An Efficient and Flexible Implementation of
Aspect-Oriented Languages

Vom Fachbereich Informatik der Technischen Universitdt Darmstadt genehmigte
Dissertation
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)
vorgelegt von

Diplom-Informatiker Christoph-Matthias Bockisch

geboren in Bielefeld

Referentin: Prof. Dr.-Ing. Mira Mezini
Korreferent: Prof. dr. ir. Mehmet Aksit
Datum der Einreichung: 14. Mai 2008

Datum der miindlichen Priifung: 1. Juli 2008
Erscheinungsjahr 2009
Darmstadt D17






Abstract

Compilers for modern object-oriented programming languages generate code
in a platform independent intermediate language [LY99, [CLIO6] preserv-
ing the concepts of the source language; for example, classes, fields, meth-
ods, and virtual or static dispatch can be directly identified within the in-
termediate code. To execute this intermediate code, state-of-the-art im-
plementations of virtual machines perform just-in-time (JIT) compilation
[DS84] IACLT99, [Ayc03] of the intermediate language; i.e., the virtual in-
structions in the intermediate code are compiled to native machine code at
runtime. In this step, a declarative representation of source language con-
cepts in the intermediate language facilitates highly efficient adaptive and
speculative optimization of the running program which may not be possible
otherwise.

In contrast, constructs of aspect-oriented languages—which improve the
separation of concerns—are commonly realized by compiling them to con-
ventional intermediate language instructions or by driving transformations of
the intermediate code, which is called weaving. This way the aspect-oriented
constructs’ semantics is not preserved in a declarative manner at the inter-
mediate language level. This representational gap between aspect-oriented
concepts in the source code and in the intermediate code hinders high perfor-
mance optimizations and weakens features of software engineering processes
like debugging support or the continuity property of incremental compila-
tion: modifying an aspect in the source code potentially requires re-weaving
multiple other modules [SDROS, RDHNO06].

To leverage language implementation techniques for aspect-oriented lan-
guages, this thesis proposes the Aspect-Language Implementation Archi-
tecture (ALIA) which prescribes—amongst others—the existence of an in-
termediate representation preserving the aspect-oriented constructs of the
source program. A central component of this architecture is an extensible
and flexible meta-model of aspect-oriented concepts which acts as an inter-
face between front-ends (usually a compiler) and back-ends (usually a vir-
tual machine) of aspect-oriented language implementations. The architecture

11



and the meta-model are embodied for Java-based aspect-oriented languages
in the Framework for Implementing Aspect Languages (FIAL) respectively
the Language-Independent Aspect Meta-Model (LIAM) which is part of the
framework. FIAL generically implements the work flows required from an ex-
ecution environment when executing aspects provided in terms of LIAM. In
addition to the first-class intermediate representation of aspect-oriented con-
cepts, ALIA—and the FIAL framework as its incarnation—treat the points
of interaction between aspects and other modules—so-called join points—as
being late-bound to an implementation. In analogy to the object-oriented
terminology for late-bound methods, the join points are called wvirtual in
ALIA. Together, the first-class representation of aspect-oriented concepts in
the intermediate representation as well as treating join points as being virtual
facilitate the implementation of new and effective optimizations for aspect-
oriented programs.

Three different instantiations of the FIAL framework are presented in this
thesis, showcasing the feasibility of integrating language back-ends with dif-
ferent characteristics with the framework. One integration supports static as-
pect deployment and produces results similar to conventional aspect weavers;
the woven code is executable on any standard Java virtual machine. Two in-
stantiations are fully dynamic, where one is realized as a portable plug-in for
standard Java virtual machines and the other one, called STEAMLOOMALIA
is realized as a deep integration into a specific virtual machine, the Jikes
Research Virtual Machine [AABT05]. While the latter instantiation is not
portable, it exhibits an outstanding performance.

Virtual join point dispatch is a generalization of virtual method dis-
patch. Thus, well established and elaborate optimization techniques from
the field of virtual method dispatch are re-used with slight adaptations in
STEAMLOOMALIA  These optimizations for aspect-oriented concepts go be-
yond the generation of optimal bytecode. Especially strikingly, the power
of such optimizations is shown in this thesis by the examples of the cflow
dynamic property [ACHT05b], which may be necessary to evaluate during
virtual join point dispatch, and dynamic aspect deployment [MOO03]—i.e.,
the selective modification of specific join points’ dispatch.

In order to evaluate the optimization techniques developed in this thesis, a
means for benchmarking has been developed in terms of macro-benchmarks;
i.e., real-world applications are executed. These benchmarks show that for
both concepts the implementation presented here is at least circa twice as
fast as state-of-the-art implementations performing static optimizations of
the generated bytecode; in many cases this thesis’s optimizations even reach
a speed-up of two orders of magnitude for the cflow implementation and even
four orders of magnitude for the dynamic deployment.

v



The intermediate representation in terms of LIAM models is general
enough to express the constructs of multiple aspect-oriented languages. There-
fore, optimizations of features common to different languages are available to
applications written in all of them. To proof that the abstractions provided
by LIAM are sufficient to act as intermediate language for multiple aspect-
oriented source languages, an automated translation from source code to
LIAM models has been realized for three very different and popular aspect-
oriented languages: AspectJ [KHHT01], JAsCo [VSVT05] and Compose*
[BAOL, [ARHHT08]. In addition, the feasibility of translating from CaesarJ
[AGMOO06] to LIAM models is shown by discussion. The use of an exten-
sible meta-model as intermediate representation furthermore simplifies the
definition of new aspect-oriented language concepts as is shown in terms of
a tutorial-style example of designing a domain specific extension to the Java
language in this thesis.






Zusammenfassung

Compiler fiir moderne Objekt-orientierte Programmiersprachen generieren
Code in einer Plattform-unabhingigen Intermediate-Sprache [LY99, [CLIOG],
die die Konzepte der Quell-Sprache erhalt; zum Beispiel konnen Klassen,
Felder, Methoden und virtueller oder statischer Methodendispatch direkt
im Intermediate-Code identifiziert werden. Um diesen Intermediate-Code
auszufiithren, fiihren aktuelle Implementierungen von virtuellen Maschinen
sogenannte just-in-time (JIT) Compilierung der Intermediate-Sprache durch
[DS84, IACLT99, [Ayc03]; das bedeutet, dass die virtuellen Instruktionen
im Intermediate-Code zur Laufzeit zu nativem Maschinencode compiliert
werden. In diesem Schritt ermdoglicht eine deklarative Représentation der
Konzepte aus der Quell-Sprache in der Intermediate-Sprache hochst effiziente
adaptive und spekulative Optimierungen des laufenden Programms, die sonst
nicht moglich wéren.

Im Gegensatz hierzu werden die Konstrukte von Aspekt-orientierten Pro-
grammiersprachen — die zu einer besseren “Separation of Concerns” fiithren
— iiblicherweise dadurch realisiert, dass sie zu herkémmlichen Intermediate-
Instruktionen compiliert werden oder dass sie Transformationen im Interme-
diate-Code bewirken; dies wird “Weben” genannt. Auf diese Weise bleibt die
Semantik Aspekt-orientierter Konstrukte auf der Ebene der Intermediate-
Sprache nicht deklarativ erhalten. Durch diese Kluft in der Darstellung
Aspekt-orientierter Konzepte im Quell-Code und im Intermediate-Code wer-
den hoch-performante Optimierungen behindert und Eigenschaften eines Soft-
ware-Entwicklungsprozesses geschwicht, wie Unterstiitzung beim Debuggen
oder die Continuity-Eigenschaft von inkremeteller Compilierung: Eine Mod-
ifikation an einem Aspekt im Quell-Code zieht moglicherweise das erneute
Weben mehrerer anderer Module nach sich [SDROS, RDHNOG].

Um die Sprach-Implementierungstechniken fiir Aspekt-orientierte Pro-
grammiersprachen zu verbessern, wird in dieser Arbeit die Architektur fiir
Aspekt-Sprachen-Implementierungen (englisch Aspect-Language Implemen-
tation Architecture, ALIA) vorgeschlagen, welche unter anderem vorschreibt,
dass eine Intermediate-Repréasentation existiert, die die Aspekt-orientierten

Vil



Konstrukte aus dem Quell-Programm erhélt. Eine zentrale Komponente
dieser Architektur ist das erweiterbare und flexible Meta-Model von Aspekt-
orientierten Konzepten, das als Schnittstelle zwischen Front-Ends (iiblicher-
weise ein Compiler) und Back-Ends (iiblicherweise eine virtuelle Maschine)
von Aspekt-orientierten Sprachimplementierungen dient. Die Architektur
und das Meta-Model sind fiir Java-basierte Sprachen in dem Framework zum
Implementieren von Aspekt-Sprachen (englisch Framework for Implementing
Aspect Languages, FIAL) beziehungsweise dem Sprachunabhéngigen Aspekt-
Meta-Model (englisch Language-Independent Aspect Meta-Model, LIAM),
das Teil des Frameworks ist, verkorpert. FIAL implementiert generisch Ar-
beitsabldufe, die von einer Ausfithrungsumgebung benétigt werden, welche
Aspekte ausfiihrt, die mit LIAM definiert sind. Zusétzlich zu der deklarativen
Intermediate-Représentation von Aspekt-orientierten Konzepten behandelt
ALIA — und FIAL als dessen Verkorperung — Join-Points — also Punkte
an denen Interaktion zwischen Aspekten und anderen Modulen stattfindet
— 8o, dass sie an eine Implementierung spét-gebunden werden. Analog zu
der Objekt-orientierten Terminologie fiir spat-gebundene Methoden werden
Join-Points in ALIA als wirtuell bezeichnet. Die deklarative Reprasentation
von Aspekt-orientierten Konzepten in der Intermediate-Reprisentation und
das Behandeln von Join-Points als virtuell ermo6glichen es, neue und effektive
Optimierungen fiir Aspekt-orientierte Programme zu entwickeln.

In dieser Arbeit werden drei Instantiierungen von FIAL vorgestellt, die
herausstellen, dass eine Integration von Sprach-Back-Ends mit unterschiedli-
chen Eigenschaften mit dem Framework moglich sind. Eine der Integrierun-
gen unterstiitzt statisches Aspekt-Deployment und erzeugt Ergebnisse, die
vergleichbar mit denen herkommlicher Weber sind; der gewobene Code kann
auf jeder standard-Java Virtual Machine ausgefithrt werden. Zwei Instan-
tiierungen sind vollstdndig dynamisch, wobei eine als portables Plug-in fiir
standard-Java Virtual Machines realisiert ist und die andere als tiefgehende
Integration in eine spezielle virtuelle Maschine, die Jikes Research Virtual
Machine [AABT05]. Wihrend STEAMLOOMALIA  die letztere Instantiierung,
nicht portabel ist, ist sie besonders leistungsstark.

Der Dispatch von virtuellen Join-Points ist eine Verallgemeinerung des
Dispatchs von virtuellen Methoden. Daher werden in STEAMLOOMALIA
etablierte und ausgefeilte Optimierungstechniken aus dem Bereich des virtuel-
len Methodendispatchs wiederverwendet. Diese Optimierungen fiir Aspekt-
orientierte Konzepte gehen iiber die Erzeugung von optimalem Bytecode hin-
aus. Die Méchtigkeit solcher Optimierungen wird in dieser Arbeit besonders
offensichtlich an den Beispielen der dynamischen Eigenschaft cflow [ACHT05b],
die bei der Auswertung eines virtuellen Join-Point-Dispatchs ben6tigt werden

viil



kann, und dynamischem Aspekt-Deployment [MOO3] — das heifit die selektive
Modifikation des Dispatchs von bestimmten Join-Points.

Um diese Optimierungstechniken zu evaluieren, wurde in dieser Arbeit
ein Benchmark-Verfahren entwickelt, in dem Makro-Benchmarks, also reale
Applikationen, verwendet werden. Diese Benchmarks zeigen, dass fiir beide
Konzepte die hier préasentierte Implementierung mindestens etwa doppelt so
schnell ist wie aktuelle Implementierungen, die den generierten Bytecode
statisch optimieren; in vielen Féllen erreichen die in dieser Arbeit vorgestell-
ten Optimierungen sogar eine Beschleunigung von zwei Groflenordnungen fiir
die cflow-Implementierung und sogar vier Gréolenordnungen fiir das dynamis-
che Deployment.

Die Verwendung von LIAM-Modellen als Intermediate-Reprasentation
ist allgemein genug, um Aspekt-orientierte Konstrukte mehrerer Sprachen
auszudriicken. Daher profitieren alle Sprachen davon, wenn fiir gemeinsame
Konzepte Optimierungen implementiert werden. Um zu zeigen, dass die Ab-
straktionen von LIAM ausreichend sind, um als Intermediate-Sprache fiir
mehrere Aspekt-Orientierte Quell-Sprachen zu dienen, wurden automatische
Ubersetzer von Quell-Code zu LIAM-Modellen fiir drei sehr verschiedene aber
populédre Aspekt-orientierte Sprachen entwickelt: AspectJ [KHHT01], JAsCo
[VSVT05] und Compose* [BAOL, dRHH™08|. Zusétzlich wird die Mach-
barkeit, von CaesarJ [AGMO06] zu LIAM-Modellen zu iibersetzen, disku-
tiert. Die Verwendung eines erweiterbaren Meta-Modells als Intermediate-
Reprisentation vereinfacht weiterhin die Definition von neuen Aspekt-orien-
tierten Sprach-Konzepten, wie in dieser Arbeit durch ein Tutorial-artiges
Beispiel gezeigt wird, in dem eine Doménen-spezifische Erweiterung der Spra-
che Java entwickelt wird.

1X



Contents

1__Overview 1
(.1 Context of this Thesisl . . . . .. . ... ... ... ... ... 1
(L2 Introduction|. . . . . . . . ... ... 4

(.2.1  Virtual Join Pomtsl . . . . . . . ... ..o 5
[1.2.2  Aspect-Oriented Language Implementation Architecture| 7
(1.2.3 VM Integration of AO Concepts|. . . . . . . .. .. .. 11
(.24 DBenchmarks . . . . . .. ... ..o L 12
(1.3 Summary of Contributions| . . . . . . .. ... ... ... ... 13
L4 Structure of this Thesid. . . . . . . . . . ... ... ... ... 16

PR [ Jom Poinis 19

2.1 Background| . . . ... ... ... o000 20
[2.1.1 Pointcut-and-advice Languages . . . . ... ... ... 20
[2.1.2  The Java Bytecode Format|. . . . . . . ... ... ... 23

2.2 Binding of Jon Points| . . . . . .. ... ... 26

2.3 Virtual Join Pomtsl . . . . . . ... oo 29

[2.4  Prototype Implementation ot Envelopes. . . . . . . ... . .. 34
[2.4.1  Generating Envelopes|. . . . . .. . ... ... .. 34
[2.4.2  Weaving in Envelopes] . . . . ... ... ... ... .. 35
[2.4.3  Limitations of the Prototypel. . . . . . . . . ... ... 37
[2.4.4  Dynamic Weaving in Envelopes| . . . . . . . ... ... 39

[2.5 Evaluation of Weaving Approaches . . . . . . ... ... ... 40
[2.5.1 Evaluated Approaches| . . . . . .. ... .. ... ... 40
.52 Benchmarks . . . . ... ... ... ... 41

[3 The Aspect Language Implementation Architecture| 45

[3.1 Common Features of Aspect-Oriented Languages| . . . . . .. 46
[3.1.1 Aspectd| . . . . . . ... 47
B.12 Caesardl . ... ... .. ... ... 52
B.1.3 JAsCol . . . . . 53
[3.1.4 Compose™| . . . . . .. ... 54
[3.1.5  Summary of language features . . . . . . . ... .. .. 56




[3.2  'The Language Independent Aspect Meta-Model . . . . . . .. 56

[3.3  'T'he Framework for Implementing Aspect Languages . . . . . 62
B.3.1 FIAL'S Fxecution Modell . . . . . . . . o000 63
B.32 Work Flowd . . . ... ... ... ... ... ...... 64
[3.3.3  Weaving Directives| . . . . . . . . ... ... ... ... 65

[3.4 Language Mappings|. . . . . . . . ... ... ... ... .... 68
[3.4.1 Aspect Mapping| . . . . . ... .. ... ... ..., 70
[3.4.2  JAsCo Mapping| . . . . . ... ... ... ... ..... 72
[3.4.3  Compose™ Mapping|. . . . . . . . . .. ... ... ... 74
3.44 Discussionl . . . . . . . ... 78

(3.5 Iixecution Fnvironments . . . . . ... ..o 79
[3.5.1  Envelope-Based Reference Implementation| . . . . . . . 80
[3.5.2 Static Weaverl . . . . . ... ... ... L 82

[3.6 AO Language Design and Implementation with FIAL| . . . . . 83
[3.6.1  Realizing the Sample Language in FIAL| . . . . . . .. 86

4 Optimizing AO Concepts in the Virtual Machine| 93

[4.1  Motivation for Dynamic Optimizations of AO Concepts| . . . . 94

(4.2 Dynamic Optimizations of OO Concepts| . . . . . . . . .. .. 95

[4.3  Optimized Dynamic Aspect Deployment| . . . . . . . ... .. 102
[4.3.1  Eager versus Lazy Envelope Call Insertion| . . . . . . . 104
[4.3.2  Speculative Inlining Techniques for Envelopes . . . . . 107
[4.3.3  Special Language Features| . . . . . . . ... ... ... 111

[4.4  Control Flow Quantification| . . . . . . . ... ... ... ... 112
[4.4.1  Current Implementation of Control Flow (Quantification|113
442 Control Flow Guards . . . . ... ... ... ... ... 116
[4.4.3  Implementation of Control Flow Guards| . . . . . . .. 120

(5 Evaluating Dynamic Optimizations of AO Concepts| 125

[>.1 Benchmarks for Dynamic Features of AO Languages|. . . . . . 126

[5.2  Evaluating Optimized Dynamic Deployment| . . . . . . . . .. 127
[>.2.1  Approaches Participating in the Evaluation| . . . . . . 127
[5.2.2  Alternative Configurations of Envelope-Aware Jikes| . . 129
[5.2.3  Results ot Deployment Evaluation|. . . . . . . .. ... 132

(5.3  Evaluating Control Flow Quantification|. . . . . . . . ... .. 135
[>.3.1 Implementations of cflow in the ajc and abc Compilers| 138
[b.3.2  Micro-Benchmarks . . . .. .. ... ... ... 140
0.3.3  Benchmarks Based on SPRC JVMIY . . .. .. .. .. 142
[H.3.4 abc Benchmark Suitel . . . . . . . .. ..o 143

6 Related Workl 147

x1



[6.1.1  Prototype- and Delegation-Based Execution Model| . .

6.1.2 Reflection-Based Execution Modell

6.2  Meta-Models for Aspect-Oriented Concepts|. . . . . . . . . ..

[6.2.1 Metaspin and JAMI|

0.22 Reflex| . . . . .. ... oL
[6.2.3 Aspect Sand Box| . . . . ... ...

[6.3 Intermediate Languages and Execution Environments| . . . . .

.............................

[6.3.2  Lightweight VM Support for Aspectd| . . . . . . . . ..

[7.2.3  Static Crosscutting]

[7.2.4 1Dk Support tor Programs Executed on FIAL[ . . . . .

Scentific C |

(Bibliography|

patl

147
149
149
150
150
151
151
152
153

155
155
158
158
160
161
162

165

167



List of Figures

(1.1 The most important LIAM entities.| . . . . . . . ... ... .. 8
(1.2 Overview of different usages of FIAL. . . . . . . ... ... .. 9
[2.1 Accessing a database from the client as well as the server. 22
2.2 The Java Virtual Machine class file format). . . . . .. .. .. 24
[2.3  Virtual join point dispatch.] . . . ... .. ... ... ... .. 31
[3.1 Compilation and execution of AO programs in ALIA| . . . . . 47
[3.2  Schema of how filters are applied in Compose™.| . . . . .. .. 55
[3.3  Entities of the Language Independent Meta-Model.| . . . . . . 57
[3.4  Example of a model in LIAM.| . . . ... ... .. ... .... 58
[3.5  Runtime object model ot JoinPoint for the ThisJoinPointContext.| 59
[3.6  Object model of ThisJoinPointContext context in LIAM.| 60
(3.7 Interaction between FIAL, and its mstantiation) . . . . . . .. 63
[3.8 Object diagram of a general advice unit.| . . . . .. . ... .. 64
[3.9 Evaluation strategy of a dispatch function as a BDD.| . . . . . 66
[3.10 Object diagram of a BoundAction.| . . . . . . . . ... ... .. 67
[3.11 Data structure for representing the order of advice| . . . . . . 67
[3.12 Object diagram of an ActionOrderElement data structure|. . . . 68
[3.13 Linking of pointcut-and-advice and advised locations in AJDT.| 79
[3.14 Instruction sequence generated for ordered BoundActions.| 82
[3.15 Class diagram of the decorator pattern’s structure| . . . . . . 84
[3.16 Class managing dependencies of decoratees and decorators.| . . 87
[3.17 Structure of the aspect for enforcing the decorator pattern.| . . 87
[3.18 Advice unit for updating the decorator-decoratee mapping.| . . 88
[3.19 Advice unit for forwarding calls on decorated objects.| . . . . . 89
[4.1 Class with a monomorphic method. . . . . . . .. ... .. .. 97
[4.2  Class with a polymorphic method.|. . . . . .. . ... ... .. 99
[4.3  Inline sequence without and with envelopes.| . . . . . . .. .. 106
[4.4  Diagram of the code splitting algorithm using merge points.| . 109
[4.5 Stack frame layout for baseline-compiled methods.|. . . . . . . 121

Xlil



[>.1 Schema of executing benchmarks with dynamic deployment. . 132

X1iv



List of Tables

2.1 Results of the measurements of static weaving.|. . . . . . . .. 43
[2.2  Results of the measurements of dynamic weaving.| . . . . . . . 44
[b.1 Percent overhead of using eager envelopes in Jikes RVM.| . . . 130

(5.2  Time for deploying an aspect on SPEC JVM98 benchmarks.| . 134
[5.3  Steady-state performance in the SPEC JVM98 benchmark. . . 136

[>.4  Start-up performance in the SPEC JVM98 benchmarks.|. . . . 137
[5.5 Start-up performance after deployment of an aspect.| . . . . . 137
[5.6 Overhead in percent measured by the micro-benchmarks.| . . . 141
B.7 Overhead in SPEC JVM9I8 benchmarks) . . ... ... .. .. 143
[>.8 Overhead in the figure and quicksort benchmarks. . . . . . 145

XV



List of Listings

(1.1 Pointcut-and-advice for validating client SQL queries.| . . . . .
(1.2 Residual dispatch code for a join point shadow. . . . . . . ..
(1.3 Pseudo code generated for a join point shadow by ERIN. . . .
2.1 Example Services class of the base program.. . . . . . . . . ..
[2.2  Aspect checking database accesses from untrusted contexts.|. .
[2.3 A pointcut-and-advice using args as dynamic property| . . . .
[2.4 Bytecode instructions calling a method.|. . . . . . . .. .. ..
[2.5 Bytecode instructions accessing the method’s arguments.| . . .
[2.6 Compilation and weaving result of AspectJ.| . . . . . ... ..
[2.7  Pointcut-and-advice reterring to dynamic properties.| . . . . .
[2.8 Compilation and weaving result in the envelopes approach.| . .
2.9 Bytecode of a plain envelope.| . . . .. .. ... ... ... ..
[2.10 Bytecode of an envelope with residual dispatch. . . . . . . ..
[2.11 Envelope with residual dispatch for two pointcut-and-advice.| .
[2.12 Difterence between call and execution in AspectJ.| . . . . . ..
[3.1 Code containing different kinds of join point shadows.|. . . . .
[3.2 Pointcut-and-advice using pointcut parameters.| . . . . . . ..
[3.3  AspectJ code using a precedence declaration.|. . . . . . . . ..
[3.4  Output of executing the sample program in Listing|3.3l| . . . .
[3.5 AspectJ code declaring strategy tor aspect instantiation.|

[3.6 CaesarJ code pertorming thread-local aspect deployment.| . . .
[3.7 JAsCo code declaring precedence of pointcut-and-advice.| . . .
[3.8  Aspect in Aspectd syntax.| . . . .. ...
[3.9  Woven code for class Services and aspect QuerylnjectionChecker.| .
[3.10 Example of logging implemented in the JAsCo language.| . . .
[3.11 Java class with annotations representing an instantiated hook.|
[3.12 Bypassing the decorator.| . . . . . . . . ... ... ... ...
[3.13 Proper use of the decorator pattern.|. . . . . . . ... ... ..
[3.14 Proper use of the decorator pattern in the sample language.|
[3.15 Implementation of DecoratorlnstantiationStrategy.|. . . . . . . . .
[3.16 Implementation if DecoratedDynamicProperty.| . . . . . . . . ..
[3.17 Implementation if FromDecoratorDynamicProperty.| . . . . . . . .

XVl

3

4
10
21
21
23
25
25
26
30
32
34
36
36
38
48
49
50
ol

91



[4.1  Code calling a virtual method.|. . . . . .. ... ... ... .. 97

4.2  Guarded inlined methodl . . . . . . . ... ..o 98
[4.3  Guarded inlined method with code splitting.| . . . . . . . . .. 100
[4.4  Speculative inlining with on-stack-replacement.| . . . . . . .. 102
[4.5 A pointcut or clause containing a cflow pointcut designator. . 113
[4.6  Implementation of Fibonacci numbers with an aspect.|. . . . . 118
[4.7 Woven pseudo code using cflow word.| . . . . . . . .. ... .. 119
[b.1 Aspect used by the modified SPEC JVM98 benchmark suite.| . 133
b.2 Micro-measurement harness) . . . . . . . ... L. 139
[>.3  Pointcut-and-advice for figure benchmark.| . . . . . . . .. . . 144
[>.4  Pointcut-and-advice for quicksort benchmark.| . . . . . . . .. 145

XVvil






Preface

For a PhD assistant, writing papers and getting them accepted for publication
is always a challenge. You tend to improve the practical work until the
submission deadline is just around the corner, which, while the practical work
matures, leaves you with little time for actually writing the paper. This has
not been different for me when writing the big paper—with the difference
that the submission deadline is at least partly negotiable which requires a
larger amount of self-control. At this place, I would like to thank the chairs
of my program committee—Prof. Dr.-Ing. Mira Mezini, my supervisor, and
Prof. dr. ir. Mehmet Aksit, my second examiner—for accepting the big
paper, but even more for their support of my work.

In 2000 a course taught by Mira was among one of my first chosen courses
and obviously influenced my decision to make my Diploma in her group and
afterwards stay as a PhD assistant. During my whole time in her group,
she always guided and advised me; but similarly important she also gave
me freedom to evolve freely. Not to forget, co-authoring papers with her
taught me to take a bird’s eye view and to write well structured scientific
texts. From her I also learned that re-ordering a paper’s sections last minute
to improve the structure can actually work. Mehmet accompanies my work
since 2006 when I joined the AOSD-Europe project where his group is one
of the partners. I often discussed my work with Mehmet and his group
which has widened-up my work’s focus; funnily, they usually had to follow
my presentations twice for some reason or the other. I also like to thank
Mehmet for the very encouraging feedback on my PhD thesis.

Like in all my other publications, there are several people who helped me
in achieving the results written down in the big paper. First of all, I like
to thank all my colleagues. Each of them has provided valuable comments
in discussions; some of them even in more practical ways. Michael Haupt
was the adviser of my Diploma thesis which formed the basis of further joint
work and finally my PhD thesis. Together with Sebastian Kanthak I realized
a very important corner stone of my work in the short time that he was
also part of Mira’s group. Collaboration with Andreas Sewe, whose Diploma

xXix



thesis was an important conceptual contribution to my work, kept to be
fruitful after he joined Mira’s group as PhD assistant. Furthermore, Michael
Eichberg and Ralf Mitschke contributed to my work in early stages. Thanks
also to Thorsten Schéfer and Shadi Rifai—who accompanied me especially
closely—for the motivational Lumpy competition.

My very special thank goes to Matthew Arnold from the IBM T. J. Wat-
son Research Center who collaborated with me on the implementation of my
key contributions in the field of virtual machine integration; his insights into
the Jikes RVM were invaluable for their success. But I also want to thank
all those students who contributed to my work by participating in practical
courses or by means of their theses, who are: Florian Breuing, Sarah Ereth,
Hristo Indzhov, Jannik Jochem, Markus Maus, Suraj Mukhi, Dennis Miiller,
Heiko Paulheim, Nico Rottstéddt, and Nathan Wasser.

The AOSD-Europe Network of Excellence (European Union grant no.
FP6-2003-1ST-2-004349) has funded part of this work. To all the partners
of the network, I also want to say thank you for being a forum of presenting
and discussing my work.

Although, I keep mentioning similarities between writing a paper and
writing the PhD thesis, there are some significant differences. It’s much more
difficult to tell a coherent story over 200 pages than over 20 pages. You also
have to invest a large effort for a comparatively long period. While these dif-
ficulties taught me some very interesting lessons, they also necessitated help
from several other people. To start with, I want to thank my friends whom
I could rarely meet towards the end of writing my thesis—but nevertheless
they still turned-up celebrating together with me after the exam. A special
thank must go to Gudrun Jors for helping me in many ways: she took the
load of organizing many of the needs of the PhD exam and other things off
from me, she was always available for a chat when I needed diversion, and
she regularly provided me with delicious cake which kept my blood glucose
level in the range required by a brain writing a PhD thesis. I also like to
thank my family, especially my parents Marianne and Andreas and my sis-
ter Sonja, for their support, for proof-reading the thesis—even though it is
written in English—and for providing valuable comments. For all the above,
for constant encouragement and motivation, and for her adorable patience
I especially thank my wonderful wife Sabrina to whom I dedicate my work
and this thesis.

XX



Chapter 1

Overview

1.1 Context of this Thesis

This thesis is concerned with the implementation of aspect-oriented pro-
gramming languages. Programming language implementations are usually
split into a front-end and a back-end. A front-end, e.g., a compiler for the
language, translates the program into a representation suitable for execu-
tion, whereby it resolves implicit content like unqualified names used in the
program and performs static error checking. The back-end, also called ex-
ecution environment for a programming language, executes the front-end’s
output. The execution environments considered in this thesis are a combi-
nation of libraries and a virtual machine (VM) that manages the execution
of applications written in that language. Managing the execution means to
provide services like memory management [HB05] that otherwise had to be
explicitly programmed, or dynamic optimizations [AHRO02|] of the executed
application. The management is facilitated because the front-ends of most
modern language implementations generate output in terms of an interme-
diate language of virtual instructions which are similar to assembler but still
reflect the concepts of the source language.

Current implementations of virtual machines perform just-in-time (JIT)
compilation [DS84, IACL7™99, [Ayc03] of the intermediate language. That
means that the virtual instructions of the intermediate language are compiled
to native machine code at runtime. It is called “just-in-time” because the
compilation of a method is performed at the latest possible point in time, i.e.,
just before it has to be executed. Management of the executed application
by the virtual machine is facilitated by the JIT compiler which inserts calls
to the virtual machine’s services into the machine code.



Context of this Thesis

This thesis aims at advancing the state-of-the-art in the area of execution
environments for aspect-oriented (AO) programming languages. Although,
there are different flavors of aspect-oriented programming (AOP), in this
thesis, dedicated support is only developed for the pointcut-and-advice flavor,
also referred to as PA languages [MKDO3]. A pointcut is an expression that
evaluates to a set of join points, which are points in time during the execution
of a program; pointcuts can be associated with advice—a piece of code—
which means that the advice is to be executed when a join point selected
by the associated pointcut is reached. The term “aspect-oriented language”
is used in this thesis synonymously with the term “PA language” where not
noted otherwise.

The current major aspect-oriented languages [KHHT01, [AGMO06, BAO1,
VSVT05] are realized as extensions of conventional programming languages.
That means that those concerns of the program that can be well modularized
with the conventional language’s means are written in the so-called base
language. Aspects are an additional kind of module containing pointcut-and-
advice as a means to modularize the remaining program parts. The advice
code usually also consists of statements from the base language.

Much of the research in aspect-oriented languages is performed by extend-
ing the Java programming language, which is also true for the most popular
[Kexr] AOP language AspectJ [Aspal. Thus, Java bytecode—the intermediate
language of the Java Virtual Machine (JVM)—is generated by AO language
front-ends. If not noted otherwise, execution environments discussed in this
thesis are for the Java language or extensions thereof. In examples through-
out this thesis, Java is used as the base language and AspectJ as the aspect-
oriented language. Code generation is discussed in terms of Java bytecode;
often examples of generated code are presented in Java source code rather
than bytecode for reasons of simplicity. Discussing code generation and the
implementation of optimizations in terms of Java bytecode and JVMs is no
limitation. Virtual machines for other modern languages and their interme-
diate languages use very similar concepts |[CLIO6] and can be extended in
similar ways.

The most prevalent implementation strategies of PA languages share the
following conceptual work flow [HHO04, [DKMO02, MKDO02]. First, the aspect-
oriented program is parsed to retrieve pointcuts and advice from its aspect
modules. Next, the pointcuts are partially evaluated which results in a set
of join point shadows which are instructions in the base program. Finally,
the remainder or the partial evaluation—called the residual dispatch—drives
the generation of code that is inserted at the join point shadow instructions.
The latter two steps are generally referred to as the weaving phase. Weaving



Context of this Thesis

is usually performed at compile-time or class loading-time [HMO04bl, [Aspal
SV.J03l, Bon03].

The residual dispatch at a join point shadow is represented in bytecode
as instructions that evaluate the dynamic properties referred to by pointcuts
that are projected onto the shadow, i.e., those sub-expressions that remained
from the partial evaluation. The residual dispatch also comprises instructions
that execute the advice functionality of those pointcut-and-advice of which
the dynamic properties evaluated to true.

For illustration, consider the example in Listing[1.1] which is further elab-
orated in Section [2.1.1] In a client-server application, a database access layer
is executed on the server. Through this layer, SQL queries are performed,
which can either be triggered by the client or by the server. The server is
trusted to only perform legal SQL queries, but the client may as well perform
a query-injection attack; thus queries that originate from the client have to
be validated first. Assume there is a method Servlet.doPost which is executed
for every client request.

1 before() :
2 call(ResultSet Connection.query(String sql))
3 & & cflow(void Servlet.doPost(Request, Response)) {
4 // validate the SQL string
5 // if it is invalid, throw an exception
6
}

Listing 1.1: Pointcut-and-advice for validating client SQL queries.

The pointcut in Listing [1.1] (lines first selects all calls to the query
method on a database Connection (line . Next, it specifies that only those
calls are selected which occur in the control flow of the Severvlet.doPost method
(line 3)).

Considering this example, the join point shadows for this pointcut are all
call sites of the method Connection.query. The residual dispatch at these join
point shadows has to test at runtime whether the call is performed in the
control flow of Servlet.doPost, i.e., whether Servlet.doPost is on the call stack.
Listing shows the code generated for the residual dispatch of a join point
shadow affected by the pointcut-and-advice in Listing (1.1

Line [3] Listing represents the join point shadow; lines constitute
the residual dispatch, whereby in line [I] the dynamic part of the pointcut is
evaluated and in line [2] the advice is executed if the dynamic part evaluates
to true.



Introduction

1 if(<cflow—test>)
2 <execute advice>
s connection.query(sql);

Listing 1.2: Residual dispatch code for a join point shadow.

In this thesis the term dynamic AOP refers to PA languages with the
following features.

1. Join points are selected based on dynamic properties of the runtime
contezt in which they occur.

2. It is possible to deploy and undeploy aspects arbitrarily at runtime;
only when an aspect is deployed its pointcut-and-advice take effect.

1.2 Introduction

Aspect-oriented concepts are expressed by special language constructs in the
source code. Their explicit representation, however, vanishes after the weav-
ing phase. Instead of being well modularized as in the source code, aspects
are merged with code of the base language’s modules in the intermediate rep-
resentation. For example, the pseudo expression <cflow—test> in Listing
is comprised of several general purpose instructions of the base language.

In contrast, object-oriented concepts like classes, methods, fields and even
polymorphism are also reflected in the intermediate representation. In Java
bytecode [LY99], polymorphic method calls can be immediately identified
because they are represented by the special invokevirtual instruction rather
than multiple general-purpose instructions encoding the resolution logic.

One sort of problems is that this weaving approach weakens features of
the software engineering process like debugging support, or the continuity
property of incremental compilation: modifying an aspect in the source code
potentially requires re-weaving multiple other modules [SDROS, RDHNO06].
Another sort of problems of the representational gap between aspect-oriented
concepts in the source code and in the intermediate code is related to lan-
guage implementations. It is a very difficult task for the just-in-time compiler
of a virtual machine to recognize the intention of a sequence of instructions
generated by the weaver, e.g., for checking whether a control flow is activel.

'Recently, Golbeck et al. [GDNT08| have implemented an approach for recognizing
the intention of such instruction sequences that realize aspect-oriented concepts and use
this information to drive optimizations at runtime. Their work, however requires the
instructions to be annotated with meta-information. This approach, its strengths and
weaknesses compared to the one from this thesis are discussed in Section W

4



Introduction

On the contrary, a first-class representation of quantifications over the con-
trol flow can be exploited by the virtual machine’s just-in-time compiler to
perform optimizations during native code generation.

This thesis proposes the Aspect-Language Implementation Architecture
(ALIA) which prescribes the existence of an intermediate representation pre-
serving the aspect-oriented constructs of the source program. A central
part of this architecture is the extensible and flexible meta-model of aspect-
oriented concepts which acts as an interface between front-ends and back-ends
of AO language implementations.

The architecture is embodied in the Framework for Implementing As-
pect Languages (FIAL) and the Language-Independent Aspect Meta-Model
(LTAM) which is part of the framework. FTAL defines the work flows required
of an execution environment when executing aspects provided in terms of
LIAM. Both FIAL and LIAM are tailored towards execution environments
that weave aspects at the code level, e.g., they require to distinguish between
static and dynamic properties of join points to which a pointcut can refer.

In addition to the first-class intermediate representation of aspect-oriented
concepts, ALTA and the FIAL framework as its incarnation treat join points
as being late-bound to an implementation. In analogy to the OO terminology
for late-bound methods, join points are called virtual in ALIA. The first-class
representation of AO concepts in the intermediate representation available
to the execution environment as well as treating join points as being virtual
facilitate the implementation of new and effective optimizations for aspect-
oriented programs independently from the concrete high-level-language they
are written in. Because the intermediate representation is general enough
to allow multiple AO languages to be mapped onto it, optimizations of fea-
tures common to multiple AO languages are available to applications written
in all these languages. The use of an extensible meta-model as intermedi-
ate representation furthermore simplifies the definition of new AO language
concepts.

1.2.1 Virtual Join Points

The architecture proposed in this thesis evolves around the concept of vir-
tual join points which are points in the program execution to which meaning
is late bound at runtime. The different meanings, called join point imple-
mentations, are the join point’s execution with any possible combination of
advice; the simplest possible join point implementation is executing the join
point unadvised when no pointcut-and-advice is applicable at runtime. In the
proposed architecture, join point shadows are conceived as virtual invocation
sites of join points. The so-called dispatch function of a join point shadow is



Introduction

evaluated at runtime in order to determine the join point implementation to
be executed.

The correspondences between virtual join points and virtual methods are
as follows. A join point shadow is the equivalent of a virtual method’s call
site; join point implementations, i.e., combinations of actions that have to be
executed at runtime when a join point shadow is reached, correspond to the
virtual method implementations that are a method call’s potential targets.
The adequate action combination is determined by evaluating the join point
shadow’s dispatch function, similar to performing look-up of a virtual method
implementation.

The virtual method look-up [ES90], in fact, is just an optimization of a
dispatch function that determines the adequate target method. This func-
tion takes the receiver object as input and maps each possible type to a
concrete method implementation which is, in turn, the dispatch function’s
result. Because the domain of this function is highly structured and very
constrained, an optimized implementation strategy, namely using a look-up
table, is possible.

When a class is loaded dynamically, the dispatch function for virtual
methods may change: after class loading, it may have additional possible
input and result values. Dynamic aspect deployment, which affects the dis-
patch functions of those join point shadows that are matched by the aspect’s
pointcuts, is the counterpart of dynamic class loading.

In this thesis, a new approach for weaving pointcut-and-advice is devel-
oped introducing a layer of indirection into program code. All potential join
point shadow instructions are replaced with a call to so-called envelope meth-
ods which become the manifestation of join point shadows. As a result join
point shadows become explicit structures in the code, isolated from the base
code.

The envelopes approach improves the performance of aspect weaving;
the way envelope methods are generated ensures that they have a simple
control flow structure which reduces the complexity of aspect weaving as
compared to weaving aspects in arbitrary code of the base program. This
makes the envelopes approach especially suitable for application in execution
environments with support for runtime weaving. In such an environment, an
efficient weaving approach is important because delays caused by dynamic
aspect deployment decrease the overall performance of an application.



Introduction

1.2.2 Aspect-Oriented Language Implementation Architec-
ture

The Aspect-Oriented Language Implementation Architecture (ALIA) sep-
arates the implementation of front-ends and back-ends for aspect-oriented
programming languages. In the architecture, compilers do not weave aspects
into the compiled program but generate a first-class model of them. The
execution environment is required to execute the program as defined in the
model; therefore, it must understand the model and it must manage several
activities like deploying or undeploying aspects, and dynamic class loading.
As a result of dynamic class loading new code gets loaded at runtime which
contains join point shadows potentially affected by aspects that are currently
deployed or will be deployed in the future.

The Framework for Implementing Aspect Languages (FIAL) supports this
architecture; one essential part of it is the Language Independent Aspect
Meta-Model (LIAM) for pointcut-and-advice flavor aspect languages. The
following core components of aspects in PA languages are represented by
LIAM entities.

e Pointcuts select join points by referring to their static and dynamic
properties.

e Pointcuts can bind values from a selected join point’s context to vari-
ables.

e Pointcuts can be associated with actions constituting the advice func-
tionality to be executed at join points selected by the pointcut.

e Advice functionality can be specified declaratively.

e Advice functionality can also be provided by means of a method that
has to be invoked at matching join points; this method is called the
advice method throughout this thesis. For a pointcut-and-advice a
strategy can be specified that is used for implicitly instantiating the
recewwer of advice methods.

e [t is possible to control the execution order of advice at shared join
points. The term shared join point is used to denote a join point at
which multiple advice have to be executed.

e Aspects are logical groups of pointcut-and-advice that are to be deployed
together.



Introduction

Aspect * AdviceUnit
JoinPointSet Action
1 1y v *
JoinPointShadowSet DynamicPropertyExpression | 0..2 | Context
1 0.1 | T *
.. w
Pattern DynamicProperty

Figure 1.1: The most important LIAM entities.

e Aspects can be dynamically deployed and undeployed. 1t is possible to
deploy an aspect only in a certain scope, e.g., a specific thread.

The meta-entities in LIAM are realized as abstract classes that capture
the relationships among the corresponding concepts. Figure shows the
most important ones of LIAM’s classes. Classes in italics are abstract and
model concepts that can be refined. For example, DynamicProperty models the
concept of a property that must be satisfied in the dynamic context of a join
point. Non-abstract classes represent logical groupings rather than concepts
and, thus, cannot be refined; an example is the class Aspect that represents
a logical group of AdviceUnits, the LIAM equivalent to pointcut-and-advice.
The role of each class is discussed in detail in Section 3.2

Figure shows how the FTAL framework is used by language front-ends
and back-ends. The front-end (index 1), e.g., a compiler, generates two kinds
of artifacts when it processes a program: a model based on the concrete
sub-classes of the LIAM meta-entities for the aspect-oriented parts of the
program (index 2), and intermediate code for those parts of the program
that are expressible in the base language (index 3).

In order to be able to express an aspect written in some AO language
in terms of LIAM, the meta-model has to be concretized first, as depicted
by the realization relationship (index 4) in Figure . This is achieved
by providing sub-classes that implement the specific semantics of the con-
cepts in the corresponding language. In this thesis, existing relevant AO



Introduction

LIAM Meta-
Model

GFIAL

processes LIAM models

Refinements of
abstract classes

uses to create
LIAM models

P e e

AO

| Intermediate code
1| of OO parts of
I program

—\
1l Model of AO |

I| parts of program : interact
language : I <>
front-end IH | 0

B - I

0O base back-end

FIAL
instantiation

Figure 1.2: Overview of different usages of FIAL.




Introduction

languages are investigated; their concepts are mapped to LIAM and pro-
vided as default implementations of its abstract classes. For example, a class
CFlowDynamicProperty has been implemented as a sub-class of DynamicProperty
to realize the semantics of the cflow pointcut designator of AspectJ.

FIAL (index 5 in Figure is a framework providing support for several
common tasks of execution environments for AO languages. Execution en-
vironments for OO languages manage meta-objects, e.g., of classes, methods
and fields in the executed program. FIAL provides support for additionally
managing meta-objects of the join point shadows in the program. It also
generically implements common work flows for handling join point shadows,
leaving some functionality abstract which needs to be realized by FIAL’s
instantiations.

It is intended that a FIAL instantiation (index 6, Figure is realized
as an extension of an existing execution environment for the base language.
The instantiation realizes the abstract functionality by interacting with the
base execution environment depicted by the arrow at index 7. The most
important functionality is to perform code generation for join point shadows
for which a declarative description is provided by FIAL. Further, the FIAL
instantiation also must be able to re-create the code of a join point shadow
that has changed due to deployment or undeployment of an aspect, and it
must notify the FIAL framework of class loading.

An Envelope-based Reference ImplementatioN (ERIN) of FTAL has been
developed in this thesis that implements a default code generation strategy
for each LIAM meta-entity. The default code generation is based on the
requirement that concrete sub-classes of LIAM classes provide a method re-
alizing their meaning, e.g., by using reflection. For the pointcut-and-advice
in Listing [I.I ERIN generates the code in Listing for the affected join
point shadows. The isSatisfied method called on the dynamicProperty object is
the method realizing the dynamic property’s meaning.

1 if(dynamicProperty.isSatisfied())
2 //execute advice
3 connection.query(sql);

Listing 1.3: Pseudo code generated for a join point shadow by ERIN.

ERIN is realized as an extension to standard Java 6 virtual machines
implemented as a Java agent. The agent intercepts class loading and uses
the Class Redefinition [Ins| facility of JVMs in order to manipulate the code of
join point shadow instructions and to re-create the code at (un)deployment.

When generating code for a join point shadow according the weaving spec-
ifications provided by FIAL, each entity can be handled separately. Thus, it

10



Introduction

is possible for execution environments to separately optimize the code gen-
eration for single entities. ERIN exploits this facility and provides dedicated
code generation strategies for some selected concrete entities as a proof-of-
concept.

To show that FIAL is a suitable back-end for a variety of aspect-oriented
programming languages, the languages AspectJ, JAsCo and Compose* are
mapped to LIAM. Although these languages are very different in their source-
level concepts, they could successfully be mapped to LIAM. Concepts pro-
vided by the languages are mapped to concrete LIAM entities and many of
them are shared among the different mappings. For each language, a compo-
nent has been developed that automatically translates a language-dependent
intermediate representation of aspects into a LIAM model.

FIAL’s capability of decoupling the definition of new language constructs
from an optimizing implementation is shown by realizing a new sample lan-
guage. This exercise shows that a language designer can provide an im-
plementation, e.g., of the abstract class DynamicProperty, and implement its
meaning as a normal Java method. The implementer of an optimizing exe-
cution environment is later provided with a precise specification of the new
concept’s semantics in terms of Java code. He/she can implement an opti-
mizing code generation strategy for the new concept and can test it against
the provided implementation.

1.2.3 VM Integration of AO Concepts

Integrating support for aspect-oriented concepts as instantiation of FIAL
deeper into a virtual machine opens up additional optimization opportuni-
ties that go beyond the generation of optimal bytecode. For example, direct
memory access, which is important for implementing optimized data struc-
tures for meta-information, cannot be performed by bytecode instructions.

A deep integration of the concepts of dynamic deployment and of the
cflow dynamic property of join points into the virtual machine is realized
in this thesis. Both optimizations outperform current approaches that are
limited by the potential of bytecode instructions. The optimization of dy-
namic deployment is based on the concept of virtual join points and exploits
similarities to the concept of virtual methods: established and highly effec-
tive optimizations of virtual method dispatch are adapted. They make use
of techniques for de-virtualizing methods so that the indirection of virtual
method calls can be saved in the native code generated by the JIT compiler
[Mel99).

For non-virtual methods, it is obvious that the JIT compiler can fully
resolve the called method and the overhead of method look-up can be saved.

11



Introduction

In this case, the just-in-time compiler additionally can copy the native code
for that target method directly into the call site—an approach called inlining
the callee into the caller. Besides saving the look-up, inlining also facilitates
further subsequent optimizations: after inlining, the JIT compiler can process
the caller’s and the callee’s code together and can jointly optimize it.

Inlining can also be applied to virtual methods [AFGT05], if there is only
one possible target method at a virtual method call site at JIT compile-
time—this kind of optimization is called speculative optimization. The com-
piler makes the assumption that the method stays the only possible target
in the future and inlines the currently single possible target method. In ad-
dition, the JI'T compiler takes care that the inlining can be undone when the
assumption is invalidated later due to dynamic class loading.

There is a range of different implementations for undoing speculative
optimizations. In this thesis different implementations of speculative inlining
are investigated with respect to their applicability to optimize virtual join
point dispatch in the presence of dynamic deployment.

Besides efficient support for dynamic deployment, other aspect-oriented
concepts also benefit from a deep integration into the virtual machine. In
this thesis, a new optimization has been developed that allows for fast queries
over the current control flow as required for the cflow dynamic property of
join points. For this optimization, further components of the virtual machine
are adapted in addition to the just-in-time compiler, including, the layout of
the call stack and the virtual machine’s thread system.

1.2.4 Benchmarks

With the speculative inlining of join point shadows, and the modifications
to the call stack layout and the thread system for fast checks of the cflow
dynamic property, two particularly powerful optimizations are developed in
this thesis. In order to speed-up deployment respectively querying the control
flow, both optimizations require supporting infrastructure. To rate the effec-
tiveness of both optimizations and to show that the presence of the additional
infrastructure has only minimal impact—if any—on the overall performance,
the optimizations are thoroughly benchmarked.

Two kinds of benchmarks are performed. First, micro-benchmarks mea-
sure the impact on specific operations that are either affected by the opti-
mized concept or by the required infrastructure. Second, macro-benchmarks
measure the optimizations’ impact on large-scale applications.

No standard benchmarks exist for dynamic aspect-oriented execution en-
vironments and no reasonably large aspect-oriented applications are available
that make frequent use of dynamic AO concepts like dynamic deployment

12



Summary of Contributions

and cflow. Therefore, a new benchmarking approach has been developed in
this thesis. In this approach, the established SPEC JVM98 benchmark suite
[SPE] for Java virtual machines has been extended with aspects that stress
the usage of dynamic deployment and cflow. Although the used aspects them-
selves do not contribute to the applications’ functionality, the benchmarking
approach allows to investigate how the aspect-oriented concepts impact the
performance in different real-world situations. Hence, this benchmarking ap-
proach is a valuable supplement to micro-benchmarks which only evaluate
the performance of AO concepts separately from the application in which
they are applied.

1.3 Summary of Contributions

This thesis makes three main contributions. First, an architecture for im-
plementing aspect-oriented languages based on late-binding join point shad-
ows is proposed. A framework embodying the architecture has been devel-
oped that supports the implementation of execution environments as well
as language front-ends. As a proofs-of-concept one full-fledged execution
environment has been developed as an instantiation of the framework, and
relevant aspect-oriented programming languages have been mapped to the
framework’s meta-model of aspects. The feasibility of integrating further ex-
ecution environments and languages with the framework is discussed. The
framework supports designers and implementers of new aspect-oriented lan-
guage concepts because design and optimizing implementation are separated.

Second, optimizing implementations of dynamic aspect deployment and
the cflow dynamic property of join points have been developed. The opti-
mizations are facilitated by a deep integration with the virtual machine and
benefit from the fact that concepts like deployment and referring to the active
control flow are first-class as stipulated by the developed architecture. The
optimized concepts exhibit a performance that cannot be met by conventional
AO language implementations operating on bytecode.

Third, means for benchmarking the dynamic aspect-oriented features of
aspect deployment and support for the cflow dynamic property have been
developed. The developed benchmarks are macro-benchmarks, i.e., they ex-
ecute real-world applications.

The optimizations presented here drive another more conceptual contri-
bution of this thesis. The efficiency improvements that result from the inte-
gration with the virtual machine emphasize an advantage of aspect-oriented
quantification mechanisms, e.g., cflow and deployment, that has not been
discussed so far. As yet, increased modularity has been the main argument

13



Summary of Contributions

for AOP. While this is certainly the key benefit of AOP, this thesis shows that
AQP also has the potential to make programs more efficient as compared to
object-oriented programs. The idea is that by preserving aspect-oriented con-
cepts explicit also at execution time, the possibility of applying sophisticated
optimizations is opened-up that are out of reach for conventional language
implementations.

The publications by the author of this thesis related to these contributions
are listed at the beginning of each chapter. A complete list of scientific
publications by the author is as follows.

e Publications in conference proceedings:

— Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and Mira
Mezini. Adapting Virtual Machine Techniques for Seamless As-
pect Support. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2006

— Christoph Bockisch, Sebastian Kanthak, Michael Haupt, Matthew
Arnold, and Mira Mezini. Efficient Control Flow Quantification.
In Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, 2006

— Christoph Bockisch, Michael Haupt, Mira Mezini, and Ralf Mitsch-
ke. Envelope-based Weaving for Faster Aspect Compilers. In Pro-
ceedings of the International Conference NetObjectDays on Ob-

jects, Components, Architectures, Services, and Applications for a
Networked World. GI, 2005

— Michael Haupt, Mira Mezini, Christoph Bockisch, Tom Dinke-
laker, Michael Eichberg, and Michael Krebs. An Execution Layer
for Aspect-Oriented Programming Languages. In Proceedings of

the International Conference on Virtual Ezecution Environments.
ACM Press, 2005

— Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expres-
sive Pointcuts for Increased Modularity. In Proceedings of the
FEuropean Conference on Object-Oriented Programming, 2005

— Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Os-
termann. Virtual Machine Support for Dynamic Join Points. In

Proceedings of the International Conference on Aspect-Oriented
Software Development. ACM Press, 2004

14



Summary of Contributions

e Publications in workshop proceedings:

— Andreas Sewe, Christoph Bockisch, and Mira Mezini. Redundancy-
free Residual Dispatch. In Proceedings of the Workshop on Foun-
dations of Aspect-Oriented Languages, 2008

— Christoph Bockisch and Mira Mezini. A Flexible Architecture
For Pointcut-Advice Language Implementations. In Proceedings
of the Workshop on Virtual Machines and Intermediate Languages
for Emerging Modularization Mechanisms. ACM Press, 2007

— Christoph Bockisch, Michael Haupt, and Mira Mezini. Dynamic
Virtual Join Point Dispatch. In Proceedings of the Workshop on
Software Engineering Properties of Languages and Aspect Tech-
nologies, 2006

— Christoph Bockisch, Mira Mezini, and Klaus Ostermann. Quanti-
fying over Dynamic Properties of Program Execution. In Proceed-
ing of the Dynamic Aspects Workshop, 2005

e Technical reports:

— Christoph Bockisch, Andrew Jackson, and David Cousins. Second
Review of Atelier Content and Performance. Technical Report
AOSD-Europe-TUD-10, Technische Universitat Darmstadt, 2008

— Christoph Bockisch, Andreas Sewe, Mira Mezini, Arjan de Roo,
Wilke Havinga, Lodewijk Bergmans, and Kris de Schutter. Mod-
eling of Representative AO Languages on Top of the Reference
Model. Technical Report AOSD-Europe-TUD-9, Technische Uni-
versitiat Darmstadt, 2008

— Christoph Bockisch, Mira Mezini, Kris Gybels, and Johan Fab-
ry. Initial Definition of the Aspect Language Reference Model
and Prototype Implementation Adhering to the Language Imple-
mentation Toolkit Architecture. Technical Report AOSD-Europe-
TUD-7, Technische Universitiat Darmstadt, 2007

— Christoph Bockisch, Mira Mezini, Wilke Havinga, Lodewijk Berg-
mans, and Kris Gybels. Reference Model Implementation. Techni-
cal Report AOSD-Europe-TUD-8, Technische Universitdt Darm-
stadt, 2007

— Andrew Jackson, Siobhan Clarke, Matt Chapman, and Christoph
Bockisch. Deliver Preliminary Support for Next-Priority Use Cases.
Technical Report AOSD-Europe-IBM-80, IBM UK, 2007

15



Structure of this Thesis

— Christoph Bockisch and Michael Haupt. Taxonomy of Implemen-
tation Techniques in Relation to the Aspects of the Meta-Model.
Technical Report AOSD-Europe-TUD-6, Technische Universitét
Darmstadt, 2006

— Johan Brichau, Mira Mezini, Jacques Noyé, Wilke Havinga, Lode-
wijk Bergmans, Vaidas Gasiunas, Christoph Bockisch, Johan Fabry,
and Theo D’Hondt. An Initial Metamodel for Aspect-Oriented
Programming Languages. Technical Report AOSD-Europe-VUB-
12, Vrije Universiteit Brussel, 2006

— Andrew Jackson, Siobhdn Clarke, Matt Chapman, Andy Dean,
and Christoph Bockisch. Deliver Preliminary Support For Top
Priority Use Cases. Technical Report AOSD-Europe-IBM-64, IBM
UK, 2006

— Johan Brichau, Michael Haupt, Nicholas Leidenfrost, Awais Rashid,
Lodewijk Bergmans, Tom Staijen, Istvan Anis Charfi, Christoph
Bockisch, Ivica Aracic, Vaidas Gasiunas, Klaus Ostermann, Lionel
Seinturier, Renaud Pawlak, Mario Siidholt, Jacques Noyé, Davy
Suvee, Maja D’Hondt, Peter Ebraert, Wim Vanderperren, Shiu
Lun Tsang Monica Pinto, Lidia Fuentes, Eddy Truyen, Adriaan
Moors, Maarten Bynens, Wouter Joosen, Shmuel Katz, Adrian
Coyler, Helen Hawkins, Andy Clement, and Olaf Spinczyk. Re-
port describing survey of aspect languages and models. Technical
Report AOSD-Europe-VUB-01, Vrije Universiteit Brussel, 2005

— Michael Haupt, Christoph Bockisch, Mira Mezini, and Klaus Os-
termann. Towards Aspect-Aware Execution Models. Technical
Report TUD-ST-2003-01, Technische Universitat Darmstadt, 2003

1.4 Structure of this Thesis

The remainder of this thesis is structured as follows. Chapter [2 discusses
early and late binding of join points. The pointcut-and-advice flavor of AOP
languages as well as background information on Java bytecode and bytecode
weaving are presented in Section 2.1 Section discusses early and late
binding of join point shadows. In Section the concepts of late bound,
or virtual, methods and late bound join points, analogously called virtual
join points, are discussed; the approach of inserting envelope methods into
base code to make join point shadows explicit structures is presented in this
section as a step towards the semantics of virtual join points. A prototypical
implementation of the envelopes approach is presented in Section and

16



Structure of this Thesis

its effectiveness in making the weaving process simpler and, therefore, more
efficient is evaluated in Section 2.5

Chapter [3| presents the proposed architecture for aspect language imple-
mentations. Section [3.] discusses features of current aspect-oriented lan-
guages that are supported by the meta-model developed in this thesis and
presented in Section [3.2} the developed framework for aspect-oriented exe-
cution environments, of which the meta-model is a part, is presented in Sec-
tion Section presents mappings from the established aspect-oriented
languages AspectJ, CaesarJ, Compose™ and JAsCo to the meta-model, and
Section presents execution environments implemented as an instantia-
tion of the framework, including the full featured reference implementation
based on the envelopes approach and Java Class Redefinition. The chapter
ends with a case study of separately developing the design and an optimizing
implementation of a new aspect-oriented language in Section [3.6]

Optimizations of AO concepts based on virtual machine integration are
presented in Chapter @l The approach of providing dedicated virtual ma-
chines for AO languages is motivated in Section .1} Background information
on established dynamic optimizations applied in modern virtual machines is
given in Section [4.2] Section [£.3] discusses the optimizing implementation
of dynamic aspect deployment; optimized support for cflow is presented in
Section 4.4l

Chapter 5| presents a macro-benchmarking approach for dynamic aspect-
oriented language concepts in Section 5.1} In Section [5.2]the results of bench-
marking the prototype of the dynamic deployment optimization are presented
and discussed. Section presents and discusses the benchmark results for
the cflow prototype. In both sections, the benchmarks are also performed for
related approaches and the results are compared.

Additional related approaches that are not used in comparisons through-
out the thesis are discussed in Chapter [0l Chapter [7] concludes this thesis
in Section [7.1] and presents some areas of future and on-going work in Sec-
tion [T.2

17






Chapter 2

Virtual Join Points

The notion of virtual join points follows an intuitive definition of the semantics of
pointcut-and-advice which is, however, not mirrored by current implementations
of AO languages. In this chapter, virtual join points are discussed in analogy to
virtual methods in order to determine commonalities between both concepts. The
commonalities suggest that techniques for virtual method call optimization can be
applied to aspect-oriented programs as well. They also give rise to requirements how
to treat virtual join points in the intermediate representation of an application.

A step is made toward this “direct semantics” of AO languages by introducing
the concept of envelopes which are methods that dissect join point shadows from the
base code, thereby facilitating to handle them separately. This opens-up opportu-
nities for optimizing join point dispatch and speeds-up the weaving of aspects into
applications; this is especially important when aspects are deployed at runtime.

Parts of this chapter have been published in the following papers.

1. Christoph Bockisch, Michael Haupt, and Mira Mezini. Dynamic Virtual Join
Point Dispatch. In Proceedings of the Workshop on Software Engineering
Properties of Languages and Aspect Technologies, 2006

2. Christoph Bockisch, Michael Haupt, Mira Mezini, and Ralf Mitschke. Enve-
lope-based Weaving for Faster Aspect Compilers. In Proceedings of the In-
ternational Conference NetObjectDays on Objects, Components, Architec-
tures, Services, and Applications for a Networked World. GI, 2005

3. Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive Point-
cuts for Increased Modularity. In Proceedings of the FEuropean Conference
on Object-Oriented Programming, 2005

4. Christoph Bockisch, Mira Mezini, and Klaus Ostermann. Quantifying over
Dynamic Properties of Program Ezecution. In Proceeding of the Dynamic
Aspects Workshop, 2005

19



Background

2.1 Background

Aspect-oriented programming languages of the pointcut-and-advice flavor
(PA flavor) introduce four main concepts. Join points are points in the
execution of a module that are exposed for composition. The set of events
that can be join points are determined by the base language in which the
program is written. Pointcuts are expressions that quantify over join points
in aspect-oriented programs. They can be associated with an advice that
influences the execution of the selected join points and aspects are modules
containing pointcut-and-advice.

In this section, the pointcut-and-advice flavor and its concepts are char-
acterized in detail. Most of the current AO languages are realized as exten-
sions of the object-oriented programming language Java. Therefore, aspect-
oriented concepts are usually woven into Java bytecode. The bytecode format
and some of its implications on the implementation of an aspect weaver are
presented in the second sub-section.

2.1.1 Pointcut-and-advice Languages

For illustration of the PA flavor of AO languages, the example from Sec-
tion is elaborated here. The context of this example is a client-server
application using Java Servlets with a data access layer executed on the
server. For every request made by the client, the method Servlet.doPost is
called whereby its Request argument contains data passed by the client.

The server-side application distinguishes between two different contexts
of trust from which database accesses, further-on denoted by the method
Connection.execQuery, may happen. Internal requests to the database are
trusted, but requests originating from the client are not trusted. Listing
shows an excerpt of the Services class with two service methods that execute
an SQL query on the database; the query is passed as a String parameter.
Using parameters originating from untrusted sites in SQL statements bears
the risk of an SQL command injection attack where unexpected parameter
values are used to alter the effect of the SQL query, e.g., in order to gain
unauthorized access to data. To avoid security leaks, SQL statements should
be checked whether they are secure before they may execute if they stem
from an untrusted context. In this example, calls to Connection.execQuery are
untrusted if they are in the control flow of the Servlet.doPost method, i.e.,
the call is directly performed by Servlet.doPost or by any transitively called
method.

20



Background

1 class Services {
2 Connection connection;

4 void servicel(String sql) {

6 connection.execQuery(sql);
.

8

o void service2(String sql) {

10 /]

11 connection.execQuery(sql);
12 }

13 }

Listing 2.1: Example Services class of the base program.

In Listing an aspect is presented that captures all untrusted calls to
Connection.execQuery to check the SQL statement. First, the aspect defines
when to check SQL statements by specifying the pointcut in lines BHb} it
selects join points which are calls to the execQuery method in the control
flow of method Servlet.doPost. The sequence diagram in Figure [2.1] shows a
possible execution that uses the Services class from Listing 2.1} The selected
method calls are marked with index a. Marked with index b are those calls
to execQuery that are not in the control flow of doPost and, thus, not selected
by the pointcut. Second, the aspect defines what should happen at the join
points selected by the pointcut, in terms of advice, a piece of code (lines
associated with the pointcut.

1 aspect QuerylnjectionChecker {

2 before(String sql):

3 call(ResultSet Connection.execQuery(String))
4 & & args(sql)

5 & & cflow(void Servlet.doPost(Request, Response))
s |

7 if (isAttack(sql))

8 throw new SQLInjectionException();

o}

0 }

Listing 2.2: Aspect checking database accesses from untrusted contexts.

The pointcut given in the example consists of several sub-expressions
which demonstrate the different responsibilities of AspectJ pointcut designa-
tors.

21



Background

:Servlet :Services :Connection
Client Server

doPost P e e Fo—-
) servicel execQuery | |
I a |
| |
I |
I |
I )service2 execQuer: 1
I \\ ° !
I |
| - |
p L |

service2
execQuer; ]

Figure 2.1: Accessing a database from the client as well as the server.

e Pointcuts can select join points based on their static properties. This
is illustrated by the call sub-expression in line [3| Listing which
selects all calls to methods whose signature matches the expression in
the parentheses.

e Pointcuts can also select join points based on their dynamic properties.
In Listing [2.2] the cflow sub-expression (line [5]) select join points which
are in the control flow of the Servlet.doPost method as illustrated by the
dashed box in the sequence from Figure[2.1l The box marks the control
flow of the Servlet.doPost method in that sequence and every join point
that occurs inside this box is in the control flow of Servlet.doPost.

e In the AspectJ language, pointcuts can, furthermore, reify values from
the join point’s context. This means that values from the context
are passed as an arguments to the associated advice. The args sub-
expression in line [4| (Listing reifies the argument of the method
call to the identifier sql by which the advice can access it to check the
SQL query for command injection.

Additionally to binding a context value, the args pointcut designator also
imposes a constraint on selected join points, more specifically, on the dynamic

22



Background

type of the argument value to bind. This can be useful because the call
pointcut designator selects join points only in terms of the signature of the
called method. To give an example, consider the case where the execQuery
method takes a CharSequence as argument, but SQL command validation
should only be performed for String values, e.g., because values originating
from the client are always of type String. This situation is expressed by
the pointcut-and-advice in Listing where the call pointcut designator’s
pattern selects calls to the method execQuery(CharSequence) (line . The
parameter sql (line [I)) to which the args designator refers (line [3), however,
has the type String.

1 before(String sql):

2 call(ResultSet Connection.execQuery(CharSequence))

3 && args(sql)

4 && cflow(void FacadeServlet.doPost(Request, Response)) {
s if (isAttack(sql))

6 throw new SQLInjectionException();

Listing 2.3: A pointcut-and-advice using args as dynamic property.

2.1.2 The Java Bytecode Format

Current AO language implementations as well as some of the prototypes
developed in this thesis perform weaving at the bytecode level. Thus, the
Java bytecode format [LY99] has some implications on the design of weavers.

The bytecode for each class is stored in a separate file, and each file has
several sections—as shown in Figure[2.2}—that reflect the different entities in
the class’s source code of which only the relevant ones are discussed here.

First, a class file stores the so-called constant pool which contains the
symbolic names of methods, fields, and types as well as literals used within
the class. Subsequently, those values are only referred to by means of their
index within the constant pool. Next, type information for the class is stored,
comprising the class’s modifiers and the fully qualified names of the class, its
super class and its interfaces. This is followed by two sections holding the
definition of all declared fields, respectively methods. Finally, each entity
can have an arbitrary number of bytecode attributes which can be used by
the compiler to store additional information for that entity, e.g., debugging
information like a mapping from bytecode instructions to lines in the source
code.

23



Background

Header

Constant Pool

Type Information

Fields
Modifiers, Name, Signature
Methods Attributes
Attributes

Figure 2.2: The Java Virtual Machine class file format.

A method definition consists of structural information: modifiers, the
method’s name, and the fully qualified names of the argument types and of
the result type. If the method does not have the abstract or native modifier,
it also has a body. In the bytecode format the body is represented by an
array of bytecode instructions stored as a special attribute.

Each instruction has a so-called opcode—one byte that encodes the kind
of instruction. For each opcode there is also a symbolic name, or mnemonic,
which is used throughout this thesis to denote instructions. Following the
opcode, an instruction can have a number of immediate values as parameters.
An example for an immediate value is the constant pool index of a method
reference for an invocation.

The Java Virtual Machine (JVM) instruction set is stack-based. That
means, instructions which produce values, e.g., constants or the result value
of a method call, push them onto the so-called operand stack—also called
just stack where this is unambiguous. Required values likewise are read from
the stack. For example, in order to call a method, the argument values
have to be the top values on the stack when the method call instruction
is executed. Thereby these values are popped from the stack and after the
called method has completed its execution the result value is pushed onto the
stack. Listing [2.4] shows an example of bytecode instructions that execute
the statement Clazz.method(1 + 2).

24



Background

1 sipush 1
2 sipush 2
3 ladd

s invokestatic #1 // void Clazz. method(int)
Listing 2.4: Bytecode instructions calling a method.

The sipush instructions each push a constant value on the stack, i.e., after
the second instruction, the operand stack has the value 2 on its top and the
value 1 is below. The iadd instruction pops two values from the stack, adds
them and pushes the result back on the top. Thus, if the stack was empty
before executing the instruction from the example, the stack contains only
the value 3 afterwards. Finally, the instruction invokestatic calls a static
method. The target method is specified in terms of a constant pool index—
in the example #1—the method’s symbolic name is written as a comment.
Execution of this instruction pops the value (3) from the stack and passes it
to Clazz.method.

Besides the operand stack, bytecode instructions can also use an arbitrary
number of so-called locals. These are storage locations which can be randomly
accessed by means of an index. Besides temporary variables, the arguments
passed to a method are also stored as locals as shown in Listing 2.5] The
listing shows the bytecode for the method Clazz.method which just passes its
single argument (line [2)) to the method Console.print.

1 void Clazz. method(int):
2 iload 0
s invokestatic #2 //void Console.print (int )

Listing 2.5: Bytecode instructions accessing the method’s arguments.

The instructions of a method are usually executed sequentially, but there
are also instructions to alter the control flow. These instructions have as
immediate value the offset of the target instruction relative to the jumping
instruction’s offset. The jump can either be unconditional as for the goto
instruction or conditional. Conditionally jumping instructions are also called
branch instructions. They pop at least one value from the stack and jump to
the target instruction only if this value satisfies some condition. Otherwise,
execution is continued with the instruction following the branch instruction;
this is called the fall-through case. There are several different branch instruc-
tions, one example is ifne which pops one value from the stack and jumps if
this is unequal to 0. Since the Java Virtual Machine represents the boolean
values true and false as the numbers 1 and 0, the ifne instruction is also used
to jump if a boolean value is true.

25



Binding of Join Points

In addition to the control flow instructions, other parts of Java bytecode
refer to instructions by their offset. Most importantly, this is the exception
handler map. Similar to the try-catch structure in the source code, this map
specifies the range of bytecode instructions—in terms of a start and an end
offset—which may cause an exception and the offset of the instruction where
to continue execution in the case of an exception—i.e., the catch block.

2.2 Binding of Join Points

Although pointcut-and-advice bind functionality to dynamic points in time
the predominant implementation approach for PA languages binds join points
to advice before the execution, usually at compile-time or class loading-time.
This builds upon the idea of partial evaluation and inserting code to perform
the residual dispatch [MKDO03]. Partial evaluation of pointcuts leads to a
set of instructions, the so-called join point shadows [HH04, DKMO02], whose
execution will always be selected by some of the pointcut sub-expressions.
The sub-expressions that cannot be statically evaluated comprise the residual
dispatch logic.

In the example from Listing [2.2] the pointcut sub-expression call(ResultSet

Connection.execQuery(String)) can be statically evaluated to be true or false for
any possible instruction: the execution of each instruction that calls a method
named Connection.execQuery which takes a String as an argument and returns
a ResultSet is a selected join point (lines [6] and [11], Listing [2.1)).

As can be seen in Figure [2.1] not all executions of the joint point shadows
(index a and b) are actually join points. Only those executions which happen
in the control flow of Servlet.doPost (index a) are selected by the full pointcut.

Listing shows a simplified version of the code that is generated by
the AspectJ compiler for the example in Listings [2.2] and 2.1} Only as much
details are shown as needed for illustrating the code generation.

1 class QuerylnjectionChecker {

2 static void before_0(String sql) {

3 if(isAttack(sql))

4 throw new SQLInjectionException();
}

}

class Services {

5
6
7
8
o Connection connection;

10
u  void servicel(String sql) {

26



Binding of Join Points

12 /]

13 if(<cflow—test>)

14 QuerylnjectionChecker.before_0(sql);
15 connection.execQuery(sql);

16 }

17

18 void service2(String sql) {

19 /]

20 if(<cflow—test>)

21 QuerylnjectionChecker.before_0(sql);
2 connection.execQuery(sql);

3}

24 }

Listing 2.6: Compilation and weaving result of AspectlJ.

All AO languages investigated in this thesis (presented in detail in Sec-
tion allow to write advice in terms of statements from the base language.
These advice are compiled into methods—henceforth called advice methods—
in the bytecode. For each aspect, the compiler generates a class—called aspect
class from now on—that holds all its advice methods. For instance, the as-
pect in Listing [2.2] is compiled to the class in lines in Listing 2.6} the
advice in lines [6H9] Listing [2.2] is compiled to the method before 0 in lines
in Listing [2.6

Examples of residual dispatch are shown in lines and in
Listing [2.6| For advice execution, the weaver generates a call to the advice
method in the residual dispatch; if context values have to be reified for use
by the advice, these values are passed to the advice method as arguments
(lines [14] and [21]).

In [KMO5] pointcuts are presented as the natural successors of method
calls and declarations which are well-known mechanisms for binding meaning
to points in the execution of a program. In fact, they bear a conceptual
resemblance to virtual methods in object-oriented languages in the sense
that both are late-bound to meaning.

Whenever a virtual method is called, some predicate is evaluated. The
expressiveness ranges from a predicate on the dynamic type of the receiver in
“traditional” method dispatch [ES90] to a predicate on the types of receiver
and arguments in multi-dispatch [CLCMOQOQ], or, more radically, to an arbi-
trary predicate on dynamic values in predicate dispatch [Mil04]. Similarly,
when a join point occurs, pointcuts are, at least conceptually, evaluated to
determine which meaning to bind to the join point: the advice of matching
pointcuts are executed; if no pointcut matches, the join point is executed un-

27



Binding of Join Points

advised. This conceptual view is reflected in formalisms for object-oriented
and aspect-oriented languages [CLWO03, KHH'01, MKDO03] and often is called
the “direct semantics” of AOP in informal discussions.

The dispatch is preserved as first-class concept in the intermediate code of
object-oriented languages such as Java [GJSB00], Smalltalk [Sma], and Self
[US87]. In these languages, the compiler does not statically undertake any
dispatching steps for method calls, it merely determines the dispatch strat-
egy. In Java, e.g., this may be a dispatch using a virtual method dispatch
table [ES90] (represented by the invokevirtual bytecode instruction) or, for
interface methods, searching the method in the complete super type hierar-
chy [ACFT01] (represented by invokeinterface). However, all method calls
remain virtual after compilation, i.e., their binding is per default determined
by evaluating run-time predicate functions. It is the virtual machine that
dynamically applies optimizations and decides to treat some of the method
calls as non-virtual ones.

In contrast, despite the conceptual similarity to virtual methods, the “di-
rect semantics” of AOP is not reflected in most current AO language imple-
mentations which share the conceptual work flow of first performing partial
evaluation and second weaving residual dispatch [HHO04, DKMO02, MKDO02].
During the weaving phase, aspect-oriented concepts, which are expressed
by special language constructs in the source code, drive code generation and
transformations in the compiler. An implication of this approach is that code
originally modularized in aspects is merged with modules of the base pro-
gram. Furthermore, there is no explicit representation of residual dispatch.
There are several problems with this approach.

e [t may be desirable to add an aspect to an application which is currently
running. Consider the example of a client-server-application from the
previous section. If the vulnerability to SQL command injections is
discovered when the application is already in productive use, it is ad-
vantageous if the aspect can be added to the running system without
the need to stop the application, re-compile it and start the new version.
In an approach that binds join points early do advice, dynamic aspect
deployment is expensive since the manipulation of application byte-
code and its subsequent re-installation into the execution environment
are time-consuming. Approaches exhibiting fast dynamic deployment
behavior by preparing join point shadows with hooks and wrappers
usually suffer from the footprint of the required infrastructure [Hau00]
which degrades performance of other operations.

28



Virtual Join Points

e The continuity property of incremental compilation is weakened: modi-
fying one aspect potentially requires re-weaving in multiple other mod-
ules [RDHNOG].

e The fact that aspect-oriented concepts become implicit instead of stay-
ing first-class in the generated bytecode hinders optimizations by the
virtual machine.

e Dynamic class loading is poorly supported. It is, for example, possi-
ble to statically optimize a cflow pointcut to the best possible degree
using sophisticated analyses [ACH™05b]. However, when classes are
dynamically loaded which have not been available during static analy-
sis the optimizations fail and the aspect may not be executed correctly
anymore.

e The weaving approach followed by common AO language implementa-
tions is rather complex and slow: when weaving residual dispatch at a
join point shadow, care must be taken of the control flow of the method
containing the join point shadow, i.e., the weaver must update the
method’s instructions. Furthermore, join point shadows for pointcuts
that match field accesses or method calls are generally spread all over
the program and multiple join point shadows exist for the same accessed
member. Hence, the same weaving action must be executed repeatedly
at each of these shadows. As reported in [HHO04] and shown in the
evaluation in Section even when no aspect is present in the code,
the time spent for compiling an application with the AspectJ compiler
increases considerably, compared to the time spent by a conventional
compiler. For a simple aspect that logs the application’s method calls
the compile-time increases to more than 400% [HHO04]. Poor compile
time performance impacts the efficiency of the development process
since it slows-down the “compile-test-debug” cycle [SDROS].

2.3 Virtual Join Points

To address the problems listed in the previous section, in this thesis, the
approach is pursued to more cleanly support the “direct semantics” of AOP.
The model of virtual join points is presented here as a counterpart to virtual
method calls.

When executing a join point shadow, potentially a combination of advice
has to be executed. The concrete execution of the join point shadow at run-
time with all advice whose residual dispatch succeeded is called join point

29



Virtual Join Points

implementation in analogy to “virtual method implementation”. Different
combinations of advice form a different join point implementation. In this
thesis, the combination of all residual dispatches at a join point shadow is
conceived as the join point shadow’s dispatch function and, thus, the dif-
ferent advice combinations are the targets of this dispatch. This makes the
join point shadow the correspondent to the virtual method call site. These
correspondences hint that techniques to optimize away dispatching logic in
object-oriented programming languages are applicable to aspect-oriented pro-
gramming languages as well. This assumption is confirmed by the implemen-
tations presented in Chapter [4] and their evaluation in Chapter

Similar to virtual method call sites, the dispatch at join point shadows has
to be made explicit. For virtual methods the dispatch is explicitly specified
by the call’s signature and the method implementations in the type hierarchy.
Unlike the dispatch functions for virtual methods that only take the type of
the receiver into account, the dispatch function of join point shadows can
take multiple context values into account. In addition to the receiver’s type,
the types of the arguments and the active object can be considered. Also
other contexts such as the current control flow or the active thread can be
considered [AGMOO06, [HMBT05, VSVT05, ISMU™04, [PAG03, [RS03]: they
are dimensions along which dispatch is performed.

The dispatch dimensions mentioned in the previous paragraph are sup-
ported by current AOP languages. Other dimensions are perceivable, though,
that hint at the capabilities of upcoming and future AOP languages. If, for
example, a pointcut language takes into account the history of execution
[VSVT05, IAACT05] or the interconnections of objects on the heap [OMBO05],
dispatch dimensions come into scope that have to be manually implemented
as part of the application code with main-stream AO languages. The gener-
alized concept of virtual join point dispatch provides a basis on which such
languages can be implemented.

1 before() :

2 call(ResultSet Connection.query(String sql))

3 & & cflow(void Servlet.doPost(Request, Response)) {
4 // validate the SQL string

s // if it is invalid, throw an exception

o}
Listing 2.7: Pointcut-and-advice referring to dynamic properties of a join
point’s context.

To illustrate the concept of virtual join points, Figure [2.3] shows the vir-
tual join point dispatch as it occurs at the join point shadow for the call of

30



Virtual Join Points

-
dispatch function

true false

g S - -

<execute advicel >
connection.query(sql); connection.query(sql);

join point implementation  join point implementation

Figure 2.3: Virtual join point dispatch.

method Connection.execQuery whereby the pointcut-and-advice in Listing
is deployed. In the virtual join points approach, the dispatch function is
explicit, symbolized by the decision diagram in the dashed box labeled “dis-
patch function”. The evaluation of this function can have two results in
the example—i.e., either the advice is applicable or not—and the result de-
termines which join point implementation is executed at runtime. If the
<cflow—test> dynamic property—on which the dispatch solely depends in
the example—evaluates to true, it is dispatched to the join point implemen-
tation that executes the advice and the original join point shadow instruction;
otherwise, a join point that only executes the original join point shadow in-
struction is the dispatch target.

In this thesis, the concept of envelopes has been developed which sepa-
rates join point shadows from the application code. The separation makes
the join point shadows including the dispatch to join point implementations
explicit and reduces the complexity of manipulating their dispatch function.
Envelopes are a level of indirection introduced in the code. Each method
call, field read acces and field write access is replaced with a call to a proxy
envelope, getter envelope, respectively setter envelope (the latter two are also
uniformly called accessor envelope). Envelope methods are generated for any
method and field declared in a class and call the corresponding method, re-
spectively perform the access to the corresponding field. While envelopes are
realized by means of standard Java bytecode, they form a first step towards
making join point shadows explicit entities of the application’s code.

Listing [2.8) shows the class Services from Listing [2.1] after envelopes have
been introduced. Proxy envelopes are inserted for the methods servicel and

service2 in lines (Listing [2.8)) respectively and a getter and setter

31



Virtual Join Points

is inserted for the field connection in lines [AHg| respectively [BHIO] The field
access sites are re-written to call the accessors in lines (lines [18 and [27)).

Proxy envelopes get the name that the enveloped method originally had
and the enveloped methods are renamed by adding a prime (‘) to their name
in the example as shown in lines [I6] and 25 Because proxy envelopes take
over the original method names, method call sites do not have to be re-
written but automatically call the proxy. The example also shows the class
Connection with the inserted envelope for method execQuery (lines into
which the residual dispatch is woven (lines . Actually, envelopes are
also generated for constructors including the implicit default constructor, but
this is not shown because it would just add unnecessary complexity to the
example.

The effect of introducing envelopes is as follows:

e An envelope method can be seen as the manifestation of a join point
shadow on its own. Every manipulation of the envelope actually manip-
ulates the join point shadow. Since envelopes are methods on their own
and isolated from the base code, join point shadows can be manipulated
without modifying the control flow in base modules.

e The weaving process itself becomes extremely simple. Envelope meth-
ods have a very primitive sequential structure, free of jump instructions,
exception handlers, or debugging information. This means that all pre-
cautions with regard to maintaining the control structure of methods
affected by weaving can be dropped.

e Inserting envelopes simplifies the search for weaving locations. Method
call and field access join point shadows can only occur within envelopes,
i.e., envelopes are the only weaving locations and the search for weaving
locations can be directly targeted to them.

e The number of envelopes per member is limited: there is only one
envelope per field and kind of access; the number of envelopes per
method is equal to the number of overridden versions of the method.

1 class Services {

2 Connection connection;

3

4+ final Connection get_Services_connection() {
5 return connection;

s}

7

32



Virtual Join Points

s  final void set_Services_connection(Connection connection){
9 this.connection = connection;

10 }

11

12 void servicel(String sql) {

13 this.service'(sql);

14 }

15

16 void servicel'(String sql) {

v )

18 get_Service_connection().execQuery(sql);
v}

20

21 void service2(String sql) {

2 this.service2'(sql);

23 }

24

25 void service2'(String sql) {

26 /]

27 get_Service_connection().execQuery(sql);
%}

29 }

30

1 class Connection {

32

53 void execQuery(String sql) {

34 if(/«test for control flow of Servlet.doPostx/)
35 QuerylnjectionChecker.before_0(sql);
36 this.execQuery‘(sql);

v}

38

s private void execQuery'(String sql ){

40 //perform the database query

a )

42

)

w

Listing 2.8: Compilation and weaving result in the envelopes approach.

33



Prototype Implementation of Envelopes

2.4 Prototype Implementation of Envelopes

The indirection of envelope methods can be introduced into application code
by transforming each class separately. They are generated in the same class
in which the enveloped member is defined and have the same visibility as
their enveloped members. Furthermore, it is taken care that at each method
call and field access site the envelope is invoked instead of the original call
or access.

2.4.1 Generating Envelopes

To introduce proxy envelopes, any method to be enveloped is made private
and it is renamed. The generated envelope gets the name and the signature of
the original method. The body of an envelope method performs three tasks
that are explained in the following by the example of Listing [2.9] The listing
shows the bytecode of a plain proxy envelope—i.e., without any residual
dispatch woven into it—of the execQuery method from the running example.

1. The arguments for the actual method call are pushed onto the operand

stack (lines [2H3)).

2. The original method implementation is called (line . The arguments
to be passed to the original method are those passed to the envelope
method.

3. It is returned to the caller (line [5)); if the original method has a result
value, this value is returned to the caller.

1 void execQuery(String sql );
> aload 0

s aload 1

4 invokespecial #1 // Services. execQuery'(String)
s return

Listing 2.9: Bytecode of a plain envelope.

The body of a field envelope method has a similar form as a proxy en-
velope’s body. First the context for the field access is established. This is
composed of the object whose field is to be accessed (this in envelope) and, in
the case of a field-write access, the field’s new value. Second, an instruction
for direct field access and, third, an appropriate returning instruction follow.

34



Prototype Implementation of Envelopes

Besides generating the envelope methods, code is re-written in a way that
envelope methods are called instead of performing the direct access to the
member. Re-writing code to insert calls to envelope methods does not require
complex modifications of the original application code: since proxy envelopes
have the same name as their enveloped method originally had, method calls
do not have to be changed.

To replace direct field accesses with calls to respective envelopes, the
code of all methods that access fields is modified. All instructions for direct
field access are replaced by instructions calling the corresponding generated
envelope methods. The name of the envelope method to be called is derived
from the field reference and the kind of access. Thus, it is possible to generate
the correct envelope method call even if the class declaring the accessed field
is nor yet loaded. The instructions for direct field access can simply be
overwritten with the instructions that call the envelope methods because
they occupy the same number of bytes.

Envelope methods are generated in a way that facilitates to optimize away
the introduced indirection. A JVM using a JIT compiler may decide to inline
a method instead of calling it via a dispatch table when the call at hand is
non-polymorphic [FGH02]. Small methods are more likely to be inlined be-
cause the ratio of additional time for the JIT compilation and the time saved
by cheaper dispatch is better than for larger methods. The envelope genera-
tion makes use of this knowledge: the generated code embodies hints for the
JIT enabling the latter to optimize away the introduced indirections. The
call from the proxy envelope to the enveloped method is non-polymorphic;
and so is the call to an accessor envelope. This is guaranteed by the way
envelopes are generated. By making the enveloped method private and the
accessor methods final a hint is given to the JIT compiler that envelopes
can be inlined at call sites. Inlining envelopes basically optimizes them away
when no advice are woven in them. Other optimizations that are possible
only within the virtual machine are presented in Section 4.3

2.4.2 Weaving in Envelopes

Due to the simplicity of their code, weaving in envelope methods is straight-
forward. For every residual dispatch that is to be inserted into an envelope, a
separate code block can be generated. It is not necessary to update any other
instructions—even if one or more of these blocks contain a branch instruction
that skips the advice execution if some dynamic property is not satisfied.
For illustration, consider Listing which shows an envelope that con-
tains residual dispatch with a dynamic condition. The pseudo instruction in
line [2| represents the test for the control flow. Again the exact implementa-

35



Prototype Implementation of Envelopes

tion is left undetermined, but it is assumed that the test pushes the value
true or false onto the operand stack. The following instruction (line [3)) tests
this value and jumps to the instruction in line [] if the test has failed, which
is the first instruction of the plain envelope code.

void execQuery(String sql );

1

2 <cflow—check>

3 ifne +3

4 aload 1

s invokestatic #2 // QuerylnjectionChecker.before 0(String)
¢ aload 0

7 aload 1

s invokespecial #1 // Services. execQuery'(String)

9 return

Listing 2.10: Bytecode of an envelope with residual dispatch.

If another code block for an additional residual advice dispatch is to be
inserted between the first advice and the plain envelope code, none of the
existing instructions have to be updated. Listing shows the result of
adding a second residual dispatch code block to the envelope. The branch
instruction still skips the execution of the first block (lines when the
cflow-check fails: execution continues with the second residual dispatch
block (line [6) before finally reaching the plain envelope block (lines [THL0);
this is the intended semantics of inserting a residual dispatch block between
two already existing blocks.

1 void execQuery(String sql );

> <cflow—check>

s ifne +3

4 aload 1

s invokestatic #2 // QuerylnjectionChecker.before_0(String)
s invokestatic #3 // QuerylnjectionChecker.before 1 ()

7 aload 0

s aload 1

o invokespecial #1 // Services. execQuery'(String )

10 return

Listing 2.11: Bytecode of an envelope with residual dispatch for two pointcut-
and-advice.

36



Prototype Implementation of Envelopes

2.4.3 Limitations of the Prototype

The prototype implementation described above performs post-compile time
weaving allowing to compare the approach with conventional aspect weavers.
It has a few limitations with respect to the richness of aspect-oriented con-
cepts that are supported and to the supported kinds of join point shadows.
However, representatives of AO concepts that have to be handled differently
in envelope-based weaving are realized by this prototype. Thus, it is suffi-
cient to evaluate the performance and power of the envelope-based weaving
approach.

In the following, the prototype’s implementation is discussed in detail and
its limitations are pointed out. Solutions are either outlined here, or will be
presented along with the advanced prototypes presented in this thesis.

Possible join point shadows. This first prototype cannot generate en-
velopes for all kinds of members. Envelope methods are inserted into the
class containing the enveloped member. Interfaces can define constants which
are represented as (static final) fields, but it is not possible to insert enve-
lope methods (which are by nature not abstract) into interfaces. Thus, no
envelopes are generated for constants defined in interfaces. In order to enve-
lope methods the original ones are renamed. The implementation of native
methods is resolved by means of a naming scheme [Lia99] and re-naming the
methods hinders the resolution.

Without the generation of envelopes for constants from interfaces and for
native methods, it is not possible to advice accesses to them. In Java 6, it is
possible to provide a plug-in for the virtual machine that can influence the
look-up of native methods. This makes it possible to generate envelopes for
them as discussed in this section. Such a plug-in has been developed and is
part of the more advanced prototype presented in Section [3.5.1] but it will
not be considered in the evaluation of the first prototype which has been
developed for Java 5.

call versus execution pointcut designators. In the AspectJ language there
are differences between the call and execution pointcut designators [BETY04].
The main difference is that AspectJ allows to access the caller object only
at join points selected by the call designator. Furthermore, both designators
resolve to different join points in some cases. call selects join points before
the target method is resolved—i.e., the static target method is considered—,
while execution selects join points after method resolution.

As an example of the difference between call and execution pointcut des-
ignators in AspectJ, consider Listing The statement in line [I§| causes

37



Prototype Implementation of Envelopes

the first advice (lines to be executed, because the static target is the
method m in class A. However, this method is not executed at runtime,
but the overwritten version from class B, because of polymorphism. Thus,
the second advice (lines is not executed. Envelopes are generated in
a way that the prototype supports the semantics of the execution pointcut
designator. But the feature of accessing the caller object is still supported.

13 class Client {
15 void main(){

17 A a = new B();
18 a.m();

20 }
2}

aspect SampleAspect {

N
w

s before() : call(void A.m()) {
2 // advice$_1%

2}

20 before() : execution(void A.m()) {

30 // advice$_2%

31 }

2 }

Listing 2.12: Difference between call and execution pointcut designators in
Aspect.

38



Prototype Implementation of Envelopes

Caller context value. In the conventional aspect weaving style, the caller
object is a local value available in the method containing the join point
shadow selected by call. Thus, the weaver can generate code that accesses
the local to pass it to the advice. In the envelope-based weaving style, this is
not possible, because the weaving is performed inside the envelope method.

To offer access to the caller object the JVM Tools Interface (JVMTI)
[JVM] is used, a standard interface also used by debuggers to access the
local values from any call frame. The caller object is the first local in the call
frame just below the envelope’s one.

Special methods. Constructors and static initializers are, at bytecode level,
normal methods but with special names. The Java virtual machine specifi-
cation stipulates that each constructor either calls a constructor from the
super class or from the same class as its first statement. This constraint is
enforced by the verifier [LY99] of the virtual machine which exploits the nam-
ing scheme to identify constructors and static initializers. Thus, renaming
the constructor and static initializer methods would cause the verifier to fail.
To avoid this, the identity of enveloped methods is changed in another way
than re-naming it. In Java bytecode, the identity of a method is not only
determined by its name, but by its signature—comprising the name and all
parameter types. Thus, adding a parameter also changes a method’s identity.
In this prototype, this approach is followed in order to preserve the original
method names which are required by the verifier.

Reflection. Methods and fields can also be called respectively accessed us-
ing the Java Reflection API [Javal. Reflective method invocations automati-
cally call the proxy methods because they have the same name as the method
originally had. This is not true for reflective field accesses. They bypass ad-
vice for a field access. Also, the transformation adds new methods to a
class—the envelope methods—, which are presented to the application when
the Java Reflection is used to get a list of methods declared in a class.

2.4.4 Dynamic Weaving in Envelopes

Since the overall goal of this thesis is to support dynamic AO languages, it is
also to be evaluated how well the envelopes approach performs in a setting of
dynamic aspect deployment. For this purpose, the prototype discussed in this
section has been integrated as a Java 5 Agent using the bytecode instrumen-
tation package [Ins| to, first, transform the application into the envelope-style
and, second, weave advice into envelopes at runtime. Transformation of Java

39



Evaluation of Weaving Approaches

class files is performed just before the class is defined by the JVM. A repre-
sentation of the transformed class file is kept in memory which allows for an
easy access to envelope methods. When an aspect is deployed, the affected
envelope methods are searched for and weaving is performed as described in
Section Classes that contain envelopes which have been modified in
the weaving step are redefined using the so-called Class Redefinition [Dmi01]
feature of standard JVMs.

2.5 Evaluation of Weaving Approaches

In Section [2.3] the concept of virtual join points is introduced as a means to
address the problems discussed in Section 2.2l The prototype of envelope-
based weaving is a first step towards execution environments implementing
the virtual join points approach. In this section, the prototype is evaluated
with respect to its effectiveness in addressing the weaving performance which
is one of the problems identified in Section The effectiveness of virtual
join points in addressing the other problems are addressed in the following
chapters.

2.5.1 Evaluated Approaches

To rate the envelopes approach used in a post-compile weaver as well as a
runtime weaver, the performance is measured and compared to other weaving
approaches. A detailed discussion of the technology of the related approaches
can be found in [Hau06].

There are two compilers publicly available for Aspect]-like AOP lan-
guages which follow the post-compile weaving strategy: the ajc compiler
included in the AspectJ distribution [Aspal, and the AspectBench Compiler
[ACH™05a] (abc for short). The ajc compiler employs some optimizations
targeted at reducing the compilation time [HHO04|. In order to cope with the
complexity of the bytecode instrumentation, ajc uses the BCEL bytecode
manipulation toolkit [BCE] to abstract from details of the Java bytecode.

The focus of abc is on extensibility. The customization power is derived
from Polyglot [NCMO03], a compiler framework, and Soot [Sod|, a framework
for static analyses of bytecode, on which abc is built. Often, abc gener-
ates code that exhibits better run-time performance as compared to ajc
[ACHT05b]. However, the improved code quality comes at the cost of a
compilation time compared to ajc [ACHT04]. For this reason, abc is not
considered in the evaluation whose focus is to compare the weaving perfor-
mance of different approaches.

40



Evaluation of Weaving Approaches

Several execution environments with support for dynamic AOP are avail-
able. Of these, tow typical ones are considered here.

AspectWerkz [Aspd| transforms possible join point shadows at compile-
or load-time. Advice invocations are either woven in during the transforma-
tion step or the shadows are merely prepared for later attachment of advice.
Several other AOP implementations with runtime weaving follow basically
the same approach, like JAC [PSDF01] and JBoss AOP [JBq.

AspectWerkz’s weaving bears some similarity to the envelopes approach.
In both cases generated methods are invoked at join point shadows. However,
unlike envelope-based weaving, AspectWerkz does not aim at reducing the
number of weaving locations. The purpose of generated methods rather is to
facilitate late introduction of advice. Wrappers are generated on the caller
site: one wrapper per affected member and per method in which the access
occurs. Also, values from the original join point shadow context are passed
to the invoked generated method, which requires costly modifications of the
method containing the join point shadow.

PROSE [PGA02, PAGO03], the second related AO language implemen-
tation taken into account, exists in two versions. The one considered here
(called PROSE 1) relies on a standard JVM’s debugger interface and is unique
in that it does not instrument an application’s code at all. Upon weaving an
aspect into a running application, PROSE 1 registers breakpoints at the join
point shadows of the aspect. Once a registered breakpoint is reached, execu-
tion branches to the PROSE infrastructure, which looks up the appropriate
advice functionality and invokes it. In PROSE 1, no methods ever have to be
recompiled, but context switches at debugger breakpoints are very expensive.

The second version of PROSE basically pursues the same strategy for
deploying aspects. However, it does not rely on the JVM’s debugger interface
but provides similar features by means of an extension of the Jikes RVM. This
approach is implemented in a way that most virtual machine optimizations
are disabled; as a consequence, it cannot be used for a comparison.

2.5.2 Benchmarks

Depending on the setting in which a weaving approach is used, different per-
formance characteristics have to be considered. E.g., for a post-compile time
weaver, only the overall time is important; i.e., in the case of envelope-based
weaving the generation of envelopes along with the weaving of advice. For a
runtime weaver, these are two different concerns. The envelope-generation, or
any preparation required by other weaving approaches, slows-down the start-
up of the application, when classes are loaded and possibly transformed. The
weaving in turn imposes a delay on the executing application. Furthermore,

41



Evaluation of Weaving Approaches

the infrastructure required to perform the weaving, e.g., auxiliary data struc-
tures holding a suitable representation of classes or the facility to redefine
classes, affects the performance of the executed application and also increases
the memory requirement. This is of no concern at all for a post-compile
weaver.

Because transforming an application to use envelopes and weaving advice
does not require to re-write potentially complex application code, not much
infrastructure is required. To show that this pays of in terms of a low overhead
the prototype for envelope-based weaving is compared with AspectJ 1.2.1
IKHH™01], AspectWerkz 2.0 [Aspd], PROSE 1.2.1 [PRO]. Three different

measurements are performed:

1. The performance in the context of both static weaving and dynamic
weaving is measured.

2. The memory consumption is measured.

3. The runtime tmpact of aspect-oriented execution environments in terms
of the overall performance of applications is measured.

All measurements have been performed on a Dual Xeon workstation
(3GHz per CPU) running Linux 2.4.27 with 2 GB memory. AspectJ and
AspectWerkz have been run on the Sun HotSpot JVM, version 1.5.0_01, and
PROSE has been run on version 1.4.2_08 of that VM (newer VMs do not
support PROSE). The HotSpot JVM has been executed in client mode as
well as in server mode, which performs immediate JIT compilation and more
aggressive inlining.

Static weaving. Static weaving performance is measured by compiling the
Xalan-J XSLT parser [xal] which consists of nearly 1,200 classes. Different
compilation scenarios are used: without any aspect (none), with an aspect
advising calls of one specific method (call-one), and with an aspect advising
all calls to public methods declared in classes in the Xalan packages (call-all).
The advice simply increases a counter. In AspectJ, advice can be woven at
method call sites or execution sites. In the latter case the number of weaving
actions is reduced, as it is in the envelope-based weaving approach. For this
reason, ajc’s overhead is also measured when one specific execution site (ezec-
one), and execution sites of all public methods in Xalan packages (ezec-all)
are advised.

For performance reference values, Xalan was compiled by the Java com-
piler from the Eclipse JDT, version 0.452_R30x, which takes 6.4 seconds.
For the different compilation scenarios, Table summarizes the overheads

42



Evaluation of Weaving Approaches

Envelope-Based Weaving ajc
no aspect 34.5% | 63.9%
exec-one — | 111.5%
call-one 33.7% | 187.6%
exec-all — 1 219.4%
call-all 35.9% | 289.0%
memory overhead 67 MB | 121 MB

Table 2.1: Results of the measurements of static weaving.

in compilation time compared to the reference value incurred by the ajc
compiler and the envelope-based weaving prototype. Even in the absence of
aspects, the compilation with ajc is about 63.9% slower than compilation
with the Eclipse Java compiler. This is because the weaver scans all bina-
ries produced by the source code compiler for weaving specifications. This is
similar for the envelope-based weaving prototype; although the prototype is
faster in scanning the binaries.

Like with ajc, the overhead of the envelope-based prototype generally
increases with the number of affected weaving locations. However, its increase
rate is considerably smaller. Furthermore, the maximum overhead imposed
by the prototype is 35.9% which is just about an eighth of the maximum
overhead imposed by the ajc compiler.

Memory consumption. When comparing memory consumption, the pro-
totype based on envelopes prototype benefits from the avoidance of memory-
intensive data structures as needed by ajc during weaving. Table also
shows the memory required by the envelope-based weaving prototype and the
ajc compiler in the compilation scenario call-all. With 121 MB of memory,
the ajc compiler requires nearly twice the memory of the prototype.

Dynamic weaving. Dynamic weaving performance has been measured for
AspectWerkz, PROSE and the prototype using envelope-based weaving. The
RayTracer benchmark from the JavaGrande benchmark collection [Javb] has
been used for this measurement. The application, consisting of 11 classes,
has been extended with an aspect that advises all calls to public methods
declared in the raytracer package with a simple counter-incrementing advice.
For these measurements, the time needed to prepare the application classes
is distinguished from the time for actually deploying an aspect at runtime;
the results are shown in Table PROSE does not conduct preparation.

43



Evaluation of Weaving Approaches

Envelope-Based Weaving | AspectWerkz | PROSE

preparation 66 ms 376 ms N/A

deployment 101 ms 424 ms | 677 ms

Table 2.2: Results of the measurements of dynamic weaving.

Preparation takes 376 ms in AspectWerkz and only 66 ms in the envelopes
prototype. Deployment takes an additional 424 ms in AspectWerkz, 677 ms
in PROSE and 101 ms in the envelopes prototype.

Runtime overhead. The runtime overhead inflicted by the different ap-
proaches is evaluated in another experiment. Envelopes add an indirection,
affecting the runtime behavior of the compiled program. However, due to
modern just-in-time (JIT) compiling virtual machines [PVCO01, IACL799], the
introduced indirection only has small impact on the runtime performance, as
the evaluation confirms.

Furthermore, the JVMTI facility required for enabling access to the caller
object may cause some runtime overhead. To measure the impact of the
above on the runtime performance of applications that do not deploy aspects
and to compare the envelopes prototype with other AOP environments, the
SPECjvm98 benchmark suite [SPE] is used. The benchmark applications
have been run both the client and server versions of HotSpot 1.5.0. with and
without inserted envelopes.

The results indicate that envelopes and the JVMTI facility impose an
overhead of 7.7 % on a running application. The overhead is however reduced
to 5.2 % when an application with envelopes is run on the HotSpot server
VM.

The overhead imposed simply by enabling the JVMTI facility is also
measured by executing the SPEC JVM98 benchmarks with the facility turned
on and off on the HotSpot 1.5.0 JVM. In average the execution was slowed-
down by 1.6% when run in server mode and not at all when run in client
mode.

44



Chapter 3

The Aspect Language
Implementation Architecture

In order to support virtual join points, the dispatch of join point shadows has to be
specified declaratively. Since aspect-oriented programming languages are expressive
and evolving, a powerful and extensible model is required for this specification.
Therefore, a fine grained meta-model for pointcut-and-advice is presented in this
chapter.

Furthermore, a framework is presented that abstractly implements generic con-
trol flows of execution environments for dynamic aspect-oriented programs defined
in terms of the meta-model. To evaluate the meta-model and the framework with re-
spect to their expressiveness and extensibility, a default instantiation of the frame-
work is developed and representative modern AOP languages are mapped to the
meta-model. It is also shown by means of a case study that the framework is suit-
able to separate the design and optimizing implementation of new AO language
features.

Parts of this chapter have been published in the following papers.

1. Christoph Bockisch and Mira Mezini. A Flexible Architecture For Pointcut-
Advice Language Implementations. In Proceedings of the Workshop on Vir-
tual Machines and Intermediate Languages for Emerging Modularization
Mechanisms. ACM Press, 2007

2. Christoph Bockisch, Mira Mezini, Kris Gybels, and Johan Fabry. Initial
Definition of the Aspect Language Reference Model and Prototype Imple-
mentation Adhering to the Language Implementation Toolkit Architecture.
Technical Report AOSD-Furope-TUD-7, Technische Universitit Darmstadt,
2007

3. Christoph Bockisch, Mira Mezini, Wilke Havinga, Lodewijk Bergmans, and
Kris Gybels. Reference Model Implementation. Technical Report AOSD-
Europe-TUD-8, Technische Universitit Darmstadt, 2007

45



Common Features of Aspect-Oriented Languages

4. Christoph Bockisch, Andreas Sewe, Mira Mezini, Arjan de Roo, Wilke Havin-
ga, Lodewijk Bergmans, and Kris de Schutter. Modeling of Representative
AO Languages on Top of the Reference Model. Technical Report AOSD-
FEurope-TUD-9, Technische Universitit Darmstadt, 2008

5. Andrew Jackson, Siobhan Clarke, Matt Chapman, and Christoph Bockisch.
Deliver Preliminary Support for Next-Priority Use Cases. Technical Report
AOSD-FEurope-IBM-80, IBM UK, 2007

6. Andrew Jackson, Siobhdn Clarke, Matt Chapman, Andy Dean, and Christoph
Bockisch. Deliver Preliminary Support For Top Priority Use Cases. Tech-
nical Report AOSD-FEurope-IBM-64, IBM UK, 2006

3.1 Common Features of Aspect-Oriented Lan-
guages

As motivated in the previous chapter, a declarative specification of pointcut-
and-advice in the intermediate representation of a program is desirable for
flexible and efficient support of dynamic AO concepts. Therefore, in this
chapter the Aspect Language Implementation Architecture (ALIA) is pro-
posed where the aspect-oriented concepts stay first-class until execution.
Centric to this architecture is a language independent meta-model of core
aspect-oriented concepts which acts as an interface between front-ends and
execution environments, i.e., as an intermediate representation for aspect-
oriented programming languages.

Figure shows an overview of the ALIA approach. When a program
gets compiled, the compiler generates an intermediate representation of the
program consisting of two parts: the intermediate code of the object-oriented
parts of the program and a model of the aspect-oriented parts. Besides
the compiler and the execution environment, the language implementation
comprises a meta-model that prescribes the structure of the aspects’ model.
The execution environment knows how to execute models provided in terms
of the meta-model.

The usage of a meta-model facilitates extensibility. While the meta-
entities cover the abstract core concepts common to most AO languages,
they can be specialized to cover the advanced features of concrete language
constructs. By using the specialized entities, a model of the aspect-oriented
constructs of a program can be built and provided to an execution environ-
ment as first-class objects.

46



Common Features of Aspect-Oriented Languages

AO concepts
meta-model

e e mm e =

l Model of AO 0O base back-end

\ |

|

parts of program :
|

N1

|

|

|

AO
language
front-end

Intermediate code
of OO parts of
program

Figure 3.1: Compilation and execution of AO programs in ALIA.

A framework for language implementations that adhere to the ALIA ap-
proach including the meta-model has been developed in this thesis and is
presented in Sections [3.2] and [3.3]

In order to identify the core concepts, state-of-the-art aspect-oriented
programming languages are investigated here. The languages considered
are AspectJ |KHHT01], Caesar [AGMOO6], Compose* [BAOIL] and JAsCo
[SVJ03]. Aspect] is the most widely used AO language [Ker|; the other
three languages provide more advanced concepts and are also considerably
widely used [BJCO8|. The meta-model discussed in Section has been de-
veloped such that the concepts identified in this section can be expressed in
the meta-model.

3.1.1 Aspect)

An aspect in AspectJ is a type that can contain pointcut-and-advice and so-
called static crosscutting declarations [KHH™01] in addition to the standard
class members; static crosscutting refers to the definition of methods and
fields in an aspect, which are added to other types. The static crosscutting
features of AspectJ are not relevant in the context of this thesis as only
support for pointcut-and-advice is investigated. Based on [KHH"01] and the
current AspectJ Programming Guide [Asp0§], the elements of the Aspect]
language that determine pointcut-and-advice are presented in the following.

Join Point Model. The join point model determines which kinds of points
in the program execution can be selected as join points. In AspectJ, these
are the call or execution of methods and constructors, the execution of static

47



Common Features of Aspect-Oriented Languages

initializers, the execution of exception handlers, and read and write access to
fields. Listing shows examples of possible join point shadows in AspectJ.
The lines form a method execution join point shadow, while line [18]is a
join point shadow of a call to the same method. Lines form the join
point shadow of an exception handler. The example shows that in AspectJ
join point shadows don’t have to be single instructions but can also be ranges
of instructions.

1 class C {

2 void method() {

3 someStatement;

4 return;

o)

6

7 void method2() {

8 try {

9 someStatement;
10 }

1 catch(Exception exception) {
12 someStatement;
13 someStatement;
14 }

15 }

17 void main() {
18 method();
v}

20 }

Listing 3.1: Code containing different kinds of join point shadows.

Pointcuts. Pointcuts are expressions that select a set of join points, i.e., ex-
ecutions of join point shadows with certain properties; the operands of these
expressions are the primitive pointcut designators which can be combined by
the boolean operators and (&&), or (||), and not (!).

There are two kinds of primitive pointcut designators. The first one selects
join points only in terms of their join point shadows. Their name determines
which kind of join point shadow is selected, e.g., calling a method or reading
a field. The designators are parameterized with a pattern which is matched
against the signature of, e.g., the called method at a call join point shadow.
The pattern language is a subset of regular expressions plus means to express

48



Common Features of Aspect-Oriented Languages

sub-type relationships: the type pattern SomeType+ matches all types whose
name is SomeType or which have a super-type of that name.

The other kind of pointcut designators selects join points based on run-
time properties of the program at a join point. The designator’s name speci-
fies which runtime value is considered; that can be the this object, the receiver
object or argument values, or the current control flow (in terms of methods
currently executing on the call stack). The designators are parameterized
with a constraint on the runtime value like the required dynamic type.

Advice. Advice are pieces of code which are associated with pointcuts. At
every join point selected by a pointcut, the associated advice is executed.
Furthermore, it is possible to specify whether the advice is to be executed
before, after or around the actual join point. around means that the actual
join point is replaced with the advice and the advice can control when the
join point is to be executed—if at all. The special form proceed is used in the
advice body where the actual join point is to be executed. Furthermore, it is
possible to specify that an after advice is only to be executed when the join
point terminated normally or abnormally, or in both cases. An around advice
using proceed can change the values bound from the join point’s context and
thereby can execute the original join point in a modified context.

Pointcut Parameters. Values from the context in which a selected join
point is executed—e.g., the this or receiver object—can be made available
to an advice in terms of pointcut parameters. Listing shows an example
of a pointcut-and-advice that uses pointcut parameters. The keyword before
specifies that the advice is to be executed before join points selected by the
pointcut following the colon. The pointcut parameters are declared in the
parentheses behind this keyword (line [1)) similar to method parameters.

1 before(String sql):
2 call(ResultSet Connection.execQuery(CharSequence))
3 && args(sql)

a{

s if (isAttack(sql))

6 throw new SQLInjectionException();
!

Listing 3.2: Pointcut-and-advice using pointcut parameters.

The args primitive pointcut designator in line [3| uses the parameter name
sql declared in the pointcut parameters in line [I] and binds the single argu-
ment from the join point’s context to it. As a consequence, this value can

49



Common Features of Aspect-Oriented Languages

be used by the advice as in line 5] Furthermore, the args designator imposes
a condition on the pointcut: it only matches if the value to be bound has
the type specified in the pointcut parameter, String in the example. For after
advice, it is also possible to use the join point’s result value as pointcut pa-
rameter or—if the join point terminated abnormally—the exception thrown
during the join point’s execution.

Reflection. Besides using pointcut parameters, values from the join point
context can also be accessed from within an advice reflectively in terms of
the thisJoinPoint special form. It allows to access all values that can also be
bound by primitive pointcut designators as well as meta-information about
the current join point like the source location of its join point shadow.

Advice Precedence. The order of advice, applicable at the same join point,
can be specified in terms of precedence at the granularity of aspects in As-
pectJ. When aspect A precedes another aspect B all pointcut-and-advice
defined in A precede the pointcut-and-advice in B.

For before and around advice, the preceding advice is executed before the
preceded one. Furthermore, should an around advice precede other advice,
those are only executed when the around advice performs proceed. For after
advice, the preceded advice are executed first. The precedence of pointcut-
and-advice defined in the same aspect is implicitly determined by the order
of their appearance in the source code. As an example, consider the example
aspects in Listing [3.3] line which all declare pointcut-and-advice for
the same join point. The declare precedence statement in line [5[ determines
the advice’s precedence. The output of this example is shown in Listing [3.4]

1 aspect Beforel {
2 before() : execution(x Base.m()) {
3 System.out.printIn("before 1”);

s}
5 declare precedence: Beforel, Before2, Around, Afterl, After2;
s }

7 aspect Before2 {

s before() : execution(x Base.m()) {

9 System.out.printIn("before 2");

0}

11 }

2 aspect Around {

void around() : execution(x Base.m()) {
14 System.out.printIn("around — 1. part”);
proceed();

-

-
w

-
o

50



Common Features of Aspect-Oriented Languages

16 System.out.printIn("around — 2. part”);

v}
18}

aspect Afterl {

after() : execution(x Base.m()) {
21 System.out.printIn("after 1");
22 }
3}
aspect After2 {
s after() : execution(x Base.m()) {
26 System.out.printIn("after 2");
7}
28 }

=
©

N
o

N
F

s0 class Base {
st public void m() {
32 System.out.printIn("method"”);

33 }

Listing 3.3: AspectJ code using a precedence declaration.

1 before 1

2 before 2

s around — 1. part
4 method

5 after 2

6 after 1

7 around — 2. part

Listing 3.4: Output of executing the sample program in Listing [3.3]

Aspect Instantiation. As already mentioned, aspects are types in AspectJ
and pointcut-and-advice are their members. This is an extension of the
concepts of classes respectively wvirtual methods. The latter always execute
in the context of an instance of their declaring class. Similarly an advice is
always executed in the context of an instance of its declaring aspect. However,
since advice are implicitly invoked when their associated pointcut matches,
the receiver object in whose context the advice is executed also must be
determined implicitly. Consequently, aspects are implicitly instantiated on
demand; the strategy to retrieve these instances is called aspect instantiation
in AspectJ.

o1



Common Features of Aspect-Oriented Languages

The strategy is defined as a modifier of the aspect declaration, e.g., by
the issingleton keyword in line [1] Listing [3.5 issingleton means that only
one instance of the aspect is created and advice are always executed in the
context of this instance. Thus, in the example in Listing[3.5]the advice always
refers to the same counter in line |4} Other strategies are to select the aspect
instance based on the this or receiver object, or the control flow at the join
point.

1 aspect Beforel issingleton() {

2 private int counter;

s before() : execution(x Base.m()) {
4 counter+-+;

s}

Listing 3.5: AspectJ code declaring strategy for aspect instantiation.

3.1.2 Caesarl

CaesarJ [AGMOO06] also offers pointcut-and-advice as well as static crosscut-
ting features. The static crosscutting of CaesarJ is much more sophisticated
than AspectJ’s, but this is out of the scope of this thesis. The pointcut-
and-advice features of CaesarJ are basically the same as those of AspectJ
with the difference that it is possible to control the instantiation of aspects
and that they can be deployed and undeployed at runtime rather than be-
ing enabled during the complete program execution like in AspectJ. Beyond
enabling and disabling aspects dynamically, CaesarJ also allows to deploy
aspects only within a certain scope like the current thread. Listing shows
an example aspect in the CaesarJ language and its thread-local deployment.

1 public cclass CompanyLogger {

> before() : execution(* company.x.x(..)) || execution(company.x.new(..)) {
3 System.out.printin(thisJoinPoint.toString());

s}

5

s public class Main {

7 public static void main(String args[]) {

8 doSomething();

0 deploy(new CompanyLogger()) {

10 doSomething();

11 }

12 doSomething();

52



Common Features of Aspect-Oriented Languages

5}
14}

Listing 3.6: CaesarJ code performing thread-local aspect deployment.

The aspect type in CaesarJ is called cclass as shown in line [T} Listing 3.0}
it can contain pointcut-and-advice in the syntax of AspectJ (lines 2H4)). In
line [9] first, an instance of the aspect is created and, second it is deployed
thread-locally for the execution of the block in lines [OHII] It is also possi-
ble to write aspects with the same semantics as in AspectJ if the keyword
deployed is placed in front of the cclass definition. Then the aspect is implic-
itly instantiated and active during the complete program execution.

3.1.3 JAsCo

Similar to CasearJ, the AO language JAsCo [SV.J03] provides aspect com-
position features more advanced than AspectJ. It adds so-called aspect beans
to the Java language; these contain hooks which are comparable to advice
in AspectJ. However, hooks are dynamically associated with pointcuts by
connectors.

As an example, consider Listing which shows a basic logger that out-
puts a message for each called method written in JAsCo syntax. The class
Logger is an aspect bean and contains the hook defined in lines which
is the definition of the aspect bean’s crosscutting behavior. Line 4] in the
hook’s constructor (lines declares an abstract pointcut, i.e., a pointcut
that is parameterized with a pattern passed as an argument to the hook’s
constructor at runtime. By calling a hook’s constructor, the abstract point-
cut is concretized and associated with the advice (lines defined in the
hook.

The hook is instantiated twice (lines [13] and with different patterns
in a connector module, lines in Listing [3.7] The first instance captures
all executions of methods whose name starts with set while the second one
captures all executions of methods with the exact name setX. The order of
advice execution at shared join points, is specified in terms of an explicit
itemization as shown in lines T6HITl

1 public class Logger {

> hook Logging {

3 Logging (method(..args)) {
4 execution(method);
s}

6 before() {

23



Common Features of Aspect-Oriented Languages

7 System.out.printin("Executing " 4 thisJoinPoint.getSignature());

12 static connector LoggingDeployer {
13 Logger.Logging aspectl = new Logger.Logging(* *.set(x));
1 Logger.Logging aspect2 = new Logger.Logging(* *.setX(x));

16 aspectl.before();
17 aspect2.before();

Listing 3.7: JAsCo code declaring precedence of pointcut-and-advice.

3.1.4 Compose*

Compose* [BAOL, dRHH™08] is a language for composition filters. Composi-
tion filters specify aspects by defining so-called filter modules. Filters defined
in such modules intercept method calls (or conceptually: messages) and re-
define the action to be performed. There are two different kinds of filters:
input filters intercept method calls received by an object and output filters
select method calls sent from an object. The former ones are comparable
to execution join point shadows in AspectJ, the latter to call shadows. Fig-
ure(3.2/shows a schema of how filters are applied in Compose*. The definition
of when filters are applied is relative to a specified object, called inner. The
input filters are those applied on calls to or returns from a method invoked
on inner. Output filters are applied on invocations that are performed by the
inner object. The term calling flow refers to the control flow from the caller
to the method invoked on inner, respectively, the returning flow is the flow
after the method has finished execution and the control is returned to the
caller.

For every filter the type is specified, as well as a condition and two actions;
the first action is executed when the condition is satisfied (i.e., the filter
accepts), the second if the condition is not satisfied (i.e., the filter rejects).
The most commonly used filter type is Dispatch, declaring a redirection of the
original method call whereby the actions specify the target of the redirection.

The specialty of Compose* is that the actions performed by filters are
defined in a declarative way. Besides the Dispatch filter type, there are,
e.g., the Error, Wait, Before and After filter types. Error filters abort the
current join point including all subsequent filters, Wait filters queue the join

54



Common Features of Aspect-Oriented Languages

I calling flow )

I , I |
I 5| I
slzm 1 5| s !
! e e =N = T
I I | E|&E
I ' I :
I ! I '
I o
I j- f- <1—-- '8 "q-)' --r
A---{ 2| 2| L |E|F
| = | & I |
I
I I
I

input filters output filters

L=
( returning flow I

Figure 3.2: Schema of how filters are applied in Compose™.

point’s execution until the condition is accepted, and Before and After filters
call an additional method before or after the intercepted method call. This
declarative specification enables a reasoning about the program’s semantics
with the aspects applied.

The high-level filters of Compose™ can influence each other. They can,
e.g., be mutually exclusive, and may also exclude the actual join point itself.
For example, the Error filter throws an exception and terminates further
execution of filters at the join point. Another example for filter functional-
ity that can be declaratively specified is the Meta filter, which represents a
specialized advice having reflective access to the join point.

The dynamic part of filter conditions is an expression of basic conditions
which are predicates on the program state. Basic conditions are implemented
as virtual methods in Compose*; it is possible to declare on which receiver
object the method is to be invoked. Similarly the receiver object can be de-
clared for advice or dispatch actions, which are also implemented as methods.
The receiver may either be inner, self, an external or an internal object. inner
and self refer to the object that is the receiver of the call to which the filters
are applied; the difference is that a dispatch to self causes filters to be applied
anew, while a dispatch to inner invokes the methods without applying filters.
external and internal objects are specified in the concern module. For an
external object, the descriptor of a static method is provided that has to be
called to retrieve the appropriate receiver object. For internal objects, only
the fully qualified class name is provided and the receiver object is implicitly
created.

95



The Language Independent Aspect Meta-Model

3.1.5 Summary of language features

The core concepts identified in this thesis by observing the above AO lan-
guages are: advice actions, join point shadows, static and dynamic properties
of matching join points, context reification at join points, strategies for (im-
plicitly) instantiating aspects and receiving the instances, advice ordering
at shared join points, and dynamic and scoped aspect deployment. These
concepts are covered by the meta-model presented in the following section.

3.2 The Language Independent Aspect Meta-
Model

The Language Independent Aspect Meta-Model (LIAM) is developed in this
thesis and captures the aspect-oriented core concepts identified in the previ-
ous section. The concrete AO concepts of the above described languages are
mapped to LIAM and for some concepts the mapping is presented here to
illustrate the meta-model. Especially, throughout this section the AspectJ
language constructs and their mapping to LIAM are used to exemplify such a
mapping. In Section mappings of the more advanced languages CaesarlJ,
JAsCo and Compose* are presented to emphasize that the meta-model is
appropriate to express state-of-the-art aspect-oriented languages.

Terms like pointcut-and-advice are usually used with the intuition of
pointcuts and advice in the AspectJ language. However, the meta-model
developed here has a slightly different granularity. For example, in AspectJ
the order of different advice applicable at the same join point can only be
determined per aspect whereas in LIAM ordering is a property of “pointcut-
and-advice”. Thus, a more concise terminology is used here, which is different
from the AspectJ related one, in order to avoid confusion of terms. The meta-
model is implemented in Java whereby most of the meta-entities are abstract
classes.

Figure shows the meta-entities defined in LIAM as well as their re-
lationships. To exemplify the usage of the entities Figure [3.4] shows an ob-
ject model that represents the sample aspect in Listing copied from Sec-
tion 2.1.1] Assume the aspect is compiled to the class QuerylnjectionChecker
that contains the static method before_0(String sql) which is compiled from the
advice’s body as in Listing[2.6] The object diagram in Figure is explained
along with the following discussion of the meta-entities.

1 aspect QuerylnjectionChecker issingleton() {
2 before(String sql):

o6



The Language Independent Aspect Meta-Model

Aspect * AdviceUnit
* 1 1 | 1
Vi N ] Vi
JoinPointSet Action Schedulelnfo InstantiationStrategy
AN
1
MemberAction

JoinPointShadowSet DynamicPropertyExpression | 0..2| Context

1y 1y V= J

1 0.1

Pattern DynamicProperty

Figure 3.3: Entities of the Language Independent Meta-Model.

27



The Language Independent Aspect Meta-Model

:Aspect
v
: AdviceUnit
N\ %
: Schedulelnfo : SingletonInstantiationStrategy
time=BEFORE

N2
: MethodCallAction
method="QuerylnjectionChecker.before_0(String) void*

: JoinPointSet

T Y
. List : ArgContext
v v
: JoinPointShadowSet : AndDynamicPropertyExpression
: BasicDynamicPropertyExpression
: MethodPattern v
pattern=... : CFlowDynamicProperty
v
: BasicDynamicPropertyExpression
: RequiredTypeDynamicProperty
type=String
expression tree
pointcut

pointcut-and-advice

Figure 3.4: Example of a model in LIAM.

o8



The Language Independent Aspect Meta-Model

org.aspectj.lang

: MethodSignature
declaringTypeName=
name=
parameterNames=
org.aspectj.lang returnType=

: JoinPoint org.aspectj.lang
this= . JoinPoint.StaticPart
target= kind= \ org.aspectj.lang
arguments= : Sourcelocation
fileName=
line=

Figure 3.5: Runtime object model of JoinPoint for the ThisJoinPointContext.

3 call(ResultSet Connection.execQuery(CharSequence))
& & args(sql)
&& cflow(void FacadeServlet.doPost(Request, Response))

EN

5

s

7 if (isAttack(sql))

8 throw new SQLInjectionException();
o}

0 }

Listing 3.8: Aspect in AspectJ syntax.

Context. As seen in the previous section, many features of AO languages
depend on runtime values from the context of the current join point. The
meta-entity Context models this. Specializations of Context model concrete
values like the argument values passed to a called method. Context is used by
several other meta-entities discussed below, including Context itself. Compos-
ite Contexts model composite values like the JoinPoint object that is accessible
in the AspectJ language by means of the thisJoinPoint special form. The
JoinPoint object is a composition of all values available at a join point; Fig-
ure |3.5| shows an object diagram of such a value as it can be used by an
advice. Figure (3.6 shows a model of the composite ThisJoinPointContext en-
tity which can be used in a LIAM model to specify that a JoinPoint object
has to be exposed at a join point.

Dynamic Property. The DynamicProperty meta-entity models a condition
that can be satisfied by a property of the context in which a join point is
executed at runtime. In Listing[3.8] line [d], the args pointcut designator plays

29



The Language Independent Aspect Meta-Model

:ThisJoinPoint-

StaticPartContext :KindContext

:ThisJoinPointContext —|

:SignatureContext
> :ThisContext &

:SourcelLocation-

> :TargetContext Context

L) :ArgumentsContext

Figure 3.6: Object model of ThisJoinPointContext context in LIAM.

two roles, restricting the runtime type of the argument passed to the execQuery
method and binding the value for use by the advice. In LIAM this is split up
into several entities. As illustrated by the example LIAM model in Figure[3.4]
the value is modeled as a Context entity, ArgContext in the example, used in
two different places: the JoinPointSet and the RequiredTypeDynamicProperty
both refer to the ArgContext. The former relationship means that the value
is exposed to advice; the RequiredTypeDynamicProperty with the associated
ArgContext means that at runtime the type of the argument is tested.

Dynamic Property Expression. Constraints for join points based on run-
time values are represented by DynamicPropertyExpression forming an expres-
sion tree with DynamicPropertys as its leafs. The inner nodes are either an and
or an or operator; negations cannot be inner nodes, but a leaf can also be
the negation of a DynamicProperty. In Figure [3.4] the data structure marked
by the box expression tree is an example of the sub-pointcut in lines [dH]
Listing [3.8] Specializations of the DynamicProperty meta-entity can have as-
sociated Contexts and represent concrete constraints for join points. In the
example, the constraint of a type requirement for the argument value is ex-
pressed. The CFlowDynamicProperty is only partly shown in Figure for
brevity.

Join Point Shadow Set and Pattern. The JoinPointShadowSet meta-entity
is associated with a Pattern object specifying lexical properties of matching
join points. It embodies the quantification over join point shadows, i.e.,
instructions in the program. There is a hierarchy of Patterns implemented in
LIAM which reflects the different possible join point shadows—Ilike method
calls or field reads—and their lexical properties—Ilike their declaring class or
their name. In the example, Figure [3.4, a MethodPattern is used to match
method calls.

60



The Language Independent Aspect Meta-Model

Join Point Set. A JoinPointSet associates a JoinPointShadowSet with a list
of Contexts and a DynamicPropertyExpression. The intuition behind this is that
the first two entities select a set of join points matching a lexical pattern and
satisfying a dynamic constraint; at these join points the specified runtime
values are exposed. A JoinPointSet corresponds to a pointcut sub-expression
in AspectJ that consists of a single statically evaluable pointcut designator—
e.g., a call or get designator—and an expression of pointcut designators that
cannot be statically evaluated.

A full pointcut is represented by a collection of JoinPointSet objects in
the meta-model. Every such object represents a single or-clause. Thus, this
collection is the union set of all join points selected by any of its JoinPointSet
objects. In AO language implementations based on weaving, join points are
determined as a combination of a join point shadow and residual dispatch.
In LIAM the residual dispatch is modeled as a DynamicPropertyExpression. At
matching join points, the values modeled by the list of Contexts are exposed to
the advice. In Figure[3.4]the collection of JoinPointSet and its associated meta-
model entities are marked by the pointcut box. In Section an automatic
translator from AspectJ code to LIAM entities is presented which shows that
all AspectJ pointcuts are representable in the meta-model.

Action and Instantiation Strategy. Sub-classes of Action arbitrarily deter-
mine what actually should happen as an advice. Also part of LIAM are con-
crete actions, namely a class hierarchy of MemberActions. A member action
can be reading or writing a field, or calling a method. The accessed members
can either be instance members, i.e.; a virtual method or an instance field,
or static members. In the case of instance members, an InstantiationStrategy
determines how to retrieve the object whose member is to be accessed. In
the example LIAM model in Figure the SingletonInstantiationStrategy ob-
ject reflects the issingleton keyword in line [T} Listing [3.8} this means that the
advice is always executed in the context of the same aspect instance.

Advice Unit and Schedule Information. A collection of JoinPointSets is
associated with an advice Action by an AdviceUnit entity, which also refers
to a Schedulelnfo meta-entity. AdviceUnit captures the pointcut-and-advice
concept in AspectJ while the Schedulelnfo defines relationships between Actions
applicable at the same join point shadow, e.g., the order or mutual exclusion
of Actions. The framework for executing LIAM models, discussed in the next
section, also handles the actual join point event as an action at a join point
shadow just like the ones added to a shadow because of a deployed AdviceUnit.
Consequently, ordering actions includes arranging them relative to the join

61



The Framework for Implementing Aspect Languages

point’s action as is determined by the keywords before, after and around in
AspectJ.

Aspect. An Aspect is a logical group of AdviceUnits to be deployed together.
JoinPointSet, JoinPointShadowSet, AdviceUnit and Aspect provide logical group-
ings of entities of the meta-model and cannot be sub-classed.

3.3 The Framework for Implementing Aspect Lan-
guages

The meta-model LIAM presented in the previous section enhances the in-
termediate representation of programs and preserves the high-level aspect-
oriented constructs from the programs’ source code. Intermediate representa-
tions serve to decouple compilers and execution environments, i.e., the same
intermediate code can be executed by multiple different execution environ-
ments with different characteristics. They may support different platforms or
may exhibit an especially high performance for certain kinds of applications,
for example. Thus, it is also desirable that multiple execution environments
support the execution of applications specified in terms of LIAM.

To support this, a framework is developed providing a generic implemen-
tation of common functionality required to execute programs with a LIAM-
based intermediate representation of aspects. The framework, called Frame-
work for Implementing Aspect Languages (FIAL) is implemented in Java and
is supposed to be used in execution environments with support for dynamic
aspects, i.e., the pointcut-and-advice flavor of aspect-oriented languages with
dynamic deployment of aspects. Figure|3.7|shows how the responsibilities are
distributed between the FIAL framework and its instantiations.

FIAL implements several components required to execute dynamic aspect-
oriented programs as well as common generic work flows. An execution
environment has an internal meta-representation of the program it executes.
In Java there are meta-entities for classes, methods and fields. In FIAL-
based execution environments, LIAM-models act as a meta-representation
for the aspect-oriented parts of the executed program. In addition to the
presented entities, such an execution environment also has to manage the
join point shadows in the executed program in order to allow for the aspects
to be applied there. Common work flows are implemented in the framework in
terms of template methods and refined in the concrete execution environment
by implementing the provided call-backs.

62



The Framework for Implementing Aspect Languages

FIAL
LIAM Meta-Model generically handle LIAM models
I TS
1
Language : i
Mapping I !
7'y | '
replaces ! X
parts of ! '
1 1
1
) Platform-Specific
interact Implementations
FIAL Instantiation
OO base back-end

Figure 3.7: Interaction between FIAL and its instantiation.

3.3.1 FIAL’s Execution Model

FIAL has two main components that act as interface to its instantiation and
to the executed application. The Factory component generates LIAM models;
since it is implemented as an abstract factory [GHJIV95| it can be overwrit-
ten by instantiations of the framework in order to ensure that the LIAM
entities are implemented in a way appropriate for the concrete execution
environment.

The System component manages the join point shadows that are present
in the executed program in terms of JoinPointShadow objects. Furthermore, it
evaluates JoinPointShadowSet objects of LIAM models, and manages deploy-
ment and undeployment of aspects. A singleton instance of System is created
and used throughout FIAL respectively its instantiations.

Each JoinPointShadow objects has a Signature object encoding which kind
of action is performed (i.e., method call, field read access or field write access)
and the signature of the called method, respectively accessed field. To evalu-
ate a JoinPointShadowSet FIAL matches the Signatures of all JoinPointShadows
against the JoinPointShadowSet’s Pattern. Although, in general, FTAL is not
restricted to any specific join point model, implementations of Signature and
Pattern are provided by default that join point model of method calls, con-
structor calls, static initializer executions, field reads and field writes.

63



The Framework for Implementing Aspect Languages

au : AdviceUnit a : Action

si : Schedulelnfo

*

jp-set; : JoinPointSet dpe; : DynamicPropertyExpression
jps-set; : JoinPointShadowSet ctx; : List - : Context

Figure 3.8: Object diagram of a general advice unit.

3.3.2 Work Flows

Dynamic Deployment. System allows clients to dynamically deploy and un-
deploy aspects provided as LIAM models. Deploying an aspect is divided into
a series of deployment operations for advice units. Figure[3.8shows a general
data structure of an AdviceUnit au. It refers to an Action a, a Schedulelnfo s and
several JoinPointSets jp-set; which in turn consist of one JoinPointShadowSet
jps-set;, a DynamicPropertyExpression dpe; and a list of Contexts ctz;. During
deployment, any jp-set; is processed: from jps-set; a collection jpshadows; of
JoinPointShadow objects is retrieved. A so-called BoundAction object is cre-
ated to store directives about how to execute the advice action should it be
applicable. A BoundAction consists of the Action a, the Schedulelnfo si, and
the list of Contexts ctz;. Together with the DynamicPropertyExpression dp;, the
BoundAction is attached to all JoinPointShadows in jpshadows. The collection
of all pairs of DynamicPropertyExpressions and BoundActions that are attached
to a JoinPointShadow constitute the shadow’s residual dispatch logic. When
multiple BoundActions are attached to a join point shadow, FIAL determines
their order of execution using their associated Schedulelnfo objects. This is
the responsibility of the Scheduler component.

All JoinPointShadow objects to which such a BoundAction object is attached
during deployment are marked for code re-generation. For this purpose,
System invokes an abstract method that has to be implemented by a FIAL in-
stantiation and is responsible for re-generating code of the join point shadows.
The instantiation must implement this method such that the next time the
join point shadow is executed the new version of its code is executed. When
an aspect is undeployed, FIAL determines the affected JoinPointShadows, re-
moves the BoundActions originating from the aspect, and calls the instantia-
tion to re-generate code for the join point shadows.

64



The Framework for Implementing Aspect Languages

Dynamic Class Loading. The concrete execution environment has to no-
tify System when new join point shadows become available by passing it
JoinPointShadow objects that represent the newly available shadows. The
System re-evaluates all existing JoinPointShadowSets to determine if they se-
lect any of the new join point shadows. Join point shadows that are added
to a join point shadow set during class loading are further processed by
FIAL. If the affected join point shadow set is referred to by a currently
deployed AdviceUnit, a BoundAction is generated and added to the new join
point shadow. A list of all loaded join point shadows is maintained in order
to initialize new JoinPointShadowSets upon their creation.

Importing aspect definitions. So-called importer components can be pro-
vided to FIAL which are invoked just before an application starts to be ex-
ecuted. An importer component can generate LIAM models of aspects that
are part of the executed program, e.g., by reading aspect definitions from a
file. It is the responsibility of a FIAL instantiation to notify the framework
when the application is about to start.

3.3.3 Weaving Directives

Join Point Shadows. FIAL makes all relevant information for generat-
ing the code of a join point shadow available through the interface of the
JoinPointShadow class. While this class is abstract in the framework, the
management of residual dispatch is already implemented. A framework in-
stantiation is supposed to add instantiation specific data and functionality
to the JoinPointShadow type.

Dispatch Functions. The framework manages two kinds of information
about join point shadows. First, it provides a DispatchFunction that has
to be evaluated at runtime in order to determine which actions to exe-
cute at a shadow and in which order. The dispatch function combines all
DynamicPropertyExpressions that are attached to the join point shadow to-
gether with a BoundAction. The result of the dispatch function determines
the BoundActions to be executed. This reflects the rationale of virtual join
points as discussed in Section where one dispatch function determines the
appropriate implementation of the join point and the combination of advice
actions reflects this implementation.

The FIAL instantiation receives an evaluation strategy for the dispatch
function from FIAL. This strategy is provided as a binary decision diagram
[Bry86] represented as a directed acyclic graph, as illustrated in Figure

65



The Framework for Implementing Aspect Languages

Figure 3.9: Evaluation strategy of a dispatch function as a BDD.

The inner vertices of the graph are DynamicProperty objects (dpl and dp2 in
Figure which stem from the combined DynamicPropertyExpression objects
of a join point shadow. Each vertex has two out-bound edges that specify
which node to evaluate next if the DynamicProperty is satisfied, or not. Finally,
the leafs (also called sinks) are annotated with a combination of BoundActions
(bal and ba2 in Figure to execute when the sink is reached during the
evaluation of the dispatch function. In the example, dpl is evaluated first;
if it fails, only the bound action ba2 is executed. If dpl succeeds, dp2 also
has to be evaluated; if its evaluation succeeds, i.e., dpl and dp2 are true, the
bound actions bal and ba2 have to be executed. If dp2 fails, i.e., dpl is true
and dp2 is false, only bal gets executed.

Evaluating all DynamicProperty objects before evaluating any BoundAction
is only possible under the assumptions that the evaluation of DynamicPropertys
has no side effects and their result is not influenced by the execution of
BoundActions. These assumptions are generally true in the AO languages
investigated in this thesis [SBMOS].

The approach to join point dispatch bears the opportunity of optimiza-
tions: DynamicPropertys need to be evaluated only once and the evaluation
strategy can be optimized with respect to the average runtime cost of eval-
uation. A possible optimization is to evaluate those DynamicPropertys first
that are most likely to fail. More sophisticated optimizations of the dispatch
function are subject to future work and a preliminary discussion is given in

Section [T.2.11

Bound Actions. Directions for executing actions are provided in terms of
BoundAction objects describing how to execute the actions. Figure[3.10|shows
an example object diagram of a BoundAction (ba). The action to perform is to
call a virtual method, hence, an aspect instance has to be retrieved to serve

66



The Framework for Implementing Aspect Languages

ba : BoundAction

I
v |

a : MethodCallAction ctx : List

is : InstantiationStrategy si : Schedulelnfo

: Context

Figure 3.10: Object diagram of a BoundAction.

as the receiver of this call. The associated InstantiationStrategy (is) describes
how to accomplish aspect instance retrieval. The arguments to be passed to
the called method are represented by the list (ctx) of Contexts. Finally, the
MethodCallAction declares which method is to be executed.

Action Order Elements. FIAL provides a facility to determine the or-
der in which to generate code for the bound actions associated with a join
point shadow. For this purpose, it passes the Schedulelnfo objects of the
BoundActions of the join point shadow to the Scheduler component of FIAL,
which returns the appropriate order encoded as a chain of ActionOrderElement
objects. The structure of such a chain is defined by the class diagram in
Figure [3.11]

Each ActionOrderElement object stores a list of before actions, followed by
an around action, which, in turn, is followed by a list of after advice to be
executed after the around advice has finished. The lists store the actions in
the order of their execution. Any ActionOrderElement, aoe;, may be linked to a
following element, aoe; 1, specifying the actions to execute, when the around
advice of aoe; proceeds. Once the execution of the last after advice of aoe;.
is finished, the around advice of aoe; continues after its proceed, followed by
the after advice of aoe;, if any.

proceedTo

y

ActionOrderElement

before : List<BoundAction>
around : BoundAction
after : List<BoundAction>

Figure 3.11: Data structure for representing the order of advice.

67



Language Mappings

Figure [3.12| shows the order structure returned by a precedence-based
scheduler for pointcut-and-advice in the aspects from Listing [3.3] In the
figure, m refers to the original join point action; the other bound actions are
labeled with the message printed by the corresponding advice.

: ActionOrderElement : ActionOrderElement
proceedTo
before : {beforel, before2} before : {}
around : around around : m
after : {} after : {aftel, after2}

Figure 3.12: Object diagram of an ActionOrderElement data structure.

3.4 Language Mappings

It is claimed in this chapter that LIAM models are supposed to act as inter-
mediate representations of aspects. Thus it would be required that a compiler
generates and persists such models. This approach has been investigated by
developing a compiler for the AspectJ language that generates LIAM mod-
els. It has been found that this approach requires re-implementing complex
tasks of a compiler like type checking that are not related to handling aspect-
oriented constructs have to be re-implemented. A different integration ap-
proach that allows to concentrate on pointcut-and-advice is presented in the
following.

The observation has been made that many existing AO compilers—e.g.,
the ajc, CaesarJ and Compose™ compilers—work in two phases. The first
phase generates bytecode and the second phase performs the weaving. The
first phase passes a full description of the aspects to the second one in or-
der to specify how it should weave the aspects. Furthermore, it is possible
to interrupt the compilation process after the first phase in the investigated
compilers. The description is proprietary to each compiler, but it is pos-
sible to write specific translators for each such notation that generates the
corresponding LIAM model.

To prove the appropriateness of LIAM to express aspects defined in up-to-
date AO programming languages, mappings for four different widely-spread
languages are discussed here; these are the languages AspectJ, Compose*,
JAsCo and CaesarlJ.

For the first two, the existing compiler could be re-used and stopped after
the code generation. A component for the import call-back of FIAL has been

68



Language Mappings

developed that translates the compiler specific description of aspects into
LIAM models.

For JAsCo, a different approach has been chosen, i.e., a cross-compiler.
The JAsCo compiler is not implemented in a way that it can easily be kept
from weaving and a proprietary aspect definition cannot be retrieved. Thus,
for an integration, the compiler has either to be modified or a new one has
to be implemented. Regarding the pointcut-and-advice part of JAsCo, it is
very similar to AspectJ. Thus, after having implemented the importer for As-
pectJ, the best choice was to implement a JAsCo-to-AspectJ cross-compiler.
In contrast to a dedicated compiler, which maps the source language’s high-
level concepts directly to the lower-level constructs of LIAM, a cross-compiler
merely maps these concepts to the corresponding concepts of the target lan-
guage. And this target language is, when compared to LIAM, typically richer
in high-level constructs, which makes mapping concepts much easier. Indeed,
the mapping is particularly straight-forward if the source and target language
have many high-level concepts in common, as is the case with the JAsCo and
AspectJ languages.

For CaesarJ, so far no automatic translation has been implemented. How-
ever, it is reasonable to assume that it is possible. The difference of CaesarlJ’s
pointcut-and-advice part and AspectJ is not significant. The only differing
features are scoped and dynamic deployment of aspects. As is discussed in
Section dynamic deployment is supported by FIAL; deploying an as-
pect in a scope can be realized as follows: before the aspect is deployed, the
LIAM model is copied and for all advice units in the copy, a dynamic prop-
erty that checks if the current join point is in the specified scope is anded
to the dynamic property expression of all its join point sets. The remainder
of the pointcut-and-advice features offered by CaesarJ is equivalent to those
of AspectJ and is thus also covered in the following subsection. In fact, the
CaesarJ compiler internally uses the AspectJ weaver. But an older version
of the proprietary aspect description is used than that understood by the
AspectJ importer for LIAM.

The concepts of the languages discussed in Section are all supported
by the concrete LIAM entities developed in this thesis. These entities often
are more general and finer grained than, e.g., the keywords of the discussed
languages, and thus more re-usable. As a consequence, language constructs
often do not map to a single entity, but to compound entities.

In this thesis the Required TypeDynamicProperty has been implemented which
requires a Context. This may be parameterized with an ArgContext object to
model the constraint posed by args. Additionally, to expose an argument
value to the advice, an ArgContext object must be attached to the respective
JoinPointSet.

69



Language Mappings

3.4.1 AspectJ Mapping

Aspect] offers a “load-time-weaving” mode where the compiler generates
bytecode for object oriented modules like classes and methods, including
those that represent aspect types and advice bodies. To the latter ones,
the compiler adds runtime visible annotations that more or less contain the
source code of the aspect-oriented constructs like pointcuts. In this mode
weaving is performed at class loading time, when the program is to be ex-
ecuted. This is exactly what is suggested here as an integration approach.
Thus, only an importer that reads the proprietary aspect definition format
produced by the AspectJ compiler has to be implemented.

As already shown in Section [2.2] the ajc generates a class for each aspect
and a method in this class for each advice in the aspect. When compiling
with Java 5 compatibility, runtime visible annotations are added to these
classes and methods that define the aspect-oriented parts of the aspect. List-
ing picks-up the example from Section and shows the generated an-
notations which are explained below. The compiler also generates the file
META—INF /aop—ajc.xml that lists all classes that have been generated for as-
pects, as well as some weaver options that have originally been passed to the
compiler.

1 @Aspect

2 class QuerylnjectionChecker {

s ©@Before("call(ResultSet Connection.execQuery(String)) && args(sql) && cflow
(void FacadeServlet.doPost(Request, Response))”)

4+ static void before_0(String sql) {

5 if(isAttack(sql))

6 throw new SQLInjectionException();

7}

5 }

Listing 3.9: Compilation and weaving result for class Services and aspect
QuerylnjectionChecker.

The importer for AspectJ, first searches the class path for such aop—ajc.xml
files and loads every one it finds. The format of the file as well as the
semantics of combining several descriptor files is specified in the AspectJ
Development Environment Guide [Aspb|. The importer processes the files
according to this semantics and determines the aspects, which have to be
active during the execution. Afterward, the importer loads the classes, that
are generated from the aspects, and processes their annotations.

Most interesting are the annotations of the advice methods, ©@Before,
©@Around, and @After, which determine when the method is to be called. These

70



Language Mappings

annotations contain pointcuts that follow—with few exceptions—the syntax
of pointcuts in the AspectJ source language [Asp0§].

A parser has been implemented for the AspectJ pointcuts with the parser
generator JJTree [JJT]. This generates parsers that build an abstract syntax
tree (AST) of the parsed input. In order to actually create the LIAM entities,
a visitor for the generated AST of the pointcuts has been implemented. While
visiting the AST of a pointcut, it generates the LIAM entities corresponding
to the pointcut. With the visitor, an algorithm is provided for transform-
ing arbitrary pointcuts into LIAM entities. This algorithm shows that all
pointcuts, which select a non-empty set of join points, can be expressed in

LIAM.

In detail, the different parts of an aspect are translated as follows. In
AspectJ, the instantiation strategy is defined aspect-wide. It is specified
by the ©@Aspect annotation of the aspect class. The importer creates the
InstantiationStrategy once per imported class and uses it for all AdviceUnits
derived from the aspect class.

Aspect precedence is not handled by the AspectJ importer, but a possible
implementation is outlined here. An aspect class may contain one or more
methods with an annotation of the type @DeclarePrecedence that specifies the
precedence order of aspects. Since a precedence-based Scheduler implementa-
tion is available for FIAL, this specification can be translated into appropriate
ScheduleMethodData objects.

For each processed advice method, the importer creates an AdviceUnit.
The InstantiationStrategy created at the beginning of the aspect class’ process-
ing is associated with the AdviceUnit as well as a MethodCallAction describing
a call to the advice method and a collection of JoinPointSets derived from its
annotated pointcut.

The visitor maps all pointcut designators which are statically evaluable to
JoinPointShadowSets and the remaining designators to DynamicPropertys com-
bined in a DynamicPropertyExpression. For those that bind context values,
additionally, a Context object is created.

FIAL does not differentiate between the call and execution pointcut des-
ignator of AspectJ, this trade-off has already been discussed in Section
It is left to the concrete execution environment where code is woven, i.e., at
the call site or in the called method. Thus, within and withincode pointcut
designators are mapped to DynamicPropertys that select join points based on
the topmost frame in the call stack. This is in contrast to the ajc and abc
implementations which realize within and withincode as lexical properties of
join point shadows [HHO04, IACHT05h].

71



Language Mappings

Since in AspectJ all aspects are active throughout the whole execution,
the importer deploys all aspects that it has generated from the aspect de-
scriptions. Thus, they are active from the start of executing the application.

3.4.2 JAsCo Mapping

The original JAsCo compiler is not implemented in a way that it can easily
be interrupted after bytecode generation and before weaving, and it also has
no easily accessible proprietary description of the pointcut-and-advice parts
of aspects. To conduct a case study of mapping JAsCo to LIAM, a cross-
compiler from JAsCo to AspectJ has been developed for reasons of simplicity
instead of inventing a new format for describing JAsCo aspects.

Advanced concepts of JAsCo that go beyond those of AspectJ, and how
they could be mapped to LIAM is discussed at the end of this sub-section.
The cross-compiler has been developed by Vrije Universiteit Brussel and fur-
ther components required for the integration with FIAL have been developed
cooperatively [BSMT08].

The JAsCo compiler compiles hooks and connectors to Java classes. Ad-
ditionally, deployer code is generated by the cross-compiler in the form of
an AspectJ aspect. The aspect intercepts the join points selected by the
connector’s pointcuts, sets-up the required reification of those join points
in a form expected by JAsCo’s hook, and finally triggers the hook’s advice
method. Additionally some runtime library code has been developed to trans-
late from the Aspect] reflective object thisJoinPoint to those of the JAsCo
runtime. Finally, an aop—ajc.xml file which declares the additional deployer as
an AspectJ aspect is generated; this enables the use of the AspectJ importer
discussed in the previous sub-section.

As an example of how the cross-compiler works, consider Listing [3.10]
a shorter version of the example from Section [3.1.3] Cross-compiling the
Logger class generates two files, one for the Logger class and one representing
the hook Logging as an inner class.

1 public class Logger {
hook Logging {

Logging (method(..args)) {
execution(method);

2

3

4

s}

6 before() {
7 System.out.printIn("Executing " + thisJoinPoint.getSignature());
o

o}

10 }

72



Language Mappings

11
12 static connector LoggingDeployer {
13 Logger.Logging aspectl = new Logger.Logging(* *.setx(x));

14 }
Listing 3.10: Example of logging implemented in the JAsCo language.

For the connector, the cross-compiler generates a plain Java class (in the
example LoggingDeployer) and a class with AspectJ 5 annotations that has the
same name but is placed into a distinct package, i.e., jasco.ajconversion. While
this aspect is created directly in the form of Java bytecode, it is, for the sake
of explanation, shown as Java source code in Listing [3.11]

The pointcut language of JAsCo is nearly identical to the one of As-
pectJ and, thus, pointcuts can be used in the AspectJ output with nearly
no changes. Only the pattern language differs in two ways. Although the
wildcard named “x” exists in both pattern languages, it has different mean-
ings. In JAsCo “x” stands for any character also across sub-package names;
in AspectJ the segments of package names are matched separately and the
wildcard “..” stands for any package segments. E.g., the pattern com«Example
would match the class name com.something.Example in JAsCo, while it would
not in AspectJ. In the AspectJ pattern language only, e.g., comSomeExample
would be matched. However, this can be handled by the cross-compiler: for
a pattern of the form plxp2 the AspectJ pattern plxp2 || plx..xp2 is created.
The second difference is the “?” wildcard in JAsCo which matches any single
character and has no AspectJ counterpart. Thus, the cross-compiler cannot
handle pointcuts using this wildcard.

1 @Aspect

2 class jasco.ajconversion.LoggingDeployer {

s static Log hook; // Gets initialized statically.

4

s ©@Before(value="(args(..)) && (execution(x *.setx(..)))", argNames="
thisJoinPoint")

s public void hook_before(JoinPoint thisJoinPoint) {

7 // JAsCo—ify the join point.

8 MethodJoinpoint m = JPBuilder.buildFrom(thisJoinPoint);

0 // Call the actual advice code.

0 hook.before(m, thisJoinPoint.getTarget(), thisJoinPoint.getArgs());

11 }

2}

Listing 3.11: Java class with AspectJ 5 annotations representing the

instantiated hook from Listing

=

73



Language Mappings

This cross-compiled deployer has a field referring to an instance of the
inner class corresponding to the JAsCo hook (line [3) and a method (lines [6}-
annotated with an AspectJ 5 pointcut annotation (line |5)). The poincut
is composed of the abstract pointcut defined in the hook and the pattern
that is passed to the hook’s constructor; at intercepted join points, context
required by the hook’s advice method is set-up and the advice method is
called.

Two features of JAsCo are not supported by AspectJ but are supported
by FIAL. Due to the cross-compiler approach, they are, however, emulated
in the generated AspectJ code. First, the semantics of dynamic deployment
can be mimicked by making the cross-compiled deployer test at run-time
whether the hook it refers to is currently active or not. But by doing so, the
deployment and undeployment of aspects is not explicit to FIAL and thus
potential optimizations as discussed in Section cannot be effective.

Second, JAsCo allows for a more fine-grained control of the order in which
multiple hooks are executed: if a connector deploys multiple hooks, it is pos-
sible to define the precise order in which the hooks’ advice are executed.
This is not possible in AspectJ, which allows precedence declarations only at
the level of aspects, but not at the level of advice. While in some cases it
may be possible to split a single JAsCo hook into multiple AspectJ aspects,
thereby mimicking JAsCo’s fine-grained precedence strategies, this compli-
cates cross-compilation a lot: a hook’s private fields have to be shared by
all aspects which were generated from the hook in question. Again, FIAL
would be able to support JAsCo’s fine-grained precedence model, and the
limitation is due to the detour via AspectJ aspects.

Patterns in FIAL are not limited to AspectJ patterns. Although there is a
default implementation for AspectJ-like patterns, other implementations can
be provided. Thus, also JAsCo’s extended pattern language can be mapped
to FIAL.

3.4.3 Compose* Mapping

Compiler. The Compose* compiler consists of a pipeline of phases which
gradually perform transformations of the source code eventually leading to
weaving aspects into the base code. It exists for three different platforms:
NET, Java and C. To support reuse, the Compose* compiler is divided into
a platform-independent part and three platform-dependent parts, one for
each supported platform. The platform independent part contains most of
the functionality of the compiler, e.g., compiling the composition filter spec-
ification, resolving references, and reasoning about the compositions’ cor-
rectness. The platform-dependent parts implement the platform specific be-

74



Language Mappings

havior, which includes extracting information about the base program, e.g.,
as type information, and performing weaving. Just executing the platform-
independent part of the Compose® compiler has the effect that no weaving
is performed.

However, the intermediate representation used to exchange weaving di-
rectives between the platform-independent and the platform-dependent part
is not easily readable because it is already too low-level. An earlier com-
piler phase, however, generates an intermediate representation at a suitable
level. Thus, a new compiler phase has been implemented that writes out
this intermediate representation. This phase simply serializes the intermedi-
ate representation. The file is later read by the importer which de-serializes
intermediate representation.

The heart of the Compose® compiler is the message flow analysis for rea-
soning about how a given message behaves in the presence of the specified
composition filters, e.g., as shown in Figure The output of this analysis,
the so-called execution model, gives precise information about how a given
message behaves in the filter set. Therefore, it can be used to translate the
filter set to base code for a specific method. This translation is done by the
compiler’s Inliner module, which generates a so-called abstract instruction
model for a given filter set and message. The abstract instruction model
specifies in a platform-independent way the base code for a given filter set.
This code represents combined conditions of several filters and also the order
is determined in this step. After this step of the compiler pipeline, the high-
level constructs of Compose* are broken down to smaller parts corresponding
to the granularity of LIAM. Thus, the new compiler phase is inserted directly
following this one. In the following, results of the Inliner module are pre-
sented which are the basis of the importer discussed thereafter.

Importer. The instructions for abstract input filters are provided by the
compiler as pairs of MethodInfo and FilterCode objects. The MethodInfo object
is a fully qualified descriptor of a method. When this method is called the
filter composition is to be applied. For each such pair, the importer uses the
MethodInfo to generate a JoinPointShadowSet—whose pattern exactly matches
this method—which in turn is associated with all actions it derives from the
FilterCode.

The FilterCode object represents the abstract instructions to be executed
whenever a message passes through a set of filters. Abstract instructions are
Blocks, Branches, Jumps, and FilterActions. Branches have ConditionExpressions
attached, which determine under which conditions the true respectively false
branch is taken during execution. When the abstract instruction model is to

5



Language Mappings

be imported and transformed into AdviceUnits, however, the conditions un-
der which FilterActions are executed need to be determined. This is done by
propagating the ConditionExpressions the Branches are annotated with [dR07].
This propagation is made feasible by the fact that the control flow graph
corresponding to any such abstract instruction model is a directed acyclic
graph; thus, its instructions can be processed in topological order. After
each Instruction has been annotated with the condition under which it gets
executed, the ConditionExpressions used by the Compose* compiler are con-
verted to DynamicPropertyExpressions as expected by FIAL.

This conversion is straight-forward but for one issue: the dynamic prop-
erty expressions are expected to be in negation normal form whereas the
former are not. Thus, negations must be pushed downward to the level of
DynamicPropertys, i.e., the leafs in the expression tree. This is done by apply-
ing De Morgan’s laws during the transformation.

Also, DynamicPropertyExpressions cannot explicitly represent the Boolean
constants true and false, which is, however, possible in Compose™’s abstract
instruction model. While a null DynamicPropertyExpression is implicitly under-
stood as true, something similar is impossible for false—and unnecessary: if
applying constant folding to a ConditionExpression yields the constant false, no
AdviceUnit is generated at all.

The DynamicPropertys themselves have to be generated from the atomic
Conditions used in the ConditionExpressions of Compose® during the transfor-
mation to DynamicPropertyExpressions. These are always provided in terms of
a method to be called. Thus, a DynamicProperty has been implemented for the
Compose* integration that calls the condition method and returns its result
value.

For each FilterAction a DynamicPropertyExpression is derived by the importer.
Context binding is only possible in terms of the Meta filter in Compose™*
which is currently not supported by the importer. Thus, together with the
previously generated JoinPointShadowSet the DynamicPropertyExpression forms
the JoinPointSet.

Next, the importer generates the appropriate Action entity and associate
it with the JoinPointSet into an AdviceUnit. The Compose™ compiler already
reflects mutual exclusion of filter actions in the abstract instruction model
as generated by the Compose™ compiler. Thus, two actions of Compose*’s
abstract instruction model, namely the SkipAction and the ContinueAction,
do not occur in this model as they only control the exclusion of other actions;
only those actions that really provide some functionality actually occur in
the model the importer works with. The filter actions that can occur are
DispatchAction, AdviceAction, and ErrorAction. A MetaAction could also
occur at that level of the model, but it is not supported by the importer

76



Language Mappings

because it may affect the filter composition reflectively at runtime whereas
FIAL requires a composition fix at weaving time.

An error filter action is translated into an ErrorAction of LIAM. Dispatch
and advice filter actions work very similar: both lead to a method that is
being called and thus are realized as MethodCallAction in the LIAM model.
The difference between both is that potentially multiple advice actions can
be performed at a join point, but only one dispatch action. Usually, the
dispatch action is the join point action, i.e., that action that has lead to
the join point in the first place. However, in Compose* it is also possible
that the original join point action is replaced by a different action, e.g.,
calling the same method on another object or calling a completely different
method. This is why the join point action is explicitly contained in the
abstract instruction model.

In FTAL, the join point action is also an explicit Action at a JoinPointShadow.
For an advice unit derived from a dispatch action the Compose™ importer
generates a Schedulelnfo declaring that the join point action is to be skipped
if the action is executed.

The abstract instruction model contains all actions to be performed at the
method call, including the join point action, thus, also an advice unit with
this action is generated by the importer. However, this action cannot be a
normal method call, because this would produce a new join point with advice
being applied. Thus, the special ReplaceWithJoinPointActionAction is used for
filter actions that dispatch to the originally intercepted method, which is
a wildcard and will be replaced with an action that actually performs the
original join point action.

Finally, the importer ensures that the actions are performed in the cor-
rect order. The order is determined by the FilterCode data structure by the
order of their appearance in the control flow graph. Since the importer inde-
pendently generates an AdviceUnit for each action, this order gets lost. Thus,
the order must be re-established by attaching the correct Schedulelnfo to the
Actions. A priority-based scheduling strategy is chosen. As the FilterCode
specifies all actions that share the same join point shadows, priorities can be
provided separately when processing a single filter action. The FilterActions
are brought into a topological order with respect to the abstract instruc-
tion model’s control flow graph. The index within this order is then used
as the derived Action’s priority. Hereby, it must be noted that actions in
the so-called calling flow should be executed first if they appear first in the
topological order, while those actions in the returning flow that appear first
should be executed last.

7



Language Mappings

Discussion. The Compose™ importer can handle the abstract instruction
model provided by the standard Compose™ compiler to a great extend. But
there are also some limitations, which, however, are well localized. The cur-
rent version of the importer can only handle external objects and the inner
object as the target of a call. In Compose*, internal objects are shared among
all filters in a filter module. Since the filters may intercept different mes-
sages, they have different join point shadows whereby each join point shadow
is handled separately by the importer. The abstract instruction model cur-
rently provided by the additional Compose* compiler phase is not sufficient
to identify which filters originate from the same filter module. Thus, it is
not possible to ensure that filters from the same filter module use the same
internal objects.

Condition methods in Compose* can either require no arguments or one
argument that captures the join point’s context, similar to thisJoinPoint in
AspectJ. This feature has not yet been implemented, but can be realized
by an appropriate Context entity used by the respective DynamicProperty enti-
ties. Furthermore, the importer only handles input filters; output filters are
currently ignored, but could be realized similar to the above.

Finally, the Meta filter is not supported because it can change the filter
composition reflectively, i.e., at runtime, but FIAL requires an ordering that
is fixed at weaving time. It is conceivable, however not verified, that the
dynamic composition capabilities of the Meta action can be mapped onto
Actions and dedicated DynamicPropertys.

3.4.4 Discussion

The outlined importer-based integration approach for AO languages, often
facilitates to re-use the original tooling. In the case of AspectJ, the original
compiler can be used with just an additional compiler option. This enables,
e.g., using the AJDT [AJD] to develop AspectJ applications and to execute
them on a FIAL-based execution environment. To do so, the “Non-standard
compiler option” —XterminateAfterCompilation has to be specified in the “As-
pectJ Compiler” page of the AJDT project’s properties. On the same proper-
ties page, the “Outxml” option must be enabled which causes the compiler to
write the aop—ajc.xml file. Finally, the compiler compliance level must be set
to 5.0 or higher in the “Java Compiler” properties—only then the compiler
generates the runtime visible annotations required by the importer.
However, with specifying the —XterminateAfterCompilation option not only
the compiler is barred from weaving the aspects; it also does not evaluate
pointcuts anymore. Thus, the compiler also does not determine the crosscut-
ting structure of the aspects which would normally be used by the IDE to

78



Execution Environments

45 Billing.aj 3 AT Calljava 2 =8

e —————

B ~
Thi=s aspect can be used by other

31 L

x4 * Create a new call conhecting
k] * with & new connection. This

34 * called by Customer.call(..)

i) "

36 public Call (Customer caller, Cu
=i this.caller = caller:

*
*

21 * Billing can depend many things,
¥ Some sSpecial discounts the custo
*

it depends only on timing and on

Z5 public aspect Billing {

this.receiver = receiver;
Connection o
if (receiver.localTo(caller

iww

* Caller pays for the call

=/

after (Customer cust) returning (C
args (cust, ..)] £& call|(Connep
Conn. payer = cust;

= new Local(caller, receive
else {
new LongDistance (caller,

B
onnections. addElement (o) ;

45 FE v
> < >

References &0 = |§| Ea=

all: constructor-call{void telecom. Lacal. <init =(telecom. Customer, telecom. Customer))
all: constructor-call{void telecomn. LongDistance. <init =(telecom.Customer, telecom.Customner))

Figure 3.13: Linking of pointcut-and-advice and advised locations in AJDT.

show, e.g., in the “Cross References” view, or which would be used to facilitate
navigation between advised join point shadows and their advice, as depicted

in Figure [3.13] A solution to this limitation is discussed in Section

3.5 Execution Environments

To evaluate the appropriateness of FIAL to act as a framework for imple-
menting execution environments for AO languages, different instantiations of
FIAL applying different weaving techniques have been developed.

FIAL requires that each entity’s semantics is implemented in a method
of the entity’s class, which facilitates a default code generation strategy for
each kind of meta-entity from LIAM. This default code executes the entity’s
semantics by invoking the method. This way, the concept represented by an
entity is implemented in isolation from other concepts.

Treating each concept separately, makes it easy to add new concepts and
precisely define their semantics, namely by providing a programmatic speci-
fication that can be executed and tested. This strategy furthermore supports
the generation of optimized code for those entities specifically supported by
an execution environment as discussed further in Chapter [4]

The default implementation of the LIAM entities is based on implement-
ing their meanings as pure Java methods. A Context entity, for example, has a

79



FExecution Environments

method which returns the corresponding context value and a DynamicProperty
has a method that returns either true or false. Below, these methods are gen-
erally referred to as “perform”, however, they are called differently for each
kinds of entity, e.g., isSatisfied for DynamicPropertys or getValue for Contexts.

FIAL employs a factory for the creation of LIAM entities. Hence, the
execution environments presented here can provide an appropriate imple-
mentation of the entities whereby the “perform” is implemented specially for
those entities that have to interact with the execution environment.

For entities which require context values to perform their semantics, those
values have to be passed as arguments to the “perform” method. Since the
entities are objects and the above described methods are virtual, each LIAM
entity has a numerical ID and FIAL provides a registry that facilitates to
retrieve an entity by its ID. Thus, the code generated for executing an entity,
is as follows:

1. Push the ID on the operand stack as a constant.

2. This constant is passed to FIAL’s registry which returns the LIAM
entity object.

3. For each Context required by this entity, generate code according to this
enumeration.

4. Call the entity’s “perform” method.

3.56.1 Envelope-Based Reference Implementation

The so-called Envelope-based Reference ImplementatioN (ERIN) has been
implemented as an instantiation of FIAL. It supports all features of FIAL
and performs, as the name suggests, envelope-based weaving. It is an ad-
vanced version of the prototype performing runtime weaving with envelopes,
presented in Section [2.5.2] realized as a Java 6 agent.

A Java agent contains a class with a method named premain. This class
is invoked by the virtual machine after it has finished its own initialization.
When this method is invoked on the ERIN agent, it starts the initialization of
FIAL and installs a class loading interceptor. The last action of the premain
method is to notify FIAL that the application is about to start.

The agent uses the bytecode instrumentation package to intercept class
loading: When a class is loaded by the virtual machine, the agent pro-
cesses the class data, brings the bytecode in the envelope-style, generates
JoinPointShadow objects and stores meta-information about the class to be

80



Execution Environments

used for weaving. FIAL is notified of these JoinPointShadows. In ERIN the
JoinPointShadow objects correspond to envelope methods.

When the call-back for join point shadow code re-generation is invoked
by FIAL ERIN re-generates the code of the envelope methods related to
the affected join point shadows. Subsequently, the JVM’s Class Redefinition
facility is used to replace the bytecode of those classes containing envelope
methods that have been changed.

Most of the default LIAM entity implementations are independent from
the concrete FIAL instance. However, the primitive context values like the
receiver or the this object depend on the specific weaving strategy. As already
discussed in Section [2.4] in envelope-based weaving the this object is not in
the local context of the join point shadow. Thus, ERIN provides the Context
implementations representing these primitive values which are implemented

by means of the JVMTI as presented in Section [2.4]

Code is generated for envelopes according to the weaving directives pro-
vided by the corresponding JoinPointShadow object. ERIN, first, generates
code that evaluates the dispatch function and stores the evaluation’s result
in a local variable. Second, code for each bound action is generated sepa-
rately according to the default code generation strategy. In front of each code
block for executing a bound action, a branch is placed which tests the result
of the dispatch function and skips the bound action if it is not applicable.
The dispatch function’s result is encoded as a bit vector where the bit at
index i determines whether the i** bound action is to be executed (bit is 1)
or not (bit is 0).

The applicable BoundActions and their execution order are provided for a
JoinPointShadow in terms of a structure of ActionOrderElements. Figure [3.14]
shows (a) an action order structure and (b) how it is mapped onto a sequence
of bytecode instructions. The dashed arrows in sub figure (b) represent the
control flow of the branch that test for the bound action’s applicability in
the dispatch function’s result.

The solid arrows illustrate the control flow that has to happen when an
around advice proceeds. In order to support that, the code for bound actions
representing around actions is inlined into the envelope instead of generating
code for invoking the advice method; i.e., the method’s implementation is
copied into the envelope. ERIN requires that the proceed special form is
compiled into a method call which can be identified by naming conventions.
Such instructions are replaced by a “jump to subroutine” instruction (jsr) that
jumps to the first bound action from the next advice order element. When
the last of its bound actions has been executed, the execution is continued
just behind the jsr instruction representing proceed.

81



FExecution Environments

4

beforel ~, "> branch if not applicable

3 —> control flow of proceed

before2 /\ ~> jump when around advice finished

around * = control flow enter / exit
of join point shadow
<leave shadow> I# o P

afterl >

after2 >

method >

Figure 3.14: Instruction sequence generated for ordered BoundActions.

The inlined code is further modified in two ways. First, local variables are
re-numbered to avoid interference with local variables of the envelope method
or other inlined around advice. Second, return instructions are replaced by
instructions that jump behind the inlined advice method’s code to ensure
that the execution continues with the code of the next bound action after
the inlined advice method; this is shown as dotted arrows in Figure [3.14]

Inlining of around advice cannot be performed when the proceed occurs
in an anonymous nested type in the around advice as observed in [ACHT05b),
HHO4]. They also describe an implementation based on closures that can
be used in all situations. A similar solution is currently not implemented in
ERIN.

3.5.2 Static Weaver

Another instantiation of FIAL has been developed in this thesis to show
its appropriateness also in settings of static weaving. The weaving strategy
pursued here is similar to that of the standard AspectJ compilers: join point
shadows occur in the application code and are not relocated to envelopes.
However, still the code generated for the different entities follows the default
code generation strategy.

A main class beginning from which all referenced classes are determined
recursively is passed to this static weaver. All determined classes are pro-
cessed and JoinPointShadow objects are generated which are passed to FIAL.
After all classes have been processed, the importer call-back is triggered, thus
aspects may get defined and deployed. Thereby, FIAL attaches BoundActions
to the JoinPointShadows. After the importer call-back has been executed, all
affected join point shadows are modified. Then all classes that have been

82



AO Language Design and Implementation with FIAL

loaded and processed in the first place are written out again. Those instruc-
tions that make-up join point shadows are not written unchanged, but code
is generated for them according to their JoinPointShadow object, everything
else is copied verbatim.

This execution environment does not support dynamic aspect deploy-
ment. Thus the call-back for code re-generation is to be implemented.

3.6 AO Language Design and Implementation
with FIAL

The proposed architecture of language implementations and the developed
framework, FIAL, that reifies this architecture facilitate a separation of the
design and implementation of aspect-oriented programming languages. To
demonstrate this, a case study of designing and implementing a simple ex-
ample language is presented here.

Thereby, no dedicated syntax and keywords are designed nor is a compiler
implemented. Following the importer-based integration approach of FIAL,
Java annotations can be added to a program that can be translated to a
LIAM model by an importer. Thus, language design encompasses defining
the annotations, providing the importer, implementing additional concrete
LIAM entities, and providing runtime support for the language. Language
implementation integrates additional support for executing the new concrete
LIAM entities, i.e., the constructs of the new language, into an execution
environment.

The sample language is a domain specific aspect-oriented extension to
Java for enforcing the decorator design pattern [GHJV95]. In this pattern,
so-called “decorator” objects are associated to particular “decoratee” objects
at runtime. Decorators and decoratees implement a shared component inter-
face. All calls to operations on a decorator are forwarded to its referenced
(decoratee) component, but the decorator has the possibility to execute addi-
tional behavior and to store additional data before or after the component’s
operation. A class diagram of the decorator pattern is shown in Figure
The structure is recursive in that the decoratee of a decorator can be either
a basic component or another decorator.

A prominent example of the decorator pattern can be found in the java.io
package. The code snippet in Listing shows the usage of two readers,
where the BufferedReader is a decorator for the StringReader. An issue with the
decorator design pattern is that the decorated object remains an autonomous
object on which operations can be directly invoked thus bypassing the decora-

83



AO Language Design and Implementation with FIAL

decoratee Component
operation()
I ]
Decorator ConcreteComponent
operation() ®-_| operation()

<before decoration>
decoratee.operation();
<after decoration>

Figure 3.15: Class diagram of the decorator pattern’s structure.

tors. For illustration consider line [4 in Listing where the close operation
is called on the decorated object directly. Thus, the decorator cannot per-
form clean-up itself, e.g., releasing the buffer. The correct behavior would be
to call the close operation on the decorator object as shown in Listing |3.13]
line [l

1 Reader decoratee = new StringReader("something\nsomething else”);
2 Reader decorator = new BufferedReader(decoratee);

3

4 decoratee.close(); // at this point, the "decorator” does not know

5 // that the stream is actually closed. It, e.g.,

6 // misses the opportunity to do some clean—up

Listing 3.12: Bypassing the decorator.

84



AO Language Design and Implementation with FIAL

1 Reader decoratee = new StringReader("something\nsomething else”);
> Reader decorator = new BufferedReader(decoratee);

3

4 decorator.close(); // the "decorator” can perform clean—up and

5

// will call the "decoratee™s close method

Listing 3.13: Proper use of the decorator pattern.

The sample AO language discussed in this section enforces the correct

use of decorators. The semantics of the language is based on the following
assumptions.

It is possible to specify a class whose objects may play the decorator
role, called decorator class.

It is possible to specify a class whose objects may play the decoratee
role, called decoratee class.

The decorator-decoratee-relationship is established when the construc-
tor of the decorator object is called.

The decorator-decoratee-relationship is between two objects where one
plays the decorator role and one plays the decoratee role.

There is a one-to-one decorator-decoratee relationship—otherwise en-
forcing to redirect operation calls on the decorator is not sensible (it
would not be clear which decorator to call, or in what order).

Only the decorator object is allowed to call operations directly on the
decoratee object. Calls from other objects to the decoratee must be
forwarded to the decorator.

In this section, it is discussed how to develop runtime support that realizes
the language design according to the above assumptions. When a pair of a

decorator class and a decoratee class is registered with the runtime support,
an aspect is generated and deployed that enforce the behavior defined in
the itemization above. Listing shows an example usage of the runtime
support. In line[T]the relationship between decorator class BufferedReader and

the decoratee class StringReader is established. The runtime recognizes that
the decorator-decoratee relationship is established in line 4f and automatically

forwards the call of the close operation in line [6] from the decoratee object to
the decorator object.

85



AO Language Design and Implementation with FIAL

1 DecoratorRuntime.enforce(BufferedReader.class, StringReader.class);
2

s Reader decoratee = new StringReader("something\nsomething else");
4+ Reader decorator = new BufferedReader(decoratee);

5

s decoratee.close(); // the language runtime support forwards this call
7 // to the object decorator

Listing 3.14: Proper use of the decorator pattern in the sample language.

3.6.1 Realizing the Sample Language in FIAL

In this case study, the step of implementing an annotation as well as a FIAL
importer is omitted. Instead, the application has to pass a pair of Class objects
to the runtime support component developed which generates LIAM models
and deploys the aspects. This component could as well be implemented as
an importer reading annotations, but this case study is not about designing
the syntax to be used in the source code. Instead, the goal is to investigate
how easy it is to define and implement the semantics of a language construct.

To realize the language, the class DecoratorRuntime has been implemented
to provide runtime support. It defines a static method enforce that requires
the decorator class and the decoratee class as arguments. The runtime has
three different responsibilities.

1. A facility is provided that allows to store and query the mapping of
decorator and decoratee objects.

2. The establishment of a decorator-decoratee relationship for two objects
is recognized and the objects are stored in the mapping.

3. Invocations of operations on an object for which a decorator object is
stored in the mapping are redirected to its decorator object.

Decorator-Decoratee Relationship. The class DecoratorEnforcingPolicy is de-
fined to store the decorator-decoratee relationship in a map. As shown in
Figure this class allows to add a decorator-decoratee dependency via
the addAssociation method. With the methods hasDecorator and getDecorator
it can be tested for a specified object if a decorator is registered respectively
the decorator object can be retrieved. For each pair of classes one instance
of the DecoratorEnforcingPolicy class is created by the runtime support.

86



AO Language Design and Implementation with FIAL

DecoratorEnforcingPolicy

addAssociation(Object,Object)
hasDecorator(Object) : boolean
getDecorator(Object) : Object

Figure 3.16: Class managing dependencies of decoratees and decorators.

|
1 5] : AdviceUnit 1
|

(sub view relation-

ship management)
. Aspect EE | FEp g g g g = : DecoratorEnforcingPolicy

(sub view call
forwarding)

|

* 19 . AdviceUnit I
|
|

Figure 3.17: Structure of the aspect for enforcing the decorator pattern.

A LIAM aspect is constructed with advice units that perform the other
two responsibilities as shown in Figure[3.17} one of them tracks the dependen-
cies and the others forward calls from decorated objects to their decorators.
Each aspect has an associated instance of DecoratorEnforcingPolicy to maintain
and query the decorator-decoratee mapping.

Maintaining the Relationship. The advice unit for maintaining the map-
ping, shown in Figure |3.18] intercepts each call to a constructor of the dec-
orator class that takes an instance of the decoratee class as an argument.
Instances of the classes JoinPointShadowSet and a ConstructorPattern are cre-
ated to select these constructor calls. In the figure, those parts of the aspect
that are parameterized with the concrete classes, for which the decorator
semantics is to be enforced are highlighted by a grey box. Thus, Decorator is
a placeholder for the concrete class of the decorator; similarly, Decoratee is a
placeholder for the decoratee class.

The JoinPointSet binds the target and the argument of the constructor
call, which correspond to a decorator and decoratee object that are about
to be associated. The action associated with the selected join points is a
TrackDecoratorAction. This is implemented as a sub-class of MethodCallAction
and specifies that the method addAssociation is called. This method takes
both objects bound by the JoinPointSet as arguments and passes them to

87



AO Language Design and Implementation with FIAL

: AdvideUnit
V] I VY
: TrackDecoratorAction : Schedulelnfo
time=AFTER
: JoinPointSet : ExplicitinstantiationStrategy
v v l
: JoinPointShadowSet . List : DecoratorEnforcingPolicy

: ConstructorPattern : TargetContext I

pattern="“Decorator.new(Decoratee)” - ArgumentContext

index=0

Figure 3.18: Advice unit for updating the decorator-decoratee mapping.

addAssociation which has to be called on the DecoratorEnforcingPolicy object
assigned to the aspect. Therefore an instance of ExplicitinstantiationStrategy is
used as instantiation strategy of this advice unit which always returns the
DecoratorEnforcingPolicy object that holds the decorator-decoratee mapping for
the currently processed pair of decorator class and decoratee class.

Forwarding Calls. To realize the forwarding of method calls on decorated
objects, one advice unit is set-up for each method declared in the decoratee
class. Figure [3.19) shows the common structure of these advice units. For
each advice unit the JoinPointShadowSet selects all calls to the method, the
concrete signature of which is inserted into the grey box in the MethodPattern.
The action to be performed at selected join points is calling the method with
the same name and signature on the associated decorator object, as shown by
the MethodCallAction which also is parameterized with the concrete method.

The JoinPointSet binds all argument values to be passed to the advice
action. That means, the arguments are not changed by forwarding the call.
Only the receiver object is changed; the new receiver object is provided by
the DecoratorlnstantiationStrategy. This requires the receiver object on which
the method is originally called, hence the use of the associated TargetContext.
The code of the DecoratorlnstantiationStrategy is shown in Listing [3.I5}; the

88



AO Language Design and Implementation with FIAL

: AdvideUnit
2 I v
: MethodCallAction : Schedulelnfo
signature="operation|(Ty, ---, Tin)’ time=AROUND
: JoinPointSet : DecoratorlnstantiationStrategy
V

: AndDynamicPropertyExpression

|
v

: BasicDynamicPropertyExpression

: NegatedBasicDynamicPropertyExpression

: DecoratedDynamicProperty

: FromDecoratorDynamicProperty
I

) v \
: JoinPointShadowSet - List : DecoratorEnforcingPolicy
|
v \
: ArgumentContext : ArgumentContext
index=0 index=n
: MethodPattern

pattern="Decoratee+.operation;(T;, ..., T;,)"

Figure 3.19: Advice unit for forwarding calls on decorated objects.

89



AO Language Design and Implementation with FIAL

constructor calls the super constructor of InstantiationStrategy in line [0] passing
a TargetContext object to signal the aforementioned dependency. The aspect’s
DecoratorEnforcingPolicy object is stored in a field of the instantiation strategy.
To determine the advice instance at runtime, the method getAdvicelnstance
(line is called with the receiver object as argument. The policy object is
used to look-up the decorator of the receiver object in line [I1}

1 public class DecoratorlnstantiationStrategy extends InstantiationStrategy {
3 private DecoratorEnforcingPolicy policy;
s public DecoratorInstantiationStrategy(DecoratorEnforcingPolicy policy) {

6 super(Collections.singletonList(Factory.create TargetContext()));
7 this.policy = policy;

s}

9

10 public Object getAdvicelnstance(Object decoratee) {
1 return policy.getDecorator(decoratee);

12 }

13}

Listing 3.15: Implementation of DecoratorlnstantiationStrategy.

A method call must be forwarded only under two conditions that are
expressed in the DynamicPropertyExpression in Figure [3.19, The first condition,
which is implemented by DecoratedDynamicProperty (Listing , states that
the receiver object at the join point must be associated with a decorator
object.

1 public class DecoratedDynamicProperty extends DynamicProperty {
2

3 private DecoratorEnforcingPolicy policy;

4

s DecoratedDynamicProperty(DecoratorEnforcingPolicy policy) {

6 super(Collections.singletonList(Factory.createTargetContext()));
7 this.policy = policy;

5}

9

10 public boolean isSatisfied(Object decoratee) {
1 return controller.hasDecorator(decoratee);
2}

13 }

Listing 3.16: Implementation if DecoratedDynamicProperty.

90



AO Language Design and Implementation with FIAL

The class FromDecoratorDynamicProperty in Listing implements the
other condition. The dynamic property tests whether the caller at the join
point is the decorator associated with the receiver object. In difference to the
implementation of DecoratorlnstantiationStrategy and DecoratedDynamicProperty,
this dynamic property test also binds the caller object (line . To determine
if the dynamic property is satisfied, in line [13] the decorator for the receiver
object is looked-up; if this decorator is identical to the caller object, the
dynamic property is satisfied.

In the full dynamic property expression in Figure [3.19] the second dy-
namic property is negated and anded with the first one; thus, the expression
is satisfied, if a decorator is associated with the receiver and the caller is not
the decorator.

1 public class FromDecoratorDynamicProperty extends DynamicProperty {
s private DecoratorEnforcingPolicy policy;

s FromDecoratorDynamicProperty(DecoratorEnforcingPolicy policy) {
6 super(Arrays.asList(

7 AspectModelFactory.createThisContext(),

8 AspectModelFactory.create TargetContext()));

9 this.policy = policy;

0}

11

12 public boolean isSatisfied(Object caller, Object callee) {
13 return caller == policy.getDecorator(callee);

14 }

15 }

Listing 3.17: Implementation if FromDecoratorDynamicProperty.

The advice units in Figure [3.18 and Figure [3.19|are enclosed in one Aspect
(see Figure which is passed to the deploy method of FIAL. After being
deployed, the aspect takes effect and the decorator pattern is enforced for the
instances of the decorator class and decoratee class which has been provided
to the runtime support for this sample language.

Optimizing Implementation. The code snippets presented in Listings[3.15

show that implementing the semantics of this language extension re-
quires very little code and can be realized using high-level constructs like
maps. Programs using this language extension can be executed on any ex-
ecution environment that instantiates the FIAL framework. The code that

91



AO Language Design and Implementation with FIAL

sets-up the aspect as discussed above is not shown here. But with approxi-
mately 150 lines of code it is also rather simple.

A language implementer can provide dedicated support for the new lan-
guage concepts and can use the LIAM entity implementations provided by
the designer as an oracle: the optimized implementation can be tested for
correctness by executing a program that uses the new language abstractions
on an execution environment without optimizations and on the execution en-
vironment with optimizations. The program must behave identically in both
cases.

For the example language there are some optimization possibilities. The
mapping maintained in DecoratorEnforcingPolicy tells the implementer that
each object has at most one associated decorator object. Thus, a possible
optimization is to enhance the execution environment’s memory layout for
objects instead of using a central map to maintain the decorator-decoratee
relationship. One additional slot in each object is reserved to store the refer-
ence to the decorator object. Such an execution environment would handle
TrackDecoratorAction, DecoratedDynamicProperty, FromDecoratorDynamicProperty
and DecoratorlnstantiationStrategy in a special way. Instead of compiling code
that invokes the addAssociation method, for a TrackDecoratorAction the exe-
cution environment generates code that stores the decorator object in the
decoratee object’s new slot. Similarly, for the other entities code is generated
by the execution environment that performs the look-up via the new slot.

A language designed and implemented in the proposed way also benefits
from optimizations that are already applied in FIAL-based execution envi-
ronments for common LIAM entities. Examples for such entities, used in the
design of the sample language are ExplicitinstantiationStrategy, TargetContext or
ArgumentContext.

This discussion shows that neither optimization issues have to be consid-
ered by the language designer nor does the language implementer have to
care about how the new concepts are actually used in the designed language.

92



Chapter 4

Optimizing AO Concepts in the
Virtual Machine

In this chapter, techniques are described that enable a virtual machine to perform
so-called speculative optimizations of dynamic aspect-oriented constructs. This
means that their execution is optimized whereby optimistic assumptions are made
about the context in which they will be executed; measures are taken to undo the
optimizations if the assumptions break at runtime. Speculative optimizations are
an established technique, e.g., to improve the performance of virtual method calls.

Furthermore, it is shown how an explicit representation of AO concepts in the
intermediate representation—and thus also in the VM’s internal representation of
the program—can be exploited by a virtual machine to perform advanced optimiza-
tions. This is shown by the example of an optimizing implementation of the cflow
dynamic property of join points.

Parts of this chapter have been published in the following papers.

1. Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and Mira Mezini.
Adapting Virtual Machine Techniques for Seamless Aspect Support. In Pro-
ceedings of the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2006

2. Christoph Bockisch, Sebastian Kanthak, Michael Haupt, Matthew Arnold,
and Mira Mezini. Efficient Control Flow Quantification. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and
Applications, 2006

93



Motivation for Dynamic Optimizations of AO Concepts

4.1 Motivation for Dynamic Optimizations of AQ
Concepts

Many modern programming languages provide virtual machines (VMs) that
execute programs written in the respective languages and manage the execu-
tion. In order to execute a program, a virtual machine compiles the program’s
intermediate representation (IR) into native machine code (MC) instructions
with a so-called just-in-time (JIT) compiler.

In simple terms, at JIT compilation each IR instruction is translated to a
sequence of MC instructions. Then, optimization means to choose from differ-
ent alternative compilation schemes for an IR instruction. Some alternatives
are not, correct in all situations, thus an optimizing JIT compiler analyzes the
IR code to determine which ones are applicable. Additionally, collected pro-
file data can be used during JIT compilation to guide optimizations, taking
into account the actual characteristics of the executed application [AHR02].

A simple example of dynamic optimization is the compilation of IR in-
structions that can trigger class loading, e.g., the invocation of a static
method. The semantics of Java stipulate that a class is loaded at the latest
possible time, only just before it is actually used. Thus, the general compi-
lation scheme is to generate code that queries the VM whether the class is
already loaded; if it is not, the VM is requested to load the class. Afterward,
the method itself is invoked. But since compilation happens at runtime in the
virtual machine, it may be that the class is already loaded at JI'T compilation
time. In this case, the JIT compiler omits the machine code for potential
class loading and only generates a call to the method.

The optimizations as well as the management provided by the VM are
based on the fact that the intermediate representation is rather abstract and
preserves most of the high-level concepts of the programming language; the
IR instructions describe what should happen and not how it should happen
leaving the decision about how to best realize the concept to the virtual
machine.

In contrast to object-oriented concepts, aspect-oriented concepts are im-
plicit in the intermediate representation used as input by the VM which
hinders the VM to apply optimizations.

In this chapter two aspect-oriented concepts, namely dynamic aspect-
deployment and the cflow dynamic property of join point, are investigated.
They are made explicit to the virtual machine thereby facilitating optimiza-
tions. The prevalent implementation of these concepts is to generate IR
instructions that cover the most general case or to emulate the concept by
the means of standard VM services like the debugging interface.

94



Dynamic Optimizations of OO Concepts

One might argue that adding AOP-specific optimizations to a Java virtual
machine (JVM) also has disadvantages, such as increasing the complexity
of the JVM, and the dependencies between the JVM and AOP constructs.
However, aspect-oriented programming is a programming paradigm, just like
object-oriented programming. As such, it is natural to design and implement
VMs dedicated to aspect-oriented languages just as dedicated VMs for object-
oriented languages exist.

The performance of aspect-oriented programs is likely to be a key factor
in whether AOP is adopted mainstream and treated as a language feature.
Applying targeted optimizations in the virtual machine is an effective way to
achieve good performance; one goal of this research is to advocate and eval-
uate this approach by investigating its performance potential. Furthermore,
providing the optimizations as an instantiation of FIAL still offers the choice
between a specific platform with optimized AOP support and less invasive
but platform independent implementations like ERIN.

4.2 Dynamic Optimizations of OO Concepts

Since aspect-oriented languages are usually realized as extensions of existing
languages, it is also natural to extend a virtual machine of the base language
with support for aspect-oriented concepts. The most relevant aspect-oriented
languages, including the ones discussed in the previous chapter are based on
the Java language. Thus, a Java virtual machine has been chosen to be ex-
tended in this thesis. There are several open-source virtual machines for Java.
A survey [MRO7] that investigates four actively developed open-source Java
virtual machines has shown that the Jikes Research Virtual Machine (RVM)
[AABT05, [Jikl IAACT99] is the best choice when extensions to a production-
strength virtual machine are to be developed. Among the surveyed virtual
machines are HotSpot [PVCO1], the reference implementation by Sun, and
the default virtual machine of the Apache Harmony project (called DLRVM)
[DRLOS].

Jikes is itself implemented in Java |JAACT99| and it is designed to be
extensible and to facilitate research [AABT05]. It employs state-of-the-art
virtual machine techniques [ACL"99, IAFGT05] and thus offers a performance
comparable to that of production virtual machines. Like other modern vir-
tual machines [PVCO1, SYKT01, IATBCT03, ITK™03| the Jikes RVM im-
plements an advanced optimizing just-in-time (JIT) compiler, as well as an
adaptive optimization system. For efficient start-up, methods are initially
compiled with the quick so-called baseline compiler. As the program exe-
cutes, the application is profiled to identify hot methods, i.e., those methods

95



Dynamic Optimizations of OO Concepts

that contribute the most to the program’s execution time. These methods are
re-compiled with an optimizing compiler. Optimizing compilation is only ap-
plied to hot methods because high optimization levels consume more compile
time and usually generate larger machine code than non-optimizing compi-
lation. If a method continues to be identified as hot, it may be re-compiled
multiple times at higher optimization levels, until the highest level is reached.

Both, the baseline and the optimizing compiler, inject so-called yield
points into the compiled code which are guaranteed to be executed regularly.
To achieve this, yield points are placed inside each loop, at the beginning,
and at the end of methods. When a yield point is executed, a call-back
method of the Jikes RVM is called enabling it to perform thread switching.
Furthermore, Jikes collects the profile data of the executing application at
yield points [AHRO2], by taking a sample of which methods are currently
executing.

The baseline compiler performs no optimization whatsoever. It translates
the bytecode of a method into machine code in one single pass; the generated
machine code still uses an operand stack, like the Java bytecode, which it
emulates in memory. Each bytecode instruction is handled separately, leading
to poor machine code but quick compilation.

The optimizing compiler translates the stack-based Java bytecode into
a register-based high level intermediate representation. The latter is trans-
formed in several passes which each apply optimizations. Finally, the inter-
mediate representation is transformed to machine code.

One of the most important optimizations is method inlining. The general
compilation scheme for a method invocation is to look-up the correct imple-
mentation via a look-up table and set up a new frame in which the method
is executed on the call stack. A frame is a region in memory that contains
local values of the executing method. It is also used to pass argument values
to the method respectively retrieve the result value from the called method.

If the JIT compiler can already resolve which method is going to be called
it can decide to inline the target method. That means that the method
invocation is replaced with the body of the target method. Inlining both
avoids the look-up and the establishment of the stack frame; furthermore, it
enables subsequent optimizations [Mel99].

For illustration, consider the class Scaling in Figure [4.1] and the code in
Listing Scaling defines the method scale which can scale an integer value
to a different range, e.g., a measured value can be scaled down to draw it
on the screen. In the example, however, the method just returns the passed
argument, thus no scaling actually happens. Listing shows a method
drawGrid that draws a point on a canvas representing the maximum value that

96



Dynamic Optimizations of OO Concepts

can be achieved in a measurement. By the example of the call to Scaling.scale
in line [7] different issues of method inlining are discussed in the following.

Scaling int scale(int value) {

_---1 return value;

scale(int) : int @~

Figure 4.1: Class with a monomorphic method.

1 void drawGrid(Scaling scaling, Canvas canvas) {
2 int leftMargin = 10;

3 int bottomMargin = 10;

4 int maxValue = 100;

5
6 int yPosition;
7 yPosition = scaling.scale(maxValue);
s yPosition = yPosition 4+ bottomMargin;
o canvas.drawPoint(leftMargin, yPosition);
10

}

Listing 4.1: Code calling a virtual method.

Above it is mentioned that inlining facilitates subsequent optimizations.
Consider the case that the method scale in the example is final and, hence, the
JIT compiler can resolve that the implementation in the class Scaling is always
the target of this method call and it can be inlined. Because both methods,
drawGrid and scale, share the same local context after inlining, the argument
and result values do not have to be passed via the call stack frame. Even
more important, the JIT compiler now can jointly optimize the methods
drawGrid and scale. Since scale just returns its argument, the assignment
in line [7| becomes yPosition = maxValue after inlining. Because maxValue and
bottomMargin are constants in the example, the compiler can further optimize
the lines [TH8} the value of yPosition can be determined by the compiler to be
110. Thus, also the arithmetic operation + does not have to be performed at
runtime.

It is not always the case that a method is declared final even if no class
is actually loaded at runtime overwriting the method. To benefit from the
advantage of inlining, the JIT compilers of most JVMs perform speculative
method inlining [DA99, ISYNO02, [AHR02] if they detect at compile time that
no class overwriting the method is currently loaded (the method is said to be
currently monomorphic). An example of a monomorphic method is shown in

97



Dynamic Optimizations of OO Concepts

1 void drawGrid(Scaling s, Canvas c) {

2 int leftMargin = 10;
3 int bottomMargin = 10;
4 int maxValue = 100;
5
6 int yPosition;
7 if(<guard>)
8 yPosition = maxValue;
9 else
10 yPosition = s.scale(maxValue);
1 yPosition = yPosition + bottomMargin;
12 cs.drawPoint(leftMargin, yPosition);
13
}

Listing 4.2: Guarded inlined method.

the class diagram in Figure [£.1] Speculative inlining means that the code of
the target method replaces the invocation, but measures are taken to ensure
that the inlined code is only executed when the method is still monomorphic
at the time of execution.

The simplest form of speculative inlining is guarded inlining. Listing
shows pseudo code of the example with guarded inlining applied to the in-
vocation of Scaling.scale. Line |8 represents the inlined code of the method
which is prepended with a condition referred to as <guard> in line [7/| This
condition can be a class test that tests if the receiver object has the type
Scaling. In this case it is correct to execute the inlined version of the method,
thus, saving look-up and the establishing of the call frame. Otherwise, the
inlined code is skipped and a full dispatch is executed as shown in line [10]
For example, after the class Shrinking which extends Scaling is loaded as illus-
trated in Figure the scaling argument passed to the drawGrid method can
also be of type Shrinking.

Guarded inlining has two main drawbacks. First, the guard condition
has to be evaluated at runtime whenever the method is invoked. Second,
the presence of the full dispatch in the so-called guarded region (lines in
Listing hinders subsequent optimizations based on data flow information
derived from analyzing the inlined code. Simplifying the value of yPosition to
the constant 110 as discussed above is the result of a data flow analysis.

To comprehend the second drawback, consider Listing [£.2} in line[I], the
JIT compiler must assume that the value of yPosition is either set in line (7| or

98



Dynamic Optimizations of OO Concepts

Scaling int scale(int value) { h

- - _---1 return value;
scale(int) : int @

Lﬁ

Shrinking int scale(int value) { h
_---1 return value / 2;

scale(int) : int @

Figure 4.2: Class with a polymorphic method.

in line[I0] In the latter case, its value is not known to the JIT compiler and
it cannot simplify the expression in line [II} The control flow graph to the
left of Listing [4.2] shows all possible paths through the method emphasizing
that line [T1] is reachable via two different paths.

To enable more effective optimizations in the presence of guarded code,
techniques such as code splitting [SYNO2, [AR02] can be used to prevent the
data flow information from the full dispatch path from merging back into the
main control flow. While this approach increases the method size and, thus,
compile time, it increases the quality of the compiled code. Listing shows
the result of code splitting. Code following the inlined method invocation is
duplicated and attached to both the inlined method body (line [J) and the
full dispatch (line . There are still two different possible paths through
the method as shown by the control flow graph to the left in Listing [£.3]
but lines [9] and [I2] are only reachable on one path. Thus, the JIT compiler
can further optimize the version following the inlined code and can evaluate
yPosition to the constant 110 in line [9]

More advanced variants of speculative inlining are code patching and
on-stack-replacement. In both approaches, the JI'T compiler generates ma-
chine code only correct as long as the assumption that the called method
is monomorphic is still true. When the assumption breaks, the compiled
code which is optimized based on the assumption has to be invalidated; the
assumption breaks when a class is loaded that overwrites a method which
is inlined somewhere. There are three main steps when performing these
speculative optimizations.

1. Dependency tracking. When inlining methods, the VM performs book-
keeping to identify the methods which need to be invalidated when
classes are loaded. For example, if class loading causes calls to method
m to become polymorphic, any compiled method into which the method
m is inlined needs to be invalidated.

99



Dynamic Optimizations of OO Concepts

2.

void drawGrid(Scaling scaling, Canvas canvas) {
int leftMargin = 10;
int bottomMargin = 10;
int maxValue = 100;

int yPosition;

if(<guard>) {

yPosition = maxValue;

yPosition = yPosition 4+ bottomMargin;

} else {

yPosition = scaling.scale(maxValue);

yPosition = yPosition + bottomMargin;
}
canvas.drawPoint(leftMargin, yPosition);
}
Listing 4.3: Guarded inlined method with code splitting.
Re-compilation of invalidated methods. When class loading occurs,

the VM invalidates all compiled methods identified by the dependency
tracking from step 1 above. Next time an invalidated method is in-
voked, it is compiled anew whereby optimizations are applied based on
the new class hierarchy. This ensures that future invocations of these
methods will execute correctly.

Invalidation of methods that are currently active on the stack. Although
re-compilation (from step 2 above) ensures that future invocations will
execute correct code, the VM must also invalidate methods that are
currently active on the stack. For example, consider a method main that
is invoked only once and loops indefinitely. If inlining was performed
in main, and that inlining needs to be invalidated, the optimized code
for main needs to be updated while its frame is on the stack, to ensure
that the remainder of execution performs a full dispatch.

Steps 1 and 2 are accomplished fairly easily in a VM. Dependency track-
ing to map inlined call sites to compiled methods is easily maintained using
a lookup table. Re-compilation also is easy to perform because VMs already
have advanced re-compilation support for their adaptive optimization infras-
tructure. The main challenge is step 3, invalidating methods that are active

100



Dynamic Optimizations of OO Concepts

on the stack, which is typically tackled by either code patching or on-stack-
replacement (OSR).

Code patching [SYNO2] can be used to gain the functionality of guarded
inlining, but without the runtime overhead of executing the conditional test.
In a code patching approach, the guard is assumed to be true by default, and
is compiled into a no-op instruction. For illustration, consider that <guard> in
Listing is replaced with true. The inlined code executes unconditionally
and there is no overhead of executing a conditional test. However, if the
assumptions change and the inlined method body is invalidated, the no-
op instructions that guard the inlined code are dynamically replaced, i.e.,
patched with a jump to a full dispatch. The guard in the code patching
approach is also called patch point.

Code patching is effective at removing the runtime overhead of the guard
itself; however, the existence of a path with a full dispatch still interferes
with optimizations that are enabled by a joint data flow analysis of the caller
and the inlined callee methods. Even though the guard starts out as a no-
op, it represents a potential “if-then-else” structure in the method’s control
flow (where the “else” clause is the full method dispatch). Instructions that
follow the guarded code must be optimized assuming that either path may
have been taken, thus data flow information from the inlined code cannot
be propagated outside of the guarded region. Code splitting can be used to
improve the code quality when code patching is used as a speculative inlining
approach.

On-stack replacement (OSR) [HCU92, [FQ03] allows exchanging the com-
piled version of a method while it is active on the call stack. This is in contrast
to code patching which only modifies the compiled version of a method to
invalidate the inlining of methods. OSR can be used for several purposes,
including de-optimizing code for debugging [HCU92], undoing speculative op-
timizations in the presence of class loading [HCU92| [FQ03], and promoting
long running methods to higher levels of optimization [FQ03].

When using OSR as an invalidation mechanism for speculative inlining
no code is generated for the full dispatch. A so-called on-stack-replacement
point (OSR point) is placed in the “else” case of the guarded region as shown
in line [10] in Listing [£.4] The guard is realized by using the code patching
technique, thus no overhead is imposed by evaluating the guard’s condition.
When an OSR point is executed, the method containing the OSR point is
recompiled and the new compiled version replaces the old one.

The key of OSR is that if execution jumps to an OSR point because the
inlined code has been invalidated, it never merges back into the body of the
compiled code. This is illustrated by the control flow graph to the left of
Listing note that there is no outgoing path from line [I0] Therefore, the

101



Optimized Dynamic Aspect Deployment

void drawGrid(Scaling scaling, Canvas canvas) {
int leftMargin = 10;
int bottomMargin = 10;
int maxValue = 100;

© o N o o A~ W N =

int yPosition;

if(true)

yPosition = maxValue;

else
0 @ <OSR point>;
1 yPosition = yPosition + bottomMargin;
12 canvas.drawPoint(leftMargin, yPosition);
13

}

Listing 4.4: Speculative inlining with on-stack-replacement.

data flow information along this path does not merge back in and does not
hinder optimizations based on forward data flow. No code splitting is required
to achieve a high quality of generated code and compilation is simplified.
The disadvantage is that the infrastructure required to facilitate on-stack-
replacement is fairly complex, and not implemented by all virtual machines;
the Jikes RVM, however, does implement OSR.

It is also possible to perform polymorphic inlining, i.e., inlining of meth-
ods which are known to be polymorphic. In this case, all possible target
implementations are determined. The JIT compiler performs guarded in-
lining using a class test for those implementations for which it is expected
to be beneficial. In contrast to monomorphic inlining the guarded region of
polymorphic inlining resembles a “switch-case-default” structure where the
“default” part also is the full dispatch.

4.3 Optimized Dynamic Aspect Deployment

Speaking in terms of virtual join points, deploying an aspect means that
the dispatch function of join point shadows is modified. As discussed in
Section [2.4.1] envelope methods are the manifestation of join point shadows.
They contain code that represents the dispatch function and the potentially
applicable actions. When aspects are deployed or undeployed, i.e., when the

102



Optimized Dynamic Aspect Deployment

dispatch function of a join point shadow is changed and actions are added to
or removed from it, the envelope method’s code has to be exchanged.

The challenges for an execution environment with support for dynamic
aspect deployment are to ensure that dynamic deployment is performed cor-
rectly and efficiently while the performance of other operations is not de-
graded. Section shows that envelope methods offer a conceptually clean
abstraction of join point shadows and thus simplify dynamic weaving. As
shown in that section, envelope-based weaving itself already addresses the
requirement of fast aspect deployment. But it is also shown that the presence
of envelopes in the application code reduces the application’s performance.

In this section, techniques are presented that address the runtime perfor-
mance challenge posed by envelopes and even further improve the efficiency
of aspect deployment. The techniques are seamless extensions of established
optimization techniques available in most modern VMs. They have been
prototypically implemented in this thesis by making the Jikes RVM aware of
envelope methods.

The presentation and evaluation of the optimization techniques are or-
ganized around two dimensions of their design space. The first dimension
concerns the strategy for envelope call insertion and distinguishes between
eager and lazy insertion. The second dimension concerns the speculative
inlining strategies for envelopes.

Replacing every join point shadow instruction with an invocation of the
appropriate envelope method eagerly is the same approach as is performed
without virtual machine integration, described in Section [2.4.1f Without
VM integration, the indirection imposed by envelopes already is frequently
inlined. In the prototype of VM integrated envelopes, the optimizing com-
piler’s inliner, however, is modified to ensure the indirection is always inlined.
The way envelopes are generated, guarantees that the call from a proxy enve-
lope to the enveloped method is always statically resolvable, the same holds
for calls to field accessors (see Section . Hence, an enveloped method
can always be inlined into its proxy and an accessor envelope can be inlined
into its caller.

Another configuration of the developed prototype creates envelopes at
class loading-time, but only inserts calls to an envelope method when advice
is attached to it. That is before any aspect deployment is performed, the
application’s bytecode is not changed and performs method calls and field
accesses as usual. However, when advice is woven into an envelope, all calls
to the enveloped methods or accesses to the enveloped fields are replaced
with calls to their envelope.

In both approaches dynamic weaving at a join point shadow requires to
re-create the bytecode of an envelope method. Thus, after weaving, the en-

103



Optimized Dynamic Aspect Deployment

velope method must be re-compiled by the JIT compiler. Since it may have
been inlined into other methods, care must be taken that every method ex-
ecutes the new version of the envelope method after deployment. Therefore,
envelope methods must always be inlined by means of one of the speculative
inlining techniques presented in Section 4.2

While the result of both approaches is very similar, introducing envelopes
eagerly or lazily has non-obvious effects on the performance. Those are dis-
cussed in Section [£.3.] and evaluated in Section [5.2.2]

For the dimension of the speculative inlining technique for envelopes, it
can be chosen from suite of techniques presented in Section[4.2] Section [4.3.2]
discusses two approaches for invalidation to ensure correct dynamic weaving.
The virtual machine integration of envelopes enables the extension and re-
use of the VM’s infrastructure for speculative optimizations. Additionally,
it also allows the elimination of some of the limitations of envelope-based
weaving discussed in Section [2.4] In Section it is discussed how virtual
machine integration enables a seamless support of special language features
like advising reflective method and field accesses.

4.3.1 Eager versus Lazy Envelope Call Insertion

Eager Envelopes. When envelope calls are eagerly inserted into the appli-
cation’s code, an additional indirection is introduced into the application’s
bytecode. To ensure a high performance of the application, this indirection
is optimized away for those envelopes which do not contain any advice.

The baseline compiler provided by the Jikes RVM does not offer the
possibility to inline method calls. Consequently, the indirections are not
removed from baseline compiled methods. But methods that are hot will be
promoted to a higher level of optimization at which envelopes are optimized
accordingly. With the exception of the envelope call, the baseline compiler
generates the same machine code as it does in the absence of envelopes.

Jikes’ optimizing compiler rewrites the intermediate code in multiple
passes. In this prototype, the first pass is enhanced to specially handle en-
velopes such that the intermediate code is equivalent to what the unmodified
compiler generates. Consequently, subsequent optimizations are carried out
the same way in both cases.

The decision whether a method is inlined or not is made by the so-called
inliner and depends on several conditions. The inliner uses heuristics—some
of them are discussed in the following—to determine whether a method callee
should be inlined into another method caller. By construction it is ensured
that enveloped methods as well as accessor envelopes are always monomor-
phic, i.e., can always be inlined into their caller. Although the inliner can

104



Optimized Dynamic Aspect Deployment

also detect this, some of its heuristics prevent it from always making these
decisions. Hence, it is modified to always decide to inline enveloped methods
and accessor envelopes. When the inliner decides to inline an envelope, it
is further modified to decide that a guard must be applied, to facilitate dy-
namic aspect deployment. For the implementation of this prototype, three
inlining heuristics are of interest: inline size, inline sequence length and field
analysis.

The inliner considers the size of the called method when deciding whether
or not to inline it; the shorter the method the more beneficial is inlining. For
envelopes the inliner would make its decision based on the proxy method’s
bytecode size. Proxies interfere with size estimates because the proxy itself
is small, but it is guaranteed to have a (possibly large) enveloped method
inlined into it. Thus, the inliner is modified so that it does not inline a proxy
unless it would have inlined the corresponding enveloped method.

Figure illustrates why the inline sequence heuristic needs to be modi-
fied in the presence of envelopes. It sketches the intermediate code generated
by the optimizing JIT compiler when compiling a method m. On the left
hand side, the generated code without envelopes is shown. On the right
hand side, the code is shown as compiled in the presence of envelopes. The
inline sequence begins with the method compiled in the first place, i.e., m
in the example. When the compiler reaches the call to o (marked by an
asterisk) without envelopes the inline sequence is (m, n) and has the length
two. When the same code is compiled with envelopes, the inline sequence
at the invocation of o is (m’, m, n’, n) where m' and n' are the (renamed)
enveloped methods and m and n are their proxy envelopes. Thus, the inline
sequence length is now four instead of two. If two is the maximum inlin-
ing depth, o would be inlined in the case without envelopes and not inlined
with envelopes. In the prototype, proxy methods are optimized away when
they do not contain advice. As a consequence, unadvised envelopes do not
increase the size of the compiled code and, therefore, the inline sequence
length heuristics is adjusted such that they are not counted.

Finally, for values resulting from a field read access the optimizing com-
piler applies special analyses on field types which, in turn, are used by the
inliner. As field accesses are replaced by calls to accessor methods, the anal-
ysis is modified to be also applicable to accessor envelope calls and to lead
to the same result as it would have had when applied to the access itself.

The adaptive optimizing system (AOS) also is modified in the prototype.
Before optimization and inlining occur, envelopes execute as explicit method
calls which are profiled by the AOS. The existence of a large number of enve-
lope calls pollutes the profile data, causing compilation to occur at different
times than usual, and delays optimization of some of the application meth-

105



Optimized Dynamic Aspect Deployment

Inlining without Inlining with
envelopes envelopes
void m() { void m() {
void m’() {
void n() { )0 Gd () 1
n(i[ | o(); m'(); n(O:L | O of):
} \? '
}
} }

Figure 4.3: Inline sequence without and with envelopes.

ods. As a result, startup time is degraded and the application has to run
longer before it reaches the fully optimized state.

To cope with this problem, Jikes RVM'’s profiling facility is modified so
that if an enveloped method is sampled at runtime the sample is credited
to the proxy envelope instead. As a result, the proxy is identified as a hot
method, re-compiled with optimizations, and the inlining modifications en-
sure that the (hot) enveloped method is inlined into the proxy, thus compiled
with the same optimizations.

Lazy Envelopes. The approach of eager envelopes requires little infrastruc-
ture provided by the virtual machine. It works with any kind of speculative
inlining. However, only the final performance is comparable to that of execut-
ing an application without envelopes. Avoiding the slow start-up due to un-
optimized envelopes in baseline compiled code, can be achieved by inserting
the envelope indirection lazily: envelopes are created at class loading-time,
but are not invoked if they do not contain advice. When the JIT compiler
compiles a method call or a field access, it determines if the applicable enve-
lope method contains advice. Only in this case, the JIT compiler generates
a call to the envelope method. Otherwise, code for directly calling the en-
veloped method or accessing the field is generated. Thus, if no aspects have
been deployed, the executing program is essentially identical to the original
program without envelopes. However, to enable weaving in the envelopes
and to let them take effect requires a sophisticated invalidation mechanism.

When advice is deployed at runtime, it is woven into the envelope method
that corresponds to the relevant method or field access just like in the eager
envelopes approach. But, since envelopes are no longer being called by de-
fault, all code performing either a call to the advised method or an access of

106



Optimized Dynamic Aspect Deployment

the advised field must be dynamically updated to invoke the newly advised
envelope instead.

Because the envelope indirection is also missing in the baseline compiled
code, both the baseline and optimizing compiler are modified to enable injec-
tion of the indirection into the compiled code. Therefore, both compilers have
to record dependency information for all compiled calls and field accesses, to
identify code to be updated when an advice is deployed.

Lazy envelopes ultimately achieve the same result as eager envelopes,
but the lazy approach is operating at a lower level and is manually per-
forming a number of tasks handled automatically in the eager approach.
With eager envelopes, the inliner handles the inlining of envelopes, which
automatically provides the necessary dependency tracking and invalidation
mechanism. However, lazy envelopes are more effective at eliminating the
overhead of envelopes, since envelopes are essentially eliminated from the
system until needed; no modifications to the inlining heuristics and adaptive
optimization system are needed. In addition, the code generated by the base-
line compiler no longer contains unnecessary envelope calls, which minimizes
overhead during program start-up.

4.3.2 Speculative Inlining Techniques for Envelopes

When weaving occurs, the affected envelopes must be recompiled and all com-
piled code containing inlined copies of these envelopes must be invalidated;
for the discussion in this subsection, omitting the envelope call in the lazy
envelopes approach is considered equivalent to inlining an envelope method
in the eager approach.

To track envelope method inlining dependencies, Jikes RVM’s existing
method dependency lookup table is re-used. When an envelope is inlined into
a method, a dependency is added to this table. During dynamic weaving the
existing invalidation routine is called passing the envelopes to which advice
is attached. This call triggers Jikes RVM’s mechanism for invalidating all
compiled method bodies that contain an inlined copy of the envelopes without
the attached advice. At the next invocation of these methods they are re-
compiled.

After dynamic weaving has occurred, several compiled methods may have
been invalidated and need to be re-compiled. The adaptive optimization
system of the RVM treats these methods in the same way as it does at
program startup, i.e., initially compiling them at a low level of optimization
and promoting them to higher levels over time. This approach smooths out
the performance impact of dynamic weaving and avoids delays that may
occur if all affected methods were immediately optimized aggressively.

107



Optimized Dynamic Aspect Deployment

To invalidate methods that are currently active on the stack, two common
techniques as discussed in Section [4.2] can be used, namely guarded inlining
with code patching and on-stack replacement.

Guarded Inlining with Code Patching. Inserting guards on all inlined en-
velopes is relatively easy using Jikes RVM’s infrastructure for speculative
inlining. But even though the guard itself has no runtime overhead, the
presence of the full dispatch path interferes with a number of optimizations
(see Section [£.2)). Jikes RVM performs a simple local code splitting pass, to
help exploit optimization opportunities created by guarded inlining. Using
envelopes, however, creates a larger number of guarded inlines, thus stressing
this splitting infrastructure. To address this problem, Jikes RVM’s implemen-
tation of code splitting and redundant guard elimination is extended.

A new splitting algorithm has been developed in this thesis to perform
slightly more aggressive splitting. It is similar to the algorithm for feedback-
directed splitting described in [AHRO02], but for simplicity does not use profile
information. The algorithm maintains a work list of merge points. A merge
point for the algorithm is defined as a basic block with at least one infrequent
and one non-infrequent incoming edge. A basic block is a sequence of instruc-
tions that are always executed sequentially, i.e., branching instructions can
only be the last instruction of a basic block. an edge is infrequent if it either
leads to a basic block with a full dispatch or if the edge is reachable by a
path containing an infrequent edge. It is desirable to eliminate merge points
because these basic blocks cannot be optimized taking data flow analysis
results of the inlined code into account.

The left hand side of Figure illustrates this setting: The boxes 1-5
are basic blocks of a method connected by arrows that represent the possible
control flows through the method. Basic block 1 ends with a branch to either
block 2 or 3; 2 is the code of an inlined envelope and 3 is the full dispatch.
After any of blocks 2 or 3 the basic block 4 is executed, and thereafter block
5. It is expected that the inlining decision of the envelope will not break; i.e.,
the basic block 2 is executed regularly, or non-infrequently, and 3 is executed
infrequently. Therefore, basic block 4 is identified as a merge point and no
optimizations can be applied to 4 that are based on data flow information
gathered by analysis of basic block 2.

The work list is initialized with all the control flow merges created by
guarded inlining. Afterwards, each basic block in the work list, representing
a merge point, is duplicated. The infrequent path is directed to the duplicated

108



Optimized Dynamic Aspect Deployment

1 1
non- : non- :
infrequent / infrequent infrequent / infrequent
2 3 2 3
non- non-
_ infrequent infrequent infrequent infrequent
! merge i——
point : 7 4 4
_ hon- infrequent
infrequent
5 ! merge L (N

. |
R
Figure 4.4: Diagram of the code splitting algorithm using merge points.

block; the non-infrequent path remains unchanged!. If duplicating the block
creates a new control flow merge it is added to the work list. The algorithm
continues until all merge points in the work list are processed, or a space
bound is reached because of the code duplication.

The right hand side of Figure [£.4] shows the result of the first iteration
of this algorithm. The work list is initialized with basic block 4 which is
duplicated by the algorithm: one copy (basic block 4) is only executed after
basic block 2 and the other one (4') is only executed after basic block 3. After
performing this split, basic block 5 becomes a merge point and the algorithm
continues if the space bound is not already reached. When compiling 4,
optimizations can be applied derived from data flow information of 2. Since
4' is executed infrequently, it does not need to be optimized aggressively.

The size thresholds for code duplication can be varied to adjust the ag-
gressiveness of the splitting. Similar to method inlining, more aggressive
splitting has the potential to produce more efficient code, but will consume
more compile time and compiled code space.

While this splitting algorithm has been designed to improve the perfor-
mance of envelopes, it has also been discovered that it improves the perfor-
mance of the base Jikes RVM (independent of using envelopes). The perfor-
mance of the mtrt benchmark of the SPEC JVM98 benchmark suite [SPE]
was improved by over 20%.

!The algorithm is also applicable in situations other than speculative inlining of en-
velopes where multiple infrequent or non-infrequent paths to a basic block may exist. In
this case all infrequent paths are directed to one copy of the basic block and all non-
infrequent paths are directed to the other one.

109



Optimized Dynamic Aspect Deployment

A desirable side effect of splitting is that many guards may become re-
dundant and can be removed. Additional optimizations are enabled by Jikes’
thread switching implementation based on yield points: if invalidation did
not occur by the time the previous yield-point was executed, it is guaranteed
not to occur until the next yield-point executes. To exploit optimization
opportunities opened up by code splitting and the property of invalidation
happening only at yield points, a redundant guard removal phase has been
developed that focuses specifically on removing code patching inline guards.
Guards are redundant if they are guaranteed never to fail.

This optimization is implemented in Jikes RVM as a linear pass by travers-
ing the dominator tree, and propagating guard “liveness”. In this case, live-
ness means that the code is safely protected by an existing guard, so no
further guards are needed. The “true” branch of a guard creates liveness, and
liveness is killed by yield-points, calls, or a control flow merge that contains
a non-live incoming edge.

In addition to improving envelope performance, this optimization also
has provided modest performance improvements for the base version of Jikes
RVM (without envelopes), improving mtrt by about 3%.

With eager envelopes, envelope calls are not optimized in the baseline
compiler, so invalidation is needed for the optimizing compiler only. In the
lazy envelopes approach, invalidation is needed in baseline code as well, so
patch points are placed in code compiled by both the baseline and optimizing
compiler and the baseline compiler also contributes to the dependency lookup
table. Two additional changes are necessary to Jikes RVM.

1. Jikes RVM does not normally use guards in combination with static
methods because call sites of static methods cannot be affected by
dynamic class loading. However, call sites of static methods can be
affected by dynamic aspect deployment, because their envelope may be
inlined. Hence, those parts of the JIT compiler have to be modified
that assume that a guarded inline must have a receiver object.

2. For guarded inlining of polymorphic methods the JI'T compiler of the
Jikes RVM always uses a class test as the guard. Thus, when inlining
polymorphic envelopes, the envelope aware Jikes RVM additionally in-
serts a patch point prior to the class test, to allow for invalidation of
the inlining of the envelope when dynamic weaving occurs.

On-Stack Replacement. Jikes RVM contains an implementation of on-
stack replacement (OSR), described by Fink and Qian [FQ03| and reviewed in
Section[d.2] Using Jikes RVM’s mechanism of OSR-based speculative inlining

110



Optimized Dynamic Aspect Deployment

works reasonably well for envelopes; however, given the expected frequency
of envelope calls in the code one further step of optimization is applied. A
patch point and OSR point are not placed at each inlined envelope call site,
but only behind all yield-points and calls, similar to the redundant guard
removal algorithm discussed above. When the method is invalidated, these
patch points are all patched and the OSR point will be executed once the
next yield-point is reached.

To ensure correctness in this model, when invalidation occurs, the VM
must wait for all threads to progress to the next yield-point to ensure that
OSR was triggered if necessary. Methods that are further up the call chain
perform OSR when the stack frame is popped and the patch point after the
call site is executed. A similar technique of waiting for threads to reach the
next yield-point is used in [AR02] to allow removing additional redundant
guards, thus creating larger regions of guard free code.

In addition to adding the facility of generating patch points, the baseline
compiler is also extended to generate OSR points to facilitate lazy envelope
call insertion.

4.3.3 Special Language Features

Envelope-based weaving affects Reflection, provided by means of an API
in Java, [Java] in different ways. Java’s Reflection allows for introspection
of classes and their members, based on the names of classes, methods and
fields. The reflective objects of methods and fields can be used to invoke
the represented method, respectively access the represented field. In the
envelope-based weaving approach, methods are added to classes which should
not be accessible to the programmer who expects a class’ structure to be as it
is defined in the source code. To cope with this, Jikes’ reflection mechanism
is modified to omit accessors and enveloped methods, so that they remain
hidden from the programmer introspecting the application.

When the programmer deploys an aspect which advises calls to certain
methods or accesses to certain fields, he/she expects that also reflective calls
or accesses are advised. This is an issue for every aspect weaving approach,
not just for envelope-based weaving. A solution could be to instrument re-
flective operations with code to check at runtime whether there is an advice
for the operation to be executed; in this case, the advice must also be called.
However, as stated in [BVDO05], an aspect-aware reflection mechanism pro-
vided at VM-level is more appropriate.

Since in the envelope-aware Jikes RVM proxies are generated with the
name and the signature that their enveloped method originally had, reflec-
tive Method objects retrieved by a method name already encapsulates the ap-

111



Control Flow Quantification

propriate proxy envelope. Reflective invocation, hence, executed the proxy
including its advice. In contrast, the Field object from the Reflection API
provides methods for setting and getting the value of fields, bypassing en-
velopes. The implementation of this class is modified in order not to perform
a memory access for writing or reading the field but to call the respective
accessor envelope instead.

Native methods (marked with the native modifier) are methods whose
implementation is not available as Java bytecode but as system dependent
machine code provided by means of a dynamic library. To execute such
a method, the virtual machine searches the loaded dynamic libraries for
the function providing the appropriate implementation. The look-up makes
use of a naming convention for the native function in the library [JNI]—
the function’s name is derived from the Java method’s name and signature.
Since methods are renamed at envelope creation, this look-up mechanism is
adapted to still be able to find the native implementation (this is similar to
the Java 6 agent outlined in Section .

4.4 Control Flow Quantification

The dispatch function at join point shadows generally has to evaluate dy-
namic properties specified in a pointcut. Such an evaluation always con-
sumes execution time when the join point shadow is executed. Hence, it is
desirable to speed-up the evaluation of dynamic properties. The situation is
similar to virtual method dispatch; the property to be evaluated in this case
is the dynamic type of the receiver object. An efficient data structure—a
dispatch table—provides a general yet efficient approach to perform the dis-
patch. Furthermore, optimizations like speculative inlining, are capable of
improving the performance of the dispatch even further in special cases.

The evaluation of dynamic properties based on the control flow that con-
tribute to virtual join point dispatch is particularly time consuming because
the control flow is not explicitly available in the execution environment. In-
stead, current AO language implementations track the current control flow
in a way that it can be accessed by the code evaluating the dispatch func-
tion at a join point shadow. In this thesis, an optimized implementation of
those dynamic properties has been developed that refer to the methods cur-
rently executing on the stack. More specifically, an optimization technique
is developed for AspectJ’s cflow pointcut designator.

As discussed in Section [3.2], legal AspectJ pointcuts can always be rep-
resented by combining one or more sub-pointcut expressions that have the
form <staticProperties> && <dynamicProperties> with an or operator; when a

112



Control Flow Quantification

join point shadow selected that is by <staticProperties> is executed and at the
same time <dynamicProperties> matches, the join point shadow’s execution is
selected as a join point by the sub-pointcut. Dynamic properties other than
cflow are not of interest in this section; throughout the remainder of this
section it is assumed that pointcuts containing a cflow designator are always

of the form shown in Listing

1 <staticProperties> && cflow(<pointcut>)

Listing 4.5: A pointcut or clause containing a cflow pointcut designator.

The sub-pointcut denoted by <staticProperties> describes the join point
shadows whose dispatch function depends on the cflow dynamic property
while cflow(<pointcut>) defines when the dynamic property is satisfied. The
cflow designator is parameterized with a pointcut that matches join points
whose control flow determines the execution scope of interest. In the fol-
lowing, these join points are called control flow constituent join points and
mark entries and exits of control flows of interest. The join point shadows
matched by <staticProperties> are called dependent shadows. In general, the
pointcut used in the cflow designator can also refer to dynamic properties
of join points constituting the cflow. Thus, the cflow is constituted at join
points; in contrast, at dependent join point shadows the condition expressed
by the cflow designator is tested as part of the virtual join point dispatch.

4.4.1 Current Implementation of Control Flow Quantifica-
tion

There are different implementations of cflow in current AO execution envi-
ronments, each addressing the following two issues:

1. At constituent join points, actions need to be taken to monitor the
state of the control flow such that it becomes possible to determine at
dependent shadows whether certain control flows are active.

2. At dependent shadows, the dispatch function depends on whether the
control flow referred to by the cflow designator is currently active.

It is usually possible in AOP implementations to access context values
of constituent join points, and to use such context information in advice
attached to dependent join points. Therefore, in AspectWerkz, abc and ajc
a stack is maintained which stores context values from the constituting join
points. Control flow checks are implemented by testing whether the stack is

113



Control Flow Quantification

empty; in this case the control flow is not active. The context values can be
accessed at a dependent shadow by reading the value from this stack.

When no access to context values from the constituent join point is re-
quired, the abc and ajc compilers utilize a more efficient infrastructure for
cflow. Instead of growing and shrinking stacks that represent the control
flows, counters are incremented and decremented. Each cflow is assigned
a counter and code that updates the counter is inserted at its entries and
exits. When a control flow matched by a cflow designator is entered, the cor-
responding counter is incremented; it is decremented when the control flow
is left. This is necessary because a control flow can be entered recursively.
Thus, a control flow matched by a cflow designator is activated when a con-
stituting join point is entered the first time and it is deactivated when the
join point is exited the last time. At dependent shadows, the residue checks
whether the counter is greater than zero. If so, the control flow is active and
the dynamic property is satisfied.

Counters must exist once per thread for this approach to work; otherwise,
different threads entering and leaving the same control flow would corrupt
the counter states. To realize thread-locality, the ThreadlLocal class from the
Java class library is used to manage the counters.

The abc |[ACHT05b, IACHT05a, IACHT04] compiler performs intra- and
interprocedural static analyses to improve the performance of code using
cflow pointcuts [SAMO3].

Of the intraprocedural optimizations implemented in abc, only one is
of further interest with regard to this section. Others deal with binding
context values from constituent join points, which is out of the focus of
this prototype. The interesting optimization is the one that ensures that
counters are reused throughout a method [ACHT05b]|. From the observation
that retrieving a counter from thread-local storage can be expensive, the
implementors of abc have derived the following optimization. Whenever a
control flow counter is required several times in a method the counter is stored
in a local variable and has to be retrieved from the thread-local storage only
once. For example, at control flow constitution, the counter is updated via
the local variable at entering and exiting the control flow; if multiple join
point shadows appear in a method and depend on the same cflow dynamic
property, or if a dependent shadow is executed in a loop, the counter only
has to be retrieved from the local variable. Since local variables are implicitly
thread-local, this optimization is obviously correct.

Furthermore, as a result of interprocedural analysis, abc can completely
avoid weaving cflow infrastructure at some join point shadows. Due to its
cost in terms of time and memory consumption, the interprocedural analysis
is only activated at the highest optimization level which can be chosen by

114



Control Flow Quantification

the user when compiling AspectJ source code. The interprocedural analysis
determines three sets of join point shadows for each pointcut expression con-
taining a cflow designator. The computed sets are as follows for a pointcut
of the form <staticProperties> && cflow(<pointcut>).

1. The first set contains those shadows with the specified <staticProperties>
that may be executed in a control flow constituted by a join point that
matches <pointcut>. At the shadows contained in this set, residual
advice dispatch must be woven.

2. The second set contains shadows with the specified <staticProperties>
that are guaranteed to occur only in a control flow constituted by join
points matched by <pointcut>. At these shadows, advice invocation
can be performed unconditionally.

3. In the third set, join points matching <pointcut> are contained that may
influence the evaluation of residues at shadows in <staticProperties>. At
the shadows of these join points, counter or stack maintenance must be
woven.

Interprocedural analysis [ACHT05b] exploits a call graph of the entire
application, which is why all classes reachable from the application’s entry
points must be known at compile-time. That is, abc performs a whole-
program analysis that needs to know all possible entry points and the class
files for all classes reachable from there. This puts Java applications under
a closed-world assumption, which contradicts Java’s dynamic class loading
capabilities. If the virtual machine dynamically loads classes that are not
known at compile-time, new execution paths may be possible due to late
binding of method calls in Java. If this happens, the interprocedural analysis
becomes unsound.

Another implementation approach for cflow is to inspect the call stack
at dependent join point shadows. To determine whether the control flow is
active, the stack frames are walked down one by one. For each frame, the
method is matched against the constituent’s pointcut. If the match succeeds
the current join point is executed in the desired control flow.

In Java, the call stack can be accessed by creating an instance of Throwable,
which can be queried for the stack frames via its getStackTrace method. JAsCo
[SV.J03], JBoss AOP [JBo|, and Prose [PGAO1] follow this approach.

The stack inspection approach does not require any infrastructural code at
control flow entries and exits. Thus, there is no cost imposed at these points.
Also, no measures have to be taken for ensuring thread locality, because the
call stack that a residue accesses is always the one of the currently executing

115



Control Flow Quantification

thread. However, the cost imposed by stack walking at dependent shadows
is high and not constant; it directly depends on the depth of the call stack.
In cases where the control flow is not active, the entire stack must be walked
and inspected.

In the first version of Steamloom; [Hau06, HMB™05, BHMO04]?, Haupt
et al. have implemented the approaches based on counters respectively stack
walking at the virtual machine level. Compared to implementations restricted
to Java bytecode generation and using the functionality of the standard class
library, the VM integration led to an improved performance of updating and
querying thread-local values and of accessing the call stack respectively. This
implementation has shown that stack walking is still not feasible even with
virtual machine support. The counters at virtual machine level outperform
the previous implementations in the multi-threaded case. In a single-threaded
application it performs slightly worse than abc because neither inter- nor
intraprocedural analyses are applied.

4.4.2 Control Flow Guards

Similar to Steamloom;’s strategy, the prototype presented in this section
is also based on integrating cflow into the virtual machine. In addition to
utilizing more efficient data structures as is already done by the above out-
lined optimizations in Steamloomj, this prototype uses a completely novel
approach for maintaining information about active control flows and exploits
analysis results available in the JI'T compiler. However, it is important to
note that these analyses do not put the application under a closed world
assumption.

The technique developed in this thesis is inspired by the concept of
guarded inlining. Guards are lightweight tests of inlining assumptions. For
an efficient implementation of cflow, in this thesis the approach of thin guards
[AR02] is extended.

The primary application of thin guards is to reduce the performance
penalty of dynamic class loading in Java. As discussed in Section the
JIT compiler speculatively inlines methods that are monomorphic but may
become polymorphic when a class is loaded that overwrites the method. Such
speculative optimizations can be guarded by a lightweight check to ensure
that correct execution will occur if the assumptions change in the future.
The specialty of thin guards is to make the test extremely cheap.

?The suffix “1” is used in the following as a distinction to the new version
STEAMLOOMALIA discussed in Section

116



Control Flow Quantification

Throughout the executed application many assumptions are made, each
one relying on the fact that a specific method is not overwritten. Before exe-
cuting the optimized code, it must be tested if the assumption is still valid and
this test has to be as efficient as possible. As discussed in Section mod-
ern virtual machines employ code patching or on-stack replacement instead
of such a test, but thin guards have been invented as a cheaper alternative
to class tests that requires less infrastructure than code patching and OSR.

All the assumptions that are made are mapped to a vector of condition
bits, e.g., stored in a word that is kept in a register or at a constant memory
location. To check an assumption this word is loaded and the corresponding
bit is tested. When an assumption is invalidated, the bit this assumption
is mapped to is updated to reflect that the assumption is invalid. Because
multiple assumptions are mapped to the same bit, some assumptions which
are actually still valid are invalidated as a side effect. But that is for the sake
of an easy and efficient invalidation mechanism.

From the concept of thin guards, the idea has been borrowed to store
conditions in the bits of a quickly accessible word and to let the bits reflect
whether the condition is currently satisfied or not. In the optimization for
cflow presented here, the VM maintains a guard bit for every relevant control
flow, and this bit is updated on entry/exit to that control flow. These bits
can be stored as a bit vector in the thread for efficient access.

In contrast to the use of thin guards for speculative inlining, each cflow
is mapped to a distinct bit. Sharing bits between inlining assumptions is
semantically correct because performing the full dispatch is always correct.
In contrast, cflow test must be successful if and only if the control flow
denoted by the cflow designator is currently active.

To exemplify the approach, consider the example in Listing which
shows a recursive implementation of a function to compute the n'* Fibonacci
number. The sub-pointcut in line determines the depending join point
shadows; these are the calls to fib in lines [3] [7] and [§] These shadows only
become join points when they are executed in the control flow of fib which is
specified by the sub-pointcut in line [13] i.e., the first call to fib is not selected,
but all subsequent recursive ones are.

The control flow is entered at the beginning of method fib in line [5| and
left after this method in line[d] Assuming that the cflow declared in line[13]is
mapped to index 0, Listing conceptually shows how the two methods test
and fib are compiled when employing thin guards. As before in this thesis,
the example is shown in terms of Java code for simplicity. Actually, the cflow
guard bits have no representation at source code or bytecode level.

The execution of the fib method constitutes the control flow in question,
hence, at the beginning of this method in line the cflow bit is set to 1,

117



Control Flow Quantification

1 class Fib {
2 public int test() {

3 return fib(5);

s}

s public int fib(int n) {

6 if (n <= 1) return 1;
7 return fib(n—1) +

8 fib(n—2);

9

}
10 }
1 aspect Aspect {
2 before() : call(int Fib.fib(int)) &&
13 cflow(execution(int Fib.fib(int)))

-

-

14 {

s /)
6}

17 }

Listing 4.6: Recursive implementation of Fibonacci numbers with an aspect
intercepting recursive calls.

indicating that the control flow is active. The pseudo-object thread represents
the current thread, while cflowState represents the bit vector used to track
the active control flows of each thread. In line 2I] the exit of the control
flow is reached. However, the cflow bit cannot simply be set to 0 because the
corresponding control flow may already have been active when the method
fib has been entered. To cope with recursive control flows, the cflow word
is stored at the beginning of the method in line [9] before it is updated and
restored at the end of the method in line 211

At dependent shadows in both test and fib (lines and [1§)), the same
bit is tested to determine whether the cflow dynamic property is satisfied.

As soon as a pointcut-and-advice with a cflow dependent pointcut is de-
ployed, an index within the cflow bit vector is assigned to the control flow
referred to by cflow. This mapping from cflow pointcut designator to its in-
dex in the cflow bit vector can be accessed by the JIT compiler. Thus, when
it compiles the code for updating or querying a control flow specified by a
cflow designator, the index of the bit to be updated, respectively tested, can
be considered a constant.

118



Control Flow Quantification

1 int test() {

int result;

if((thread.cflowState & 1) != 0) advice();
result = fib(5);

return result;

}

int fib(int n) {

int oldState = thread.cflowState;

thread.cflowState |= 1;

int result;

if(n<=1){
result = 1;

} else {
result = 0;
if ((thread.cflowState & 1) != 0) advice();
result += fib(n—1);
if ((thread.cflowState & 1) != 0) advice();
result += fib(n—2);

}

thread.cflowState = oldState;

return result;

© o N o g s W N

[ T T S T S S S O S
H O © ® N o o » W N = O

N
N

N
w
—

Listing 4.7: Woven pseudo code using cflow word.

119



Control Flow Quantification

4.4.3 Implementation of Control Flow Guards

To implement control flow guards, several of Jikes RVM’s components have
been extended. To store cflow state information thread-locally, the virtual
machine’s multi-threading design is exploited. One word is added to every
thread object, and this word is used to store the thread’s cflow state. Jikes
RVM uses a mixture of preemptive and cooperative multi-threading. A small
number of operating system level threads, which are called processors in the
Jikes RVM, can execute a large number of Java threads. A processor is
represented as an instance of the VM_Processor class and a special hardware
register—called the processor register—always holds a reference to the cur-
rent processor. To allow for a more efficient access to the guard bits, they are
copied into the call stack frame of methods that either constitute or depend
on control flows. This requires an extension to Jikes thread-switching logic
and the layout of call stack frames. Both the baseline and the optimizing
compiler, have to be extended to generate the code reflecting the layout.

Each processor object has a list of thread objects that are alternately
executed by the processor. An object representing the currently active thread
is referenced by a field of the processor object.

One word of storage is allocated per thread to accommodate cflow state
bits, called the cflow word in the following. This allows for monitoring 32 dif-
ferent control flow pointcuts, which should be enough for most applications.
The system can fall back to a more conventional counter-based strategy if
more than 32 different control flow pointcuts are used. The guard-based
implementation can, then, be used for the 32 most frequently used control
flows, and the fallback strategy for additional pointcuts. Furthermore, the
number of bits used as control flow guards can be increased by using two
or more words if applications using a large number of control flow pointcuts
become common. As limitation the number must be fixed and cannot grow
at runtime since the space for holding the guard bits must be allocated in all
threads.

A copy of the active thread’s cflow word is held in a field of the proces-
sor object. Upon every thread switch the value in the processor object is
synchronized with the value in the thread object. Since the address of the
processor object is always held in a register and the position of the cflow
word in the processor object is a constant offset known at compile-time, the
bit vector can be accessed with as little overhead as a single memory load or
write operation.

Baseline Compiler. For the baseline compiler, the operations of cflow con-
stitution and check are implemented in a straightforward way. For accessing

120



Control Flow Quantification

frame pointer
register

previous frame pointer

call convention specific
values

old cflow state

local variables & operand
stack

Figure 4.5: Stack frame layout for baseline-compiled methods.

the cflow word, a memory load or write operation is used. To test or modify
a single bit, standard bit operations (like bitwise and or or) are used.

At constituent shadows, an additional word is allocated in the method’s
stack frame. Before setting the cflow bit, the old value is copied into this
word. When the method is left, it is copied back into the processor object’s
field to restore the cflow state.

Jikes’ stack frame layout for baseline-compiled methods is shown in Fig-
ure 4.5 The old control flow state is stored in a special slot of the stack
frame, which is located at offset stack_offset.

Optimizing Compiler. Support for the cflow word in the optimizing com-
piler is implemented using the high-level intermediate representation gener-
ated during the first phase of the optimizing compiler. At this stage, an
unlimited number of virtual registers is available. In later phases, these reg-
isters are mapped to the (limited) set of physical registers. If the number
of physical registers is not sufficient to hold all virtual registers used in the
previous phase, they will automatically be stored in and loaded from memory.

The optimizing compiler is extended to load the control flow state infor-
mation into a virtual register, called the cflow register, at the beginning of a
method. When a control flow is entered at a constituent shadow, three steps
are performed.

1. The current value of the cflow word is stored in a separate virtual
register called backup register.

121



Control Flow Quantification

2. The control flow word in the cflow register is modified.

3. The processor object field is updated with the new value of the cflow
register.

Upon leaving the constituent join point, the virtual register and the pro-
cessor object field are restored from the backup register. When control flow
state has to be tested at dependent shadows, it can be accessed directly from
the virtual register it has been stored into at method entry.

If the compiler decides to inline a method into another method, the inlined
method’s high-level intermediate representation is generated independently
and then inserted into the outer method. This implies that it uses separate
cflow and backup registers for storing control flow state. This is indeed
necessary for correct behavior, e.g., if the inlined method constitutes the
control flow. In this case, the cflow and backup registers of the outer and
inlined methods hold different values.

At first sight, this compilation strategy does not seem to differ signifi-
cantly from the one described for the baseline compiler. It might even look
less efficient, because control flow state is read at the beginning of every
method, although it is probably required only in a small fraction of the
methods executed. However, since the approach operates on the high-level
intermediate representation, the optimizing compiler applies all its standard
optimization techniques in later phases. Those relevant for this prototype
are presented below.

o [f the virtual register holding control flow state is never read, the com-
piler detects this and eliminates the memory load operation that ini-
tializes the register. Thus, methods that do not access control flow
state do not exhibit any overhead.

e If control flow state information is frequently required (e.g., when a
dependent shadow appears in a tight loop), it is loaded only once from
main memory and kept in a physical register. Basically, by using a
virtual register for storing control flow state, the decision on whether
to keep the value in a physical register or in memory is left to the
optimizing compiler’s advanced algorithms.

e The same applies to the old control flow state value, which is saved at
constituent shadows. Again, the compiler can decide whether to keep
it in a physical register or to store it in memory, based on how many
registers are needed by the method.

122



Control Flow Quantification

At dependent shadows, the control flow state is accessed directly from
the cflow register of the caller. When the control flow is left, the processor
object is updated from the value stored in the backup register. In addition
to the standard optimizations performed by the compiler, the prototype of
the cflow optimization employs two custom optimizations in the optimizing
compiler:

1. If a method is inlined, the backup register is not initialized by loading
it from the processor object. Instead, the value is copied from the outer
method’s cflow register. In addition to saving a memory load operation,
this optimization allows the compiler to eliminate some virtual registers
if one of the methods does not modify control flow state. In this case,
subsequent phases of the compiler can infer that both virtual registers
hold the same value and thus map them to the same physical register.

2. When the JIT compiler encounters a cflow check during the compila-
tion of a method that constitutes the control flow referred to by the
same cflow, the check is omitted because it always succeeds. If the de-
pendent shadow is in an inlined method this optimization also checks
if the relevant control flow is constituted by the caller method. Since
Jikes performs nested method inlining, the optimization even considers
several nested calls. For the Fibonacci example from Listing [4.7], this
optimization removes the guards for advice executions inside the fib
method.

The second of the above optimizations can be seen as a somewhat weaker
form of abc’s interprocedural analysis. It does not perform a whole-program
analysis, which is not feasible in a virtual machine due to time and memory
constraints. Instead, it is restricted to the set of methods inlined into the
method currently being compiled. This set will always be reasonably small,
as the compiler avoids creating large method bodies. The advantage of this
approach is that eliminating the test does not put the application under a
closed-world assumption because the test is only eliminated in a copy of the
method that is guaranteed to be always executed in the desired control flow.

123






Chapter 5

Evaluating Dynamic
Optimizations of AO Concepts

In Chapterl[]], optimization techniques for two aspect-oriented concepts, namely dy-
namic aspect deployment and cflow-based join point constraints, are presented. To
evaluate their effectiveness, benchmarks have been executed on the developed pro-
totypes as well as on existing systems with comparable support. Since no elaborate
benchmark suites exist that measure such dynamic features of aspect-oriented execu-
tion environments, appropriate benchmark approaches have been developed in this
thesis. The benchmark approaches and the results of running them are presented
in this chapter. The results show the superiority of the optimizations developed in
this thesis as compared to other implementations of the same concepts.
Parts of this chapter have been published in the following papers.

1. Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and Mira Mezini.
Adapting Virtual Machine Techniques for Seamless Aspect Support. In Pro-
ceedings of the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2006

2. Christoph Bockisch, Sebastian Kanthak, Michael Haupt, Matthew Arnold,
and Mira Mezini. Efficient Control Flow Quantification. In Proceedings of
the Conference on Object-Oriented Programming Systems, Languages, and
Applications, 2006

3. Christoph Bockisch, Mira Mezini, Wilke Havinga, Lodewijk Bergmans, and
Kris Gybels. Reference Model Implementation. Technical Report AOSD-
FEurope-TUD-8, Technische Universitit Darmstadt, 2007

125



Benchmarks for Dynamic Features of AO Languages

5.1 Benchmarks for Dynamic Features of AO Lan-
guages

To evaluate the effectiveness of the optimizations presented in Chapter
the performance of the developed prototypes is compared to that of related
approaches. To date there is no comprehensive benchmark suite to com-
pare dynamic AO execution environments with respect to the performance
they exhibit when executing realistic applications. Furthermore, because
currently no applications are available that excessively use dynamic aspect-
oriented features, it is not possible to use existing applications as benchmarks;
and without real-world samples, it is not possible to know how exactly the
dynamic AO features will be used.

For these reasons, in this thesis established object-oriented benchmarks
have been extended by deploying synthetic aspects to them. Synthetic means
that the aspects do not perform anything functional beyond utilizing the
aspect-oriented feature whose impact on performance is to be measured.
To compensate the lack of knowledge about common use scenarios of the
dynamic AO features, the aspects used in the benchmarks in this section
provide scenarios with a mix of different characteristics.

The evaluations in this section are all based on the SPEC JVM98 [SPE]
benchmark suite, version 1.04. This benchmark suite is intended to measure
the performance of Java virtual machines and consists of seven applications'
that make use of Java language features, such as object creation, floating
point operations, or multi-threading in different ways. Five of the benchmark
applications have been derived from real-world applications. All benchmark
runs are performed with the maximal input size as recommended by the run
rules. Each benchmark application is executed in its own virtual machine
instance in order to expose each benchmark to the same start-up behavior of
the virtual machine.

The SPEC JVM98 benchmark harness executes each application repeat-
edly, whereby the number of iterations can be configured. In the evaluations
reported in this section, the number of iterations has been chosen to be
large enough for the applications to reach steady-state. The steady-state is
reached when all initializations of the virtual machine that potentially exe-
cute in parallel with the application are finished and the adaptive optimizing
system has identified all hot methods. Hence, no methods are re-compiled in
the steady-state.

!There is an eighth application in the benchmark suite which however just tests the
correctness of the virtual machine. Thus, according to the official run rules, this application
(check) is not included in the evaluations in this section.

126



Evaluating Optimized Dynamic Deployment

To measure the cflow optimization, in addition to the SPEC JVM98
benchmarks, so-called micro-benchmarks [HM04al, [PAG03] are used to mea-
sure the performance of single operations like constituting or querying a
control flow. The application used to perform the micro-benchmark of an
operation is written in a way that the execution environment cannot ap-
ply optimizations to the operation. Thus, micro-benchmarks determine the
worst-case performance imposed by the operation.

The approaches compared in this section are realized as extensions of
different Java virtual machines or generate code targeted toward specific
virtual machines. Thus, it is not possible to directly relate the execution
times of benchmark application runs. Instead, the ratio of the execution time
on the extended JVM to that of the un-extended underlying JVM, called
the reference JVM, i.e., the imposed runtime overhead, is calculated and
compared. That is, an overhead of 1.0 means that a benchmark application is
executed 1.0% slower by the evaluated approach than by the reference JVM;
in other words, the execution time is 1.01 times as long. All measurements
have been made on a Dual Xeon workstation (2x3 GHz) with 2GB RAM
running Linux 2.4.23. The overhead is presented throughout this chapter
in percent. Tables always show the different benchmarked approaches as
columns and the executed benchmark applications as rows.

5.2 Evaluating Optimized Dynamic Deployment

Different alternatives of the envelope-aware Jikes RVM implemented in this
thesis, i.e., lazy versus eager envelopes and on-stack-replacement versus code
patching, are first compared with regard to their start-up and steady-state
performance. Thereby, only the impact of the facility for dynamic deploy-
ment is measured. This evaluation shows that lazy envelopes with on-stack-
replacement offer the best performance. For this reason, only the approach
of lazy envelopes and on-stack replacement is used to compare the envelope
aware Jikes RVM to other execution environments for dynamic AOP in the
second comparison.

5.2.1 Approaches Participating in the Evaluation

There are several publicly available AOP implementations for Java that sup-
port runtime weaving and that are directly comparable to the prototype
implementation for dynamic aspect deployment presented in Section
called Envelope-Aware throughout this section.

127



Evaluating Optimized Dynamic Deployment

AspectWerkz [Aspd, Bon03] provides dynamic weaving capabilities for
sets of join point shadows which are specified before runtime. The weaving
process [Vas04] is divided into two distinct phases: preparation and acti-
vation. In the preparation phase classes are transformed such that in the
activation phase advice calls can be inserted at prepared join point shadows.

Preparation can be performed either by a post-compiler or by a spe-
cial class loader. During preparation, AspectWerkz replaces each join point
shadow with a call to a wrapper, which is similar to introducing envelopes.
In the activation phase, advice calls are inserted into wrappers, as in our
approach. Wrappers that changed during phase are replaced by means of the
Java 5 standard feature Class Redefinition [Ins].

In contrast to envelopes approach, AspectWerkz” wrappers do not reduce
the number of join point shadows where weaving happens. Instead of redirect-
ing the call sites to a single wrapper generated for each callee, as done with
envelopes, AspectWerkz generates one wrapper method call site respectively
field access site. Furthermore, the generation of wrappers in AspectWerkz
does affect the generated machine code, i.e., the generated machine code with
and without wrappers is not the same and the optimizations applied by the
JIT compiler differ in both cases.

JAsCo [SV.J03| uses a registry for aspects where all active pointcut-and-
advice bindings are stored. At potential join point shadows so called traps are
called which notify the registry and let it execute advice if any is applicable.
JAsCo implements two optimizations of this approach [VS04]. The first
optimization is implemented as the Jutta compiler which generates custom
implementations of single trap methods that directly call applicable advice,
thereby circumventing the registry. The second optimization is to insert call
to traps only when aspects are deployed. Class Redefinition is used to replace
a method without traps with a version including traps at runtime.

The lazy insertion of traps is similar to the lazy introduction of envelopes,
as discussed in this thesis. Also, generating custom traps that contain woven
code for specific join point shadows bears similarities to this work. The
traps are generated similar to AspectWerkz’s wrappers and thus affect the
generated machine code.

Steamloomy [Ste, HMBT05] is an extension to the Jikes RVM [Jik] with
dedicated support for aspects and dynamic aspect deployment. In contrast
to other approaches, e.g., JAsCo or AspectWerkz, that only use bytecode
toolkits as an external means for weaving, Steamloom; has integrated the
bytecode toolkit BAT [BAT] into the VM. Similar to the prototype pre-
sented in Section join point shadow search and advice weaving makes
use of the VM’s internal representation of loaded classes. Invalidating old
versions of methods in which advice calls are woven makes use of standard

128



Evaluating Optimized Dynamic Deployment

features of the virtual machine which are more specialized than Java 5 Class
Redefinition; however, the VM’s optimizations are not extended and thus do
not specifically support dynamic weaving.

Similar to the Envelope-Aware prototype presented in Section[2.4] Steam-
loom restricts the scope of join point shadow search for member accesses. To
do so, for each member an index is stored that points to all join point shadows
at which the member is accessed. When searching for join point shadows,
Steamloom; only searches the corresponding index instead of the complete
bytecode. However, Steamloom; does not localize the weaving operations
for member accesses; still each retrieved shadow is manipulated individually,
and, hence, weaving performance is still degraded. Steamloom;’s weaving
approach is basically that of the AspectJ compiler, except that it is performed
at the VM level.

Throughout this section, AspectWerkz 2.0, JAsCo 0.8.7, Steamloom; 0.6,
and PROSE 1.3.0 are used for benchmarking. For AspectWerkz, JAsCo
and PROSE the HotSpot 1.5.0 JVM of Sun is used as reference execution
environment. Steamloom;j is based on Jikes RVM 2.3.1. JAsCo is executed
using the suggested HotSwap 2 variant and having the inlinecompiler and the
trapall flags enabled. The first enables a new weaver which provides better
performance, the second one allows to advise all methods, including private
ones, as the other AOP environments also do.

5.2.2 Alternative Configurations of Envelope-Aware Jikes

Envelopes create two potential sources of overhead in the VM. Compile time
is increased, as the compiler needs to take additional actions to inline the
envelopes, and application runtime is increased if envelopes are not inlined
properly, or if the necessary mechanisms for invalidating inlined envelopes
hinder optimization. To measure this impact, the SPEC JVM98 benchmark
suite is executed on top of different configurations of Envelope-Aware (intro-
ducing envelopes eagerly versus lazily and using OSR versus code patching
as invalidation mechanism). The prototype is implemented as an extension
of the Jikes RVM 2.4.1 relative to which the overhead of Envelope-Aware
is reported in Table 5.1 The table summarizes the results for the different
configurations in order to determine the best strategy.

In the first section of Table the performance of eagerly introduced
envelopes is presented. The second column, labeled “None Steady”, shows
the steady-state performance of Jikes RVM when eager envelopes are used,
but no invalidation mechanism is used; this identifies the overhead intro-
duced by the presence of envelopes separate from the invalidation mecha-
nisms. The steady-state overhead in this setting is small, with a maximum

129



Evaluating Optimized Dynamic Deployment

Eager Envelopes Lazy Envelopes
Invalidation || None | Guards| OSR | OSR | Baseline OSR | OSR
Phase Steady | Steady | Steady | Start | Steady || Steady | Start
compress 0.0 -0.1 0.0 15.2 122.4 -0.6 5.8
jess 0.7 3.5 21 3.3 15.5 5.3 6.7
db -4.8 -4.8 -4.8| 2.7 8.4 1.0 -0.9
javac 3.7 5.3 4.2 18.3 17.8 4.0 3.3
mpegaudio -0.6 6.9 -0.2] 13.3 32.7 0.5 7.9
mtrt -0.6 -1.4 -0.1| 11.3 57.7| -10.6 13.4
jack 1.8 1.7 3.0 84 8.1 -2.0 2.9
average 0.0 1.6 0.6| 10.5 37.5 -0.3 5.6

Table 5.1: Percent overhead of using eager envelopes in Jikes RVM.

of 3.7% (javac) and averaging 0%. In some cases envelopes actually reduce
execution time (in particular db).

It may seem odd that some benchmark applications actually perform bet-
ter on Envelope-Aware than on an unmodified Jikes RVM. However a devia-
tion in this order of magnitude does not indicate an error in the benchmark
approach. Any modification to a virtual machine can change the performance
in very subtle ways [GVG04]. With every modification the memory layout is
changed, i.e., the positions where objects and code are stored by the modified
virtual machine differ from the positions in the unmodified one. As a result,
cache locality can be changed coincidentally which results in more or less
cache misses causing small deviations from the expected benchmark results.

The third column of Table [5.1] labeled “Guards Steady” reports the
steady-state performance of a system using eager envelopes together with
guarded inlining, code patching and splitting to enable invalidation for dy-
namic weaving, as described in Section [£.3.2] There is very little overhead
introduced by using guards for envelopes, demonstrating that it is an effective
mechanism for enabling invalidation.

The fourth column of Table 5.} labeled “OSR Steady” shows the overhead
that is present when eager envelopes are used and OSR points are inserted, as
described in section Section [4.3.2] Guards perform roughly on par with OSR,
demonstrating effectiveness of the splitting and redundant branch elimination
algorithms being used.

The only exception is mpegaudio. Envelopes with guards result in a 6.9%
degradation relative to the original Jikes RVM. After investigating the reason

130



Evaluating Optimized Dynamic Deployment

of this overhead, it has been discovered that a guard is hindering optimization
in a tight loop in mpegaudio; the loop contains a single basic block that is
executed frequently, and the existence of a guard in that loop breaks up
some of the optimizations performed by Jikes RVM’s optimizing compiler.
None of the optimizations are fundamentally blocked by the guard, but the
loop optimizations in Jikes RVM are not particularly aggressive. Since the
OSR-based implementation is superior in this evaluation, the guard-based
approach is not further investigated in this section.

Despite eager envelopes’” minimal impact on steady-state performance,
start-up performance is more substantially affected. The fifth column, labeled
“OSR Start” shows the performance of eager envelopes with OSR for the first
run of the benchmarks. The start-up overhead ranges from 2.7% to 18.3%
with an average of 10.5% degradation relative to the unmodified Jikes RVM.
The start-up overhead is caused by the reduced performance of the baseline
compiled code.

The sixth column in Table (“Baseline Steady”) shows the overhead
caused by eager envelopes in steady-state when the optimizing compiler is
disabled, thus code is compiled with the baseline compiler only. Because
envelopes execute with no optimization in the baseline compiled code, when
using eager envelopes the overhead is quite high, ranging from 8.1%-122.4%.
When an application starts executing, all code is first compiled by the base-
line compiler, thus short running programs, or “start-up” scenarios are de-
graded when the quality of the baseline compiled code is reduced.

Lazy insertion of envelopes enables lower start-up time overhead. The sec-
ond section in Table shows the overhead imposed on the SPEC JVMO98
benchmark suite when envelopes are inserted lazily and OSR is used as in-
validation mechanism. It can be seen in the “OSR Steady” column of this
section that the steady-state performance is not affected at all. In fact, the
performance is minimally better than that of an unmodified Jikes RVM, an
explanation for such unexpected speed-up is given above. The last column
shows the overhead at start-up imposed by lazy envelopes which is induced
by the additional dependency tracking and additional workload of generating
envelopes at class loading time. On average, this overhead is at 5.6%. All in
all, at the steady-state, both the lazy and the eager envelopes approach im-
pose no or no significant overhead. The start-up behavior of lazy envelopes,
however, is superior creating only about half the overhead of eager envelopes.
Thus, the implementation of lazy envelopes with OSR is further compared
to other approaches below.

131



Evaluating Optimized Dynamic Deployment

1. Perform n iterations of the application (initial-phase).

2. Deploy the aspect (deploy).

3. Perform n iterations of the application (deployed-phase).

4. Undeploy the aspect (undeploy).

5. Perform n iterations of the application (undeployed-phase).

6. Start over at step [2| for m times.
Figure 5.1: Schema of executing benchmarks with dynamic deployment.

5.2.3 Results of Deployment Evaluation

To measure the performance of deployment, the harness of the SPEC JVM98
benchmark suite has been extended to alternately deploy and undeploy an
aspect. The modified benchmark harness executes in the scheme presented
in Figure 5.1}, where the number n of iterations in each phase and the number
m of complete cycles are chosen such that the benchmark application respec-
tively the execution environment’s deployment subsystem reach a steady-
state.

The prototype of envelope-based weaving based on Class Redefinition,
presented in Section is included in this evaluation. It is called Envelope-
Unaware and HotSpot 1.5.0 is its reference execution environment.

The extended benchmark measures different properties of the execution
environments. First, the time needed for the very first run during initial phase
(step |1]) is measured. During this run class loading and, if applicable to the
AOP implementation, preparation of loaded classes takes place. Further, the
time required to perform deployment and undeployment of an aspect, i.e.,
steps[2]and [dis measured?. The aspect deployed by the harness is presented in
AspectJ syntax in Listing [5.1} It advises all calls to methods or constructors
within any class in any sub-package of spec.benchmarks. The advice simply
increments a counter.

The median of the times for the n benchmark iterations in the initial-
phase determines the steady-state performance of the execution environment
when no aspects are deployed. The median is used to rule out start-up

2To abstract from differences in how to deploy an aspect in different AOP environments,
the extended benchmark harness defines an interface Deployer with the methods deploy
and undeploy. This interface is implemented for each AOP environment.

132



Evaluating Optimized Dynamic Deployment

1 aspect Aspect {

2 static long counter;

s before() :

4 call(x spec.benchmarks..x.x(..)) ||

5 call(x spec.benchmarks..x.new(..)) {

6 counter++;

T}

5 }

Listing 5.1: Aspect used by the modified SPEC JVM98 benchmark suite.

performance as well as to level out peak runs. The median of the performance
figures in the deployed-phase shows how much performance is influenced by
advice calls. The median of the figures from the undeployed phase shows
whether an aspect that was once deployed is removed completely from the
application at undeployment or whether it leaves some footprint.

The invalidation mechanism used to undo inlining of envelopes in this
thesis, ensures that invalid code is not executed after deployment. However,
re-compilation does not necessarily occur at deployment, but only when the
methods whose machine code has been invalidated are executed the next
time—similar to the application start-up. To measure the effect of deferred
re-compilation, the performance of the first benchmark application run after
deployment, respectively undeployment is measured and compared to the
steady-state performance in this phase.

For the performance values of deployment, undeployment, and start-up
after deployment respectively undeployment, the median of the measured
times of all m cycles is calculated.

Tables through show the results of the benchmarks for the ap-
proaches discussed in Section and the Envelope-Aware prototype with
lazy envelopes and OSR.

Table shows how many milliseconds are spent for deploying and un-
deploying the aspect in the modified SPEC JVM98 benchmark harness, pre-
sented above. For every benchmark application Envelope-Aware provides the
best performance with an average of 3 ms and a maximum of 16 ms. While
Steamloom; performs well for some benchmark applications, the deployment
time goes as high as 4,977 milliseconds and averages out at 154 ms for un-
deployment and 941 ms for deployment. With AspectWerkz the time for
undeploying the aspect even goes up to 20,230 ms in the jess application.

133



Evaluating Optimized Dynamic Deployment

Approach | Envelope- | Envelope- Aspect- JAsCo Steam-
Aware Unaware Werkz loomy
Operation |depl. und.|depl. und.| depl. und.|depl. und.| depl. und.
compress 1 0| 63 126 349 442 331 —| 102 3
jess 4 2| 538 635[16,833 20,230|3,042 -11,211 188
db 0 0| 19 103 215 195| 251 - 4 2
javac 14 16| 672 1,152 - —14,472 —14,977 805
mpegaudio 2 11 109 236 869  8641,228 - 55 17
mtrt 2 1| 58 152 3,784 4.247| 729 - 195 53
jack 1 1| 149 380| 1,470 1,476|1,446 —-| 45 16
average 3 31 229 397| 3,360 3,922|2,685 —| 941 154

Table 5.2: Time in milliseconds for deploying and undeploying the benchmark
aspect on SPEC JVM98 benchmarks.

For JAsCo, no undeployment times are presented because it failed during
undeployment. As a result, also only one deployment was performed and the
time required for this is reported in the table. This also made it impossible
to determine the steady-state performance of JAsCo’s deployment subsys-
tem. Consequently, JAsCo’s deployment figures may actually be better than
what is presented here. However, the figures cannot be expected to change
significantly in the steady-state.

Table [5.3] shows the steady-state performance of the different execution
environments. For each AOP implementation the overheads in the initial
(ini.), deployed (depl.) and undeployed (und.) phase are shown as compared
to their reference virtual machine.

The Envelope-Aware prototype imposes no overhead to the steady-state
performance of an application when no aspects are used (initial phase).
JAsCo also provides a good steady-state performance in the initial phase
with only 1.7% overhead. For the other approaches the overhead in the ini-
tial phase reaches from 8.6% (Steamloomy) to 121% (AspectWerkz).

Like in the initial phase, Envelope-Aware imposes no overhead to the
undeployed phase; for AspectWerkz the overhead drops from 121% in the
initial phase to 58.5%. All other approaches perform slightly worse in the
undeployed phase than in the intitial phase. For JAsCo no discussion of
the performance in the undeployed phase can be given here since it crashed
during undeployment in the benchmark.

134



Evaluating Control Flow Quantification

Please note that the overhead presented for the deployed phase also con-
tains the overhead for executing the additional advice functionality. The
approaches have different schemes of invoking advice, ranging from calling a
static method to looking-up a receiver object and calling a virtual method.
Consequently, the overhead of different execution environments imposed in
the deployed phase is not directly comparable and, thus, not discussed here.

AOP implementations may also imply a degradation of the start-up per-
formance. As presented in Table the Envelope-Aware prototype on av-
erage performs start-up up to 5.6% slower than the unmodified Jikes RVM.
The impact of the other benchmarked approaches on start-up performance,
though, is much higher. Of these approaches, Steamloomj’s impact is the
smallest with 8.9%; AspectWerkz even imposes 215.9% overhead.

When an aspect is deployed, affected methods are invalidated and re-
compiled the next time they are invoked. As a consequence, during the first
run after deployment just-in-time compilation is performed, similar to the
very first run. Table shows the performance of the first run after de-
ployment and undeployment compared to the steady-state performance of
the deployed respectively undeployed phase. Envelope-Aware performs fairly
well with an average overhead of 51.5% after deployment and 56.4% after un-
deployment. The Envelope-Unaware prototype performs best. Steamloom;
performs roughly the same as Envelope-Aware after deployment and better
after undeployment. AspectWerkz and JAsCo perform worse than Envelope-
Aware.

5.3 Evaluating Control Flow Quantification

To evaluate the performance of the prototype for efficient control flow quan-
tification, it is compared to AspectWerkz, JAsCo, ajc and abc. The proto-
type has actually been developed as part of the Steamloomj project, thus the
performance reported for the prototype also represents Steamloomj’s perfor-
mance.

The versions of AspectWerkz and JAsCo and the respective reference
virtual machines are those mentioned in Section[5.2.1} The static weavers ajc
1.5.0 and abc 1.1.0 have been used and their compiled code has been executed
on the HotSpot 1.5.0 virtual machine. The prototype is implemented as an
extension of the Jikes RVM 2.3.1.

The programs compiled with ajc or abc compilers were not run on the
Jikes RVM, which would have given a direct comparison to the implemen-
tation of the prototype. This is because both AspectJ compilers produce
code which exploits special optimizations of production Java virtual ma-

135



Evaluating Control Flow Quantification

Approach Envelope- Envelope- Aspect- JAsCo Steam-
Aware Unaware Werkz, loomy
Operation ini. depl. und. | ini. depl. und. ini. depl. und.| ini. depl. und.| ini. depl. und.
compress -0.6 532 29|227 235 233| 384 544 521 0.1 278 - 0.7 235 144
jess 53 24.1 4.0(43.8 472 47.0| 805 86.9 71.4| 03 23.1 -| 7.6 256 27.7
db 1.0 06 04| 14 10 19| 125 124 125]| 1.6 1.1 -1 03 145 18.0
javac 4.0 226 45292 320 30.7 - - —| 46 29.3 -116.7 221 24.0
mpegaudio | 0.5 -6.7 -86| 81 11.8 9.0 3.4 9.4 4.41-0.2 10.3 -120.3 14.0 434
mtrt -10.6  19.0 03| 3.3 129 9.8|585.4 685.5 245.3| 1.9 336.0 - 13.1 954 97.2
jack 2.0 -76 -85[256 282 274 59 145 124| 3.6 124 -1 1.2 32 89
average -0.3 15.0 -0.7(19.2 223 21.3|121.0 1272 585 | 1.7 62.8 -| 86 283 334

Table 5.3: Steady-state performance overhead in percent measured with the SPEC JVM98 benchmark suite.

136



Evaluating Control Flow Quantification

Approach | Envelope- | Envelope- | Aspect- | JAsCo | Steam-

Aware Unaware | Werkz loomy
compress 5.8 23.7 52.4 3.1 5.5
jess 6.7 53.6 432.9 60.5 8.9
db -0.9 3.1 15.2 1.2 -0.2
javac 3.3 47.6 - 34.3 11.9
mpegaudio 7.9 11.7 33.3 7.4 11.9
mtrt 134 26.8 695.3 19.5 14.0
jack 2.9 35.0 66.1 21.2 10.1
average 5.6 28.8 215.9 21.0 8.9

Table 5.4: Start-up performance overhead in percent for the SPEC JVM98
benchmarks.

Approach | Envelope- | Envelope- | Aspect- JAsCo Steam-
Aware Unaware Werkz loomy
Operation | depl. und. |depl. und. | depl. und.| depl. und. | depl. und.
compress 19.1 746| 1.1 18| 5.1 85| 49 —| 19.7 222
jess 49.2 55.2] 25.9 30.4|551.4 718.0|167.6 —| 98.5 46.5
db 34 01| 00 12| 15 13| 29 - 0.6 -25
javac 68.9 5H4.8| 35.9 44.7 - —1162.7 —|127.3 43.7
mpegaudio | 24.2 17.3| 4.3 81| 16.0 16.3| 23.7 -1 389 99
mtrt 173.4 160.8| 16.0 14.3| 40.3 87.5| 294 —| 53.3 51.8
jack 22.1 32.2| 12,5 19.1| 52.6 53.5| 62.4 -1 52 06
average 51.5 56.4| 13.7 17.1|111.1 147.5| 64.8 —| 49.1 24.6

Table 5.5: Start-up performance overhead in percent after deployment and
undeployment of the benchmark aspect.

137



Evaluating Control Flow Quantification

chines; such code is bound to execute untypically slow on other VMs like
Jikes RVM.

Three different kinds of evaluations have been performed to evaluate the
performance of cflow. First, micro-benchmarks are used to compare the over-
head imposed on the execution of join points that constitute a control flow
respectively of shadows that depend on a control flow. Second, the impact of
the cflow infrastructures of different approaches on real programs is measured
by means of a modified version of the SPEC JVM98 benchmarks. Third, a
small set of aspect-oriented benchmarks collected by the abc group is used
for the comparison to abc.

5.3.1 Implementations of cflow in the ajc and abc Compilers

For the experiment, whose results are presented in Section [5.2], only AOP
approaches have been relevant that support dynamic deployment. For fol-
lowing evaluations, also statically weaving approaches with support for cflow
have been considered, i.e., the compilers ajc and abc.

The ajc compiler employs some optimizations to reduce the compilation
time [HHO4]. But only few optimizations are applied to make the generated
code efficient.

On the contrary, the abc compiler [abd, IACHT04, IACHT05a] applies so-
phisticated static intra- and interprocedural analyses to generate efficient
code. The code produced by abc is considerably faster [ACHT05b] than that
of ajc in many cases. As already discussed in Section the abc compiler
provides three different optimization levels, 01-03, which differ in the aggres-
siveness of the applied optimizations. An optimized handling of thread-safety
for the cflow counters is already performed at the lowest level. This optimiza-
tion allows the first application thread to quickly access the counters, while
all other threads have to use the slow ThreadLocal implementation. At the
highest optimization level, abc performs interprocedural analyses that allow
to simplify or even eliminate residual dispatch and infrastructural code.

The better performance of the higher optimization levels comes at the
cost of a very time- and memory-consuming compilation. The interpro-
cedural analysis depends on a whole-program analysis that needs to know
all possible entry points and the code of all reachable classes. This places
Java applications under a closed-world assumption that contradicts Java’s
dynamic class loading capabilities.

abc [ACHT05b, IACHT05al, IACHT04] applies several additional optimiza-
tions. Thread-local counters are optimized for the first application thread,
so that accessing the counter via a ThreadlLocal instance is avoided for this
thread. This facilitates a very quick retrieval of a counter for single-threaded

138



Evaluating Control Flow Quantification

1 class Base {
> static int counter;
3 static boolean callDependent = false;

s void dependent() {

6 counter++;

T}

s void constituent() {

9 if (callDependent) dependent();
10 }

1 public static void main(String|[] args) {
new Base().dependent();

13 /xexecute benchmarks/

14 }

15 }

un
N

aspect Aspect {
18 static int counter;

fun
J

20 before() :
21 execution(void Base.dependent()) &&

2 cflow(execution(void Base.constituent())) {
23 counter—+-+;

2w}

2 }

Listing 5.2: Micro-measurement harness.

applications. Multi-threaded applications still have to use a ThreadlLocal in-
stance for counter management. Code generated by ajc always relies on
ThreadLocal instances. Moreover, the abc compiler performs intra- and inter-
procedural analyses to improve the performance of code using cflow pointcuts;
both optimization types are achieved using static analysis [SAMO03]. The abc
compiler performs the time- and memory-intensive interprocedural analysis
only at its highest optimization level.

139



Evaluating Control Flow Quantification

5.3.2 Micro-Benchmarks

Micro-benchmarks are performed by executing the small application pre-
sented in Aspect]J syntax® in Listing [5.2l The aspect in the benchmark pro-
gram (lines [17H25]) defines a pointcut (lines such that the beginning
of the method dependent in line [5|is a dependent shadow and control flow is
entered at the beginning of the method constituent in line |8 and exited at the
end of the same method in line [10l

Two benchmarks are performed by this application at line [I3] Both
benchmarks consist of a loop performing 100,000 invocations of the method
constituent, respectively dependent. Such a high number of iterations is neces-
sary because the operations whose execution is subject to measurement exe-
cute in the magnitude of nanoseconds. In both cases, the total time required
to perform the invocations is measured. Before doing so, both methods are
invoked several times to ensure that they execute at a steady-state during
the experiment. Also the time is measured for executing the loop without
making any invocation.

To measure the overhead imposed by control flow constitution, the method
constituent is called. At the beginning of this method it is recorded that the
control flow is entered; the method does not execute anything because the
test in line [J] always fails; thus, it is immediately recorded that the control
flow is left and the method returns. To measure the overhead for testing
whether a control flow is active, the method dependent is called. Since this
happens from within the main method, the control flow test always fails.
Thus, the advice is not executed and dependent simply increments its counter
before returning.

The goal of the micro-benchmark is to measure the worst-case impact of
the cflow infrastructure of the approaches that are subject of the evaluation.
To make sure the worst-case impact is measured, the program in Listing 5.2
is written in a way that prevents different kinds of specific optimizations per-
formed by the approaches being compared. The effects of such optimizations
on efficiency are measured by the macro-benchmarks.

e The executing virtual machine can apply optimizations, e.g., when it
determines that a called method is empty and the call can thus be omit-
ted. To prevent this, the method dependent and the advice increment a

counter (lines [6] and [23)).

e The abc compiler can determine that a certain control flow will always
or never be active when a given join point shadow is executed; in such

3For the other environments, the example has been implemented in their respective
syntax, or by using appropriate API calls.

140



Evaluating Control Flow Quantification

Approach | proto- | Aspect- | JAsCo ajc| abc| abc abc abc

type| Werkz 01 st |03 st| 01 mt| 03 mt
const. 166.0| 7,370.0| 134.0]3,839.3| 505.3| 497.7|1,855.7|1,883.2
check 66.5| 4,240.0|5.6-10%|1,379.7| 686.8| 703.6|2,108.1|2,151.8

Table 5.6: Overhead in percent measured by the micro-benchmarks.

cases, the infrastructure for constituting or checking the control flow
can be omitted. The method constituent contains a conditional invoca-
tion of dependent (line[d)) so that abc does not conclude that the method
is never called in the control flow of constituent. Similarly, if dependent
is not called from outside constituent, the abc compiler would determine
that the residual dispatch can be simplified to always invoke the advice.
Thus, it would also cause abc to omit tracking of the control flow in
constituent. To prevent this, the program in Listing makes a call to
dependent outside constituent (see line [12)).

e The prototype developed in this thesis is configured not to perform
inlining to avoid its interprocedural optimization.

To measure the overhead imposed by the cflow infrastructure of each
AOP implementation the benchmark program is compiled without the aspect
with the standard javac compiler and executed on the reference execution
environment. Results for the micro-measurements are shown in Table [5.0l
The row const. shows the overhead imposed by the cflow infrastructure at
constituent join points; the row check shows the overhead imposed by the
cflow infrastructure at dependent shadows.

For abc, the benchmark was executed with the weakest and the strongest
optimization levels, denoted 01, respectively 03 and in a single- respectively
a multi-threaded environment, denoted by st, respectively mt. Single- and
multi-threaded environments are simulated by measuring the performance
in the first and in the second thread. It is ensured that only one thread is
actually executing and the other one is sleeping during the measurement.

The results in Table [5.6| show that the stack inspection approach imple-
mented by JAsCo imposes an extreme overhead of 5.6:10% at depending
join point shadows. The overhead at constituent join point shadows is small
compared to other approaches; yet one would expect that there is no overhead
at all, since the control flow does not have to be tracked explicitly at depen-
dent join point shadows. However, other features provided by JAsCo such
as the facility for dynamic deployment also have an influence on the bench-
mark which cannot be eliminated. Due to its bad performance at dependent

141



Evaluating Control Flow Quantification

join point shadows, JAsCo is excluded from the benchmarks discussed in the
following two subsections.

The abc compiler produces less overhead than ajc in the single-threaded
case. In the multi-threaded case, the code produced by both compilers per-
forms badly. Since the benchmark is implemented in a way that abc cannot
apply optimizations, the results for both optimization levels are about the
same. The prototype implementation clearly outperforms abc even in the
single-threaded case, while ensuring thread-safety.

5.3.3 Benchmarks Based on SPEC JVM98

As already mentioned, the micro-benchmarks prohibit many optimizations
and provide a worst-case scenario. Thus, macro-benchmarks have also been
performed to compare the prototype against abc in a more realistic environ-
ment that enables abc’s interprocedural analysis as well as the prototype’s
optimizations enabled by method inlining (see Section .

To create such an environment, the SPEC JVM98 benchmark suite has
been modified by adding 15 different pointcut-and-advice pairs to each bench-
mark application. The pointcuts all have the form execution(<methodl>)
&& cflow(execution(<method2>)) and are designed to cover a wide range of
different characteristics:

e the frequency of control flow constitutions,

e the ratio of dependent join point shadow executions occurring inside
versus outside of the control flow,

e and the number of methods on the call stack between the method that
constitutes the control flow (<method2>) and the method that tests
whether the control flow is active (<methodl>).

The advice attached to each pointcut only increments a counter, so that
the overhead introduced by additional functionality is minimal. Semantically
equivalent aspects are defined for each approach and are applied as required
by the approach. For the prototype, the harness is modified to deploy the
aspect before starting the benchmark application; an aspect definition file is
passed to AspectWerkz when starting the benchmarks.

For the AspectJ compilers, the benchmark applications have been com-
piled including the corresponding aspects. The compilation is done at opti-
mization levels 01 and 03 for abc. In both cases, the resulting code has been
executed on HotSpot.

142



Evaluating Control Flow Quantification

Approach | prototype | AspectWerkz ajc | abc 01 | abc 03
compress 26.6 1,818.1 | 575.0 166.7 30.1
jess -0.6 63.7 | 14.7 1.7 1.5
db 0.0 0.6 0.7 -0.1 0.0
javac 0.7 10.8 3.8 - -
mtrt 11.7 72.0 | 31.4 27.8 22.7
jack 2.1 2.7 0.7 0.4 0.9
average 6.8 328.0 | 104.4 39.3 11.0

Table 5.7: Overhead measured in percent by the SPEC JVM98 benchmarks.

The mpegaudio benchmark is not included in the benchmarks because
it is only available as obfuscated class files that could not be processed by
most AOP implementations. abc could not successfully compile the javac
benchmark, hence, this benchmark is omitted for abc.

The results of running the extended SPEC JVM98 benchmark are pre-
sented in Table The prototype implementation exhibits the least over-
head for all benchmarks but jack, even if abc’s interprocedural analysis
(optimization level 03) is activated. This is especially obvious for the mtrt
benchmark which is the only multi-threaded benchmark application. ajc
and AspectWerkz exhibit a very unsatisfactory performance. While ajc is
faster than AspectWerkz, it still inhibits a significant overhead (e.g., 14.7%
for jess or 31.4% for mtrt). abc exhibits considerably less overhead than
ajc already at the lower optimization level. The benefit of the interprocedu-
ral optimization employed by abc-03 is large for the compress benchmark;
for all other benchmarks, abc-03 performs only slightly faster than abc-01.

5.3.4

While the SPEC JVM98 benchmark suite is comprised of real applications
the benchmark presented in the above sub-section is synthetic in the sense
that it uses pointcuts introduced only for the purpose of the benchmark. The
aspects used in the benchmark do not contribute of the functionality to the
application.

The abc team has gathered various benchmarks by collecting AspectJ pro-
grams from public sources on the web [DGH™04, IACHT05b] some of which
also use cflow pointcuts. The prototype has been evaluated by running two
applications from this benchmark suite: figure and quicksort. Both ap-
plications are fairly short, each consisting of approximately 150 lines of code.

abc Benchmark Suite

143



Evaluating Control Flow Quantification

1 pointcut move():

2 call(void FigureElement+.moveBy(...)) ||
s call(void Point.setX(int)) ||

s call(void Point.setY(int)) ||

s call(void Line.setP1(Point)) ||

s call(void Line.setP2(Point));

s after() returning:

9 move() && !cflowbelow(move()) {
10 Display.needsRepaint();
11 }

Listing 5.3: Pointcut-and-advice for figure benchmark.

These benchmarks have only been performed for ajc, abc and the prototype
as the previous benchmarks have already shown that the other approaches
exhibit a considerably worse performance. Unfortunately, it has not been
possible to run the more complex benchmarks Law of Demeter, Cona, and
ants because they are using more advanced constructs unrelated to cflow
which are not supported by the prototype.

The cflow-dependent pointcuts used in both applications are very similar,
having the form <staticProperties> && !cflowbelow(<pointcut>) and captur-
ing non-recursive entry-points in certain parts of the program. The figure
application—which simulates a simple figure editor—contains the pointcut-
and-advice shown in Listing [5.3] It causes a notification to Display whenever
a FigureElement object is changed. However, calling, e.g., a Point’s moveBy
method during the execution of a Line’s moveBy method does not result in a
notification due to the employment of the !cflowbelow(move()) sub-pointcut.
The quicksort application collects various statistics on the sorting algo-
rithm. It uses a pointcut-and-advice to select the top-level call to the recur-
sive quicksort method to initialize and display the statistics (Listing .

The results of running the two benchmark applications on the platforms
subject to comparison are presented in Table 5.8, The cflow prototype devel-
oped in this thesis exhibits the least overhead except for the figure applica-
tion when abc is run with the highest optimization level. A closer inspection
shows that abc is able to completely optimize away all infrastructural code
and residues are simplified to always execute advice unconditionally in this
benchmark. Since the overhead for notifying the display is negligible, abc
does not show any overhead compared to the reference execution.

144



Evaluating Control Flow Quantification

1 pointcut sort():

2 call(void QuickSort.quicksort(...));
s pointcut entry():

s sort() && !cflowbelow(sort());

s before() : entry() {

6 Stats.before_entry();

7}

8

o after() returning: entry() {

10 Stats.after_entry();

11}

Listing 5.4: Pointcut-and-advice for quicksort benchmark.

‘ Approach | prototype ‘ ajc ‘ abc 01 ‘ abc 03 ‘ abc 03 exec

figure 72.0 | 6,620.0 920.0 0.0 330.0
quicksort 3.8 12.7 8.8 10.2 -

Table 5.8: Overhead in percent measured by figure and quicksort bench-
marks.

The fact that abc can optimize away all residues in this benchmark also
shows that the interprocedural analysis is very effective if a pointcut has
many shadows. In this example, there are multiple call sites of the move
methods and abc can analyze each of them separately and determine that
some of them always and others never are executed in the specified control
flow.

If an execution pointcut is used instead of call, abc’s interprocedural opti-
mizations are disabled. Using call rather than execution pointcuts, results in
more shadows in the program (at every call site). If the execution pointcut is
used instead there are less shadows in the program (only the method bodies)
and these shadows may be executed both inside and outside the control flow,
so that a dynamic check is necessary.

To make the effect of using execution rather than call pointcut designators
on the measurement explicit, a version of figure that uses execution instead
of call compiled with abc-03 has also been included in the benchmark (last
column in Table 5.8). The semantics of the aspect does not change: the
display is still notified every time a FigureElement is modified and repeated
notifications are avoided. The prototype’s optimizations are not vulnerable
to such changes in code. Jikes’ inlining optimization generates a separate

145



Evaluating Control Flow Quantification

(inlined) version of a method body at every hot call site, so that the in-
terprocedural optimizations can reason about these join points in the same
differentiated way as if call pointcuts have been used.

146



Chapter 6
Related Work

Throughout this thesis its contributions are directly compared with related ap-
proaches. These approaches are discussed in detail along with the comparison.
However, there is some additional related work to which a quantitative comparison,
as performed in the previous chapters, is not applicable. To give a comprehensive
overview of the field of AO language implementations, these related approaches are
presented in this chapter.

6.1 Virtual Join Points

There are two related approaches that frame join points in terms of virtual
dispatch. The more recent approach extends the prototype- and delegation-
based execution model of object-oriented programs. The second one is based
on reflection.

6.1.1 Prototype- and Delegation-Based Execution Model

Haupt and Schippers [HS07] present a machine model for aspect-oriented
programming. Just like the execution semantics presented in Chapter
their model evolves around the notion of virtual join points. In fact, some of
their core ideas have common roots [BHMO6, [HBMOO3] with the semantics
discussed in this thesis.

In a prototype- and delegation-based object-oriented execution model,
method calls and field accesses are realized as messages that are sent to
objects. New objects are created by “cloning” another prototypical object
whereby the new object refers to the prototype by a so-called parent refer-
ence. Whenever a message is sent to an object, the object may either choose

147



Virtual Join Points

to handle the message itself or to delegate it to its parent, whereas the active
object, called self, remains the one the message has originally been sent to.

The machine model in [HS07] is a seamless extension of such a delegation-
and prototype-based execution model such that objects are not referenced
directly, but through a proxy object; the proxy does not handle any messages,
but delegates all received messages to its parent which is the actual object.
Potential join points in this model are the reception of messages that are sent
to objects, i.e., in the extended model, messages sent to proxy objects. As
message reception is handled by virtual methods in the underlying execution
model join points also are virtual.

Adding advice to a join point is realized by inserting an additional proxy
object in the delegation chain of parent references between the first proxy and
the actual object. If the advice should, e.g., be executed before the execution
of a method m, an object is inserted that understands the message m; when
it receives the message, it first executes the advice and afterwards re-sends
the message to its parent.

The execution model is further extended by making the parent reference of
each object a function. Thus, the function can return a different parent proxy
depending on the current runtime context, e.g., depending on the current
thread. This is similar to the approach of virtual join points discussed in
Chapter [2] of this thesis and its realization in FIAL presented in Section [3.3.3]
In both cases, a function is evaluated to determine the applicability of advice
and potentially the applicability of multiple advice is determined by just one
function. In the model from [HSOT], sequential advice executions are realized
by means of nested message sends, whereas the approach in this thesis is to
generate code containing all advice in a sequence.

In the model of Haupt and Schippers, aspect deployment is realized by
inserting a proxy object into the delegation chain. This is similar to the
work of this thesis, as the delegation chain embodies the dispatch function.
However, in the prototypes developed in this thesis, adding new advice and
thereby modifying the dispatch function, also means to re-generate the code
of affected join point shadows. This is because the dispatch function gets
integrated into the code generated for a join point shadow.

While the results of the model presented in [HS07] and the work presented
in this thesis ultimately are very similar, the approaches tackle virtual join
points from different perspectives. In this work, the Java execution model
is extended to seamlessly support AOP; the extension is motivated by the
realization and optimization of virtual methods in the Java virtual machine.
In contrast, Haupt and Schippers base their approach on a delegation-based
execution model. So far, they have not discussed optimizations in the execu-
tion environment that are specifically designed for their extended execution

148



Meta-Models for Aspect-Oriented Concepts

semantics. While their approach for the most part uses existing concepts of
the underlying execution model which are already being optimized, they do
not provide a discussion of their extension’s impact on runtime performance,
but focus on the formal semantics of their model.

6.1.2 Reflection-Based Execution Model

AspectS [Hir03), [Aspd] is a framework implemented on top of the Squeak
Smalltalk environment [IKM797, [Squ]. AOP support is implemented using
only Smalltalk’s reflective capabilities. In AspectS, message receptions are
supported as join points, which is equivalent to the approach presented in
this thesis and the approach of Haupt and Schippers, since method invoca-
tions as well as member variable accesses in terms of getters and setters are
implemented using messages.

All weaving in AspectS takes place at the meta-level of message sending.
When a message implementation is decorated with advice functionality, its
entry in the corresponding class’ method dictionary is modified to instead
reference a method wrapper. The wrapper invokes advice functionality and
yields control to the original implementation, or to subsequent wrappers, if
multiple advice apply.

The application of dispatch modifications to meta-level structures as met
in AspectS augments the dispatching logic in the form of Smalltalk’s original
look-up mechanism for late-bound methods. The lookup mechanism itself
is altered, along with the data that it operates on. When several wrappers
are attached to a join point, the so-called wrapper chain must be iterated
over, checking for each particular wrapper’s applicability using conditional
logic contained in the wrappers. Aggressive optimizations as usually found
in sophisticated OO language implementations are not applicable due to the
implementation of the iteration over the wrapper chain as a method with full
computational power.

6.2 Meta-Models for Aspect-Oriented Concepts

Related frameworks for fast prototypical implementation of new aspect-orien-
ted concepts are realized in different ways. The most recent approaches
extend the Java language and are based on interpretation or on reflection.
An older approach is does not support a real-world base language but allows
to model new AO concepts by means of an operational semantics.

149



Meta-Models for Aspect-Oriented Concepts

6.2.1 Metaspin and JAMI

In [BMNT06], a meta-model to capture the semantics of features in aspect-
oriented languages is defined. The meta-model is implemented as an inter-
preter in the Smalltalk language, called Metaspin, whereby each computa-
tional step is represented as a closure and can be a join point. The meta-
model and the Metaspin interpreter are suitable to experiment with new AO
language features. However, this approach only targets language design and
no connection to efficient execution environments is considered.

JAMI is a Java-based implementation of the same meta-model. The
case study of implementing the decorator enforcing language extension pre-
sented in Section has also been performed by the implementers of JAMI
[JAMOT7, [HBAOS]. Both implementations are very similar, although the
JAMI and FIAL meta-models have different objectives. JAMI’s meta-model
is based on reflection, while LIAM is targeted towards weaving execution
environments. The JAMI-based implementation altogether has 150 lines of
code while the FIAL-based implementation comprises about 200 lines of code.
This smaller footprint is caused by additional re-use opportunities due to the
use of reflection in JAMI.

While Metaspin and JAMI are more flexible than FIAL they are on par
with respect to expressiveness. However, optimized implementations are be-
yond the scope of Metaspin and JAMI.

6.2.2 Reflex

The Reflex project [Tan06, [TN04] provides an extensible kernel for aspect-
oriented programming, based on reflection. It is implemented as a Java 5
bytecode instrumenting agent which inserts hooks into classes at load-time.
Reflex provides support for structural as well as behavioral crosscutting, i.e.,
the pointcut-and-advice flavor; however, in the context of this thesis only
behavioral crosscutting is relevant. Here, Reflex provides a meta-model for
defining behavioral crosscutting which mainly consists of three parts.

e So-called hooksets are expressions specifying sets of hooks, the equiva-
lent of join point shadows.

e Metaobjects are comparable to aspect classes, i.e., they are Java objects
which may be implicitly instantiated and which have methods that are

invoked as advice functionality.

e Links associate hooksets and metaobjects.

150



Intermediate Languages and Execution Environments

A link can also have so-called link attributes which, e.g., control the im-
plicit instantiation of metaobjects or define activation conditions. An acti-
vation condition is the equivalent of LIAM’s dynamic property expressions.
Activation conditions in Reflex are defined in terms of a code block. Hence,
they are not specified declaratively as in LIAM where primitive conditions
are modeled as concrete sub-types of DynamicProperty.

Thus, the Reflex meta-model is not suitable for the implementation of an
optimizing execution environment. In fact, Reflex rather aims at providing a
comfortable workbench for experimenting with issues of aspect composition
like ordering and nesting of aspects. The LIAM meta-model developed in
this thesis also supports the specification of aspect interactions in terms of
the Schedulelnfo meta-entity. Only a few special cases have been implemented
in this thesis, and a more elaborate model of aspect interactions in LIAM is
subject to future work.

6.2.3 Aspect Sand Box

In [WKDO04] and [MKDO02], the Aspect Sand Box is presented as a framework
based on operational semantics models of aspect-oriented programming. This
framework is intended for prototyping and studying alternative AOP seman-
tics and implementation techniques. The Aspect Sand Box is interpreter-
based and implemented in Scheme. By “implementation techniques” the au-
thors refer to partial evaluation; while this is an important optimization in
AOP language implementations it is limited to compile-time optimizations.
Implementing optimizations in the execution environment, as is the approach
of this thesis opens up additional opportunities for optimizations that can-
not be prototyped with the Aspect Sand Box. Additionally, FIAL supports
standard Java as base language whereas the Aspect Sand Box only sup-
ports a simple, non-real-world object-oriented language. Thus, no real-world
projects can be used as base programs to evaluate new language concepts in
the Aspect Sand Box.

6.3 Intermediate Languages and Execution En-
vironments

Recently, the potential of providing optimizations for aspect-oriented lan-
guage constructs in the virtual machine has also been addressed by other

projects. Currently, there are two projects related to the work presented in
this thesis with a reasonable VM integration.

151



Intermediate Languages and Execution Environments

6.3.1 Nu

The Nu project [DRO8, RDNHO06] aims at providing an interface between
compilers and execution environments, just like the FIAL framework devel-
oped in this thesis. For this purpose, two new instructions are added to the
intermediate language of the base language—in Nu, as in this thesis, this is
Java. The new instructions are bind and remowve which correspond to deploy-
ing respectively undeploying pointcut-and-advice. The pointcut-and-advice
definitions themselves are realized as a composition of Java objects, like in
this thesis. When bind is executed, it expects a pattern object and a delegate
object on the operand stack. The pattern argument corresponds to the point-
cut part, however, Nu’s model is restricted to patterns that can be statically
evaluated, i.e., fully evaluate to join point shadows. The delegate argument
refers to a method that implements the advice functionality. Executing the
bind instruction returns a handle that can be used to remove the binding
later.

The Java HotSpot [HotO§] virtual machine, i.e., an industrial strength
VM, is extended in the Nu project to execute the new intermediate instruc-
tions. HotSpot has three modes of executing methods of an application: they
may be interpreted, JIT compiled without optimizations and JIT compiled
with optimizations. In any case, each method has a stub that is executed
before the method is itself executed. The stub tests whether the method
has been compiled and jumps to the compiled code in that case; otherwise,
the method is interpreted. Nu applies the advice dispatch mechanism within
this stub, i.e., when the stub gets executed it looks up and invokes applicable
advice. Furthermore, Nu implements a caching strategy, so that the look-up
does not have to be performed at every method invocation.

The aspect model of Nu is less detailed than the LIAM meta-model de-
veloped in this thesis. Nu patterns cannot express conditions on dynamic
properties of join points like the required type of the receiver object or cflow.
But the effect of these conditions can be emulated. Binding values from the
join point’s context for use by the delegate can also not be specified declar-
atively in the current model of Nu.

A possible realization of cflow with the means of Nu is discussed in [DROS].
Consider that constituentEnter and constituentExit are patterns of join point
shadows that constitute the control flow—in the Nu’s join point model, it
is specified as part of the pattern if the start or the end of a join point is
selected—and dependent is a pattern of join point shadows that depend on
the control flow. The pattern constituentEnter is bound to a delegate that, in
turn, binds dependent to the actual advice; similarly, constituentExit is bound
to a delegate that removes the binding of dependent to the advice.

152



Intermediate Languages and Execution Environments

While referring to dynamic properties of join points, e.g., by cflow, can be
emulated in Nu, the logic is implemented in the delegates and not explicitly
present in the program’s intermediate representation. In this thesis, it is
argued that only such an explicit representation facilitates optimizations like
the one for cflow presented in Section [4.4]

Because of the tight virtual machine integration, Nu, like the prototypes
presented in Chapter [4] exhibits a very good performance. The support for
dynamic deployment comes at an average cost of 1.5% overhead whereas no
overhead is imposed at all by the prototype for optimized dynamic deploy-
ment developed in this thesis. The performance of executing the bind and
remove instructions has been measured in [DRO§| by a small benchmark that
binds respectively removes a delegate to one specific method. On average
the required time is 11 s for the bind operation and 3.4 us for the remove
operation. While this result is very good, it is not directly comparable to
the results presented in Section where deployment affected hundreds join
point shadows at once. Furthermore, Nu’s current approach of using method
stubs for advice dispatch only works in the interpreter mode of HotSpot.

6.3.2 Lightweight VM Support for Aspect)

Golbeck et al. [GDNT08] have implemented extensions to the Jikes Research
Virtual Machine to provide dedicated support to programs compiled with
the AspectJ compiler. Their extended virtual machine expects that the As-
pectJ compiler has woven the aspects into the application code, and that the
woven code is annotated with meta-information so that it can be identified.
Any Java virtual machine can simply execute the woven bytecode, thus, it
supports all features of AspectJ. For some features, however, the extended
VM offers special support. Woven code that represents such a feature can
be identified by the meta-information and optimized machine code can be
generated for it.

This is in contrast to the approach followed in this thesis; here it is ex-
pected that aspects are not woven at all, but the complete weaving is per-
formed by the execution environment. In order to also support features where
no special optimizations are implemented, the work presented in this thesis
employs a default code generation strategy.

Golbeck et al. claim that their approach may combine optimizations
driven by static analyses as performed by the abc compiler with dynamic
optimizations performed by the virtual machine. Such a combination is in-
deed promising as complex static analyses are too expensive to be applied at
runtime. However, as of this writing, this possibility is only theoretical, as
the abc compiler does not generate the appropriate meta-information.

153



Intermediate Languages and Execution Environments

The lightweight AspectJ virtual machine has succeeded in providing min-
imally invasive support for AspectJ in so far that arbitrary code compiled
with the standard AspectJ compiler can be executed. Hence the compiled
code does not have any dependency to the virtual machine. This is similar
to the work presented in this thesis. The importer-based approach of inte-
grating AO languages in Section also facilitates to execute applications
that are compiled with the standard AspectJ compiler. However, the work
presented here is not tailored just towards one specific AO language, but
aims at supporting multiple languages.

The VM optimizations for AO concepts presented in [GDNT08] target
at retrieval of aspect instances, advice invocation, cflow and around advice
execution. The cflow optimization is a partial re-implementation of the one
presented in Section [4.4] It is assumed that the other optimizations can also
be realized as special code generation strategies in FIAL-based execution
environments; the implementation is subject to future work.

154



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis the semantics of join points, the central concept of aspect-
oriented programming languages, is conceived as a successor of virtual meth-
ods. Virtual methods are a well established and well understood concept.
Consequently, highly effective optimizations have been developed for vir-
tual methods and are implemented in all major virtual machines for object-
oriented programming languages. The investigation of virtual methods in
this thesis has shown that the optimizations are facilitated by the way vir-
tual method dispatch is represented in the intermediate code. The dispatch
is provided in a declarative way, making explicit on which runtime context
it depends.

This insight has driven the development of an explicit and declarative
meta-model for aspect-oriented constructs that makes it possible to preserve
a first-class representation of these constructs even after compilation enabling
optimizations comparable of those for virtual methods. The developed meta-
model, LIAM, covers the core concepts of aspect-oriented languages that
have been identified by investigating four different, but widely known AO
languages: AspectJ, CaesarJ, Compose® and JAsCo. LIAM is extensible
such that the concrete AO concepts of the investigated languages are realized
as concretizations of the abstract meta-entities of LIAM. This has shown
that LIAM is indeed sufficient to express aspects written in these languages.
For AspectJ, Compose® and JAsCo, even automatic translators have been
developed to generate LIAM models from aspects written in these languages.

A framework, FIAL, has been developed providing a generic implemen-
tation of execution environments for AO programs with LIAM models as
intermediate representation of aspects. The framework also embodies the

155



Conclusions

concept of join points being virtual and maintains join point shadows, i.e.,
virtual invocation sites of join points, as structural entities of the executed
program. Hereby, join point shadows have a dispatch function which is mod-
ified by dynamic aspect deployment. FIAL manages common tasks like as-
pect deployment and handling the addition of join point shadows during class
loading. Concrete execution environments for AO languages can be realized
as instantiation of the FIAL framework and benefit from its generic imple-
mentations. When join point shadows change due to aspect deployment, the
concrete execution environment is called-back by FIAL in order to re-create
the code of the modified join point shadows. Logic for, e.g., ordering advice
is not required from the concrete execution environment.

In a case study, a new aspect-oriented programming language has been
designed and its concepts have been realized as concretizations of LIAM
meta-entities. This case study has shown that designing new languages with
LIAM is a feasible approach. Since the semantics of the new concepts are
implemented as pure Java code and don’t have to consider, e.g., bytecode
transformations, designing the concepts is also possible for designers without
in-depth knowledge of bytecode and the Java virtual machine. In the case
study, it is also discussed how dedicated optimizations in the virtual machine
by means of a FIAL instantiation can improve the performance of execut-
ing the new concepts. This, in turn, can be realized without considering
the language design. Because the LIAM entity implementations are already
provided, the language implementer has an executable specification of the
concepts’ semantics.

A reference implementation (ERIN) of FIAL has been developed that uses
the envelope-based weaving technique, also developed in this thesis, in order
to realize the re-creation of join point shadows. This weaving technique
imposes little complexity as the base program code is only minimally re-
written. Thus, envelope-based weaving has proven to be suitable for weaving
at runtime.

Highly efficient, sophisticated optimizations as developed in this thesis,
are facilitated by the declarative representation of aspect-oriented concepts
as provided by the LIAM meta-model. To start with, the event of aspect
deployment is an explicit event that can be handled by the execution envi-
ronment. An optimization for dynamic deployment has been developed, that
is based on the observed commonalities of virtual join points and virtual
methods.

Envelope methods, which are the embodiment of join point shadows, are
inlined when no advice is attached to them. Dynamic aspect deployment
is an explicit event which potentially invalidates the inlining decision. The
speculative optimization mechanisms that are applied to virtual methods are

156



Conclusions

adapted such that they also apply to envelope methods. As a consequence,
the same invalidation mechanisms that are applied at class loading are used
to revert the optimization of envelopes at dynamic aspect deployment. In
the prototype developed in this thesis, the infrastructure required to facili-
tate reverting of inlining decisions does not pose any overhead. Deployment
itself is performed within a few milliseconds, in a set of benchmarks of rea-
sonable size, where execution environments with comparable support took
up to twenty seconds.

Another optimization has been developed that is facilitated because a
first-class representation of aspect-oriented concepts is available to the virtual
machine. This optimization is for the cflow pointcut designator of AspectJ
and comparable constructs in other AO languages. The optimization is also
motivated by an established optimization technique for speculative optimiza-
tions. Furthermore, it is facilitated by engaging with different components
of the virtual machine. Besides the JIT compiler, the call stack layout and
the thread-switching implementation have been jointly modified.

The performance impact of the actions at join points constituting the
relevant control flow as well as the performance of testing for an active control
flow has been measured. In the worst case, the implementation presented in
this thesis, imposes 166% overhead to a method call which constitutes as a
control flow and 66% overhead to a method call join point shadow that tests
for a control flow. In comparison, the other researched implementations,
at least impose an overhead of 1,883% during control flow constitution and
1,3780% during control flow testing.

In real-world applications, some static optimizations are highly effective;
often, they can even completely optimize away the infrastructure required
for control flow maintenance and the control flow tests. Furthermore, abc
applies an optimization beneficial to single-threaded programs. However,
these optimizations come at the cost of a significantly increased compile-
time and require a whole-world analysis. That means that all classes must
be available at compile-time and dynamic class loading potentially leads to
wrong behavior in the presence of the optimizations.

While the prototype developed in this thesis still supports dynamic class
loading and does not require a costly static analysis, it is also usually more ef-
ficient than abc in real-world applications. Except for one of six benchmarks,
the benchmarks executed by the prototype of this thesis always performed
better than executing the benchmarks compiled even with abc’s most aggres-
sive optimizations.

Since no benchmarks of reasonable size are currently available for dy-
namic aspect-oriented execution environments, a new benchmark approach
has been developed in this thesis. The approach is based on extending an

157



Future Work

established object-oriented benchmark, in the case of this thesis the SPEC
JVM98 benchmark suite. This benchmark acts as the base program and as-
pects are deployed to it that excessively use the AO concept that is supposed
to be benchmarked. The developed benchmarks have been used to evaluate
the optimizations developed in this thesis from different perspectives. This
has shown that the optimizations are superior to comparable implementa-
tions in nearly every respect.

7.2 Future Work

The FIAL framework and virtual machine optimizations presented in this
thesis are still subject to further improvements; however, the implementation
as described here is fully functional and available for download from http://
www.aliadj.org. Some future improvements as well as some future projects
that will build upon the work presented in this thesis are discussed in the
following sections.

7.2.1 Optimizing the Dispatch Function

It has already been discussed in Section that a dispatch function com-
bining the entire residual dispatching logic at a join point shadow opens up
the opportunity for joint optimization. Optimizations of the evaluation order
of dynamic properties involved in the dispatch function are already imple-
mented in FIAL [SBMOS§]. The current implementation in FIAL furthermore
eliminates redundant evaluations and initial experiments have shown that
the evaluation order of dynamic properties has a significant impact on the
efficiency of the dispatch function’s evaluation: to optimize the average eval-
uation time, it is, in the majority of cases, beneficial to first evaluate those
dynamic properties that are the least costly.

These findings have resulted from simulations that estimate the dispatch
function’s average evaluation time for every possible function with up to five
different dynamic properties and up to six operators. However, the effect of
such optimizations has not been studied in the context of real-world appli-
cations: the evaluation costs for dynamic properties have only been approxi-
mated and it has been assumed that each dynamic property will be satisfied
in exactly 50% of the cases. Furthermore, all dynamic properties have been
assumed to be statistically independent.

It remains for future work to study the space of dispatch functions and dy-
namic properties in practice, aiming at a more realistic model of this space.
This will include a detailed cost model for dynamic properties. Another

158


http://www.alia4j.org
http://www.alia4j.org

Future Work

important part of this model is to identify causal dependencies between dy-
namic properties. Once an appropriate model is found to be used by the
FIAL implementation for determining the evaluation strategy of dispatch
functions, the LIAM entities modeling dynamic properties will be enhanced
to reflect this model. Currently, the abstract class DynamicProperty has a
method returning the expected evaluation costs, but additional methods,
e.g., for determining causal dependencies, may be added.

Furthermore, it is also future work to apply adaptive optimizations to
dispatch functions. The evaluation of dispatch functions will be profiled such
that the model discussed above is refined according to the actual execution
characteristics of the application. E.g., the actual costs for evaluating a
dynamic property can be measured as well as the actual probability of a
dynamic property to succeed. This information can be considered by the
virtual machine and it may decide that refining the evaluation strategy will
lead to a reduced evaluation time in a future execution. The expected gain
has to be weighed against the cost for re-compiling the join point shadow
that contains the dispatch function. If the re-compilation time is less than
the expected gain, the adaptive optimization is performed, similar to adaptive
re-compilation of methods [AFGT00).

The evaluation of temporal predicates over events in the program exe-
cution, as, e.g., performed by monitor-oriented programming and runtime
verification [BGHS04], can also benefit from optimizations of the join point
dispatch. The evaluation of such predicates is usually realized by an automa-
ton whereby the single events cause a state transition in the automaton. In
[ATdMO7, BHL™07] the AspectJ language is extended so-called trace mon-
itors which match the program execution with temporal predicates. If the
predicate matches, extra code is executed, like throwing an exception when
the program reaches an erroneous state. The authors claim that many run-
time verification concerns can be realized with their trace monitors. In their
implementation, AspectJ pointcuts are basic events and their associated ad-
vice it to perform state transition in the underlying automaton. The point-
cuts themselves can already refer to dynamic properties and, hence, benefit
from an optimized join point dispatch. Furthermore, state transition depends
on the current state. In the language implementation approach presented in
this thesis, the dependency on the current state can be explicitly expressed
as a dynamic property to which the pointcut refers. Thereby the test for the
current state can also be subject to virtual machine optimizations like the
optimized cflow implementation presented in Section [4.4]

159



Future Work

7.2.2 Virtual Machine as FIAL Instantiation

The implementation of a virtual machine as an instantiation of FIAL that
includes all optimizations discussed in this thesis is work in progress. This
virtual machine, called STEAMLOOMALIA ig the successor of the Steamloom;
project and likewise is an extension of the Jikes RVM.

A goal of the STEAMLOOMALIA virtual machine is to integrate the AOP
support into the VM as seamlessly as possible. This means, for example,
aspects should be subject to Java’s dynamic class loading semantics: an
aspect class is only loaded when a join point is reached that is affected by
the aspect. Similarly, the virtual machine only JIT compiles bytecode when
it is actually executed. Hence, also the code for join point shadows is only
compiled when they are reached. Join point shadows are, as in the envelope-
based weaving approach, entities on their own, similar to methods. However,
by their deep integration into the virtual machine, they have differences to
methods, e.g., their resolution is performed differently.

Currently most of the LIAM entities are realized through the default code
generation strategy. Only to some Context and some InstantiationStrategy en-
tities special bytecode generation strategies are applied, like directly reading
the value from the local variables instead of using reflection in terms of the
Java VM Tools Interface. It is future work to also implement specific code
generation strategies for other LIAM entities whereby the strategies are not
restricted to generating bytecode—because of the VM integration, it is also
possible to directly generate machine code. Special code generation strategies
will comprise the cflow optimization presented in Section .4} and optimized
aspect instance retrieval as presented in [GDNT08, [Hau0g].

The adaptive optimization of dispatch functions discussed in the previ-
ous section will also be realized as part of the STEAMLOOMALIA virtual
machine. Furthermore, it will be investigated whether the adaptive opti-
mization strategy of Jikes has to be modified to better cope with dynamic
deployment. As presented in Section [5.2] dynamic deployment requires sub-
sequent re-compilation of affected methods, which leads to a slow-down after
deployment. It will be studied which recompilation strategy is most effec-
tive after deployment, i.e., at which optimization level methods should be
re-compiled. Caching strategies for compiled code will also be investigated
that may be beneficial for situations when the same aspect gets deployed
and undeployed frequently. Finally, heuristics will be investigated for decid-
ing whether to inline join point shadows or not. Since only the bytecode
of join point shadows is modified at deployment, no other methods have to
be re-compiled when affected join point shadows are not inlined. Hence, in

160



Future Work

a context where deployment occurs frequently, it may be beneficial, not to
inline all envelopes.

7.2.3 Static Crosscutting

Static crosscutting in AspectJ refers to the ability of an aspect to declare
new members or interfaces of classes in the base program. In this thesis,
static crosscutting has been left out of consideration, support for it remains
future work. The static crosscutting features in the AspectJ source code can
be integrated with FIAL similarly to the PA features. When an Aspect]
program that makes use of static crosscutting definitions is compiled with
ajc whereby weaving is disabled, the base classes of the program are not
transformed, but annotations representing the static crosscutting definitions
are inserted into aspect classes, similar to pointcuts and advice. Unlike the
pointcut-and-advice related annotations, the annotations for static crosscut-
ting definitions, unfortunately, are not officially documented. There are two
conceivable approaches that will be considered in future work based on ajc’s
intermediate representation.

Features like adding interfaces to a class require to re-write the bytecode
of the class. Since the re-writing depends on the aspect definition and on the
source language the aspects are written in, the FIAL framework extended to
give an importer the chance to re-write classes before they are loaded. This
can be used by an importer may re-write classes in order to realize the static
crosscutting; this is similar to what the Aspect]J load-time weaver does. In
this approach, the importer can perform arbitrary re-writing of bytecode.
It is future work, to research opportunities to provide support in the FIAL
framework for bytecode transformations that weave static crosscutting.

A second approach, which, however, is only possible for the addition of
members to classes, is to map this problem to that of supporting pointcut-
and-advice [HSOT, BMNT06]. Besides the annotations that serve as interme-
diate representation of the static crosscutting definitions, the ajc compiler
also generates code reflecting the elements to be added in the aspect class,
similar to advice methods. Code that depends on the added members, how-
ever, accesses them as if they were declared in the class to which they are
added by the aspect.

To support this kind of static crosscutting, i.e., the addition of methods
and fields to classes, advice units can be derived for each such method or field
declared in an aspect. The join point set selects all accesses to the member
and the advice action is to access the member definition in the aspect class.
Furthermore, a schedule info entity is attached to the advice unit declaring
that the original join point action is not executed, as the member does not

161



Future Work

exist in the original target class. Such a facility is already provided in the
Schedulelnfo meta-entity as it is required by the Compose™ importer presented
in Section 3.4l

7.2.4 IDE Support for Programs Executed on FIAL

Currently, an extension to the AspectJ Development Tools (AJDT) is being
developed that allows the use of all its features, when compiling AspectJ
applications for execution on a FIAL-based execution environment. As pre-
sented in Section it is already possible to use the AJDT for this purpose;
merely additional settings have to be made to stop the ajc compiler from
weaving the aspects itself. However, only when weaving is performed the
compiler generates the so-called abstract structure model which is used by
the AJDT to visualize the crosscutting structure of the program. An exam-
ple of the model’s visualization is the “Cross References” view that shows a
tree structure of advice and their advised join point shadows. These cross
references are also navigable, i.e., it is possible to navigate from an advised
join point shadow to the corresponding advice and vice versa.

To re-establish such features, a project is currently in progress that ex-
tends the AJDT with a new component that builds the abstract structure
model from the aspects’ intermediate representation. This component is
realized as an Eclipse builder—the AJDT is a plugin to the Eclipse IDE
[Ecl—which is always executed after the AJDT’s ajc compiler. The builder
is being implemented as an instantiation of the FIAL framework and uses
the AspectJ importer developed in this thesis to transform ajc’s intermediate
representation to LIAM entities.

All classes in the build path of the AJDT project, i.e., all the code de-
veloped in that project, are traversed by the builder and join point shadows
are identified and made known to FIAL which attaches the advice units that
are defined by the LTAM model provided by the AspectJ importer. After-
wards, the builder investigates all join point shadows to check if advice are
attached. For those join point shadows where advice are attached, the builder
establishes a link in AJDT’s abstract structure model.

To support this work, the LIAM meta-entities are extended to also store
the location in the source code, where they are defined. This is similar to
the debug information present in Java bytecode. This debug information
facilitates to recover the file name and line number whose compilation has
lead to a bytecode instruction, respectively in the case of LIAM to a model
entity. The builder uses this information to establish links between source
locations, as is stipulated by the AJDT abstract structure model.

162



Future Work

As a result of this project, it will be completely transparent to the user
if aspects are woven by the ajc compiler or if they are woven at runtime by
a FIAL-based execution environment.

163



Future Work

164



Scientific Career

since January 2009

Universiteit Twente

Assistant Professor on Software Composition in the Software En-
gineering Group of Prof. Mehmet Aksit

July 2008 — January 2009

Technische Universitdt Darmstadt

Post doctorate researcher in the Software Technology Group of
Prof. Mira Mezini

July 2003 — June 2008

Technische Universitat Darmstadt

PhD assistant in the Software Technology Group of Prof. Mira
Mezini

October 1998 — June 2003

Technische Universitdt Darmstadt

Studies in Computer Science. Graduated as Diplom-Informatiker
(comparable to master degree in computer science)

165






Bibliography

[AABT05]

[AACT99]

[AACT05]

[abc]

[ACF*01]

[ACH*04]

Bowen Alpern, Steve Augart, Steve M. Blackburn, Maria
Butrico, Antony Cocchi, Perry Cheng, Julian Dolby, Stephen
Fink, David Grove, Michael Hind, Kathryn S. McKinley, Mark
Mergen, J. Eliot B. Moss, Ton Ngo, and Vivek Sarkar. The
Jikes Virtual Machine Research Project: Building an Open-
Source Research Community. IBM Systems Journal, 44, 2005.

Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber,
Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn Hum-
mel, Janice C. Sheperd, and Mark Mergen. Implementing
Jalapeno in Java. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications,
1999.

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Lau-
rie Hendren, Sascha Kuzins, Ondiej Lhotak, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding Trace Matching with Free Variables to AspectJ. In
Proceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM
Press, 2005.

Homepage of AspectBench Compiler for AspectJ. http://abc.
comlab.ox.ac.uk/.

Bowen Alpern, Anthony Cocchi, Stephen J. Fink, David Grove,
and Derek Lieber. Efficient Implementation of Java Interfaces:
Invokeinterface Considered Harmless. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2001.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhotdak, Ondfej Lhotak, Oege de Moor,

167


http://abc.comlab.ox.ac.uk/
http://abc.comlab.ox.ac.uk/

Bibliography

[ACH*052]

[ACH*05D)]

[ACL*99]

[AFGT00]

[AFGT05]

[AGMO06]

[AHRO2]

Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Build-
ing the abc AspectJ Compiler with Polyglot and Soot. Technical
Report abc-2004-4, aspectbench.org, 2004.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhotdk, Ondfej Lhotak, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, and Julian Tibble. abc:
An Extensible AspectJ Compiler. In Proceedings of the Inter-
national Conference on Aspect-Oriented Software Development.
ACM Press, 2005.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhotdk, Ondfej Lhotak, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Op-
timising AspectJ. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation. ACM Press,
2005.

Bowen Alpern, Anthony Cocchi, Derek Lieber, Mark Mergen,
and Vivek Sarkar. Jalapeno—A Compiler-Supported Java Vir-
tual Machine for Servers. In Proceedings of Workshop on Com-
piler Support for System Software, 1999.

Matthew Arnold, Stephen Fink, David Grove, Michael Hind,
and Peter F. Sweeney. Adaptive Optimization in the Jalapeno
JVM: The Controller’s Analytical Model. In Proceedings of
the Workshop on Feedback-Directed and Dynamic Optmization,
2000.

Matthew Arnold, Stephen Fink, David Grove, Michael Hind,
and Peter F. Sweeney. A Survey of Adaptive Optimization in
Virtual Machines. In Proceedings of the Institute of Electrical
and FElectronics Engineers. IEEE, 2005.

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Oster-
mann. Overview of CaesarJ. Transactions on International
Conference on Aspect-Oriented Software Development I, LNCS
3880, 2006.

Matthew Arnold, Michael Hind, and Barbara G. Ryder. Online
feedback-directed optimization of Java. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2002.

168



Bibliography

[AJD]

[AR02]

[Aspal
[Aspb]

[Aspc]

[Aspd]

[Asp08]

[ATBC*03]

[ATAMO07]

[Ayc03]

[BAO1]

[BADMO6]

Homepage of AspectJ Development Tools. http://eclipse.
org/ajdt/.

Matthew Arnold and Barbara G. Ryder. Thin Guards: A Sim-
ple and Effective Technique for Reducing the Penalty of Dy-
namic Class Loading. In Proceedings of the Furopean Confer-
ence on Object-Oriented Programming. Springer Verlag, 2002.

Homepage of Aspect]. http://www.aspectj.org.

The AspectJ™Development Environment Guide.  http:
//www.eclipse.org/aspectj/doc/released/devguide/
index.htmll

Homepage of AspectS. http://www-ia.tu-ilmenau.de/
“hirsch/Projects/Squeak/AspectS/.

Homepage of AspectWerkz. http://aspectwerkz.codehaus.
org/.

The AspectJ Programming Guide. http://www.eclipse.org/
aspectj/doc/released/progguide/index.html, 2008.

Ali-Reza Adl-Tabatabai, Jay Bharadwaj, Dong-Yuan Chen,
Anwar Ghuloum, Vijay Menon, Brian Murphy, Mauricio Ser-
rano, and Tatiana Shpeisman. The StarJIT Compiler: A Dy-

namic Compiler for Managed Runtime Environments. Intel
Technology Journal, 7, 2003.

Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making
Trace Monitors Feasible. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations. ACM Press, 2007.

John Aycock. A brief history of just-in-time. ACM Computing
Surveys, 35, 2003.

Lodewijk Bergmans and Mehmet Aksit. Compos-
ing  Multiple Concerns Using Composition Filters.
Communications of the ACM, 2001. Available at

trese.cs.utwente.nl/composition_filters/.

Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and
Mira Mezini. Adapting Virtual Machine Techniques for Seam-
less Aspect Support. In Proceedings of the Conference on

169


http://eclipse.org/ajdt/
http://eclipse.org/ajdt/
http://www.aspectj.org
http://www.eclipse.org/aspectj/doc/released/devguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/index.html
http://www.eclipse.org/aspectj/doc/released/devguide/index.html
http://www-ia.tu-ilmenau.de/~hirsch/Projects/Squeak/AspectS/
http://www-ia.tu-ilmenau.de/~hirsch/Projects/Squeak/AspectS/
http://aspectwerkz.codehaus.org/
http://aspectwerkz.codehaus.org/
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html

Bibliography

[BAT]

[BCE]

[BFTY04]

[BGHS04]

[BHO6]

[BHL*05]

[BHL*+07]

Object-Oriented Programming, Systems, Languages, and Ap-
plications, 2006.

Homepage of BAT. http://www.st.informatik.
tu-darmstadt.de/BAT.

Byte Code Engineering Library.

Ohad Barzilay, Yishai A. Feldman, Shmuel Tyszberowicz, and
Amiram Yehudai. Call and Execution Semantics in AspectJ.
In Proceedings of the Workshop on Foundations of Aspect-
Oriented Languages, 2004.

Howard Barringer, Allen Goldberg, Klaus Havelund, and
Koushik Sen. Rule-Based Runtime Verification. In Bernhard
Steffen and Giorgio Levi, editors, Proceedings of the Interna-
tional Conference on Verification, Model Checking and Abstract
Interpretation, volume 2937 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

Christoph Bockisch and Michael Haupt. Taxonomy of Imple-
mentation Techniques in Relation to the Aspects of the Meta-
Model. Technical Report AOSD-Europe-TUD-6, Technische
Universitat Darmstadt, 2006.

Johan Brichau, Michael Haupt, Nicholas Leidenfrost, Awais
Rashid, Lodewijk Bergmans, Tom Staijen, Istvan Anis Charfi,
Christoph Bockisch, Ivica Aracic, Vaidas Gasiunas, Klaus Os-
termann, Lionel Seinturier, Renaud Pawlak, Mario Siidholt,
Jacques Noyé, Davy Suvee, Maja D’Hondt, Peter Ebraert,
Wim Vanderperren, Shiu Lun Tsang Monica Pinto, Lidia
Fuentes, Eddy Truyen, Adriaan Moors, Maarten Bynens,
Wouter Joosen, Shmuel Katz, Adrian Coyler, Helen Hawkins,
Andy Clement, and Olaf Spinczyk. Report describing survey of
aspect languages and models. Technical Report AOSD-Europe-
VUB-01, Vrije Universiteit Brussel, 2005.

Eric Bodden, Laurie J. Hendren, Patrick Lam, Ondfej Lhoték,
and Nomair A. Naeem. Collaborative Runtime Verification with
Tracematches. In Oleg Sokolsky and Serdar Tasiran, editors,
Proceedings of the International Workshop on Runtime Veri-

fication, volume 4839 of Lecture Notes in Computer Science.
Springer, 2007.

170


http://www.st.informatik.tu-darmstadt.de/BAT
http://www.st.informatik.tu-darmstadt.de/BAT

Bibliography

[BHMOG]

[BHMMKO5]

[BHMOO4]

[BJCOS]

[BKHT06]

[BMO7]

[BMGF07]

[BMH*07]

Christoph Bockisch, Michael Haupt, and Mira Mezini. Dynamic
Virtual Join Point Dispatch. In Proceedings of the Workshop
on Software Engineering Properties of Languages and Aspect

Technologies, 2006.

Christoph Bockisch, Michael Haupt, Mira Mezini, and Ralf
Mitschke. Envelope-based Weaving for Faster Aspect Com-
pilers. In Proceedings of the International Conference NetOb-
jectDays on Objects, Components, Architectures, Services, and

Applications for a Networked World. GI, 2005.

Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus
Ostermann. Virtual Machine Support for Dynamic Join Points.

In Proceedings of the International Conference on Aspect-
Oriented Software Development. ACM Press, 2004.

Christoph Bockisch, Andrew Jackson, and David Cousins. Sec-
ond Review of Atelier Content and Performance. Technical
Report AOSD-Europe-TUD-10, Technische Universitdt Darm-
stadt, 2008.

Christoph Bockisch, Sebastian Kanthak, Michael Haupt,
Matthew Arnold, and Mira Mezini. Efficient Control Flow
Quantification. In Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications,
2006.

Christoph Bockisch and Mira Mezini. A Flexible Architec-
ture For Pointcut-Advice Language Implementations. In Pro-
ceedings of the Workshop on Virtual Machines and Intermedi-

ate Languages for Emerging Modularization Mechanisms. ACM
Press, 2007.

Christoph Bockisch, Mira Mezini, Kris Gybels, and Johan Fab-
ry. Initial Definition of the Aspect Language Reference Model
and Prototype Implementation Adhering to the Language Im-
plementation Toolkit Architecture. Technical Report AOSD-
Europe-TUD-7, Technische Universitat Darmstadt, 2007.

Christoph Bockisch, Mira Mezini, Wilke Havinga, Lodewijk
Bergmans, and Kris Gybels. Reference Model Implementa-
tion. Technical Report AOSD-Europe-TUD-8, Technische Uni-
versitdt Darmstadt, 2007.

171



Bibliography

[BMN06]

[BMOO5]

[Bon03]

[Bry86]

[BSM*08]

[BVDO5]

[CLCMO0]

[CLI06)]

[CLW03]

Johan Brichau, Mira Mezini, Jacques Noyé, Wilke Havinga,
Lodewijk Bergmans, Vaidas Gasiunas, Christoph Bockisch, Jo-
han Fabry, and Theo D’Hondt. An Initial Metamodel for
Aspect-Oriented Programming Languages. Technical Report
AOSD-Europe-VUB-12, Vrije Universiteit Brussel, 2006.

Christoph Bockisch, Mira Mezini, and Klaus Ostermann. Quan-
tifying over Dynamic Properties of Program Execution. In Pro-
ceeding of the Dynamic Aspects Workshop, 2005.

Jonas Bonér.  AspectWerkz - Dynamic AOP for Java.
http://codehaus.org/~ jboner/papers/aosd2004_
aspectwerkz.pdf, 2003.

Randal E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, 35, 1986.

Christoph Bockisch, Andreas Sewe, Mira Mezini, Arjan de Roo,
Wilke Havinga, Lodewijk Bergmans, and Kris de Schutter.
Modeling of Representative AO Languages on Top of the Ref-
erence Model. Technical Report AOSD-Europe-TUD-9, Tech-
nische Universitat Darmstadt, 2008.

Jonas Bonér, Alexandre Vasseur, and Joakim Dahlstedst.
JRockit JVM Support for AOP, Part 1. http://dev2dev.bea.
com/pub/a/2005/08/jvm_aop_1.html, 2005.

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd
Millstein. MultiJava: Modular Open Classes and Symmetric
Multiple Dispatch for Java. In Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations, 2000.

Common Language Infrastructure (CLI). http://wuw.
ecma-international.org/publications/standards/
Ecma-335.htm, 2006.

Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Parame-
terized Aspect Calculus: A Core Calculus for the Direct Study
of Aspect-Oriented Languages. ftp://ftp.ccs.neu.edu/pub/
people/wand/papers/clw-03.pdf}, 2003.

172


http://codehaus.org/~jboner/papers/aosd2004_aspectwerkz.pdf
http://codehaus.org/~jboner/papers/aosd2004_aspectwerkz.pdf
 http://dev2dev.bea.com/pub/a/2005/08/jvm_aop_1.html 
 http://dev2dev.bea.com/pub/a/2005/08/jvm_aop_1.html 
 http://www.ecma-international.org/publications/standards/Ecma-335.htm 
 http://www.ecma-international.org/publications/standards/Ecma-335.htm 
 http://www.ecma-international.org/publications/standards/Ecma-335.htm 
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/clw-03.pdf
ftp://ftp.ccs.neu.edu/pub/people/wand/papers/clw-03.pdf

Bibliography

[DA99)]

[DGH*04]

[DKM02]

[Dmi01]

[dRO7]

[DROS]

[dRHH*08]

[DRLOS]

[DS84]

David Detlefs and Ole Agesen. Inlining of Virtual Methods.
In Proceedings of the European Conference on Object-Oriented
Programming. Springer Verlag, 1999.

Bruno Dufour, Christopher Goard, Laurie Hendren, Oege
de Moor, Ganesh Sittampalam, and Clark Verbrugge. Mea-
suring the Dynamic Behaviour of AspectJ Programs. In Pro-
ceedings of the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2004.

Christopher Dutchyn, Gregor Kiczales, and Hidehiko Ma-
suhara. AOP Language Exploration Using the Aspect Sand
Box. In Proceedings of the International Conference on Aspect-
Oriented Software Development, 2002.

Mikhail Dmitriev. Towards Flexible and Safe Technology for
Runtime Evolution of Java Language Applications. In Proceed-
ings of the Workshop on Engineering Complex Object-Oriented
Systems for Fvolution, 2001.

Arjan de Roo. Towards More Robust Advice: Message Flow
Analysis for Composition Filters and its Application. Master’s
thesis, University of Twente, Netherlands, 2007.

Robert Dyer and Hridesh Rajan. Nu: a Dynamic Aspect-
Oriented Intermediate Language Model and Virtual Machine
for Flexible Runtime Adaptation. In Proceedings of the Inter-
national Conference on Aspect-Oriented Software Development.
ACM Press, 2008.

Arjan de Roo, Michiel Hendriks, Wilke Havinga, Pascal
Durr, and Lodewijk Bergmans. Compose*: a Language- and
Platform-Independent Aspect Compiler for Composition Fil-
ters. In First International Workshop on Advanced Software
Development Tools and Techniques, WASDeTT 2008, Paphos,
Cyprus, Cyprus, July 2008. No publisher.

Homepage of Harmony Dynamic Runtime Layer Virtual Ma-
chine. http://harmony.apache.org/subcomponents/drlvm,
2008.

L. Peter Deutsch and Allan M. Schiffman. Efficient Implemen-
tation of the Smalltalk-80 System. In Proceedings of the Sym-
posium on Principles of Programming Languages, 1984.

173


http://harmony.apache.org/subcomponents/drlvm

Bibliography

[Ecl]
[ES90]

[FGHO2|

FQU3

[GDN*08]

[GHJIV95]

[GJSBOO]

[GVGO4]

[Hau06]

[HBOS]

Homepage of Eclipse. http://www.eclipse.org.

Margaret A. Ellis and Bjarne Stroustrup. The annotated C++
reference manual. Addison-Wesley Longman Publishing Co.,
Inc., 1990.

Stephen Fink, David Grove, and Michael Hind. The Design
and Implementation of the Jikes RVM Optimizing Compiler.
Tutorial Notes from Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, November 2002.
Available at jikesrvm.sourceforge.net /info/presentations.shtml.

Stephen J. Fink and Feng Qian. Design, Implementation and
Evaluation of Adaptive Recompilation with On-Stack Replace-
ment. In Proceedings of the International Symposium on Code
Generation and Optimization, 2003.

Ryan M. Golbeck, Samuel Davis, Immad Naseer, Igor Ostro-
vsky, and Gregor Kiczales. Lightweight Virtual Machine Sup-
port for AspectJ. In Proceedings of the International Confer-
ence on Aspect-Oriented Software Development. ACM Press,
2008.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns. Addison Wesley, 1995.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java
Language Specification. Addison-Wesley Longman Publishing
Co., Inc., 2 edition, 2000.

Dayong Gu, Clark Verbrugge, and Etienne Gagnon. Code lay-
out as a source of noise in JVM performance. In Proceedings of
the Component And Middleware Performance Workshop, Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, 2004.

Michael Haupt. Virtual Machine Support for Aspect-Oriented
Programming Languages. PhD thesis, Technische Universitét
Darmstadt, 2006.

Matthew Hertz and Emery D. Berger. Quantifying the perfor-
mance of garbage collection vs. explicit memory management.
In Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications. ACM Press, 2005.

174


http://www.eclipse.org

Bibliography

[HBAOS]

[HBMOO03]

[HCU92]

[HH04]

[Hir03]

[HMO04a]

[HMO4D)

[HMB™*05]

[Hot08]

Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit. Pro-
totyping and Composing Aspect Languages: using an Aspect
Interpreter Framework. In Proceedings of the European Confer-
ence on Object-Oriented Programming. Springer Verlag, 2008.

Michael Haupt, Christoph Bockisch, Mira Mezini, and Klaus
Ostermann. Towards Aspect-Aware Execution Models. Tech-
nical Report TUD-ST-2003-01, Technische Universitdat Darm-
stadt, 2003.

Urs Holzle, Craig Chambers, and David Ungar. Debugging
Optimized Code with Dynamic Deoptimization. In Proceedings
of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 1992.

Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In
Proceedings of the International Conference on Aspect-Oriented
Software Development. ACM Press, 2004.

Robert Hirschfeld. AspectS - Aspect-Oriented Programming
with Squeak. In Proceedings of the International Conference
NetObjectDays on Objects, Components, Architectures, Ser-
vices, and Applications for a Networked World. Springer, 2003.

Michael Haupt and Mira Mezini. Micro-Measurements for Dy-
namic Aspect-Oriented Systems. In Proceedings of the Interna-
tional Conference NetObjectDays on Objects, Components, Ar-
chitectures, Services, and Applications for a Networked World.
Springer, 2004.

Michael Haupt and Mira Mezini. Virtual Machine Support for
Aspects with Advice Instance Tables. In Proceedings of the
French Workshop on Aspect-Oriented Programming, 2004.

Michael Haupt, Mira Mezini, Christoph Bockisch, Tom Dinke-
laker, Michael Eichberg, and Michael Krebs. An Execution
Layer for Aspect-Oriented Programming Languages. In Pro-
ceedings of the International Conference on Virtual Execution
Environments. ACM Press, 2005.

Homepage of Java HotSpot VM. http://java.sun.com/docs/
hotspot/, 2008.

175


http://java.sun.com/docs/hotspot/
http://java.sun.com/docs/hotspot/

Bibliography

[HSO07]

[IKM*97]

[Ins]

ITK*03]

[JAMO7]

[Java]

[Javb]

[JBo]

[JCC*06]

[JCCBOT]

Michael Haupt and Hans Schippers. A Machine Model for
Aspect-Oriented Programming. In Proceedings of the FEuropean
Conference on Object-Oriented Programming, 2007.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the Future: the Story of Squeak, a Practi-
cal Smalltalk Written in Itself. In Proceedings of Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations. ACM Press, 1997.

Java Instrument Package. http://java.sun.com/j2se/1.
5.0/docs/api/java/lang/instrument/package-summary.
html.

Kazuaki Ishizaki, Mikio Takeuchi, Kiyokuni Kawachiya, Toshio
Suganuma, Osamu Gohda, Tatsushi Inagaki, Akira Koseki,
Kazunori Ogata, Motohiro Kawahito, Toshiaki Yasue, Takeshi
Ogasawara, Tamiya Onodera, Hideaki Komatsu, and Toshio
Nakatani. Effectiveness of Cross-Platform Optimizations for a
Java Just-In-Time Compiler. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Ap-
plications, 2003.

Homepage of Java Aspect Metamodel Interpreter. http://
jami.sf.net/|, 2007.

Homepage of Java Reflection API. http://java.sun.com/
docs/books/tutorial/reflect/.

Homepage of JavaGrande Benchmarks. www.dhpc.adelaide.
edu.au/projects/javagrande/benchmarks/.

Homepage of JBoss AOP. http://www. jboss.com/products/
aop.

Andrew Jackson, Siobhan Clarke, Matt Chapman, Andy Dean,
and Christoph Bockisch. Deliver Preliminary Support For Top
Priority Use Cases. Technical Report AOSD-Europe-IBM-64,
IBM UK, 2006.

Andrew Jackson, Siobhan Clarke, Matt Chapman, and
Christoph Bockisch. Deliver Preliminary Support for Next-
Priority Use Cases. Technical Report AOSD-Europe-IBM-80,
IBM UK, 2007.

176


http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/instrument/package-summary.html
http://jami.sf.net/
http://jami.sf.net/
http://java.sun.com/docs/books/tutorial/reflect/
http://java.sun.com/docs/books/tutorial/reflect/
www.dhpc.adelaide.edu.au/projects/javagrande/benchmarks/ 
www.dhpc.adelaide.edu.au/projects/javagrande/benchmarks/ 
http://www.jboss.com/products/aop
http://www.jboss.com/products/aop

Bibliography

[Jik]

[JJT]

[INT]

[TVM]

[Ker]

[KHH*01]

[KMO5]

[Lia99]

[LY99]

[Mel99)]

[Mil04]

[MKDO2]

Homepage of Jikes Research Virtual Machine. http://
jikesrvm.sourceforge.net/.

Homepage of JJTree. https://javacc.dev.java.net/doc/
JJTree.htmll

Homepage of Java Native Interface. http://java.sun.com/
j2se/1.4.2/docs/guide/jni/.

Homepage of Java Virtual Machine Tool Interface. http://
java.sun.com/j2se/1.5.0/docs/guide/jvmti/.

Mik Kersten. AOP Tools Comparison. http://www-106.1ibm.
com/developerworks/java/library/j-aopworkl/.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William G. Griswold. An Overview of AspectJ.
In Proceedings of the Furopean Conference on Object-Oriented
Programming, 2001.

Gregor Kiczales and Mira Mezini. Separation of Concerns with
Procedures, Annotations, Advice and Pointcuts. In Proceedings
of the European Conference on Object-Oriented Programming.
Springer, 2005.

Sheng Liang. Java Native Interface: Programmer’s Guide
and Reference. Addison-Wesley Longman Publishing Co., Inc.,
1999.

Tim Lindholm and Frank Yellin, editors. The Java Virtual
Machine Specification. Addison-Wesley, 2 edition, 1999.

Steve  Meloan. The Java  HotSpot  Performance
Engine: An  In-Depth  Look. Sun  Microsystems,
http://java.sun.com/developer/technicalArticles/
Networking/HotSpot/index.html, 1999.

Todd Millstein. Practical Predicate Dispatch. In Proceedings
of the Conference on Object-Oriented Programming Systems,
Languages, and Applications. ACM Press, 2004.

H. Masuhara, G. Kiczales, and C. Dutchyn. Compilation se-
mantics of aspect-oriented programs. In Proceedings of the

177


http://jikesrvm.sourceforge.net/
http://jikesrvm.sourceforge.net/
https://javacc.dev.java.net/doc/JJTree.html
https://javacc.dev.java.net/doc/JJTree.html
http://java.sun.com/j2se/1.4.2/docs/guide/jni/
http://java.sun.com/j2se/1.4.2/docs/guide/jni/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://www-106.ibm.com/ developerworks/ java/ library/ j-aopwork1/
http://www-106.ibm.com/ developerworks/ java/ library/ j-aopwork1/
http://java.sun.com/ developer/ technicalArticles/ Networking/ HotSpot/ index.html
http://java.sun.com/ developer/ technicalArticles/ Networking/ HotSpot/ index.html

Bibliography

IMKDO3]

IMOO3]

IMRO7]

[INCMO3]

[OMBOS5]

[PAGO3]

[PGAO1]

[PGA02]

[PRO]

Foundations of Aspect-Oriented Languages, Workshop at Inter-
national Conference on Aspect-Oriented Software Development.
Springer, 2002.

Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A
Compilation and Optimization Model for Aspect-Oriented Pro-
grams. In Proceedings of the Conference on Compiler Construc-
tion. Springer, 2003.

Mira Mezini and Klaus Ostermann. Conquering aspects with
Caesar. In AOSD ’03: Proceedings of the International Con-
ference on Aspect-Oriented Software Development, New York,
NY, USA, 2003. ACM.

Suraj Mukhi and Nico Rottstédt. Survey of Open-
Source JVMs. http://www.st.informatik.tu-darmstadt.
de/pages/projects/ALIA/doc/JVMSurvey.pdf, 2007.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. My-
ers. Polyglot: An Extensible Compiler Framework for Java. In
Proceedings of the International Conference on Compiler Con-
struction, 2003.

Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Ex-
pressive Pointcuts for Increased Modularity. In Proceedings
of the Furopean Conference on Object-Oriented Programming,
2005.

Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-In-
Time Aspects: Efficient Dynamic Weaving for Java. In Proceed-
ings of the International Conference on Aspect-Oriented Soft-
ware Development. ACM Press, 2003.

Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic
Homogenous AOP with PROSE. Technical report, Department
of Computer Science, ETH Ziirich, 2001.

Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic
Weaving for Aspect-Oriented Programming. In Proceedings of
the International Conference on Aspect-Oriented Software De-
velopment. ACM Press, 2002.

Homepage of PROSE. http://prose.ethz.ch.

178


http://www.st.informatik.tu-darmstadt.de/pages/projects/ALIA/doc/JVMSurvey.pdf
http://www.st.informatik.tu-darmstadt.de/pages/projects/ALIA/doc/JVMSurvey.pdf
http://prose.ethz.ch

Bibliography

[PSDF01]

[PVCO1]

[RDHN06]

[RDNH06]

[RS03]

[SBMOS)]

[SAMO3]

[SDROS]

[Sma)

[SMU*04]

Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Ger-
ard Florin. JAC: A Flexible Solution for Aspect-Oriented Pro-
gramming in Java. In Proceedings of the International Confer-
ence on Metalevel Architectures and Separation of Crosscutting
Concerns, 2001.

Michael Paleczny, Christopher Vick, and Cliff Click. The Java
Hotspot Server Compiler. In Proceedings of the Java Virtual
Machine Research and Technology Symposium, 2001.

Hridesh Rajan, Robert Dyer, Youssef Hanna, and Harish
Narayanappa. Preserving Separation of Concerns through Com-
pilation. Technical Report 405, Iowa State University, 2006.

Hridesh Rajan, Robert Dyer, Harish Narayanappa, and Youssef
Hanna. Nu: Towards an AspectOriented Invocation Mecha-
nism. Technical report, lowa State University, 2006.

Hridesh Rajan and Kevin J. Sullivan. Eos: instance-level as-
pects for integrated system design. In Proceedings of the Euro-
pean Software Engineering Conference held jointly with Inter-
national Symposium on Foundations of Software Engineering.
ACM Press, 2003.

Andreas Sewe, Christoph Bockisch, and Mira Mezini.
Redundancy-free Residual Dispatch. In Proceedings of the
Workshop on Foundations of Aspect-Oriented Languages, 2008.

Damien Sereni and Oege de Moor. Static analysis of aspects. In
Proceedings of the International Conference on Aspect-Oriented
Software Development. ACM Press, 2003.

Rakesh B. Setty, Robert E. Dyer, and Hridesh Rajan. Weave
Now or Weave Later: A Test Driven Development Perspective
on Aspect-oriented Deployment Models. Technical Report TR
08-02, Towa State University, Iowa State University, 2008.

Homepage of Smalltalk. http://www.smalltalk.org.

Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi, Saeko
Matsuura, and Seiichi Komiya. Association aspects. In Proceed-
ings of the International Conference on Aspect-Oriented Soft-
ware Development, 2004.

179


http://www.smalltalk.org

Bibliography

[SYK*01]

[SYNO2]

[Tan06]

[TNO04]

[US87]

Homepage of Soot. http://www.sable.mcgill.ca/soot/
soot_download.html.

Homepage of SPEC JVM98 Benchmark Suite. http://www.
spec.org/osg/jvm98/.

Homepage of Squeak. http://www.squeak.org/.

Homepage of Steamloom. http://www.st.informatik.
tu-darmstadt.de/static/pages/projects/AORTA/
Steamloom. jsp.

Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JAsCo:
an Aspect-Oriented Approach Tailored for Component Based
Software Development. In Proceedings of the International Con-
ference on Aspect-Oriented Software Development. ACM Press,
2003.

Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito,
Hideaki Komatsu, and Toshio Nakatani. A Dynamic Optimiza-
tion Framework for a Java Just-In-Time Compiler. In Proceed-
ings of the International Conference on Object Oriented Pro-
gramming Systems Languages and Applications. ACM Press,
2001.

Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. An
Empirical Study of Method In-lining for a Java Just-in-Time
Compiler. In Proceedings of the Java Virtual Machine Research
and Technology Symposium. USENIX Association, 2002.

Eric Tanter. An Extensible Kernel Language for AOP. In Pro-
ceedings of the Workshop on Open and Dynamic Aspect Lan-
guages, International Conference on Aspect-Oriented Software
Development, 2006.

Eric Tanter and Jacques Noyé. Motivation and Requirements
for a Versatile AOP Kernel. In Proceedings of the European
Interactive Workshop on Aspects in Software, 2004.

David Ungar and Randall B. Smith. Self: The power of simplic-
ity. In Proceedings of the Conference on Object-Oriented Pro-

gramming Systems, Languages, and Applications. ACM Press,
1987.

180


http://www.sable.mcgill.ca/soot/soot_download.html
http://www.sable.mcgill.ca/soot/soot_download.html
http://www.spec.org/osg/jvm98/
http://www.spec.org/osg/jvm98/
http://www.squeak.org/
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/AORTA/Steamloom.jsp
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/AORTA/Steamloom.jsp
http://www.st.informatik.tu-darmstadt.de/static/pages/projects/AORTA/Steamloom.jsp

Bibliography

[Vas04]

[VS04]

[VSV+05]

[WKD04]

[xal]

Alexandre Vasseur. Dynamic AOP and Runtime Weav-
ing for Java — How does AspectWerkz Address It?
http://aspectwerkz.codehaus.org/downloads/papers/
a0sd2004-daw-aspectwerkz.pdf, 2004.

Wim Vanderperren and Davy Suvée. Optimizing JAsCo Dy-
namic AOP through HotSwap and Jutta. In Proceedings of
Dynamic Aspects Workshop, 2004.

Wim Vanderperren, Davy Suvée, Bart Verheecke, Maria A.
Cibran, and Viviane Jonckers. Adaptive Programming in
JAsCo. In Proceedings of 4International Conference on Aspect-
Oriented Software Development. ACM Press, 2005.

Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn.
A Semantics for Advice and Dynamic Join Points in Aspect-
Oriented Programming. Proceedings of Transactions on Pro-
gramming Languages and Systems, 26, 2004.

Homepage of Xalan-Java XSLT processor. http://xml.
apache.org/xalan-j.

181


http://aspectwerkz.codehaus.org/downloads/papers/aosd2004-daw-aspectwerkz.pdf
http://aspectwerkz.codehaus.org/downloads/papers/aosd2004-daw-aspectwerkz.pdf
http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-j

	Overview
	Context of this Thesis
	Introduction
	Virtual Join Points
	Aspect-Oriented Language Implementation Architecture
	VM Integration of AO Concepts
	Benchmarks

	Summary of Contributions
	Structure of this Thesis

	Virtual Join Points
	Background
	Pointcut-and-advice Languages
	The Java Bytecode Format

	Binding of Join Points
	Virtual Join Points
	Prototype Implementation of Envelopes
	Generating Envelopes
	Weaving in Envelopes
	Limitations of the Prototype
	Dynamic Weaving in Envelopes

	Evaluation of Weaving Approaches
	Evaluated Approaches
	Benchmarks


	The Aspect Language Implementation Architecture
	Common Features of Aspect-Oriented Languages
	AspectJ
	CaesarJ
	JAsCo
	Compose*
	Summary of language features

	The Language Independent Aspect Meta-Model
	The Framework for Implementing Aspect Languages
	FIAL's Execution Model
	Work Flows
	Weaving Directives

	Language Mappings
	AspectJ Mapping
	JAsCo Mapping
	Compose* Mapping
	Discussion

	Execution Environments
	Envelope-Based Reference Implementation
	Static Weaver

	AO Language Design and Implementation with FIAL
	Realizing the Sample Language in FIAL


	Optimizing AO Concepts in the Virtual Machine
	Motivation for Dynamic Optimizations of AO Concepts
	Dynamic Optimizations of OO Concepts
	Optimized Dynamic Aspect Deployment
	Eager versus Lazy Envelope Call Insertion
	Speculative Inlining Techniques for Envelopes
	Special Language Features

	Control Flow Quantification
	Current Implementation of Control Flow Quantification
	Control Flow Guards
	Implementation of Control Flow Guards


	Evaluating Dynamic Optimizations of AO Concepts
	Benchmarks for Dynamic Features of AO Languages
	Evaluating Optimized Dynamic Deployment
	Approaches Participating in the Evaluation
	Alternative Configurations of Envelope-Aware Jikes
	Results of Deployment Evaluation

	Evaluating Control Flow Quantification
	Implementations of cflow in the ajc and abc Compilers
	Micro-Benchmarks
	Benchmarks Based on SPEC JVM98
	abc Benchmark Suite


	Related Work
	Virtual Join Points
	Prototype- and Delegation-Based Execution Model
	Reflection-Based Execution Model

	Meta-Models for Aspect-Oriented Concepts
	Metaspin and JAMI
	Reflex
	Aspect Sand Box

	Intermediate Languages and Execution Environments
	Nu
	Lightweight VM Support for AspectJ


	Conclusions and Future Work
	Conclusions
	Future Work
	Optimizing the Dispatch Function
	Virtual Machine as FIAL Instantiation
	Static Crosscutting
	IDE Support for Programs Executed on FIAL


	Scientific Career
	Bibliography

