal
(domain, domainOntologyGoal): supportingTasks

createServiceRequest
(supportingTask, contextualInformation): serviceRequest

getAvailableContextualInformation
(supportingTasks): contextualInformation

Registry Manager

retrieveDomainOntolgyGoals(domain): domainGoals

Rule Manager

quest. If no service could be found, the Service Finder invokes the
Service Composer component to try to generate a service compo-
sition that complies with the service request. We have based the
CASP’s Service Finder and Service Composer components on the
Dynamic Composition of Services 1 (DynamiCoS) [Goncalves da
Silva et al., 2011] platform, which is further discussed in Section
5.6.3.

When the CASP finds a service matching the service client’s
goal, and if the service provider allows negotiation for this service,
the platform informs the successful discovery to the service client.
In this case, the service client can proceed with service negoti-
ation. Once an agreement on the terms of service provisioning
is reached, the CASP searches in the descriptions related to the
discovered service, and in the approved agreement for information
required for the service activation, triggering and execution. In
case service negotiation is not allowed, the CASP uses the ad-
hesion service contract defined in the service description as the
service agreement. Moreover, the platform verifies if the informa-
tion required for the service activation, triggering and execution
can be supplied by contextual information. If it is possible to
use contextual information, the platform requests the provision-
ing of this information to the context providers. Otherwise, the
information is requested to the service consumer, when needed.

The CASP monitors the requested contextual information and,
once the activation condition holds, the discovered service be-
comes active and waiting for the triggering condition. When the

1http://dynamicos.sourceforge.net



Service Provisioning Components 165

triggering condition holds, the CASP requests the service execu-
tion to the Service Executor component, sending the input infor-
mation gathered from the service beneficiary or from the context
providers. When the service execution finishes, if any output in-
formation has to be delivered to the service client, the CASP pro-
cesses this information by transforming it to the format expected
by the service beneficiary, if necessary.

5.6.3 The DynamiCoS service platform
The CASP components responsible for service discovery and com-
position are based on the Dynamic Composition of Services (Dy-
namiCoS) [Goncalves da Silva et al., 2011]. DynamiCoS is a plat-
form for service discovery and composition based on semantic ser-
vice descriptions. The DynamiCoS platform has been designed to
be agnostic with respect to any specific service description lan-
guage. To achieve language-neutrality, DynamiCoS creates map-
pings between service and service composition representation lan-
guages and its internal representations. Internally, DynamiCoS
represents service and service compositions as tuples and graphs,
respectively. Therefore, to use different languages to represent ser-
vices and service compositions, it is only necessary to provide the
appropriate mappings between these representation technologies
and the DynamiCoS internal representations. Figure 5-36 depicts
the DynamiCoS platform architecture.

Figure 5-36
The
architecture
of the
DynamiCoS
service
composition
platform

Service
developer

DynamiCoS

Service Request Service discovery

Service Composition

CLM Construction

Graph-based service 
composition

Service composition 
selection

Service composition 
selection

Service deployment

Service
developer

Domain Ontologies

A service in DynamiCoS is internally represented as a seven-
tuple s =< ID, I, O, P,E,G,NF >, where ID is the service iden-
tifier, I is the set of service inputs, O is the set of service outputs,



166 Chapter 5 Context-Aware Service Platform

P is the set of service preconditions, E is the set of service ef-
fects, G is the set of goals the service supports, NF is the set
of service non-functional properties and constraint values. Dy-
namiCoS assumes that services in a composition are of the type
request-response.

A service composition is represented in DynamiCoS as a di-
rected graph G = (N,E). The graph nodes N represent services.
Each node ni ∈ N represents a discovered service si, and a node
can have multiple incoming and outgoing edges. Graph edges E
represent the coupling between the output/effect of a service and
the input/precondition of another service, i.e., ei→j = ni

O/E →
nj
I/P , where i .= j, since DynamiCoS does not allow a service to

be coupled with itself.
To perform a service discovery, the DynamiCoS requires that

the service request contains a set of tasks the discovered ser-
vice should perform. The discovery is performed by querying
the service registry for all the services that semantically match
the service request. This semantic match is carried out by com-
paring the service request’s inputs, outputs, preconditions, ef-
fects (IOPE) and goals (G) (the root goal and its associated
sub-goals) with the service tasks’ inputs, outputs, preconditions
and effects, and the service’s supported goals defined in the regis-
tered service descriptions. Since DynamiCoS uses semantic-based
service discovery, not only exact matches are retrieved but also
partial semantic matches, such as when a concept is semanti-
cally subsumed by the service request parameter concept (i.e.,
RequestedConcept 1 DiscoveredConcept).

In the DynamiCoS prototype, a service request XML file is
parsed and the IOPE and goal parameters are extracted. The
service registry is queried using the jUDDI API Inquiry operation
[Apache, 2008], and the semantically-related concepts are defined
using the OWL-API [Bechhofer et al., 2003] and the Pellet rea-
soner [Sirin et al., 2007].

The DynamiCos performs service composition by organizing
the discovered services in a Causal Link Matrix (CLM) (REF)
and storing all possible semantic connections (or causal links)
between the discovered services input and output concepts. As
defined in Equation 5.1, CLM rows represent the discovered ser-
vices’ input concepts (DiscovServicesi). Equation 5.2 shows that
CLM columns represent service inputs concepts and the requested
service outputs (ServiceReqO).

CLMrows = DiscovServicesI (5.1)



Service Provisioning Components 167

CLMcol = DiscovServicesI ∪ ServiceReqO (5.2)
\(DiscovServicesI ∩ ServiceReqO)

When a given service S has an input that is semantically related
with the input i in the CLM and an output that is semantically re-
lated with the semantic concept in CLM’s column j, the service is
stored in row i and column j. Moreover, for each service, Dynamo-
CoS stores the semantic similarity for these values in the matrix.
Four types of semantic similarity are supported by DynamiCoS:
– Exact (≡) when the output parameter Outputy of service

Sy is equivalent to the input parameter Inputx of service Sx.
Formally, τ |= Outputy ≡ Inputx.

– PlugIn (4) when the concept Outputy is a sub-concept of the
concept Inputx. Formally, τ |= Outputy 4 Inputx.

– Subsume (1) when the concept Outputy is a super-concept
of the concept Inputx. Formally, τ |= Outputy 1 Inputx.

– Disjoint (⊥) when the concept Outputy is semantically in-
compatible with the concept Inputx. Formally, τ |= Outputy6
Inputx 4⊥.
In DynamiCoS, the composition process is simplified since the

service composition engine only traverses the CLM searching for
services matching a given input/output. Algorithm 5.3, repre-
sented in a simplified pseudo code formalism, shows the Dynami-
CoS service composition algorithm.

Listing 5.3 DynamiCoS’ graph composition algorithm

1 Input : CLM, Serv iceReq
2 Result : Val idComposit ions
3

4 // Var i ab l e s
5 activeG ; // Graph that i s a c t i v e in the a lgor i thm ←↩

↪→ i t e r a t i o n
6 activeN ; // Node that i s a c t i v e in the a lgor i thm ←↩

↪→ i t e r a t i o n
7 openG ; // Set o f open graphs
8 validG ; // Set o f completed and va l i d graphs
9 // I n i t i a l i z a t i o n

10 i f CLMrows∪columns ⊇ ServiceReqI,O then
11 // Create new graph
12 activeG← createNewGraph() ;
13 createInitialNodes() ;
14 openG← activeG ;
15 e l s e
16 // Discovered s e r v i c e s cannot f u l f i l l the ←↩

↪→ s e r v i c e r eque s t
17 Stop ;



168 Chapter 5 Context-Aware Service Platform

18 // Graph cons t ruc t i on cy c l e
19 whi l e | openG |> 0 do
20 // Close graph i f i t matches ServiceReqI,G
21 i f activeGI,G ⊇ ServiceReqI,G then
22 validG← activeG ;
23 openG← openG% activeG ;
24 activeG← openGO ;
25 activeN ← activeGopenNO ;
26 break ; // Goes to next openG
27 // Checks CLM fo r s e r v i c e s that match open input s
28 f o r e a ch semCon ∈ activeNI do
29 i f CLMcolu ⊇ semCon then
30 activeN ← CLMmatchingNode ;
31 e l s e
32 openG← openG% ActiveG ;
33 activeG← openG†O ;
34 activeN ← activeGopenNO ;
35 break ; // No p o s s i b l e composi t ion , goes to ←↩

↪→ next open graph
36 // Check i f graph NF props comply with ←↩

↪→ reques ted NF props
37 i f activeGNF ∩ ServiceReqNF = 0 then
38 openG← openG% activeG ;
39 break ; // I f Not , composi t ion i s not p o s s i b l e ;
40 // Prepare next c y c l e
41 openN ← openN % activeN ;

The service composition algorithm starts by analyzing the CLM
to check whether it contains the service request parameters (IOPE/
G). If these parameters are present, the algorithm proceeds to
search for services that provide the requested outputs. In case
services that provide the request outputs are found, the algorithm
creates the initial matching nodes and proceeds with a backwards
composition strategy towards the requested service inputs.

An open, i.e., not yet composed, input of the graph is resolved
at each iteration of the algorithm. The algorithm matches the
open inputs of the services in the graph with the output concepts
of services from the CLM matrix, or column concepts. If the al-
gorithm finds multiple services that match a given graph service
input, a new composition graph is created, representing an alter-
native service composition. In each iteration of the algorithm, the
aggregated non-functional properties in the composition graph are
checked to assess whether these properties match the requested
non-functional properties. If a composition graph does not match
the requested non-functional properties it is discarded from the set
of valid service compositions. When all the requested inputs, pre-
conditions and goals from all the alternative service compositions
are resolved, the algorithm successfully finishes.



Service Provisioning Components 169

In the DynamiCoS prototype presented in [da Silva, 2011],
the service composition algorithm was implemented in Java, and
the ontology handling and reasoning were implemented using the
OWL-API [Bechhofer et al., 2003] and Pellet [Sirin et al., 2007],
respectively. The prototype used the jGraphT library [jGr, 2011]
to print out the resulting service composition graphs, allowing
them to be manually verified.

5.6.4 The integration of the CASP and the DynamiCoS
Since both the CASP and the DynamiCoS platforms were de-
signed following similar principles, such as the use of the goal
concept and the support for semantic annotations, the integration
of the DynamiCoS service discovery and composition components
required only minor adjustments. The necessary adjustments for
the integration of the DynamiCoS components into the CASP
have been the following:

Semantic-based service description language
In the DynamiCoS original prototype, Spatel [Almeida et al.,
2006] was used as service description language. Spatel was de-
veloped in the scope of the European IST-SPICE project [Cordier
et al., 2006], where the development of DynamiCoS was initiated.
Spatel supports the semantic annotation of inputs, outputs, pre-
conditions and effects of service operations, the definition of ser-
vice goals, and the definition of non-functional properties of ser-
vices. The Spatel semantic annotations refer to concepts defined
in four ontologies described in OWL, namely, Goals.owl, which de-
scribes the goals that the service clients can selected from; Non-
Functional.owl, which describes a set of non-functional proper-
ties to be used in service descriptions; Core.owl and IOTypes.owl,
which can be used to describe services and service requests’ IOPE
parameters, respectively.

The contents of the four ontologies used in DynamiCoS are de-
fined within a single domain ontology in GSF. Therefore, instead
of extracting this information from four different OWL files, in
the CASP the DynamiCoS components get the same information
from one OWL file containing the whole ontology for a given do-
main. In this way the GSF fosters integrity among the concepts
defined in a domain ontology and their consistency.

Moreover, in the CASP prototype, we have used SA-WSDL
as semantic-based service description language. For this reason,
changes had to be made in the DynamiCoS components to al-



170 Chapter 5 Context-Aware Service Platform

low them to interpret service descriptions written in SA-WSDL
instead of Spatel.

Service request creation
The DynamiCoS platform discovers and composes services based
on inputs, outputs, pre-conditions, effects, non-functional prop-
erties and goals. The DynamiCoS service request is defined as a
description of a desired service, and the discovery and composition
processes try to match the characteristics of this desired service
against the service descriptions available in the service registry.

Since the GSF, and consequently, the CASP, targets non-technical
service consumers, one of the main assumptions is that these con-
sumers do not need to have the technical expertise to write a
service specification. In GSF the service is requested by the ser-
vice consumer by means of the goal that the consumer wants to be
fulfilled. Consequently, before invoking the DynamiCoS’ service
discovery component, the CASP needs to create the description of
the desired service needed by the DynamiCoS component. This
description is obtained by discovering the task(s) that can sup-
port the service consumer’s goal. The DynamiCoS concept of ser-
vice corresponds to the GSO concept of Service Task. Therefore,
when the CASP discovers tasks specified in the domain ontol-
ogy that can support a given goal, these tasks are used to obtain
the definition of the desired service, providing information about
the inputs, outputs, pre-conditions and effects that the discovered
services should comply with.

Selected service
The DynamiCoS components, after successfully discovering or
composing a service, return the selected service to the client or
execute the service. In the integration of the DynamiCoS compo-
nents within the CASP, we considered that the client is the CASP,
and after successful service discovery or composition, the CASP
takes this selected service and proceeds with the service activa-
tion, triggering, invocation and delivery steps. Therefore, in this
regard, only small adjustments had to be made to the DynamiCoS
components to hand over the selected service back to the CASP
for further processing.



Chapter6
Case Study and Evaluation
This chapter demonstrates the suitability of the Goal-Based Ser-
vice Framework and its architectural components discussed through-
out Chapters 3 to 5, by means of a case study where the framework
components are used and tested. The usage scenarios we have con-
sidered in this case study are in the Home Health Care domain
due to its societal relevance, and its suitability to the objectives
of our service provisioning framework.

This chapter is structured following the approach we used to
create and execute this case study. Section 6.1 presents and jus-
tifies the Health Care usage scenario, Section 6.2 presents the
modeling of the scenario’s domain using the Goal-Based Domain
Specification Language (GDSL), Section 6.3 shows how this us-
age scenario has been supported by the Context-Aware Service
Platform, and finally, Section 6.4 discusses the results of the case
study, evaluating the framework’s performance.

6.1 Home Health Care Usage Scenarios

Throughout this thesis we have been using examples related to
the Home Health Care domain. This domain has been chosen due
to the following reasons:
– Global applicability. Scenarios in this domain can be applica-

ble in different parts of the world, specially in countries where
the elderly population has reached a significant percentage of
the general population. In these countries, there is a pressing
need for providing conditions allowing this population to re-
main in their houses or at elderly-exclusive facilities with the
highest possible quality of life.

– Non-technical users. In this domain the end-users are among
all segments of society, regardless of their professional back-
ground. Therefore, we cannot rely on their technical knowl-



172 Chapter 6 Case Study and Evaluation

edge to write service request specifications in technical terms,
such as WSDL documents.

– Applicability of context-awareness. In this domain, the appli-
cation of context awareness is particularly useful. For exam-
ple, in the Netherlands there has been a number of research
projects aiming at providing context-aware infrastructure to
foster more automatic behavior of the applications deployed in
this domain, and to reduce the need for direct user interaction
[Ami, A-M, U-C].

– Co-existence of social and computational service. In the Health
Care domain in general, and the Home Health Care domain
in particular, it is straightforward to identify social and com-
putational services. For instance, services that can can be au-
tomated by means of computational devices (computational
services), such as appointment scheduling, vital signs’ moni-
toring, etc., coexist with services that pertain exclusively to
the social level (social services), such as a medical consultation
or a medical diagnosis.
The following scenarios illustrate relevant situations in the

health care domain from which we modeled this domain. These
situations have been taken from the U-Care [U-C] and A-MUSE
project documentation [A-M], and personal experience with the
Dutch health system. The Home Health Care scenarios are as
follows:

Usage scenario 1 - Assisted living
John Pieters is 78 years old and living alone in a care center.
He developed chronic obstructive pulmonary disease (COPD). The
treatment of Mr. Pieters’ disease focuses on reducing symptoms
and avoiding further deterioration of his condition. Some of his
medicines work for the symptoms, but physical exercise is the key
treatment. The original series of exercise was explained once at
the doctor’s office. Since then, Mr. Pieters conducts them at his
home. During the exercises, he uses a finger clip, which mea-
sures the oxygen level in his blood and his heart beat rate. Julie is
a software-based personal assistant from whom Mr. Pieters gets
feedback on how long he should do each exercise, based on those
measurements. Thanks to this feedback, Mr. Pieters is confident
to continue the exercise for longer than he would do otherwise.
[van ’t Klooster et al., 2009]

A COPD nurse uses a two-way video system to check-up on Mr.
Pieters monthly. After those check-ups, the doctor may adjust the
exercise levels and medicines, based on the acquired measurements



Home Health Care Usage Scenarios 173

and progress of the disease. The COPD nurse also adds the next
check-up into Mr. Pieters’ calendar service. Reminders for doing
the exercises, taking the medicine and the meetings are sent to
Mr. Pieters through Julie, either at home via the wall-mounted
screen or (when he is underway) via his mobile phone. This helps
him, as his memory is progressively failing. [van ’t Klooster et al.,
2009]

Mr. Pieters likes Alice, one of the caregivers that regularly visit
him. Alice not only helps with the housekeeping in his apartment,
but also checks up on him once in a while via Julie to see how
he is doing. Julie suggests activities and new inhabitants of the
care center for him to meet. One new inhabitant turns out to be a
friendly man, and Alice arranges their conversation through Julie.
Afterwards, Mr. Pieters and the new inhabitant meet occasionally
for a walk or coffee. [van ’t Klooster et al., 2009]

Usage scenario 2 - Medication monitoring
Jan and Linda are 74 and 67 years old respectively. Despite their
age and having various medical conditions, they prefer to remain
living in their own home. They need to take certain medicines
at specific schedule. However, they suffer from Alzheimer’s dis-
ease and may not remember when to take which medicine and
at which dosage. In this situation, a reminder service may help
them remember the prescribed time and an electronic medicine
dispenser may help them take the correct medicine at the correct
dosage. In some situations, the reminder and the dispenser are
not enough to guarantee that Jan and Julia take their medicine.
For instance, Jan sometimes ignores the reminder and does not
take his medicine because he his too disoriented. In such situa-
tions, assistance from other people is necessary. Therefore, the
couple uses a service that identifies the situations where Jan or
Julia did not properly take their medicines and requests for exter-
nal help. Moreover, Jan has a hearing problem and uses a hearing
aid, and Linda cannot see well and because of this she must wear
glasses. [Zarifi Eslami et al., 2010]

Usage scenario 3 - Seizure control
Maria has a chronic epileptic condition. However, she wants to
carry on with her life as normally as possible. As a daily routine,
every morning she runs in the park near her house. It is possi-
ble to detect an imminent epileptic seizure based on body signals.
Therefore, she receives warnings if her body signals reach a critical



174 Chapter 6 Case Study and Evaluation

point so she can stop running and try to put herself in a resting
position. Concurrently, a relative or friend which is closer to her
location is warned of her potentially coming seizure and head on to
her whereabouts. The assigned or on-duty caregiver also receives
information about her body signals, her location, which relative
or friend has been warned and when and how far he/she is from
Maria’s location. This information is used by the caregiver to de-
cide whether to send an ambulance (depending on the severity of
the body signals), or to contact the warned relative or friend to
provide further assistance instructions and receive extra situation
assessment. [A-M, Bonino da Silva Santos et al., 2010a]

Usage scenario 4 - Traveler patient
Lucia is a professional whose job requires frequent business trips.
In one of these trips, she has a health-related event and needs to
consult with a doctor. However, since she is not near her house
and, consequently, far away from her general practitioner, she
needs to find a nearby doctor that complies with her health in-
surance’s conditions. [Bonino da Silva Santos et al., 2010b]

Since we assume that all the patients mentioned here live in
the Netherlands, they are obliged by law to be covered by a health
insurance. Several companies offer health insurance policies, and
these policies must comply with federal regulations concerning
the types of treatments covered by each policy, reimbursement
procedures, own risk, dental care, physiotherapy, among others.
Everyone is free to choose the health insurance company and the
insurance policy of preference, and changes are allowed once a
year.

6.2 Domain Modeling

Below we define the domain model used in our case study in terms
of stakeholders, goals and tasks, aiming at supporting the scenar-
ios described before.

6.2.1 Domain Stakeholders
From the usage scenario presented in the previous section, we have
identified a set of stakeholder types, namely, patient, caregiver,
health insurance company, personal assistant, nurse, physician
and federal health care regulator agency. Some of these stakehold-
ers have hierarchical relationships with others, such as physician



Domain Modeling 175

and nurse that can be classified as sub-types of a caregiver. All
of these stakeholders have their intentionality, and therefore, they
are classified as agents in the GSO.

The identified agents can be further classified based on whether
these roles can be instantiated by persons, by organizations or by
software. For instance, a physician agent role is instantiated by a
person while a health care insurance agent role is instantiated by
an organization. Figure 6-1 depicts the identified agents classified
as Human, Institutional (organizations) or Artificial Agents (e.g.
software).

Figure 6-1
The
identified
agents
classified as
human,
institutional
or artificial
agents

Patient

internal agentGSO: Agent 
Universal

GSO: Artificial 
Agent Universal

GSO: Human 
Agent Universal

GSO: Institutional 
Agent Universal

Physician Nurse Personal Assistant
Health Insurance 

Company
Health Care 

Regulator Agency

<<instanceOf>> <<instanceOf>><<instanceOf>><<instanceOf>>
<<instanceOf>>

<<instanceOf>>

2..*

In Figure 6-1 we use the UML stereotype “instanceOf” to rep-
resent that the Agent Universal, the Human Agent Universal, the
Artificial Agent Universal and the Institutional Agent Universal
concepts are used here as language primitives to classify the identi-
fied agents. In other words, the GSO concepts are at the modeling
language level (or metamodel level) while the Patient, Caregiver,
Physician, Nurse, Personal Assistant, Health Insurance Company
and Health Care Regulator Agency concepts are at the model level
and are instances of the GSO concepts.

Taking into account the roles these agents play in service pro-
visioning, we classified them into service providers, service clients,
service executors and service beneficiaries. We classified the Pa-
tient agent as a service client because, in this usage scenario,
the patient is the main target of the home health care services.
Regarding the Personal Assistant agent, its classification is as
straightforward as the Patient. Based on the usage scenario #1,
we noticed that the personal assistant provides informational ser-
vices to the patient (such as reminding the patient that it is time
for the medicine) and, as such, can be classified as service pro-
vider. However, the personal assistant also acts on behalf of the
patient as its surrogate software agent and, as such, can be clas-
sified as the patient’s artificial service client. In the modeling of
our usage scenario we opted for the later classification.

Figure 6-2 depicts the Patient agent classified using the Hu-



176 Chapter 6 Case Study and Evaluation

man Service Client Universal concept while the Personal Assis-
tant agent is classified using the Artificial Service Client Universal
concept.

Figure 6-2
The service
clients

Patient
Personal 
Assistant

GSO: Human 
Agent Universal

GSO: Agent Role 
Universal

GSO: Human Service 
Client Universal

<<instance>>

GSO: Artificial 
Agent Universal

GSO: Artificial Service 
Client Universal

<<instance>>

uses

uses

In our usage scenarios, the providers of the health services
are the caregivers, specialized into physicians and nurses, and
the health insurance companies. Figure 6-3 depicts the Care-
giver agent classified as a GSO Human Service Provider, while
the Health Insurance Company agent is classified as a GSO Insti-
tutional Service Provider.

Figure 6-3
The service
providers

Caregiver
Health Insurance 

Company

GSO: Human 
Agent Universal

GSO: Agent Role 
Universal

GSO: Human Service 
Provider Universal

<<instanceOf>>

GSO: Institutional 
Agent Universal

GSO: Institutional Service 
Provider Universal

<<instanceOf>>

Physician Nurse

The Health Care Regulator Agency agent does not play any
service provisioning role in our usage scenarios. This agent is a
normative authority, setting policies and guidelines for the func-
tioning of the health care sector. Therefore, caregivers and health
insurance companies have to comply with these regulations. The
role of the regulator agency is further discussed in the following
sections.

The classification of the identified agents into service provi-
sioning roles follows their transient nature, i.e., the classification
is valid in the scope of the presented usage scenarios, whereas in
other possible scenarios their classes may change. For instance,
in a medical trial scenario, instead of being classified as a service
client as in our usage scenarios, the patient agent may be classified
as the provider (the Service Provider role) of a supplying medical



Domain Modeling 177

information service for the trial study.
At the instance level, the classification of individuals as in-

stances of the identified agents, and the consequent assignment of
individuals to the roles of service client, service beneficiary, service
provider and service executor can be done during domain specifi-
cation or at runtime. When the assignment is performed during
domain specification, it remains fixed until the domain specifi-
cation is updated, i.e., until the domain specialist modifies the
domain ontology. Contrarily, when the assignment is performed
at runtime, it can be dynamically changed by the supporting plat-
form.

For instance, Figure 6-4 depicts a model where Mr. Pieters (in
usage scenario #1) is classified as an instance of the Patient con-
cept and Julie is classified as an instance of the Personal Assistant
concept. If we consider that this model has been defined during
domain specification, it implies that Mr. Pieters is always going
to play the role of Human Service Client and Julie is always going
to play the role of Artificial Service Client, as long as the model
is not modified. However, if the model (or at least the instance-
level part) has been dynamically defined at runtime, it opens the
possibility that in a certain circumstance Mr. Pieters plays the
role of Human Service Client (e.g., when he receives medical care)
while in another circumstance he plays the role of a Human Ser-
vice Provider (e.g., when he provides medical-related information
to be used by the Health Care Regulator Agency for statistical
purposes).

Figure 6-4
The
instance-
level model
with service
clients

Patient
Personal 
Assistant

GSO: Human 
Agent Universal

GSO: Agent Role 
Universal

GSO: Human Service 
Client Universal

<<instance>>

GSO: Artificial 
Agent Universal

GSO: Artificial Service 
Client Universal

<<instance>>

Mr. Pieters

<<instance>>

Lucie

<<instance>>

Metamodel level
(GSO)

Model level
(domain ontology)

Instance level

In this case study we dynamically classify the instance-level
individual agents at runtime. This dynamic classification is per-
formed based on context-aware information gathered by the sup-
porting platform and is further discussed in the following sections.



178 Chapter 6 Case Study and Evaluation

6.2.2 Domain Goals
When producing a domain specification, the domain specialist
should identify goals that can be adopted by classes of agents
in this domain. For instance, in a football domain, the Striker
agent may have the goal of scoring the maximum amount of goals
per match. Conversely, classes of agents can be characterized by
the goals they are assigned. For instance, the Goal Keeper agent
can be characterized as having the goal of avoiding goals from the
opposing team.

In our approach we are focused on the goals of the service
clients. Therefore, in our usage scenario we have identified a set
of goals that a client of medical services may have and assigned
these goal to the Patient agent. These goals are used as template
goals, which represent typical situations in the domain.

The most basic and general goal that a client of medical ser-
vices may have is to be and stay healthy. As defined by the World
Health Organization (WHO), health is “a state of physical, men-
tal, and social well-being" [Grad, 2002]. Therefore, one can be
physically healthy while being mentally ill, others can be men-
tally and socially healthy while physically ill, etc. In this case
study we assume that the goal of being healthy entails that the
patient should become healthy if he is in an unhealthy situation
or stay healthy if he is already in a healthy situation. Moreover,
being a continuously pursued goal, it may be the case that a given
patient can only reach a certain level of health. For instance, a
patient with a chronic disease may only be “as healthy as possible"
due to its overall condition.

In our usage scenario #1, we have a COPD patient that aims at
improving his health through a medical treatment. This medical
treatment consists of medication and physical exercises targeted
at enhancing the patient’s cardiovascular condition. Based on the
needs of this kind of patient, we can infer that for this patient, the
goal of being healthy can be specialized into the goal of getting
medical treatment. Figure 6-5 depicts our goal model for COPD
patients. In this model the Be Healthy root goal is defined as an
instance of GSO’s Complex Goal concept. This root goal is decom-
posed into the other complex goal Get COPD medical treatment
using the GSO’s AND goal composition relation (see Section 4.3,
Figure 4-19). Using the same relation, the goal of getting medical
treatment is further decomposed into the atomic goals Be medi-
cated and Improve cardiovascular condition. Following the holistic
view of the WHO’s health definition, we defined as another com-
ponent of the Be Healthy goal the atomic goal of Maintain social



Domain Modeling 179

activities. While the previous goals were defined to improve the
physical health, this last goal has been defined to improve the
mental health of the patient.

Figure 6-5
Identified
goals for
COPD
patients

Be Healthy

Be medicated

GSO: Goal

GSO: Atomic Goal

<<instanceOf>>

GSO: Complex Goal

<<instanceOf>>

components

AND
goal composition

Get COPD medical 
treatment

Improve cardiovascular 
condition

2..*

*

Maintain social 
activities

AND
goal composition

<
<

in
st

an
ce

Of
>

>

<
<

in
st

an
ce

Of
>

>

<
<

in
st

an
ce

Of
>

>

In the case of the Alzheimer’s patients in our usage scenario
#2 , their goals are similar to the COPD patient with the ex-
ception that they do not need to improve their cardiovascular
condition and, therefore, their medical treatment includes taking
medicines. However, these patients’ goal of being medicated can
be composed of administering the medication themselves or being
assisted. Figure 6-6 depicts the goal model for patients needing
assisted medication, where the goal Be Medicated is defined as a
complex goal that could be fulfilled by either the fulfillment of the
Self medication atomic goal, where the patient administers him-
self the medication, or the fulfillment of the Assisted medication
atomic goal, where the patient receives external assistance to get
the medication. For simplicity we did not depict in this model the
root goal Be Healthy and its first decomposition into getting medi-
cal treatment and maintaining social activities. However, the goal
Be Medicated is a specialization of the goal Get medical treatment.

Having a chronic condition that otherwise does not impose any
physical limitation, the epileptic patient from our usage scenario
#3 has only the goal of better handling seizures. As depicted in
Figure 6-7, the goal of handling seizure can be either fulfilled by
the goal Prevent seizure or by the goal Minimize seizure conse-
quence.

The traveler patient from our usage scenario #4 has the goal of
getting a medical consultation on her current location as depicted



180 Chapter 6 Case Study and Evaluation

Figure 6-6
Identified
goals for
patients
needing
assisted
medication

OR
goal composition

Be medicated

Self medication

Assisted 
medication

GSO: Goal

GSO: Atomic Goal GSO: Complex Goal

components

2..*

*

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Figure 6-7
Identified
goals for
epileptic
patients

OR
goal composition

Handle seizures

Prevent seizure

Minimize seizure 
consequence

GSO: Goal

GSO: Atomic Goal GSO: Complex Goal

components

2..*

*

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

in Figure 6-8a. Moreover, as stated in the usage scenario, all our
patients are required to have medical insurance in order to receive
any medical care. In our model, we defined this legal requirement
as a general goal of having medical insurance. More specifically,
we modeled that the Be Healthy goal always consists of the goal
Get medical insurance, as depicted in Figure 6-8b.

Figure 6-8
Identified
goal for
traveler
patients
and a
general goal
for all
patients

Get medical 
consultation

GSO: Goal

GSO: Atomic Goal

<<instanceOf>>

(a) Traveler pa-
tient goal

Be Healthy

GSO: Goal

GSO: Atomic Goal GSO: Complex Goal

<<instanceOf>>

components

...

2..*

*

Get medical 
insurance

AND
goal composition

<
<

in
st

an
ce

Of
>

>

<
<

in
st

an
ce

Of
>

>

(b) All patients’ goal

After the goals have been identified and modeled, the domain



Domain Modeling 181

specialist can assign different service clients to the goals. In Fig-
ure 6-9 we present the set of goals we have identified for our us-
age scenario and assigned goals to different service clients. We
have defined a hierarchy of patients from the root Patient being
refined into COPD Patient, Alzheimer Patient, Traveler Patient
and Epileptic Patient. With this hierarchy, the platform can ei-
ther identify the type of patient based on the intended goal, or the
goal to be assigned to the patient based on its specific type. For
instance, if the patient has been identified as a traveler, the plat-
form can automatically assign the goal Get medical consultation.
Inversely, if a given patient informs the platform that it intended
the goal Get COPD medical treatment, the platform can infer that
this patient is a COPD patient.

Figure 6-9
Identified
goals and
their
owners

<<Complex Goal>>
Be Healthy

<<Atomic Goal>>
Get medical insurance <<Goal>>

Get medical treatment

<<Atomic Goal>>
Maintain social activities

<<Complex Goal>>
Get COPD medical treatment

<<Complex Goal>>
Be medicated

AND
goal composition

<<Atomic Goal>>
Improve cardiovascular condition

OR
goal composition

<<Atomic Goal>>
Self medication

<<Atomic Goal>>
Assisted medication

<<Atomic Goal>>
Get medicine treatment

<<Complex Goal>>
Handle seizures

OR
goal composition

<<Atomic Goal>>
Prevent seizure

<<Atomic Goal>>
Minimize seizure consequence

<<Atomic Goal>>
Get medical consultationAND

goal composition

AND
goal composition

OR
goal composition

OR
goal composition

<<Human Service Client>>
Patient

owns

<<Human Service Client>>
COPD Patient

owns

<<Human Service Client>>
Alzheimer Patient

owns

<<Human Service Client>>
Traveler Patient

<<Human Service Client>>
Epileptic Patient

owns

owns

6.2.3 Domain Tasks
Once the set of goals has been defined, a domain specialist can
proceed with the elaboration of the domain specification by defin-
ing a set of tasks whose outcome satisfy these goals. At runtime
these tasks are matched with service tasks to find appropriate ser-
vices to fulfill the goals. However, while the service tasks represent
the concrete, implemented tasks, the tasks defined at the domain
specification time should represent more abstract and high level
tasks, allowing them to be matched with the more detailed and
implementation-specific tasks of the services.



182 Chapter 6 Case Study and Evaluation

In this case study we adopted the strategy of defining tasks
for the leaf goals, i.e., goals that are no further specialized or de-
composed. Figure 6-10 depicts the tasks that support the COPD
patient’s goals. In this model, the goal Maintain social activi-
ties is supported by the complex task Promote social activities.
This complex task can be further decomposed using the AND
task composition relation into the atomic tasks Suggest activities
and Suggest companions. An alternative of decomposition for the
complex task is defined using the OR task composition relation to
the atomic task Facilitate conversations.

Figure 6-10
The tasks
supporting
the COPD
patient’s
goals

<< Complex Goal>>
Be Healthy

<<Atomic Goal>>
Be medicated

AND
goal composition

<<Complex Goal>>
Get COPD medical treatment

<<Atomic Goal>>
Improve cardiovascular condition

<<Atomic Goal>>
Maintain social activities

AND
goal composition

<<Complex Task>>
Promote social activities

<<Atomic Task>>
Suggest activities

<<Atomic Task>>
Suggest companions

AND
task composition

supports

<<Atomic Task>>
Facilitate conversations

OR
task composition

<<Atomic Task>>
Monitor medication intake

<<Atomic Task>>
Warn medication time

<<Atomic Task>>
Set medication schedule

<<Complex Task>>
Medication Monitoring

supports

AND
task composition

AND
task composition

<<Complex Task>>
Support physical activities

<<Atomic Task>>
Monitor vital signs

<<Atomic Task>>
Inform exercise progress

supports

AND
task composition

In the case of tasks related to the Be medicated goal, the
Alzheimer patients goals can also be satisfied by these tasks. How-
ever, we have differentiated between assisted and self-medication
(see Figure 6-9). As depicted in Figure 6-11, when the patient
is able to administer the medication himself, the task to be per-
formed is only the Take medication task. If the patient needs
assistance to take his medication, we have defined the abstract
complex task Medication Monitoring, which is decomposed into
the tasks Set medication schedule, Monitor medication intake and
Warn medication time.



Domain Modeling 183

Figure 6-11
The
medication-
related
tasks

OR
goal composition

<<Complex Goal>>
Be medicated

<<Atomic Goal>>
Self medication

<<Atomic Goal>>
Assisted medication

<<Atomic Task>>
Take medication

<<Atomic Task>>
Warn medication time

<<Atomic Task>>
Set medication schedule

<<Complex Task>>
Medication Monitoring

AND
task composition

AND
task composition

supportssupports

<<Atomic Task>>
Monitor medication intake

For the epileptic patient’s goals, Figure 6-12 depicts the tasks
we defined to support these goals. To prevent seizures, we have
defined the complex task Inform upcoming seizure, which consists
of the task Detect upcoming seizure, based on the monitoring of
the patient’s body signals, and the task Warn patient, to allow
the patient to interrupt any physical activity and put herself in
a resting position. If the seizure is unavoidable, we have defined
two tasks to support the goal of Minimize seizure consequence:
task Warn patient, to allow the patient to put itself in an appro-
priate position for the seizure, and task Get assistance, which in
its structure consists of the task Warn nearby contact, to inform a
contact person located nearby the patient of the upcoming seizure,
and the task Warn caregiver.

Figure 6-12
The tasks
supporting
the
epileptic
patient’s
goals

OR
goal composition

<<Complex Goal>>
Handle seizures

<<Atomic Goal>>
Minimize seizure consequence

<<Atomic Goal>>
Prevent seizures

<<Atomic Task>>
Warn patient

<<Atomic Task>>
Detect upcoming seizure

<<Complex Task>>
Get assistance

<<Atomic Task>>
Warn nearby contact

<<Atomic Task>>
Warn caregiver

supportssupportssupports

AND
task composition

<<Complex Task>>
Inform upcoming seizure

AND
task composition

The last two goals are supported by the tasks depicted in Fig-
ure 6-13. The goal Get medical consultation is supported by the
task Provide Medical Consultation, while the goal Get medical in-



184 Chapter 6 Case Study and Evaluation

surance is supported by the task Provide medical insurance, as
depicted in Figure 6-13a and in Figure 6-13b, respectively.

Figure 6-13
The tasks
supporting
the goal of
getting a
medical
consulta-
tion and
medical
insurance

<<Atomic Goal>>
Get medical consultation

<<Atomic Task>>
Provide Medical Consultation

supports

(a) Medical con-
sultation task

<<Atomic Goal>>
Get medical insurance

<<Atomic Task>>
Provide Medical Insurance

supports

(b) Medical insur-
ance task

6.3 Software Platform Support of Service Provisioning

After modeling the Health Care from our usage scenarios using
GDSL, we have used the CASP to facilitate service provisioning
for the service clients. We have selected the usage scenarios #2
and #4 to experiment with the platform support.

6.3.1 Support for the medication monitoring scenario
The service provisioning support for the service clients from the
usage scenario #2 starts when Jan and Linda inform the Context-
Aware Service Platform that the goal Be medicated has been se-
lected and the goal should be fulfilled. After receiving the infor-
mation about which goal it should seek to fulfill, CASP uses the
Health Care domain ontology to determine the classification of
Jan and Linda. As depicted in Figure 6-9, by having the goal Be
Medicated, the platform infers that Jan and Linda are instances
of the Alzheimer Patient concept.

CASP then queries the Ontology Repository for the tasks sup-
porting the received goal using the SPARQL query presented in
Listing 6.1.

Listing 6.1 SPARQL query to retrieve tasks supporting the BeMedicated goal

PREFIX ←↩
↪→ rdfs:<http :// www.w3.org /2000/01/ rdf -schema #>

PREFIX ←↩
↪→ owl2xml :<http :// www.w3.org /2006/12/ owl2 -xml#>

PREFIX xsd:<http :// www.w3.org /2001/ XMLSchema #>
PREFIX owl:<http :// www.w3.org /2002/07/ owl#>
PREFIX rdf:<http :// www.w3.org /1999/02/ ←↩

↪→ 22-rdf -syntax -ns#>
PREFIX gso:<http :// www.utwente .nl/ewi/trese/ ←↩

↪→ olavol /gso.owl#>



Software Platform Support of Service Provisioning 185

PREFIX healthADO :<http :// www.utwente .nl/ewi/ ←↩
↪→ trese/olavol /healthDO .owl#>

SELECT ?tasks
WHERE {

?tasks gso:supports healthDO :BeMedicated .
}

In this SPARQL query, the list of PREFIX elements repre-
sents the namespace for the query, i.e., the query takes into con-
sideration the concepts defined in the documents referenced in
the prefix list. In this list we have included the file gso.owl,
which represents the domain specification language based on the
GSO, and healthADO.owl, which represents the domain ontology
of the health care domain. The query stores in variable ?tasks
the instance elements that are related to the element BeMedi-
cated from the healthDO domain ontology, through the relation
supports, which is defined in the gso prefix.

Since this query does not return any task, CASP tries to find
whether the BeMedicated goal can be decomposed by querying the
Ontology Repository for sub-goals that are related to the BeMed-
icated goal through AND or OR composition relations. Listings
6.2 and 6.3 present the SPARQL queries used by CASP to re-
trieve from the Ontology Repository the goals that have AND or
OR composition relations with the BeMedicated goal, respectively.
Since these queries have the same prefixes as the query presented
in Listing 6.1, we have omitted the list of prefixes in these queries.

Listing 6.2 SPARQL query to retrieve AND sub-goals of the BeMedicated goal

SELECT ?goals
WHERE {

?goals gso:ANDcomposition ←↩
↪→ healthDO :BeMedicated .

}

Listing 6.3 SPARQL query to retrieve OR sub-goals of the BeMedicated goal

SELECT ?goals
WHERE {

?goals gso:ORcomposition healthDO :BeMedicated .
}

As depicted in Figure 6-6, the health care domain ontology de-
fines that the Be Medicated goal is a complex goal and is decom-
posed into the Self medication and Assisted medication sub-goals
through an OR composition relation. Therefore, the query pre-
sented in Listing 6.2 does not return any result, while the query
presented in Listing 6.3 returns the goals Self medication and As-



186 Chapter 6 Case Study and Evaluation

sisted medication. For each of these sub-goals, CASP queries the
Ontology Repository for tasks supporting these goals. If a com-
plex task is found, CASP queries the Ontology Repository for
sub-tasks that have AND or OR task composition relations with
the complex task. This process goes recursively until there are no
more tasks supporting the goal and no more sub-tasks to be found.
The queries for tasks supporting the sub-goals of the BeMedicated
goal return the tasks depicted in Figure 6-11.

The discovered tasks are used by the Service Requester com-
ponent to create the service request. This service request is sub-
mitted to the Service Finder component to search for candidate
service to fulfill the service clients goals.

In our prototype implementation we have defined that ser-
vice providers should semantically annotate their service descrip-
tions, including information about which goals the services fulfill
or which tasks defined in the domain ontology their services per-
form. For instance, in our Health Care domain ontology, a health
insurance company can inform that their services fulfill the Get
Medical Insurance goal or inform that their services perform the
Provide Medical Insurance task.

While the services providers register their service descriptions
to the software platform, the CASP extends the domain ontology
by adding the registered services. Figure 6-14 depicts the services
added to the health care domain ontology related to the medica-
tion monitoring scenario. In this experiment, we have informed
the platform that the registered services perform the tasks related
to medication monitoring depicted in Figure 6-11.

Figure 6-14
An excerpt
of the
domain
ontologies
depicting
the services
related to
the
medication
monitoring
scenario

Medication Notifier 
Service

GSO: Computational 
Service

<
<

in
st

an
ce

>
>

GSO: Computational 
Service Task

performs

Warn Medication 
Time Service Task

GSO: Computational 
Service Interface

Notify Service 
Interface

has

has performs

Medication 
Monitoring Service

Monitor Medication 
Intake Service Task

Medication Monitoring 
Service Interface

has performs

Medication 
Scheduler Service

Set Medication 
Schedule Service Task

Medication Scheduler 
Service Interface

has performs

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

In order to test our framework against the usage scenario, we
have created a set of services, and registered the semantically an-
notated service descriptions to the CASP. At runtime, when ser-
vice providers register their services to the CASP and establish



Software Platform Support of Service Provisioning 187

the relation between their offered services and the goals or tasks
defined in the domain ontology, the CASP infers the instance level
of the domain ontology by relating the individual entities to the
concepts at the domain ontology level (i.e., at the model level).
The CASP can complete the domain model depicted in Figure
6-14 with the instance-level elements, i.e., the individual services.
Figure 6-15 depicts how the CASP extends the model depicted
in Figure 6-14 by adding the instance level containing the actual
services registered to the platform and their related service provi-
ders.

Figure 6-15
The model
of services
offered to
the CASP
for the
medication
monitoring
scenario

Metamodel level
(GSO)

Model level
(domain ontology)

Instance level

Medication Notifier 
Service

GSO: Computational 
Service

<
<

in
st

an
ce

>
>

GSO: Computational 
Service Task

performs

Warn Medication 
Time Service Task

GSO: Computational 
Service Interface

Notify Service 
Interface

has

has performs

Medication 
Monitoring Service

Monitor Medication 
Intake Service Task

Medication Monitoring 
Service Interface

has performs

Medication 
Scheduler Service

Set Medication 
Schedule Service Task

Medication Scheduler 
Service Interface

has performs
<

<
in

st
an

ce
>

>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

Alarm ServiceAlarm Service Task
Alarm Service 

Interface
has performs

<
<

in
st

an
ce

>
>

MediMonitor 
Service

MediMonitor Service 
Task

MediMonitor Service 
Interface

has performs

<
<

in
st

an
ce

>
>

Dispenser Scheduler 
Service

Dispenser Scheduler 
Service Task

Dispenser Scheduler 
Service Interface

has performs

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

<
<

in
st

an
ce

>
>

The CASP’s Service Finder component queries the Ontology
Repository for services complying with the service request. The
service request contains information about the tasks that the can-
didate services should perform, and the domain ontology has been
dynamically extended with the services registered to the platform
and the information regarding how these services’ tasks relate to
the tasks defined in the ontology to satisfy the goals. Therefore,
the query returns the service depicted in Figure 6-15.

The service descriptions of the Dispenser Scheduler Service
and the MediMonitor Service require information about which
medicine is to be scheduled in the dispenser, and the intake of



188 Chapter 6 Case Study and Evaluation

which medicine the service monitors, respectively. Before asking
directly to the service client, CASP queries the Context Man-
ager component for information about Jan and Linda’s medica-
tion. The electronic medical records system, which stores Jan
and Linda’s medical information is registered to the CASP as a
context provider. Therefore, the Context Manager subscribes to
the contextual information of the medicines they should take and
their schedules.

Since the discovered services are computational services, the
CASP is able to directly invoke their execution. With the con-
textual information regarding Jan and Linda’s medication sched-
ules, the CASP’s Service Invoker component invokes the Dispenser
Scheduler Service, which configures the electronic medicine dis-
penser to only dispense the specific amount of medicine at a given
time. The Alarm Service is also invoked to warn Jan and Linda
a few minutes before the time for their medicine. Finally, the
MediMonitor Service is invoked to verify whether they take their
medicine correctly and call their caregiver otherwise.

6.3.2 Support for the traveler patient scenario
In our usage scenario #4, the traveler patient informs the Context-
Aware Service Platform that the goal Get medical consultation has
been selected and the goal should be fulfilled.

After receiving the information about which goal it should seek
to fulfill, the CASP queries the Ontology Repository for the tasks
supporting the received goal using the SPARQL query presented
in Listing 6.4.

Listing 6.4 SPARQL query to retrieve tasks

PREFIX ←↩
↪→ rdfs:<http :// www.w3.org /2000/01/ rdf -schema #>

PREFIX ←↩
↪→ owl2xml :<http :// www.w3.org /2006/12/ owl2 -xml#>

PREFIX xsd:<http :// www.w3.org /2001/ XMLSchema #>
PREFIX owl:<http :// www.w3.org /2002/07/ owl#>
PREFIX rdf:<http :// www.w3.org /1999/02/ ←↩

↪→ 22-rdf -syntax -ns#>
PREFIX gso:<http :// www.utwente .nl/ewi/trese/ ←↩

↪→ olavol /gso.owl#>
PREFIX healthADO :<http :// www.utwente .nl/ewi/ ←↩

↪→ trese/olavol /healthDO .owl#>

SELECT ?tasks
WHERE {

?tasks gso:supports ←↩
↪→ healthDO :GetMedicalConsultation .



Software Platform Support of Service Provisioning 189

}

This SPARQL query stores in variable ?tasks the instance el-
ements that are related to the element GetMedicalConsultation
from the healthDO domain ontology, through the relation sup-
ports, which is defined in the gso prefix.

In this case study we assume that physicians have registered
their services to the CASP informing which tasks their services
perform or which goals their services fulfill. While the services pro-
viders register their service descriptions to the software platform,
the CASP extends the domain ontology by adding the registered
services. Figure 6-16 depicts the services added to the health care
domain ontologies that are offered by physicians, namely Medical
Consultation and Medical Treatment which can be specialized into
Surgery.

Figure 6-16
An excerpt
of the
medical
services
added to
the health
care
domain
ontology

Caregiver Medical Service

GSO: Human Service 
Provider Universal

<<instanceOf>>

GSO: Service Universal

<<instanceOf>>

Physician

offers

offers

Medical 
Consultation

Surgery

Medical 
Treatment

Physician Service
offers

Figure 6-17 depicts some of the services and their respective
service providers that we have created for this case study. In this
figure we have represented the individual physicians and their ser-
vices as UML object elements to denote that these entities are at
the instance level, instantiating the concepts defined in the health
care domain ontology. In the objects that represent medical con-
sultations and surgery we have included the information about
the location where the service is delivered and the which insur-
ance company policies are supported. However, in the actual ser-
vices, this information is available to the CASP in the services’
descriptions.

After inferring the instance level of the domain ontology by



190 Chapter 6 Case Study and Evaluation

Figure 6-17
The
services
offered by
physicians
registered
to the
CASP

Dr. Alfred: Physician location = London
supportedInsurance = ABC health

Consultation: Medical Consultation

location = Paris
supportedInsurance = XYZ health

BrainSurgery: Surgery

location = Paris
supportedInsurance = ACME health

Consultation: Medical Consultation

Dr. Francois: Physician

offers

offers

offers

location = Greenwich
supportedInsurance = ABC health

Consultation: Medical Consultation

offers

relating the individual entities to the concepts at the domain on-
tology level, Figure 6-18 depicts how the CASP extends the model
depicted in Figure 6-16 by adding the instance level containing the
actual services registered to the platform and their related service
providers.

Figure 6-18
The model
of services
offered by
physicians
registered
to the
CASP

Caregiver Medical Service

GSO: Human Service 
Provider Universal

<<instanceOf>>

GSO: Service Universal

<<instanceOf>>

Physician

offers

offers

Medical 
Consultation

Surgery

Medical 
Treatment

Physician Service
offers

Metamodel level
(GSO)

Model level
(domain ontology)

Instance level

Dr. Francois Consultation-Francois

Dr. Alfred

BrainSurgery-Francois

ConsultationLondon-
Alfred

ConsultationGreenwich-
Alfred

offers

offers

<<instanceOf>>

<
<

in
st

an
ce

Of
>

>

<
<

in
st

an
ce

Of
>

>

<
<

in
st

an
ce

Of
>

>

<
<

in
st

an
ce

Of
>

>

<
<

in
st

an
ce

Of
>

>

offers

offers

As depicted in Figure 6-17, the service descriptions contain in-
formation about the location where the service is provided. More
specifically, the service grounding of the consultation services spec-
ifies that the service requires Location and SupportedInsurance as
input parameters. The CASP uses these parameters as selection



Software Platform Support of Service Provisioning 191

criteria when searching for the most suitable service for the service
client’s goal.

In Figure 6-17 Dr. Alfred provides the consultation service in
two different locations, namely, London and Greenwich, and ac-
cepts the ABC Health insurance. When Lucia, the traveler patient
from our usage scenario, travels to London and requires a med-
ical consultation, the CASP uses her current location as search
criteria. Additionally, Lucia has a travel insurance, which is re-
lated to the ABC Health health insurance company. Therefore,
the CASP uses the SPARQL query presented in Listing 6.5 to
search for consultation services located in London and that ac-
cept her travel insurance. The result of this query is the medical
consultation service provided by the service provider Dr. Alfred
in London.

Listing 6.5 SPARQL query to retrieve consultation services in London

SELECT ?services
WHERE {

?services rdf:type healthDO : ←↩
↪→ MedicalConsultationServiceGrounding .

?services gso:hasLocation "London " .
?services gso:SupportedInsurance "ABC Health " .

}

The nature of the medical consultation service is that there is
a person who plays the role of a physician and this person pro-
vides the consultation. Therefore, we have defined the medical
consultation as an instance of the GSO’s Social Service Universal.
Being a social service, the medical consultation service grounding
describes how to activate the service by means of contact infor-
mation for making an appointment for the consultation. A com-
putational service grounding would, instead, describe some com-
putational interface including URIs, protocols, data types, etc.

In some cases, social services do not have computational coun-
terparts, i.e., computational services that can automate the social
services. The medical consultation services from this case study
are examples of social services that cannot (yet) be automated by
computational services. In these cases, CASP is not able to auto-
mate all the service provisioning events, such as service activation,
triggering, etc., and should return to the service client the list of
candidate services to fulfill the client’s goal.

However, before sending the service discovery results to the
service client, CASP searches for computational services that can
facilitate some of the service provisioning events. While our medi-
cal consultation services cannot be automated by a computational



192 Chapter 6 Case Study and Evaluation

service, the medical consultation’s activation (i.e., making the ap-
pointment for the consultation) can be facilitated by a computa-
tional service.

Figure 6-19 depicts an additional computational service regis-
tered to the platform named Medical Consultation Booking, which
is responsible for making appointments for medical consultations.
This computational service has a service task named Medical Con-
sultation Booking Task that activates the Medical Consultation
social service.

Figure 6-19
Computa-
tional
service
support for
a social
service

Medical 
Consultation

Medical 
Consultation Task

GSO: Social Service

<<instanceOf>>

GSO: Social Service Task

<<instanceOf>>

performs

performs

GSO: Service Provisioning 
Event

GSO: Computational 
Service Task

Medical Consultation 
Booking

GSO: Computational 
Service

Medical Consultation 
Booking Task

<<instanceOf>> <<instanceOf>>

performs

performs
GSO: Service Activation

Medical Consultation 
Appointment Booking

<<instanceOf>>

activatesautomates

After finding a computational service that can automate the
booking of a medical consultation, CASP triggers the execution
of the Medical Consultation Booking and returns to the service
client the schedule of the consultation appointment.

6.4 Evaluation of CASP’s service provisioning support

In order to evaluate whether our proposed approach is suitable
for supporting dynamic service provisioning, we have identified
the steps one should take to have a medical consultation service
provided for a traveler patient without the support of a software
platform. Then, for each of the identified steps, we have verified
whether the CASP supports the step, and in case support has
been provided, how the CASP supports the step.

Step 1: Identification of the need for a service.

The service client normally identifies that he needs a service
when there is something he wants achieved and he is not able to
achieve it (only) by himself. In our case study, the traveler patient
Lucia is not feeling well, since she is not able to perform a medical
evaluation on her condition, she identifies the need for a medical
consultation.

This step is supported by the CASP by allowing the service
client to inform about a goal she wants fulfilled. In the case study,
our prototype implementation of the CASP required direct inter-
action with the service client to inform her goal.



Evaluation of CASP’s service provisioning support 193

Step 2: Service discovery.

After identifying the need for a service, the service client should
verify whether this service is offered, and by whom. The service
client tries to discover the actual services that are available in the
market based on some criteria. For instance, flight travelers seek-
ing for cheap flights normally search for the availability of tickets
on a given route based on criteria such as ticket price and flight
schedule. For these travelers, the airline (the service provider) is
less important than finding a good price for the ticket.

In the medication monitoring scenario, CASP supports service
discovery by discovering in the domain ontology the tasks that
support the Alzheimer’s patient BeMedicated goal. Since this goal
does not have defined any supporting task, CASP searches for sub-
goals of the BeMedicated goal. After finding the sub-goals, CASP
searches for the tasks that support each of these sub-goals.

With the list of tasks supporting the sub-goals of the BeMedi-
cated goal, CASP searches for services registered to the platform
that perform these tasks.

In the case of our medical consultation service, the traveler pa-
tient is first interested in having the service delivered in the same
city where she is located. To determine the location where the
medical consultation is going to be delivered, a valid assumption
is that the service is delivered in the physician’s office location.

CASP supports this step by querying the domain ontology on
the tasks that support the traveler patient’s goal. With the list
of the goal-supporting tasks, CASP searches for services that per-
form these tasks, and that offer this service in London, her current
location. In our prototype, the step is carried out automatically,
not requiring any interaction with the service client.

Step 3: Service selection.

After discovering a set of candidate services, service clients can
classify or filter the services according to certain suitability criteria
and, based on this classification, be able to determine the services
that better suit their needs.

For our medical consultation service, the traveler patient prefers
the service that she can pay using her medical insurance policy,
and that can be scheduled for one of her available time slots.

CASP supports this step by filtering the list of available ser-
vices with the additional criterion of supporting the health insur-
ance policy of the traveler patient (ABC Health). The information
about which health insurance policy the traveler patient has, can
be gathered by the context-aware components of the CASP.



194 Chapter 6 Case Study and Evaluation

Step 4: Service activation.

Since the CASP identified that the medical consultation is in-
herently a social service, i.e., the service cannot be automated by
a computational service, the platform searches for services that
can facilitate one of the medical consultation’s service provision-
ing events. This search finds the Medical Consultation Booking,
which facilitates the activation of the medical consultation ser-
vice. Using the CASP’s context-aware components, the time slots
of her agenda have been gathered and the CASP invoked the Med-
ical Consultation Booking service using the list of candidate physi-
cians and the traveler patient’s available time slots as parameters.

Step 4: Service invocation.

In the medication monitoring usage scenario, the discovered
services are computational services. Therefore, CASP is able to
directly invoke the services. Moreover, in the services descrip-
tions a set of required input information is defined. CASP uses
its context-aware components to try to gather this information
instead of requesting the information from the service clients. In
the case study, CASP uses the gathered contextual information
and uses this information as input in the service invocation.



Chapter7
Conclusion
In this chapter we present the conclusions of the work presented
in this thesis, and we identify the topics that we recommend for
future work. This chapter is further structured as follows: Section
7.1 presents some general considerations; Section 7.2 elaborates
on the most important research contributions of this thesis; and
finally, Section 7.3 discusses future work.

7.1 General Considerations

In scenarios where service users have to interact with a potentially
large numbers of services through a variety of devices, we have
observed that facilities to provide support for these interactions
are necessary. Additionally, if we consider non-technical service
users, this support should also allow these users to express their
service requests in terms that are closer to their common concep-
tualization than technical terms such as data types and document
format. In this thesis we have defined a conceptual framework
named Goal-Based Service Framework, which facilitates service
provisioning and allows service users to express their service re-
quests in terms of goals.

Software platforms can support service users in discovering,
selecting, negotiating and invoking services. To have services pro-
visioned, service users need to interact with the service platform
to provide information such as criteria for service discovery, selec-
tion and composition, triggering conditions and inputs for service
execution. Some of this information relates to contextual infor-
mation, i.e., information characterizing the service user’s context.
We have proposed the integration of context-aware components
aiming at transparently gathering users’ contextual information
to be used on service discovery, selection and composition as well
as for supplying input information for service executions.



196 Chapter 7 Conclusion

In order to be more effective in supporting the service provi-
sioning activities, the software platform should have the means
to understand the service user’s requests and the service descrip-
tions. This understanding allows the software platform to reason
about the terms included in the user requests and service descrip-
tions, and achieve not only syntactic matches between terms in
these artifacts, but also semantic matches. Semantic matching
and reasoning can be realized by means of semantic annotations
on the terms contained in service requests and service descriptions.
These annotations are based on semantic domain specifications,
expressed in terms of domain ontologies.

The specification of domain ontologies requires that the domain
specialists utilize an ontology representation language that has
primitives capable of representing concepts and relations of dif-
ferent domains, i.e., the language should be domain-independent.
An ontology representation language should be grounded on a
meta-ontology that describes a set of real-world categories that
can be used to talk about reality [Masolo et al., 2003, Guizzardi,
2005, 2006]. This meta-ontology (or domain-independent theory
of real-world categories) is called a foundational ontology [Guiz-
zardi, 2007].

We have observed that, on one hand, we have ontology repre-
sentation languages based on foundational ontologies such as UFO
[Guizzardi, 2005], DOLCE [Gangemi et al., 2002] or GOL [Heller
and Herre, 2003, Degen et al., 2001], which define concepts and
relations to describe application domains, but lack support for
describing service-related concepts directly. On the other hand,
we have ontology languages such as the Semantic Markup for Web
Services (OWL-S) [Martin et al., 2004], the Web Service Modeling
Ontology (WSMO) [de Bruijn et al., 2006], OWL-S, or the Open
Group’s Service-Oriented Architecture Ontology (SOA Ontology)
[Ope, 2010], which define concepts and relations to describe ser-
vices, but lack support for describing the concepts related to the
domain in which the service should operate.

Adding service concepts as first class constructs to ontology
representation languages allows the specification of domain on-
tologies containing service-related concepts and relations. Domain
ontologies containing service-related concepts allows software plat-
forms to understand the context in which the described services
are inserted, and to reason about the relations between the ser-
vices, its components and other elements of the domain. More-
over, in increasing complex scenarios, we have identified the need
for a clear distinction between social and computational services,



Research Contributions 197

and the specification of the relations between services at these two
levels.

7.2 Research Contributions

The main contributions of this thesis can be summarized as fol-
lows:
– A conceptual framework for semantic service provisioning;
– A foundational ontology containing concepts and relations to

allow the specification of application domains including service-
related concepts, in which the distinction between social and
computational services is acknowledged and supported;

– A software platform to support service provisioning, with context-
aware capabilities to allow the use of contextual information
to reduce the need for direct interaction with the service users.
These contributions have been developed during the effort to

address the research questions we have identified (see Chapter 1).
In the sequel we recall the research questions and discuss how they
have been answered.

RQ1: What are the best practices in using the
concept of goal to capture user requirements?

To answer this research question we have conducted the liter-
ature investigation reported in Chapter 2, for the uses and defini-
tions of the goal concept. With this investigation we have gained
the necessary understanding to be able to reuse and extend the
most suitable uses and definitions for the goal concept, adapting
them to the objectives and scope of our work.

RQ2: Which components can be devised to provide
facilities for service provisioning in multiple domains?

To answer this research question we have defined a conceptual
framework for semantic service provisioning. This framework, dis-
cussed in Chapter 3, defines three abstraction layers, namely the
software platform support, the domain knowledge and the foun-
dational ontology layers.

The software platform supports services clients and service pro-
viders in activities related to service provisioning. The domain
knowledge layer represents the information about application do-
mains that is used by the software platform to understand and to
perform semantic reasoning in the terms used in service descrip-
tions and requests. The foundational ontology layer represents



198 Chapter 7 Conclusion

the conceptualization that underlies the elements defined in the
domain knowledge level.

We have developed concrete components to realize the elements
in each of these three abstraction layers. The software platform
support is realized by the Context-Aware Service Platform, the do-
main knowledge is realized by the domain ontologies, the domain
specification language is realized by Goal-Based Domain Specifi-
cation Language, and the foundational ontology is realized by the
Goal-Based Service Ontology.

RQ3: Which techniques are capable of supporting
and enabling domain specifications and semantic an-
notations?

The support for domain specifications and semantic annota-
tions have been addressed in our work with the definition of our
foundational ontology. We have identified the need for integrat-
ing service-related concepts with the other domain-specification
concepts. Therefore, we have investigated foundational ontolo-
gies and service ontologies aiming at finding ways of integrating
them. From this investigation we have chosen the Unified Foun-
dational Ontology (UFO) as base foundational ontology, and have
extended UFO with service-related concepts.

The definition of the service-related concepts to extend UFO
have been conducted after an investigation of the areas of Foun-
dational Ontologies, Semantic Web Services and Service-Oriented
Computing. In this investigation of the service-related concepts,
we aimed at capturing the nature of these concepts and avoiding
commitments with specific technologies or implementation strate-
gies. In other words, we intended to understand what a service
is about, what characterizes a service, and which other concepts
are related to a service. This investigation resulted in the Goal-
Based Service Ontology (GSO). In GSO we have also defined a
distinction between social and computational services, and defined
relations between these two types of services. The benefits of this
distinction has been demonstrated in our case study, presented in
Chapter 6.

From GSO we have derived a domain specification language
metamodel, which provides the abstract syntax for the Goal-Based
Domain Specification Language (GDSL). This language allows do-
main specialists to define domain specifications in terms of domain
ontologies. These domain ontologies are used by service providers
and context providers to semantically annotate the terms in their
service descriptions and context information descriptions, respec-



Research Contributions 199

tively, and by service clients to express their service requests in
terms of goals.

RQ4: How to structure a platform to support dy-
namic service provisioning using domain specifications
and semantic annotations?

To define the architectural design of our software platform, we
have identified a set of requirements for the platform. These re-
quirements (discussed in Section 5.1) specialize the more general
requirements for the service provisioning framework (discussed in
Section 3.4), and focus on how the software platform can automate
some of the processes related to service provisioning. We have also
defined that the software platform should support not only ser-
vice clients, but also service providers, context providers, and do-
main specialists. These other users of the platform should be able
to semantically annotate the terms in their service descriptions
(service providers) and context information descriptions (context
providers), and be able to define and update domain ontologies
written using GDSL (domain specialists).

The requirements for each of these platform users influenced
the definition of the platform’s architectural components. As dis-
cussed in Chapter 5, we have defined the architectural design of
the Context-Aware Service Platform (CASP), and implemented
some of its components in our prototype. The prototype allowed
us to demonstrate the suitability of the approach in the case study
discussed in Chapter 6.

RQ5: How can we assert whether our proposed
framework satisfied the objectives of our research?

The evaluation of the framework was mainly performed during
the case study presented in Chapter 6. In this case study we de-
fined a simplified domain ontology for the health care domain us-
ing GDSL. Our health care ontology demonstrated that the GDSL
concepts allow domain specialists to specify application domains
that contain service-related concepts. Moreover, our case study
included the medical consultation service, which is an example of
a social service. With this service we demonstrated that, although
a social service cannot be automated by a computational service,
computational services can still facilitate the consumption of the
social service, by automating some of the social service’s provi-
sioning events. In particular, our case study demonstrated the
automation of the medical consultation’s service discovery, selec-
tion and activation.



200 Chapter 7 Conclusion

The case study also demonstrated the CASP’s support to ser-
vice provisioning. In the case study, our prototype receives the
information of the goal the service client wants achieved, e.g.,
the traveler patient informed that she wants a medical consulta-
tion in the city where she is at the moment, and the Alzheimer’s
patients informed that they want assistance to take their medica-
tions. The CASP then uses the health care domain ontology to
identify tasks that could support the clients’ goals, and searches
for services that perform those tasks. Once a set of candidate
services has been found, CASP tries to select the most appropri-
ate service(s). In the traveler patient usage scenario, the service
selection if performed using as criteria the city where the client
is located, the health insurance policy used by the client, and her
available time slots for the consultation. The information used to
evaluate these criteria can be gathered by the CASP through the
available context sources.

In the medication monitoring usage scenario, since the dis-
covered services are computational services, CASP invokes the
services on behalf of the service clients and uses contextual infor-
mation for the services’ inputs.

In the traveler patient usage scenario, once the candidate ser-
vices have been filtered, CASP identifies that the service is a social
service, and searches for ways to automate not the service itself,
but the service provisioning events related to this service. CASP
has been able to find a service to book appointments for medical
consultations, and invoked this booking service to automate the
activation event of the medical consultation service.

Finally, we have identified the steps that a service client would
need to perform to have service provisioned without our frame-
work’s support. For each of these identified steps we pointed up
how our approach supports the service client. Therefore, we could
demonstrate how our approach is suitable to facilitate service pro-
visioning.

7.3 Directions for Future Research

During the research we have conducted in the scope of this thesis,
we made choices concerning the scope and focus of this research.
We focus on an integrated solution for supporting service pro-
visioning for non-technical service clients, but we certainly did
not cover all aspects related to this topic. While we developed
the framework and implemented our prototype, we have identi-



Directions for Future Research 201

fied points for improvements, and other topics and aspects that
would be complementary to our work. In the sequel we present
some of these points, suggesting directions for future research.

Software platform
In our prototype we experimented with the service provisioning
support on service discovery, selection, composition and activa-
tion. Service triggering has been tested only up to the moment
of the identification that the triggering conditions hold, and that
the service execution should be triggered. However, we did not
invoke the services in our prototype. The implementation of the
SAWSDL standard that we used does not support semantic an-
notations on the binding component of the WSDL. Therefore,
strategies to provide semantic annotations to the WSDL’s bind-
ing component should be investigated, as well as how the CASP
should support service execution triggering. In some cases, after
the service execution is triggered, adaptation should be performed
on the service results to adjust the output of the service to the
results the service client is expecting. In a simple example, an
online purchasing service returns the price and delivery costs in
US dollars, while the service clients expects the amount to the
expressed in Euros. In this case, the software platform could per-
form the adaptation of the results by, for instance, invoking a
currency conversion service.

In our CASP prototype, we have implemented some core com-
ponents of the architecture, such as the Ontology Repository and
the context-aware components. However, in the experiment case
study, we manually manually integrated the components. There-
fore, some work should be performed to automate the integration
of the CASP’s components.

Modeling editor
In our prototype we have implemented a simple editor for speci-
fying domain ontologies. We have also identified the requirements
and have defined the architectural design for the tool support for
domain specialists and language designers. However, these tools
are not complete. The prototype of the editor generation tool,
which takes a foundational ontology, generates a language meta-
model from it, and creates a graphical editor for this language,
is able to demonstrate the feasibility of the approach, but further
work to have an usable tool is still needed to make the tool stable
and generally usable.



202 Chapter 7 Conclusion

Moreover, the features to check whether a modification on the
foundational ontology creates undesirable effects on the model al-
ready created from the previous version of the derived language
needs to be implemented, and further work on the mappings be-
tween EMF and OWL should be performed. These mappings are
used to allow the transformation of the foundational ontology,
written in OWL, into EMF-based metamodels.

Foundational ontology
In our work, we defined the GSO as the foundational ontology be-
hind the language to support specialists in specifying domains by
means of domain ontologies. GSO has been designed as an exten-
sion of the Unified Foundational Ontology and the model created
with the language, namely the domain ontologies, are used to se-
mantically annotate service descriptions, contextual information
and context source descriptions as well as to support the CASP
to search for tasks and services that can fulfill goals. In our pro-
totype implementation described in Chapter 5, and in the case
study of our proposed framework discussed in Chapter 6, we have
created the domain ontologies by instantiating the concepts and
relations defined in GSO and representing the domain ontologies
using OWL.

However, during our experiments we observed that the CASP’s
inference capabilities would be improved if we added some infor-
mation to the elements of the domain ontologies. For instance, if
we define Traveling abroad as an instance of the GSO’s concept
Situation, we would be able to represent the situation where a
given agent is currently in a trip and is located outside its home
country. Therefore, it would be useful to include in this concept
(the Traveling abroad situation) the constraints that define the sit-
uation, e.g., TravelAbroad .

= ∃Agent(x) ∧ travel(x) ∧
currentLocation(x,¬(homeCountry(x))). To accomplish this, the
language should include properties to the Situation concept, al-
lowing designers to express these constraints.

In our experiments we have defined a health care domain on-
tology using the domain specification language derived from our
foundational ontology. In the experiments we have been able to
properly model the domain using the concepts and relations de-
fined in the foundational ontology. However, further investigations
in other application domains may elicit possibilities to improve the
domain specification language, and lead to requirements to extend
the foundational ontology.



Bibliography
A-muse: Architectural modeling for service enabling in freeband.
http://a-muse.freeband.nl/.

Amigo: Ambient intelligence for the networked home envi-
ronment. http://www.hitech-projects.com/euprojects/
amigo/.

Eclipse Modeling Framework Project. http://www.eclipse.
org/modeling/emf/?project=emf.

Eclipse Graphical Modeling Framework Project. http://www.
eclipse.org/gmf/.

JESS - the rule engine for the java platform. http://herzberg.
ca.sandia.gov/jess/.

OMG’s MetaObject Facility. http://www.omg.org/mof/.

U-care project. http://ucare.ewi.utwente.nl/.

Web services description language (wsdl) version 2.0 part 0:
Primer. http://www.w3.org/TR/2007/REC-wsdl20-primer-
20070626/.

Reference Model for Service Oriented Architecture 1.0. Oasis
standard, OASIS, October 2006. URL http://docs.oasis-
open.org/soa-rm/v1.0/soa-rm.pdf.

Service-oriented architecture ontology. Draft techni-
cal standard 2.0, The Open Group, July 2008. URL
http://www.opengroup.org/projects/soa-ontology/
uploads/40/16940/soa-ontology-200-draft.pdf.

Wsml language reference v. 1.0. Final draft, WSML working
group, August 2008. URL http://www.wsmo.org/TR/d16/
d16.1/v1.0/.



204 BIBLIOGRAPHY

Smart hoMes for All - SM4All. http://www.sm4all-project.
eu/, 2008-2011.

Owl 2 web ontology language primer. http://www.w3.org/TR/
2009/REC-owl2-primer-20091027/, October 2009.

Service-Oriented Architecture Ontology. Technical standard, The
Open Group, October 2010.

Knopflerfish OSGi Service Platform.
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/,
February 2011.

OSGi Alliance. http://www.osgi.org/, February 2011.

Semantic Web. http://http://semanticweb.org//, February 2011.

jGraphT. http://jgrapht.sourceforge.net/, 2011.

Vikas Agarwal, Koustuv Dasgupta, Neeran M. Karnik, Arun Ku-
mar, Ashish Kundu, Sumit Mittal, and Biplav Srivastava. A
service creation environment based on end to end composition
of web services. In Allan Ellis and Tatsuya Hagino, editors,
Proceedings of the 14th international conference on World Wide
Web (WWW 2005), pages 128–137, New York, NY, USA, 2005.
ACM.

R. Akkiraju, J. Farrell, J.Miller, M. Nagarajan, M. Schmidt,
A. Sheth, and K. Verma. Web Service Semantics - WSDL-S,
a joint UGA-IBM technical note, version 1.0. Technical report,
University of Georgia and IBM, April 2005.

João Paulo A. Almeida, Alberto Baravaglio, M. Belaunde, P. Fal-
carin, and E. Kovacs. Service creation in the spice service
platform. In Proceedings of the 17th Wireless World Research
Forum Meeting (WWRF17), Heidelberg, Germany, November
2006.

Annie I. Anton. Goal-based requirements analysis. In Pro-
ceedings of the 2nd International Conference on Requirements
Engineering (ICRE ’96), pages 136–, Washington, DC, USA,
1996. IEEE Computer Society. ISBN 0-8186-7252-8. URL
http://portal.acm.org/citation.cfm?id=850944.853130.

Annie I. Anton. Goal identification and refinement in the spec-
ification of software-based information systems. PhD thesis,
Atlanta, GA, USA, 1997. UMI Order No. GAX97-35409.



BIBLIOGRAPHY 205

Apache. Apache jUDDI. http://ws.apache.org/juddi, 2008.

Ali Arsanjani, Liang-Jie Zhang, Michael Ellis, Abdul Allam, and
Kishore Channabasavaiah. Design an SOA solution using a ref-
erence architecture, March 2007. URL http://www-128.ibm.
com/developerworks/library/ar-archtemp/index.html.

Ali Arsanjani, Nikhil Kumar, Chris Harding, Mats Gejnevall,
Tony Carrato, Heather Kreger, and Jorge Diaz. Soa ref-
erence architecture. Technical report, The Open Group,
http://www.theopengroup.org/projects/soa-ref-arch/, Septem-
ber 2009.

Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power
of Modularity, volume 1. MIT Press, Cambridge, MA, USA,
March 2000. URL http://www.amazon.com/Design-Rules-
Vol-Power-Modularity/dp/0262024667.

Alistair Barros, Marlon Dumas, and Peter Bruza. The move to
web service ecosystems. BPTrends, November 2005.

Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the
semantic web with the owl api. In International Semantic Web
Conference, pages 659–675. Springer, 2003.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic
web. Scientific American, May 2001.

L. O. Bonino da Silva Santos, L. Ferreira Pires, and M. J. van
Sinderen. Service provisioning support for non-technical service
clients. In Proceedings of the 7th International Conference on
Information Technology, Las Vegas, USA, pages 672–677, Los
Alamitos, April 2010a. IEEE Computer Society Press.

L. O. Bonino da Silva Santos, V. S. Sorathia, L. Ferreira Pires,
and M. J. van Sinderen. An approach to dynamic provisioning
of social and computational services. In Proceedings of the 6th
IEEE Congress on Services, Miami, FL, USA, pages 24–31, Los
Alamitos, July 2010b. IEEE Computer Society Press.

Luiz Olavo Bonino da Silva Santos, Luís Ferreira Pires, and
Marten J. van Sinderen. Architectural models for client inter-
action on service-oriented platforms. In Marten van Sinderen,
editor, 1st International Workshop on Architectures, Concepts
and Technologies for Service Oriented Computing (ACT4SOC
2007), pages 19–27. INSTIC, July 2007.



206 BIBLIOGRAPHY

Luiz Olavo Bonino da Silva Santos, Giancarlo Guizzardi, Renata
Silva Souza Guizzardi, Eduardo Gonçalves da Silva, Luís Fer-
reira Pires, and Marten J. van Sinderen. Gso: Designing a
well-founded service ontology to support dynamic service dis-
covery and composition. In 2nd International Workshop on Dy-
namic and Declarative Business Process (DDBP 2009), Septem-
ber 2009.

David Booth, Hugo Haas, Francis G. McCabe, Eric Newcomer,
Michael Champion, Chris Ferris, and David Orchard. Web ser-
vices architecture. http://www.w3.org/TR/ws-arch/, Febru-
ary 2004.

M. E. Bratman. Intention, Plans, and Practical Reason. Harvard
University Press, Cambridge, MA, 1987.

P. Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopou-
los, and Anna Perini. Tropos: An agent-oriented software de-
velopment methodology. Autonomous Agents and Multi-Agent
Systems, 8(3):203–236, 2004. URL http://citeseer.ist.
psu.edu/bresciani02tropos.html.

R. J. A. Buhr and R. S. Casselman. Use case maps for object-
oriented systems. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1996. ISBN 0-13-456542-8.

Steve Burbeck. The tao of e-business services: The evolution
of web applications into service-oriented components with web
services. Online document, October 2000.

Christoph Bussler, Emilia Cimpian, Dieter Fensel, Juan Miguel
Gomez, Armin Haller, Thomas Haselwanter, Michael Kerri-
gan, Adrian Mocan, Matthew Moran, Eyal Oren, Brahmananda
Sapkota, Ioan Toma, Jana Viskova, Tomas Vitvar, Maciej
Zaremba, and Michal Zaremba. Web Service Execution Envi-
ronment (WSMX). W3C Member Submission, June 2005. URL
http://www.w3.org/Submission/WSML/.

Cristiano Castelfranchi and Rino Falcone. Towards a theory of
delegation for agent-based systems. Robotics and Autonomous
Systems - Special issue on Multi-Agent Rationality, 24(3–4):
141–157, 1998.

Tiziana Catarci, Febo Cincotti, Massimiliano Leoni, Massimo Me-
cella, and Giuseppe Santucci. Smart homes for all: Collabo-
rating services in a for-all architecture for domotics. In Elisa



BIBLIOGRAPHY 207

Bertino, James B. D. Joshi, Ozgur Akan, Paolo Bellavista,
Jiannong Cao, Falko Dressler, Domenico Ferrari, Mario Gerla,
Hisashi Kobayashi, Sergio Palazzo, Sartaj Sahni, Xuemin (Sher-
man) Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya, and
Geoffrey Coulson, editors, Collaborative Computing: Network-
ing, Applications and Worksharing, volume 10 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pages 56–69. Springer Berlin
Heidelberg, 2009. ISBN 978-3-642-03354-4. URL http://dx.
doi.org/10.1007/978-3-642-03354-4_6.

B. Chandrasekaran, John R. Josephson, and V. Richard Ben-
jamins. What are Ontologies, and why do we need them?
IEEE Intelligent Systems, 14:20–26, 1999. ISSN 1094-7167. doi:
http://doi.ieeecomputersociety.org/10.1109/5254.747902.

Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopou-
los. Non-Functional Requirements in Software Engineering, vol-
ume 5 of The Kluwer International Series in Software Engineer-
ing. Springer, 1st edition, October 1999. ISBN 0792386663.

Emilia Cimpian, Adrian Mocan, and Michael Stollberg. Mediation
enabled semantic web services usage. In Riichiro Mizoguchi,
Zhongzhi Shi, and Fausto Giunchiglia, editors, 1st Asian Se-
mantic Web Conference (ASWC2006), volume 4185 of Lecture
Notes in Computer Science, pages 459–473, Beijing, China,
September 2006. Springer.

Emilia Cimpian, Harald Meyer, Dumitru Roman, Adina Sirbu,
Nathalie Steinmetz, Steffen Staab, and Ioan Toma. Ontologies
and matchmaking. In Dominik Kuropka, Peter Tröger, Steffen
Staab, and Mathias Weske, editors, Semantic Service Provision-
ing, chapter 3, pages 19–54. Springer Berlin Heidelberg, Berlin,
2008. ISBN 978-3-54078-616-0. doi: http://dx.doi.org/10.1007/
978-3-540-78617-7_3.

Philip R. Cohen and Hector J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42:213–261, March 1990.
ISSN 0004-3702. doi: 10.1016/0004-3702(90)90055-5. URL
http://portal.acm.org/citation.cfm?id=77754.77757.

Robert M. Colomb. Ontology and the Semantic Web, volume
156 of Frontiers in Artificial Intelligence and Applications. IOS
Press, 2007.

Roberto Confalonieri, John Domingue, and Enrico Motta. Medi-
ation of semantic web services in IRS-III. In Proceedings of the



208 BIBLIOGRAPHY

Workshop on Mediation in Semantic Web Services in conjunc-
tion with the 3rd International Conference on Service Oriented
Computing, 2005.

Christophe Cordier, François Carrez, Herma Van Kranenburg,
Antonietta Spedalieri, and Jean-Pierre Le Rouzic. Addressing
the challenges of beyond 3g service delivery: the SPICE ser-
vice platform. In International Workshop on Applications and
Services in Wireless Networks, Berlin, Germany, May 2006.

Eduardo Manoel Gonçalves da Silva. User-centric service compo-
sition – towards personalised service composition and delivery.
PhD thesis, University of Twente, May 2011.

Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Science of Computer Pro-
gramming, 20(1-2):3–50, April 1993. ISSN 0167-6423. doi:
http://dx.doi.org/10.1016/0167-6423(93)90021-G. URL http:
//dx.doi.org/10.1016/0167-6423(93)90021-G.

Jos De Bruijn, Christoph Bussler, John Domingue, Dieter Fensel,
Martin Hepp, Uwe Keller, Michael Kifer, Birgitta König-Ries,
Jacek Kopecky, Rubén Lara, Holger Lausen, Eyal Oren, Axel
Polleres, Dumitru Roman, James Scicluna, and Michael Stoll-
berg. Web service modeling ontology (WSMO). W3C Mem-
ber Submission, 2005. URL http://www.w3.org/Submission/
WSMO-primer/.

Jos de Bruijn, Dieter Fensel, Uwe Keller, Michael Kifer, Holger
Lausen, Reto Krummenacher, Axel Polleres, and Livia Predoiu.
Web service modeling language (WSML). W3C Member Sub-
mission, 2005. URL http://www.w3.org/Submission/WSML/.

Jos de Bruijn, Christoph Bussler, John Domingue, Dieter
Fensel, Martin Hepp, Michael Kifer, Birgitta König-Ries, Jacek
Kopecky, Rubén Lara, Eyal Oren, Axel Polleres, James Sci-
cluna, and Michael Stollberg. Web Service Modeling Ontol-
ogy (WSMO). WSMO Final Draft, October 2006. URL
http://www.wsmo.org/TR/d2/v1.3/.

Keith Decker, Mike Williamson, and Katia Sycara. Matchmaking
and brokering. In 2nd International Conference in Multi-Agent
Systems (ICMAS’96), pages 432–443, December 1996.

Wolfgang Degen, Barbara Heller, Heinrich Herre, and Barry
Smith. GOL: toward an axiomatized upper-level ontology. In



BIBLIOGRAPHY 209

Nicola Guarino, Barry Smith, and Christopher Welty, editors,
Proceedings of the International Conference on Formal Ontol-
ogy in Information Systems (FOIS 2001), pages 34–46, New
York, NY, USA, 2001. ACM. doi: http://doi.acm.org/10.1145/
505168.50517.

Tom DeMarco. Structured Analysis and System Specification.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1979. ISBN
0138543801. URL http://portal.acm.org/citation.cfm?
id=1102012.

Patricia Dockhorn Costa, Luis Ferreira Pires, and Marten J.
van Sinderen. Architectural patterns for context-aware ser-
vices platforms. In S. Kouadri Mostefaoui and Z. Maamar,
editors, Second International Workshop on Ubiquitous Com-
puting, pages 3–18, Portugal, April 2005. INSTICC Press. URL
http://doc.utwente.nl/63460/.

Patricia Dockhorn Costa, Luis Ferreira Pires, Marten J. van Sin-
deren, and Tom H.F. Broens. Controlling services in a mo-
bile context-aware infrastructure. In Klaus David and Sandra
Haseloff, editors, Proceedings of the Second Workshop on Con-
text Awareness for Proactive Systems, CAPS 2006, pages 153–
166, Kassel, Germany, June 2006. Kassel University Press. URL
http://doc.utwente.nl/65633/.

John Domingue, Dumitru Roman, and Michael Stollberg. Web
Service Modeling Ontology (WSMO): an ontology for Se-
mantic Web Services. In W3C Workshop on Frameworks
for Semantics in Web Services, pages 776–784. W3C, June
2005. URL http://www.w3.org/2005/04/FSWS/Submissions/
1/wsmo_position_paper.html.

Wilco Engelsman, Dick Quartel, Henk Jonkers, and Marten van
Sinderen. Extending enterprise architecture modelling with
business goals and requirements. Enterprise Information Sys-
tems, 5:9–36, February 2011. ISSN 1751-7575. doi: http:
//dx.doi.org/10.1080/17517575.2010.491871. URL http://dx.
doi.org/10.1080/17517575.2010.491871.

Thomas Erl. Service-Oriented Architecture: Concepts, Technol-
ogy, and Design. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2005.

Christian Facciorusso, Simon Field, Rainer Hauser, Yigal Hoffner,
Robert Humbel, René Pawlitzek, Walid Rjaibi, and Christine



210 BIBLIOGRAPHY

Siminitz. A web services matchmaking engine for web services.
In Kurt Bauknecht, A. Min Tjoa, and Gerald Quirchmayr, ed-
itors, Proceedings of the 4th International Conference on E-
Commerce and Web Technologies (EC-Web 2003), volume 2738
of Lecture Notes in Computer Science, pages 37–49. Springer,
September 2003.

Ricardo de Almeida Falbo, Giancarlo Guizzardi, and Ka-
tia Cristina Duarte. An ontological approach to domain engi-
neering. In Proceedings of the 14th international conference on
Software engineering and knowledge engineering (SEKE ’02),
pages 351–358, New York, NY, USA, 2002. ACM. ISBN 1-
58113-556-4. doi: http://doi.acm.org/10.1145/568760.568822.

Joel Farrell and Holger Lausen. Semantic annotations for wsdl and
xml schema, August 2007. URL http://www.w3.org/2002/ws/
sawsdl/.

Dieter Fensel and Christoph Bussler. The web service model-
ing framework WSMF. Electronic Commerce Research and
Applications, 1(2):113–137, Feb 2002. ISSN 15674223. doi:
10.1016/S1567-4223(02)00015-7. URL http://dx.doi.org/
10.1016/S1567-4223(02)00015-7.

Roberta Ferrario and Nicola Guarino. Towards an ontological
foundations for services science. In Dieter Fensel and Paolo
Traverso, editors, Proceedings of Future Internet Symposium
2008. Springer Verlag, 2008.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence, 2(3-4):189–208, 1971. doi: 10.1016/0004-3702(71)
90010-5. URL http://dx.doi.org/10.1016/0004-3702(71)
90010-5.

Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire.
KQML as an Agent Communication Language. In N. Adam,
B. Bhargava, and Y. Yesha, editors, Proceedings of the 3rd
International Conference on Information and Knowledge Man-
agement (CIKM’94), pages 456–463, Gaithersburg, MD, USA,
1994. ACM Press.

Stan Franklin and Art Graesser. Is it an agent, or just a pro-
gram?: A taxonomy for autonomous agents. In Jörg P. Müller,
Michael Wooldridge, and Nicholas R. Jennings, editors, Intelli-
gent Agents III Agent Theories, Architectures, and Languages,



BIBLIOGRAPHY 211

volume 1193 of Lecture Notes in Computer Science, chapter 2,
pages 21–35–35. Springer Berlin / Heidelberg, Berlin/Heidel-
berg, 1997. ISBN 3-540-62507-0. doi: 10.1007/BFb0013570.
URL http://dx.doi.org/10.1007/BFb0013570.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro
Oltramari, and Luc Schneider. Sweetening ontologies with
DOLCE. In Asunción Gómez-Pérez and V. Richard Benjamins,
editors, Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management. Ontolo-
gies and the Semantic Web (EKAW ’02), volume 2473, pages
166–181, London, UK, 2002. Springer-Verlag. ISBN 3-540-
44268-5.

Aldo Gangemi, Peter Mika, and Daniel Oberle. An ontology of
services and service descriptions. Technical report, Laboratory
for Applied Ontology (ISTC-CNR), November 2003.

Malik Ghallab, Craig K. Isi, Scott Penberthy, David E. Smith,
Ying Sun, and Daniel Weld. PDDL - the planning domain def-
inition language. Technical Report TR-98-003, Yale Center for
Computational Vision and Control, 1998.

Eduardo M. Goncalves da Silva, L. Ferreira Pires, and M. J. van
Sinderen. Towards runtime discovery, selection and composition
of semantic services. Computer communications, 34(2):159–168,
February 2011. ISSN 0140-3664. doi: http://dx.doi.org/10.
1016/j.comcom.2010.04.003.

Frank P. Grad. The preamble of the constitution of the world
health organization. Bulletin of the World Health Organization,
80(12):981–4, 2002.

R. C. Gronback. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. Addison-Wesley Professional, 2009.
ISBN 0321534077.

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan
Decker. Description logic programs: combining logic programs
with description logic. In Proceedings of the 12th interna-
tional conference on World Wide Web (WWW ’03), pages
48–57, New York, NY, USA, 2003. ACM. ISBN 1-58113-
680-3. doi: http://doi.acm.org/10.1145/775152.775160. URL
http://doi.acm.org/10.1145/775152.775160.

Thomas R. Gruber. The role of common ontology in achieving
sharable, reusable knowledge bases. In James F. Allen, Richard



212 BIBLIOGRAPHY

Fikes, and Erik Sandewall, editors, Proceedings of the 2nd Inter-
national Conference on Principles of Knowledge Representation
and Reasoning (KR’91), pages 601–602, Cambridge, MA, USA,
April 1991. Morgan Kaufmann Publishers.

Thomas R. Gruber. A translation approach to portable ontol-
ogy specifications. Knowledge Acquisition, 5(2):199–220, 1993.
ISSN 1042-8143. doi: http://dx.doi.org/10.1006/knac.1993.
1008.

Thomas R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. International Journal of Human-
Computer Studies, 43(5-6):907–928, 1995. ISSN 1071-5819. doi:
http://dx.doi.org/10.1006/ijhc.1995.1081.

Nicola Guarino. Formal ontology and information systems.
In Nicola Guarino, editor, Proceedings of the 1st Interna-
tional Conference on Formal Ontologies in Information Systems
(FOIS’98), pages 3–15, Trento, Italy, June 1998. IOS Press.

Christoph Guger, Shahab Daban, Eric Sellers, Clemens Holzner,
Gunther Krausz, Roberta Carabalona, Furio Gramatica, and
Guenter Edlinger. How many people are able to control a
P300-based brain-computer interface (BCI)? Neuroscience Let-
ters, 462(1):94 – 98, 2009. ISSN 0304-3940. doi: DOI:10.1016/
j.neulet.2009.06.045. URL http://www.sciencedirect.com/
science/article/pii/S0304394009008192.

Giancarlo Guizzardi. Ontological Foundations for Structural Con-
ceptual Models. PhD thesis, University of Twente, 2005.

Giancarlo Guizzardi. The role of foundational ontologies for
conceptual modeling and domain ontology representation. In
Olegas Vasilecas, Johann Eder, and Albertas Caplinskas, edi-
tors, Proceedings of the 7th International Baltic Conference on
Databases and Information Systems, pages 17 –25, 0-0 2006.
doi: 10.1109/DBIS.2006.1678468.

Giancarlo Guizzardi. On ontology, ontologies, conceptualizations,
modeling languages, and (meta)models. Frontiers in Artificial
Intelligence and Applications, Databases and Information Sys-
tems IV, 2007.

Giancarlo Guizzardi and Gerd Wagner. Some applications of a
unified foundational ontology in business modeling. In Peter



BIBLIOGRAPHY 213

Green and Michael Rosemann, editors, Business Systems Ana-
lysis with Ontologies, chapter 13, pages 345–367. IGI Global,
2005.

Giancarlo Guizzardi, Gerd Wagner, Nicola Guarino, and Marten
van Sinderen. An ontologically well-founded profile for uml con-
ceptual models. In Anne Persson and Janis Stirna, editors,
Proceedings of the 16th International Conference on Advanced
Information Systems Engineering, CAiSE 2004, volume 3084 of
Lecture Notes in Computer Science, pages 112–126. Springer,
June 2004.

Giancarlo Guizzardi, Ricardo Falbo, and Renata Silva Souza Guiz-
zardi. Grounding software domain ontologies in the unified
foundational ontology (ufo): The case of the ode software pro-
cess ontology. In 1th Iberoamerican Workshop on Requirements
Engineering and Software Environments (IDEAS’2008), Recife,
Brazil, 2008.

Thomas Haselwanter, Paavo Kotinurmi, Matthew Moran, Tomas
Vitvar, and Maciej Zaremba. Wsmx: A semantic service ori-
ented middleware for b2b integration. In Asit Dan and Win-
fried Lamersdorf, editors, Proceedings of the 4th International
Conference on Service Oriented Computing, volume 4294, pages
477–483, Chicago, USA, December 2006. Springer-Verlag.

B. Heller and H. Herre. Formal ontology and principles of GOL.
Onto-med report nr. 1/2003, Forschungsgruppe Ontologies in
Medicine, Universität Leipzig., 2003.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha
Ram. Design science in information systems research. Manage-
ment Information Systems Quarterly, 28(1):75–106, 2004.

Peter Hill. Tangibles, intangibles and services: a new taxonomy
for the classification of output. Canadian Journal of Economics,
32(2):426–446, April 1999. URL http://ideas.repec.org/a/
cje/issued/v32y1999i2p426-446.html.

Yigal Hoffner, Christian Facciorusso, Simon Field, and Andreas
Schade. Distribution issues in the design and implementation of
a virtual market place. Computer Networks: The International
Journal of Computer and Telecommunications Networking, 32
(6):717–730, May 2000. ISSN 1389-1286. doi: http://dx.doi.
org/10.1016/S1389-1286(00)00028-1.



214 BIBLIOGRAPHY

Pavel Hruby. Ontology-based domain-driven design. In Jorn Bet-
tin, Ghica van Emde Boas, Jean Bézivin, Markus Völter, and
William Cook, editors, OOPSLA Workshop on Best Practices
for Model-Driven Software Development, San Diego, CA, USA,
October 2005.

Michael N. Huhns and Munindar P. Singh. Service-oriented com-
puting: Key concepts and principles. IEEE Internet Computing,
9(1):75–81, January 2005. ISSN 1089-7801. doi: 10.1109/MIC.
2005.21. URL http://dx.doi.org/10.1109/MIC.2005.21.

ISO/IEC-ITU/T. Information technology – open distributed pro-
cessing – trading function: Specification, 1998. ISO/IEC 13235-
1, UIT-T X.950.

ITU-T. ITU-T Rec. Z.151 – Formal description techniques (FDT)
– Specification and Description Language (SDL) – User require-
ments notation (URN) â“ Language definition, November 2008.

Rim Samia Kaabi, Carine Souveyet, and Colette Rolland. Elic-
iting service composition in a goal driven manner. In Marco
Aiello, Mikio Aoyama, Francisco Curbera, and Mike P. Papa-
zoglou, editors, Proceedings of the 2nd international confer-
ence on Service oriented computing (ICSOC 04), pages 308–
315. ACM, 2004. URL http://dblp.uni-trier.de/db/conf/
icsoc/icsoc2004.html#KaabiSR04.

Eirini Kaldeli. Using CSP for adaptable web service composition.
Technical report, University of Groningen, 2009. URL http:
//www.cs.rug.nl/~eirini/tech_rep_09-7-01.pdf.

Eirini Kaldeli, Alexander Lazovik, and Marco Aiello. Extended
goals for composing services. In Alfonso Gerevini, Adele E.
Howe, Amedeo Cesta, and Ioannis Refanidis, editors, Proceed-
ings of the 19th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2009). AAAI, September 19-23
2009. ISBN 978-1-57735-406-2.

Eirini Kaldeli, Ehsan Warriach, Jaap Bresser, Alexander Lazovik,
and Marco Aiello. Interoperation, composition and simulation
of services at home. In Paul Maglio, Mathias Weske, Jian Yang,
and Marcelo Fantinato, editors, Service-Oriented Computing,
volume 6470 of Lecture Notes in Computer Science, pages 167–
181. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-17357-
8. URL http://dx.doi.org/10.1007/978-3-642-17358-5_
12.



BIBLIOGRAPHY 215

Atanas Kiryakov, Borislav Popov, Ivan Terziev, Dimitar Manov,
and Damyan Ognyanoff. Semantic annotation, indexing, and
retrieval. Web Semantics: Science, Services and Agents on the
World Wide Web, 2(1):49–79, December 2004.

Maksym Korotkiy. From Ontology-enabled Services to Service-
enabled Ontologies: Making Ontologies Work in e-Science with
Onto-SOA. PhD thesis, Vrije Universiteit Amsterdam, June
2009.

Yannis Labrou, Tim Finin, and Yun Peng. Agent communication
languages: The current landscape. IEEE Intelligent Systems,
14:45–52, March 1999. ISSN 1541-1672. doi: http://dx.doi.
org/10.1109/5254.757631. URL http://dx.doi.org/10.1109/
5254.757631.

Marc Lankhorst. Enterprise Architecture at Work: Modelling,
Communication and Analysis. Springer-Verlag, Berlin, 2. edi-
tion, 2009. ISBN 978-3-642-01309-6. doi: http://dx.doi.org/10.
1007/978-3-642-01310-2.

Alexei Lapouchnian. Goal-oriented requirements engineering: An
overview of the current research. Technical report, University
of Toronto, June 2005.

Ken Laskey, Jeff A. Estefan, Francis G. McCabe, and Danny
Thornton. Reference architecture foundation for service ori-
ented architecture version 1.0. Committee Draft 02, Oa-
sis, http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-
02.pdf, October 2009.

Hui Lei, Daby M. Sow, John S. Davis, II, Guruduth Banavar,
and Maria R. Ebling. The design and applications of a con-
text service. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 6(4):45–55, October 2002. ISSN 1559-
1662. doi: http://doi.acm.org/10.1145/643550.643554. URL
http://doi.acm.org/10.1145/643550.643554.

Emmanuel Letier and Axel van Lamsweerde. Deriving operational
software specifications from system goals. In Proceedings of the
10th ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 119–128, 2002a.

Emmanuel Letier and Axel van Lamsweerde. Deriving operational
software specifications from system goals. ACM SIGSOFT Soft-
ware Engineering Notes, 27(6):119–128, November 2002b. ISSN



216 BIBLIOGRAPHY

0163-5948. doi: http://doi.acm.org/10.1145/605466.605485.
URL http://doi.acm.org/10.1145/605466.605485.

Lin Liu and Eric Yu. Designing information systems in social
context: a goal and scenario modelling approach. Journal of
Information Systems, 29(2):187–203, April 2004. ISSN 0306-
4379. doi: 10.1016/S0306-4379(03)00052-8. URL http://dl.
acm.org/citation.cfm?id=982308.982314.

David Martin, Mark Burstein, Jerry Hobbs Ora Lassila, Drew Mc-
Dermott, Sheila McIlraith, Srini Narayanan, Massimo Paolucci,
Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srinivasan,
and Katia Sycara. Owl-s: Semantic markup for web services,
November 2004. URL http://www.w3.org/Submission/OWL-
S/.

Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino,
and Alessandro Oltramari. WonderWeb deliverable D18 ontol-
ogy library (final). Technical report, IST Project 2001-33052
WonderWeb: Ontology Infrastructure for the Semantic Web,
December 2003.

Deborah L. McGuinness and Alexander Borgida. Explaining sub-
sumption in description logics. In IJCAI (1), pages 816–821,
1995.

E. Mena, V. Kashyap, A. Illarramendi, and A. Sheth. Domain
Specific Ontologies for Semantic Information Brokering on the
Global Information Infrastructure, pages 269–283. IOS Press,
June 1998. ISBN 0922-6389.

John-Jules Ch. Meyer. Intelligent agents: Issues and logics. In
Jan Chomicki, Ron van der Meyden, and Gunter Saake, editors,
Logics for Emerging Applications of Databases, pages 131–165.
Springer, 2003.

Simon K Milton and Ed. Kazmierczak. An ontology of data mod-
elling languages: a study using a common-sense realistic ontol-
ogy. Journal of Database Management, 15(2):9–38, 2004.

M.N. Moghadasi, A.T. Haghighat, and S.S. Ghidary. Evaluating
markov decision process as a model for decision making under
uncertainty environment. In 2007 International Conference on
Machine Learning and Cybernetics, volume 5, pages 2446 –2450,
aug. 2007. doi: 10.1109/ICMLC.2007.4370557.



BIBLIOGRAPHY 217

Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Plan-
ning: Theory & Practice. The Morgan Kaufmann Series in
Artificial Intelligence. Elsevier, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004. ISBN 1558608567.

Christiaan Frank Nijenhuis. Automatic generation of graphical
domain ontology editors. Master’s thesis, University of Twente,
March 2011.

Barry Norton, Mick Kerrigan, Adrian Mocan, Alessio Carenini,
Emilia Cimpian, Marc Haines, James Scicluna, and Michal
Zaremba. Reference ontology for semantic service oriented ar-
chitectures. Public review draft 01, OASIS Semantic Execution
Environment TC, November 2008.

Bashar Nuseibeh and Steve Easterbrook. Requirements engineer-
ing: a roadmap. In Proceedings of the Conference on The Future
of Software Engineering, ICSE ’00, pages 35–46, New York, NY,
USA, 2000. ACM. ISBN 1-58113-253-0. doi: 10.1145/336512.
336523. URL http://dx.doi.org/10.1145/336512.336523.

Lin Padgham and Wei Liu. Internet collaboration and ser-
vice composition as a loose form of teamwork. Jour-
nal of Network and Computer Applications, 30(3):1116 –
1135, 2007. ISSN 1084-8045. doi: DOI:10.1016/j.jnca.
2006.04.006. URL http://www.sciencedirect.com/science/
article/pii/S1084804506000361.

Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and
Frank Leymann. Service-oriented computing research roadmap.
Technical report, European Union Information Society Tech-
nologies (IST), Directorate D, 2006. URL http://infolab.
uvt.nl/pub/papazogloump-2006-96.pdf.

Mike P. Papazoglou and Dimitris Georgakopoulus. Service-
oriented computing. Communications of ACM, 46(10):25–28,
October 2003.

Chris Preist. A conceptual architecture for semantic web services.
In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van
Harmelen, editors, Proceedings of the International Semantic
Web Conference (ISWC 2004), volume 3298 of Lecture Notes
in Computer Science, pages 395–409. Springer, 2004.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Lan-
guage for RDF. W3C Recommendation, 2008.



218 BIBLIOGRAPHY

Dick A. C. Quartel, Wilco Engelsman, Henk Jonkers, and Marten
van Sinderen. A goal-oriented requirements modelling lan-
guage for enterprise architecture. In Proceedings of the 13th
IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2009, pages 3–13, Auckland, New Zealand,
September 2009. IEEE Computer Society.

Dick A. C. Quartel, Wilco Engelsman, and Henk Jonkers. Archi-
mate extension for modeling and managing motivation, prin-
ciples and requirements in togaf. Technical report, The Open
Group, BiZZdesign, October 2010.

Sudha Ram and Jinsoo Park. Semantic Conflict Resolution
Ontology (SCROL): An ontology for detecting and resolving
data and schema-level semantic conflicts. IEEE Transactions
on Knowledge and Data Engineering, 16(2):189–202, February
2004. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.
2004.1269597.

Fano Ramparany, Remco Poortinga, M. Stikic, J. Schmalenströer,
and T. Prante. An open context information management in-
frastructure – the IST-Amigo project. In Proceedings of the 3rd
IET International Conference on Intelligent Environments 2007
– IE07, Ulm, Germany, September 2007.

Anand S. Rao and Michael P. Georgeff. Modeling rational agents
within a bdi-architecture. In James Allen, Richard Fikes, and
Erik Sandewall, editors, Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Rea-
soning (KR’91), pages 473–484. Morgan Kaufmann publishers
Inc.: San Mateo, CA, USA, 1991. URL http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.51.5675.

Anand S. Rao and Michael P. Georgeff. Decision procedures for
bdi logics. Journal of Logic and Computation, 8(3):293–343,
1998. doi: 10.1093/logcom/8.3.293. URL http://logcom.
oxfordjournals.org/content/8/3/293.abstract.

Colette Rolland, Rim Samia Kaabi, and Naoufel Kraïem. On isoa:
Intentional services oriented architecture. In John Krogstie,
Andreas L. Opdahl, and Guttorm Sindre, editors, Proceedings
of the 19th International Conference on Advanced Information
Systems Engineering (CAiSE 2007), volume 4495 of Lecture
Notes in Computer Science, pages 158–172. Springer Verlag,
2007.



BIBLIOGRAPHY 219

Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bru-
ijn, Rubén Lara, Michael Stollberg, Polleres, Cristina
Feier, Cristoph Bussler, and Dieter Fensel. Web service
modeling ontology. Applied Ontology, 1(1):77–106, 2005.
ISSN 1570-5838. URL http://www.metapress.com/content/
dccb867p347xxebx.

Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter:
Designing Conventions for Automated Negotiation among Com-
puters. Artificial Intelligence series. MIT Press, July 1994.

S. Russel and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 2nd edition edition, 2002.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall, Upper Saddle River, NJ, USA, 3rd
edition, December 2009.

John R. Searle. Mind, Language, and Society : Philosophy in the
Real World. Basic Books, 1998. ISBN 0465045219.

Amit P Sheth, Karthik Gomadam, and Ajith Ranabahu. Seman-
tics enhanced Services: METEOR-S, SAWSDL and SA-REST.
IEEE Bulletin of the Technical Committee on Data Engineer-
ing, 31(3):8–12, September 2008.

Yoav Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, March 1993. ISSN 0004-3702. doi: 10.
1016/0004-3702(93)90034-9. URL http://portal.acm.org/
citation.cfm?id=152185.152188.

Renata Silva Souza Guizzardi. Agent-oriented Constructivist
Knowledge Management. PhD thesis, University of Twente,
February 2006.

E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, and Y. Katz.
Pellet: A practical OWL-DL reasoner. Journal of Web
Semantics, 5(2):51–53, June 2007. ISSN 1570-8268. URL
http://apps.isiknowledge.com.proxy.library.ucsb.edu:
2048/full_record.do?product=WOS&search_mode=
GeneralSearch&qid=11&SID=4ClAPHkFckJgGHMNI5N&page=
1&doc=2.

Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Code:
A development environment for owl-s web services. Technical
Report CMU-RI-TR-05-48, Robotics Institute, Pittsburgh, PA,
October 2005.



220 BIBLIOGRAPHY

Angelo Susi, Anna Perini, John Mylopoulos, and Paolo Giorgini.
The tropos metamodel and its use. Informatica, 29:401–408,
2005.

Katia Sycara, Massimo Paolucci, Julien Soudry, and Naveen Srini-
vasan. Dynamic discovery and coordination of agent-based se-
mantic web services. IEEE Internet Computing, 8(3):66–73,
2004. ISSN 1089-7801. doi: http://dx.doi.org/10.1109/MIC.
2004.1297276.

The Open Group. ArchiMate 1.0 Specification. Van Haren Series.
Centraal Boekhuis, 2009a. ISBN 9789087535025. URL http:
//www.opengroup.org/archimate/doc/ts_archimate/.

The Open Group. TOGAF 9 - The Open Group Architecture
Framework Version 9, 2009b. URL http://www.opengroup.
org/togaf.

Stephen Ullmann. Semantics : an introduction to the science of
meaning. Basil Blackwell, Oxford, revised edition, 1972.

Wiebe van der Hoek and Michael Wooldridge. Towards a logic
of rational agency. Logic Journal of the IGLP, 11(2):133–157,
2003.

A. Van Lamsweerde, R. Darimont, and P. Massonet. Goal-directed
elaboration of requirements for a meeting scheduler: problems
and lessons learnt. In Proceedings of the Second IEEE Interna-
tional Symposium on Requirements Engineering (RE95), pages
194–203, Washington, DC, USA, 1995. IEEE Computer Society.

Axel van Lamsweerde and Laurent Willemet. Inferring declarative
requirements specifications from operational scenarios. IEEE
Transactions on Software Engineering, 24(12):1089–1114, De-
cember 1998. ISSN 0098-5589. doi: 10.1109/32.738341.

Jan-Willem van ’t Klooster, Bert-Jan van Beijnum, Pravin Pawar,
Klass Sikkel, Lucas Meertens, and Hermie Hermens. What do
elderly desire? a case for virtual communities. In Proceedings
of the International Workshop on Web Intelligence and Virtual
Enterprises (WIVE09), Thessaloniki, Greece, October 2009.

Venu Vasudevan. Augmenting OMG traders to handle service
composition. http://www.objs.com/survey/compositional-
trader.html, September 1998.



BIBLIOGRAPHY 221

K. Verma and A. Sheth. Semantically annotating a web ser-
vice. Internet Computing, IEEE, 11(2):83 –85, march-april
2007. ISSN 1089-7801. doi: 10.1109/MIC.2007.48.

M. Vukovic and P. Robinson. Goalmorph: Partial goal satisfaction
for flexible service composition. In Proc. International Confer-
ence on Next Generation Web Services Practices NWeSP 2005,
page 6pp., 22–26 Aug. 2005a. doi: 10.1109/NWESP.2005.44.

Maja Vukovic and Peter Robinson. Goalmorph: Partial goal
satisfaction for flexible service composition. In Proceedings
of the International Conference on Next Generation Web Ser-
vices Practices (NWESP ’05), pages 149–154, Washington, DC,
USA, 2005b. IEEE Computer Society. ISBN 0-7695-2452-4. doi:
http://dx.doi.org/10.1109/NWESP.2005.44.

Hans Weigand, Willem-Jan van den Heuvel, and Marcel Hiel.
Business policy compliance in service-oriented systems. Infor-
mation Systems, 36(4):791 – 807, 2011. ISSN 0306-4379. doi:
10.1016/j.is.2010.12.005. URL http://www.sciencedirect.
com/science/article/pii/S0306437910001377.

Mark Weiser. The computer for the 21st century. Scientific Amer-
ican, 265(3):66–75, September 1991.

Daniel S. Weld. An introduction to least commitment planning.
AI Magazine, 15:27–61, 1994.

Christopher Welty and Nicola Guarino. Supporting ontological
analysis of taxonomic relationships. Data & Knowledge En-
gineering, 39(1):51–74, October 2001. ISSN 0169-023X. doi:
http://dx.doi.org/10.1016/S0169-023X(01)00030-1.

Terry Winograd and Fernando Flores. Understanding computers
and cognition - a new foundation for design. Addison-Wesley,
1987. ISBN 978-0-201-11297-9.

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. De-
signing object-oriented software. Prentice Hall, 11 edition, 1990.
URL http://books.google.com/books?id=KpJQAAAAMAAJ.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review, 10
(2):115–152, 1995. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.55.2702.



222 BIBLIOGRAPHY

Michael Wooldridge, Nicholas R. Jennings, and D. Kinny. The
gaia methodology for agent-oriented analysis and design. Jour-
nal of Autonomous Agents and Multi-Agent Systems, 3(3):285–
312, 2000. URL http://eprints.ecs.soton.ac.uk/3748/.

E.S.K. Yu. Towards modelling and reasoning support for early-
phase requirements engineering. In Proceedings of the Third
IEEE International Symposium on Requirements Engineering,
1997, pages 226 –235, January 1997. doi: 10.1109/ISRE.1997.
566873.

M. Zarifi Eslami, A. Zarghami, B. Sapkota, and M. J. van Sin-
deren. Service tailoring: Towards personalized homecare sys-
tems. In Proceedings of the 4th International Workshop on
Architectures, Concepts and Technologies for Service Oriented
Computing (ACT4SOC 2010), Athens, Greece, pages 109–121,
Athenes, Greece, July 2010. SciTePress.

Pamela Zave. Classification of research efforts in requirements
engineering. ACM Computing Surveys, 29:315–321, Decem-
ber 1997. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/
267580.267581. URL http://doi.acm.org/10.1145/267580.
267581.

Kangkang Zhang, Qingzhong Li, and Qi Sui. A goal-driven ap-
proach of service composition for pervasive computing. In Pro-
ceedings of the 1st International Symposium on Pervasive Com-
puting and Applications, pages 593–598, 3–5 Aug. 2006. doi:
10.1109/SPCA.2006.297491.



Publications by the Author
During the development of this thesis, the author has published
various parts of this work in the following papers (listed in reverse
chronological order):

Bonino da Silva Santos, L.O., Sorathia, V., Ferreira Pires, L.,
van Sinderen, M. J., Towards a Conceptual Framework to Support
Dynamic Service Provisioning for Non-Technical Service Clients,
Journal of Software, Academy Publisher, 6 (4), pp. 564-573, April
2011.

Bonino da Silva Santos, L.O., Sorathia, V., Ferreira Pires, L.,
van Sinderen, M. J., An Approach to Dynamic Provisioning of
Social and Computational Services, the IEEE 6th World Congress
on Services (SERVICES 2010), Miami, Florida, USA, July 5-10,
2010.

Bonino da Silva Santos, L.O., Ferreira Pires, L., van Sinderen,
M. J., Service Provisioning Support for Non-Technical Service
Clients, the 7th International Conference on Information Tech-
nology: New Generations (ITNG 2010), Las Vegas, Nevada, USA,
April 12-14, 2010.

Bonino da Silva Santos, L.O., Guizzardi, G., Ferreira Pires, L.,
van Sinderen, M. J., From User Goals to Service Discovery and
Composition, the 3rd International Workshop on Requirements,
Intentions and Goals in Conceptual Modeling (RIGIM’09) with
the 28th International Conference on Conceptual Modeling (ER
2009), Gramado, Brazil, November 9-12, 2009.

Bonino da Silva Santos, L.O., Guizzardi, G., Silva Souza Guiz-
zardi, R., Gonçalves da Silva, E., Ferreira Pires, L., van Sinderen,
M. J., GSO: Designing a Well-Founded Service Ontology to Sup-
port Dynamic Service Discovery and Composition, the 2nd Inter-
national Workshop on Dynamic and Declarative Business Process
(DDBP 2009) with the 13th IEEE International EDOC Confer-
ence (EDOC 2009), Auckland, New Zealand, September 1st, 2009.

Bonino da Silva Santos, L.O., Gonçalves da Silva, E., Fer-
reira Pires, L., van Sinderen, M. J., Towards a Goal-Based Service



224 Publications by the Author

Framework for Dynamic Service Discovery and Composition, the
6th International Conference on Information Technology: New
Generations (ITNG 2009), Las Vegas, Nevada, USA, April 27-29,
2009.

Bonino da Silva Santos, L.O., Ferreira Pires, L., van Sinderen,
M. J., A Trust-Enabling Support for Goal-Based Services, the 2008
IEEE International Symposium on Trusted Computing (Trust-
Com 2008), Zhang Jia Jie, Hunan, China, November 18-20, 2008.

Bonino da Silva Santos, L.O., Ferreira Pires, L., van Sinderen,
M. J., A Goal-Based Framework for Dynamic Service Discov-
ery and Composition, 2nd International Workshop on Architec-
tures, Concepts and Technologies for Service Oriented Comput-
ing (ACT4SOC 2008) in conjunction with the 3rd International
Conference on Software and Data Technologies (ICSOFT 2008),
Porto, Portugal, July 5, 2007.

Bonino da Silva Santos, L.O., Poortinga-van Wijnen, R., Vink,
P., A Service-Oriented Middleware for Context-Aware Applica-
tions, 5th International Workshop on Middleware for Pervasive
and Ad-Hoc Computing (MPAC 2007) in conjunction with the
ACM/IFIP/USENIX 8th International Middleware Conference (Mid-
dleware 2007), Newport Beach, CA, USA, November 26-30 2007.

Bonino da Silva Santos, L.O., Vink, P., Poortinga-van Wijnen,
R., Demo: A Service-Oriented Middleware for Providing Con-
text Awareness and Notification, ACM/IFIP/USENIX 8th Inter-
national Middleware Conference (Middleware 2007), Demo Track,
Newport Beach, CA, USA, November 26-30 2007.

Bonino da Silva Santos, L.O., van Sinderen, M., Ferreira Pires,
L., Architectural Models for Client Interaction on Service-Oriented
Platforms, in Proceedings of the 1st International Workshop on
Architectures, Concepts and Technologies for Service Oriented
Computing (ACT4SOC 2007) in conjunction with the 2nd Inter-
national Conference on Software and Data Technologies (ICSOFT
2007), Barcelona, Spain, July 22 2007.

Bonino da Silva Santos, L.O., Ramparany, F., Dockhorn Costa,
P., Vink, P., Etter, R., Broens, T., A Service Architecture for
Context Awareness and Reaction Provisioning, in Proceedings of
the 2007 IEEE Congress on Services (Services 2007), ISBN 978-
0-7695-2926-4, p. 25-32, 2nd Modeling, Design, and Analysis for
Service-Oriented Architecture Workshop (MDA4SOA 2007), Salt
Lake City, USA, July 13th 2007.

Bonino da Silva Santos, L.O., van Sinderen, M., Ferreira Pires,
L., Dynamic Service Discovery and Composition for Ubiquitous
Networks Applications, Second Conference on Future Networking



225

Technologies (CoNEXT 2006), Poster Track, Lisbon, Portugal,
4-7 December 2006.

Bonino da Silva Santos, L.O., Guizzardi, R.S.S., van Sinderen,
M., Agent-Oriented Context-Aware Platforms Supporting Com-
munities of Practice in Health Care, In proceedings of the 4 th
International Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS 2005), vol. 3, pp. 1287-1288, Utrecht,
the Netherlands, July 25-29 2005.

Bonino da Silva Santos, L.O., Guizzardi, R.S.S., van Sinderen,
M., Agent-Oriented Approach to Develop Context-Aware Applica-
tions: A Case Study on Communities of Practice, CTIT Report
TR-CTIT-05-19, ISSN 1381-3625, May 2005, 17 pp.

Bonino da Silva Santos, L.O., Guizzardi, R.S.S., van Sinderen,
M., Pires, L.F., Wagner, G., Pereira Filho, J.G., Konstantas,
D., Context-Aware Support for Communities of Practice, In the
3rd International Semantic Web Conference (ISWC2004), Poster
Track , Hiroshima, Japan, November, 2004.



226 Publications by the Author



Resumo
Computação Orientada a Serviços (SOC, na sigla em inglês) é um
paradigma para projeto, uso e gerência de aplicações de sistemas
distribuídos na forma de serviços. Na visão da SOC, serviços re-
presentam pedaços de funcionalidades distribuídos que podem ser
combinados (ou compostos, na terminologia da SOC) para gerar
novas funcionalidades com mais valor agregado. Em um cenário
ideal baseado nessa visão, um cliente de serviço expressa seus re-
quisitos a uma infraestrutura de software, e esse software desco-
bre, seleciona e invoca os serviços sem a necessidade de interações
adicionais com o cliente humano. Requisitos não-funcionais como
custo, confiança e privacidade, entre outros, também devem ser
expressos pelo cliente de serviço e tratados automaticamente pela
infraestrutura de software.

A visão da SOC também se sobrepõe a algumas das carac-
terísticas da Computação Pervasiva. No seu artigo seminal so-
bre Computação Pervasiva (também conhecida como Computação
Ubíqua), Weiser previu que dispositivos computacionais, de sen-
soriamento e de comunicação seriam embutidos de forma trans-
parente no ambiente ao nosso redor. Esse ambientes enriquecidos
com dispositivos computacionais dariam acesso permanente e em
qualquer lugar a informações e serviços. Informação disponível
prontamente pode contribuir para a concretização da visão da
SOC, especialmente ao permitir que infraestruturas de software
capturem informações relacionadas à execução de serviços sem
que seja necessária uma interação direta do usuário.

Apesar da completa automação do provisionamento de serviços
ser o objetivo final da SOC, muito trabalho ainda precisa ser re-
alizado para que esse objetivo seja alcançado. Além disso, uma
ampla adoção da Computação Orientada a Serviços e da Com-
putação Pervasiva requereria que essas tecnologias se tornassem
mais atraentes aos usuários não-técnicos em sua vida cotidiana.
Em cenários onde um número significativo de serviços, provedores
de serviços e clientes de serviços estejam disponíveis podem sur-



228 Resumo

gir questões como: (i) como expressar os requisitos de serviços
de uma forma intuitiva (adequada a clientes não-técnicos); (ii)
como tratar problemas de interoperabilidade semântica em requi-
sitos de serviços, descrições de serviços e na interpretação interna
dos termos usados em operações de serviços, que usem diferentes
modelos conceituais; (iii) como suportar a descoberta, seleção e in-
vocação de serviços que satisfaçam os objetivos de seus clientes de
forma menos invasiva e disruptiva; e (iv) como combinar serviços
executados por humanos com serviços executados por sistemas
computacionais.

Em nosso trabalho, nós consideramos cenários onde usuários
não-técnicos estão cercados por dispositivos e sensores inteligentes
e capazes de se comunicar, e onde um grande número de serviços
está disponível. Nesses cenários, um suporte adicional deve ser
oferecido aos usuários finais para auxiliá-los diante da possibil-
idade de uma quantidade ( possivelmente) não gerenciável de
decisões e interações no que concerne às etapas de provisiona-
mento de serviços como especificação dos requisitos de serviços,
descoberta, seleção, acordo, composição e invocação de serviços.

Nessa tese, nós apresentamos um framework conceitual para
suportar o provisionamento dinâmico de serviços a usuários não-
técnicos. As principais contribuições do nosso framework são:
(i) permitir que clientes de serviços expressem seus requisitos de
serviços utilizando o conceito de objetivo, que é mais próximo
ao seu entendimento intuitivo que artefatos técnicos como, por
exemplo, um documento escrito utilizando a linguagem WSDL;
(ii) reduzir a necessidade de interações diretas entre o usuário e os
serviços através do uso de informações obtidas automaticamente
do ambiente; (iii) fornecer uma linguagem para a especificação de
domínios que suporte especialistas de domínio na modelagem de
conceitos de domínio e serviços. Adicionalmente, essa linguagem
de especificação de domínios oferece primitivas de modelagem que
permitem a distinção entre serviços computationais e sociais, que
são prestados por sistemas computacionais e por humanos, respec-
tivamente.

Os resultados concretos dessa tese são: (i) a descrição e o
projeto de um framework baseado em objetivos para o provisio-
namento dinâmico de serviços; (ii) o projeto e a implementação
de um protótipo da plataforma de software descrita pelo frame-
work, que suporta o provisionamento dinâmico de serviços; (iii)
a definição de uma ontologia fundamental que oferece a base on-
tológica para a (iv) linguagem de especificação de domínios.

O framework proposto nessa tese foi avaliado a partir de es-



229

tudos de caso representativos que cobriram o uso do framework
no que concerne à modelagem de domínios de aplicação e à oper-
ação da plataforma de software para suportar o provisionamento
dinâmico de serviços nesses domínios.


	Thesis_Bonino_cover.pdf
	Thesis_Bonino_final

