
Model-based Application Development for
Massively Parallel Embedded Systems

Jan W.M. Jacobs

Members of the dissertation committee:

prof. dr. ir. G.J.M. Smit University of Twente (promoter)
dr. ir. J. Kuper University of Twente (assistent-promoter)

prof. dr. ir. Th. Krol University of Twente
prof. dr. ir. M. Aksit University of Twente

prof. dr. H. Corporaal University of Eindhoven
ir. P.G. Jansen University of Twente

dr. ir. P.J. Mosterman The MathWorks, Inc.
prof. dr. ir. A.J. Mouthaan University of Twente (chairman and secretary)

CTIT Ph.D. thesis Series No. 08-132
Centre for Telematics and Information Technology (CTIT)
P.O. Box 217 - 7500 AE Enschede - The netherlands

Copyright c© 2008 by Jan W.M. Jacobs, Kessel, The Netherlands.
Cover photo: Jan Beckers, Venlo, The Netherlands.
Cover design: Jos Kerkhoffs, Steijl, The Netherlands.

All rights reserved. No part of this book may be reproduced or transmitted, in
any form or by any means, electronic or mechanical, including photocopying,
microfilming, and recording, or by any information storage or retrieval system,
without the prior written permission of the author.

Typeset with LATEX.
Printed by Océ Technologies BV, Venlo, The Netherlands.

ISBN 978-90-365-2752-1
ISSN 1381-3617 (CTIT Ph.D.-thesis series no. 08-132)

ii

MODEL-BASED APPLICATION DEVELOPMENT
FOR MASSIVELY PARALLEL EMBEDDED

SYSTEMS

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W.H.M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Thursday, November 20, 2008 at 16.45

by

Johannes Wilhelmus Maria Jacobs

born on 30 April 1955,
in Kessel (LB), The Netherlands

iii

This dissertation is approved by:

prof. dr. ir. G.J.M. Smit (promoter) and
dr. ir. J. Kuper (assistant-promoter)

iv

Abstract

The development of embedded systems in information-rich contexts is governed by
some intertwined trends. The increase of both volume of data to be processed and
the related processing functionality feeds the growing complexity of applications.
Independently, the processing hardware that is needed to process these applica-
tions, is becoming increasingly parallel and heterogeneous (many-core) because
of performance and power problems. Furthermore, today’s compiler technology is
not able to translate sequential legacy code for multi-core or many-core systems
in an efficient way.

This thesis addresses the problem of generating efficient code for a number
of cores, that operate synchronously. Examples are Single Instruction Multiple
Data (SIMD) and Very Long Instruction Word (VLIW) architectures. In this
thesis we restrict ourselves to architectures that include a control processor that
provides the instruction stream.

In practice the manufacturers of such many-core processors only provide a
C-compiler that supports hardware intrinsic instructions. This situation usually
requires manual adaptation of sequential code. Unfortunately, a first feedback
of the implementation on the targeted parallel architecture only comes late in
the development trajectory. Moreover, during implementation phases more engi-
neers enter the project and this increases the risk of early errors proliferating to
later phases. Although some parts of the system can be modelled in high level
language(s) (e.g., MATLAB), the typical approach lacks a single integral and
executable framework allowing for an immediate system-wide verification.

This thesis proposes an integral design methodology, named IRIS, for the
development of firmware for many-core architectures.

The methodology is illustrated by three cases: a colour image processing
pipeline for a printer, stochastic image quantisation, and data mining of dynamic
document spaces. For the three cases the various development phases and the
associated development roles result in mathematical models, that can be directly

transcribed in a functional language. The executable models are subsequently
transformed into a series of implementation models, that converge to the targeted
many-core implementation.

This thesis contains the following contributions:
First, all three cases showed that for an effective and efficient implementation

of applications on a massively parallel processing architecture it is necessary to
manually (re)model the problem in a suitable parallel representation.

Second, a semi-automatic and interactive development process is needed for
mapping an application on a dedicated massively parallel processing core.

Third, the three cases demonstrate that a single architectural language – firmly
based on mathematics – for all development phases, reduces development time and
reduces the number of design errors.

Fourth, it is shown that the relevant extra-functional requirements can be
handled by integrating them into the regular functional flow. As a consequence
the architectural language should support in situ monitoring and visualisation of
quantifiable extra-functional properties.

Fifth, in the development process small steps and immediate feedback are
crucial as demonstrated by the various performed iterations (optimisations, cor-
rection of errors) and the involved design space explorations.

Sixth, it is shown that a development process having a phased approach works
very well. This should subsequently include:

1. a familiarisation phase with respect to the problem and the target hardware
architecture(s),

2. an incremental prototyping phase (hardware architecture independent), and

3. a transformational development phase (hardware architecture dependent),

which are performed in an iterative manner when needed.

vi

Samenvatting

De ontwikkeling van embedded systemen in informatie-intensieve omgevingen
wordt bepaald door enkele met elkaar verbonden trends. De groei van zowel
volume van data alsook de gerelateerde processing funktionaliteit, voeden de
groeiende komplexiteit van applikaties. Onafhankelijk daarvan ontwikkelt de voor
de applikaties benodigde processing hardware zich vanwege prestatie en vermo-
gen steeds meer in de richting van meerdere parallelle en heterogene cores. Daar
komt nog bij dat de huidige compiler-technologie niet geschikt is om de bestaande
sequentiële source code te vertalen in een efficiënte implementatie voor multi- of
many-core systemen.

Dit proefschrift gaat over het probleem van de generatie van efficiënte code
voor een aantal cores die synchroon samenwerken. Voorbeelden zijn Single In-
struction Multiple Data (SIMD) en Very Long Instruction Word (VLIW) archi-
tekturen. In dit proefschrift beperken we ons tot architekturen die een bestu-
ringsprocessor hebben voor de benodigde instruktie-stroom.

In de praktijk leveren de producenten van dergelijke many-core processoren
slechts een C-compiler die hardware-afhankelijke instrukties ondersteunt. Deze
situatie vereist gewoonlijk een handmatige aanpassing van de sequentiële code.
In deze aanpak is het echter pas op een laat tijdstip mogelijk om een eerste
terugkoppeling te geven over de implementatie op de beoogde parallelle hardware
architektuur. Bovendien neemt gedurende de implementatie-fase de instroom van
engineers in het projekt toe en dit verhoogt het risiko van de proliferatie van
vroege fouten naar latere fasen. Ofschoon delen van het systeem kunnen worden
gemodelleerd in een hoog-nivo taal (b.v. MATLAB), ontbeert de typische aanpak
toch een integraal en executeerbaar raamwerk dat een instantane systeem-brede
verifikatie mogelijk maakt.

Dit proefschrift levert een integrale ontwerp-methodologie, genaamd IRIS,
voor de ontwikkeling van firmware voor many-core architekturen.

De methodologie wordt gëıllustreerd door drie praktijkvoorbeelden: een beeld-

verwerkingspipeline voor een kleurenprinter, stochastische beeldkwantisatie, en
data mining van dynamische dokumentkollekties. De diverse ontwikkelfasen en
hun overeenkomstige ontwikkelrollen resulteren voor al deze drie praktijk-voor-
beelden in wiskundige modellen, die op hun beurt direkt kunnen worden overgezet
in een funktionele taal. Deze uitvoerbare modellen worden achtereenvolgens
omgezet in een reeks implementatie-modellen, die uiteindelijk konvergeren naar
de beoogde many-core implementatie.

Het proefschrift bevat de volgende bijdragen:
Ten eerste, alle drie praktijkvoorbeelden laten zien dat het noodzakelijk is om

het probleem met de hand te (her)modelleren in een geschikte parallelle repre-
sentatie, ten einde een effektieve en efficiënte implementatie van de toepassing op
een massief-parallel verwerkingsarchitektuur te verkrijgen.

Ten tweede, voor het afbeelden van een toepassing op een specifieke massief-
parallelle verwerkingskern is een semi-automatisch en interactief ontwikkelproces
nodig.

Ten derde, de drie praktijkvoorbeelden demonstreren dat voor alle ontwikkel-
fasen, een enkele architektuurtaal – direkt gebaseerd op de wiskunde – zowel de
ontwikkeltijd alsook het aantal gemaakte ontwerpfouten terugbrengt.

Ten vierde wordt aangetoond dat de relevante extra-funktionele eisen kunnen
worden afgehandeld door deze te integreren in de reguliere funktionele beschrij-
ving. Een direkt gevolg hiervan is dat de architektuurtaal de in situ monitor-
ing and visualisatie van meetbare extra-funktionele eigenschappen moet onder-
steunen.

Ten vijfde, in het ontwikkelproces zijn het maken van klein stappen en instan-
tane terugkoppeling van cruciaal belang zoals gedemonstreerd door de verschei-
dene uitgevoerde iteraties (optimalisaties, korrekties van fouten) en de betrokken
verkenning van de ontwerpruimte.

Tenslotte wordt aangetoond dat een gefaseerde aanpak van het ontwikkelpro-
ces goed werkt. De fasen zijn achtereenvolgens:

1. een kennismakingsfase aangaande het probleem en de beoogde hardware
architektu(u)r(en),

2. een incrementele prototyping fase (hardware-architektuur onafhankelijk), en

3. een transformationele ontwikkelfase (hardware-architektuur afhankelijk).

De fasen worden naar behoefte op een iteratieve wijze uitgevoerd.

viii

Acknowledgements

Each end goes with a begin. The start of this enterprise was laid during my
study at the Technische Hogeschool Eindhoven (TUE); it seemed to be quite a
nice challenge to also become a ”doctor” one time. Never give up your dreams!

During the development of microcode for the first commercial laserprinter of
Océ in the mid 80s, unknowingly a first step was made in the selection of a theme
(a methodology) for this PhD. This work was conducted together with Roger
Hacking. Roger, thanks for your support.

One of the next steps was the selection of a suitable research group and pro-
fessor, and mid 90s I met Thijs Krol at the University of Twente (UT). Although
the meeting did not result in concrete plans, it led to the right scientific place and
a free meal in the Bastille. Thijs, thanks for the good advice.

It was for Roelof Hamberg, that achieving a doctor’s degree – as part of a
liaison assignment with the UT – became a topic within Océ. Roelof, many
thanks for your belief in me. I learned that communication of one’s dreams is
necessary before any strategic enterprise can start!

Now, almost at the end of this enterprise, I want to express my gratitude
to Gerard Smit and Jan Kuper. Gerard’s constant commitment, notably the
conscientiously reviewing of texts (papers, thesis) leading to to-the-point criticism
and – most of all – the encouraging way of coaching, made my PhD study both a
challenging and a rewarding process. Jan showed me how to (re)model a problem
in such a way that its mathematical description can be elegantly transcribed
in a functional language. From him I also painfully learned never to bet with
a mathematician. Gerard and Jan form a good complementary team in which
global as well as more detailed concerns balance well.

The foundation of the work on IRIS are the three application cases. The cases
could not have been conducted successfully without the assistance of Winston
Bond (Aspex) and master students Rui Dai (University of Singapore) and Leroy
van Engelen (UT). Winston, Rui and Leroy, thank you very much for your effort

and the many extra hours you have spent in analysing, designing and coding in
Aspro-C and in the ’dreadful’ J language! Roel Pouls, Samuel Driessen and Zoé
Goey provided me real challenging problem cases, and gave constructive feedback
on the quality of the work. Roel, thanks for introducing me into and guiding
through the world of productive image processing for a colour printer and Field
Programmable Gate Array (FPGA) based system design. Zoé, thank you very
much for the attentive guidance through Markov Random Fields and the various
critical remarks on the involved mathematical modeling. Samuel, your help in
the world of natural language processing, data mining and knowledge discovery
for news articles is very much appreciated. A lot of people supported the work
on the cases in a direct way. I want to thank (in arbitrary order): Stuart Cornell
(Aspex), Sebastian de Smet, Jos Nelissen, Rob Audenaerde, Harold van Garderen,
Andras Zolnay and Anjo Anjewierden (VU) for their contribution.

A very special word of thanks goes to Klaas Kuin, for guiding me through the
rough waters of writing a thesis. His typical way of giving constructive critism
on one hand and offering opportunities for me to discover in the other, not only
helped me finishing this work in time but also provided me with wise lessons for
my future life. Klaas, thank you for your coaching.

Co-readers are appreciated, in particular when massive amounts of English-
like (euphemism) texts are being generated. I want to thank the following people
for proofreading and other kinds of support: Marco Krom, Lou Somers, Her-
man Driessen, Jos Kerkhoffs, Jack van der Elsen, Waldo Ruiterman, Aart van
Meeteren, Jorrit Buurman, Kees-Jan Sonnenberg, Dion Slijp and Paul Verhelst.

You never work alone, and the following persons provided me with social
context. First I want to express my thanks to Rob van den Tillaart for the
many techno-philosophical and creative discussions (and U-memos) and Joost
Meijer for the many exciting applied AI thoughts that were exchanged. You both
provided me with an enjoyable research context. Thanks also to Juri Snijders,
Eric Dortmans, Jan Beckers, Mechlin Pelders, Rokus Visser, Peter van den Bosch,
Bart Verheijen, Matthijs Mullender, Dirk Schäfer, Rogier de Blok, Guus Muisers
and Josse van der Plaat. Furthermore the advise of the young but experienced
’flying doctors’ Jaap de Jong, Aico Troeman and Bart van As was very comforting.
Thank you all for being my roommates in Venlo!

Once a week I visit Twente, where I am lucky to be part of a pleasant
social matrix too. I want to thank Andre Kokkeler, Gerard Rauwerda, Bert
Molenkamp, Hans Scholten, Paul Havinga, Berend-Jan van der Zwaag, Pascal
Wolkotte, Philip Hölzenspies and all other staff-members, AIOs and Master stu-
dents of the UT/EWI CAES group (too many to mention them all) for providing
a challenging but at the same time comforting environment.

I also want to thank Marlous Weghorst, Nicole Baveld and Thelma Nordholt
and their Venlo counterparts Petra van der Heijden and Bianca Meijers for all the
secretarial work. You are the real motors in organisations, many thanks for your
support.

This enterprise could not end successfully without the unconditional support

x

of my family. I want to thank my parents for their continuous support for my
personal development. I want to thank my children, Marcia and Jorn, and Robert
for their love and understanding, in particular the many times that my thoughts
drifted away during the very scarce moments we were together. But most of all,
I want to thank my wife Marja for all her love, understanding and patience with
my peculiar way of being. Marja, you not only tolerated my frequent absence
but also took over a lot of my domestic duties, despite your own full time job.
Without you I would never have accomplished this work.

xi

TABLE OF CONTENTS

1 Introduction 1
1.1 Introduction . 1
1.2 Document processing in a changing world 2

1.2.1 Vision . 2
1.2.2 Trends . 4
1.2.3 Relating trends . 6

1.3 Problem description . 9
1.3.1 Problem description and thesis 9
1.3.2 Contribution . 9

1.4 Thesis outline . 10

2 State of the Art Massively Parallel Embedded Architectures 11
2.1 Introduction . 12

2.1.1 Streaming Applications . 12
2.1.2 Many-core Architectures . 13

2.2 Classification . 16
2.3 Sample architectures . 18

2.3.1 Montium Reconfigurable Processing Core 18
2.3.2 PACT-XPP . 21
2.3.3 Tilera . 23
2.3.4 Linedancer . 25

2.4 Conclusion . 29

3 The IRIS Firmware Design Methodology 31
3.1 Introduction . 31
3.2 State of the Art Methodologies . 35

3.2.1 Multi-disciplinary aspect . 35

Table of Contents

3.2.2 Iterative aspect . 36
3.2.3 Software economics . 37
3.2.4 Many-core developments . 37
3.2.5 Model-based design . 38

3.3 Model-Based Design as a basis for IRIS 40
3.3.1 Extending Model-Based Design 41
3.3.2 Remaining problems . 42

3.4 Starting points of IRIS . 43
3.5 The IRIS methodology . 47

3.5.1 Overview . 47
3.5.2 Architectural language . 48

3.6 Phase I: Familiarisation . 51
3.7 Phase II: Incremental Prototyping 52
3.8 Phase III: Transformational Development 52

3.8.1 Trade-off Subphase . 53
3.8.2 Reorganisation Subphase 53
3.8.3 Template Subphase . 55
3.8.4 Translation Subphase . 56

3.9 Summary . 57
3.10 Conclusions . 60

4 Case: Stochastic Image Quantisation 63
4.1 Introduction . 63
4.2 Familiarisation . 64

4.2.1 Business Graphics and Image Quantisation. 64
4.2.2 Stochastic Image Quantisation 66
4.2.3 Tiling . 74
4.2.4 Feasibility . 75

4.3 Incremental Prototyping . 76
4.3.1 The algorithm . 76
4.3.2 Quality function . 78
4.3.3 Quantisation methods . 78
4.3.4 Iteration count . 80

4.4 Transformational Development . 80
4.4.1 Global system considerations 81
4.4.2 Trade-off subphase . 84
4.4.3 Reorganisation subphase . 94
4.4.4 Template subphase . 97
4.4.5 Translation subphase . 97

4.5 Results and Discussion . 99
4.6 Conclusions . 109

xiv

Table of Contents

5 Case: Colour Image Processing 111
5.1 Introduction . 111
5.2 Familiarisation . 112

5.2.1 Colour Printing Process . 112
5.2.2 Colour Image Processing Pipeline 114
5.2.3 Feasibility . 123

5.3 Incremental Prototyping . 126
5.3.1 Half-toning Algorithm: Error Diffusion 126
5.3.2 Implementation independent aspects 128

5.4 Transformational Development . 130
5.4.1 Global system considerations 130
5.4.2 Trade-off subphase . 132
5.4.3 Reorganisation subphase . 132
5.4.4 Template subphase . 135
5.4.5 Translation subphase . 137

5.5 Results and Discussion . 138
5.6 Conclusions . 145

6 Case: Mining Dynamic Document Spaces 147
6.1 Introduction . 147
6.2 Familiarisation . 148

6.2.1 Information overload and Document maps 148
6.2.2 Data mining technologies 150
6.2.3 SOM training . 155
6.2.4 Feasibility . 158

6.3 Incremental prototyping . 160
6.3.1 The training algorithm . 160
6.3.2 Quality functions . 163
6.3.3 Running experiments . 164

6.4 Transformational development . 166
6.4.1 Global system considerations 166
6.4.2 Trade-off subphase . 170
6.4.3 Reorganisation subphase . 178
6.4.4 Template subphase . 179
6.4.5 Translation subphase . 180

6.5 Results and Discussion . 180
6.6 Conclusions . 187

7 Evaluation and Conclusions 189
7.1 Introduction . 189
7.2 Conclusions . 189
7.3 Claims . 190
7.4 Discussion and future research . 191

xv

Table of Contents

A Relevant Linedancer Details 193
A.1 Relevant Linedancer instructions 193
A.2 Storage hierarchy . 197

Appendices 193

xvi

List of Acronyms

AGU Address-Generation Unit

ALU Arithmetic and Logical Unit

AMD Advanced Micro Devices

ANN Artificial Neural Network

ANSI American National Standards Institute

APL A Programming language

ASIC Application Specific Integrated Circuit

ASP Associative String Processor

BBC British Broadcasting Corporation

BMU Best Matching Unit

CAM Content Addressable Memory

CCU Communication and Configuration Unit

CM Configuration Manager

CMOS Complementary MetalOxideSemiconductor

CMYK Cyan, Magenta, Yellow, and blacK

CNAPS Co-processing Node Architecture for Parallel Systems

CNN Cable News Network

COCOMO COnstruction COst MOdel

CSDF Cyclo-Static DataFlow

DCT Discrete Cosine Transform

DMA Direct Memory Access

dpi dots per inch

DRAM Dynamic Random Access Memory

DSL Domain Specific Language

DSM Domain Specific Modelling

Table of Contents

DSP Digital Signal Processor

DSRC Domain Specific Reconfigurable Core

EBM Energy-Based Model

EXT EXTended memory

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GALS Globally Asynchronous Locally Synchronous

GB Giga Byte

GHz Giga Hertz

GOPS Giga Operations Per Second

GPP General Purpose Processor

HDL Hardware Description Language

HP Hewlett-Packard

HTML HyperText Markup Language

HUT Helsinki University of Technology

HVS Human Visual System

IBM International Business Machines

IDF Inverse Document Frequency

IIR Infinite Impulse Response

ILP Instruction Level Parallelism

IO Input / Output

IT Information Technology

KB Kilo Byte

KLOC thousand Lines Of Code

KPN Kahn Process Network

LFSR Linear Feedback Shift Register

LOC Lines Of Code

lsb least significant bit(s)

LUT Look Up Table

MB Mega Byte

MBD Model-Based Design

MC-SoC Many-Core System-on-Chip

MDA Model-Driven Architecture

MDD Model-Driven Development

MHz Mega Hertz

MIMD Multiple Instruction Multiple Data

MIPS Million Instructions Per Second

ML Meta-Language

MMD Modified Metropolis Dynamics

xviii

Table of Contents

MMU Memory Management Unit

MP3 MPEG-1 Audio Layer 3

MPEG Moving Pictures Experts Group

MRF Markov Random Field

msb most significant bit(s)

MT Memory Tile

NLP Natural Language Processing

NML Native Mapping Language

NoC Network on Chip

PAC Processing Array Cluster

PAE Processing Array Element

PDA Personal Digital Assistent

PDS Primary Data Store

PDT Primary Data Transfer

PE Processing Element

PPA Processing Part Array

ppm pages per minute

QE Quantisation Error

QoS Quality of Service

RAM Random Access Memory

RGB Red Green Blue

RISC Reduced Instruction Set Computer

RIP Raster Image Processing

RSS Really Simple Syndication

RTS Run Time Support

SCM Supervising Configuration Manager

SDS Secondary Data Store

SDT Secondary Data Transfer

SIMD Single Instruction Multiple Data

SISO Single Input Single Output

SF Software Factory

SMP Symmetric Multi-Processing

SoC System-on-Chip

SOM Self Organising Map

SPARC Scalable Performance ARChitecture

SQL Structured Query Language

SSE2 Streaming SIMD Extensions 2

SSM Soft System Methodology

SRAM Static Random Access Memory

SVG Scalable Vector Graphics

xix

Table of Contents

TDS Ternary Data Store

TDT Ternary Data Transfer

TE Topology Error

TF Term Frequency

TLB Translation Lookaside Buffer

TP Tile Processor

UML Unified Modeling Language

URL Uniform Resource Locator

VHDL Very-high-speed integrated circuits Hardware Description Language

VLIW Very Long Instruction Word

WiMAX Worldwide interoperability for Microwave Access

XOR Exclusive OR

XP Extreme Programming

XPP eXtreme Processing Platform

XSLT eXtensible Stylesheet Language Transformations

xx

CHAPTER 1

Introduction

1.1 Introduction

This thesis is concerned with the development of embedded systems in information-
rich contexts such as document processing for offices. Two intertwined trends play
a role in the development of such systems. One is the unabatingly growing com-
plexity of applications and the other the advance of powerful and often massively
parallel embedded computer architectures. Combined, the trends cause a signifi-
cant increase in the complexity of embedded systems and pose new challenges for
the development of embedded software (firmware).

The goal of this chapter is to anchor firmware development for many-core1

processors in tomorrow’s document processing products and services. We do that
by departing from a personal vision on document processing2, that envisions to-
morrow’s computing demands. The trends on four computation-related aspects
of this vision are mentioned and related to each other: content, hardware, soft-
ware, and products & services. The latter links business to the first three aspects
(Section 1.2.1). The mutual confrontation of these aspects motivates the impor-
tance of improved firmware development for embedded systems and cumulates in
a problem description (Section 1.3). Finally, the structure of the thesis is given
in Section 1.4.

1 A core is an independent processing entity containing at least a control unit and one or more
execution units.

2 This personal vision is not the official vision of Océ.

Chapter 1 – Introduction

1.2 Document processing in a changing world

The purpose of this section is to create a possible future scenario of document
processing in the office in which trends in four aspects, content, hardware, software,
and products & services, are related to each other.

1.2.1 Vision

Document processing follows the changing information flows in the world. One
of the dominant media still is paper, but it is used differently nowadays. We
like to use paper for a short time and then dispose it rather than use it for
archiving purposes [105]. An alternative is a digital medium. Digital information
can be processed, not only by humans, but also by intelligent software. The
Semantic Web3 for example, is an evolving extension of the World Wide Web in
which the semantics of information and services on the web is defined, and which
implements inference engine(s) and ontologies that cover the basic domains of
human knowledge.

We have chosen for the semantic copier to play a central role in our vision.
The semantic copier is a fictive extension of the basic copier (yellow parts), in
Figure 1.1. The copier model is chosen because it is the most simple transformer
that involves input → processing → output in a feedback loop that is being closed
by a user. The goal of the semantic copier is to reduce the information burden
of an office professional by processes with autonomous and proactive behaviour,
based on knowledge of the context of the user (awareness). We will subsequently
describe the semantic copier concept and the technologies that will be used to
build it. At the left-hand side in Figure 1.1 the copier obtains its input, and after
processing the output is generated (at the right-hand side). The vertical axis
represents the projected developments over time. Possible emerging behaviour of
such a copier includes summarisation (the act of preparing a summary), trans-
lation (e.g., Chinese → English), and even behaviours that support the decision
making processes of professionals, as demonstrated in Apple’s Knowledge Naviga-
tor4. Obviously these behaviours need – besides a thorough analysis and directed
synthesis of the output – general world knowledge such as generally known objects
as persons, buildings, and cities. At the left-hand side sensors feed the analysis,
and symmetrically, at the right-hand side composed texts are output, for example,
printed or articulated (speech) or in other ways. Note that the various parts of
the semantic copier may be distributed to different locations and used at different
points in time.

As an example we take the translation of an audio text and we will follow the
stream of information from the origin (left) to the destination (right). The text

3 Tim Berners-Lee et al: ”The Semantic Web.”, Scientific American, May 2001, http://www.
sciam.com/print version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21 .

4 Apple Computer Inc.: ”The Knowledge Navigator.”, 1987, video.google.com/videoplay?

docid=-5144094928842683632.

2

http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21�
http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21�
 video.google.com/videoplay?docid=-5144094928842683632�
 video.google.com/videoplay?docid=-5144094928842683632�

1.2 – Document processing in a changing world

...

...

...

summarisation

translation

decision support

image processing

printscan

multi-modal
sensing

multi-modal
actuating

remote
input

remote
output

innovation

analysis
� segmentation
� recognition
� mining

synthesis
� rationalising
� publishing

Figure 1.1: The semantic copier is a fictive but inspiring extension of the basic
copier (yellow shaded parts). The ultimate goal is to realise the equivalent of a
knowledgeable conversational agent as featured by Apple’s Knowledge Navigator.

stream is entered via an audio channel, for instance in a MPEG-1 Audio Layer
3 (MP3) format, and is subsequently syntactically and semantically analysed. The
translation involves world knowledge, that is for example needed for translation
rules, dictionary lookups, and to resolve implicit references to generally known
objects as persons, buildings, cities etc. Before the output is published (e.g.,
printed), it is composed according to the grammar of the destination language.

In our eyes a mixture of old and new technologies will be used to realise the
required intelligence of this complex system. The older technologies such as image
processing, natural language technology, and inference engines, process their input
and are not directly influenced by the effect their output has on the outside world.
However, new technologies better exploit the environment the system is in. Since
the embedded system is situated in a physical environment, it is possible to set up
a feedback loop in which the immediate user, the near environment, and even the
world (internet) participate, see Figure 1.1. The system’s output induces actions
of a user or reactions in the (near) environment, and when those are fed back to
the input side the system learns to adapt old behaviour or even learns to develop
new behaviour.

In our opinion, developments in for example embodied intelligence [96] and co-
evolution [71] show the way to this emergent behaviour. Emergent behaviour refers
to the way complex systems and patterns arise out of a multiplicity of relatively
simple interactions. It is behaviour that is not specified as such but emerges from
a carefully set up optimisation process. The objective of these new approaches is

3

Chapter 1 – Introduction

to write less and simpler code for setting up this optimisation process and train
the behaviour rather than to program its functionality in an explicit manner. As
a result the system obtains a smarter behaviour at lower development effort.

To allow for a good awareness of the environment, the semantic copier changes
its physical appearance with respect to the basic copier. The point of service is
not restricted to the location of the hardware anymore. The input and output are
detached from the copier (today mostly positioned at a corridor or mail room)
and are moved closer to the working desk. The same applies for the processing,
that is integrated in the commodity IT infrastructure, leaving the bare scan and
print unit in its familiar environment. Also at the processor level a behaviour-
oriented approach is visible. For example Intel describes its ”Recognition, Mining
and Synthesis scenario”5 a processing platform for the 2015 workload model. The
platform supports a kind of sense-think-act behaviour: recognition (what is?),
mining (is this?), and synthesis (what if ?).

To conclude, in our vision the semantic copier is a system that realises intelli-
gent behaviour in two complementary ways. First, it transforms its input data to
the demanded value added output. Second, it is aware of the immediate context
of the user – partly influenced by its own output – and can act autonomously on
it, thereby realising desired behaviours e.g., adaptivity.

1.2.2 Trends

In the above vision four aspects, that play a role in building the semantic copier,
can be identified. These four aspects are: content, hardware, software, and prod-
ucts & services. The purpose of this section is to describe the autonomous trends
of these four aspects, and to prepare for their relations in embedded systems
design (Section 1.2.3).

Content. According to Gulli [57] the indexable web (2005) is larger than 11
billion pages. Market research institute IDC estimates the ’digital universe’ to
be 161 billion gigabytes in 2006 and projects a six-fold increase by 20106. The
usage7 of the web is still growing. An integral growth of 305% over the past
8 years is reported8, and some ’less developed’ continents (Africa, Middle East,
Latin America) note already an average rate of more than 100% growth per year.
To summarise, the amount of processable information is extremely large and is
growing each day.

5 Pradeep Dubey: ”A Platform 2015 Workload Model: Recognition, Mining and Synthe-
sis Moves Computers to the Era of Tera.”, 2005, http://download.intel.com/technology/
computing/archinnov/platform2015/download/RMS.pdf.

6 Frederick Lane: ”IDC: World Created 161 Billion Gigs of Data in 2006.”, 2007, http://www.
toptechnews.com/story.xhtml?story id=01300000E3D0 .

7 Internet World Stats defines usage by a person who has available access to an internet con-
nection point and has the basic knowledge required to use web technology.

8 Miniwatts marketing group: ”Internet world stats: Usage and population statistics.”, 2008,
http://www.internetworldstats.com/stats.htm.

4

http://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf�
http://download.intel.com/technology/computing/archinnov/platform2015/download/RMS.pdf�
http://www.toptechnews.com/story.xhtml?story_id=01300000E3D0�
http://www.toptechnews.com/story.xhtml?story_id=01300000E3D0�
http://www.internetworldstats.com/stats.htm�

1.2 – Document processing in a changing world

Information, that is acted upon, has shorter lifetimes. News is for example
a typical information category that can influence decision makers directly. Most
news items have a very short lifetime, but a few continue to be accessed well
beyond their initial release. The average halftime of a news document is 36
hours9. For streaming information this can be reduced even further, down to the
time of a single video frame (msec range).

A pressing problem is information overload. Information overload refers to the
state of having too much information to make a decision on or remain informed
about a topic. See also Chapter 6.

Hardware. For processor developments, Moore’s law – originally formulated
in 1965 [90] – still holds10. However, because of power dissipation, the single-
core processor is replaced by a multi-core processor. To even further optimise
the computational efficiency (performance-power dissipation ratio expressed in
[MIPS/Watt]) heterogeneous System-on-Chips (SoCs), or many-cores, have been
developed [63][39].

Besides a scalable processor and memory architecture, many-core SoCs also
have a scalable communication bandwidth architecture [63]. For example the chip
implementation of the IBM Cell employs multiple ring networks to interconnect
the nine processors on the chip [74].

The size of transistors is decreasing, so does the cost per transistor. However,
the manufacturing expenses per unit area has increased over time, since materials
and energy expenditures per unit area have only increased with each successive
integration technology. Large enough series keep the cost stable over time; in
practice this means that the consumer gets ’more for the same price’.

Software. The major trend is that the complexity of software increases each
year [64], and thus increases the existing software crisis. The software crisis
was a term used in the early days of software engineering, before it was a well-
established subject. The term was used to describe the impact of rapid increases
in computer power and the complexity of the problems that could be tackled. In
essence, it refers to the difficulty of writing correct, understandable, and verifiable
computer programs.

Complexity emerges in many ways. We mention here the excessive develop-
ment effort and the inherently weak performance of sequential processing. In
particular for embedded systems the excessive development time has even more
impact because of the many extra concerns that have to be dealt with. For ex-

9 Z. Dezso et al: ”Fifteen Minutes of Fame: The Dynamics of Information Access on the Web.”,
2005, http://www.citebase.org/abstract?id=oai:arXiv.org:physics/0505087.

10 Michael Kanellos: ”Moore’s law to roll on for another decade”, 2003, http://news.cnet.com/
2100-1001-984051.html.

5

http://www.citebase.org/abstract?id=oai:arXiv.org:physics/0505087�
http://news.cnet.com/2100-1001-984051.html�
http://news.cnet.com/2100-1001-984051.html�

Chapter 1 – Introduction

ample in the automotive industry11 the increasingly complex embedded systems
have led to disappointment as cars are delivered to the market with software and
electronic defects. Warranty costs are on the rise as brand perception suffers.

Traditional optimisation techniques are based on order of complexity reduc-
tion, that work for sequential processing but not for parallel processing. These
techniques tend to introduce dependencies and new data structures that compli-
cate parallelisation; programs are getting so immensely large that it is not feasible
to unravel these dependencies.

Driven by the increasing performance demands, the transition of a single-core
processor to parallel many-core SoCs, adds new problems. Compiler technology
is not ready to translate sequential programs in multiple threads running on mul-
tiple cores [39]. Radical ideas are required to make many-core architectures a
secure and robust base for productive software development since the existing
solutions only shows successes in narrow application domains. This is the very
reason why recently two groups of companies (AMD, HP, IBM etc. and Intel &
Microsoft) sponsor parallel programming research at universities (Stanford and
Berkley respectively)1213.

Products & Services. Products and services obey the general trends that need
no further introduction. We only mention the demand for:

• increasing functionality (smarter, faster, better usable, etc.),

• shorter time to market, and

• cheaper services (or even free14).

1.2.3 Relating trends

The purpose of this section is to show that for an embedded system the various
trends lead to a significant shift in the division between hardware and software.
We will connect related autonomous trends from the different aspects and tag the
connection with a matching or a non-matching (mismatch) relation, see Figure 1.2.
The figure includes all four mentioned aspects with their trends enclosed in a
rounded box. The tagged relations are shown, visualised by coloured ellipses:

11 Stefan Gumbrich: ”Embedded systems overhaul: It’s time to tune up for the future of
automotive.”, IBM Business Consulting Services, 2004, http://t1d.www-03.cacheibm.com/
solutions/plm/doc/content/bin/g510 3987 embedded systems overhaul.pdf.

12 Advanced Micro Devices, Hewlett-Packard, IBM, Intel, NVidia and Sun Microsystems are
funding Stanford’s new Pervasive Parallelism Lab, and Intel and Microsoft officially an-
nounced their plan to research on parallel programming together with the University of
California at Berkeley and University of Illinois at Urbana-Champaign.

13 Rick Merritt: ”Stanford kicks off parallel programming effort.”, 2008, http://www.eetimes.
com/news/latest/showArticle.jhtml?articleID=207403653 .

14 Chris Anderson: ”Free! Why $0.00 is the future of business.”, 2008, http://www.wired.com/
techbiz/it/magazine/16-03/ff free.

6

http://t1d.www-03.cacheibm.com/solutions/plm/doc/content/bin/g510_3987_embedded_systems_overhaul.pdf�
http://t1d.www-03.cacheibm.com/solutions/plm/doc/content/bin/g510_3987_embedded_systems_overhaul.pdf�
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=207403653�
http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=207403653�
http://www.wired.com/techbiz/it/magazine/16-03/ff_free�
http://www.wired.com/techbiz/it/magazine/16-03/ff_free�

1.2 – Document processing in a changing world

products &

services

content

software

size++
 lifetime--

execution time++

development time++

hardware

pricing--
 time2market--

mass. parallelism++

costs--

Embedded system

productivity mismatch

data volume m

atch

cost price match
 product d
elivery

mismatch

productivity match
 data volume mismatch

Figure 1.2: Relating trends in the four aspects: content, software, hardware and
products & services, gives cause for a new partition in hardware/software co-
design

green for a match, red for a mismatch. For example the increasing size of content
matches with the parallel storage capacity of hardware.

Hardware. On the hardware side the following matches can be made, see Fig-
ure 1.2:

• the data volumes of content can be covered by distributing data over mul-
tiple processors,

• the update rate of information (reduced lifetime) can be handled by the mas-
sively parallel processing capacity and the high aggregated communication
bandwidth of SoCs, and

• the demanded pricing reductions asked for by the market, are in line with
the current developments in chip costs: more computational power for the
same price.

Software. Software development still is immature in comparison to hardware
development, where first-time-right15 is the normal procedure. Software develop-
ments on average tend to be late, consume lots of engineering resources and have
15 In digital hardware development the implementations are usually right the first time.

7

Chapter 1 – Introduction

questionable quality, so it is a complex undertaking. This causes the following
mismatches on the software side:

• the increasing amount of data (as indicated for example in Footnote (6) on
page 4) cannot be handled adequately by current software practices while
running on a General Purpose Processors (GPPs) [39],

• the software processing time (on GPPs) does not correspond to the up-
date frequency of information, whether it concerns extensive on-line video
processing (MB/sec), or off-line data mining (GB/h), and

• the increasing market pressure to deliver products faster than the previous
version, demands reduced development times. This is in contrast to general
software development practice.

Moreover, the following observations can be made:

• Compiler technology is not capable of generating parallel code from sequen-
tial legacy [39]. We need the option to code the parallelism manually.

• When moving towards very large number of processors, the current way of
working requires more programmers than available [99].

• Most algorithms that require random access to data or take time greater
than O(N · logN), for data size N , are not scalable to large data sets [99].

All relations at the hardware side do match and actually represent opportunities
for solving problems. At the software side mismatches emerge, and those represent
challenges for improving the development of embedded systems.

Summarising

The advances of heterogeneous multi-core chips in embedded systems design will
also change the way software is written. This is independent of application do-
main, from a small multi-media Personal Digital Assistent (PDA) to blade-based
racks in Amazon’s compute server facilities; all have to run power-aware [39].
The above interrelation of hardware and software trends lead to the following
conclusions:

• Traditional software development cannot cope with the identified trends:
more data to process, shorter lifetime of information, and increasing market
pressure to reduce time to market.

• Hardware, in particular the massively parallel many-core systems, enable
new programming paradigms.

• The challenge is to find simple parallel processing schemes that reduce soft-
ware complexity significantly.

8

1.3 – Problem description

1.3 Problem description

1.3.1 Problem description and thesis

Following the above mentioned line of reasoning it is beneficial to reconsider the
traditional balance between hardware and software in embedded system design.
Therefore, our approach is to break with the sequential coding tradition and apply
parallelism to allow for new simple models. This requires support for modelling
the problem in a parallel way such that it is suitable for a many-core hardware
architecture, and human guidance for bridging the gap between the two in an
orderly manner.

Today the de facto way applications are programmed on such dedicated sys-
tems is by manually adapting sequential code, which is mostly written in C. This
adaptation involves the replacement of the time consuming sequential parts by
parallel code. Most tooling is supplied by the manufacturer of the processor
hardware and is, to no suprise and without exception, a C-compiler with intrin-
sic instructions (hardware dependent predefined functions), and occasionally, a
simulator. This means that the design can only be validated at the end of the
development cycle, when the code finally becomes available.

This leads to the following research thesis:
While most research on firmware16 development concentrates on automatic con-
version of C-like descriptions to program applications for massively parallel proces-
sors, it is more productive to explicitly remodel the application in a parallel way
by using a methodology based on a semi-automatic guidance through the whole
firmware development process.

1.3.2 Contribution

The research thesis leads to the following claims:

1. For an effective and efficient implementation on a massively parallel process-
ing core it is necessary to manually (re)model the problem in a suitable
parallel representation;
Chapter 3, Section 4, and Chapters 4, 5, 6, Sections 2, 3, 4.

2. A semi-automatic and interactive development process is needed for map-
ping a task on a dedicated massively parallel processing core efficiently;
Chapter 3, (Sub)sections 2, 5.1.

3. A single architectural language firmly based on mathematics for all devel-
opment phases reduces development time and reduces the number of design
errors;
Chapter 3, Subsection 5.2.1, and Chapters 4,5,6, Subsection 4.2.

16 Firmware is a computer program that is embedded in a hardware device, for example a
microcontroller. The term ”firmware” was originally used for micro-programs written for
microsequencers such as AMD29xx.

9

Chapter 1 – Introduction

4. Most of the relevant extra-functional requirements can be handled by in-
tegrating them into the regular functional flow; as a consequence the ar-
chitectural language should support in situ monitoring and visualisation of
quantifiable extra-functional properties;
Chapter 3, Section 4, and Chapters 4,5,6, Subsection 4.2.

5. In the development process small steps and immediate feedback are crucial;
Chapter 3, Section 4.

6. The development process should have a phased approach serving the various
development roles, and should subsequently include:

(a) a familiarisation phase with respect to the problem and the target
hardware architecture(s),

(b) an incremental prototyping phase (hardware architecture independent),

(c) a transformational development phase (hardware architecture depen-
dent),

which are performed in a cyclic manner when needed (e.g., in case of design
iterations);
Chapter 3, Sections 6, 7, 8, and Chapters 4, 5, 6, Sections 2, 3, 4.

1.4 Thesis outline

The design methodology proposed in this thesis is shaped by evaluating three
different case-studies, each with its own characteristics. The cases provide for a
wide coverage of existing as well as new problem contexts and models. All three
cases map on the same hardware architecture: a massively parallel processing
array (Linedancer).

In the first case, a high volume image processing pipeline for a colour printer, is
combined with a known model (FPGA implementation), see Chapter 5. Next, for
image quantisation, a new model is developed that fits well on a parallel array, see
Chapter 4. Finally, in the last case a new problem (mining and visualisation of a
document space) is selected to extend and test the robustness of the methodology,
see Chapter 6. The design methodology, called IRIS, is presented in Chapter 3,
and includes an overview on state of the art methodologies. Because of the close
interaction of hardware and software we have included a short overview of the state
of the art on many-core systems, see Chapter 2, that also includes some details
of the used Linedancer processor. In Chapter 7 we formulate the conclusions.

10

CHAPTER 2

State of the Art Massively Parallel Embedded
Architectures

In this chapter we focus on many-core architectures for streaming ap-
plications. The many-core concept has a number of advantages: (1)
depending on the requirements, cores can be (dynamically) switched
on/off, (2) the many-core structure fits well to future process technolo-
gies, more cores will be available in advanced process technologies, but
the complexity per core does not increase, (3) the many-core concept is
fault tolerant, faulty cores can be discarded and (4) multiple cores can
be configured in parallel. When processing and memory are combined
in the cores, tasks can be executed efficiently on cores (locality of refer-
ence). There are a number of application domains that can be consid-
ered as streaming applications, for example colour image processing,
data mining, multimedia processing, medical image processing, sen-
sor processing (e.g., remote surveillance cameras), phased array radar
systems and wireless baseband processing. In this chapter the key char-
acteristics of streaming applications are highlighted, and the character-
istics of the processing architectures to efficiently support these types
of applications are addressed. We present an overview of some state-
of-the-art embedded core architectures for streaming applications and
select one as a target hardware architecture to be used in this thesis.

Major parts of this chapter have been accepted as a bookchapter for the CRC Book series
[P9].

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

2.1 Introduction

This chapter addresses heterogenous and homogeneous many-core SoC platforms
for streaming applications. In streaming applications, computations can be spec-
ified as a data flow graph with streams of data items (the edges) flowing between
computation kernels (the nodes). Most signal processing applications can be
naturally expressed in this modelling style [32]. Typical examples of streaming
applications are: colour image processing (Chapter 5, Chapter 4), data min-
ing (Chapter 6), multimedia processing (e.g., MPEG, MP3 coding/decoding),
medical image processing, sensor processing (e.g., remote surveillance cameras),
phased array radar systems and wireless baseband processing. In a heterogeneous
many-core architecture, a core can either be: a bit-level reconfigurable unit (e.g.,
FPGA), a word-level reconfigurable unit, or a general-purpose programmable unit
(DSP or microprocessor). We assume the cores of the SoC are interconnected by
a reconfigurable Network on Chip (NoC). The programmability of the individual
cores enables the system to be targeted at multiple application domains.

We take a holistic approach, which means that all aspects of systems design
need to be addressed simultaneously in a systematic way [108]. We believe that
this is key for an efficient overall solution, because an interesting optimization
in a small corner of the design might lead to inefficiencies in the overall design.
For example the design of the NoC should be coordinated with the design of the
processing cores, and the design of the processing cores should be coordinated
with the tile specific compilers. Eventually, there should be a tight fit between
the application requirements and the SoC and NoC capabilities.

We first introduce streaming applications and many-core architectures in sec-
tions 2.1.1 and 2.1.2. After that we give a multi-dimensional classification of
architectures for streaming applications in Section 2.2. For each category one or
more sample architectures are presented (Section 2.3). We end this chapter with
a conclusion and make a selection for the target hardware architecture to be used
in this thesis, see Section 2.4.

2.1.1 Streaming Applications

The focus of this chapter is on many-core SoC architectures for streaming appli-
cations where we can assume that the data streams are semi-static and have a
periodic behaviour. This means that for a long period of time subsequent data
items of a stream follow the same route through the SoC. The common charac-
teristics of typical streaming applications are:

• They are characterised by relatively simple local processing but a huge
amount of data.

• Data arrives at nodes at a rather fixed rate, which causes periodic data
transfers between successive processing blocks. The resulting communica-
tion bandwidth is application dependent and a large variety of communi-

12

2.1 – Introduction

cation bandwidth is required. The size of the data items and data rate is
application dependent.

• The data flows through the successive processes in a pipelined fashion.
Processes might work in parallel on parallel processors or can be time-
multiplexed on one or more processors. Therefore, streaming applications
show a predictable temporal and spatial behaviour.

• For our application domains, typically throughput guarantees (in data items
per sec.) are required for the communication as well as for the processing.
Sometimes also latency requirements are given.

• The life-time of a communication stream is semi-static, which means a
stream is fixed for a relatively long time.

2.1.2 Many-core Architectures

Flexible and efficient SoCs can be realised by integrating hardware blocks (called
tiles or cores) of different granularities into heterogeneous SoCs. In this chap-
ter the term core is used for processor-like hardware blocks and the term tile is
used for Application Specific Integrated Circuits (ASICs), fine-grained reconfig-
urable blocks and memory blocks. We assume that the interconnected building
blocks can be heterogeneous (see Figure 2.1), for instance bit-level reconfigurable
tiles (e.g., embedded FPGAs), word-level reconfigurable cores (e.g., Domain Spe-
cific Reconfigurable Cores), general-purpose programmable cores (e.g., DSPs and
microprocessor cores) and memory blocks. From a systems point of view these
architectures are heterogeneous multi-processor systems on a single chip. The
programmability and reconfigurability of the architecture enables the system to
be targeted at multiple application domains. Recently a number of many-core
architectures have been proposed for the streaming application domain. Some
examples will be discussed in Section 2.3.

A many-core approach has a number of advantages:

• It is a future-proof architecture, as the processing cores do not grow in com-
plexity with technology. Instead, as technology scales, simply the number
of cores on the chip grows.

• A many-core organization can contribute to the energy-efficiency of a SoC.
The best energy savings can be obtained by simply switching off cores that
are not used, which also helps in reducing the static power consumption.
Furthermore, the processing of local data in small autonomous cores abides
the locality of reference principle. Moreover, a core processor might be
adaptive, it does not always have to run at full clock speed to achieve the
required Quality of Service (QoS).

13

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

FPGA
 GPP

ASIC

MT

GPP

DSRC

DSRC
 ASIC

DSP
 FPGA

ASIC
 MT

GPP

DSP

FPGA

FPGA

core description
FPGA Field Programmable Gate Array
GPP General Purpose Processor
DSP Digital Signal Processor
ASIC Application Specific Integrated

Circuit
DSRC Domain Specific Reconfigurable

Core
MT Memory Tile

Figure 2.1: A heterogenous SoC template

• When one of the cores is discovered to be defect (either because of a manu-
facturing fault or discovered at operating-time by the built-in-diagnosis) this
defective core can be switched-off and isolated from the rest of the design.

• A many-core approach also eases verification of an integrated circuit design,
since the design of identical cores only has to be verified once. The design
of a single core is relatively simple and therefore a lot of effort can be put in
(area/power) optimizations on the physical level of integrated circuit design.

• The computational power of a many-core architecture scales linearly with
the number of cores. The more cores there are on a chip, the more computa-
tions can be done in parallel (provided that the network capacity scales with
the number of cores and there is sufficient parallelism in the application).

• Although cores operate together in a complex system, an individual tile
operates quite autonomously. In a reconfigurable many-core architecture
every processing core is configured independently. In fact, a core is a natural
unit of partial reconfiguration. Unused cores can be configured for a new
task, while at the same time other cores continue performing their tasks.
That is to say, a many-core architecture can be reconfigured partly and
dynamically.

Heterogeneous Many-Core SoC (MC-SoC)

The reason for heterogeneity in a SoC is that typically, some algorithms run more
efficiently on bit-level reconfigurable architectures (e.g., pseudo random num-
ber generation), some on DSP-like architectures and some perform optimal on
word-level reconfigurable platforms (e.g., FIR filters or FFT algorithms). We
distinguish four processor types: General Purpose Processor, fine-grained recon-
figurable hardware (e.g., FPGA), coarse-grained reconfigurable hardware and ded-

14

2.1 – Introduction

icated hardware (e.g., ASIC). The different tile processors in the SoC are inter-
connected by a Network-on-Chip (NoC). Both SoC and NoC are dynamically
reconfigurable, which means that the programs running on the processing tiles
as well as the communication channels are configured at run-time. The idea
of heterogeneous processing elements is that one can match the granularity of
the algorithms with the granularity of the hardware. Application designers or
high-level compilers can choose the most efficient processing core for the type of
processing needed for a given application task. Such an approach combines per-
formance1, flexibility and energy-efficiency. It supports high performance through
massive parallelism, it matches the computational model of the algorithm with
the granularity and capabilities of the processing entity, it can operate at min-
imum supply voltage and clock frequency and hence provides energy-efficiency
and flexibility at the right granularity only when and where needed and desirable.
A thorough understanding of the algorithm domain is crucial for the design of
an (energy-) efficient reconfigurable architecture. The architecture should impose
little overhead to execute the algorithms in its domain. Streaming applications
form a good match with many-core architectures: the computation kernels can
be mapped on cores and the streams to the NoC links. Inter-processor communi-
cation is in essence also overhead, as it does not contribute to the computation of
an algorithm. Therefore, there needs to be a sound balance between computation
and inter-processor communication. These are again motivations for a holistic
approach.

Programmability

Design automation tools form the bridge between processing hardware and ap-
plication software. Design tools are a crucial requirement for the viability of
many-core platform chips. Such tools reduce the design cycle (i.e., cost and time-
to-market) of new applications. The application programmer should be provided
with a set of tools that on one side hides the architecture details but on the other
side gives an efficient mapping of the applications onto the target architecture.
However, high-level language compilers for domain specific streaming architec-
tures are far more complex than compilers for general purpose superscalar ar-
chitectures because of the data dependency analysis, instruction scheduling and
allocation. Next to tooling for application development also tooling for functional
verification and debugging is required for programming many-core architectures.
In general, such tooling comprises:

• general Hardware Description Language (HDL) simulation software that
provides full insight in the hardware state, but is relatively slow and not
suited for software engineers,

1 With performance we mean the number of operations per time unit, and this is reciprocal to
execution time.

15

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

• dedicated simulation software that provides reasonable insight in the hard-
ware state, performs better than general hardware simulation software and
can be used by software engineers, and

• hardware prototyping boards that achieve great simulation speeds, but pro-
vide poor insight in hardware state and are not suited for software engineers.

By employing the tiled SoC approach, as proposed in Figure 2.1, various types
of parallelism can be exploited. Depending on the core architecture, one or more
levels of parallellism are supported.

• Thread-Level Parallelism is explicitely addressed by the many-core approach
as different tiles can run different threads;

• Data-Level Parallelism is achieved by processing cores that employ paral-
lelism in the data path;

• Instruction-Level Parallelism is addressed by processing cores when multiple
data path instructions can be executed concurrently.

The programming of these kinds of streaming architectures is on one hand complex
because of the variety in processors and parallelism but also complex because of
the primitive state of the tooling. Furthermore, the composability issue2 needs
extra attention and restricts the design choices in hardware architecture as well
as software [108]. The programmability of many-core architectures is an unsolved
problem.

2.2 Classification

Different hardware architectures are available in the embedded systems domain
to perform DSP functions and algorithms: GPP, DSP, (re-)configurable hardware
and application specific hardware ASIC.

These hardware architectures have different characteristics in relation to per-
formance, flexibility or programmability and energy efficiency. Figure 2.2 depicts
the trade-off in flexibility and performance for different hardware architectures.
Generally, more flexibility implies a less energy efficient solution.

Crucial for the fast and efficient realisation of a Many-Core System-on-Chip
(MC-SoC) is the use of pre-designed modules, the so-called building blocks. In this
section we will first classify these building blocks, second we classify the MC-SoCs
that can be designed using these building blocks together with the interconnection
structures between these blocks.

A basic classification of MC-SoC building blocks is given in Figure 2.3. The

2 Composability is a desired property that relates to the mapping of multiple independent
applications on the same platform with the condition that each application does not influence
any other application.

16

2.2 – Classification

fl
e
x
ib

ili
ty

performance

GPP

DSP

Reconfigurable hardware

ASIC

Fine-grained

Coarse-grained

high
low

h
ig

h

lo
w

Figure 2.2: Flexibility versus performance trade-off for different hardware archi-
tectures

basic processing elements of an MC-SoC can be divided in run-time reconfig-
urable cores and fixed cores. The functionality of a run-time reconfigurable core
is fixed for a relatively long period in relation to the clock frequency of the cores.
Run-time reconfigurable cores can be subdivided into two classes: fine-grained
reconfigurable cores and coarse-grained reconfigurable cores. Fine-grained recon-
figurable cores are reconfigurable at bit-level (e.g., FPGA) while coarse-grained
reconfigurable cores are reconfigurable at word-level (8 bit, 16 bit etc.). Two other
essential building blocks are memory and I/O blocks. Reusing MC-SoCs building
blocks to build larger systems increases the productivity of designers.

A classification of MC-SoCs is given in Figure 2.4. An MC-SoC basically
consists of multiple building blocks connected by means of an interconnect. If
an MC-SoC consists of multiple building blocks of a single type, the MC-SoC
is referred to as homogeneous. The homogeneous MC-SoC architectures can be
subdivided into Single Instruction Multiple Data (SIMD), Multiple Instruction
Multiple Data (MIMD) and array architectures. Examples of these architectures
will be given below. If multiple types of building blocks are used, the MC-SoC is
called heterogeneous.

To interconnect the different building blocks, three basic classes can be iden-
tified: bus, Network-on-Chip and dedicated interconnects. A bus is shared be-
tween different processing cores and is a notorious cause of unpredictability. Un-
predictability can be circumvented by a NoC [7]. Two types can be identified:
packet-switched and circuit-switched. Besides the use of these more or less stan-
dardised communication structures, dedicated interconnects are still widely used.
Some examples of different MC-SoC architectures are presented in Table 2.1.

17

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

MC-SoC building blocks

Run-time

reconfigurable

cores

Memory
 Fixed cores
 IO

Fine

grain

[FPGA]

Coarse

grain

[Montium]

General

purpose

[ARM]

[SPARC]

Design-time

reconfigurable cores

[Silicon hive]

[Tensilica]

ASIC

Figure 2.3: Classification of MC-SoC building blocks for streaming applications

MC-SoC architectures

Homogeneous
 Heterogeneous
 Dedicated
 Network on chip

SIMD
 MIMD
 Array
 Circuit switched

Bus

Interconnect

Packet switched

Figure 2.4: Classification of MC-SoC architectures and interconnect structures
for streaming applications

In the following sections a few characteristic architectures will be presented in
more detail.

2.3 Sample architectures

2.3.1 Montium Reconfigurable Processing Core

The Montium is an example of a coarse-grained reconfigurable processing core
and targets the 16-bit DSP algorithm domain. The Montium architecture origins
from research at the University of Twente [63][100]. The Montium processing
core has been further developed by Recore Systems5. A single Montium process-
3 Nvidia, ”Nvidia G80, architecture and GPU analysis”, 2007, www.beyond3d.com/content/

reviews/1.
4 Strictly speaking the Cell can be positioned as a heterogeneous processor, but because of the

relative large number of SIMD cores it is categorised as homogeneous.
5 Recore Systems, www.recoresystems.com.

18

www.beyond3d.com/content/reviews/1�
www.beyond3d.com/content/reviews/1�
www.recoresystems.com�

2.3 – Sample architectures

Table 2.1: Examples of different MC-SoC architecture

Class Example

Homogeneous

SIMD Linedancer (see Section 2.3.4)
Geforce G803

Xetal [42]

MIMD Tilera (see Section 2.3.3)
Cell4 [40]
Intel Tflop processor [44]

Array PACT (see Section 2.3.2)
ADDRESS [85]

Heterogeneous Montium [63]
Silicon Hive [24]

ing tile is depicted in Figure 2.5. At first glance the Montium architecture bears
a resemblance to a VLIW processor. However, the control structure of the Mon-
tium is very different. The lower part of Figure 2.5 shows the Communication
and Configuration Unit (CCU) and the upper part shows the coarse-grained re-
configurable Montium Tile Processor (TP).

Communication and Configuration Unit The CCU (Communication and
Configuration Unit) implements the network interface controller between the NoC
and the Montium TP. The definition of the network interface depends on the
Network-on-Chip (NoC) technology that is used in a System-on-Chip (SoC) in
which the Montium processing tile is integrated [23]. The CCU enables the
Montium TP to run in streaming as well as in block mode. In streaming mode
the CCU and the Montium TP run in parallel. Hence, communication and
computation overlap in time in streaming mode. In block mode the CCU first
reads a block of data, then starts the Montium TP, and finally after completion
of the Montium TP, the CCU sends the results to the next processing unit in
the SoC (e.g., another Montium processing tile or external memory).

Montium Tile Processor The Tile Processor (TP) is the computing part of
the Montium processing tile. The Montium TP can be configured to implement
particular DSP algorithms such as: all power of 2 FFTs upto 2048 points, non-
power of 2 FFT upto FFT 1920, FIR filters, IIR filters, matrix vector multiplica-
tion, Discrete Cosine Transform (DCT) decoding, Viterbi decoders, Turbo (SISO)
decoders. Figure 2.5 reveals that the hardware organisation of the Montium TP
is very regular. The five identical Arithmetic Logic Units (ALU1 through ALU5)
in a tile can exploit data level parallellism to enhance performance. This type of
parallelism demands a very high memory bandwidth, which is obtained by hav-

19

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

instruction decoding

sequencer

communication and configuration

M10
M09

ALU5

M08
M07

ALU4

M02
M01

ALU1

M04
M03

ALU2

M06
M05

ALU3

Figure 2.5: The Montium TP coarse-grained reconfigurable processing tile

ing 10 local memories (M01 through M10) in parallel. The small local memories
are also motivated by the locality of reference principle. The data path has a
width of 16-bits and the ALUs support both signed integer and signed fixed-point
arithmetic. The ALU input registers provide an even more local level of storage.
Locality of reference is one of the guiding principles applied to obtain energy effi-
ciency in the Montium TP. A vertical segment that contains one ALU together
with its associated input register files, a part of the interconnect and two local
memories is called a Processing Part (PP). The five PPs together are called the
Processing Part Arrays (PPAs).

A relatively simple sequencer controls the entire PPA. The sequencer se-
lects configurable PPA instructions that are stored in the instruction decoding
block of Figure 2.5. For (energy) efficiency it is imperative to minimise the con-
trol overhead. The PPA instructions, which comprise ALU, Address-Generation
Unit (AGU), memory, register file and interconnect instructions, are determined
by a DSP application designer at design time. All Montium TP instructions are
scheduled at design time and arranged into a Montium sequencer programme.
By statically scheduling the instructions as much as possible at design time, the
Montium sequencer does not require any sophisticated control logic which min-
imises the control overhead of the reconfigurable architecture.

The Montium TP has no fixed instruction set, but the instructions are config-
ured at configuration-time. During configuration of the Montium TP, the CCU
writes the configuration data (i.e., instructions of the ALUs, memories and inter-
connects, etc.; sequencer and decoder instructions) in the configuration memory

20

2.3 – Sample architectures

of the Montium TP. The size of the total configuration memory of the Montium
TP is about 2.9 KB. However, configuration sizes of DSP algorithms mapped on
the Montium TP are typically in the order of 1 KB. For example, a 64-point
Fast Fourier Transform (FFT) has a configuration size of 946 bytes. The Mon-
tium TP can be configured via the NoC interface by sending a configuration file
containing configuration RAM addresses and data values to the CCU. The con-
figuration memory of the Montium TP is implemented as a 16-bit wide SRAM
memory that can be written by the CCU. By only updating certain configuration
locations of the configuration memory, the Montium TP can be partially recon-
figured. In the considered Montium TP implementation, each local SRAM is
16-bit wide and has a depth of 1024 addresses, which results in a storage capacity
of 2 KB per local memory. The total data memory inside the Montium TP adds
up to a size of 20 KB. A reconfigurable AGU accompanies each local memory in
the PPA of the Montium TP. It is also possible to use the local memory as a
Look-up Table (LUT) for complicated functions that cannot be calculated using
an ALU, such as sine or division (with one constant). The memory can be used
in both integer or fixed-point LUT mode.

Design methodology

The Montium development tools start with a high-level description of an applica-
tion (in C / C++ or MATLAB) and translate this description to a Montium TP
configuration [58]. Applications can be implemented on the Montium TP using
an embedded C language, called MontiumC. The Montium design methodology
to map DSP applications on the Montium TP is divided in three steps:

1. The high-level description of the DSP application is analysed and compu-
tationally intensive DSP kernels are identified;

2. The identified DSP kernels or parts of the DSP kernels are mapped on one
or multiple Montium TPs that are available in a SoC. The DSP operations
are programmed on the Montium TP using MontiumC;

3. Depending on the layout of the SoC in which the Montium processing tiles
are applied, the Montium processing tiles are configured for a particular
DSP kernel or part of the DSP kernel. Furthermore, the channels in the
NoC between the processing tiles are configured.

2.3.2 PACT-XPP

The eXtreme Processing Platform (XPP) is an example of a homogeneous array
structure. It is a run-time reconfigurable coarse-grained data processing archi-
tecture. The XPP provides parallel processing power for high bandwidth data

21

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

like for instance, video or audio processing. The XPP targets for streaming DSP
applications in the multimedia and telecommunications domain6 [9].

Architecture

The XPP architecture is based on a hierarchical array of coarse-grained, adaptive
computing elements, called Processing Array Elements (PAEs). The PAE are
clustered in Processing Array Clusters (PACs). All PAEs in the XPP architec-
ture are connected through a packet-oriented communication network. Figure 2.6
shows the hierarchical structure of the XPP array and the PAEs clustered in a
PAC.

CM

CM
CM

CM

SCM

PAC
 PAC

IO

IO

IO

IO

PAC
 PAC

IO

IO
IO

IO

RAM

RAM

RAM

RAM

FNC

FNC

FNC

FNC

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

RAM

RAM

RAM

RAM

Figure 2.6: The structure of an XPP array composed of four PACs [9]

Different PAEs are identified in the XPP array: ALU-PAE, RAM-PAE and
FNC-PAE. The ALU-PAE contains a multiplier and is used for DSP operations.
The RAM-PAE contains a RAM to store data. The FNC-PAE is a sequential
VLIW-like processor core. The FNC-PAEs are dedicated to the control flow
and sequential sections of applications. Every PAC contains ALU-PAEs, RAM-
PAEs and FNC-PAEs. The PAEs operate according to a data flow principle; a
PAE starts processing data as soon as all required input packets are available.
6 See also ”PACT XPP Technologies”, 2008, www.pactxpp.com.

22

www.pactxpp.com�

2.3 – Sample architectures

If a packet cannot be processed, the pipeline stalls until the packet is received.
So, it is possible to map a signal flow graph to the ALU-PAEs. Each PAC is
controlled by a Configuration Manager (CM). The CM is responsible for writing
configuration data into the configurable object of the PAC. Multi-PAC XPP arrays
contain additional CMs for concurrent configuration data handling, arranged in a
hierarchical tree of CMs. The top CM, called Supervising Configuration Manager
(SCM), has an external interface that connects the supervising CM to an external
configuration memory.

Design methodology

DSP algorithms are directly mapped onto the XPP array according to their data
flow graphs. The flow graph nodes define the functionality and operations of the
PAEs, whereas the edges define the connections between the PAEs. Basically, the
XPP array is programmed using the Native Mapping Language (NML). In NML
descriptions, the PAEs are explicitly allocated and the connections between the
PAEs are specified. Optionally, the allocated PAEs are placed onto the XPP array.
NML also includes statements to support configuration handling. Configuration
handling is an explicit part of the application description.

A vectorising C compiler is available to translate C functions to NML mod-
ules. The vectorising compiler for the XPP array analyses the code for data
dependencies, vectorises those code sections automatically and generates highly
parallel code for the XPP array. The vectorising C compiler is typically used
to program regular DSP operations which are mapped on ALU-PAEs and RAM-
PAEs of the XPP array. Furthermore, a coarse-grained parallelisation into several
FNC-PAE threads is very useful when irregular DSP operations exist in an appli-
cation. This allows to even run irregular, control-dominated code in parallel on
several FNC-PAEs. The FNC-PAE C compiler is similar to a conventional RISC
compiler extended with VLIW features to take advantage of Instruction Level
Parallelism (ILP) within the DSP algorithms.

2.3.3 Tilera

The Tile647 is an example of a homogeneous MIMD MC-SoC. It is based on the
mesh architecture that was originally developed for the RAW machine [41]. The
chip consists of a grid of processor tiles arranged in a network (see Figure 2.7),
where each tile consists of a general purpose processor, a cache, and a non-blocking
router that the tile uses to communicate with the other tiles on the chip.

Next to each processor there is a switch that connects the core to the iMesh
on-chip network. The combination of a core and a switch form the basic building
block of the Tilera Processor: the tile. Each core is a fully functional processor
capable of running complete operating systems and off-the-shelf ’C’ code. Each
core is optimised to provide a high performance/power ratio, running at speeds
7 Tilera Corporation, www.tilera.com.

23

www.tilera.com�

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

DDR I/O

G
e

n
e

ra
l I/O

DDR I/O

G
e

n
e

ra
l I/O

Processor
 Caches

Switch

Figure 2.7: Tile64 Processor

between 600 MHz and 1 GHz, with power consumption as low as 170 mW in a
typical application. Each core supports standard processor features such as:

• Full access to memory and I/O

• Virtual memory mapping and protection (MMU/TLB)

• Hierarchical cache with separate L1-I and L1-D

• Multi-level interrupt support

• Three-way VLIW pipeline to issue three instructions per cycle

The cache subsystem on each tile consists of a high-performance, two-level,
non-blocking cache hierarchy. Each processor/tile has a split level 1 cache (L1
instruction and L1 data) and a level 2 cache, keeping the design, fast and power
efficient. When there is a miss in the level 2 cache of a specific processor, the level
2 caches of the other processors are searched for the data before external memory
is consulted. This way, a large level 3 cache is emulated.

This promotes on-chip access and avoids the bottleneck of off-chip global mem-
ory. Multi-core coherent caching allows a page of shared memory, cached on a
specific tile, to be accessed via load/store references by other tiles. Since one tile
effectively prefetches for the others, this technique can yield significant perfor-
mance improvements.

24

2.3 – Sample architectures

To fully exploit the available compute power of large numbers of processors, a
high-bandwidth, low-latency interconnect is essential. The network (iMesh) pro-
vides the high-speed data transfer needed to minimise system bottlenecks and to
scale applications. iMesh consists of five distinct mesh networks: two networks are
completely managed by hardware and are used to move data to and from the tiles
and memory in the event of cache misses or DMA transfers. The three remain-
ing networks are available for application use, enabling communication between
cores and between cores and I/O devices. A number of high-level abstractions
are supplied for accessing the hardware (e.g., socket-like streaming channels or
message-passing interfaces.) The iMesh network enables communication without
interrupting applications running on the tiles. It facilitates data transfer between
tiles, contains all of the control and datapath for each of the network connections,
and implements buffering and flow-control within all the networks.

Design methodology

The TILE64 Processor is programmable in ANSI C and C++. Tiles can be
grouped into clusters to apply the appropriate amount of processing power to
each application.

2.3.4 Linedancer

The Linedancer8 is an associative processor and it is an example of a homo-
geneous MC-SoC. Associative processing is the property to execute only those
processing elements where a certain value in their data register matches a value
in the instruction [79]. Associative processing is built around an intelligent mem-
ory concept: Content Addressable Memory (CAM). Unlike standard computer
memory (Random Access Memory or RAM) in which the user supplies a memory
address and the RAM returns the data word stored at that address, a CAM is
designed such that the user supplies a data word and the CAM searches its entire
memory to see if that data word is stored anywhere in it. The CAM returns a
tag list of zero or more storage addresses where the word was found. Each CAM
line, that contains a word, can be seen as a Processor Element (PE) and each
tag list element as a 1 bit condition register. Depending on this register, the con-
trol processor can either instruct the PEs to continue processing on the indicated
subset, or to return the involved words subsequently for further processing.

In general the Linedancer belongs to the subclass of massively parallel SIMD
architectures. This SIMD subclass is perfectly suited to support data parallelism,
for example for signal, image and video processing, text retrieval, and large data-
bases. The associative functions allow the processor to act as an intelligent mem-
ory (CAM), permitting high speed searching, and data dependent image process-
ing operations (as median filters or object recognition/labeling). The so called

8 Aspex Semiconductor: ”Aspex Semiconductor Technology”, 2008, www.aspex-semi.com/q/
technology.shtml.

25

www.aspex-semi.com/q/technology.shtml�
www.aspex-semi.com/q/technology.shtml�

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

On-chip

RISC

Program

Common

instruction

Bus

P
E

 0

Inter-PE communication network

P
E

 1

P
E

 2

Thousands of PEs

P
E

 4
,0

9
3

P
E

 4
,0

9
4

P
E

 4
,0

9
5

Associative String Processing array (ASP)

network

cascadable

over chips

On-chip or Off-chip memory

Figure 2.8: The scalable architecture of Linedancer

Associative String Processor (ASP) of the Linedancer, is designed around a very
large number – up to 4,096 for the current Linedancer – of simple Processing
Elements (PEs) arranged in a linear array, see Figure 2.8.

Application domains are diverse but have in common the simple processing of
large amounts of data; from samples in 1D-streams to pixels in 2D or 3D data
structures (e.g., images). Sample applications are: software defined radio (e.g.,
WiMAX), broadcast (Video compression), medical imaging (3D reconstruction),
and in high-end printers – in particular for Raster Image Processing (RIP).

In the following sections the associative processor (ASP) and the Linedancer
family are introduced. At the end we present the development toolchain and a
short conclusion on the Linedancer application domain.

ASP architecture

Each PE has a 2-bit ALU, a 64 bit full associative memory array, a set of 8 user
programmable bit-flags (ab0 to ab7), and 128 bit extended memory, see Figure 2.9
for a detailed view on the ASP architecture. The processors are connected in a
1-dimensional network, actually a 4K bit shift register, allowing data to be shared
between PEs with minimum overhead. Linedancers can be cascaded by the indi-
cated left Link Port (LLP) and Right Link Port (RLP). Two of the three indicated
bit-lines are used for synchronous communication, the third one for asynchronous
communication [106]. The ASP also has a separate bulk IO memory, the Primary
Data Store (PDS), for high speed data input. The on-chip DMA engine automat-
ically translates 2D and 3D images into the 1D array (and passed through via the
PDS). The 1D architecture allows for linear scaling of performance, memory and
communication, provided the application is expressed in a scalable manner. The
Linedancer features a single Scalable Performance ARChitecture (SPARC) core
for sequential processing and controlling the ASP, see Figure 2.10.

26

2.3 – Sample architectures

extended memory

associative

memory

mask

data

bulk IO

memory

EXT
 CAM
 ALU
 PDS

single

PE

0

0

64
 63

63

191

3

64

inter-

PE

comm

ALU

array

4,095

0

LLP

RLP

progr.

bit-

flags

0
7

ab

Figure 2.9: The architecture of Linedancer’s Associative String Processor (ASP)

N
e
ig

h
b
o
u
r

L
in

e
d
a
n
c
e
rs

N
e
ig

h
b
o
u
r

L
in

e
d
a
n
c
e
rs

N

e
ig

h
b
o
u
r

L
in

e
d
a
n
c
e
rs

ASP

4,096 Processing Elements

1 Mbit storage

Instr

External DRAM

(Data)

External DRAM

(Prog)

P
C

I

32-bit

SPARC CPU

DMA engine

128KB RAM
 128KB RAM

Data

Figure 2.10: The Linedancer-P1 layout

Linedancer hardware architecture

The Linedancer processor family comes in two versions, the Linedancer-P1 and
the Linedancer-HD. We will describe both briefly. See Appendix A for more
details of the Linedancer.

Linedancer-P1. The Linedancer-P1 has a 32-bit SPARC core with 128KB in-
ternal program memory. System clock frequencies vary from 300, 350, 400 MHz.
The Linedancer-P1 integrates an associative processor (ASP, with 4K PEs), a
single SPARC core with a 4KB instruction cache, and a DMA controller capable
of transferring 64-bit at 66 MHz over a PCI-interface, see Figure 2.10. It further
hosts 128KB internal data memory. The chip consumes 3.5 W typical at 300
MHz.

27

Chapter 2 – State of the Art Massively Parallel Embedded Architectures

32-bit

SPARC CPU

32-bit

SPARC CPU

N
e
ig

h
b
o
u
r

L
in

e
d
a
n
c
e
rs

ASP

4,096 Processing Elements

1 Mbit storage

N
e
ig

h
b
o
u
r

L
in

e
d
a
n
c
e
rs

Instr

ASP

Controller

4 x DMA Engines

External DRAM

(Data)

PCI-X

JTag

GPIO

Control

8 x Direct Data

Interfaces

Streaming

Data I/O

Program Memory
 Program Memory

Internal Data

Memory

Figure 2.11: The Linedancer-HD layout

Linedancer-HD. The major differences of the Linedancer-HD compared to the
P1 are:

• dual instead of single channel architecture: two 32-bit associative processors
(2× 2K PEs) and two SPARC cores,

• improved internal and external Direct Memory Access (DMA) and IO in-
terfaces,

• improved inter-PE communication,

• improved DRAM interfacing, and

• slightly increased power consumption (4.5 W typical at 300 MHz).

The current Linedancers, the P1 and the HD, have been realised in 0.13µm
CMOS process.

Design Methodology

The native software development environment for Linedancer consists of a com-
piler, linker and debugger. The Linedancer is programmed in C, with some par-
allel extensions to support the ASP processing array. The toolchain is based on
the GNU compiler framework, with dedicated pre- and post-processing tools to
compile and optimise the parallel extensions to C.

28

2.4 – Conclusion

Associative SIMD processing adds an extra dimension to massively parallel
processing, for example in searching/sorting and data dependent image process-
ing. The Linedancer’s 1D-architecture scales better than a 2D array often used in
multi-ALU arrays as PACT’s XPP or the Tilera’s 2D multi core array. Because
of the large size of the array, power consumption is relatively high compared to
the Montium processor and prevents application into handheld devices.

2.4 Conclusion

In this chapter we addressed many-core architectures for streaming applications.
Streaming DSP applications express computation as a data flow graph with
streams of data items (the edges) flowing between computation kernels (the nodes).
Typical examples of streaming applications are: printing related image processing,
data mining, multimedia processing, medical image processing, sensor processing
(e.g., remote surveillance cameras), phased array radar systems and wireless base-
band processing. These application domains require flexible and energy-efficient
architectures. This can be realised with a many-core architecture. The most im-
portant criteria for designing such a many-core architecture are: predictability
and composability, energy-efficiency, programmability and dependability [108].

Two other important criteria are performance and flexibility. Different types
of processing cores have been discussed, from ASICs, reconfigurable hardware, to
DSPs and GPPs. ASICs have high performance but suffer from poor flexibility
while DSPs and GPPs offer flexibility but modest performance. Reconfigurable
hardware combines best of both worlds. These different processing cores are,
together with memory- and I/O block, assembled into MC-SoCs. MC-SoCs can
be classified into two groups: homogeneous and heterogeneous. In homogeneous
MC-SoCs, multiple cores of a single type are combined where in a heterogeneous
MC-SoC, multiple cores of different types are combined.

We also discussed four different architectures: the Montium, the PACT-XPP,
the Tilera processor and the Aspex Linedancer. The Montium is a coarse-grain,
run-time reconfigurable core. The PACT-XPP is an array processor where mul-
tiple ALUs are combined in a two-dimensional structure. The Tilera processor
is an example of a homogeneous MIMD MC-SoC. The Aspex Linedancer is a
homogeneous MC-SoC where a single instruction is executed by a large amount
of simple processors simultaneously (SIMD).

The choice of a suitable target hardware architecture is mainly determined
by the fit to the application domains: image processing (Chapter 5, Chapter 4)
and data mining (Chapter 6). Because the involved image processing and neural
network processing both demand for simple operations on a large number of data
elements (i.e., pixels, neurons), we selected the Linedancer processor.

29

CHAPTER 3

The IRIS Firmware Design Methodology

Developing code for dedicated massively parallel hardware architec-
tures is a tedious job. This is caused by the absence of both a co-
herent methodological framework and a hardware independent tool-
chain. Moreover, the inherently difficult nature of programming dedi-
cated massively parallel embedded processors, complicates the matter.
In this chapter we first present an inventory of influential method-
ologies for programming massively parallel architectures in streaming
applications. Next we introduce a single framework called Iris to gen-
erate code for such architectures. Iris is based on an incremental
construction of executable representations, which converge to the final
target language implementation in a semi-automated way. This chap-
ter gives an overview of IRIS in a rather abstract way. In the next
three chapters the methodology will be illustrated via case studies.

3.1 Introduction

Embedded systems manufacturers nowadays are facing tough problems in develop-
ing high performance applications. The ever growing functionality of applications
combined with new programmable many-core processors increase the development
complexity. For this reason Patterson [39] states: ”Although compatibility with
old binaries and C programs are valuable to industry ... we welcome new pro-
gramming models and new architectures if they simplify efficient programming
of such highly parallel systems”. Congruent to this we believe that parallelism
cannot always be extracted automatically from sequential code: we need the pos-

Major parts of this chapter have been published in [P4].

Chapter 3 – The IRIS Firmware Design Methodology

sibility to specify the parallelism by the application programmer. In this chapter,
we introduce a methodology that improves the programmer’s efficiency for – but
not limited to – Single Instruction Multiple Data (SIMD) architectures.

The de facto way applications are programmed on such dedicated architec-
tures is by manually adapting sequential code, which is mostly written in C. This
adaptation involves the replacement of the time critical sequential parts by paral-
lel code. In Figure 3.1 the typical steps of a firmware development trajectory are
depicted. The trajectory starts with an analysis phase that leads to the specifi-
cation of the system. This specification is subsequently transformed in a software
architecture and this marks the end of the analysis phase. The analysis phase is
typically done by a single person (the architect) or a small team to support con-
ceptual integrity, a quality property of an architecture [21]. After that the design
of the various modules can start. Because the design of the modules, that make
up the complete system, can be done in parallel, typically more developers are
entering the developing team. The design phase will take relatively much effort to
complete, see the effort per time unit in Figure 3.1. Both the analysis and design
activities are informal and are for a part even text-based. Although some parts
can be modelled in language(s) (e.g., MATLAB), the typical approach lacks a
single integral and executable framework that allows for immediate system-wide
verification. After compilation the application is executed for the very first time
on the simulator (Figure 3.1) and thus will most probably reveal errors. Espe-
cially the errors caused by a poor analysis or high level design, cost a lot of effort
to repair as reported by Boehm [17]. This percolation of early errors into (late)
design phases prolongs the relatively high effort per time unit, even to redesign
tasks (firmware maintenance).

Developers would like to have a compiler that is intelligent enough to gener-
ate code (from sequential source code) for SIMD architectures and that satisfies
all requirements and constraints. However, such an approach is far from reality
[39][86]. The reasons for the complexity of compiler construction for such archi-
tectures are manifold. To mention a few: SIMD architectures have a complex
and deviating instruction set, have parallel (non-sequential) computing facilities,
and have limited number of resources. The consequence is that parts of the code
have to be written by hand in an assembler like language, and practically without
assistance of a methodology or support of a tool.

Most tooling for SIMD architectures is supplied by the manufacturer of the
processor hardware and is, to no suprise and without exception, a C-compiler
supporting intrinsic instructions (hardware dependent predefined functions), and
sometimes a simulator. This means that the design can only be validated at the
end of the development cycle, when finally the code becomes available. This late
validation constitutes a major problem in developing code for dedicated proces-
sors. Although the informal analysis and design are partly supported by formal
modelling in some language(s), the absence of a single formal framework leaves
a lot of space for errors. Two of the most popular languages for algorithm de-
velopment are C and MATLAB. The language C, however, is notorious for its

32

3.1 – Introduction

informal

analysis

informal

design

C-compiler

(+
intrinsics)

download &

test on target

feedback

effort /

time unit

time

simulator
 firmware

maintenance

Figure 3.1: Estimated typical trajectory of current firmware development for
SIMD architectures: a large integral development effort

poor representation of the problem (lack of abstraction) as well as parallelism,
while MATLAB lacks the flexibility to code functionality efficiently (imperative
programming model) and to incorporate implementation details (e.g., hardware
concepts)1. As a consequence the missing parts are either performed by hand
(rewriting code) or additional tooling is required.

Combined with the above mentioned specific problems of firmware develop-
ment for SIMD architectures this section outlines the challenge to address. The
main challenge is to design a methodological framework for SIMD firmware devel-
opment that should at least fulfill the following requirements:
a. be an integral design method that supports firmware development for the
whole trajectory (from problem-scouting till maintenance),
b. be interactive and be executable during the whole development process,
c. uses a single language supporting multiple roles,
d. be incremental, enabling further development given the current state of the
design,
e. supports reuse to improve quality and efficiency, and
f. be domain independent, that is, be applicable to multiple application domains.

In this chapter we propose a methodological framework, called IRIS, that sat-
isfies these requirements. A more desired shape of effort per time unit curve –
compared to the traditional approach as shown in Figure 3.1 – is depicted in Fig-
ure 3.2. The improvement allows for immediate feedback to the developer even

1 MATLAB supports fixed point typing and direct compilation to C and HDL for a subset of
the language though.

33

Chapter 3 – The IRIS Firmware Design Methodology

effort /

time unit

time

target

translation

download &

test on target

feedback

C-compiler

(+ intrinsics)

firmware

maintenance

model-based

analysis

model-based

design

Figure 3.2: Desired improvement of the firmware development trajectory for
SIMD architectures. The desired trajectory (solid line) results in a lower inte-
gral development effort.

without the need for (detailed) algorithm development or availability of hard-
ware. In Figure 3.2 the target translation phase generates target source code
semi-automatically from the model. The standard toolchain can then be used to
compile and download the object code to the target hardware, as in the conven-
tional trajectory in Figure 3.1. The effort graph in Figure 3.2 shows a significant
lower integral development effort compared to the conventional approach. The
IRIS framework is model-based, that is models are used to improve the develop-
ment process in quality, cost and effort. Since textual specifications are exchanged
by a model-based approach, the analysis phase is done more thoroughly (more
quality) thus takes more effort to complete. The same applies to the design phase
but here the ’overhead’ is smaller because of the higher quality of the analysis
phase. The real profit, however, is in the next phases because of this higher
quality in the model code. The blue shaded development steps in Figure 3.2 are
supported by IRIS.

As a prominent feature of IRIS we mention that during the complete design
process the same language is employed, which supports executability of models
during all phases. We call such a language an architectural language.

This chapter is structured in the following manner. We start with an inventory
of the major developments in hardware/software co-design (Section 3.2), supple-
mented with model-based approaches (subsection 3.2.5). Then in Section 3.3 we
come up with the description of an ’ideal’ methodology for firmware development
for massively parallel processors, and mention the problems to be solved. The de-
parture points of IRIS, see Section 3.4, follow logically from these problems, and
precede the introduction of IRIS in Section 3.5. In sections 3.6, 3.7, and 3.8 we
introduce the various phases and subphases of IRIS. Because of the rather static

34

3.2 – State of the Art Methodologies

Structural

Domain

Behavioural

Domain

Physical / Geometrical

Domain

Synthesis

Analysis

Optimisation

Extraction

Abstraction

Generation

Refinement

Figure 3.3: The Y-chart integrates the multi-stakeholder issues in the development
of a hardware subsystem

description of these phases we will provide concrete guidelines for traversing the
various (sub)phases and how to use the architectural language (Section 3.5.2). In
the last two sections we summarise the observations (Section 3.9) and draw some
conclusions (Section 3.10).

3.2 State of the Art Methodologies

This section presents relevant developments in the methodology for constructing
firmware for embedded systems.

3.2.1 Multi-disciplinary aspect

An influential development approach for hardware/software co-design, the Y-chart
[50][37], is based on concurrent elaboration on multiple domains (coupled to stake-
holders) at different abstraction levels, see Figure 3.3. These domains, which in
fact are different views for specifying a hardware system, are: behavioural (func-
tional etc.), structural (hierarchy of interconnected components, computer archi-
tecture) and the physical/geometrical domain (physical placement in space and
physical characteristics). It is potentially a very generic methodology, but it is
mostly used for hardware development and not well suited for developing code for
existing many-core programmable processing systems.

The development of embedded systems involves new types of stakeholders,
that are not addressed in the Y-chart approach. One of these stakeholders is the
customer or end-user of the embedded system. According to the Soft System
Methodology (SSM) [26], the intended solution not only involves a hard system

35

Chapter 3 – The IRIS Firmware Design Methodology

(a technological system that can be engineered) but also a soft system (an organ-
isation, a human being, etc.) that uses the system. SSM is particularly strong in
preparing the foundation of a system development. In this respect it is useful in
the search for the scope and demarcation of the hard system’s boundary.

3.2.2 Iterative aspect

Claasen [27] puts emphasis on the iterative aspect in hardware/software co-design.
The extra-functional design properties2 as performance, power and resource con-
sumption, are analysed by using post-mapping analysis tools, tools that can only
be used after the complete design is finished. However, for interactive code devel-
opment we need instant mapping analysis.

In addition to the common direction for functional development, in [82] an or-
thogonal direction, namely that of design space exploration is introduced. Design
Space Exploration is a structured way of identification and evaluation of design
alternatives, and the development of criteria. The ultimate choice, which is part
of decision recording, starts off a next development cycle.

Agile methods such as Extreme Programming (XP) [10] try to reduce develop-
ment time, typically from months to weeks, by reintroducing interactivity to the
design process. These methods, however, mostly use an implementation language
for the development roles. This leads to less readable and maintainable code in
particular for the early phases. Recently [54] more emphasis is put on raising the
level of abstraction by using new parallel languages instead of extending the tra-
ditionally used sequential languages (mostly C-based). However, these languages
lack possibilities for the detailed control at elementary processor level, necessary
for realising the tight constraints on extra-functional properties (e.g., power).

Platform based design [72] recognises the importance of both top-down and
bottom-up development. The basic tenets for platform based design are: re-
garding design as a ”meeting in the middle process” and the identification of
precisely defined layers where the refinement and abstraction process takes place.
No concrete proposals are given how to define such layers in practice. For Image
Processing applications, Bagdanov [6] advocates the separation of development
and implementation in large Object Oriented frameworks (Horus). He selected a
functional language for the development purpose.

The general practice in designing a system is that a lot of design decisions are
made implicitly and are not explored. In [15] a cybernetic (control by feedback)
approach is described in which subsequent architectures are generated, a process
that is directed by a set of (extra-functional) properties. These architectures
evolve in the end to an architecture that is ’frozen’ as a framework (the software
architecture) for subsequent design and implementation. Although the process
is described in a linear way, in practice the path taken can cycle a few times

2 Extra-functional requirements refer to all non-functional requirements and constraints that
are relevant for the realisation of an embedded system.

36

3.2 – State of the Art Methodologies

and already taken decisions have to be rolled back and redone. For software
programmable many-core systems it would be possible to maintain these evolving
architectures with respect to both the functionality and associated properties.

3.2.3 Software economics

From the software economics side it is known since long that two relevant issues
influence the choice of a development methodology and in particular of the archi-
tectural language. First, the cost of reworking the software is much smaller (by
factors up to 200) in earlier phases than later phases [17]. Second, the length of
description (measured in thousand Lines Of Code (KLOC)) is a dominant factor
in software development costs as described in the COnstruction COst MOdel (CO-
COMO) [16]. The shorter the description the better, giving credit to declarative
languages (e.g., functional languages).

3.2.4 Many-core developments

The recent developments on many-core systems certainly will influence the method-
ology landscape. Patterson [39] formulated some interesting recommendations for
developing software for many-core systems:

• Future programming models must be more human-centric compared to the
conventional focus on hardware or applications.

• A programming model must allow the programmer to balance the competing
goals of productivity and implementation efficiency. He foresees that for this
balance the following two conflicting goals are important:

– Opacity abstracts the underlying architecture.

– Visibility makes the key elements of the underlying hardware visible
to the programmer.

• For the multi/many-core processor domain it is difficult to innovate the cur-
rent compiler technology to support parallelism3. Some tooling, for example
search-based autotuners, can partly alleviate the problems [39]. Autotuners
optimise a set of library kernels by generating many variants of a given kernel
and benchmarking each variant by running them on the target platform.

• Add hardware support to increase robustness against programming faults.

Although most of the recommendations make sense for firmware development, the
autotune technology is not ready yet for dedicated SIMD architectures. In this
respect we follow Hwu [86] in the advice that the legacy (sequential) code base
must be revised or redeveloped.
3 For specific domains as vector processing, tools exists that extract parallelism out of legacy

(Fortran) code, but for the general case it is extremely difficult [39].

37

Chapter 3 – The IRIS Firmware Design Methodology

3.2.5 Model-based design

According to [22] models provide abstractions of a physical system that allows en-
gineers to reason about that system by ignoring extraneous details while focussing
on relevant ones. Models are used in many ways: to predict system properties,
to reason about specific properties when conditions are changed, and to commu-
nicate key system characteristics to various stakeholders. Today models are used
in practically all methodologies. Model related design approaches come in differ-
ent flavours, see Figure 3.4. Besides Model-based design and hardware/software
co-design, three other model-based approaches are relevant to discuss: Model-
driven development, Stream oriented process models, and Mathematical models.
The IRIS methodology as presented in Section 3.5, is influenced by many of
these models.

Model-based design. Model-based design originally emerged from the control
engineering domain. In the early days analog control systems were commonly
found in the industrial environment. Large process facilities started using elec-
tronic process controllers for regulating continuous variables such as temperature,
pressure and flow rate. They started to use mathematical and visual methods for
addressing the problems associated with designing complex control systems. Soon
they started using models for system identification, for synthesising a controller,
and for simulating the combination.

As is the case in other domains, the control engineers are under pressure to
finish their projects within a tight schedule and at low cost. The traditional text
based approach to designing embedded systems was not suitable anymore [83],
and new approaches emerged. The most popular approach is Model-Based Design
(MBD)4 [49]. In MBD, a system model is at the center of the development process,
from requirements development, through design, implementation, and testing.
The model5 is an executable specification that is continuously refined throughout
the development process, and simulation can be done through model elaboration.
When software and hardware implementation requirements are included, such
as fixed-point and timing behaviour, one can automatically generate code for
embedded deployment and create test benches for system verification, saving time
and avoiding the introduction of hand-coding errors. A popular tool for MBD is
Simulink6 [68] and MATLAB [20] is often used as a modelling language.

To summarise, the following four aspects can be uniquely related to MBD [49]:

1. executable specification with models,

2. design with simulation,

4 To avoid mixing up the category of flavour ’model-based design’ with the concrete ’MBD’
methodology, we consequently spell the flavour with lower case (see Figure 3.4).

5 The model includes the relevant parts of the control software as well as the to-be-controlled
system.

6 Simulink is a graphical block diagramming language tool and a modelling language as well.

38

3.2 – State of the Art Methodologies

HW/SW co-design

Mathematical

models

Stream oriented

process models

Model-based

design

Model-Driven

Development

multi-disciplinarity

iteration

MDA

SF

DSM

Kahn process model

MBD

V-model

IRIS

CSDF

declarative

functional

many-core

Figure 3.4: Model related design approaches come in flavours. Sample method-
ologies are indicated.

3. implementation with code generation,

4. continuous test and verification.

Model-Driven Development. Model-Driven Development (MDD) is a soft-
ware engineering approach consisting of the application of models and model
technologies to raise the level of abstraction at which developers create and evolve
software [60]. Its application areas include information systems in general but also
embedded real-time control systems. The Object management Group, Inc. defines
a particular realisation of MDD using the term Model-Driven Architecture (MDA)
[75]. The MDA provides a systematic framework to understand, design, oper-
ate, and evolve all aspects of systems. MDA is based on modelling separately
technology-independent and technology-dependent aspects of a system, by de-
scribing them in separate models. Unified Modeling Language (UML) [75] is
a language for requirements analysis and system specification in MDA. UML is
used in modeling event-based systems (object orientation) but it is not well suited
to model data flows in streaming applications [19]. The latter propose a design
flow which provides an automatic mapping to other models such as Simulink [68].
While platform independency is the primary goal of MDA, Microsoft’s Software
Factory (SF) on the other hand focusses on product line development [33]. It
uses Domain Specific Modelling (DSM) [33] to narrow into the problem as well

39

Chapter 3 – The IRIS Firmware Design Methodology

as platform domains to facilitate for example code generation. For this purpose
a so called Domain Specific Language (DSL) [33] is developed, that is especially
created for this task. Although domain specific modelling can be useful for our
purposes, the scale of deployment is too small for SF and DSL to be a serious
contester.

Stream oriented methodologies. Stream oriented methodologies concentrate
on the mapping of sequential pieces of code running in parallel on multiple cores,
and the Kahn Process Network (KPN) is a popular model of computation [119].
An extension of the simple synchronous dataflow is the Cyclo-Static DataFlow
(CSDF) paradigm, that supports algorithms with a cyclically changing behaviour,
and still allows for static scheduling [12][123]. However, the methodologies lack
the support for programming the often heterogeneous hardware architectures of
the individual cores.

Mathematical models. Mathematical models are based on a mathematical
formulation of a problem. A specific programming style, that fits naturally to
these models is declarative programming. A program is ’declarative’ if it describes
what a certain program does, rather than how to do it. For example, HTML web
pages are declarative because they describe what the page should contain (title,
text, images) but not how to actually display the page on a computer screen.

According to a different definition, a program is ’declarative’ if it is written
in a purely functional programming language, logic programming language, or
constraint programming language. The term ’declarative language’ is sometimes
used to describe all such programming languages as a group, and to contrast them
against imperative languages.

Functional programming is a programming paradigm that treats computations
as the evaluation of mathematical functions and avoids state and data updates. It
emphasizes the application of functions, in contrast with the imperative program-
ming style that emphasizes changes in state. Functional languages include Haskell
[43][13], Erlang [3], Lisp [1], Scheme [109], ML [89], F# [88] and A Programming
language (APL) [66]. Functional programming languages, especially purely func-
tional ones, have largely been emphasised in academia rather than in commercial
software development. However, notable functional programming languages used
in industry and commercial applications include Erlang (concurrent applications),
R [29] (statistics), Mathematica [114] (symbolic math), ML [89], J [113] and K
(financial analysis)7, and domain-specific programming languages such as XSLT
[93].

7 Dennis Shasha: ”K as a Prototyping Language”, 1998, http://www.cs.nyu.edu/courses/

fall02/G22.3033-007/kintro.html.

40

http://www.cs.nyu.edu/courses/fall02/G22.3033-007/kintro.html �
http://www.cs.nyu.edu/courses/fall02/G22.3033-007/kintro.html �

3.3 – Model-Based Design as a basis for IRIS

3.3 Model-Based Design as a basis for IRIS

The purpose of this section is to discover what exactly is required for a firmware
development methodology for many-core architectures. We start with an inven-
tory of the gaps left by the hardware/software co-design developments, see Sec-
tion 3.3.1. Since model-based design covers a lot of desired aspects we continue
with emphasising the advantages of MBD. Before this is done relevant industrial
requirements are listed, which are used to emphasise some aspects. In this way
we are able to formulate what we can adopt from MBD, but also what problems
remain to be solved (Section 3.3.2).

3.3.1 Extending Model-Based Design

In targeting embedded applications for a commercially available processor, the
conventional hardware/software co-design methodologies have open problems.
They are listed below.

1. Lack of one integrated coherent framework. The described methodologies are
either very generic (Y-chart) or only address parts of the development trajec-
tory. These multiple discrete and non-consecutive parts obstruct – from an
integral point of view – a progressively modelled system.

2. Lack of interactive feedback on current functional design decisions (only post-
mapping tools). There is no early design validation, no progressively expanded
test cases, which consequently results in late system level verification. The
same applies to the monitoring of extra-functional parameters that is decoupled
from the development itself and also implemented via non-interactive post-
mapping tools.

3. There is no support for evaluating design alternatives (design space explo-
ration) in a single language environment, which is a necessity for progressive
(evolutional) development.

4. No focus on reduction of time to market, no software generation (because of
the one-sided focus on hardware development).

5. Traditionally hardware/software co-design covers only hardware designs. Soft-
ware and in particular software economics for programmable processors has
not been given the desired attention.

To conclude this section we mention a few relevant requirements for the de-
velopment of a methodology from the side of industrial embedded systems devel-
opment.

A. Effective methodologies for industrial applications have to reckon with the
following success factors [11]: (1) they should be easy to learn, (2) easy to
use, (3) short cycle time of the application to the model, and (4) should have
reasonably accurate predictive power.

41

Chapter 3 – The IRIS Firmware Design Methodology

B. The reduction of time to market is a hot item [84], and tooling should support
rapid prototyping and code generation. For example as a tool supplier, The
MathWorks [83], recognises the importance of time to market and positions
its products MATLAB and Simulink in the center of MBD8.

C. Companies expect a significant increase in efficiency by using these tools (in
a particular case even more than 200% is reported [28]). Furthermore an
increase in the maturity level of developed functions is expected.

3.3.2 Remaining problems

In general most of the above mentioned hardware/software co-design remaining
problems 1 · · · 5 are more or less covered by MBD. Also, from the list of re-
quirements for industrial embedded system development, all three (A· · ·C) apply
to MBD. The problems with MBD, however, are related to the specifics of the
application domains: there are large differences between the control engineering
domain and the domains covered in this thesis. These problems form the basis for
the requirements for a new, to be created, methodology for many-core firmware
development. The problems are:

a. The targeted application domain for MBD is mainly control engineering. Pro-
gramming of many-core systems for our application domains, however, involves
more intra-system modelling (software and hardware) than control engineering
applications require.

b. No attention is given to hardware modelling in an early design stage (as is e.g.,
essential in power efficient architectures). Even the opposite is true: it is quite
common that hardware enters the control system design at a late stage.

c. There are no specific design roles for trading functionality for (hardware de-
pendent) extra-functional properties.

d. There is no explicit support for reuse (as a software engineering aspect). Reuse
has a positive effect on quality of code and on code generation.

e. Many-core hardware is not considered as target in MBD (yet), until now only
code generation exists for Digital Signal Processor (DSP) or for FPGA.

f. MBD has no built-in mechanisms for explicitly minimising the integral devel-
opment time (for example by considering a risk based development process).

g. Problems in firmware development for heterogeneous many-cores need a mix-
ture of function abstraction and data abstraction. The functional languages
(such as Haskell or J) offer both kinds of abstraction. MATLAB [20] only offers
data abstraction and is used in high level modelling (control engineering) and
for regular parallel processing (DSP applications).

8 These products use languages: M is the language of MATLAB and Block Diagrams that of
Simulink

42

3.4 – Starting points of IRIS

3.4 Starting points of IRIS

The following departure points, which are inspired by the previous sections, are
taken for the IRIS methodology and earlier experience9:
a) Model-based. As introduced in Section 3.2.5 model-based design is a design
process for complex, multi-disciplinary and multi-stakeholder problems. Mapping
applications to many-core systems, the focus of this thesis, certainly falls in this
category. In Section 3.2.5 and [49][53] the four basic aspects of the dominant
methodology MBD are mentioned, which cover most of the requirements for IRIS.
Therefore, MBD is selected as a point of departure.

Another aspect of MBD is the choice of programming model. Patterson [39]
identified the need for new programming models if they simplify the programming
of highly parallel many-core systems. New programming models use for instance
statistical techniques (Energy-Based Model (EBM) [81]), or learning technologies
like Artificial Neural Networks (ANNs) [77], can significantly reduce the amount
of work involved (see Chapter 4 and 6 respectively). When new programming
models are not applicable, and a sequential specification of an application is avail-
able, it is essential to (partially) remodel this specification, in order to better fit
the target many-core hardware.

Unfortunately very often hardware is described in terms of a sequential pro-
grammer’s view and this may hide the essential parallel features of the very same
hardware. The explicit exposure of the parallelism of the hardware to the pro-
grammer is a first step in closing the semantic gap10 between specification and
hardware. An additional problem is the often poor state of the hardware doc-
umentation and programmer’s guide. It is not uncommon that documentation
contains errors and/or that the number of undocumented features is relatively
large. Hardware models are needed to prepare the developer for the mapping
task.

b) Early Feedback. Designing firmware is not a linear process. Although
the major design flow is in the direction of the ultimate realisation, in practice
lots of detours (caused by various reasons) have to be taken. For this purpose a
feedback loop is used, see Figure 3.2. This loop is closed by the developer, who
identifies the correct design stage to adapt, performs all necessary corrections
and proceeds with the normal design flow. For the moment it is sufficient to
know that a stage is a small unit of development time (see departure point e)
and Section 3.5.1). An example for such a detour is the mapping of parts of
the application to the cores. In (heterogeneous) many-core systems the optimal
mapping of application threads on cores depends on the specific details of the

9 In the timeframe 1982-2001 several excercises took place that can be interpreted as cases for
a precursor of IRIS [P5][P6], and [122], [112].

10 The semantic gap, in general, characterises the difference between two descriptions of an
object by different linguistic representations. In our case an abstract but executable specifi-
cation in an architectural language and an implementation description in a target hardware
language for a particular SIMD processor.

43

Chapter 3 – The IRIS Firmware Design Methodology

target language domain

architectural language

domain

abstraction

level

functionality

functional

architecture

complete

realisation

complete

what
:

incremental

prototyping

how
:

transformational

development

Figure 3.5: Incremental Prototyping and Transformational Development as design
activities along the functionality and implementation design dimensions

selected cores and the algorithms used. Even the smallest change in an a priori
partitioning can induce a feedback cycle through the various effected stages.

To minimise development effort it is essential that design flaws are detected
as early as possible [17].

c) Feasibility and Risk analysis. Almost all projects are feasible – given
unlimited resources and infinite time. However, the challenge in the development
of realistic embedded systems is to deal with the scarcity of resources and pressing
market windows. Therefore, it is recommended to evaluate the feasibility of a
mapping as early as possible [98]. A lot of development effort can be avoided
when an ill-conceived system or module is recognised in the early phases.

The technical feasibility is one of the most difficult areas to assess at early
phases. Because in these phases objective, scope, functionality etc. are not yet
clear, everything seems possible. Pressman [98] states: ”It is essential that the
process of analysis and definition be conducted in parallel with an assessment of
technical feasibility”. In this way early ideas of functionality (initial scope) may
be evaluated by confronting these ideas with technology (tech probe).

The order of addressing or selecting a development step is important in reduc-
ing the risk of failure. The following development steps illustrate the importance
of the order of: analysis→design→implementation.

Analysis. The design of a system is always preceded with an analysis of the prob-
lem to be solved (why before what). Overlooking a crucial requirement, for
example missing a critical functional or attribute (non-functional) require-
ment is perhaps the greatest risk in requirement engineering [80]. Inade-
quate customer representation should be avoided and asks for a proactive

44

3.4 – Starting points of IRIS

why-attitude.

Design. Functionality is determined by what the system should do and precedes
its implementation (how) [14], see Figure 3.5. This figure describes the
separation of two – often intertwined – concerns: the specification of the
functionality and the development of the system (realisation). The required
functionality of the system is developed during the incremental prototyping
phase and leads to the functional architecture, still an abstract but exe-
cutable specification. Next this specification is gradually expanded to tar-
get code in the transformational development phase. The strict separation
of functional specification and implementation speeds up the development
process. All elaborations are expressed in the architectural language ex-
cept for the last stage: the translation to the target hardware programming
language.

Implementation. The complex nature of programming many-core architectures
and the tight constraints on system delivery, characterise the implementa-
tion as a risky process. Elaborating the various functions in the correct
order for implementation (see the vertical trajectory in Figure 3.5) can mit-
igate the risk of a late delivery, or even worse: project failure. Often a
Pareto analysis [98] is used for this purpose. Pareto analysis is the process
of ranking opportunities to determine which of many potential opportuni-
ties should be pursued first. In order to minimise the propagation of errors
to later phases we select the one with the largest risk. In this sense it can
be a guide in the selection of the next function to work on. Functions are
taken one at a time and transformed in a form that resembles their final
implementation more, but not necessarily in the final form already. Such
a transformation is done in a small development time interval, a so called
stage, and corresponds to the succession of subspaces Qi, that are men-
tioned in Section 3.2.2 and [15]. When a stage is finished a next function
(may be the same) is selected for expansion by a new Pareto analysis. The
succession of these subspaces eventually leads to a system that satisfies all
requirements.

d) Monitoring extra-functional properties. Extra-functional properties
are properties that characterise non-functional aspects of a system. These aspects
can normally not be decomposed as easily as functional descriptions, but have to
be ’measured’ by post-mapping tools (see Section 3.2.2 [27]). Extra-functional
properties can emerge at any moment in the development process as described in
[15]. For some extra-functional properties, in particular the ones written down in
the requirements, constraints are formulated that have to be respected. Others for
example appear during implementation and are used for evaluating alternatives.

The functional model is coded in an architectural language with an appropriate
level of detail that fits the current development phase. In order to monitor the
extra-functional properties during development they should be modelled with a

45

Chapter 3 – The IRIS Firmware Design Methodology

similar level of detail. This could be realised by extending the functional model
with extra-functional properties (e.g., timing11) or off-line processing for static
analysis (e.g., software complexity measures). A typical course for such a property
starts with a large variation in extra-functional properties in early stages and
becomes more deterministic (small variation) in the end, satisfying all constraints
(e.g., obeying required lower or upper bounds).

Once the relevant models – the functional as well as the extra-functional mod-
els – are in place, they can be evaluated to return quantitative results. This
evaluation is done by a carefully orchestrated and gradually extended set of test
cases or test suite12, that gives the developer the assurance that the system-to-be
will meet all relevant requirements for this stage. Not all models return quanti-
tative results, for example first timing models and models for storage allocation
might be better handled by qualitative considerations using a simple space×time
scheme (in a ’textual’ spread sheet). Typically the extra-functional models depart
from qualitative models, which transform via probabilistic models to deterministic
quantitative models.

One class of extra-functional properties that are monitored during this re-
search is quality. Quality functions can be very diverse and may vary from for
instance precision of computation to a perceptual optimisation criterion. A quite
different extra-functional property is software complexity. Complexity measures
can be obtained from the model descriptions during all phases of development.
For example Nurminen [94] reports that simple Lines Of Code (LOC) metrics
are useful in empirical algorithm comparison, which is suitable in design space
exploration, see next paragraph.

e) Succession of subspaces and design space exploration. The develop-
ment of a system can be viewed as the succession of subspaces Qi ⊂ Q, where Q is
the discrete and finite space of all possible digital systems. According to Boasson
[15]: ”Finding this succession is a difficult and not well-understood process”, and
he objects against the current practice that subspaces are implicitly defined every
time a decision is taken. Clearly both an incremental development and an explicit
design space exploration are needed.

To illustrate the relation between incremental development and design space
exploration we first define a stage as a time interval, whose length represents
the time it takes to develop the succession of Qi−1 → Qi. It is considered as
the smallest unit of design13. Design space exploration describes the process of
finding alternative strategies for realising the current stage. Because the winning
alternative of such an exploration is coded directly into the model this also covers

11 From a purely functional viewpoint timing is considered a non-functional property.
12 The test suite, also known as validation suite, is a collection of test cases that are designed

to show the existence of errors. In an indirect sense they intend to specify a behaviour by
asserting relations between input and output.

13 From experience we know that a time interval should last no more than a few hours.

46

3.5 – The IRIS methodology

directed

development

design space

exploration

path of

successive

subspaces Q

i

stage

Q

i

Q

i
-1

Figure 3.6: Relation of design space exploration and the succession of subspaces
Qi ⊂ Qi−1 ⊂ Q

the decision recording14. Figure 3.6 shows the relation of the design space ex-
ploration with respect to the succession of subspaces Qi. Note that whereas this
approach is described as a linear process, in practice the path taken is much more
complicated, with decisions being revoked and other alternatives explored (cyclic
development).

3.5 The IRIS methodology

Now that we have discussed the departure points, we can introduce IRIS gradu-
ally. First an overview of the methodology is given, followed by the architectural
language that is used for the involved modelling.

3.5.1 Overview

The IRIS design methodology for deriving firmware for SIMD architectures does
support different application domains and is strongly phased, see Figure 3.715. In
this manner IRIS supports the different development roles necessary for an ef-
fective and efficient development process. In our methodology we recognise three
main phases: I) Familiarisation, II) Incremental prototyping, and III) Transfor-
mational development.

Familiarisation is specifically meant to vet both the problem and the tar-
get hardware that is intended to host the embedded system. Questions such as
”why do we need an embedded system?”, and ”what is its scope?” are answered.
14 Besides the generation of the target code one could also generate project history documenta-

tion.
15 This figure is inspired by [104].

47

Chapter 3 – The IRIS Firmware Design Methodology

functionality

detail

implementation

why
: familiarisation
 production

tech

probe

initial

scope

what
: incremental

prototyping

how
: transformational

development

functional

architecture

complete

realisation

complete

Figure 3.7: Design dimensions in IRIS

Incremental prototyping is concerned with what the system is supposed to do.
It results in the complete functional architecture. Here the functionality is de-
termined, strictly separated from the implementation. Finally, transformational
development tackles the actual mapping – the how – to the target hardware.

As described in Section 3.4 the smallest unit of development is a stage, that
should preferably be finished within a few hours. The above mentioned phases last
longer and – in particular the transformational development phase – is relatively
large in size. Beyond that, this phase incorporates various development roles and
therefore groups stages in separate role-typical subphases.

Sequencing the stages is, in general, determined by the analysis - design - im-
plementation flow. Particularly in embedded system design, however, deviations
of this flow are quite common. These deviations can be initiated by – constantly
monitored – extra-functional properties, of which the values move into a critical
region. Figure 3.8 describes the global use-pattern of IRIS. In this figure the var-
ious phases are depicted in the normal design flow order (left to right), and this
order shows the global development direction towards realisation. However, em-
bedded system design has to respect constraints on (extra-functional) properties
that cannot be foreseen. Insufficient performance of monitored extra-functional
properties, such as exceeding an agreed memory budget, can lead to redesign.
The tail of the arrows in the figure symbolise the probing of these properties,
whereas the head of the arrows symbolise the earliest possible stage that has to
be redesigned by the developer.

In Chapters 4, 5 and 6 the methodology will be illustrated via case studies.

48

3.5 – The IRIS methodology

realisation

problem

Familiari-

sation

Incremental

prototyping

Transformational development

Trade-

off

Reorg-

anisa-

tion

Temp-

late

Trans-

lation

online and in-situ monitoring of extra-functional properties

Figure 3.8: Global use-pattern of IRIS, ordered along its phases. Cyclic develop-
ment is often induced by insufficient performance of monitored extra-functional
properties.

3.5.2 Architectural language

First, we will state the requirements of and propose of a suitable architectural
language. Second, we will go into how to use the architectural language and
propose risk management as a guiding principle.

3.5.2.1 Requirements and proposed architectural language

One of the requirements of IRIS is the use of a single language for the modeling
work in all phases. The language should satisfy a number of requirements. The
language should be: (a) flexible, in the sense that it supports modelling of high
level descriptions (close to mathematics) as well as implementation issues as data
parallelism or even low level bit field assignments, (b) compact, since compactness
of description is a virtue in reducing costs, (c) executable, to offer verifiability of
work in all phases, (d) interpretative, in order to realise the needed interactivity
(in, e.g., design space exploration), and (e) general purpose, to allow for creat-
ing auxiliary tooling, such as memory utilisation, performance monitoring or the
automatic verification (by running the maintained test set).

In IRIS we propose a functional language (like Haskell [13] or J16 [113]) as
the architectural language because it fulfills the requirements mentioned above.
We propose a single architectural language for all phases that supports multiple
roles because of ease of use: (1) one single framework is better facilitated by a
single language provided the different roles involved can be served adequately,
(2) a language close to mathematics, can facilitate precise specifications as well as
serve as a language that facilitates concise description of implementation details,
(3) code refactoring (for example in the Template subphase) is hindered when
interfaced over cross-language domains, and (4) one language to investigate and
document suitable alternatives is more beneficial than using different languages.

16 Jsoftware Inc.: ”High-Performance Development Platform”, 1990, http://www.jsoftware.

com/.

49

http://www.jsoftware.com/�
http://www.jsoftware.com/�

Chapter 3 – The IRIS Firmware Design Methodology

The fact that various necessary development roles can be performed in an easy
interactive manner, makes firmware development an enjoyable activity. Because
Haskell is better known than J, we select Haskell to illustrate IRIS in this thesis,
although all case experiments have been done with J. In this thesis we conveniently
use a pseudo form of Haskell. We deviate for example from Haskell by allowing
upper case names, by using a free form of case statement and taking some freedom
in expressing conditional statements (syntactic sugaring).

3.5.2.2 How to use the architectural language

This section is concerned with the use of the architectural language. For IRIS
this use is subjected to the minimisation of the development time. Not only the
selection of the programming style but also the order of the elaboration of stages
(succession of subspaces, Section 3.4) plays a role in a minimum development
time.

The problem of developing a suitable implementation for the required system
originates from the fact that the design space is immensely large. Even when the
requirements were fully known and understood there is no clear trajectory that
brings us from start to the complete implementation. In [15] a phased approach
is described in which subsequent architectures are generated, a process that is
directed by a set of (extra-functional) properties. These successive architectures
evolve in the end to an architecture that is ’frozen’ as a framework (the software
architecture) for subsequent design and implementation. This pattern is also
followed in IRIS and a crucial role is played by the architectural language. The
main question to be answered for IRIS is: How can the architectural language
help in finding a suitable implementation?

A suitable implementation includes functional as well as extra-functional prop-
erties. Not only properties that describe the state of the product but also the state
of the development process itself. Timely delivery (time is a design-goal) and
project costs within budget, are also important factors to cope with. Patterson
[39] describes the problem of finding the optimal programming model as a balance
of the competing goals of productivity of design and implementation efficiency,
see Section 3.2.4. He concludes with a remark that the ability of the programmer
to exploit the power of future many-cores is the real key to the success and im-
plicitly indicates that maximising performance or minimising dissipated energy
is of lesser importance. So with respect to the used architectural language an
important trade-off has then to be made between productivity of design and im-
plementation efficiency. This trade-off reflects in the two roles an architectural
language should have (as mentioned in Section 3.5.2): it should support the mod-
elling of high level descriptions as well as implementation issues. The first role
can best be carried out by a functional programming style, the second role by
an imperative programming style. Because of the pressure on development time,
the choice for the cross-over point is important. Although the choice depends
on a lot of factors (e.g., culture, education, situation) the cross-over point will

50

3.6 – Phase I: Familiarisation

eventually be determined more by the strict deadline than personal preferences
of the developer.

Another issue that is related to productivity of design is the order of select-
ing the stage to elaborate, and Risk management can be used for this purpose.
In general, risk management is a structured approach to managing uncertainty
through risk assessment, and developing strategies to manage it. In our case this
means an assessment per stage including a Pareto analysis (Section 3.4) and the
selection of the most risky next stage. This is the reason why we choose to base
IRIS on reducing the risk that the system is not delivered on time or not even
delivered at all.

3.6 Phase I: Familiarisation

We can now describe IRIS as depicted in Figure 3.7 in more detail in the following
three sections. We start with the familiarisation phase. The goal of this phase is
to come up with a provisionary demarcation of the system boundary and build
some confidence on the feasibility with respect to the intended hardware. This
corresponds to the design activities normally deployed between the behavioural
and the structural domains in the Y-chart methodology [50] (described in Sec-
tion 3). The physical domain is absent in our approach since we assume that the
(many-core) hardware technology is already available.

We start with the vetting of both the problem (initial scope) and the intended
candidate hardware architecture(s) (tech probing). In order to maximise the de-
gree of freedom for system development an abstract ’mathematical’ description
is made of the formulated problem. At the same time models are made of the
target hardware – partly based on the documentation and sample programs pro-
vided by the hardware supplier – to better understand its behaviour. This also
involves opening up the parallel facilities of the target hardware, often hidden by
the imposed C-programming model. Another issue concerns the documentation
of the target architecture, which is not always in perfect condition. Driven by
the need for clarity on the relevant parts, ’reverse engineering’- like activities lead
to modelling that corrects relevant errors in the documentation, or even finds
undocumented features.

Both activities use the architectural language, but in very different ways. The
functional programming style is preferred to get a clear view on the context, and
to model some interactions with the clear goal in mind to divide the concepts
in two sets: system concepts, or environmental concepts. System concepts are
directly related to the system being built, whereas environmental concepts are
built to handle the interfacing to the outside world and for the system verification
framework (test drivers, actual verification). The two sets implicitly define the
system boundary demarcation.

In vetting the target hardware architecture, however, the functional as well as
the imperative programming style are used. Familiarisation with the typical usage

51

Chapter 3 – The IRIS Firmware Design Methodology

of: instruction modes, parallelisation, data transport, inter-PE communication,
memory hierarchy and sizes, is done by reading the manuals and following the
– by the manufacturer provided – demo programs. Although the imperative
programming style will be the preferred style, the global aspects can be handled
better with the functional style.

Near the end of this phase, when sufficient confidence has been built up in
both application and hardware architecture, a first feasibility study is conducted
to evaluate the target hardware architecture(s) against the scoped problem. After
a small risk assessment at least one feasible hardware architecture is identified
and one is chosen provisionally. The final choice – including the setting of some
parameters such as number of processors, clock frequency, size of memories – is
done after the next phase. Actual code production consists of the following two
phases: incremental prototyping and transformational development.

3.7 Phase II: Incremental Prototyping

The goal of this phase is to establish the specification of the system. This phase
leads via a number of intermediate steps to a complete specification, the Func-
tional Architecture. Furthermore, it leads to a validation test set, a baseline set
used in the following phases (or in this phase in case of redesigns). Incremen-
tal prototyping (also known as evolutionary prototyping) is quite different from
throw away prototyping [30]. The main goal when using incremental prototyping
is to build a very robust prototype in a structured manner and constantly refine
it (using design space exploration), whereas throw away prototyping is used for
learning purposes only (and the end result is always discarded). In our approach
the prototype is the specification.

The functional programming style in the architectural language is preferred for
this task. Essential is to keep the functional description concise since this is the
basis for the coming development. A typical activity that supports conciseness is
refactoring17. Since refactoring is a purely functional development activity, the
functional programming style is most adequate to use.

This functional specification is executable –as are all the intermediate steps–,
is independent of the target hardware, and serves as a live description of the sys-
tem. The functional architecture marks an important milestone in the customer-
architect co-operation. At this point we know the desired functionality of the
system and we can turn to the transformational development, which is hardware
architecture dependent.

17 In agile developments, refactoring a source code module means modifying without changing
its external behavior, and is sometimes informally referred to as ”cleaning it up”.

52

3.8 – Phase III: Transformational Development

T
ra

n
s
fo

rm
a

ti
o

n
a

l
D

e
v
e

lo
p

m
e

n
t

trade-off

reorganisation

translation

template

high

low

a
b

s
tr

a
c
ti
o

n
 l
e

v
e

l

Figure 3.9: The layering of the Transformational Development phase

3.8 Phase III: Transformational Development

This phase consists of behaviour preserving transformations (except for the first
subphase: the trade-off subphase), which progressively involves making design
choices determined by the hardware architecture used, see Figure 3.7 (right part).
The validation test set is progressively extended at the same pace as the func-
tional decomposition. This allows intermediate checking against the current com-
plete validation test set. The Transformational Development phase exhibits the
following subphases: Trade-off, Reorganisation, Template, and Translation (see
Figure 3.9). See also [120].

3.8.1 Trade-off Subphase

The goal of this subphase is to deliver a golden reference, which can be used
for validation purposes for downstream transformations. Because of hardware
limitations often concessions have to be made to the accuracy of computations,
bit-width of variables, or even computation speed. Because of possible (mostly
tiny) concessions made to the functionality, this subphase involves, besides archi-
tect and implementor, also the customer. Design space exploration has to address
new aspects as implementation, deviations in functionality and quality, and the
evaluation of the consequences these deviations induce. The various results of
this exploration can be used to produce Pareto trade-off points to be used in e.g.,
run-time scheduling [111].

Regarding the choice of programming style preferably the functional style
should be used. The architect should have knowledge of the target hardware but
that does not necessarily imply the use of an imperative programming style. For

53

Chapter 3 – The IRIS Firmware Design Methodology

example limited precision by truncation of bit-fields can be described adequately
in a functional style.

3.8.2 Reorganisation Subphase

The goal of this subphase is to rephrase the executable model in a top-down
manner such that it is more geared towards the chosen hardware architecture.
This and following subphases involve only behaviour preserving transformations.
Because of the strong hardware coupling this subphase cannot always use the
functional programming style, although it is the preferred style. We mention a
few typical issues that are addressed in this phase18.

Globalisation. The hierarchical structure of functions as well as data structures
are adapted to better match the SIMD architecture. For most SIMD ar-
chitectures this implies the flattening of both structures. Functions are
gathered within a fewer number of functions to reduce/avoid function call
overhead and variables are made global because the SIMD hardware typi-
cally does not support any form of advanced memory management.

As a result the variables have to become globally visible to all functions. To
prepare for an effective allocation the variables are subjected to a variable
naming convention (see Resource allocation). Globalisation is performed
first since all following items depend on this choice for the allocation of
variables.

Resource allocation. As is often with SIMD architectures, the memory of each
Processing Element (PE) is limited. The static allocation of variables to
memory fields is critical, IRIS supports the choice for location and width.
This can vary between a simple spreadsheet containing a qualitative allo-
cation overview (e.g., in the beginning) to a tool that warns for conflicting
allocation attempts. Appropriate register naming conventions can serve this
goal (call-by-name19). For example for a variable that is mapped to a bit-
field the specification could look like <name>_<start_position>_<length>,
so that position and length can be checked. If one of the following issues
introduces a new variable, its allocation has to be validated again.

Resource sharing. Often the time-sharing of memory fields for different variables
is a solution for lack of storage space. This implies processing in a strict
order. A simple space × time overview can already be of help. For later
phases IRIS supports a full emulation of the PE’s memory, that allows for
overlapping bit-fields and real detection of allocation faults. Full emulation
is the only effective way to handle this. As mentioned in the introduction the

18 Some of these issues have been inspired by the software washing machine concept [25].
19 In the call-by-name evaluation strategy, the arguments to functions are not evaluated at all

– rather, function arguments are substituted directly into the function body and evaluated
when needed.

54

3.8 – Phase III: Transformational Development

programmer takes the role of ’intelligent’ compiler. Especially in resource
sharing, where the space× time scheduling can be very complex.

Expansion. Expansion of model code is a way of closing the gap between the
current model and final realisation in a step by step manner. This applies
to computation as well as program flow. For example a square operation
may not be available but can be expanded in a multiplication (expression
reduction). Another example is the transformation of implicit iterations
or recursive definitions by explicit loops or even the complete removal of a
loop (loop unrolling). As a final example we mention the exchange of nested
loops, turning the inside out, to better match with the processor’s capabili-
ties (see transformation laws in Chapter 4). New claims on resources during
expansion of for instance expressions can potentially influence allocation and
sharing of all bit-fields.

Expression optimisation. Expressions that have a relative large computation time
are rephrased such that they perform better. For example a multiplication
with a constant can be written as a repeated addition or as an optimised se-
quence of shifts, additions and subtractions [18]. Another example is looking
for common subexpressions and by reusing stored computed intermediate
results, for instance stored in a Look Up Table (LUT). This introduction
of state influences allocation and sharing of bit-fields.

Tiling. Building cost efficient systems requires a sound balance between perfor-
mance and cost. Since problems often require more storage than the target
hardware can offer, repeated processing of tiles offers an economic solution.
Tiles are – possibly overlapping – parts of a problem’s data space, that fit
in the target hardware system. Tiling requires the programmer to explicitly
divide the storage requirements of the application in a static and dynamic
part, which influences memory allocation and memory sharing of bit-fields.

Normalisation. To prepare the recognition of reusable code templates (see next
section) we rewrite similar code fragments in a uniform way. For example
loops, whether with constant or variable loop count, are presented in a
limited number of ways20. This also will facilitate translation (Section 3.8.4)
even when the fragment is not converted into a template.

Precomputation of constants. Some constants can be computed at compile time
or during the initialisation phase and e.g., stored in a particular memory
field administered per PE, or in a LUT (in case the target hardware sup-
ports this). Nonetheless constants consume storage thus need a check on
allocation and sharing of bit-fields.

20 The target hardware architecture often has a limited number of loop control instructions.

55

Chapter 3 – The IRIS Firmware Design Methodology

To conclude we remark that these issues can be addressed in many ways. We
need to explore the design space many times in order to come up with suitable
intermediate implementation models.

3.8.3 Template Subphase

The goal of this subphase is to identify reusable components that can reduce
current and future work. This not only includes reusable macros for code frag-
ments or even complete modules but also includes support for instruction coding
and translation. As time progresses, experience translates into more powerful
components/templates (bottom-up). Templates are intelligent pieces of interac-
tive functionality that serves several roles. First of all, the functional behaviour
of the involved SIMD processor instruction(s), functional emulation, should be
properly modelled. All relevant effects and (perhaps undocumented) side effects
of the hardware architecture should be modelled. Second, obeying the calling
conventions for all relevant type of instructions should be enforced. For example,
instructions can have restrictions on data width or type of memory fields. Finally,
the syntax of the template-call should be rich enough to enable automatic gener-
ation of the target code for this call (facilitating the translation subphase). Both
the calling convention and the translation support use a special calling conven-
tion for variables to express the allocation of memory to the variables. The same
calling convention scheme as suggested in the Reorganisation phase (Figure 3.8.2)
is used.

During the development phase, knowledge is being built up for the construc-
tion of a more advanced higher level compiler than the simple one-to-one trans-
lation (see transformation laws in Chapter 4). Successive modelling is needed to
develop the not yet discovered transformation laws, so that the benefit of using
the functional programming style is not frustrated too soon by hardware details.

The development direction is bottom-up, showing the abstraction of a code
fragment (as a template instance) to the template. The combination of reor-
ganisation and template subphases address the platform based issues [72], where
successive refinements of ’specifications’ meet with abstractions of potential im-
plementations.

3.8.4 Translation Subphase

The goal of this subphase is to realise a smooth transition to the target hardware.
This involves a fully automatic translation from the model of the design coded in
the architectural language, following the template and all earlier subphases, into
the native target language (mostly C+intrinsics) of the chosen hardware.

In the translation subphase, a functional programming style is preferred. For
the simple one-to-one translation a compiler generator (e.g., the Yapp21 parser

21 Yapp (Yet Another Perl Parser) is a collection of modules that can generate parsers with the
perl object oriented interface.

56

3.9 – Summary

generator) is used or a dedicated function can be written. Template based trans-
lation, in which a simple template call is expanded into multiple target source
code lines, is more effective since it can drastically reduce the size of the model
to be translated.

3.9 Summary

In this section we summarise the IRIS methodology by structuring it in two
different ways:

• By relating the described development phases (familiarisation, incremental
prototyping, and transformational development) to the – up until now –
implicitly mentioned development roles, which themselves will be explicitly
described.

• By positioning IRIS as a hardware/software co-design activity and use the
well known Y-chart as a template.

Development roles in the various phases. In the previous sections, where
methodology is described in a phase-wise manner, the various development roles
are implicitly described. Now, at this point, we can identify the roles and relate
them explicitly to the phases in IRIS.

We identified five groups of development roles:

1. The functionality is prototyped and transformed into firmware that satisfies
all requirements.

2. One of the most difficult roles in firmware development is the management of
the extra-functional properties. This is caused by the lack of good decompos-
ability of non-functional aspects in designs. The identified extra-functional
properties in the described cases are: memory, (execution) time and qual-
ity. These properties are often constrained by requirements and therefore
are part of the various feasibility tasks during the development phases.

3. Reuse and translation cover the desire to support manual translation by au-
tomatic tools. As experience is built up in implementation exercises during
the various phases the knowledge of problem decomposition and (reusable)
components can be turned into increasingly sophisticated translators / com-
pilers.

4. Design space exploration gives foundation to the large number of design
choices that have to be made. Decision recording documents the choices and
provides a bases for potential rework when for instance the specifications
change.

57

Chapter 3 – The IRIS Firmware Design Methodology

5. Verification is the role that gives legitimacy to the current development
stage. If verification of the current stage fails then the stage or previous
stages have to be reconsidered. The major risk is the absence of good fault
coverage and is related to the fact that the absence of a fault can be difficult
to show. A good remedy is to extend the test set with specific test cases for
each developed stage. Note that at each stage the complete validation test
set is executed. A subset of the validation test set is the golden reference:
it only checks the functionality (which does not change after the trade-off
subphase).

58

3.9 – Summary
R

o
le

s

P
h
a
se

D
e
sc

ri
p
ti

o
n

F
u
n
c
ti

o
n
a
li
ty

E
x
tr

a
-f
u
n
c
ti

o
n
a
l

p
ro

p
e
rt

ie
s

(f
e
a
si

b
il
it
y

c
o
n
c
e
rn

s)
e
.g

.,
m

e
m

o
ry

,
ti

m
e
,
q
u
a
li
ty

R
e
u
se

D
e
si

g
n

V
e
ri

fi
c
a
ti

o
n

(w
it

h
c
a
se

ch
a
p
te

r)
m

e
m

o
ry

ti
m

e
q
u
a
li
ty

a
n
d

tr
a
n
s-

la
ti

o
n

sp
a
c
e

e
x
p
lo

-
ra

ti
o
n

2
.

F
a
m

il
-

1
s

t
e
st

im
a
te

fe
a
si

b
il
it
y

ia
ri

sa
ti

o
n

in
v
e
st

ig
a
te

h
a
rd

-
w

a
re

m
o
d
e
ls

,
e
st

a
b
li
sh

sy
st

e
m

b
o
u
n
d
a
ry

,
p
ro

v
i-

si
o
n
a
ll
y

ch
o
ic

e
o
f

h
a
rd

w
a
re

fu
n
c
ti

o
n
a
li
ty

↔
e
n
v
ir

o
n
-

m
e
n
t,

q
u
a
li
ta

ti
v
e

m
o
d
e
l

(s
p
re

a
d
sh

e
e
t)

in
v
e
st

i-
g
a
te

q
u
a
n
ti

-
ta

ti
v
e

m
o
d
e
ls

3
.

In
c
re

-
m

e
n
ta

l
p
ro

to
ty

p
-

in
g

e
st

a
b
li
sh

th
e

fu
n
c
ti

o
n
,

d
e
te

r-
m

in
e

p
a
ra

m
e
te

r
v
a
lu

e
ra

n
g
e

d
e
fi
n
e

(n
e
w

)
fu

n
c
ti

o
n
a
l

m
o
d
e
l

d
e
fi
n
e

q
u
a
n
-

ti
ta

ti
v
e

m
o
d
e
l

d
e
fi
n
e

c
o
a
rs

e
q
u
a
n
-

ti
ta

ti
v
e

m
o
d
e
l

d
e
fi
n
e

q
u
a
n
-

ti
ta

ti
v
e

m
o
d
e
l

re
c
o
rd

se
t

u
p

te
st

e
n
v
ir

o
n
-

m
e
n
t,

d
e
te

rm
in

e
re

f-
e
re

n
c
e

te
st

se
t

(→
v
a
li
d
a
ti

o
n

te
st

se
t)

4
.

T
ra

n
s-

g
lo

b
a
l
sy

st
e
m

2
n

d
e
st

im
a
te

fe
a
si

b
il
it
y

re
c
o
rd

fo
rm

a
ti

o
n
a
l

d
e
v
e
lo

p
-

m
e
n
t

c
o
n
si

d
e
ra

ti
o
n
s,

ch
o
ic

e
o
f

h
a
rd

-
w

a
re

q
u
a
n
ti

ta
ti

v
e

m
o
d
e
l

(e
.g

.,
sp

re
a
d
sh

e
e
t)

,
sc

a
la

b
il
it
y

a
n
a
ly

si
s

4
.1

.
T
ra

d
e
-o

ff
su

b
p
h
a
se

m
a
k
e

c
o
n
c
e
ss

io
n
s

fu
n
c
ti

o
n
a
li
ty

↔
e
x
tr

a
-

fu
n
c
ti

o
n
a
l

p
ro

p
e
rt

ie
s

m
e
m

o
ry

↔ fu
n
c
-

ti
o
n
a
l-

it
y

ti
m

e
↔

fu
n
c
-

ti
o
n
a
l-

it
y

q
u
a
li
ty

↔ fu
n
c
-

ti
o
n
a
l-

it
y

re
c
o
rd

ch
e
ck

a
g
a
in

st
re

fe
r-

e
n
c
e

te
st

se
t,

d
e
-

te
rm

in
e

g
o
ld

e
n

re
f-

e
re

n
c
e

4
.2

.
R

e
o
r-

g
a
n
is

a
ti

o
n

su
b
p
h
a
se

m
e
m

o
ry

a
n
d

ti
m

e
a
ll
o
c
a
ti

o
n
s

g
lo

b
a
li
sa

ti
o
n
,

re
-

so
u
rc

e
sh

a
ri

n
g
,

e
x
p
re

ss
io

n
o
p
ti

m
is

a
-

ti
o
n
,
ti

li
n
g

n
o
rm

a
li
sa

-
ti

o
n

re
c
o
rd

ch
e
ck

a
g
a
in

st
g
o
ld

e
n

re
fe

re
n
c
e

a
n
d

th
e

(e
x
te

n
d
e
d
)

v
a
li
d
a
-

ti
o
n

te
st

se
t

4
.3

.
T
e
m

-
p
la

te
su

b
-

p
h
a
se

re
u
sa

b
il
it
y
,

c
a
ll
-

in
g

c
o
n
v
e
n
ti

o
n
s

id
e
n
ti

fi
-

c
a
ti

o
n

o
f

re
u
sa

b
le

c
o
m

p
o
-

n
e
n
ts

re
c
o
rd

ch
e
ck

a
g
a
in

st
g
o
ld

e
n

re
fe

re
n
c
e

a
n
d

th
e

(e
x
te

n
d
e
d
)

v
a
li
d
a
-

ti
o
n

te
st

se
t

4
.4

.
T
ra

n
s-

la
ti

o
n

su
b
p
h
a
se

b
u
il
d

a
n

a
u
to

-
m

a
ti

c
tr

a
n
sl

a
to

r
to

ta
rg

e
t

c
o
d
e

te
m

p
la

te
tr

a
n
sl

a
-

ti
o
n

re
c
o
rd

(t
ra

n
s-

la
to

r)

ch
e
ck

ta
rg

e
t

p
o
rt

a
g
a
in

st
g
o
ld

e
n

re
fe

re
n
c
e

a
n
d

th
e

(e
x
te

n
d
e
d
)

v
a
li
d
a
-

ti
o
n

te
st

se
t

T
ab

le
3.

1:
Sp

ec
ifi

c
de

ve
lo

pm
en

t
ro

le
s

pe
r

ph
as

e

59

Chapter 3 – The IRIS Firmware Design Methodology

In Table 3.1 the roles are collected in columns, while the rows represent the
phases. The left most column lists the main phases of IRIS with the correspond-
ing section number of the three case chapters, and the second column contains
a short description of related activities. The five roles are covered in the five
last columns, and the extra-functional properties involve – for the in this thesis
conducted cases – three concerns: memory, time, and quality. The normal flow
of development starts with the familiarisation phase and processes them down to
the translation subphase. Multiple stages (a stage is the smallest unit of develop-
ment), fit in a phase, and a stage cannot be completed until all relevant roles have
been processed. Rework breaks with the normal phase-wise order. Rework can
for example be caused by customer-developer interaction, or enforced by a con-
straint on an extra-functional property that exceeds a limit. In this case a couple
of stages (design decisions) will be rolled back, the correction will be performed
and the work continues again from this position downwards. Note that the three
cases only used three extra-functional constraints, however, there is no limit to
the number of constraints. For example other constraints can be formulated on
power consumption, code statistics for good programming practices, etc.

Stakeholder’s concerns in the various phases. The ’product’ of IRIS is
not a hardware platform (which would favour the original Y-chart approach) but
an optimised procedure to generate firmware for the selected problem domain and
the selected hardware platform. One may view IRIS as a hardware/software co-
design development framework. The behavioural domain of the Y-chart approach
relates to incremental prototyping. The structural domain relates to the trade-off
and reorganisation subphase. The familiarisation phase addresses both mentioned
Y-chart domains in a broad sense and prepares for incremental prototyping and
transformational development. Finally, the template and translation subphases
can be viewed as on-the-job component generator and compiler framework respec-
tively.

Therefore, the hardware realisation segment, also known as physical domain,
is exchanged by a so called firmware engineering in the Y-chart, see Figure 3.10.
The main problem in firmware engineering, as in software engineering, involves
managing the complexity of the firmware. In IRIS this is handled by: the reuse
of components, the support for instruction specific calling conventions, and the
automatic translation (template and translation subphases).

3.10 Conclusions

IRIS can be characterised as a confidence-by-construction framework: it offers the
application developer an incremental way of system construction, which converges
to a target language implementation.

Interactivity and executability provide for early feedback, in particular on
incorrect problem interpretation or design faults at the very moment in time that

60

3.10 – Conclusions

Structural

Domain

Behavioural

Domain

Firmware Engineering

Domain

reorganisation

translation

template

trade-off

Figure 3.10: The four layers of the Transformational Development phase imposed
on an adapted Y-chart. The Physical Domain has been exchanged by a Firmware
Engineering Domain to better reflect a software dominant multi-stakeholder de-
velopment process.

they appear. The functional model, as well as the models for the extra-functional
properties (e.g., execution time), are used to trigger those faults. The models are
driven by carefully selected validation test cases to obtain quantitative results,
that subsequently can be compared with previously validated test cases.

In case of design changes, models of previous stages can serve as a solid base.
Decoupling the development language from the target hardware architecture

language offers freedom of choice for migration to different target hardware archi-
tectures.

Design Space Exploration and the Decision Recording during development
raises quality and takes less time because the evaluation of design alternatives
can be done in situ.

All this is realised by using a single language based development framework
for the entire trajectory, and in this way we lay a foundation for our integral IRIS
framework. A functional language (such as Haskell or J) is a good option for such
an architectural language. Because Haskell is better known than J, we use (a
pseudo form of) Haskell to illustrate IRIS in this thesis.

61

CHAPTER 4

Case: Stochastic Image Quantisation

This chapter describes the results of the mapping process of stochastic
image quantisation on a massively parallel processor. Stochastic image
quantisation can be modelled in a parallel way. The parallel version
on a dual Linedancer system is 128× faster than the sequential im-
plementation of the algorithm on a Pentium processor. Moreover, the
parallel version has better scalable properties and offers easier control
of quality improvement. The code of this case is developed with the
proposed evolutionary development methodology.

4.1 Introduction

A lot of low level image processing functions exhibit massive parallelism, for ex-
ample early vision [69], a part of the Human Visual System (HVS) [56]. This part
of the HVS comprises the low level and ”hard-wired” processing performed on all
pixels, and is highly parallel of structure. A key property of these systems is the
simplicity of the involved processing. This thesis claims that applications that
have functionality that exhibit massively parallelism should be (partly) remod-
elled in order to reduce the complexity of the system as well as to better exploit
the potential of modern many-core processors. To support this claim we selected
a simple inherently parallel processing algorithm in the context of business graph-
ics and a many-core hardware architecture to implement it. This combination
illustrates the potential of many-core processing for this application domain.

This case is included because it demonstrates both the power of simple par-
allel processing models, and the natural mapping to massively parallel hardware.

Major parts of this chapter have been published in [P3].

Chapter 4 – Case: Stochastic Image Quantisation

Figure 4.1: Typical office scan containing text and charts. Scanning introduces
image degradation: the number of unique grey-values increases from 10 to 229.

Furthermore, the size of the case is small enough to demonstrate the complete
trajectory of the development methodology.

The structure of this chapter follows the proposed methodology. Section 4.2
covers the familiarisation phase and introduces various concepts of (stochastic)
image quantisation and simulated annealing. In Section 4.3 the incremental pro-
totype phase, a functional description of the system is given and the mapping to
the target hardware is prepared. Next the transformational development phase
– covering the implementation on a Linedancer (Section 2.3.4) – is described in
Section 4.4, followed by the results in Section 4.5. Finally, conclusions and rec-
ommendations are given in Section 4.6.

4.2 Familiarisation

The goal of the familiarisation phase is to build confidence in the feasibility of
realising a stochastic image quantisation on a Linedancer. For this purpose the
design space is probed along the major design dimensions, involving the function-
ality and the intended hardware architecture. For the first dimension this includes
the business graphics domain and image quantisation basics (Section 4.2.1) fol-
lowed by stochastic image quantisation (Section 4.2.2). The final section describes
the results of a first order feasibility study (Section 4.2.4).

4.2.1 Business Graphics and Image Quantisation.

Business graphics are characterised by large areas filled with a single colour. This
type of information, such as presentation sheets and charts (Figure 4.1), is often
scanned in an office environment. During scanning the image is sampled, which
leads to distortion. One of the possible distortions is blurring, a kind of smear-
ing, with the effect that new colours are introduced in a scan. For example in

64

4.2 – Familiarisation

(a) Original image, 256
grey-values

(b) Resulting false colour
image, 4 grey-values,
dashed arrow indicates
ringing, the others indi-
cate speckles

(c) Resulting image, 4 grey-
values, ringing just visi-
ble

Figure 4.2: Example of state of the art quantisation algorithm

Figure 4.1, rightmost image, the checkerboard pattern is an unintended result of
the scanning process and is caused by a raster in the original business graphics
picture. A controlled reduction of the number of colours in such scans is essen-
tial for the image quality and can be useful as a first step in image compression.
This process is called colour quantisation. Popular quantisation algorithms in-
clude median cut and octree algorithms [48]. These algorithms use a statistical
approach: they determine the frequency of occurrences of each colour and try to
assign quantised colours using only this (frequency) information.

Image quantisation is a process with many applications, that have a need for
segmentation of an image. Examples are: to increase the quality of half-toning (for
example Section 5.2.2.5), compression purposes [59], and improving the quality
of scanned originals (this chapter).

Quantisation reduces the number of colours in an image by assigning pixels
to a limited number of classes. The basic problem in this chapter, is to recover
a limited set of colours from a scanned business graphics original such that the
result resembles the intended original – as opposed to its scanned version – as
faithfully as possible. For simplicity we restrict ourselves in this study to grey-
value images since this does not alter the essence of both algorithm and mapping.
Figure 4.2 shows the result of a state of the art quantisation algorithm. To
observe quantisation artifacts, the quantised image is visualised in false colours,
see Figure 4.2(b). A false-colour image is an image that depicts a subject in
colours that differ from those a faithful full-colour photograph would show. We
use false colouring to magnify the differences between the grey-value of pixels,
that are almost equal, such that these differences are good visible for human
perception. Note for example the ringing around edges and the various speckles

65

Chapter 4 – Case: Stochastic Image Quantisation

quantisation module

quantisation

initialisation of
quantisation
(e.g. octree)

number of
classes

colour
image

#classes

4K x 6K x 24 bit pixels 4K x 6K x 4 bit pixels

class means µµµµc

colour
scanner

colour
printer

colour
image

processing

quantisation
result

printable
image

Figure 4.3: Context of the quantisation module

in Figure 4.2(b), showing the substructure in the light and dark parts barely
visible in the grey-value representation as given by Figure 4.2(c).

In general image quantisation is a NP-hard problem [48]. Therefore, sev-
eral heuristic approaches, which produce suboptimal results have been described.
They can be divided into preclustering and postclustering quantisation schemes.
In a preclustering scheme the colour space is divided into clusters of similar
colours, depending on the distribution of colours in an image. For each clus-
ter a representative is chosen (often the mean). Preclustering approaches, such as
median cut or octree, are simple algorithms and have a reasonable quality. But for
high end applications they cannot fulfill the increased demands for quality [48][69].
This has lead to the development of the so called postclustering approaches, which
try to improve the quantisation by iteratively changing the quantisation means
starting from an initial (pre)clustering [48]. For this purpose they use for example
spatial or hierarchical relationships. As a result they offer better quality at the
cost of increased computation complexity.

The context of the quantisation process is depicted by Figure 4.3. Here the
algorithm starts from an initial (preclustering) quantisation, which is iteratively
improved on. The initial quantisation needs a prespecified number of classes,
which in turn is derived from the scanned image. The output of the quantisation
module is used in the subsequent colour image procesing for a colour printer.
Markov Random Field (MRF) and Modified Metropolis Dynamics (MMD) are
examples of postclustering schemes, see Sections 4.2.2.1 and 4.2.2.3 respectively.

4.2.2 Stochastic Image Quantisation

The quality of quantisation can be further improved by including spatial (inter-
pixel) relationships, since neigbouring pixels in business graphics often have sim-
ilar grey-values. In this section we use an image processing model, MRF [69],
known for its potential to reduce design complexity and its natural fit to the up-
coming massively parallel embedded compute platforms (Section 4.2.2.1). Associ-
ated with MRF is Simulated Annealing [36], which is an efficient pseudo-stochastic

66

4.2 – Familiarisation

grey-value pixels γγγγs of
0 255

pixels in class gs

µµµµ0
µµµµ1 µµµµ2 µµµµ3

0 1 2 3

grey-value histogram

Figure 4.4: Estimation of classes with associated class means

procedure to solve combinatorial optimisation problems (Section 4.2.2.2). Present
practice, however, makes such procedures unusable since they are far too ineffi-
cient when run on sequential machines. Therefore, we turn to massively parallel
computing to implement a parallel version of MRF called MMD (Section 4.2.2.3).

4.2.2.1 Image models

First, we introduce some basic concepts, followed by two specific image models:
fidelity and regularity. We conclude with a general image model based on the
theory of MRF. The theory is described extensively in [69], the image model
itself is taken from [110].

Fidelity Image Model. The scan process samples an original and returns a
matrix of colours of pixels. In the context of this chapter we assume, without
loss of generality, that all colours are grey-values. The matrix typically has a
size of w × h = 5000 × 7000 pixels, whereas grey-values typically fall in the
range 0..255. An example of a histogram for grey-values is shown in Figure 4.4.
Image quantisation now proceeds by subdividing grey-values into classes. Let L
be the number of classes, then in Figure 4.4 it is obvious that L = 4. Let s
be a pixel, then γs denotes the grey-value of s, whereas gs denotes the class to
which s is assigned. The initial class assignments g0

s are determined by looking
for each pixel which class fits best. But before doing this we need an estimate
of the representative grey-value µ0

c per class, which can be derived for example
by inspecting the mentioned histogram. A good initial class assignment g0

s is the
class value that minimises the absolute difference between grey-value γs and its
initial class representative µ0

c :

g0
s = (c | argminc(| µ0

c − γs |)), (4.1)

where the function argminc minimises its argument over all classes c ∈ {0 · · ·L−
1}.

67

Chapter 4 – Case: Stochastic Image Quantisation

Let S be the matrix of all pixels s, then at any time, the mean of all grey-value
pixels belonging to class c is µc:

µc = mean{γs | s ∈ S, gs = c}, (4.2)

where gs is the class assignment for pixel s. The end effect for quantisation is
that (the nearest integer to) µc is taken as the best grey-value for class c.

Stochastic image quantisation is an iterative process. On each iteration a
new class c′ is randomly chosen for a pixel s, and it is calculated whether taking
gs = c′ improves the quality of the quantisation result. This process is repeated
long enough to allow for a sufficient sampling of the whole space of possible class
assignments for all pixels.

One specific quality criterion of a pixel, given the class assignment function g,
is the so-called fidelity. The full definition for fidelity fidg(s) is:

fidg(s) = ln(
√

2πσgs) +
(γs − µgs)

2

2σgs
2

, (4.3)

where σgs is the standard deviation of class g where s is put in. Since the dis-
tribution parameters (µgs , σgs) do not vary that much, the fidelity of a pixel s is
mainly determined by the square of the difference between the actual grey-value
γs of s and the associated grey-value µgs of the class in which s is put.

For the complete image, containing values of fidelity fidg(s) for all pixels, the
result is defined by the matrix:

Fidg(S) = [[fidg(s)]]s∈S (4.4)

Regularity Image Model. Another desired property of business graphics is
the occurence of large planes with a single colour or label. This property, called
regularity, is optimised when the dissimilarity between neighbouring labels is min-
imised. That is, regularity indicates how well the grey-value of a pixel fits in its
immediate surroundings.

Let s = (i, j). Then we define

Ns = {(k, l) |
√

(k − i)2 + (l − j)2 ≤ R, (k, l) 6= (i, j)}
as the neighbourhood Ns of pixel s. Thus, Ns contains all pixels within distance
R from s, except s itself. See Figure 4.5 for a neighbourhood with radius R = 2,
where the distance between two adjacent pixels is 1.

Let gr be the label of a pixel in the neighbourhood of s. Then the regularity
is defined by:

regg(s) = | {r ∈ Ns | gs 6= gr} | − | {r ∈ Ns | gs = gr} | (4.5)

The lower regg(s) is, the more uniform the neighbourhood is. The result for
the complete image, containing values of regularity regg(s) for all pixels, is thus
defined by the matrix:

Regg(S) = [[regg(s)]]s∈S (4.6)

68

4.2 – Familiarisation

(i,j)
(i,j-1)

i

j

Figure 4.5: Pixels in a grid with neighbourhood. The pixels in the blue area are
all neighbours of the central red coloured pixel s = (i, j) within distance 2.

Markov Random Field. Both the regularity and fidelity components are com-
bined to form a perceptual optimisation criterion. The basic form of this criterion
is the weighted sum of both fidelity and regularity (for the whole image):

eg(s) = fidg(s) + β · regg(s)
Eg(S) = [[eg(s)]]s∈S

= Fidg(S) + β ·Regg(S)
(4.7)

This matrix of weighted sums is denoted by the term energy, and originates from
statistical physics modelling, and the term is consistently used in statistical opti-
misation, see [69][110]. From this we can see that β determines the relative weight
between fidelity and regularity. We can therefore control their relative importance
using β as a parameter.

A derived criterion is used in the general MRF image model where all elements
of the matrix Eg(S) are added and their sum is subsequently minimised. The
energy of a quantised image g for the MRF approach is then given by the scalar:

Êg(S) =
∑

s∈S
eg(s) (4.8)

Minimising the energy Êg(S) over possible class assignments gs per pixel, will
raise the quality of the quantisation. As a consequence the quality1 of an image
is defined as the negation of Êg(S) (4.8):

Q̂g(S) = −Êg(S) (4.9)

1 This operational definition of quality is not the same as the perceptual quality, however, ’has’
the obligation to approximate it sufficiently.

69

Chapter 4 – Case: Stochastic Image Quantisation

The weight factor β is a positive model parameter for controlling – via the
relative importance of fidg(s) versus regg(s) – the homogeneity of the regions of
the image.

The strong points of the MRF model for image quantisation as compared
to traditional algorithms (such as median cut and octree) are: higher quality,
simplicity and easier composability of different quality criteria. The weak points
are: long computation times on sequential processors (high iteration count), and
the difficulty in finding the optimal estimation of parameter β. The first results are
promising but since the models are still in an experimental stage more experiments
need to be performed before solid conclusions can be drawn. The scope of this
thesis is not the model as such, but the mapping of the model to a parallel
architecture.

4.2.2.2 Simulated Annealing

Finding the optimal label assignment g given a grey-value image γ is computa-
tionally difficult. However, reasonably good solutions can be found by simulated
annealing, an efficient procedure for solving combinatorial optimisation problems
[36]. Before describing the simulated annealing algorithm, we first introduce the
concept of state, which is equivalent to the label or class assignment g of all pixels
in an image, and is introduced to improve the readability. The algorithm repeti-
tively changes the state g, computes Êg(S) in (4.8) based on the quantisation state
g and updates the state along the way. The algorithm searches a state in which
the weighted sum, or energy, is minimal. States which do decrease energy are
always accepted (deterministic acceptance), but occasionally also slight increases
are accepted in order to escape from local minima (probabilistic acceptance). In
general the combination of MRF and simulated annealing is considered a powerful
generic framework that can be used whenever an optimisation model can be con-
structed of a problem. See for example half-toning in [52], an even more complex
application than quantisation. For our purposes, however, the main advantage of
this approach is that the algorithm can easily be programmed to run in parallel
for all pixels, as will be shown in Section 4.2.2.3.

The simulated annealing procedure is coded in Algorithm 4.1 [69]. Besides
g another state, ĝ is introduced, which is almost the same as g except for one
single, randomly chosen, pixel which gets a new value. An essential variable in
this algorithm is T or temperature, named after related concepts in physics [73].
In the simulation T is merely a control parameter that controls the randomness; it
is not a true physical temperature. Together with the starting temperature T0 the
variables C (cooling factor) and n (number of iterations) determine the so called
annealing schedule (line 2 of Algorithm 4.1) [36]. The involved variables must be
chosen very carefully to ensure an effective but also efficient optimisation process.
[110][69] report values for the tuple (T0, C, n) between (4, 0.95, 580)–(1, 0.95, 1)
largely dependent on the type of problem. For some rare problem cases only a
single iteration (n = 1) is sufficient. A desired property of this procedure is the

70

4.2 – Familiarisation

controlled and slow transition from a pseudo-stochastic (”high” temperature) to
a deterministic phase (”low” temperature). This transition corresponds to the
transition from a broad search for minima to the homing in on one – hopefully
the global – minimum. The algorithm repetitively searches for quantisation g,
which minimise an energy function Eg(4.8). First, it is initialised with a random
quantisation state g. Then, the state is changed a little, to ĝ (i.e., change the
class of a single pixel), and accepted if this change decreases the energy Eg. If
the energy does not decrease, the new state ĝ is accepted with probability equal
to the Boltzmann factor

e−∆E/T ,

which constitutes a temperature dependent threshold (see [36]). The new state ĝ
is accepted under the condition

e−
∆E
T ≤ Random,

which is equivalent to
∆E ≤ −T · ln(Random),

where the function Random is a pseudo random number generator, that draws
random numbers from the interval [0, 1), and where ln stands for the natural
logarithm. The righthand side can be seen as an energy threshold for accepting
energy increases and can be abbreviated by Acceptance Threshold Ath:

Ath = −T · ln(Random). (4.10)

The involved comparison can be found in Algorithm 4.1, in line 7. The parameter

Algorithm 4.1 Simulated annealing
1: g ← initialisation state
2: for T ← T0, T0 · C, . . . , T0 · Cn−1 do
3: ĝ ← Randomly change the quantisation of a randomly chosen pixel s
4: ∆E ← Ê(ĝ)− Ê(g)
5: if ∆E ≤ 0 then {Deterministic acceptance}
6: g ← ĝ
7: else if ∆E ≤ −T · ln(Random) then {Probabilistic acceptance}
8: g ← ĝ
9: end if

10: end for

T determines via Ath to what extent energy increases are allowed. When T is high
(almost) all proposed states ĝ are accepted, which results in the visiting of very
diverse states. At lower T values the algorithm only allows transitions lowering
the energy, approximating a hill climbing algorithm [61]. The temperature is
decreased during the procedure in order to converge to a final solution.

71

Chapter 4 – Case: Stochastic Image Quantisation

The starting temperature T0 determines how well randomly different quan-
tisation states are visited. It should be high enough to allow the visiting of a
sufficiently well spread number of states (preferably uniform sampled) in the first
stages of the algorithm, but if chosen too high, the algorithm needs too many steps
to settle down [36]. The cooling factor C ∈ (0, 1] determines the rate at which the
temperature decreases. If the temperature is decreased too fast, the algorithm
can get trapped in local minima. Because T is high in the beginning, the system
is able to jump to states that do (not too excessively) increase the energy (line
7), allowing to escape from local minima. With T getting lower the system will
behave more deterministically and fewer states that increase energy are accepted
(lines 5 and 7). The procedure can start off with an arbitrary state. For the image
quantisation case, the values of parameters such as the initial temperature T0 and
the cooling factor C are based on preliminary computational experience. Typical
values for these parameters are: regularity weighting β ∈ [1, 100], temperature
T0 ∈ (0, 16], and the cooling factor C ∈ [0.95, 1). The number of iterations re-
quired for obtaining reasonable results is extremely high (100K and higher for a
64×64 pixel tile). The fact that per iteration, at most one single pixel changes its
state (class) assignment, and that on average all pixels should be visited enough
times, requires a high iteration count (n À w × h). This causes the algorithm to
be inadequate, even for small images.

4.2.2.3 Modified Metropolis Dynamics

Solving the MRF image model by simulated annealing, in order to obtain a so-
lution for our image quantisation application, is not very useful. The reason for
this is that MRF cannot be parallelised easily. This is caused by its single scalar
energy Êg for the whole quantisation state, that involves a summation. Contrary
to MRF, MMD strives for minimising a local energy eg(s) per pixel in parallel.
When running on a parallel architecture, MMD can converge much faster because
per iteration w · h trials are executed in parallel. Following [110], the standard
deviation per class σc was found fairly constant over a variety of images, results
in its elimination from the energy eg(s). Although the MRF is in the long run
somewhat better in quality (i.e., lower energy), MMD offers a better ”quantisation
quality/compute time” ratio [110]. Figure 4.6 illustrates the convergence power
of MMD compared to MRF. The local energy for the MMD approach is given by:

eg(s) = fidg(s) + β · regg(s), (4.11)

where fidg(s) is defined by

fidg(s) = (γs − µgs)
2 (4.12)

Note that in the context of MMD we use a more simplified version for fidelity
than given by (4.3). Minimising the energy eg(s) for all s will raise the quality
of the quantisation. The fidelity term depends on the class means µgs , which

72

4.2 – Familiarisation

10 100 1000 10000 100000 1e6

-20000

-10000

0

10000

20000

Number of iterations

E
ne

rg
y

(E
ha

t)

MRF
MMD

Figure 4.6: The energy decrease for MRF and MMD algorithms for up to n =
1, 000, 000 iterations

are constant, initialised by a previously executed module in the pipeline, see
Figure 4.3. As in Section 4.2.2.1 the regularity term prefers neighbours having the
same labels (4.5), and β is a positive model parameter controlling the homogeneity
of the regions of the image. Some simplifications with respect to Algorithm 4.1
have been carried out. The statements in lines 5 and 7 can be combined into
a single test. Furthermore, to avoid an elaborate computation of a logarithmic
function, the comparison of ∆E with the acceptance threshold Ath (4.10) (in line
7 of Algorithm 4.1) is simplified to

∆e(s) = eĝ(s)− eg(s) ≤ T · − ln α,

where α is a prespecified constant based on values found in literature [110][69]. See
Algorithm 4.2 for the resulting algorithm. It should be noticed that Algorithm 4.1
as well as Algorithm 4.2 are taken from literature, and that they only serve as just
one of the sources used in the familiarisation phase. In Section 4.3 an abstract
model is made that gives the necessary freedom for the mapping to a massively
parallel implementation.

The estimation of parameters such as α, β and initial temperature T0 are
crucial for obtaining a good qualitative result at a fairly low number of itera-
tions. However, literature indicates that parameter estimation is not yet solved
in a satisfactory way [70]. The values of these parameters in our case are indi-
cated by literature [69][110] and further fine-tuned by preliminary computational
experiments. Typical values for these parameters are in the same range as in Sec-
tion 4.2.2.2 except for the number of iterations. The typical dynamic behaviour of
MMD versus MRF is illustrated by Figure 4.6; in contrast to MRF, MMD settles
around 100 iterations, independent of image size.

The complexity of the sequential implementation of MRF is O(n ·w ·h). Here

73

Chapter 4 – Case: Stochastic Image Quantisation

Algorithm 4.2 Modified Metropolis Dynamics
1: g ← initialisation state
2: for T ← T0, T0 · C, . . . , T0 · Cn−1 do
3: ĝ ← randomly chosen quantisation state g of all pixels
4: for all s ∈ S do {in parallel}
5: ∆e(s) ← eĝ(s)− eg(s)
6: if ∆e(s) ≤ T · − ln α then {Acceptance check}
7: gs ← ĝs

8: end if
9: end for

10: end for

w and h stand for the width and height of an image, respectively and n for the
number of iterations. The complexity of the parallel implementation of MMD is

O
(n · w · h

#PEs

)
, (4.13)

where #PEs stands for the number of Processing Elements.

4.2.3 Tiling

In this thesis feasibility estimations are made for the different cases described in
Chapter 4, 5, and 6 (in several occasions per case). In particular the Chapters
4 and 5 these estimations involve tiling, a partioning process that arises from
scarce memory resources. Tiling is required when the data volume of the problem
does not fit the memory size of Linedancers in the system. For example, for the
colour processing pipeline described in Chapter 5, forces repetitive processing of
smaller parts of the bitmap. For some operations, in particular neighbourhood
operations, require that tiles overlap. When the problem allows it, an optimal tile
dimension may be chosen. For example, for a single Linedancer with 4,096 PEs
this is 64× 64 since that maximises the effective payload (minimises the number
of reloads of same pixels), see Figure 4.7. For relatively large w and h the number
of tiles nt may be approximated by

nt(o) =
w · h

#PEs− η(o)
, (4.14)

where w and h represent the (2D) dimensions of the problem’s data volume,
#PEs the number of PEs (assuming one data unit per PE), and η(o) the loss
because of overlap o, both expressed in data units. For a single Linedancer this
loss η(o) is defined by the difference of all 4, 096 = 642 data units and the effective
payload data (the inner (64 − 2 · o)2 pixels). This expression reduces to η(o) =
642 − (64− 2 · o)2 = 256 · o− 4 · o2. The overhead for 1 and 2 units overlap is 6%

74

4.2 – Familiarisation

w

h

Figure 4.7: Overlapping square tiles

w

h

Figure 4.8: Non-overlapping strip
tiles

and 12% respectively and is negligible for the purpose of a feasibility study, and
hence η(o) is removed from these estimations.

Also non-square tiles are supported, see for example Figure 4.8, where tiles do
not overlap.

4.2.4 Feasibility

The purpose of this section is to obtain confidence about the feasibility of solv-
ing the problem by means of a system that is based on the intended hardware
architecture. In this way early roadblocks can be identified, evaluated and their
impact assessed in an early stage. This involves the appraisal of important extra-
functional properties and determining the boundary of the system.

Demarcation of the system boundary. A system is not only determined
by choosing the relevant interactions we want to consider, but also choosing the
system boundary. In this way we know what is part of the system and what is
part of the environment of the system.

Our search for the boundary is driven by risk considerations: the module(s)
with highest risk for realising a viable system are selected as member(s) of the
system. For this purpose we need to evaluate all relevant modules in the context,
see the yellow shaded area in Figure 4.3. Of the related modules the computation
of the number of classes and the initialisation for quantisation are not computa-
tionally intensive and do not pose a risk in feasibility terms. The quantisation
module, however, should have significantly more quality than the pixel level quan-
tisers. The associated computational demands are relatively high and this leads
to confine the system to the quantisation module.

75

Chapter 4 – Case: Stochastic Image Quantisation

Feasibility: a first estimate. The goal of regular feasibility checks is to make
the development process amenable to changes in the non-functional properties,
even in the very beginning of development. In this way the development can be
better controlled and potential roadblocks can be avoided. In our research we
have chosen to describe just a single feasibility check, and we restrict ourselves to
performance.

Nowadays medium range scanners are capable of processing documents at
rates of over 60 pages per minute (ppm). We assume that image quantisation
should at least keep up with this rate. Departing from the order estimate (4.13)
we can derive the cycle budget belonging to the required throughput (1 sec), and
next verify the feasibility of this budget.

The Linedancer-P1 has a clock frequency of fP1 = 300 MHz, so for a single
scan (1 sec) this represents a budget of 300M clocks. The number of clocks to
process the MMD algorithm should satisfy:

w · h
#PEs

· n · Citer ≤ 300M, (4.15)

where w, h are the dimensions of an A4 image in pixels, #PE represents the
number of pixels a single Linedancer can host, and n is the number of iterations.
Typical values for these parameters are w = 5K, h = 7K, #PEs = 4, 096, and n =
100 (see Section 4.2.2), resulting in a budget of Citer ≤ 300 clocks. This budget is
reasonable for doing a few additions, subtractions and a squaring operation, but
may be too tight for communicating pixels from a neighbourhood Ns to pixel s,
as is required in the computation of the regularity in (4.5). At this point in time
we know that this is a potential problem but that scalability of the technology
can provide some design space.

4.3 Incremental Prototyping

This section derives the functional architecture of the stochastic image quanti-
sation module as well as some implementation independent preparations. These
preparations involve: a quality measure (for supporting the functional decompo-
sition and evaluating implementation alternatives), the choice of the quantisation
method and the estimation of the iteration count. All these activities take some
time to develop and involve an extensive exploration of design space. We will
follow the evolutionary development methodology – as proposed in Chapter 3 –
closely. In this section the incremental prototyping template (Section 3.7) will be
taken as a guide.

4.3.1 The algorithm

After the familiarisation phase (Figure 3.7), we turn to the stepwise creation of
a complete functional model based on the mathematical model of the system as

76

4.3 – Incremental Prototyping

given by the equations (4.2), (4.4), – (4.7), (4.11), (4.12). The MMD algorithm in
Algorithm 4.2 is changed in an abstract and executable model. This model can be
immediately transcribed in a functional language by defining the corresponding
functions (where s=(i,j)):

mu c = mean [gamma s | s<-S; mem c (g s)] (4.2)

fid g s = (gamma s - mu (g s))^2 (4.12)

Fid g S = map (fid g) S (4.4)

N (i,j) = [(k,l) | (k,l) <- S

; sqrt((k-i)^2 + (l-j)^2) <= R

; (k,l) <> (i,j)

]

reg g s = (length [r | r <- N s; g s <> g r]) -

(length [r | r <- N s; g s == g r]) (4.5)

Reg g S = map (reg g) S (4.6)

e g s = (fid g s) + beta * (reg g s) (4.11)

E g S = map (e g) S (4.7)

Note that, for instance the grey-value γs is transcribed as gamma s, where
gamma is a function, and s its argument. Thus, gamma s denotes the grey-value
of pixel s and is generated by the scanning process.

Some further explanation of the notation: [e | ...] is notation for lists,
close to mathematical notation for sets; mem c x is a standard function that checks
whether x is a member of the list c; the function length lst calculates the length
of the list lst. The environment N(i,j) of pixel s=(i,j) is parameterised by
radius R. The function map f S applies the function f to all members of the list
S. Note that this might be done for each pixel in parallel, provided that mu (g s)
is available per pixel s.

The functional specification of the simulated annealing procedure is given by:

phi g T = \s -> if ((e gHat s - e g s) <= - T * log(alpha))

then gHat s

else g s

-- where gHat is a random g, chosen for every T

gn = fold phi g0 [T1,T2,... Tn]

-- where g0 is a suitable initialisation,

where the notation \s -> f(s) describes a function f without specifying its name
(lambda expression), see [8]. For example the function f(x) = x2 +1 can be writ-
ten as f = λx · x2 + 1 or in functional code: \x -> x^2 + 1. The notation
fold is a higher order function that realises an accumulation behaviour with an-
other function. The expression fold f value list will successively execute the
binary function f taking data elements from the list and starting or ending with
value. It is typically used in recursion or iteration. The lines preceded by -- are
comment lines.

We now illustrate the first two iterations of the simulated annealing proce-
dure. In the expression fold phi g0 [T1,T2,... Tn] the function phi changes
the state assignment function g0 into a new function g1=phi(g0) thereby con-

77

Chapter 4 – Case: Stochastic Image Quantisation

suming the first item (T1) of the list as a parameter. The next iteration generates
g2=phi(g1)=phi(phi(g0)) and consumes T2, and so on. After all iterations the
resulting gn function is constructed, and applying this accumulated function to
all pixels, by map gn S, will yield the end result.

We remark that this formulation of the model is just a first specification, but
already at this stage it is executable. Thus, instant feedback is facilitated and
consequences of this specification can be explored.

4.3.2 Quality function

Although major decisions have been made, still some minor quality and produc-
tivity adaptations have to be carried through in order to satisfy feasibility, costs
etc. Performance can be specified and measured in an unambiguous manner, but
how about quality? Quality is a complex quantity to measure because it has
objective (physical) aspects such as well as subjective aspects. In this study we
restrict ourselves to objective quality measures and we chose the quality function
Q̂g(S) (4.9) as a guide in making the correct design choices. Note that the close
relation with perceptual quality should be maintained and can lead to an adap-
tation of the quality function. By definition, higher values of Q̂g correspond to
lower values of Êg and represent ”better” quantised images. Though not in the
scope of this study, the quality function as well as the energy function can be
extended to cover other quality aspects as macro-uniformity, contour-quality etc.
The quality function is transcribed in functional code:

Qhat g S = - sum E g S (4.9)

4.3.3 Quantisation methods

Different quantisation methods give different results. To find the best combi-
nation of preprocessing (median cut, octree) and postprocessing (MRF, MMD),
we tested different quantisation combinations with varying initialisations of class
means µc. Several experiments were conducted on the image depicted in Fig-
ure 4.2(a). The models are executed for L = 16 quantisation classes by the image
processing package Paint Shop Pro, which allows a minimal colour reduction of 4
bits (L = 24 = 16). The median cut and octree quantisation results are used as
initialisations for the postprocessing quantisation module – implementing MRF
as well as MMD processes, see Figure 4.9. The left two columns, median cut and
octree, represent the results without the quality enhancing postprocessing. As
expected MRF improves on quality, see next two columns. The right most mea-
surements are conducted with MMD as postprocessing. Both MRF and MMD
models are run for 100, 000 iterations.

As a result from these experiments the following conclusions may be drawn:

78

4.3 – Incremental Prototyping

mc
 ot
 mcMRF
 otMRF
mcMMD
otMMD

0

10000

20000

30000

40000

50000

Model

Q
u
a
lit

y

algorithm description

mc median cut
ot octree
mcMRF median cut, postprocessing by MRF
otMRF octree, postprocessing by MRF
mcMMD median cut, postprocessing by MMD
otMMD octree, postprocessing by MMD

Figure 4.9: Comparison of various image quantisation algorithms for L = 16
classes, and n = 100K iterations

79

Chapter 4 – Case: Stochastic Image Quantisation

• median cut is a better fit to this particular image (Figure 4.2) than octree
for all models,

• 100K iterations is probably too small for MRF to outperform MMD (analo-
gous to to Figure 4.6), and too small for octree & MRF to improve on solely
median cut,

• both the MRF and MMD post-processing compensate the difference between
median cut and octree,

• the median cut as preprocessing and MMD as postprocessing quantisations
gives the best result for 100K iterations. However, it takes ±100 (¿ 100K)
iterations for MMD to settle, see Figure 4.6.

4.3.4 Iteration count

As can be seen in Figure 4.6 the iteration count plays an important role in raising
the quality of quantisation. Typically the MMD reaches its minimum at ±100
iterations or updates, independent on the size of the images. In quality terms
MRF takes a long time to catch up but eventually outperforms MMD. For MRF
the break even point is dependent on image size, typically 100K iterations for a
128×128 pixel image. Because of this dependency on image size, and the absence
of good parallel models, the MMD model is preferred over MRF.

The following conclusions may be drawn:

• for MRF the settling iteration count for quality is dependent on image size,

• MMD converges very fast, typically 100 iterations and is in principle inde-
pendent of image size (with sufficient number of PEs), and

• MRF has a slow convergence rate compared to MMD, typically 100K/(128×
128)[iterations/pixels2].

4.4 Transformational Development

This phase is concerned with the mapping or implementation on the Linedancer.
During implementation several concerns – some more general, others more specific
– have to be considered. A number of them: timing, storage allocation, tiling,
bit-width of variables (accuracy), and random number generation, are described
below in detail. They all can potentially compromise the quality because they
can trade quality for performance. The involved exploration of the design space
is part of IRIS. The majority of the following sections utilise the derived quan-
titative quality measure Q̂g for comparison. In this section the transformational
development template, as given by Section 3.8, will be followed.

80

4.4 – Transformational Development

4.4.1 Global system considerations

A crucial property of IRIS is the continuous monitoring of functional and extra-
functional properties with the goal to detect problems early and to guide the
development in an appropriate direction. In this respect we already had a first
impression of the feasibility at the end of the familiarisation phase (Section 4.2.4).
In this section a more detailed but still global analysis is made on the timing
and storage design space. Finally, relevant general system architecture issues are
investigated because they can also influence the implementation process.

Global timing analysis. A global analysis at this point is merely a quick
estimate of how fast a MMD algorithm can be computed. The performance target
is ± 1 sec and we are interested in how many Linedancers would be needed to
achieve this.

The time to process the MMD algorithm can – similar to Section 4.15 but
with more detail – be described by:

T =
w · h

#PEs
· n · Titer,

where w, h are the dimensions of an A4 image in pixels, #PEs represents the
number of pixels a single Linedancer can host, n is the number of iterations, and
finally Titer, which is the time for a Linedancer to process the algorithm for a
single iteration. This time Titer includes two energy computations (one for the
current g and one for the proposed state ĝ, see Algorithm 4.2), a comparison
and loop control. A single energy computation is estimated by summing the
fidelity part (200 clock cycles for square operation on a bit oriented hardware
architecture), the regularity part (some 1,000 cycles for mainly communication),
and – for the remaining comparison and loop overhead – 100 cycles. We assume a
maximum of L = 16 classes, so 4 bits of class data have to be communicated during
the computation of the regularity. This sums up to 1300 cycles, and because
the energy computation is performed twice (see Algorithm 4.2), this results in
Titer = 2600 cycles for a single iteration. For the whole image it takes T =
5K·7K
4096 · 100 · 2K6 = 2.22G clock cycles, where K and G are short for 103 and 109

respectively. Finally the time needed for a single Linedancer-P1 to compute the
MMD algorithm is estimated T = #cycles

fLD
= 2.22Gcycles

300MHz = 7.4 sec, where fLD is
the clock frequency of the Linedancer. Given the target of 1 sec this poses the
challenge of bridging the gap. In Section 4.5 we will present the final outcome of
the performance of the system.

Global storage allocation. The limited memory available per PE poses re-
strictions on the mapping of functionality and its associated data-structures.
Therefore, first a qualitative analysis of the storage allocation of the MMD algo-
rithm is conducted and its result is depicted in Table 4.1, see also [120]. The map-
ping related and relevant subsystems of the Linedancer are listed below (see also

81

Chapter 4 – Case: Stochastic Image Quantisation

Section 2.3.4). The columns 4 and 5 refer to memories located in the Linedancer.
In case of the Secondary Data Store (SDS) the memory can be extended with
off-chip devices. The last two columns are processing and communication subsys-
tems. The relevant Linedancer subsystems are (see also Section 2.3.4):

• SDS, a relatively large memory, directly located in the address space of the
SPARC.

• EXTended memory (EXT) and Content Addressable Memory (CAM), are
two relatively small memories, of size 128 bit and 64 bit respectively. Both
memories are directly located in the address space of the PE.

• Associative processor, that facilitates a parallel search and replace mecha-
nism based on association. The mechanism ties the SPARC and CAM in a
master-slave role.

• DMA, an autonomously operating channel that transfers data from and to
the ASP concurrently with array computation. It connects the SDS (in the
address space of the SPARC) with the PDS, which is located in the address
space of all the PEs and accessible by the DMA controller, see Section 2.3.4.

The various variables in the algorithm are listed in the left-most column.
Because several variables, which are specified at the C-source level imply lower
level variables, an extra substructure layer is added (column 2). For example, the
variable seed is a hidden variable, used by the pseudo-random number generator
to produce a new state ĝ. A third column indicates the sort of dependency, that
is useful in the final mapping to a memory subsystem of the Linedancer.

Scalability. Before conducting the mapping we should give some attention to
desirable design properties such as scalability. Scalability is a design property
that improves a system’s key figure (as for example performance) linearly with
respect to a particular design variable (for example the number of PEs). The
scalability in the number of PEs is a property of the Linedancer’s architecture.
This allows for example for easy extendability of printing speed, or resolution or
medium sizes or colour depth: once a suitable low-end solution exists, it can be
scaled up along these dimensions without rewriting/recompiling the code.

For most fine grain SIMD systems the size of the local memory is limited. In
order to be really scalable in the number of labels one must be able to retrieve
the class means µgs in an efficient way (without storing the L values of the µc

per PE). The associative functionality of the Linedancer is suitable in providing
lookup functionality for all PEs, thereby reducing claims on the limited local
storage capacity. An analysis (see Section 4.4.2.2) shows that a LUT of 8 bit wide
entries for the class means suffices. The required number of quantisation classes L

2 Indication of the sort of dependency: the pixel (s), the number of classes (L) or not dependent
of s or L.

82

4.4 – Transformational Development

Linedancer subsystems

va
ri

a
b
le

va
ri

a
b
le

su
b
st

ru
ct

u
re

d
ep

en
d
en

cy
2

[s
,L

,n
on

e]

S
p
a
rc

S
D

S

P
E

C
A

M
o
r

E
X

T

A
ss

o
ci

a
ti

v
e

C
A

M
-S

D
S

D
M

A
S
D

S
-P

D
S

M
M

D
A

lg
o
ri

th
m

g s
√

g, ĝ ĝ s
√

seed s
√

T T
√

C C
√

n n
√

∆e s
√

eg s
√

∆e, eg, eĝ eĝ s
√

fidg s
√

regg s
√

µ µ L
√ √ √

γ γ s
√

β β
√

α α
√

complete tile (γ, g)
√ √

Table 4.1: Mapping of the various variables in the MMD algorithm on the memory
and processing subsystems of the Linedancer

83

Chapter 4 – Case: Stochastic Image Quantisation

determines the depth of the LUT. The associative search and replace functionality
of the Linedancer takes approximately 3 cycles per LUT-entry. For reasonably
small LUTs, e.g., 16 entries, the processing overhead takes 16× 3 cycles, which is
small compared to the total processing time of a tile3.

4.4.2 Trade-off subphase

The purpose of the Trade-off subphase is to absorb all concessions to the functional
behaviour because of limitations of the hardware (as often is the case in embedded
system design). In the following subsections, three examples are given: tiling
(Section 4.4.2.1), precision of computation (Section 4.4.2.2), and random number
generator (Section 4.4.2.3). During the illustration of this and other subphases
we restrict ourselves – for this case – to the image given in Figure 4.2.

4.4.2.1 Tiling

Choosing a pixel-per-PE scheme means that a single Linedancer with 4,096 PEs
can host tiles of upto 64× 64 pixels. To process larger images we use tiling, that
is, we divide the image in small chunks that fit in the Linedancer’s ASP. Because
of the neighbourhood operation (with neighbourhood Ns), the tiles must overlap
with half of the neighbourhood diameter. For similar reasons the border of the
image is extended with the same number of pixels as this overlap.

For a single iteration this works fine. But when running each tile for all n
iterations before proceeding to the next one, quality is compromised. This is
mainly caused by pixels at a tile’s boundary; these pixels are not influenced by
neighbour pixels in adjacent tiles. In order to counter this loss of quality we have
to provide for some form of inter-tile communication. For this purpose a multi-
pass scheme is used, that is, each tile is executed rpt (run per pass per tile) times,
one after each other. During the rpt iterations the data is kept in the ASP. When
all iterations have completed the result of the tile is sent back from the ASP to
the global memory. When all tiles have been processed a next pass over the tiles
takes place, till all passes have been finished, see Figure 4.10. The total number
of passes #p is bounded by iteration count n: #p = n/rpt. Each tile is executed
rpt times and, assuming that a single iteration takes Titer number of cycles, rpt

iterations will last Ttile = Titer · rpt cycles.
Fetching tiles multiple times, in an overlapped fetch manner, effectively leads

to inter-tile communication. This rather indirect way of inter-tile communication
is shown in Figure 4.11. When for example tile 1 has finished its first pass af-
ter rpt iterations, its intermediate state information (gs) is written back to the
Linedancer’s global memory space. Since tile 2 overlaps with tile 1, a part of the
just computed state is reused, and as an effect ”exchanges” data across tiles.

3 Search and replace of 16 entries will take approximately 48/8754 ≈ 0.5% of the total process-
ing time, see Table 4.3.

84

4.4 – Transformational Development

tile 1
 tile 2
 tile

h'.w'

pass 1

tile 1
 tile 2

tile

h'.w'

pass 2

tile 1
 tile 2

tile

h'.w'

pass #p

1
 2
 r

pt

T
tile

Figure 4.10: The multi-pass processing of tiles. Each tile is processed a number
of runs per pass per tile (rpt).

w'

h'

1

w'+1

3
2

2w'+1

w'+2

w'.h'

Figure 4.11: The tesselation of the bitmap in slightly overlapping tiles. Progres-
sion order in fetching tiles is free, here we show the scanline order.

85

Chapter 4 – Case: Stochastic Image Quantisation

10 100 1000 10000 100000 1e6

-20000

-10000

0

10000

20000

Number of iterations

E
ne

rg
y

(E
ha

t)

MRF
MMD
MMD + update MUs

Figure 4.12: The energy decrease for MRF and MMD as in Figure 4.6 and an
improved MMD algorithm for up to n = 1, 000, 000 iterations

Figure 4.13 contains the result of different multi-pass modi. Static processing
parameters are tile-sizes 68×68 (tiles overlap 2 pixels wide on each side)4, integral
iteration count n = 128, and number of trials is 50. The number in the modi
indicate the rpt. Higher values of the result mean higher quality. The first modus,
128, is a tiled and single pass modus (#p = 1) with a run of rpt = n(= 128), and
is the norm for comparing all other modi. All other modi have also an ”a” version,
meaning that an adaptation of class means is computed after each completed pass.
The adaptation of the class means is based on the current quantisation state g
and renews the means µ0 · · ·µL−1 of the L classes.

As can be observed the increase of the number of passes and the adaptation
of the class means results in a quality improvement with respect to the non-tiled
version but only in certain modi (64a, 4a, 2a). No research has been conducted
to verify if this behaviour can be generalised over multiple images, since it is not
the focus of this research. The improvement in energy for the modus 2a is also
shown in Figure 4.12 by the green curve.

Tiles need to be swapped out and in again to let the overlapped fetch (corre-
sponding to the chosen neigbourhood size, Figure 4.5) effectively pass inter-tile
information. Between the end of the swap out and the begin of the swap in of
tiles, the class means µc are updated based on the actual distribution of classes
over pixels. This can be done on the SPARC processor of the Linedancer. Since
processing and communication of different tiles may be interleaved, this update
can be completely hidden in the processing of the next tile, see Figure 4.20. To
illustrate the improvement in quality by the adaptation of these class means, an
example of a 4-pass quantisation is included, see Figure 4.14. The image size

4 For the simulation of the multi-tile processing of this 128× 128 image, a tile size of 68× 68
is chosen (2 pixel overlap on both sides per dimension).

86

4.4 – Transformational Development

128 64 64a 32 32a 16 16a 8 8a 4 4a 2 2a 1 1a

0

10000

20000

30000

40000

Multi-pass modi

Q
ua

lit
y

of
fs

et
 w

rt
 s

in
gl

e-
pa

ss
 n

on
-t

ile
d

modus description

128 tiled, single pass, 128 iterations
64 tiled, 2 passes, 64 iterations each
64a tiled, 2 passes, 64 iterations each, adaptation of class means µc

· · · · · ·
1 tiled, 128 passes, 1 iteration each
1a tiled, 128 passes, 1 iteration each, adaptation of class means µc

Figure 4.13: Comparison of different multi-pass modi for an image with size
128× 128 and L = 4 classes

87

Chapter 4 – Case: Stochastic Image Quantisation

is 128 × 128 (4 tiles of 68 × 68 each) and the tiles are iterated 32 times per
pass. A false coloured representation of a grey-value quantisation is given in
Figure 4.14(a). The 4 classes 0, 1, 2, and 3 are indicated by colours red, blue,
orange, and green respectively in Figure 4.14(b). The MMD process updates the
class means after each pass (see Figure 4.14(c)), which has a direct effect on the
measured quality Figure 4.14(e). Figure 4.14(d) shows the added result of MMD.

The following conclusions, based on the objective quality measure, may be
drawn:

• the quality of a tiled approach is improved by trading runs per pass (rpt)
for number of passes (#p),

• adapting the class means between the passes, conform the quantisation at
that moment, in general improves quality in a global sense, and

• combining both strategies can yield a better result than a non-tiled single
pass solution.

4.4.2.2 Precision of computation

Two experiments have been conducted to illustrate accuracy analysis. The first
is a sensitivity analysis of the class means µc, the other is a precision analysis of
the variable energy Eg(S).

Sensitivity Analysis. A sensitivity analysis is a simple way of measuring the
sensitivity of small perturbations of a variable on a target function or property.
Is the resulting perturbation of the target acceptably small then one may safely
assume that the current accuracy is sufficient. A sensitivity analysis is often used
as a fast way to verify whether a given accuracy is sufficient, or not, since it only
involves a black box analysis.

For reasoning about the necessary bit-width in a fixed point arithmetic scheme
we use the following format integer • fraction , where the numbers represent width
of two bit fields: integer for the width of the integer part and fraction for the
width of the fractional part (all measured in bits). The implied binary point is
denoted by •. For example 8 • 0 represents an integer byte, 8 • 16 represents a
24 bit number with 16 fractional bits. Also a negative number of fractional bits
is allowed, for example 17 • −3 represents a 17 bit integer of which the 3 least
significant bit(s) (lsb) are all 0. It can be concluded that only 14 bits are needed
for storing this variable5.

For the parameter µ it is expected that a precision of 8 • 0 is sufficient. In
order to verify this, a sensitivity analysis is set up for all combinations of µg±0.5.
For L = 4 classes in total 15 possible combinations with a +0.5 deviation and
the same number of combinations with a −0.5 deviation are investigated. We

5 This example is actually obtained from the accuracy analysis for energy eg(s), see Figure 4.16.

88

4.4 – Transformational Development

(a) A false coloured pixel-value quantisa-
tion

0
 600
 1200

0

50

100

150

200

250

frequency

g
re

y
-v

a
lu

e

(b) Initial distribu-
tion of grey-
values over
classes

start
 pass1
 pass2
 pass3
 pass4

0

50

100

150

200

250

iteration count

g
re

y
-v

a
lu

e

(c) The adaptation of the
class means in a tiled
multi-pass setting

(d) Improved quantisation visualised

start
pass1
pass2
pass3
pass4

0

100000

200000

300000

400000

iteration count

q
u

a
lit

y

(e) Improving quality per
pass

Figure 4.14: Intermediate stages of the quantisation process

89

Chapter 4 – Case: Stochastic Image Quantisation

-f
 -e
-d
-c
-b
-a
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
+1+2
+3+4
+5+6
+7+8
+9+a
+b
+c
+d+e
+f

345000

350000

355000

360000

Rounding modi of MU

Q
u
a
lit

y

roun-
ding
modus

description

-f µ = (µ0 − 0.5, µ1 − 0.5, µ2 − 0.5, µ3 − 0.5)
-e µ = (µ0 − 0.5, µ1 − 0.5, µ2 − 0.5, µ3)
· · · · · ·
0 µ = (µ0, µ1, µ2, µ3)
1 µ = (µ0, µ1, µ2, µ3 + 0.5)
· · · · · ·
+e µ = (µ0 + 0.5, µ1 + 0.5, µ2 + 0.5, µ3)
+f µ = (µ0 + 0.5, µ1 + 0.5, µ2 + 0.5, µ3 + 0.5)

Figure 4.15: The sensitivity of accuracy of µ to fractional deviations

90

4.4 – Transformational Development

restrict ourselves to deviations in the same direction (no combination of +0.5
and −0.5). Figure 4.15 shows the result of this experiment. Here all 31 possible
combinations, including the reference (modus 0), are tried and their effect on
quality is measured. The number of trials is 50. The combinations are identified by
a single hexadecimal number, which enumerates for all combinations. The green
line represents the reference representation (modus 0, green arrow). As can be
seen from Figure 4.15 all the means of all modi stay within the standard deviation
band of this reference. The combinations have almost no effect on the quality,
which therefore renders a more detailed accuracy simulation as superfluous.

Accuracy analysis. Another type of analysis is involved to verify whether the
width of bit-fields is sufficient, given a certain bound on the connected quality
reduction. For the energy computation (4.11), the fidelity term fidg(s) takes
the largest bit budget because of the squaring operation following a subtraction
of two 8-bit values. Based on this widest field, needed for the comparison of
∆e(s) ≤ T · − ln α, is dimensioned to a 20-bit number representation. This is
sufficient for storing all intermediate results including energy, fidelity and regu-
larity terms. The current implementation of the system is based on this 20-bit
number representation. To illustrate the process of this kind of accuracy analysis
we investigate a further reduction of bit-width for variable eg(s). Since we use
an integer value for the weighting factor β, the energy may be safely represented
by 17 • 0 . The goal of this analysis is to derive the minimal width of this field
(and if possible to even allow for less bits than 17). We estimated the relative
quality difference δQ̂ of using a representation with fewer bits by measuring the
quality loss with respect to the exact 17 bit representation of energy. The relative
quality difference is then defined by δQ̂ = | Q̂17(g) − Q̂trunc(g) | /Q̂17(g), where
Q̂17(g) represents the full width quality, and Q̂trunc(g) the quality when all eg(s)
are truncated.

The truncation of fixed point numbers (with an integer and a fractional part)
may be described by

b2ACCUR ∗ xc
2ACCUR

,

where x is a fixed point number and the accuracy parameter ACCUR may take
positive as well as negative integer values. Figure 4.16 contains the result for
the various accuracy settings P16 · · ·P1, where the subscript i ∈ [1 · · · 16] of Pi

corresponds with the field width in bits. Starting from the omission of the lsb of
eg(s), that is, P16, the quality loss is far below the threshold of 1%. The number
of trials for each selected width is 50. The 1% relative quality loss is indicated in
Figure 4.16 by the green horizontal line. As can be seen, the successive removal of
least significant bits (P16, P15, P14) do indeed increase this loss and passes the
1% threshold when more than 3 bits are truncated. So allowing for a 1% relative
deviation on the quality, the variable energy can be coded in merely 14 bits.

A relative deviation of a design quantity is a simple way of expressing a quality

91

Chapter 4 – Case: Stochastic Image Quantisation

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

1e-5

0.0001

0.001

0.005

0.01

0.02

0.1

0.5

1

2

accuracy

R
el

at
iv

e
Q

ua
lit

y
di

ffe
re

nc
e

accuracy description

P16 field is truncated to the 16 most significant bit(s) (msb), the lsb is lost
P15 field is truncated to the 15 msb, the 2 lsb are lost
· · · · · ·
P2 field is truncated to the 2 msb, the 15 lsb are lost
P1 field is truncated to the msb, the 16 lsb are lost

Figure 4.16: Quality loss as function of the accuracy of a variable precision rep-
resentation of the width of the variable energy

92

4.4 – Transformational Development

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-10000

0

10000

20000

30000

LFSR width [bits]

Q
ua

lit
y

di
ffe

re
nc

e
(L

F
S

R
(w

id
th

)
-

S
ta

nd
ar

d
R

N
G

)

Figure 4.17: Effect of LFSR bit-width on quantisation quality, image size 128 ×
128. Number of trials is 50.

deficiency in terms of resources on which one can make concessions.

4.4.2.3 Random Number generator

As a last topic for accuracy analysis we have selected a part of the algorithm
of which, not the value gives precision problems, but rather the sequence of
consecutive values. For every iteration a new state (ĝ) has to be generated in
a random fashion. Pseudo random generators based on Linear Feedback Shift
Register (LFSR) have low memory footprint and only need simple bit operations:
Exclusive OR (XOR) and Shift [55]. A 10 bit LFSR with only two tap points can
be described by: \lfsr -> (tail lfsr) ++ [(lfsr!0)xor(lfsr!3)], a func-
tion representation in lambda notation, where the (list) argument lfsr is ’shifted’
over 1 position to the left and the last element is exchanged by the boolean xor
(not equal) of the 0th (first) and 3th element of the original list. This LFSR
is capable of generating a pseudo random number sequence with cycle length
210 − 1 = 1023, which is sufficient as shown by Figure 4.17. Here the quality
loss of a LFSR approximation with respect to a standard pseudo random number
generator is measured. For our purpose a random number generator is used that
is based on GB Flip, an algorithm with a period length of at least 255 − 1, see
[76].

Remarkably, the lower LFSR bit-widths have ”good” quality. The explanation
is the low cycle length 2WLF SR − 1 for small bit-width WLFSR = 4 or 5 compared
to the size of the neighbourhood Ns (Figure 4.5). This causes a periodic effect
in the random number sequence. Since the generation of new states, line 3 in

93

Chapter 4 – Case: Stochastic Image Quantisation

Figure 4.18: Regular patterns in quantised result because of small width (7 bit)
of LFSR, for a 128× 128 sized image

Algorithm 4.2, involves the taking of a few bits from this random sequence (only
2 bits in case L = 4), this periodic effect is amplified. The effect is a disturbance
in the delicate fidelity-regularity balance, becoming more and more in favour of
regularity with each following iteration. This occurs preferably in those areas,
which contain pixels of two nearby classes (with almost same µg). In few iter-
ations, for example n = 7 for WLFSR = 4, the occasional fidelity mismatch is
overcompensated by a large gain in regularity, forcing the emergence of large ho-
mogeneous areas. Even for wider LFSR bit-width the effect can be noticed, see
Figure 4.18 for WLFSR = 7.

The following conclusions may be drawn:

• for width ≤ 9 [bits] the quantised images exhibit annoying regular struc-
tures,

• for larger widths the change in quality is negligible,

• and for these widths the difference with respect to the higher quality random
generator (GB Flip) [76] is almost nil.

4.4.3 Reorganisation subphase

During the reorganisation subphase the model is expanded in a top-down manner,
gradually changing the hardware independent description into a form dictated by
the hardware architecture. To demonstrate this added value we mention a few
issues in this phase.

94

4.4 – Transformational Development

Precomputation of Constants. Some constants can be computed during the
initialisation and for example prestored in a particular memory field administered
per PE, or in a Look Up Table (LUT) on the Lindancer’s control processor. For
example, in the definition of fidelity fidg(s) (4.12), the mean µc of a class c is a
constant, and thus it is efficient to calculate it only once. We will assume that
for every class c the mean µc will be stored in a lookup table on the Linedancer
control processor (SPARC).

Transformational laws. For every pixel the fidelity has to be computed ac-
cording to the definition

fid g s = (gamma s - mu c)^2 where c = g s.

We focus for now on the computation of the class means mu c, dependent on the
class assignment g s per pixel s and for all classes c. The simplest way for a
programmer of a more general parallel processor (e.g., MIMD) would be to let
each PE do the lookup for its pixel. The procedure that every PE then has to
execute is simple as well: just walk through the lookup table until you find your
own class (g s)=c, and then lookup the corresponding class mean mu c. In terms
of the architectural language this means that every PE executes a fold function
(iteration) over the LUT. This may be expressed by saying that this fold func-
tion is map-ped to the set of all PEs. Thus, this simplistic approach would lead
to a program that essentially looks like:

class_means = map (x -> fold (f x) v0 lut) class_assignments

where f x v (y,w) = w , if x=y

= v , otherwise

The function f ensures that the initial value v0 is updated with the correct value
from lut. Note that the exact value of v0 is irrelevant, since it is simply replaced
by this value from lut. Summarising, this comes down to the parallel execution
of an iteration over the entries of a LUT.

However, given the limitations in local computational capabilities and memory
size of a SIMD architecture like the Linedancer, individual PEs cannot execute
such an iterative process. The consequence is that the iteration has to be ex-
ecuted by the control processor, and the relevant data of each class have to be
broadcasted to all PEs. Each PE only executes the above definition when its own
class g s matches with the broadcasted current class index c of the LUT. Thus,
the control processor performs a fold over the LUT, and maps the LUT data
at each step to all associating PEs. In terms of the architectural language this
pattern looks like (apart from some minor formal details):

class_means = fold (map f PEs) class_assignments lut

95

Chapter 4 – Case: Stochastic Image Quantisation

Again, the fold-function iterates over the lookup table lut, but now it is a ”broad-
cast” function (map f PEs) that is iterated, that is, the function f (that updated
a pixel with the correct value) is broadcasted to all pixels. This broadcast is done
for each entry in lut and at each step the variable class_assignments is updated
for the relevant part. Again, note that the exact value of v0 is irrelevant, since
the class assignments are replaced by the correct value from lut. Summarising,
this comes down to the iteration over all entries of the LUT while performing the
lookup for all PEs in parallel.

Without going into details we remark that there is a precise law that trans-
forms the first specification into a second one. That is to say, this law transforms
a straightforward specification that is very simple to design, into a more com-
plex executable program. Such laws are important to guarantee correctness and
therefore play an important role in the IRIS methodology. It is one of the ad-
vantages of a functional language as architectural language that such laws can be
formulated precisely and proven formally.

A second application of the same law is discussed below.

Expression optimisation. In order to reduce execution time, each definition
has to be checked for possibilities to optimise the computation. For example,
definition (4.5) is straightforward and easy to specify, but the list of neighbours
of each pixel has to be traversed twice in order to calculate the respective lengths.
The following equivalent definition subtracts or adds 1 when the g r is equal or
unequal (respectively) to g s and traverses the list of neighbours only once:

reg g s = sum [if (g r == g s) (-1) (+1) | r <- N s]

According to the definition (4.11) the outcome of this expression has to be mul-
tiplied by the parameter beta.

One of the advantages of choosing a functional language as architectural lan-
guage is that also at early stages in the design process the definitions are ex-
ecutable, thus quantitative experiments are facilitated. A simple experiment
showed that the above definition of reg can be slightly optimised further (168 ver-
sus 180 cycles per pixel, given a 12 pixel neighbourhood Ns and β ∈ {1 · · · 255})
by adding or subtracting this parameter beta directly. Thus, the definition in
(4.11) can be replaced by the definition:

e g s = fid g s + sum [if (g r == g s)(-beta)(+beta) | r <- N s]

We remark that the equivalence of these definitions can be easily shown.

Transformational laws (2). Again, the above mentioned definition of e has
to be broadcasted to all PEs. Note that determining the sum of a list requires an
iteration over the list, that is, we have the same pattern as before: a fold inside a

96

4.4 – Transformational Development

map. Then clearly the same problem arises, such a specification is not executable
on the Linedancer. However, we can apply the same law as before, leading to a
map inside a fold, which is executable on the Linedancer.

4.4.4 Template subphase

The goal of the template subphase is to derive reusable components. This not only
includes macros for code fragments or even complete modules but also includes
support for context dependent instruction coding. As time progresses, experience
translates into more powerful components (bottom-up). Templates are intelligent
pieces of interactive functionality that serve three roles.

1. First of all, the functional behaviour of the involved Linedancer instruc-
tion(s), Functional Emulation, should be properly modelled.

2. Second, compliance with the Calling Conventions for all relevant instruction
types should be enforced.

3. Finally, the syntax of the template-call should be rich enough to enable au-
tomatic generation of the target code for this call (Facilitating Translation).

This subphase, in fact, compresses the size of the description by rephrasing
equivalent code fragments in such a way that reusable components emerge.

Both the calling convention and the allocation support use a special calling
convention for variables to express the allocation of Linedancer memory to the
variables. We express this in the variable name as
<name>_<start_position>_<length> such that memory can be allocated based
on these names (call by name).

For example the energy computation e g s is performed twice: once for the
current state g and once for the alternate state gHat. Table 4.7 (on page 106)
shows the allocation for the relevant variables. The two instances are given below:

energy_82_20 = e (state_11_4)

newEnergy_27_20 = e (newState_65_4),

where state_11_4 corresponds to g and newState_65_4 corresponds to gHat.
Because of the above mentioned explicit allocation we can at this point also

illustrate the handling of ’intelligent’ compilation, as a typical activity in resource
sharing, see Section 3.8.2. The variable fid g s (fidelity) shares the same field
as e g s (energy). Therefore, we can allocate this variable by fid_82_16 since
fidg(s) can be represented by 16 bit (see Table 4.7).

4.4.5 Translation subphase

The goal of this subphase is to translate the model code into the native language
of the target hardware (C enriched with hardware intrinsic instructions). The

97

Chapter 4 – Case: Stochastic Image Quantisation

translator takes a specially formatted description as input and translates this into
Linedancer-C code that can be compiled using the Linedancer toolchain. The
specific details of that language fall outside the scope of this paper, hence we
restrict ourselves to pseudo code.

In many cases, the functional specifications can be translated straightforwardly
into pseudo code. For example, the expression (arr stands for an array, v0 for an
initial value)

fold f v0 arr

translates into

a = v0;

forallSeq x in arr do

a = f(a,x);

where the additional variable a plays the role of an accumulation variable which
contains the required value after termination of the for-loop.

Clearly, in this case the for-loop goes through the list in a sequential way, as
suggested by its name forallSeq. The parallel variant is expressed by

map f arr

and translated into

forallPar i in arr_indexes do

arr[i] = f (arr[i]);

where forallPar suggests a parallel for.
Applying this to the definition of e as derived in Section 4.4.3 yields:

forallPar s in S do e_g[s] = fid_g[s];

forallSeq r in neighbourVectors do

forallPar s in S do

e_g[s] = e_g[s] + if g[s] == g[r] then (-beta) else (+beta);

In addition to this pseudo code, we again need the special naming convention for
variables (as mentioned in the template subphase) to specify the bit-fields in
Linedancer-C. Furthermore the array neighbourVectors – containing all indices
r for the computation of g[r] – is needed. At last we mention the introduction of
a temporary variable, that is administered on the SPARC, for the access of this
index because the ASP cannot index the array itself.

The generated Linedancer-C code of a part of the pseudo code fragment above,
is included below. The forallSeq r compound is mapped to the for statement,
and the variable r is mapped to n. The evaluated index [r] is looked up in
array NBOURS, stored in the mentioned temporary variable temp, and actually

98

4.5 – Results and Discussion

represents the communication distance to the remote PE that hosts the state in-
formation g[r]. In this example bit-field (10,4) hosts state g for all PEs. See for
further details Section A.1.

for (n = 0; n < NBCOUNT; n++) {

temp = NBOURS[n];

aop {

RTS(Assign, Bitset, co{Get,temp}, @{4,14}, @{4,10}, -)}

.....

}

}

4.5 Results and Discussion

The resulting system is described and discussed in detail below. The results are
structured in the following way:

• Timing

• Memory allocation

• Quality

• Methodology

Timing. This paragraph discusses the performance related results. Perfor-
mance measurements are included and extrapolated to a full page to compare
it with the given timing constraint. Suggestions for improving the performance
are given.

Timing measurements. Table 4.2 summarises the timing results of three distinct
implementations of image quantisation for L = 16 quantisation classes. Two
of them implement the MMD scheme, one executed on a 2 GHz Pentium
Xeon with 1 GB DRAM and one on the Linedancer system (consisting of
2 Linedancer chips). For comparison also a state of the art quantisation
algorithm median cut [48] is given, which is part of the image processing
package Netpbm6. Netpbm is an open source software package of graphics
programs and a programming library. The MMD Linedancer implementa-
tion is 1.33 times faster than median cut running on the above mentioned
Pentium processor (and 128× faster compared to MMD on a Pentium).

Extrapolation to full page processing. Figure 4.20 shows which of the Linedancer’s
processing units is involved in this process. In this figure a detailed timing
chart is given for a specific case where the number of runs per tile per pass
rpt = 2 and for L = 4 classes. As explained before the tiles need to overlap

6 Bryan Henderson: ”About Netpbm”, 2007, http://netpbm.sourceforge.net/.

99

http://netpbm.sourceforge.net/�

Chapter 4 – Case: Stochastic Image Quantisation

Pixels Time (ms)
median cut on Pentium MMD on Pentium MMD on Linedancer

10000 31 517 5.95
40000 47 2070 23.1
160000 110 8420 80.3
640000 375 34600 280
2560000 1438 138000 1080

Table 4.2: Execution times of quantisation for L = 16 classes: median cut
and the MMD version both on a Pentium, and MMD on a dual Linedancer
system. All MMD processing is performed with n = 100 iterations.

in order to support the chosen neighbourhood system, see Figure 4.5. For
example in our case we need a 2 pixel wide overlap on all 4 sides resulting
in an effective tile size t2eff = 60 × 60, assuming that a single Linedancer
processor can host 4, 096 pixels. The whole bitmap of w × h pixels is cov-
ered by an integral number of w′ × h′ tiles, where w′ is the number of tiles
in horizontal direction and h′ is the number of tiles in vertical direction.
For an A4 image format (WA4 = 210mm, HA4 = 297mm) at r = 24 pix-
els/mm resolution, this means that h′ = dHA4·r

teff
e = d 297·24

60 e = 119 and

w′ = dWA4·r
teff

e = d 210·24
60 e = 84 tiles respectively. This means that for an

A4 sized image the number of tiles h′ × w′ = 119 × 84 = 9996. For
the ASP a single iteration of a tile takes Titer = 8K8 cycles as can be seen
from Table 4.3. Since each tile is executed rpt = 2 times this amounts to
Ttile = Titer · rpt = 17K6 cycles. Together with the load and dump time
Tin = Tout = 512, the processing per tile totals to Tin +Ttile +Tout = 18K6
cycles. A concurrently running thread on the SPARC processes each in-
termediate result of a tile and maintains tallies as well as subtotals of the
grey-values per class. This is estimated to 4 cycles per pixel and results
in 4K · 4 = 16K cycles, so just below the time of the tile processing by
ASP and DMA controllers (16K < 18K6 cycles). The same thread also
computes the update of the class means µc if needed. Since the frequencies
and grey-value subtotals for all classes are already maintained per executed
tile, this Tupdµ does not take much time (4 float divisions).

So the critical path for rpt ≥ 2 is formed by the tile processing by the ASP
(Ttile) with both two input (Tin) and output (Tout) activities for tile data.
The integral time Tlat (latency) is given by Tlat = (Ttile +Tin +Tout) ·h′ ·w′ ·
#p + Tupdµ. For rpt = 2 runs per tile uses #p = n

rpt
= 100

2 = 50 passes. A
single 300 MHz Linedancer-P1 will process an A4 in Tlat = 18K6·9996·50

300MHz ≈ 31
sec. This result is disappointing and should be improved.

Improving the performance. To give an idea how many cycles the different parts

100

4.5 – Results and Discussion

Activity # Cycles
Preparation 70
Processing one tile

Calculate a new random labeling 44
For each label 352

y − µgs (16×) 22
Square 164
For each neighbour 3592

Add or subtract β (avg) (12×) 299.3
Load y 16
For each label 352

y − µgs
(16×) 22

Square 164
For each neighbour 3592

Add or subtract β (avg) (12×) 299.3
Subtract energies, threshold values and update 70

Dump result 338
Total 8754

Table 4.3: Number of measured cycles used for each iteration per tile of
the algorithm. Nesting indicates loops, bold numbers indicate accumulated
results.

of the algorithm take, we measured the number of cycles taken for different
stages of the algorithm. The results can be seen in Table 4.3. For the ”For
each neighbour”-parts, which take 3592 cycles each, 3200 (estimate based
on a communication model, see Section A.1) are spent on communication.
This is approximately 73% of a total of T̂iter = 8754 cycles for each iteration
per tile. However, clever reuse in communicating the neighbourhood could
reduce this overhead, provided some memory space is available for storing
intermediate results. Then 55% of a reduced total of 5207 cycles is spent in
communication, yielding a speedup of 1.7, see first row in Table 4.4.

A further improvement can be obtained by extending the Linedancer’s syn-
chronous inter-PE communication with a chordal ring [91], for example an
extra link for each PE with distance 64, see Figure 4.19. This would yield a
total speedup of 2.9 and would turn this realisation into a processing bound
solution; only 21% of a reduced total of 2988 cycles is then spent in com-
munication, see Table 4.4. The Linedancer-HD has implemented an extra
chord with distance 32.

Other ways to improve the performance is to reduce the width of wide
variables with marginal loss of quality (e.g., variable energy as shown by
Figure 4.16) and/or increase the number of Linedancers. Table 4.5 reports

101

Chapter 4 – Case: Stochastic Image Quantisation

chords T̂iter Tcomm speedup
1 5207 2852 1.7

2 1 4098 1743 2.1
4 1 3534 1179 2.5
8 1 3243 888 2.7

16 1 3097 742 2.8
32 1 3024 670 2.9
64 1 2988 633 2.9

Table 4.4: The speedup Titer

T̂iter
for processing tiles when adding an extra

chord to the default communication ring. The time spend in communication
(Tcomm) is included in T̂iter.

128

1

63
64
65

2
 P
 1
2
 P
63
64
65
128

Figure 4.19: Effect of improving the connectivity of the PEs by a chordal
ring with an extra chord with length 64

n P1 time [sec] HD time [sec]
1 18.2 10.7
2 9.1 5.3
4 4.6 2.7
8 2.3 1.3

Table 4.5: The estimated performance of stochastic image quantisation for
the Linedancer P1 and HD processor with the mentioned speedups incor-
porated (n is the number of Linedancers)

102

4.5 – Results and Discussion

the performance figures.

103

Chapter 4 – Case: Stochastic Image Quantisation

Summary. From a performance point of view this postprocessing step of the MMD
algorithm, see Figure 4.3, represents a relatively large overhead. However,
considering the scalable approach the Linedancer solution offers, and keep-
ing in mind the increase in integration density at constant costs, the post-
processing by MMD is expected to obtain a reasonable quality/performance
ratio in the future.

Memory Allocation. The final allocation is presented in two tables, one for
fixed parameters used by the algorithm (Table 4.6) and the other for the variables
used in the algorithm (Table 4.7). Table 4.6 lists all parameters used in Algo-
rithm 4.2, complete with the domain they are defined on, and the chosen fixed
point representation. Of the parameters, only grey-value γs is stored in the ASP
(memory field specification 24(8) means bit positions 24-31). All other parame-
ters are either broadcasted to the PEs for direct processing or kept on the SPARC
(e.g., for flow control in case of iteration count n). Table 4.7 lists all the variables
used in the MMD algorithm. From the variable dependencies (2nd column), the
range and subsequently the fixed point scheme and the memory field specification
can be derived (3rd, 4th and 5th column respectively). The last column refers to
the line numbers in Algorithm 4.2.

104

4.5 – Results and Discussion

A
S

P
til

e
1

til
e

2
til

e
3

til
e

h'
.w

'

1
2

D
M

A

S
p

ar
c

2
3

3
..

1
h' . w

'

ta
lly

 c
la

ss
m

em
be

rs
 ti

le
 1

ta
lly

 c
la

ss
m

em
be

rs
 ti

le
 2

ta
lly

 c
la

ss
m

em
be

rs
 ti

le
 3

ta
lly

 c
la

ss
m

em
be

rs
til

e
h'

.w
'

1

til
e

1
til

e
2

...

1
2

2
..

..

ta
lly

 c
la

ss
m

em
be

rs
 ti

le
 1

ta
lly

 c
la

ss
m

em
be

rs
 ti

le
 2

...

51
2

cl
oc

ks

8K
7

. r
p

t
cl

oc
ks

16
K

 c
lo

ck
s

51
2

cl
oc

ks

1
2

r pt

P
as

s
1

P
as

s
2

18
5M

 c
lo

ck
s

/ L
in

ed
an

ce
r-

P
1

(

fo
r

r p
t
=

2
)

up
da

te
 c

la
ss

m
ea

ns

� µ

≈

T
til

e

F
ig

ur
e

4.
20

:
D

et
ai

le
d

sc
he

du
le

of
ta

sk
s

ov
er

th
e

L
in

ed
an

ce
r’

s
pr

oc
es

so
rs

105

Chapter 4 – Case: Stochastic Image Quantisation

d
es

cr
ip

ti
o
n

sy
m

b
o
l

ra
n
g
e

fi
x
ed

p
o
in

t
sc

h
em

e

m
em

o
ry

fi
el

d
d
o
m

a
in

h
o
st

g
re

y
-v

a
lu

e
γ

s
[0

..
2
5
5
]

8
•0

γ
2
4
(8

)
a
rr

ay
[0

..
w

-1
,
0
..
h
-1

]
A

S
P

cl
a
ss

m
ea

n
µ

c
[0

,2
5
6
)

8
•0

b
ro

a
d
ca

st
a
rr

ay
[0

..
L
-1

]
S
P
A

R
C

w
ei

g
h
t

fa
ct

o
r

β
[1

,1
0
0
]

7
•0

b
ro

a
d
ca

st
fi
x
ed

p
o
in

t
in

t
S
P
A

R
C

te
m

p
er

a
tu

re
T

(0
,1

6
]

g
lo

b
a
l7

fl
o
a
ti

n
g

p
o
in

t
S
P
A

R
C

a
cc

ep
ta

n
ce

th
re

sh
o
ld

α
[0

.0
1
,1

)
g
lo

b
a
l7

fl
o
a
ti

n
g

p
o
in

t
S
P
A

R
C

it
er

a
ti

o
n

co
u
n
t

n
[5

0
..
2
0
0
]

8
•0

g
lo

b
a
l

fi
x
ed

p
o
in

t
in

t
S
P
A

R
C

T
ab

le
4.

6:
F
ix

ed
po

in
t

ac
cu

ra
cy

of
pa

ra
m

et
er

s
in

th
e

M
M

D
al

go
ri

th
m

d
es

cr
ip

ti
o
n

d
ep

en
d
en

cy
ra

n
g
e

fi
x
ed

p
o
in

t
sc

h
em

e

m
em

o
ry

fi
el

d
a
lg

o
-

ri
th

m
-

li
n
e

q
u
a
n
ti

sa
ti

o
n

st
a
te

o
r

cl
a
ss

g s
,ĝ

s
[0

..
L
−

1
]

4
•0

st
a
te

1
1
(4

),
n
ew

S
ta

te
6
5
(4

)
1
,3

,7

fi
d
el

it
y

f
id

g
(s

)
=

(γ
s
−

µ
g

s
)2

[0
,2

5
6
2
)

1
6
•0

en
er

g
y

8
2
(2

0
),

n
ew

E
n
er

g
y

2
7
(2

0
)

5

re
g
u
la

ri
ty

re
g g

(s
)

=
|N

s
|
−

2
·|
{r
∈
N s

|g
s

=
g r
}
|

[−
1
2
,+

1
2
]

6
•0

a
cc

u
1
5
(1

2
)

5

en
er

g
y

e g
(s

)
=

f
id

s
+

β
·r

eg
g
(s

)
[−

1
2
,1

2
+

2
5
6
2
]

1
7
•0

en
er

g
y

8
2
(2

0
),

n
ew

E
n
er

g
y

2
7
(2

0
)

5

en
er

g
y

d
iff

er
en

ce
∆

e(
s)

=
e ĝ

(s
)
−

e g
(s

)
[−

2
4
,2

4
+

2
1
7
]

1
8
•0

n
ew

E
n
er

g
y

2
7
(2

0
)

5

a
cc

ep
ta

n
ce

∆
e(

s)
≤
−T

·ln
α

{f
a
ls

e,
tr

u
e}

1
9
•0

n
ew

E
n
er

g
y

2
7
(2

0
),

a
cc

ep
tB

it
1
0

6

T
ab

le
4.

7:
F
ix

ed
po

in
t

ac
cu

ra
cy

of
va

ri
ab

le
s

us
ed

in
th

e
M

M
D

al
go

ri
th

m

106

4.5 – Results and Discussion

(a) One pass, arrows indi-
cate tiling artifacts

(b) Two passes, no visible
tiling artifacts

(c) Resulting image

Figure 4.21: Quantisation by MMD on an image of 128× 128 pixels, processed in
chunks of 68× 68 tiles

Quality. Some remarks can be made with respect to state of the art quantisation
algorithms in terms of the improvement in quality. The ringing at the edges and
the speckles have disappeared when comparing the image in Figure 4.2(b) and
the image in Figure 4.21(a). But the redistribution of classes leads to larger
areas with arbitrary borders. However, these larger areas can be handled more
effectively than small areas by using techniques from object and image recognition
[56]. Further study is needed to reduce these large areas.

Tiled processing of the image is necessary because the complete image is too
large for just a few Linedancers. The fetching and processing of subsequent tiles
– for single pass processing – is insufficient to compensate for tile border artifacts,
see Figure 4.21(a)8. Therefore, each tile is processed multiple times, effectively
allowing neighbouring tiles to better communicate their regularity information,
see image in Figure 4.21(b). This can be done without performance degradation
because on the Linedancer the dumping of the result of a previous tile and the
loading of the next one can be completely hidden in the processing of the current
tile. More detailed statements with respect to quality/cost are not appropriate
here, because the used quality measure for quantised images is not adequate
enough from an image quality perception point of view. Moreover, improving the
quantisation was not the primary goal of this research.

Methodology and Architectural language issues. Regarding the used method-
ology the following remarks can be made.

The methodology was helpful in the exploration of image quantisation in gen-

7 Parameters T and α are globals, but their combination in the acceptance threshold Ath =
−T · ln(Random) is broadcasted to the ASP, line 8 Algorithm 4.2.

8 The artifacts are ”capped” structures, that are exactly positioned on the tile boundaries.
Downward pointing arrows indicate the horizontal inter-tile boundary, the other arrows show
the vertical boundary.

107

Chapter 4 – Case: Stochastic Image Quantisation

eral, and the modelling for Simulated Annealing, MRF and MMD in particular.
After establishing the functionality, and the development of the code, the target
code could be generated automatically. In particular for this case the monitoring
and control of extra-functional properties was extended. For example the quan-
tisation quality (tiling) and the resource consumption (accuracy or bit-width of
various parameters and variables) are woven into the normal functional flow and
can immediately signal the developer when values pass a predetermined limit. A
coarse form of time modelling served our needs.

The derivation of the four layers within the transformational development
process (Section 3.8), is the specific gain for methodology of this case. This case
posed the correct conditions: the developers were unfamiliar with the problem
domain of quantisation, with models as MRF and MMD, and were a bit experi-
enced with Simulated Annealing and the Linedancer’s architecture. In contrast
to colour image processing for printing (Chapter 5) and mining of dynamic doc-
ument spaces (Chapter 6), this case offered the optimal creative space to derive
the mentioned layering.

Regarding the architectural language we can remark that an interpreter is a
necessity for interactivity, which by itself is a feature welcomed among develop-
ers. Interactivity proved its value during prototyping of functionality and target
hardware behaviour. The ease of setting up models, test cases and running them
instantaneously returns control and joy to the developer. The transcription of
the mathematical models as well as the hardware models to the architectural lan-
guage can be done in an almost one-to-one manner. The architectural language
environment is useful for generating instant graphics for the trade-off subphase.

108

4.6 – Conclusions

4.6 Conclusions

Stochastic image quantisation can be modeled in a parallel way. Here a MMD
model is implemented on a Linedancer massively parallel processor. The parallel
version on a dual Linedancer is 128× faster than the sequential implementation of
the parallel algorithm on a 2 GHz Pentium Xeon system. Moreover, the parallel
version has better scalable properties and offers easier control for improvement of
quality.

Careful engineering of the inter-PE communication could increase the speed
by an extra factor of 1.7. When the processing array is extended with a chordal
ring interconnection structure, with an extra chord connecting PEs at distance
32 or 64, then a total speedup of approximately 2.9 can be obtained.

Stochastic image quantisation proved to be a valuable testcase for extending
the IRIS methodology for constructing the code that runs on the ASP (Linedancer’s
massively parallel core). By guiding the developer throughout the entire devel-
opment cycle the complex coding, normally associated with such dedicated pro-
grammable processors, is turned into a manageable process. In particular the
layering of the transformational development process is consolidated during this
case.

109

CHAPTER 5

Case: Colour Image Processing

Today FPGAs form the dominant technology for implementing colour
image processing pipelines for high volume colour printers. Although
FPGA technology provides sufficient performance, it suffers from a
tedious development process. In this chapter we show that massively
parallel processing – for instance using the Linedancer (Section 2.3.4)
– not only leads to a reduction in development time but also adds
flexibility to the design.

For the image processing system we found that the Linedancer devel-
opment is twice as fast as the FPGA development trajectory and that
the Linedancer-HD is able to fulfill the processing requirements. The
system was initially designed and implemented for an FPGA. The
port of this application to a programmable processing environment is
guided by the IRIS evolutionary development methodology.

5.1 Introduction

The market for colour printing is developing into the direction of high volume
colour printing, where high quality and high speed are mandatory. In addition
time-to-market is important; this can be directly translated into an increasing
pressure on development cycles.

Until recently, only FPGA technology was able to fulfill the performance needs
for the printer’s colour image processing subsystem at a reasonable cost, but
this technology has the disadvantage of a relatively long development trajec-
tory. However, with the advance of programmable many-core devices such as

Major parts of this chapter have been published in [P1].

Chapter 5 – Case: Colour Image Processing

the Linedancer, the best of two worlds can be combined: the programmability
similar to a GPP and the performance of an FPGA. Additionally, many of the
image processing tasks in a printer show simple massively parallel processing suit-
able for SIMD processing. Moreover, this kind of processing allows for scalable
design, that facilitates flexibility in an easy manner.

In this study we evaluate the IRIS methodology on an Océ specific problem
case. A second motivation is to demonstrate that image processing contains easy
to exploit massively parallelism.

This chapter starts off with an introduction of the used colour printing process,
the colour image processing pipeline and a first global statement about the tech-
nical feasibility for a SIMD implementation (Section 5.2). The complete system
is too large to present here. Therefore, we restrict ourselves to a difficult to par-
allelise part of the system namely error-diffusion (in module half-toning). The
functional specification of error-diffusion is given in Section 5.3, immediately fol-
lowed by its implementation on an associative processing array. Finally the results
of the complete system, a comparison with an FPGA implementation, and con-
clusions are given.

5.2 Familiarisation

A rudimentary feasibility study of a programmable processor solution for a typical
colour image processing pipeline is presented. First some relevant domain specific
details are given.

5.2.1 Colour Printing Process

In general an image processing pipeline is heavily dependent on the used printing
process. The particular printing process consists of 7 monochrome colour printing
units, which deposit their colour image on an intermediate drum, see Figure 5.1.
The intermediate drum accumulates these mono-colour images that are printed
by the printing units. The image processing pipeline has to take into account the
various offsets these units have with respect to each other. These mono colour
images, or separations, need to be aligned with sufficient precision on the inter-
mediate drum, a process called registration. After all 7 units have deposited their
contribution to the intermediate drum the integral colour image is transferred to
the receiving medium (in most cases paper). The used colours are abbreviated
as follows: K (black), B(blue), R (red), G (green), C (cyan), M (magenta), and
Y (yellow). Note that the printer colours R, G, B are similar but are in gen-
eral not the same as the RGB colours of a colour scanner. A particular useful
property during this registration process is the physical inability of the interme-
diate drum to stack multiple colours on the same spot. This allows for correcting
slightly displaced colour separations (as exploited by the trapping module, see
Section 5.2.2.4).

112

5.2 – Familiarisation

intermediate

drum

K

B

R

G

Y

M

C

paper

colour

unit(s)

1

2

3

4

5

6

7

Figure 5.1: Colour printing process

7K

5K

print direction

A4 A3

pixel

pixel

�µ��

�µ��

Figure 5.2: Orientation and sizes of
the supported A4 and A3 formats
with substructure of pixels in print
direction only (A3 encloses A4)

The printing process considered in this chapter supports a maximum papersize
of an A3 format, that is, it can print a landscape A3 and a portrait A4. The
resolution rh is 2400 dots per inch (dpi) in transport or print direction and rv =
600 dpi in the perpendicular direction, see Figure 5.2. This results in non-square
subpixels measuring approximately 10µm× 42µm.

During the development of such a colour printer, major design decisions have
been made conclusively, even before the development of the image processing
subsystem starts. Typical starting points for such a subsystem cover quality issues
such as resolution, process colour-scheme, medium type, and productivity issues
as printing speed, medium size, and plexity1. The involved throughput can be
quantified by computing the stream-productivity P , the data volume per time
unit (in bytes/sec):

P = p× w × h× rh × rv × c/t, (5.1)

where p stands for plexity (1 for simplex, 2 for duplex), w and h for the medium
width and height, rh and rv for resolution (in dpi), c for number of colour bytes,
and t for the required time per page.

Key specifications for our specific colour printer are: speed 30 ppm or t = 2
sec page time, paper size A4 (w = 210 mm, h = 297 mm), resolution rh × rv =
2400 × 600 dpi≈ 94 × 24 pixels/mm, the number of colour printing units c = 7,
and simplex (p = 1). Taking (5.1), the stream-productivity or data rate is now
487.2 MB/sec. For high-end systems this could be up to 9 GB/sec.

1 Plexity is a design quantity that indicates whether a sheet can be printed on just one side
(simplex), or on both sides (duplex). Its value is either 1 or 2.

113

Chapter 5 – Case: Colour Image Processing

5.2.2 Colour Image Processing Pipeline

In this section we describe a simplified but functional colour image processing
pipeline, that is composed out of some difficult to parallelise modules. First an
overview is given of the pipeline, subsequently all pipeline modules are introduced.

5.2.2.1 Overview

Colour image processing deals with the transformation of an input colour image
(in RGB colour space of the scanner) into an output colour image (expressed in
the 7 process colours K · · ·Y) with good quality. This transformation consists of
five modules, and each of them fulfills a specific task, see Figure 5.3. All blue
hatched modules and the half-toning module are part of the system. The half-
toning module is examined in more detail, see Section 5.3 and Section 5.4. Also
shown is the amount of communication between the blocks, indicated as bits per
pixel. The individual blocks are explained in the following sections.

image

[R'G'B' 3x8 bit]

halftoning

image

[7color 7x8 bit]

image

[7color 7x8 bit]

edge [1 bit]

image

[7color 7x4 bit]

colour

scanner

colour

printer

edgeDetect

separation
 trapping

haftone

segmentation

segments [7x1 bit]

Figure 5.3: Simplified image processing pipeline

For our convenience we will use the notation (i, j) as well as s to designate a
pixel. The pixel space S of an image is the set of all pixels s and is defined as
the cartesian product S = {{0 · · ·H − 1} × {0 · · ·W − 1}}, where H = rv · h and
W = rh · w, and rv, rh are the horizontal and vertical resolution respectively.

5.2.2.2 Separation

In general the separation stage of an image processing pipeline, also known as
colour space conversion, translates the output of the scanner image data into
process colours that are available in the printer. Inkjet printers for example
usually have 4 process colours, CMYK (short for cyan, magenta, yellow, and
black). In that case separation involves a 3D → 4D colour space conversion since
a scanner represents each colour value in 3 RGB bytes.

Our specific printer on the other hand has 7 colours and the separation stage

114

5.2 – Familiarisation

(i,j)(i,j)

Ni j

��χ ���χ

j

i

Figure 5.4: A neighbourhood operation
needs besides the value of a pixel (i, j) also
those in its neighbourhood Nij

(i,j)

χ

3x3 neighbour-
hood of (i,j)

j

i

Figure 5.5: A 3 × 3 neighbour-
hood around a pixel (i, j)

has to translate scanner data R′, G′, B′2 (3×8 bits per pixel) into 7 toner colours
(7×8 bits per pixel) that are available in the printer: black (K), blue (B), red (R),
green (G), cyan (C), magenta (M) and yellow (Y). The involved transformation
can be described by:

(K, B, R, G, C,M, Y) = ~f(R′, G′, B′), (5.2)

where K, B,R, G,C, M, Y,R′, G′, B′ ∈ [0 · · · 255].
Various algorithms exist for the separation task. However, high quality colour

space conversion is a highly non-linear operation [67] and the best results – in
the sense of perceptual quality – are not obtained with an algorithm but with a
look-up table (LUT). The look-up table is a large LUT with 23×8=24 entries of
7× 8 bit each, resulting in 940 Mbit in total.

5.2.2.3 Edge Detection

Edge detection is a neighbourhood operation that determines whether a pixel
is an edge pixel or not. In general a neighbourhood operation needs the local
environment of a pixel in order to determine its result, see Figure 5.4. This can
be expressed in the form [56]:

χout(i, j) = TNij

(
χin(i, j)

)
, (5.3)

where χin(i, j) is the input image, χout(i, j) is the output image, and T is an
operator on χin defined over a neighbourhood Nij of pixel (i, j). A basic imple-
mentation of (5.3) is shown in Figure 5.5; typically the neighbourhood kernel is
rectangular and centered around (i, j). The kernel is moved over the pixels in the
image (2D convolution) to generate an output image [56]. Note that this does

2 To avoid confusion with the 3 similar printing process colours R, G, B, the colour space
quantities of the scanner are primed.

115

Chapter 5 – Case: Colour Image Processing

k

-
1,1

k

0
,1

k

-1
,0

k

1
,0

k

1,1

k

0
,0

k

-
1,-1

k

0
,-1

k

1,-1

Figure 5.6: General 3× 3 neigh-
bourhood kernel

-1
 -1
 -1

-1
 8
 -1

-1
 -1
 -1

Figure 5.7: Simple edge detec-
tion kernel

not necessarily imply that pixels have to be processed in a sequential manner.
The output χout(i, j) for a 2D 3 × 3 neighbourhood operation can be computed
by multiplying the pixel and its neighbourhood with corresponding weights in a
3× 3 matrix or kernel, and adding them together. The neighbourhood operation
is defined on 0 < i < H − 1 and 0 < j < W − 1 by the following equation:

χout,KN (i, j) = KN ⊗ χin =
1∑

k=−1

1∑

l=−1

KN (k, l) · χin(i + k, j + l), (5.4)

where KN is the used kernel, χin is the colour plane (separation) and ⊗ stands for
the neighbourhood operation. Examples of neighbourhood operations are noise
removal, edge detection or error-diffusion. The kernel coefficients k−1,−1 · · · k1,1

(Figure 5.6) are tuned for the typical neighbourhood operation needed.
The purpose of the edge detection module is to assist other modules in making

the right choices how to process individual pixels [56]. The functionality can be
expressed as a neighbourhood operation performed on the R′, G′, B′ colour values
of a scanned image. Edge detection can be described by thresholding the per
pixel summation of the absolute values of three neighbourhood operations – for
all three colours R′G′B′ – with a 3× 3 kernel:

edge(i, j) = threshold <
∑

k∈{R′,G′,B′}

∣∣∣ K3×3,edge ⊗ χk(i, j)
∣∣∣, (5.5)

where threshold is an experimentally determined constant, K3×3,edge is an edge
detection kernel, and χk(i, j) is the value of pixel s with colour k ∈ {R′, G′, B′}.
See Figure 5.7 for an example of an edge detection kernel.

5.2.2.4 Trapping

The purpose of trapping is to reduce the visibility of a small misalignment of colour
units (see Figure 5.1) and therefore enhancing the quality3. Figure 5.8 describes
the potentially misalignment and the counter measure undertaken by trapping.
Suppose our intention is to print a red square with a green border, as shown in
3 Adobe Systems Inc.: ”How to trap using Adobe trapping technologies”, 2002, http://www.
adobe.com/products/extreme/pdfs/trapping.pdf.

116

http://www.adobe.com/products/extreme/pdfs/trapping.pdf�
http://www.adobe.com/products/extreme/pdfs/trapping.pdf�

5.2 – Familiarisation

Figure 5.8(a) (topview). The red and green separations are aligned, resulting in a
perfect print. Figure 5.8(b) however, shows a small misalignment and this results
in a small white artifact between the green border and red square. Even a small
unwanted white area of ±20µm between adjacent colours is disturbing for the
human eye at a normal viewing distance. The most disturbing effect of a small
mismatch is with text or lines on a uniform background printed on white paper,
see for example the white gap in Figure 5.8(b).

Trapping now decreases the visibility of such misalignments by enforcing an
overlap between the different colour separations. It does so by slightly dilating
the image in the so called background colour. Trapping is a process operating on
pairs of colour separations: a foreground colour that is, one out of 1 · · · 6 and a
background colour that is, 2 · · · 7, where the numbers refer to colours in Figure 5.1.
In our example in Figure 5.8 red is the foreground and green the background colour
because green is printed later than red. There are

(
7
2

)
= 21 combinations which

have all to be checked for a conditional dilation. The dilated background does not
develop when separations perfectly match, making use of the physical inability in
the printing process to stack a second colour on top of a first one (Section 5.2.1).
However, in case of a misalignment the background colour develops in those areas
that remained undeveloped by the foreground colour. Figure 5.8(c) shows the
filling of the white gap by extending the background colour (green).

Before going into the functional details first a few observations. Misalignments
are noticed at edges and especially then when the two involved edges have opposite
directions or gradients, see Figure 5.8(b). Trapping operates on seven colour
data from the separation result and is implemented in two steps: determine edge
directions (gradients) in every colour plane, and expand areas of colour when an
opposing edge is found in a colour that is printed earlier. The trapping conditions
have to be checked for all combinations of colour separations.

Before going into the trapping conditions we abbreviate a pixel (i, j) in a colour
separation A by (i, j)A. A pixel (i, j)A in colour separation A is said to trap
pixels (i, j)B in a colour separation B when all trapping conditions are fulfilled.
We assume colour separation A is a background and B is foreground colour. The
set of trapping-colours A is A = {B,R, G, C,M, Y } and the set of trapped-colours
B is B = {K, B, R, G, C,M}, since the first colour K cannot trap a colour and
the last colour Y cannot be trapped. Before going into the conditions for dilation
we define the scalar4 edge gradient ∇c(i, j) of colour separation c ∈ {1 · · · 7} for
pixel (i, j):

∇c(i, j) =
(

d | maxd∈{1···8} | χd − χc |
)
,

where ∇ = d ∈ {1 · · · 8} stands for the 8 possible edge directions, see Figure 5.9.
Figure 5.10 illustrates the process. For all pixels and for all of the 21 combinations
of separation planes, the following conditions are checked:

• pixels (i, j)A and (i, j)B are part of an edge, so edgeA(i, j) = edgeB(i, j) =
true (see (5.5)).

4 For convenience the edge gradient is not represented as a 2D vector but as a scalar value.

117

Chapter 5 – Case: Colour Image Processing

topview

colour

separations

print

white paper

(a) perfectly aligned registra-
tions

white paper

edge

direction

edge

direction

(b) mis-registration
with indicated
edge directions

white paper

(c) mis-registration
with trapping

Figure 5.8: Colour planes with opposite edge directions causes the trapping mod-
ule to extent the colour that is printed later (in this case the green colour)

7
 1

3
5

8

2

4

6
 (i,j)

Figure 5.9: All possible directions
1 · · · 8 of edge gradients ∇(i, j) taken
from the current pixel (i, j)

4

2

1

3

6

7

5

8

(i,j)

Figure 5.10: Sample radar plot of di-
rectional edges with largest gradient
in direction 5

118

5.2 – Familiarisation

• pixels (i, j)A and (i, j)B have opposite edge gradients, so∇A(i, j) = −∇B(i, j),
where ∇c is defined by the direction of the maximum absolute difference be-
tween the center pixel and pixels in the direct 3×3 neighbourhood in colour
separation c, and where the negation of ∇B(i, j)) is interpreted in modulo
arithmetic (mod 8).

• the pixels obey the separation printing order as indicated by Figure 5.1 (e.g.,
a pixel with colour Y can trap a pixel with colour R but not the other way
around).

To summarise, the pixel (i, j)A is trapping the pixel (i, j)B when the compound
trapping condition trapAB(i, j) is satisfied:

trapAB(i, j) = edgeA(i, j) and
edgeB(i, j) and
(∇A(i, j) = −∇B(i, j)) and
(A is printed after B).

(5.6)

When a pixel’s trapping condition trapAB(i, j) is satisfied, then the colour value
of the neighbouring pixel in A, indicated by the largest gradient (∇A(i, j)), is
copied to (i, j)A. This one pixel wide conditional dilation in separation A masks
a possibly mis-registration of the pair AB.

5.2.2.5 Half-tone Segmentation

Where half-toning (Section 5.2.2.6) actually transforms an 8 bit mono-colour im-
age into a binary image, half-tone segmentation decides what specific technique
for half-toning should be used. Half-tone segmentation is another neighbourhood
operation, with many similarities to the edge detection stage (Section 5.2.2.3).
The main difference is that it operates on each of the 7 colour planes as output
by the trapping stage.

The half-tone segmentation may be described by thresholding the absolute
value of the neighbourhood operation on the colour plane with a small 3 × 3
kernel:

segment(X) = threshold(X) <
∣∣∣ K3×3,segm ⊗X

∣∣∣, (5.7)

where X = [[χij]]s∈S is a full sized colour plane with Xij = (Kij , Rij , · · ·Yij) for
all pixels (i,j), segment and threshold are equally sized pixel planes containing
the segmentation results and the threshold respectively, and where the operator
< is performed component wise.

5.2.2.6 Half-toning

The purpose of half-toning is to render continuous tone information for a print
engine, that has a lower tonal resolution5 than the input bitmaps. 8-bit image
5 Tonal resolution describes the level of detail, grey-value or colour, that can be realised per

pixel by a printing process.

119

Chapter 5 – Case: Colour Image Processing

data can have 256 different values, but toner is binary – it is either printed or not
printed [67]. Printers overcome this lower tonal resolution of the printing process
by printing at a higher spatial resolution than the input bitmap. In our case, the
printer uses in one dimension 4 ink dots per pixel and will print at 600 × 2400
dots per square inch for each of the 7 colours. These four ink dots allow for 5
quantisation levels within a single pixel: all subpixels off, and 1 · · · 4 subpixels
on (see Figure 5.12). These 5 pixel ”grey-values” realise 0%, 25%, 50%, 75%
and 100% of the maximum value (100% coverage corresponds to value 255), see
Figure 5.11. For the computation of one out of 5 grey-values we need to compare
the value against 4 thresholds, which are 1/8, 3/8, 5/8 and 7/8 of the maximum
value. Table 5.1 describes the halftoning process. This process can be represented

colour ’greyness’ condition coverage
paper white 0 ≤ χij < 1/8 0%
light 1/8 ≤ χij < 3/8 25%
medium 3/8 ≤ χij < 5/8 50%
dark 5/8 ≤ χij < 7/8 75%
full saturation 7/8 ≤ χij < 1 100%

Table 5.1: Thresholding a continuous grey-value to 5 discrete levels (quantisation
levels)

as a function fht(χij). Although half-toning is not reversible in general, we do
speak about the (pseudo) inverse halftoning f−1

ht , and it returns the realised colour
value χ′ij .

Isolated subpixels – within a 4 subpixel slot – cannot not be printed in a phys-
ically stable way. Therefore, they are forced to join either the lower or the upper
neighbour pixel. In particular cases, subpixels cluster together in the middle, see
Figure 5.12. In case of a single subpixel, that is positioned in the middle (see
in the figure on subpixel count=1 or count=2), no vertical clustering is possible.
It is expected that a neighbouring pixel (left or right) has a subpixel count un-
equal to zero. A direction flag for edge pixels is computed, which indicates where
half-toned subpixels should be positioned (low, up or middle). The computation
simply uses the above and below pixel values.

For a good quality, half-toning depends on the pixel being an edge or not. Two
specific half-toning techniques, dithering and error-diffusion, are discussed below.
Each technique has its own strength: in general dithering half-tones smoothly
varying information best, while error-diffusion performs better on edges. Because
of the involved causality, error-diffusion poses the hardest problems for paralleli-
sation. Therefore, it is selected for further analysis.

Dithering. Pixels in a smoothly varying neighbourhood are treated by dithering,
a technique which optimises grey level quality at the expense of some spatial
resolution [35]. For most pixels the dithering algorithm is used. For each

120

5.2 – Familiarisation

thresholds
"grey"-values

100%

75%

50%

25%

0%

7/8

1/8

3/8

5/8

Figure 5.11: The 5 sub-
pixel ”grey-values” and
the illustration of the
thresholding process

subpixel count

low

middle

up

direction
flag

43210

print
direction

�µ��

�µ
��

pixel subpixel

Figure 5.12: Position of the subpixels as a function
of the direction flag and the subpixel count

of the 4 subpixel outputs there is a threshold. These thresholds are decided
on beforehand by a delicate optimisation process that involves lots of per-
ceptual quality tests. The subpixel is printed if the pixel value is above the
threshold. A different set of thresholds (the dither kernel) is used for every
pixel location and every colour component. This has the effect of spread-
ing errors over a wide area and producing the correct perceived colour, on
average. Thresholds are repeated according to some defined pattern.

Error-diffusion. Edges are treated specially in order to retain the sharpness or
spatial resolution: error-diffusion spreads the error between the desired
colour and the realised colour around to the pixels in the very close neigh-
bourhood [47][35]. As with dithering, error-diffusion takes a monochrome
or colour image and reduces the number of quantisation levels. A popular
application of error-diffusion involves reducing the number of quantisation
states to just two, which makes the image suitable for printing on binary
printers. Essential is to exploit the high spatial resolution in an attempt to
compensate for the lack of tonal resolution. The typical mechanism is as
follows. Let s be an abbreviation for a pixel (i, j). First for each pixel s a
quantisation state gij is derived from a colour pixel χij by some half-tone
function6 fht (e.g., by thresholding) by

gij = fht(χij + εij),

where εij represents the integral error from relevant neighbours for the cur-
rent pixel s. Next, a new error ε′ij is determined, which will be distrib-

6 In general error-diffusion is considered a part of half-toning. Because we focus on error-
diffusion we restrict the half-toning function fht to quantisation in the context of this thesis.

121

Chapter 5 – Case: Colour Image Processing

1/16

5/16

3/16

7/16

scanlines

scan

direction

Figure 5.13: Floyd-
Steinberg error-diffusion
scheme HFS

1/4

1/2

1/4

scanlines

even phase
 odd phase

1/4

1/2

1/4

scanlines

scan

direction

scan

direction

Figure 5.14: Used error-diffusion scheme, succes-
sive application of Heven and Hodd

uted to some neighbouring pixels that have not been visited until now. The
new error is computed by subtracting the realised monochrome colour-value
χ′ij = f−1

ht (gij) – the inverse halftoning of quantisation gij – from the in-
tended monochrome colour-value χij :

ε′ij = χij − f−1
ht (gij).

Finally, the new error ε′ij is distributed (and accumulated) to neighbouring
pixels by some distribution kernel or diffusion mask H:

E ′ij = Eij +H(ε′ij),

where Eij and E ′ij are spatial error-distributions with the same size as H. A
popular error-distribution scheme HFS is defined by Floyd and Steinberg
in 1975 [47], see Figure 5.13. To ensure that all quantisation errors are
diffused, H must satisfy the constraint

∑
s∈S hij = 1, where hij represents

the fraction of the error for pixel s within the set of pixels S for which the
distribution kernel H is defined.

In our case, however, a different scheme is used. Every pixel propagates an
error output to 3 neighbours and all pixels send an error component to the
next line, see Figure 5.14 and Figure 5.15. As can be seen from this figure,
even pixels send errors to the odd pixels on the same (vertical) line, and
the even pixel on the next line, while odd pixels send errors to the odd and
even pixels on the next line. Two sets of successively executed distribution
schemes are used for this purpose, see Figure 5.14. This approach enforces
an error propagation on scan line bases, realising adequate parallelism within
each scanline. First doing the calculations for all even pixels (in parallel),
then all odd pixels (in parallel) and working sequentially from the left of
the page to the right.

We conclude the familiarisation phase with showing how a blue continuous tone
original is rendered by the described error-diffusion algorithm, see Figure 5.16.

122

5.2 – Familiarisation

4

3

2

6

1

scan

direction

[600 dpi]

print direction [2400 dpi]

pixels

5

odd pixels

even pixels

Figure 5.15: Half-toning error propagation, scanlines arranged vertically

(a) Original contin-
uous tone image

(b) Error-diffused
image

Figure 5.16: Rendering a continuous tone image with the described error-diffusion
technique

This example is chosen on purpose because of the strict horizontal intensity gra-
dation as depicted in Figure 5.16(a) and demonstrates the effect of its coarse
approximation after half-toning (note the typical vertical striping).

5.2.3 Feasibility

The purpose of this section is to get confident about the scope of the system
and the technical feasibility of realising the system with the target hardware
architecture. In this way early roadblocks can be identified, evaluated and their
impact assessed in an early stage.

Demarcation of the system boundary. To test the feasibility of a program-
mable processor solution a minimal system is composed, that covers the most

123

Chapter 5 – Case: Colour Image Processing

essential modules. These modules are taken from the project description of the
FPGA implementation. All the blue shaded modules are within the scope of the
system, see Figure 5.3, and the complete system will be evaluated in Section 5.5.
For now the module half-toning will be considered in more detail during develop-
ment.

Feasibility: a first estimate. To assess the full technical feasibility is difficult
in this early stage of development. However, based on the provided C-algorithms
of the five modules we can estimate the number of operations and subsequently
obtain an estimate on timing. Table 5.2 contains the processing requirements
for a sequential implementation of the colour printer. This result is obtained by
profiling the sequential C algorithm. For example the separation, implemented as
a (large) LUT only takes 3 cycles for a 24 bit Red Green Blue (RGB) lookup entry
with a 7 × 8 bit KGRBCMY-result. Halftoning needs more time, per colour the
half-toning takes 166 operations, so totaling up to 1162 cycles. For the whole A4
bitmap at a speed of 2 seconds per page we require 35 Mpixels × 1518

2 ≈ 27 Giga
Operations Per Second (GOPS). A single Linedancer hosts 4,096 PEs, which all
can process pixels in parallel. On the other hand, on the Linedancer processing is
done at a 1 bit/clock pace: with the bit-width of variables between 3× 8 or 7× 8
bits this results in 27GOPS×24

4,096 = 158 to 27GOPS×56
4,096 = 369 Mclocks. The clock

budget for this system (running at 400 MHz) is 400 MHz×2sec= 800 Mclocks.
Hence, in first instance we estimate that a single Linedancer is sufficient for the
processing at hand.

module sequential opera-
tions per pixel

separation 3
edge detection 68
trapping 255
half-tone segmentation 30
half-toning 1162
total 1518

Table 5.2: All 35M colour pixels have to perform 1518 operations each, within a
time slot of 2 sec

All modules, except separation, use neighbourhood computations. As in the
image quantisation case, see Section 4.2.3, such computations need overlapped
tiling for processing the large set of image data. For the edge detection, trapping
and half-tone segmentation modules, the optimum tile dimensions for a single
Linedancer, i.e., 64 × 64, can be used. This minimises the number of image
reloads necessary for realising the overlap. Half-toning, however, needs a line
based tile form for optimal processing, see Figure 5.17. So we first use in Pass 1

124

5.2 – Familiarisation

Pass 1
 Pass 2

Page read in

rectangular

tiles

Pass 1

processing

RGB Edge Detect

Separation

Trapping

Halftone Segm.

Save intermediate results

Intermediate

results read in

full lines

Halftoning

Pass 2

processing

RAM

RAM

Figure 5.17: Overview of the 2 pass pipeline

125

Chapter 5 – Case: Colour Image Processing

64× 64 tiles for edge detection, separation, trapping, and half-tone segmentation,
and after that we use in Pass 2 line based tiles for half-toning.

5.3 Incremental Prototyping

We illustrate the design process by taking the error-diffusion algorithm because, in
general, the class of these algorithms is hard to parallelise. The other algorithms
can be parallelised in a rather straightforward manner.

5.3.1 Half-toning Algorithm: Error Diffusion

First, the half-toning algorithm is described. Then the algorithm is transformed
(reduced) to an error-diffusion algorithm. Finally, the functional code for the 2D
error-diffusion scheme is given. The used error-diffusion algorithm, that is

Algorithm 5.1 Error diffusion algorithm (part of half-toning)
1: for all colour ∈ [0 · · · 6] do
2: errI,J ← 0; // reset all errors for this colour plane
3: for all j ∈ J do {// for all scanlines}
4: for all even pixels i ∈ scanline j do
5: errSumi ← χi,j + erri,j ; // add error
6: subP ixi ← threshold(errSumi); // threshold
7: diri ← dirSubP ix(χi,j−1, χi,j , χi,j+1); // determine direction
8: valP ixi ← position(subP ixi, diri); // position the required subpixel
9: errori ← errSumi − coverage(subP ixi); // compute error

10: erri+1,j ← erri+1,j + errori/4; // distribute errors
11: erri,j+1 ← erri,j+1 + errori/2; // for even pixels
12: erri−1,j ← erri−1,j + errori/4;
13: end for
14: for all odd pixels i ∈ scanline j do
15: errSumi ← χi,j + erri,j ; // add error
16: subP ixi ← threshold(errSumi); // threshold
17: diri ← dirSubP ix(χi,j−1, χi,j , χi,j+1); // determine direction
18: valP ixi ← position(subP ixi, dirij); // position the required subpixel
19: errori ← errSumi − coverage(subP ixi); // compute error
20: erri+1,j+1 ← erri+1,j+1 + errori/4; // distribute errors
21: erri,j+1 ← erri,j+1 + errori/2; // for odd pixels
22: erri−1,j+1 ← erri−1,j+1 + errori/4;
23: end for
24: end for
25: end for

126

5.3 – Incremental Prototyping

lines variable function description
5,15 errSumi χi,j is the to be half-toned colour value (’in-

tention’), erri,j is the diffused error to pixel
(i, j) (’social duty’)

6,16 subP ixi threshold thresholding the intended colour value yields a
quantisation 0%, 25% · · · 100%, see Figure 5.11
and Table 5.1

7,17 diri dirSubP ix the function dirSubPix computes the direction
flag as indicated by Figure 5.12

8,18 valP ixi position the function position selects one of the 10
unique subpixel half-toning patterns (Fig-
ure 5.12)

9,19 errori coverage the function coverage computes the inverse
half-toning f−1

ht (gij), where gij ∈ {0, 1, 2, 3, 4}
as indicated by Figure 5.12, and the inverse
half-toning by Figure 5.11

Table 5.3: Half-toning details

implemented before on an FPGA, uses a 2-phased approach. First all the even
pixels of a pixel line are processed in parallel followed by the odd pixels, as can be
seen in Algorithm 5.1. It should be noticed that Algorithm 5.1 is almost literally
transcribed from the colour printer project documentation.

We now describe the algorithm in more detail. The algorithm sweeps for all
colours sequentially through all scanlines, of which all even pixels (even phase) and
all odd pixels (odd phase) are processed in parallel. The even phase is described
by lines 5 through 12, the odd phase by lines 15-22. The even and odd phases are
very similar, and only differ in the distribution of errors (lines 10-12 and 20-22).
The processing steps that lead to the value of the error to be distributed, errori,
are described in Table 5.3.

We now focus on error-diffusion and present an adapted algorithm from which
the half-toning is split off and the various functions (threshold, dirSubP ix, position,
coverage) are collapsed into a single function f , see Algorithm 5.2.

The next step is to translate the mathematical model into functional code.
First of all, we would give a mathematical formulation of the above model, but as
in the previous case (see Chapter 4) this formulation is an almost one-to-one copy
of its functional code transcription. For this reason we skip the mathematical
model and give the functional code formulation immediately. This formulation
however, is a result of exploring the design space and takes some time to derive.
For the sake of completeness the half-toning function fht can be transcribed in a
completely separate Haskell function g and is added at the end of the functional
code below.

127

Chapter 5 – Case: Colour Image Processing

Algorithm 5.2 Error diffusion algorithm (part of half-toning)
1: for all colour ∈ [0 · · · 6] do
2: errI,J ← 0; // reset all errors for this colour plane
3: for all j ∈ J do {// for all scanlines}
4: for all even pixels i ∈ scanline j do
5: errori,j ← f(χi,j + erri,j); // compute error
6: erri+1,j ← erri+1,j + errori,j/4; // distribute errors
7: erri,j+1 ← errori,j/2; // for even pixels
8: erri−1,j ← erri−1,j + errori,j/4;
9: end for

10: for all odd pixels i ∈ scanline j do
11: errori,j ← f(χi,j + erri,j); // compute error
12: erri+1,j+1 ← erri+1,j+1 + errori,j/4; // distribute errors
13: erri,j+1 ← errori,j/2; // for odd pixels
14: erri−1,j+1 ← erri−1,j+1 + errori,j/4;
15: end for
16: end for
17: end for

error (i,j) = 0 , if i = -1 \/ j = -1 \/ i = H

= f (chi(i,j) + err(i,j)) , otherwise

err (i,j) = error(i+1,j-1)/4 + error(i,j-1)/2 + error(i-1,j-1)/4 , if even j

= error(i+1,j)/4 + error(i,j-1)/2 + error(i-1,j)/4 , if odd j

halftone2D = g (chi(i,j) + err(i,j))

We remark that this specification in itself is very clean but it should be noted
that it is computationally very inefficient. In the final hardware realisation this
inefficiency will be removed. The clarity of a functional language description is
shown by the one-to-one correspondence of a demand-driven dataflow represen-
tation in Figure 5.18 on the one hand, and the description in functional code for
function err on the other. The imperative description of Algorithm 5.1 and Algo-
rithm 5.2 is more difficult to understand because the values of the various variables
(e.g., erri,j) depend on its computation ’history’, while this is not the case for a
specification in a functional program. This is called referential transparency, and
it means that the same name has the same values everywhere, without the need
to know how the value was computed.

5.3.2 Implementation independent aspects

An FPGA design exists and the algorithms have already been developed. The
quality of algorithms has been established and fixed and the Linedancer imple-
mentation should be 100% identical. Hence, there is no need for an image quality

128

5.3 – Incremental Prototyping

j

i

0

0

0

0

0

0

0
 0
 0
 0

0
 0
 0
 0
 0

j-1

i=-1

i=H

0

0

j

i=even

i=odd

pixel

print

direction

Figure 5.18: Demand-driven dataflow representation for the even pixels (yellow
arrows) and for the odd pixels (blue arrows). The borders are extended with zeros
to avoid a special treatment on the edges.

129

Chapter 5 – Case: Colour Image Processing

function to guide a trade-off subphase (which is consequently omitted). Models
for other extra-functional properties are not useful because the functionality is
known in all its details and the amount of dedicated Linedancer code is relatively
small.

5.4 Transformational Development

In this phase the mapping to the Linedancer is addressed. We follow the standard
template of the IRIS methodology except for the trade-off subphase which is
omitted.

5.4.1 Global system considerations

In this section a slightly more elaborated analysis is made on the timing and
storage design space compared to the feasibility study in Section 5.2.3. Finally,
relevant general system architecture issues are considered because they can also
influence the implementation process.

Global timing analysis. The processing of each pixel on the printed page is
relatively simple, being mainly based on 3 × 3 neighbourhood kernels. However,
the total image processing pipeline is a challenging task because of the volume of
data involved, that has to be processed within two seconds.

Many of the tasks in the imaging pipeline can be implemented for many pixels
in parallel. To get an improved timing estimate compared to the feasibility study,
a more detailed analysis has been conducted. Algorithm details of the modules
were paired with the target hardware architecture features. Table 5.4 is the result
of this analysis. The table contains the performance estimates of each module for

module proces-
sing
tile

P1
clocks/
tile

HD
clocks/
tile

num-
ber of
tiles

P1 clocks/
page

HD
clocks/
page

edge detection ASP 5K 2K2 9K9 49M5 21M7
separation DMA 4K-100K 6K5 9K9 39M6-990M 64M7
trapping ASP 14K 7K3 9K9 138M6 72M3
half-tone seg-
mentation

ASP 11K9 5K 9K9 116M8 49M5

half-tone ASP 39K8 17K5 5K 199M 87M5
total 544M-1494M 295M

Table 5.4: Estimate of system performance for Linedancer-P1 and HD

the Linedancer-P1 as well as the Linedancer-HD. Different modules can require
different tiling strategies, and as a consequence, require a different number of

130

5.4 – Transformational Development

Linedancer subsystems

module d
ep

en
d
en

cy
o
n

li
n
e

o
rd

er

S
p
a
rc

S
D

S

P
E

C
A

M
o
r

E
X

T

A
ss

o
ci

a
ti

v
e

C
A

M
-S

D
S

D
M

A
S
D

S
-P

D
S

C
o
lo

u
r

im
a
g
e

p
ro

ce
ss

in
g

edge detect
√

separation
√ √

trapping
√

half-tone segmentation
√

half-toning
√ √ √ √

loading and dumping of tiles
√ √

Table 5.5: Mapping of the various modules of colour image processing on the
memory and processing subsystems of the Linedancer

tiles (5th column), see Section 5.4.3.1 for more details. Also indicated is a first
mapping to processing units given by the 2nd column.

The following conclusions can be drawn:

• The Linedancer-P1 cannot meet the performance requirement (1494 Mclocks
> 600 Mclocks, fP1 = 300 MHz) in worst case. The HD can meet the
requirement.

• The separation module is the bottleneck, because of the demanded table
lookup functionality, that cannot be parallelised as easy as the other mod-
ules. The reason that this problem did not show up during the first fea-
sibility estimate (Section 5.2.3) is because of the extremely low number of
operations per pixel, that gave no cause for alarm.

• Edge detection and separation run in parallel at the same time because
they both just need the scanner R′G′B′ and they are mapped to different
processing units, see second column in Table 5.4. Pipelining is expected to
reduce the integral processing time even further (Section 5.5).

Global storage allocation. An analysis of the storage allocation for the five
modules has been conducted, see Table 5.5 for a global overview. The LUT
used in the separation stage is kept in the SPARC’s memory space SDS, see
Section A.2. Because half-toning uses a separate pass its relatively large memory
utilisation is manageable. For a description of the Linedancer subsystems we refer
to Section 2.3.4. The format of these columns corresponds with those given in
Section 4.4.1.

131

Chapter 5 – Case: Colour Image Processing

Scalability. Before conducting the mapping we should give some attention to
desirable design properties as scalability. The colour image processing system
should be scalable in performance, resolution, and page sizes.

Our system consists of five modules that all run in parallel or sequentially on
the Linedancer. It uses a two pass pipelined scheme to process the colour im-
ages. Although the separation module uses the DMA controller in parallel to the
processing array (PEs), it takes the most time in the first pass. Its performance
scales almost linearly with the number of Linedancer chips. All remaining mod-
ules in pass 1: edge detection, trapping and half-tone segmentation, run on the
ASP and scale easily with the number of Linedancers. The error-diffusion scheme
cannot scale anymore in performance because for this specific printer the maxi-
mum parallelism is achieved. But when the resolution or the page sizes increase
– meaning more tiles or lines to process – then scaling may be considered.

5.4.2 Trade-off subphase

Because the system should be an exact functional copy of an earlier FPGA based
system, no trade-off on functionality is allowed. Therefore, this study does not
apply.

5.4.3 Reorganisation subphase

During the reorganisation subphase the model is, in general, expanded in a top-
down manner, gradually changing the hardware independent description into a
form dictated by the hardware architecture. Although in this case the algorithm
was already optimised for a parallel (FPGA) hardware implementation, we still
need to consider Linedancer specific mapping details. To demonstrate the added
value of this subphase we have included an example: line-wide tiling.

5.4.3.1 Tiling

Because the size of the entire bitmap is much larger than the available storage
space in the Linedancer we have to use bitmap partitioning or tiling. See Fig-
ure 5.19 for the two used tiling strategies in the two passes. Square tiling as
illustrated in Figure 5.19(a), is used for edge detection, separation, trapping, and
half-tone segmentation. Line tiling as illustrated in Figure 5.19(b) is used for half-
toning. Half-toning can be done with a single line-wide tiling because all involved
neighbourhood operations are already performed by half-tone segmentation.

It is not clear at this point how the 2D error propagation array in the math-
ematical model (Section 5.3.1), and in the functional code err(i,j) has to be
transformed in a 1D variant. The 2D description is concise but its implementation
is already inefficient for a sequential processor, let alone on a parallel hardware
architecture. However, we can remove the deep recursive structure of err(i,j)
by the addition of some state. In this manner we are able to transcribe the 2D

132

5.4 – Transformational Development

�
�

7K

�
��
�� �
� �

�
�
�
�

64

60

5K

(a) In pass 1 a rectangular
tiling scheme is preferred

�
�
�
�

1

7K

5K

odd pixels

even pixels

(b) The chosen error-diffusion
scheme enforces a line-wide
tiling of the bitmap in pass 2

Figure 5.19: Different tiling strategies for the two passes

model into a more computationally efficient 1D model, but we lose conciseness of
description. See the functional code below. This code needs some clarification.

First, the function errorr computes the error – using error function f – for
pixel i in the current scanline for the even and the odd phase.

Second, the function errE distributes the errors during the even phase to the
even as well as the odd pixels.

Third, the distribution of errors during the odd phase is handled by function
err1.

Finally, the half-toning is defined by the recursive function htscan. The func-
tion produces a list of half-toning results chi1. The function consumes a first
column of colour pixels chi i from the array of all pixels chis and maintains an
error accumulator column err.

In both phases partial errors are generated for even and odd pixels. For ex-
ample, computing error for odd pixels is delayed until the function errE has
computed its partial result. Note that this functional description remains con-
cise because explicit order is avoided as opposed to the imperative description
(Algorithm 5.2).

Before the description in functional code is given we first clarify the notation:

• chis is the matrix of colour-values pixels (χ), chi is a particular column of
these values,

• chi1 is the half-toned result (using the half-toning function g) taking column
chi as input. The result of htscan is a list of these chi1-columns,

133

Chapter 5 – Case: Colour Image Processing

• err1 is the new error-column. At every step err1 is updated with the next
chi-column.

• The function even returns a 1 (true) if its argument is even. Likewise for
odd.

• The dimension of a column is hh, all values outside the interval [0..hh] are
set to zero.

• The notation (i -> 0) is short for the ’all zero’ function.

odd i = i \% 2 = 1

even i = i \% 2 = 0

htscan err [] = []

htscan err (chi:chis) = chi1 : htscan err1 chis

where

chi1 = [exp | i<- [0..hh-1]

; exp := g (chi!i + if (even i) (err i) (errE i))

]

error i = 0 , if i<0 \/ i>=hh

= f (chi!i + err i) , if even i

= f (chi!i + errE i) , if odd i

errE i = 0 , if i<0 \/ i>=hh

= err i + error(i-1)/4 + error(i+1)/4 , if odd i

= error(i)/2 , if even i

err1 i = 0 , if i<0 \/ i>=hh

= errE i + error(i-1)/4 + error(i+1)/4 , if even i

= error(i)/2 , if odd i

halftone1D = htscan (i->0) chis

In the above described functional code one can easily discern a symmetry
between the even/odd pixel processing in the functions err1 and errE. This will
be exploited in the next section.

For optimal performance on a massively parallel hardware architecture it is
essential to know of computations that are dependent on each other. Since the
even and odd pixels have to be processed one after the other, they are allocated
as pairs on a single PE, see Figure 5.20(a). In this way a single Linedancer (with
4K PEs) can host up to 8K pixels, enough for our purposes.

134

5.4 – Transformational Development

pixel 0
 pixel 1

pixel 2
 pixel 3

pixel 4
 pixel 5

pixel 6
 pixel 7

...

PE 0

PE 1

PE 3

PE 2

PE 4,095

(a) Packing even and odd
pixels per PE

even-err
 0
 odd-err 1

even-err 2
 odd-err 3

odd-err
s-1

even-err
s
 odd-err
s+1

...

...

PE
s/2

(b) Even pixels accessing
their odd pixel neigh-
bours

even-err
 0
 odd-err 1

even-err 2
 odd-err 3

even-err

s-1

odd-err
s

even-err

s+1

...

...

PE

(s-1)/2+1

(c) Odd pixels accessing their
even pixel neighbours

Figure 5.20: Allocation of even and odd pixels and their access to neighbours

5.4.4 Template subphase

During the template subphase we are looking for common patterns, that can raise
the quality of code and save on development effort. Although not directly visible
from the algorithm in Algorithm 5.1, the even and odd error-distribution hosts
a pattern that can be exploited for reuse. First, the quantitative distribution of
errors 1

4 : 1
2 : 1

4 is the same for both the even and odd pixels. Second, as can be
seen from the functional code in the previous section, both error functions look
very similar. We can rewrite the similar lines in errE and err1 such that only a
single function is involved and thus show the pattern that can be reused. We will
now clarify the notation in the functional code.

First, the function F updates the error array v, always for one half, dependent
on the phase ph of pixel i (either even or odd), and leaves the other half undis-
turbed.

.
F v ph i = v(i-1)/4 + error(i-1)/2 + error(i+1)/4 , if ph i

= error(i)/2 , otherwise

Second, the 3rd and the 4th line in both errE and err1 can be rephrased into two
different calls to the same function F:

errE i = 0 , if i<0 \/ i>=hh

= F err odd i , otherwise

err1 i = 0 , if i<0 \/ i>=hh

= F errE even i , otherwise

135

Chapter 5 – Case: Colour Image Processing

Our ultimate goal is to obtain a description in the language of the target hard-
ware architecture. This architecture, however, is ’imperative’ in a way that it
uses pieces of code that change a state in a pre-specified order. Bridging the gap
between a functional description and an imperative one is too large to make in
one step. Therefore we start with an intermediate step as prescribed by IRIS
(Section 3.5). First we provide the imperative variant in a parallel pseudo-C lan-
guage and explain the algorithm below.

odderror = 0

evenerror = 0

for every line of pixels

load evenpixel & oddpixel

evenpixel += evenerror

do half-toning to get evenoutput

evenerror = (evenoutput - evenpixel) / 2

lower odderror += evenerror / 2

upper odderror += evenerror / 2

oddpixel += odderror

do half-toning to get oddoutput

odderror = (oddoutput - oddpixel) / 2

lower evenerror += odderror / 2

upper evenerror += odderror / 2

end for

At the start of the algorithm the 1D representation of all even and odd errors is
initialised (in parallel) before looping over over all scan lines. The loop starts
each time with the loading of the even and odd pixels (χ2k, χ2k+1). Then two
compound blocks are being processed one after the other. The first one computes
the errors of even pixels and distributes this error to even and odd (neighbouring)
pixels. This corresponds to the function errE of the 1D functional code variant
on page 135.

Next the process is repeated but now for the odd pixels. Note that the odd
pixel values accumulate the odd errors changed by the previous compound block;
this is effectuated by the separation of the error function errE and err1 in the
functional description on page 135.

From this context it is obvious that the distribution of even errors and the
subsequent accumulation for the odd pixels is symmetrical with respect to both
actions on odd and even pixels respectively, during the second part of the loop. We
now give the imperative variant of function F on page 135. This template, called
distributeAndAccumulateError(X,Y) uses two parameters (X,Y) that have the
value (X,Y)=(even,odd) for the even phase. For the odd phase the value is
(odd,even).

136

5.4 – Transformational Development

Example
The template, which has at this point 2 parameters (X,Y), can now be
defined by the following implication.

template body generic template call

Xpixel += Xerror

do half-toning to get Xoutput

Xerror = (Xoutput-Xpixel) / 2

lower Yerror += Xerror / 2

upper Yerror += Xerror / 2

⇒ distributeAndAccumulateError(X,Y)

End example

5.4.5 Translation subphase

The last step of developing code is the generation of a target hardware language
description. Templates can also play a role in this step, because they can provide
for supporting structures, that facilitate the process of writing code. This is
especially true for deviating processing architectures that cannot be written in
plain C.

To demonstrate this we show the translation of an instance of the distribute-
AndAccumulateError -template. In the translation text below, the substitutions
are highlighted. Note that with respect to the previous template example, an
extra parameter is introduced, that encodes the relative position (-1) of the lower
neighbour of the even pixel. This is caused by the packing of a pair of even and
odd pixels in a single PE.

Example
This example demonstrates the generation of Linedancer code from a tem-
plate. The template computes the error-distribution from an even pixel
perspective. The righthand side of the implication below, contains a large
Linedancer specific aop{...} instruction sequence with eight instructions
that are processed sequentially (for all PEs in parallel), see Section A.1. The
example makes extensive use of bit-field logistics, see also Figure 5.21 for the
memory field specifications. The first four describe the division of the even
error by 2 (with sign extension, ε ∈ [−128 · · · + 127]) and store the result
in the new even error, see Figure 5.20(b)7. The fifth instruction adds ε/4
to the error of higher odd neighbour, administered on the same PE. The
last three instructions deal with the lower odd neighbour and need extra
communication directives (Get and Put) to effect the actual distribution.

7 Note that the memory field temp10A is reused for the even as well as for the odd phase.

137

Chapter 5 – Case: Colour Image Processing

even_error

017

even_error_ms7bits

even_error_msb sign()

temp10A

019

temp10A_bit7
temp10A_bit8

sign()

678

sign
extension}

even_error_msb

temp8A
temp8A_div2

ε

εε

 div 4ε
 div 2ε

 div 2ε div 2ε

Figure 5.21: Memory field specifications used in the processing of even errors

distributeAndAccumulateError(" even "," odd ", -1)

⇒
aop{

// divide the even error value by 2 and sign extend

RTS(Assign, Bitset, -, @{temp10A}, @{ even _error_ms7bits},-),

RTS(Assign, Bitset, -, @{temp10A_bit7}, @{ even _error_msb}, -),

RTS(Assign, Bitset, -, @{temp10A_bit8}, @{ even _error_msb}, -),

RTS(Assign, Bitset, -, @{ even _error}, @{temp8A}, -),

// add error/4 to neighbouring odd pixel on same PE

RTS(Add, Int, -, @{ odd _error}, @{ odd _error}, @{temp8A_div2}),

// add error/4 to neighbouring odd pixel on neighbouring PE

RTS(Assign, Bitset, co{Get, -1 }, @{temp8B}, @{ odd _error}, -),

RTS(Add, Int, -, @{temp8B}, @{temp8B}, @{temp8A_div2}),

RTS(Assign, Bitset, co{Put, -1 }, @{ odd _error}, @{temp8B}, -),

};

The other instance of the template, called by
distributeAndAccumulateError(" odd "," even ", +1), generates the
code for the odd pixels, see Figure 5.20(c).

End example

5.5 Results and Discussion

In this section the results of the previously elaborated modules are combined
in order to formulate a conclusion on the feasibility of the functionality and the
timing of the Linedancer implementation. It serves as a basis for comparison with
FPGA technology.

Timing. The system has been designed completely but partly implemented on
a Linedancer-P1. Because the P1 cannot meet the performance we selected the
Linedancer-HD as the target hardware. Pass 1, consisting of loading RGB, edge
detection, separation, trapping and half-tone segmentation takes 16K5 cycles per
tile. The effective area of a tile is (64 − 4) × (64 − 4) = 3600 pixels because of

138

5.5 – Results and Discussion

the 2 pixel wide overlap at each side. As already pointed out in Section 5.4.1
pipelining is a way of improving the throughput of a system, see Figure 5.22. We
will now discuss the pipeline of pass 1. At first the RGB image data (for image
frame [n]) is loaded into the Linedancer. After the RGB interleaving for optimised
lookup8 both edge detect and separation are executed in parallel. Trapping for
iteration [n] cannot start before both edge detection and separation end because
it needs both to finish first. Since separation takes significantly longer than edge
detection, trapping on the current iteration is postponed, a pipeline stage is intro-
duced and processing continues with trapping on the previous tile data ([n− 1]).
When separation finishes it stores the separation data for [n] on the ASP, after
trapping has finished iteration [n−1] and before half-tone segmentation of [n−1]
commences. This data will be used for trapping the next iteration [n]. The re-
sult of half-tone segmentation is stored for each individual colour plane and can
be reloaded efficiently for half-toning in pass 2. Note the jig-saw like packing of
separate pipe stages as indicated by the pink line in Figure 5.22. Because sep-
aration runs in parallel with the other modules the amount of cycles per tile is
2K + 2K2 + 7K3 + 5K = 16K5 cycles per tile.

8 Interleaving the three RGB colour bytes such that the lookup index contains the higher colour
bits R7G7B7 in the most significant positions, followed by the next high bits R6G6B6 etc.
reduces the probability (and on average the time) of accessing a new DRAM page.

139

Chapter 5 – Case: Colour Image Processing

[n
]

D
M

A

A
S

P

H
a

lf
-t

o
n

e

s
e

g
m

e
n

ta
ti

o
n

G
e

t
7

 c
o

lo
u

r
d

a
ta

fr
o

m

lo
o

k
u

p
 t

a
b

le

lo
a

d

p
a

c
k

e
d

R
G

B

2
K

2

c

lo
c

k
s

1
6

K
5

 c
lo

c
k

s
 /

 t
il

e

7
K

 c
lo

c
k

s

R
G

B
 e

d
g

e

d
e

te
c

ti
o

n

in
te

rl
e

a
v

e
 R

G
B

to
 c

re
a

te
 L

U
T

a
d

d
re

s
s

e
s

2
K

c
lo

c
k

s

[n
]

[n
]

T
ra

p
p

in
g

7
K

3

c

lo
c

k
s

d
is

c
a

rd
 R

G
B

,

s
a

v
e

 e
d

g
e

 b
it

 f
o

r

it
e

ra
ti

o
n

 [
n

]

[n
-1

]

[n

-1
]

[n
]

lo
a

d
 7

 c
o

lo
u

r
d

a
ta

fo
r

n
e

x
t

it
e

ra
ti

o
n

 [
n

]

(P
D

T
)

lo
a

d
 n

e
x

t

p
a

c
k

e
d

 R
G

B

2
K

c
lo

c
k

s

[n
+

1
]

[n
+

1
]

[n
]

S
a

v
e

 i
n

te
rm

e
d

ia
te

 r
e

s
u

lt
s

:

R
G

B
C

M
Y

K
/D

ir

5
K

c
lo

c
k

s

[n
-1

]

4
K

 c
lo

c
k

s

[n
]

F
ig

ur
e

5.
22

:
P
as

s
1

co
m

pr
is

es
se

pa
ra

ti
on

,e
dg

e
de

te
ct

,t
ra

pp
in

g
an

d
ha

lf-
to

ne
se

gm
en

ta
ti

on
,s

ho
w

n
is

th
e

pr
oc

es
si

ng
or

de
r

fo
r

a
si

ng
le

ti
le

.
T

he
pi

nk
lin

e
se

pa
ra

te
s

pi
pe

lin
e

st
ag

es
.

D
M

A

A
S

P

5
0

0
 c

lo
c

k
s

2
K

5
 c

lo
c

k
s

 /
 (

li
n

e
.c

o
lo

u
r)

[n
+

1
]

[n
]

[n
-1

]

1
K

 c
lo

c
k

s

1
K

 c
lo

c
k

s

H
a

lf
-

to
n

e

e
v

e
n

p
ix

e
ls

H
a

lf
-

to
n

e

o
d

d

p
ix

e
ls

F
in

d

e
d

g
e

d
ir

3
5

0

c
lo

c
k

s

3
5

0

c
lo

c
k

s

9
0

c
lo

c
k

s

L
o

a
d

 s
e

g
m

e
n

t
d

a
ta

 f
o

r
n

e
x

t
li

n
e

D
u

m
p

p
re

v
io

u
s

o
u

tp
u

ts

L
o

a
d

a

li

n
e

 o
f

o
n

e
 c

o
lo

u
r

[n
+

1
]

1
K

 c
lo

c
k

s

L
o

a
d

a

li

n
e

 o
f

o
n

e
 c

o
lo

u
r

[n
]

F
in

d

e
d

g
e

d
ir

 D
u

m
p

p
re

v
io

u
s

o
u

tp
u

ts

[n
]

[n
]

[n
]

[n
]

[n

-1
]

[n
+

1
]

[n
+

1
]

[n
+

1
]

[n
]

F
ig

ur
e

5.
23

:
P
as

s
2

co
m

pr
is

es
ha

lf-
to

ni
ng

,s
ho

w
n

is
th

e
pr

oc
es

si
ng

or
de

r
fo

r
a

si
ng

le
lin

e
an

d
si

ng
le

co
lo

ur
.

T
he

pi
nk

lin
e

se
pa

ra
te

s
pi

pe
lin

e
st

ag
es

.

140

5.5 – Results and Discussion

Figure 5.23 shows the pipelining of the second pass for a single line and for
a single colour. At a certain point in time the current half-toning ([n]) on the
ASP runs in parallel to the dumping of the previous halftoning results [n + 1]
and the subsequent loading of the next segment data (a result from half-tone
segmentation). After loading this segment data for iteration [n + 1] a new line
of to be half-toned data is loaded ([n + 1]). The ASP swaps this data in and
dumps the half-tone results ([n]) using the DMA controller. Half-toning in pass
2 takes up 2K5 clocks per line per colour (see Table 5.6). The difference with
respect to the estimates in Table 5.4 is that the execution time is now fixed by
the design choices made during development. The major choices are: selection of
the Linedancer processor (HD) and parallelisation of separation with edge detect
and trapping. A further difference is the loading of the RGB tile data that could
not be hidden in processing time. In this pass each line contains 7K pixels and
can be fitted into one Linedancer by packing an odd/even pair of pixels into each
processing element; 12% of the PEs remain unused.

ASP DMA
module cycles /

tile
module cycles /

tile
units cycles /

page
PASS 1

load tile 2K
edge detection 2K2 separation 6K5
trapping 7K3
half-tone segmentation 5K

16K5 cycles per tile 9K9 163M
PASS 2
half-tone 17K5 cycles per line 5K 88M
TOTAL 251M

Table 5.6: Performance estimate for Linedancer-HD

The overall processing time is 251M cycles per A4 page, which is equivalent to
0.63 seconds per page, with a single Linedancer at 400 MHz. This is well below
the required 2 seconds per page.

Illustrative for the power of massively parallel computing is the speedup com-
pared to the sequential implementation. Although the processing capacity of each
PE is much lower than a von Neumann processor, the number of processors work-
ing in parallel yield large speedups, see Table 5.7. Large speedups can be realised
compared to the sequential case: the speedup in operations/sec can go up as far
as ±400, and up to ±100 in execution time (based on the clock frequency ratio
1800 : 400 MHz).

9 Based on single cycle operations.

141

Chapter 5 – Case: Colour Image Processing

module sequential
cycles9/
pixel

parallel cycles /
pixel

speedup

separation 3 6K5 / 3600 = 1.81 1.66
edge detection 68 2K2 / 3600 = 0.61 111
trapping 255 7K3 / 3600 = 2.03 126
half-tone segmentation 30 5K / 3600 = 1.39 21.6
half-tone 1162 17K5 / 7K = 2.5 465

Table 5.7: Measured speedup

description symbol range fixed
point
scheme

memory
field

do-
main

host

colour colour [0 · · · 6] global int SPARC

scanline pointer l [0..max(h, w)− 1] global int SPARC

Table 5.8: Fixed point accuracy of parameters in the error-diffusion algorithm

Memory allocation for Error-diffusion. The final allocation is presented in
two tables, one for fixed parameters used by the algorithm (Table 5.8) and the
other for the variables used in the algorithm (Table 5.9).

The first table lists all parameters used in Algorithm 5.1, complete with the
domain they are defined on, and the chosen fixed point representation. All pa-
rameters are hosted on the SPARC. The same generic description applies for
the variables used in the error-diffusion algorithm, see Table 5.9, except for the
reference to the algorithm in the last column.

142

5.5 – Results and Discussion

d
es

cr
ip

ti
o
n

d
ep

en
d
en

cy
ra

n
g
e

fi
x
ed

p
o
in

t
sc

h
em

e

m
em

o
ry

fi
el

d
a
lg

o
-

ri
th

m
-

li
n
e

m
o
n
o
ch

ro
m

e
p
ix

el
va

lu
e

χ
i,

j
[0
··
·2

5
5
]

8
•0

ev
en

P
ix

el
6
4
(8

),
od

d
P

ix
el

7
2
(8

)
5
,1

4

er
ro

r
in

p
u
t

er
r i

,j
[−

1
2
8
··
·1

2
7
]

8
•0

ev
en

E
rr

or
8
8
(8

),
od

d
E

rr
or

9
6
(8

)
5
,1

4

d
ir

ec
ti

o
n

in
fo

r-
m

a
ti

o
n

d
ir

i
{0

,1
,2
}

4
•0

ev
en

D
ir

1
6
8
(4

),
od

d
D

ir
1
7
2
(4

)
7
,1

6

er
ro

r
a
cc

u
m

u
la

-
ti

o
n

er
rS

u
m

i
=

χ
i,

j
+

er
r i

,j
[0
··
·2

5
5
]

8
•0

h
a
lf
−

to
n
eP

ix
el

0
(8

)
5
,1

4

su
b

p
ix

el
su

bP
ix

i
=

th
re

sh
ol

d
(e

rr
S

u
m

i,
j
)

[0
··
·1

5
]

4
•0

h
a
lf
−

to
n
eS

u
bp

ix
el

s
8
(4

)
6
,1

5

p
o
si

ti
o
n
ed

p
ix

el
v
a
lP

ix
i
=

p
os

it
io

n
(s

u
bP

ix
i
,d

ir
i
)

{1
5
,1

4
,1

2
,8

,
6
,4

,7
,3

,1
,0
}

4
•0

ev
en

V
a
lP

ix
8
0
(4

),
od

d
V

a
lP

ix
8
4
(4

),
7
,1

6

er
ro

r
o
u
tp

u
t

er
ro

r i
=

er
rS

u
m

i
−c

ov
er

a
g
e(

su
bP

ix
i
)

[−
1
2
8
··
·1

2
7
]

8
•0

t
e
m
p
1
0
A

4
0
(1

0
)

8
,1

7

d
is

tr
ib

u
te

er
ro

rs
u
p

er
r i

+
1
,j

=
er

r i
+

1
,j

+
er

ro
r i

/
4

er
r i

+
1
,j

+
1

=
er

r i
+

1
,j

+
1

+
er

ro
r i

/
4

[−
1
2
8
··
·1

2
7
]

8
•0

ev
en

E
rr

or
8
8
(8

),
od

d
E

rr
or

9
6
(8

),
9
,1

8

d
is

tr
ib

u
te

er
ro

rs
ri

g
h
t

er
r i

,j
=

er
r i

,j
+

er
ro

r i
/
2

er
r i

,j
+

1
=

er
r i

,j
+

1
+

er
ro

r i
/
2

[−
1
2
8
··
·1

2
7
]

8
•0

ev
en

E
rr

or
8
8
(8

),
od

d
E

rr
or

9
6
(8

),
1
0
,1

9

d
is

tr
ib

u
te

er
ro

rs
d
ow

n
er

r i
−

1
,j

=
er

r i
−

1
,j

+
er

ro
r i

/
4

er
r i
−

1
,j

+
1

=
er

r i
−

1
,j

+
1

+
er

ro
r i

/
4

[−
1
2
8
··
·1

2
7
]

8
•0

ev
en

E
rr

or
8
8
(8

),
od

d
E

rr
or

9
6
(8

),
1
1
,2

0

T
ab

le
5.

9:
F
ix

ed
po

in
t

ac
cu

ra
cy

of
va

ri
ab

le
s

us
ed

in
th

e
er

ro
r-

di
ffu

si
on

al
go

ri
th

m

143

Chapter 5 – Case: Colour Image Processing

Comparison with FPGA. The productivity benefits of using an associative
SIMD processor approach to this problem rather than using FPGA technology
are shown in Table 5.10. Since the design of the image processing pipeline is
already done before, we here translate productivity by implementation effort.
The ratio of implementation effort for an FPGA versus Linedancer is 100 man-
days to 50 man-days (including coding, testing etc.), assuming a developer with
domain and target hardware experience, see second column in Table 5.10. The
FPGA estimate is based on the implementation effort of the existing system. The
estimation for the Linedancer implementation is based on an extrapolation of the
detailed design analysis of the existing system and on design data from the partly
realised Linedancer based prototype. Aspects that play a role in the comparison
between the FPGA and the Linedancer are: software programmability, the native
support for data logistics (intelligent DMA), absence of hardware testing, and
flexibility for handling redesigns.

So the development effort of the system can be reduced by a factor of two.
This result is conform the experience of Aspex10 in the various ports of FPGA
based systems to the Linedancer technology.

technology implementation
effort [man
days]

execution
speed [ppm]

2 way SMP Intel 1.8 GHz Pentium Xeon11 10-20 2-30
FPGA Spartan2E12 100 30
Linedancer-HD 50 90

Table 5.10: Comparison of different technologies

Methodology and Architectural language issues. The system was initially
designed and implemented for an FPGA. The goal of the port to a programmable
processing environment is to test the applicability of these environments and for
this purpose we select the most difficult to implement modules.

The port is – in the first design stages – guided by the proposed evolution-
ary development methodology. The methodology is helpful in understanding the
problem domain. At the specification level the most critical modules are selected
from a larger existing pipeline. The architectural language supports this selection
and helped with making consistent interfaces.

The various modules are extended with coarse timing models for use in feasibil-
ity studies. Further assistance for remodelling the sequential code in a parallel way
10 Aspex Semiconductor: ”Aspex Semiconductor Technology”, 2008, www.aspex-semi.com/q/

technology.shtml.
11 Numbers represent normal as well as the optimised case.
12 The system with the current selection of five modules could be build using ± 5 Spartan

XC2S400E devices.

144

www.aspex-semi.com/q/technology.shtml�
www.aspex-semi.com/q/technology.shtml�

5.6 – Conclusions

is not necessary because the sofware has been set up for a parallel FPGA-based
implementation already. Because expertise and legacy C- and VHDL-code is avail-
able the actual code design consists of porting the code directly to Linedancer-C.
Test cases are set up, and the results are verified with the functional model, before
and after the port. No concessions are made to the functionality (no trade-off),
providing for a bit true golden reference.

5.6 Conclusions

An associative SIMD processor combines the speed of FPGAs with high-level
software programmability and flexibility.

A design based on the 300 MHz Linedancer-P1 is capable of processing pages
from 1.8 to 4.0 sec/page, depending on the colour distribution on the page.

A 400 MHz Linedancer-HD device is capable of implementing a colour image
processing pipeline at a rate of 90 pages per minute, well above the required 30
pages per minute [ppm]. Large speedups per module can be realised compared to
the sequential case: the speedup in operations/sec can go up as far as 400 (up to
100 in execution time).

A key issue in the design is how to partition the 35M pixels of a page into
4K chunks for processing. This apparently simple problem is complicated by
the conflicting requirements of the various 3 × 3 kernel operations and the error
propagation in half-toning.

Software defined systems enable fast developments. The development of code
for a PC based solution is faster than for a programmable SIMD processor such
as the Linedancer. But when real-time performance is critical, and the choice is
between FPGA or Linedancer, than the use of the latter may reduce the design
cycle by a factor of 2.

Because of the inherent scalable architecture the performance can scale with
the number of processors with marginal changes in the code (e.g., delivering more
productivity, more resolution, more colours).

IRIS supported the system development by helping with the specification of
the five modules, by providing a (coarse) timing model, and helping with the
verification of the correct integral function. Since this case was conducted first of
the three cases, relatively extensive hardware modelling was conducted.

145

CHAPTER 6

Case: Mining Dynamic Document Spaces

Inspired by the success of Google, printer manufacturers are investi-
gating – possibly paperless – document management services. One of
these services is mapping dynamic document spaces, that is, improv-
ing the access to document spaces that are frequently updated (such
as newsgroups), by a theme map. This process is computationally
quite intensive. This chapter describes the development of this de-
manding part of mining dynamic document services on a massively
parallel processor. A prototype has been built, which processes streams
of information from subscribed newsgroups and transforms them into
personalised theme maps. Although this technology does accelarate the
training part compared to a general purpose processor implementation,
its real benefits emerge with larger problem dimensions because of the
scalable approach. The high level design stages are developed with the
proposed evolutionary development methodology.

6.1 Introduction

We are living in a society that faces a deluge of information. For example, in 2005,
web-based archives contained already over 11 billion indexable pages [57]. More-
over, the ’lifetime’ of content becomes shorter and shorter. A related concept, the
update frequency of information on the internet, is not even limited by relatively
slow human interaction anymore, but by the response time of online sensors and
data-bots that process them. So people are in need of tools to structure this vast
amount of information and/or to inform users on new trends or remarkable events

Major parts of this chapter have been published in [P2].

Chapter 6 – Case: Mining Dynamic Document Spaces

in a timely manner. Google returns a (often too) long ranked list of hits, forcing
the users to reformulate the query in order to obtain relevant answers. Users,
however, would like to start from an overview – for instance using a geographic
like map – and browse, instead of query [P7]. The user would then start with an
overview and navigate to interesting subsets of the document space, eventually
ending up with a short list of relevant hits. This also poses strict constraints
on response times of the system: an update of the map should be made within
seconds or otherwise the user loses interest. The problem is that real-time data
mining is computationally very intensive. To solve this problem, a mapping of
the training process to a massively parallel processing array is conducted.

The reason that this case is selected, is to probe future document business do-
mains, to obtain experience with mapping computational intelligence technologies
and to test the IRIS methodology (Chapter 3) for non-printing applications.

The study is presented in the IRIS framework structure. In Section 6.2 the
reader is introduced to some relevant concepts such as: document map, data
mining, Self Organising Map (SOM) technology (a neural network), and hard-
ware architectures for SOM. Section 6.3 elaborates on the particular application
and the subsequent chapters on implementation issues (Section 6.4) and results
(Section 6.5). Finally, in Section 6.6 conclusions will be drawn.

6.2 Familiarisation

The goal of this phase is to gain confidence in the feasibility of realising an instant
training based on the Linedancer processor Section 2.3.4. At first, we will intro-
duce (dynamic) document maps as a way to negotiate the information overload
(Section 6.2.1). Then relevant data mining technologies are introduced (6.2.2),
followed by a more detailed description of a neural network training. The final
section describes the first order feasibility (Section 6.2.4).

6.2.1 Information overload and Document maps

Information with a short life time, such as news, is preferably distributed in
a digital manner. For this reason newspaper companies have their own online
web-based versions of their printed publication. News agencies such as Cable
News Network (CNN), Reuters International and others provide Really Simple
Syndication (RSS) services that deliver personalised news instantaneously or at
least at regular intervals within a one day timeframe. One way to master the
information push to a user is to change the carrying medium from text to graphics
(as inspired by the saying ”a picture tells more than thousand words”)1.

1 The presentation of the overview is done graphically; the content itself remains in textual
form.

148

6.2 – Familiarisation

Figure 6.1: Part of an interactive map of newsgroup articles. Articles are grouped
in themes (countries) and are linked to the original news articles.

Document Maps. The map metaphor has become popular in information vi-
sualisation [107][95][P7][87]. In [5] an entire text collection is presented to a user
through a two-dimensional map, where each category in the map is associated to
a set of documents. The closer two categories are in the map, the more similar the
contents of their associated documents are. Figure 6.1 shows a part of a map in
which categories are visualised as countries bordered by red lines and documents
are visualised as cities by small red dots. Also, the closer the documents (cities)
are on the map the more similar they are. Besides proximity of documents, the
colour of the square patches that make up the map, also indicates whether neigh-
bouring patches are similar or different. Once an interesting document is found
on the map, the user can retrieve other similar documents by clicking on other
documents in its vicinity2.

It has been shown that humans have powerful visual recognition abilities, and
spatial and visual representations are easier to learn, understand and communicate
than textual information [115]. It is also known that the interactive cycle in
a system should be designed in such a way that it exploits the extreme high
bandwidth of the human visual channel [121]. These two observations are the
foundation for our choice to select a pictorial representation – with a spatial
ordering – for dynamic document maps.

Dynamic Document Map. In this paragraph we discuss the dynamic aspects
that come with training and visualisation of news articles.

An interesting aspect of visualisation is that our recognition ability is much
more effective than our recall ability [121][118]. Our ability to recognise infor-
mation is particularly pronounced for pictorial information (e.g., the cognitive

2 The shown partial example map covers the newsgroup British Broadcasting Corporation
(BBC) News and BBC Sports in June 2005. It is built up by a grid of 16 by 32 square
patches and each patch acts as a placeholder for a category of newsgroup articles.

149

Chapter 6 – Case: Mining Dynamic Document Spaces

spatial memory effect). A map representation of a data space could exploit this
ability. Therefore, an important requirement is that the global structure of the
map remains the same over time. For recurring visualisations the map is only
useful if its global structure does not change significantly when new articles are
incorporated. Only then the user will be able to quickly reorientate so he/she can
identify the changes. We would like the system to behave in a predictable manner
such that minor disturbances in input space result in minor disturbances in the
document map.

In order to devise good solutions for a news visualisation system the following
requirements should be satisfied. First, the system should support a single portal
for all news sources, because of the ease of use. It should combine multiple sources,
because this increases the reliability of the news. In order to fully utilise the visual
bandwidth, the system creates a theme map, that should include the following
properties:

• handling the similarity of documents (news articles) by proximity,

• providing abstraction by hierarchy (and allowing zoom and pan as naviga-
tion functions),

• providing identification of categories or documents by meaningful names,
and

• supporting a view of the original document by linking its Uniform Resource
Locator (URL).

This theme map should provide an accurate overview, especially respecting the
topological ordering of the map. Finally it should provide instant response on new
articles in the subscribed stream, because users expect rapid delivery of news.

6.2.2 Data mining technologies

Data mining is the science of extracting useful information from large data sets or
databases [61]. For us, however, data mining involves the extraction of relevant
data, and all the intermediate steps up to the presentation of the data to the
user. A neural network is a technology that is often used in data mining. The
technology is typically used for those problems that are difficult to model but
have on the other hand lots of training data available. This is the reason why
neural networks are popular in data mining applications. A special kind of neural
network, that we use here, is the Self Organising Map (SOM), which is developed
by Teuvo Kohonen at the Helsinki University of Technology (HUT) [77]. In this
section we go into the relevant data mining technologies and focus in particular
on the SOM neural network.

150

6.2 – Familiarisation

dynamic document map module

Visuali-

sation

Web

client

compressed

features

SOM

map

RSS feeds

subscribed

news servers

SVG map

Map

gene-

ration

Compress

-ion

[300 articles]

[~10K byte]

[256 byte]
 [16x32x

256 byte]

[1M byte]

Feature

extraction

features

Figure 6.2: The data mining processing pipeline, the amount of data communi-
cated between the modules is indicated. The update rate of the map depends on
the update rate of the RSS feeds.

Data mining processing pipeline. The application that we address in this
chapter is about giving an overview of a collection of personally subscribed news-
groups. The purpose of the involved data mining system is to transform the
personal newsgroup feeds into a personal 2D map. In this way the user will have
a quicker overview of the changes in his area of interest. The complete pipeline
is described in Figure 6.2.

Feature extraction. In order to cluster newsgroups, all articles have to be ex-
pressed in a common notation. As in [95] we use noun phrases for this
purpose, phrases that can serve as the subject or the object of a verb, and
that give a better representation of the content of the article than just sin-
gle words. These phrases are extracted from the corpus (a collection of
documents) of newsgroup articles, and for this purpose we used a Natural
Language Processing (NLP) tool named Sigmund, a Prolog project devel-
oped at the University of Amsterdam [2]. Each article is characterised by
a set of noun phrases. To facilitate the comparison of articles we create
a vector space model of the corpus [102]. First the set of all unique noun
phrases for the entire corpus is expressed as a vector

~p = (p0, p1, · · · pN−1), (6.1)

where each component pi is a noun phrase. Next, each article s or sample
is expressed in a numerical form, by a vector ~xs of the same size N as ~p,

151

Chapter 6 – Case: Mining Dynamic Document Spaces

to enable further processing. In the basic vector space model the articles
are represented as real vectors in which each component corresponds to the
frequency of occurrence of a particular noun phrase in the article, also known
as Term Frequency (TF). Obviously one should provide the different noun
phrases with weights such that its information content corresponds to their
significance or power of discrimination. For example, a general word such as
’computer’ in a computer science article collection, probably would be less
discriminating than a specific word and hence, should receive a relative low
weight for the entire collection. For the weighting the Inverse Document
Frequency (IDF) schemes can be used (IDF is the inverse of the number of
articles in which the noun phrase occurs) [102]. To summarise, the feature
vector ~xs describing the article s can be defined by

~xs = (xs0 , xs1 , · · ·xsN−1), (6.2)

where xi is the weighted frequency of noun phrase i in article s [45]. Ex-
periments show that individual articles, on average, have 10 to 20 unique
noun phrases, whereas the whole collection typically has over N = 104 noun
phrases (for ±500 articles). These feature vectors are very sparse.

Compression. The number of features in a newsgroup collection can become very
large, even with a modest number of articles. Without taking measures, the
high computation time and storage requirement would prevent the realisa-
tion of a real-time system. Since these document spaces are very sparse,
simple compression methods suffice and good results for quality as well as
performance have been reported [95]. The document space compression re-
duces the original number of dimensions N typically by a few hundred times
to a smaller number of dimensions Nc. As an example, the compressed ar-
ticles in Figure 6.2 are represented by just Nc = 256 bytes. Although this
compression is in principle irreversible, heuristics exist to recover informa-
tion about the significance xsi of individual noun phrases (that is needed in
visualisation [5]).

Map generation. The map module is responsible for creating a theme map in
which the articles show topological ordering. A popular algorithm that
generates such a map is SOM. This SOM-map is a 2D array of proto-
type vectors, that organise themselves towards the input samples. This
self-organisation is expressed spatially: similar articles cluster together and
different articles are positioned at a distance.

The algorithm iteratively compares input samples with these prototype vec-
tors (with same dimension Nc as the samples) and adapts them in a par-
ticular way. After all samples have been processed, the process is repeated
a fixed number of passes (called epochs). The involved four nested loops
(dimension Nc× map dimensions × samples × epochs) determine Map gen-

152

6.2 – Familiarisation

�
−
��� ���

training samples

W

H

SOM

j
i

neuron unit:
� position
� weight ��

r

��� ��� =

Figure 6.3: SOM network connectivity: the current training sample ~xs is fully
connected to all neuron units r = (i, j) and thus can be compared directly with
the associated weight vector ~mr

eration as the most time consuming module in the pipeline. The basic
algorithm will be described in Section 6.2.3.

Visualisation. The final module prepares a vector graphics file on a server to allow
for remote viewing by a light-weight web client. The used vector graphics
format, Scalable Vector Graphics (SVG)3, allows for operations such as
zooming, panning and selection for viewing the article itself. The data
for the graphics file is extracted from the neurons by standard techniques
[116][117].

SOM basics. The Self-Organising Map (SOM) [77] is an artificial neural net-
work model that has shown to be well-suited for mapping high-dimensional data
into a two-dimensional representation space. In this paragraph we describe the
technical details of the self-organisation process.

The SOM consists of an input layer that offers the training samples in parallel
to a number of neuron units in the output layer, organised in a rectangular lattice
with dimensions W × H, see Figure 6.3. Every unit r ∈ R = {(0, 0), · · · (W −
1,H − 1)} in this grid has a position (i, j) and is associated with a weight vector
~mr ∈ RN , or prototype vector, that at the end of the training will represent a
cluster of similar articles. The weight vector ~mr = (mr0 ,mr1 · · · ,mrN−1) is of the
same dimensionality N as the training samples4. The weight vectors are hosted by
the neuron units, see Figure 6.3. The weight vectors are initialised with random
values before the training starts.

For the outline of the training process we will closely follow [34]. The training
starts by selecting an training sample ~xs, which represents an article in the corpus.

3 W3Schools: ”Introduction into SVG”, 2006, http://www.w3schools.com/svg/svg{ }intro.
asp[Online,accessed12/04/2006].

4 Because of the focus on SOM we neglect the compression N → Nc for the moment.

153

http://www.w3schools.com/svg/svg{_}intro.asp [Online, accessed 12/04/2006]�
http://www.w3schools.com/svg/svg{_}intro.asp [Online, accessed 12/04/2006]�

Chapter 6 – Case: Mining Dynamic Document Spaces

The set of training samples is denoted by X and consists of S articles. Then the
unit r = (i, j) with the smallest distance between its associated weight vector ~mr

is selected as the Best Matching Unit (BMU) or winner5

rw = argminr(‖~xs − ~mr‖), (6.3)

where the function argminr minimises the argument over all unit locations r ∈ R,
and where ||.|| denotes the Euclidean distance metric. This distance metric (or
2-norm) of a vector ~d is defined by

‖~d‖2 = ‖(d0, d1, · · · dN−1)‖2 =

√√√√
N−1∑

i=0

d2
i . (6.4)

So the training sample ~xs is at best represented by unit rw. To increase the
probability for this unit to be chosen as winner the next time the same input is
selected again, the unit’s weight vector ~mr is slightly adjusted towards training
sample ~xs. This gradual adaptation of the weight vector is controlled by the
learning rate α(t) ∈ (0, 1], where t represents the number of training epochs, and
it starts with t = 0 and ends for t = T − 1. The learning rate α is usually a
decreasing function over time. Hence, weight vectors will be adapted stronger at
the beginning of the training process. A rather low value of α(t) at the end of the
training process leads to a fine-tuning phase. The training process resembles the
simulated annealing procedure of Chapter 4.

To obtain a topological ordering of the map not only the weight vector of the
winner rw is adapted, but also the weight vectors of the units in its vicinity. As
a result training samples similar to ~xs are more likely to be represented in the
region of the SOM where the winner is located. The adaptation strength hr,rw(t)
of neighbouring units is determined by their distance from the winning unit rw

on the map. This so called neighbourhood function, is also a decreasing function
over time, and usually based on a Gaussian function

hr,rw(t) = e
||r−rw||2

2σ2(t) , (6.5)

where rw ∈ R2 is the location of the winning unit on the lattice, r the location of
a neighbouring unit, and neighbourhood size parameter σ(t) controls the radius of
effected neighbouring units. The adaptation strength for all neuron units r can
conveniently be represented by the neighbourhood matrix

Λr,rw(t) = [[hr,rw(t)]]r∈R.

It can be seen from (6.5) that units closer to the winner are adapted more than
units that are farther away. A high value of hr,rw(t) at the beginning of the
5 If the samples ~xs(t) are stochastic and have a continuous density function, the probability for

having multiple minima in (6.3) is 0 [45]. With discrete-valued variables, however, multiple
minima may occur; in such a case one of them is selected at random for the winner.

154

6.2 – Familiarisation

training process (small epoch number) leads to a global organisation of the weight
vectors, that is, neighbouring units have similar weight vectors. By gradually
decreasing the neighbourhood function during increasing epochs, the adaptations
become more local.

Finally, we specify the adaptation of the neuron weights expressed in the
already defined mathematical concepts. The weight vector ~mr(t + 1) of unit r is
adapted by adding a portion α(t) · hr,rw(t) of the vector difference (~xs − ~mr(t))
to ~mr(t), resulting in:

~mr(t + 1) = ~mr(t) + α(t) · hr,rw(t) · (~xs − ~mr(t)
)
, (6.6)

As a consequence of (6.6) the weight vector of the winner and the weight vector
of the units in its vicinity are ’moved’ towards the training sample. Hence, it is
more likely that similar samples are mapped into this part of the map in successive
training epochs. This actually gives SOM its auto-clustering ability.

Typical values for the parameters in the dynamic document mapping domain
– for a small number of samples (S < 500) – are: Nc = 315,W ×H = 32 × 32,
and the amount of epochs 250. However, for larger document spaces, the number
of units (W ×H) can exceed 1 million and can need more than 10,000 epochs of
training.

6.2.3 SOM training

Neural network training, in general, takes a long time to compute. Since we
expect that training is dominant in the performance of our system we now focus
on the SOM training.

6.2.3.1 Algorithm

For this research we restricted ourselves to the SOM training because this is the
most computationally intensive part. In the preamble to the specification of the
algorithm we structure the training process, described in the previous section, in
five steps. These five steps will compute the update for all neuron units r for a
given sample ~xs within an epoch:
forall r do

Step 1: determine the high dimensional distance of the sample ~xs to all
weight vectors ~mr(t) of neurons r: δr = ‖~xs − ~mr(t))‖

Step 2: determine the winning unit location:
rw(t) = argminr(δr), see (6.3)

Step 3: compute the 2D distance matrix of all units to the winning unit:
dr = ‖r − rw(t)‖

Step 4: compute the neighbourhood matrix:

hr,rw(t) = e
d2

r
2σ2(t) , see (6.5)

Step 5: compute the update for the neurons:
~mr(t + 1) = ~mr(t) + α(t) · hr,rw(t) · (~xs − ~mr(t)

)
, see (6.6)

155

Chapter 6 – Case: Mining Dynamic Document Spaces

The algorithm of the training process is given below (Algorithm 6.1), and is taken
almost literally from [77]. In Section 6.3 an abstract model is presented of a part
of the algorithm that provides the necessary freedom for the mapping to a mas-
sively parallel hardware architecture. The parameter settings for S, N, Nc, T, W,
and H are application dependent and will be dicussed in the following sections.

Algorithm 6.1 SOM training algorithm
1: ~mr ← random values taken from (0, 1);
2: initialise αT , σT ;
3: α ← 1; fα ← T

√
αT /α0;

4: σ0 ← max(W,H)/2; fσ ← T
√

σT /σ0;
5: for t ← 1 · · ·T do {for each epoch do}
6: for s ← 0 · · ·S − 1 do {for each sample do}
7: for r ← (0, 0) · · · (W − 1,H − 1) do {all neurons in parallel}
8: δr ← ‖~xs − ~mr‖2;
9: end for

10: rw ← argminr(δr);
11: for r ← (0, 0) · · · (W − 1,H − 1) do {all neurons in parallel}
12: dr,rw ← ‖r − rw‖2;
13: hr,rw ← exp(d2

r,rw
/2σ2);

14: ~mr ← ~mr + α · hr,rw · (~xs − ~mr) ;
15: end for
16: end for
17: α ← α ∗ fα;
18: σ ← σ ∗ fσ;
19: end for

To demonstrate the working of the SOM training a simple example is included,
see Figure 6.4. In this example, the feature space is one-dimensional N = 1, the
map is only (W = 4 × H = 4) and initialised with values in range [0,255], and
the current training sample is ~xs = 198. For convenience the learning rate is set
to unity (α = 1), and we take σ such that the neighbourhood attenuation e−

−d

2σ2

satifies e−
−d

2σ2 = 2−d.

6.2.3.2 Hardware mappings

SOM training is in general a computationally intensive step in data mining ap-
plications [77][36]. That is the reason why many hardware mappings for SOM
have been described since its conception in 1982. Because of its inherent paral-
lel structure also parallel implementations have been made. The most advanced
ones have been written for SIMD architectures such as CNAPS, Hypercube, Con-
nection Machine and MasPar, which, however, are expensive, voluminous and
have extremely high power consumption [92][77][103]. Also other, more embed-

156

6.2 – Familiarisation

Initial
neuron
values ~mr(t) =

123
 19
84
46

0
 96
200
19

250
 55
190
23

97
 143
85
60

The values of the weight vectors of the 4×4
neuron map are given. A new sample, for
example ~xs=198 (not shown), enters the
training process.

Step 1,2
Dis-
tance
matrix
with
win-
ning
unit δr =

75
 179
114
152

198
 102
2
179

52
 143
8
175

101
 55
113
138

The high dimensional distance matrix δr =
‖~xs− ~mr‖ is determined. The winning unit
rw (with smallest value=2) is indicated.

Step 3
2D dis-
tance dr =

3
 2
1
2

2
 1
0
1

3
 2
1
2

4
 3
2
3

In order to construct the neighbourhood
matrix (see next step: neighbourhood) first
the 2D distance dr,rw = ‖r − rw‖ be-
tween the winning unit and all other units
has to be determined. In this example
the manhattan distance is used (1-norm).
This norm can be written as ‖∆x, ∆y‖1 =
|∆x|+ |∆y| (6.10).

Step 4
Neigh-
bour-
hood hr,rw (t) =

0
 0.25
0.5
0.25

0.25
 0.5
1
0.5

0.25
0.5
0.25

0
 0
0.25
0

0

The neighbourhood matrix Λr,rw (t) deter-
mines how much the neighbourhood units
of the winning unit will be adapted (be-
sides the winning unit itself). To keep the
example simple we assume matrix values of
the form 2−dr,rw for this epoch. Note that
the neighbourhood distribution is dynamic
over time.

Step 5
Update ~mr(t + 1) =

123
 63.75
141
84

49.5
 147
198
108.5

90.75
194
66.75

97
 143
60

250

113.25

The update for the weight vectors is com-
puted according to (6.6). For the winning
unit this is ~mrw = 200+1 ·1 ·(198−200) =
198, so adapting 100% to the sample. For
the unit just below the winning unit this
becomes ~mr = 190 + 1 · 0.5 · (198− 190) =
194, and also adapts a bit towards the
value of the winning unit.

Figure 6.4: Example of a simple SOM training (high dimensionality N=1) for a
single epoch and for one training sample

157

Chapter 6 – Case: Mining Dynamic Document Spaces

ded parallel solutions have been devised for the Transputer [124] or an FPGA
[97]. FPGA technology, however, exhibits rather long development cycles. A rel-
ative fast development is supported by a general purpose processor with special
SIMD extensions [51], but is too costly to be a serious contender for embedded
applications. Since the system should execute fast, should be compact and should
not consume too much power it is decided to select an embedded processor. The
Aspex’s Linedancer fits the massive but simple processing required for neural net-
work processing well. In order to map the SOM algorithm on the Linedancer in a
performance optimal way the following observations from literature are relevant.
It is shown in [97] and [77] that SOM is robust in the sense that it is somewhat
flexible to:

1. lower precision, for instance exchanging a float by an 8 bit fixed point rep-
resentation,

2. different distance metric, for instance the 1-norm (Manhattan distance), see
Section 6.4.2.1 instead of the more common but computationally intensive
2-norm, and

3. choice of neighbouring function, for instance replacing the Gaussian neigh-
bourhood function by a box function (e.g., see Figure 6.9).

In Section 6.4 we will elaborate on these issues.

6.2.4 Feasibility

The purpose of this section is to get confident about the scope of the system
and the technical feasibility of realising the system with the target hardware
architecture. In this way early roadblocks can be identified, and evaluated and
their impact can be assessed in an early stage.

Demarcation of the system boundary. The dataflow diagram of the entire
data mining system is described by Figure 6.2. From literature [77] we know the
SOM training is computationally intensive. In contrast to the other modules, the
SOM training is not only linear dependent on the number of training samples.
Besides the number of training samples S, SOM training also depends (linearly)
on the number of training epochs T , the dimensions of the map W ×H, and the
dimensions of the high dimensional space Nc. This determines the SOM training
as the most demanding module, having a complexity of

O (S · T ·W ·H ·Nc) .

For this reason the training module is selected for further investigation and con-
stitutes the scope of this study.

158

6.2 – Familiarisation

Feasibility: a first estimate. Based on Algorithm 6.1 we can provide a first
estimate of the timing aspects of the SOM training implementation. We will
estimate the execution time on basis of a naive parallelisation of the sequential
model: the total time becomes the sequential time divided by the number of
processors.

We initially estimate values for the map dimensions: width W = 32, height
H = 16 and the dimension of the compressed space Nc = 256. We start with a
timing estimate of the inner loop, see lines 8, 10, 12 · · · 14 in Algorithm 6.1. After
some initial experiments we estimate the number of clock cycles per operation.
Lines 8 and 14 of the algorithm each take 3 operations per weight vector compo-
nent (a subtraction, multiplication and a division), totaling to W · H · Nc · 3 =
32 · 16 · 256 · 3 ≈ 400K operations, see Table 6.1. The 2D distance calculated in
line 12 consumes a little more per neuron (5 cycles) since this distance involves
two components (in width and in height). This table not only summarises the
sequential complexity but also includes concrete operation counts (in cycles per
epoch per sample). The workload for a single sample and one epoch adds to
approximately Cse ≈ 800K operations. For the average training session, we es-

algo-
ritm
line
no

training step sequential com-
plexity order of
operations

cycles
per
opera-
tion

number
of opera-
tions

8 1. Distance in highD O(W ·H ·Nc) 3 400K
10 2. Winner selection O(W ·H) 1 700
12 3. Distance in 2D O(W ·H) 5 2500
13 4. Determine neighbourhood O(W ·H) 1 500
14 5. Update neurons O(W ·H ·Nc) 3 400K

Total number of operations Cse 800K

Table 6.1: Base complexity, for comparison purposes and projected gain by par-
allelisation. The values in the last column contain estimates for a single sample
per epoch with W = 16, H = 32, and Nc = 256, and are indicative for the
performance.

timated that the number of samples S and the number of training epochs T are
300 and 250 respectively. For our experiments we use a dual Linedancer system
with 2×4K = 8K PEs. This system could potentially perform the training job in
S·T ·Cse

#PEs = 12 M operations, provided that such a parallel scheme can be found. For
a 300 MHz dual Linedancer system, and an average of ±100 cycles per operation
(single bit architecture), this would correspond to 4.1 sec processing time.

In the second column cycles are expressed in (big O) order notation. Con-
version to concrete numbers of operations is straightforward; the distance com-
putations (in lines 8 and 12), however, have to account for the subtraction, the

159

Chapter 6 – Case: Mining Dynamic Document Spaces

absolute value (for the 1-norm) and finally its accumulation over all components.
We conclude the feasibility study with the parallel order of complexity O//,

O// = O

(
S · T ·W ·H ·Nc

#PEs

)
,

in which S is the number of samples, T the number of epochs, W and H are
the width and the height of the map, and Nc is the dimension of the compressed
document space. It is a challenge to determine how the work – symbolised by the
numerator of this fraction – can be distributed over all PEs evenly.

6.3 Incremental prototyping

This section describes the incremental prototyping phase of the SOM training
algorithm as well as some implementation independent choices. These choices
involve a quality measure (for supporting the functional decomposition and eval-
uating implementation alternatives) and the choice of the training parameters.
We will follow the evolutionary development methodology – as proposed in Chap-
ter 3 – closely. In this section the Incremental Prototyping template (Section 3.7)
will be taken as a guide.

6.3.1 The training algorithm

The SOM training algorithm (Algorithm 6.1) is taken as the functional specifica-
tion. The specification in a functional language is derived in the following three
steps: parameter estimations, intermediate mathematical model, and finally the
functional specification of the SOM training.

Parameter estimations. From literature and preliminary experiments the fol-
lowing parameters were estimated:

1. the number of articles S ≤ 500 (the number of visualised articles should not
be too large),

2. the dimension of the (compressed) vector space Nc = 315 [5],

3. the map dimensions W ≥ 16, and H ≥ 16 (for good visualisation the map
should be large enough to host at maximum 2 samples/neuron),

4. the number of training epochs T = 250,

5. the learning rate α varies from 1 to 10−4 and is reduced by fα = T

√
1

10−4 ≈
0.964 (see [101] for the adaptation scheme),

160

6.3 – Incremental prototyping

6. the neighbourhood size σ starts with half of the maximum size of the map,
and for for example W = H = 16 this is 16/2=8. This is reduced by

fσ = T

√
1
8 ≈ 0.992 per epoch for T = 250.

Intermediate mathematical model. The original algorithm Algorithm 6.1
is transformed into an abstract mathematical model before it is transcribed in
functional code. First we introduce some relevant definitions.
The function argmin (relates to (6.3)) determines the minimum value of a list
with respect to a particular function value:

argmin f xs = (snd ·min · zip) ((map f xs) , xs)

The function dist computes the Euclidean distance between two vectors:

dist (~x , ~y) = ‖ ~x − ~y ‖2

The function δ determines the ’distance’ between s and r based on the Euclidische
distance between the vectors xs and mr:

δ s r = dist (~xs , ~mr)

Before the intermediate model is given, first a few remarks are made:

• mr represents a single Nc-dimensional weight vector,

• xs represents a single Nc-dimensional sample, representing a newsgroup
article,

• in the identifiers of the variables xs is the multiple of x, so it is a list of x-es
(idem with ms, rs),

• in Algorithm 6.1, lines 12-14, the for-loop of r is formulated as a list com-
prehension, to better demarcate the scope of the various for-loops. This list
comprehension generates a complete list of new mr-values,

• in Algorithm 6.1, lines 7-10, are fomulated by a single line
rw := argmin (δ s) rs,

• list comprehension uses←; the same arrow is used in the variable assignment
with the for-loops. However, for the assignment the copula := is used,

161

Chapter 6 – Case: Mining Dynamic Document Spaces

The intermediate model is depicted below:

ms := init;
αT := init;
σT := init;
α := 1; fα := T

√
αT

α

σ := max(W,H)/2; fσ := T
√

σT

σ
for t ← [0 . . . T−1];

for s ← [0 . . . S−1];
rw := argmin (δ s) rs;
ms := [mr + α.hr,rw

.(xs −mr) | r ← rs
; dr,rw := dist (r, rw)
; hr,rw

:= ed2
r,w/2σ2

];
α := fα.α;
σ := fσ.σ;

Functional specification of SOM training. As described in Section 6.2.3
SOM training consists of successive rounds of adaptations (called epochs) of a rec-
tangular array of neuron weight vectors ms (the set {~m0,0, ~m0,1, · · · ~mW−1,H−1})
by the set of samples xs (the set {~x0, ~x1, · · · ~xS−1}).

Before the descriptions in functional code are given, first a few remarks are
made:

• the neurons are identified by rs = [[0,0],[0,1],... [H-1,W-1]],

• for component-wise vector-vector operations as multiplication, subtraction
and addition the following operators are used: *^, -^, and +^ respectively,

• for convenience the scalar vector multiplication operation (for example the
multiplication of the learning rate α) also uses *^,

• norm2 computes the Euclidean norm.

The descriptions are given in a specific order: first the inner loop, then the next
enclosing one and so on. The adaptation of all neurons ms by a single sample is
described by:

Fsample ms s = [ms!r +^ alpha *^ h *^ (xs!s -^ ms!r)

| r <- rs

; h = e^(dist(r,rw)^2 / sigma^2)

]

where

delta = \(s,r) -> dist(xs!s, ms!r)

dist = \(v1,v2) -> norm2(v1 -^ v2)

rw = argmin (delta s) rs

162

6.3 – Incremental prototyping

Within a single training epoch t ∈ [0 · · ·T − 1] all samples ~x0···S−1 (xs) have to
be processed. This also involves the adaptation of the learning rate α (alpha)
and neighbourhood size σ (sigma). The specification of a single epoch is given by:

update ms = fold Fsample ms xs

Fepoch (alpha, sigma, ms) = (f_alpha*alpha, f_sigma*sigma, update ms)

The entire training involves the iteration of Fepoch on all epochs T, where T is a
constant specified at before hand. The higher order function iter below, takes a
function f, a tuple x, an iteration count n as argument and simply applies f to x
n times. Finally the training can be described by:

Ftrain (alpha, sigma, ms) = iter Fepoch (alpha, sigma, ms) T

where

iter f x 0 = x

iter f x (n+1) = iter f (f x) n

6.3.2 Quality functions

Now that the functional behaviour is in principle determined we can turn to the
extra-functional constraints such as quality and performance. Performance can
be specified and measured in an unambiguous manner, but how about quality?
Quality is a complex (non-functional) property to measure because it has objective
(physical) aspects as well as subjective aspects. In this study we restrict ourselves
to objective quality measures that are used for comparison purposes only. The
grounding or calibration of these measures is done via user experiments. We
choose the following two measures [65]:

• The Quantisation Error (QE) measures how good the generalisation quality
of a neural network is. This quality in fact tests how well the trained neural
network has generalised from its input data. The smaller this value, the
better the training. It is defined by the average distance of each sample
~xs with its best matching unit (BMU). This distance can be written as
minr‖~mr−~xs‖n, where n represents the norm. So, the average quantisation
error QE taken over all samples is defined by

QEn =
∑S−1

i=0 minr‖~mr − ~xs‖n

S
. (6.7)

• The Topology Error (TE) is used to evaluate the topological quality and
is in particular for the SOM a useful measure. It determines how often the
BMU rw(s) of a sample s is not a neighbour of the second best winning unit
r2w(s) of the same sample, where r2w(s) = argminr′(‖~xs− ~mr′‖) minimises

163

Chapter 6 – Case: Mining Dynamic Document Spaces

the argument over all unit locations except for the winning neuron itself
r′ ∈ R\{rw}. This is an indication of how much the map is distorted at
this location. The larger this number, the worse the topological quality is.
Analogous to QE a topology error [65] is defined by:

∑S−1
i=0

{
1, if ‖rw(s)− r2w(s)‖n > 1,
0, otherwise

S
(6.8)

where n is the norm used.
The disadvantage of this measure is the indifference of small and large dis-

tances between the two locations. Therefore, the following measure is defined:

TEn =
∑S−1

i=0 ‖rw(s)− r2w(s)‖n − 1
S

, (6.9)

which is more sensitive to larger topology errors.
The quality measures are computed for a training set as well as a representative

test set. Upper bounds on these values, that correspond to sufficient perceptual
quality, are not determined. However, in Section 6.4.2 we establish values for QE
and TE that give reasonable quality.

6.3.3 Running experiments

In order to come up with a set of representatieve training samples, a model has
been constructed of the input space, that is, the compressed article space. After
inspection of the distribution of several component values of vectors ~xs, represent-
ing articles from a few different article collections, we modelled a mixed Gaussian
distribution [36] for the generation of samples ~xs in the compressed space. For
the experiments that follow in the development phase, the same two representa-
tive article sets are used: one to train the SOM and the other to test (measure)
the quality of the training. This is a standard procedure in the neural network
domain to avoid overtraining6 [62].

The results of the training as well as its quality test is presented in a standard
format, that is, four vertically positioned graphs (see for an example Figure 6.5),
where the quality measures are computed per epoch. The subfigures (c) and
(d) in Figure 6.5 show the QE and TE respectively of the training set. For their
computation Equations (6.7) and (6.9) are used and the samples ~xs are taken from
the training set. The subfigures (a) and (b) show the QE and TE respectively of
the test set: for their computation (6.7) and (6.9) are used and the samples ~xs

are now taken from the test set. It can be observed from subfigures (c) and (d),
that both QE and TE improve with more epochs. Furthermore it can be noticed
6 Overtraining signals a fault condition in neural network training. In this situation the network

”wears” in on the training set and does not generalise anymore from its input.

164

6.3 – Incremental prototyping

(a)

(b)

(c)

(d)

0 50 100 150 200 250

2.6

2.7

2.8

2.9

0 50 100 150 200 250

0

1

2

0 50 100 150 200 250

2

2.5

0 50 100 150 200 250

0

2

Epochs

Q
ua

nt
is

at
io

n
E

rr
or

 T
es

ts
et

T
op

ol
og

y
E

rr
or

 T
es

ts
et

Q
ua

nt
is

at
io

n
E

rr
or

T
op

ol
og

y
E

rr
or

Figure 6.5: Two quality measures: Quantisation Error and the Topology Error

165

Chapter 6 – Case: Mining Dynamic Document Spaces

that the response of the test set, subfigures (a) and (b), return higher values of
QE and TE than subfigure (c) and (d) because the test set was not used to train
the SOM network. The most interesting phenomenon, however, is the exposure
of overtraining in subfigure (b) (starting at epoch number ± 130) and – a bit less
visible – in (a). So at this point the network generalises best for epochs between
100−160. For our purpose the absolute values of QE and TE are not important,
but the level of degradation or improvement is.

6.4 Transformational development

As mentioned before, we will map the SOM training scheme on the Linedancer
to check our hypotheses regarding quality, performance, and development effort
(methodology). During implementation several concerns – some more case spe-
cific than others – have to be considered. A number of them: storage allocation,
dimension of feature space (Nc), the distance norms for the high as well as low
dimensional space (1-norm, 2-norm, ∞-norm), approximation of the Gaussian
neighbourhood function (hr,rw(t)) and bit-width of variables (accuracy), are de-
scribed below. They all can potentially compromise the quality because they can
trade quality for performance. These concerns require extensive exploration of
the design space in order to come up with satisfactory results. The majority of
the following sections utilise the quantitative quality measures QE and TE. In
this section the Transformational Development template, as given by Section 3.8,
will be followed.

6.4.1 Global system considerations

In this section a first analysis is made on the timing and storage design space given
the problem requirements and available hardware architecture. Finally, relevant
general system architecture issues are studied because they can also influence
the implementation process. Because the timing analysis depends on the storage
allocation, this will be addressed first.

Global storage allocation. The limited memory available per PE poses re-
strictions on the mapping of functionality and its associated data-structures.
Therefore, an analysis of the storage allocation of the SOM training algorithm
is conducted, see also [31]. The mapping related subsystems of the Linedancer
are listed in Table 6.2 by the last four columns. The format of these columns
corresponds with that given in Section 4.4.1.

7 ~rw is a 2D vector, and it is replicated during the training process to all neurons for compu-
tational efficiency of training step 3 and line 12 of Algorithm 6.1.

8 For each epoch the 2D locations of the neurons in the grid are reloaded because of limited
memory resources overhead and only takes little overhead (1K/25K9 ≈ 4%).

166

6.4 – Transformational development

Linedancer subsystems

it
em

va
ri

a
b
le

d
im

en
si

o
n

d
ep

en
d
en

cy

[N
c
,N

,n
on

e]

S
P
A

R
C

S
D

S

P
E

C
A

M
o
r

E
X

T

A
ss

o
ci

a
ti

v
e

C
A

M
-S

D
S

D
M

A
S
D

S
-P

D
S

S
O

M
T
ra

in
in

g
A

lg
o
ri

th
m

weight vector ~mr Nc Nc,N √ √
training sample ~xs Nc Nc

√ √
high dimensional
distance

δr 1 N √

location of rw 2 N 7 √
(winning) unit r = (i, j) 2 N √ √8

2D distance dr,rw 1 N √
neighbourhood
matrix

hr,rw 1 N √

learning rate, lear- α 1
√

ning rate factor fα 1
√

neighbourhood σ 1
√

size and factor fσ 1
√

epoch number t 1
√

sample number s 1
√

loading of sample ~xs
√ √

Table 6.2: Mapping of the various variables of the SOM training algorithm on the
memory and processing subsystems of the Linedancer

167

Chapter 6 – Case: Mining Dynamic Document Spaces

0

8K

extended memory
 CAM memory

0

255

single

PE

neuron(0,0)

neuron(0,1)
 neuron(0,15)

neuron(31,0)
 neuron(31,15)

N

c

=256

W=32

H=16

128

bits

64

bits

64

bits

I/O memory

(PDS)

segment

borders

neuron

column

Figure 6.6: Vertical arrangement of neurons over PEs in extended memory (where
as an example Nc=256), segment borders are indicated

The various variables in the algorithm are listed in the two left most columns.
The third column indicates the dimension of the variables and the fourth column
indicates inter-dependencies between variables and training parameters. For ex-
ample, the weight vectors are related to the size of the high dimensional space
(Nc) and the size of the neuron array (N = {(0 · · ·W −1), (0 · · ·H−1)}). The list
of these explicit inter-dependencies is useful in the final mapping to the memory
subsystem of the Linedancer.

For a dual Linedancer system we have an 8K PE budget. Every PE is equipped
with 128 bit EXT and 64 bit CAM, see Section 2.3.4. Because the computations
concentrate around the neurons and because the size of the neuron map is fixed
– as opposed to the number of samples – we have chosen to store the neurons in
the array and the training samples in off-chip DRAM. To maximise the efficiency
of computation, the Nc components of the neurons as well as the samples, are
mapped one-to-one to Nc PEs. This corresponds to the vertical orientation of
vectors as described in Figure 6.6. One set of the W=32 vertically organised
neurons is called a neuron column.

Global timing analyses. For the above described storage allocation the fol-
lowing table is derived for the performance of the system. In this paragraph and
in Table 6.3 we assume Nc = 256 and H = 16 (since all PEs work on W neurons in

168

6.4 – Transformational development

parallel, W is omitted from the complexity estimation). The third column shows

algo-
ritm
line-
no

training step projected or-
der of parallel
operations

cycles
per
col-
umn

num-
ber of
col-
umns

total

8 1. Distance in highD O(H + log2Nc) 2K2 16 35K2
10 2. Winner selection constant 1K5 1 1K5
12 3. Distance in 2D constant 62 1 62
13 4. Determine neighbour-

hood
O(H) 10 16 160

14 5. Update neurons O(H) 186 16 3K0
total number of cycles CLD 39K9

Table 6.3: Improved estimate of the training performance

the projected parallel complexity for a particular parallel architecture, which is
parallel in W×Nc but sequential in H (see Figure 6.6). The additional O(log2Nc)
in training step 1 accounts for the time to compute a binary adding tree in par-
allel (for the 1-norm computation). The computation of a 1-norm of a vector
starts with a component-wise subtraction of a vector, followed by an absolute
value function. Subsequently the binary adding tree of height 8 is computed, and
this takes 2K cycles. In particular the involved data communication near the root
of the tree consumes much time. Moreover, since steps 1, 4 and 5 are dependent
on the number of neuron columns H (see Figure 6.6), their contribution to the
total number of cycles is dominant. As shown in Table 6.3 the total number of
cycles CLD = 39K9. The average job of S = 300 samples and T = 250 epochs
needs S · T · CLD = 300 · 250 · 39K9 = 2.99 G clocks and corresponds to 9.9 sec
on a 300 MHz Linedancer. This time is too long for an interactive system. Step
1, the high dimensional distance computation, needs to be optimised because it
dominates the training time significantly.

Scalability. Before conducting the mapping we should dedicate some attention
to desirable design properties such as scalability. The data mining pipeline should
be scalable in the dimensions of the map W ×H, the dimension of the compressed
document space Nc, as well as the used precision.

Scalability is not limited to the current sizes of the map. Larger sizes of the
map, for instance doubling both dimensions to (2·H)×(2·W), can be accomodated
by a H × (4 ·W) organisation of 4 times as many Linedancers.

Increasing the dimension of the high dimensional space to for instance 2 ·Nc

can be realised by doubling the number of Linedancers. However, scalability in
time is impeded by the computation of the adding tree in step 1, causing an extra

169

Chapter 6 – Case: Mining Dynamic Document Spaces

penalty of O(log2(2 ·Nc)) cycles. This is a serious point of attention and will be
covered in Section 6.4.2.3.

Increasing the precision of 8 to 16 bit (as described in [97]) can be done with
marginal effort, but then the I/O memory (PDS) has to be used to supplement
CAM as temporary storage. By doubling the number of Linedancers the implied
decrease in performance can be repaired.

6.4.2 Trade-off subphase

The purpose of the Trade-off subphase is to absorb all concessions on the func-
tional behaviour implied by limitations of the hardware. In the following subsec-
tions, four examples are given: dimension of the compressed feature space (Sec-
tion 6.4.2.2), choice of the norm in vector distance comparisons (Section 6.4.2.3),
simplification of the Gaussian neighbourhood function (Section 6.4.2.4) and fi-
nally, the accuracy of the various variables (Section 6.4.2.5). The order of ad-
dressing these trade-off issues has to be determined. We used (minimisation of)
simulation time as the criterion to select the order, and since the dimension model
takes most time, we first lockdown the dimensionality Nc of the compressed space.
In this way all subsequent model simulations profit the most. Before starting with
the dimension model we introduce some non-trivial vector norms.

6.4.2.1 Vector norms

Because the norm of a vector plays an important role in the mapping of a SOM
training to a restrictive hardware architecture, it is important to analyse. We code
the norm n of vector as a subscript like in ‖.‖n. The Euclidean distance metric
(n = 2) is a standard used metric in neural network training. Other metrics,
however, such as Manhattan or city-block distance (n = 1), and the maximum-
norm (n → ∞) are more amenable to hardware implementation. The 1-norm of
a vector ~d is defined by

‖~d‖1 = ‖(d0, d1, · · · dN−1)‖1 =
N−1∑

i=0

|di|, (6.10)

and does not need a square and square root9 operations (unlike for the 2-norm),
which are expensive operations on such hardware architectures. The maximum-
norm is simple to compute by taking the maximum absolute component of a
vector,

‖~d‖∞ = ‖(d0, d1, · · · dN−1)‖∞ = maxi(|di|), (6.11)

where i is taken over all components 0 · · ·N −1 of the vector. For convenience
we will abbreviate the maximum-norm by ∞-norm from now on.

9 For the computation of the winning neuron the square root operation can be omitted.

170

6.4 – Transformational development

0 50 100 150 200 250

5

10

15

20

0 50 100 150 200 250

0

2

4

0 50 100 150 200 250

0

30

0 50 100 150 200 250

0

2

Epochs

Q
ua

nt
is

at
io

n
T

es
ts

et
 E

rr
or

T
op

ol
og

y
T

es
ts

et
 E

rr
or

Q
ua

nt
is

at
io

n
E

rr
or

T
op

ol
og

y
E

rr
or

Dimension 512
Dimension 315
Dimension 256

Figure 6.7: The choice of the size of the high dimensional space, the dimensionality
Nc. Candidates are: 512, 315, or 256.

6.4.2.2 Dimension of the Feature space

The goal of this subsection is to establish the dimensionality (Nc) of the high di-
mensional space for the SOM trainer and as such also the output of the compres-
sion module, see Figure 6.2. In [4] it is motivated that 315 is a good compressed
space dimension. However, for implementation reasons we would like to use a
power of two because that fits the Linedancer array better. So the candidates for
the dimensionality to investigate are 256 and 512, which will be compared to the
value suggested by literature (Nc = 315). We do not pursue a small value of 128
because the advised values in literature are ≥ 315 [78][46][5].

A problem to solve is the definition of a good measure of the performance of
these candidates. The difficulty now is, at this early moment in design time, that
several other relevant parameters are not fixed yet. These parameters are:

• the number of epochs for the training,

• the norms used in the computation of the SOM training algorithm itself (in
lines 8 and 12 in Figure 6.1), and

171

Chapter 6 – Case: Mining Dynamic Document Spaces

Nc QEavg QEavg / Nc

512 19 0.037
315 12 0.038
256 10 0.039

Table 6.4: Relation between the size of the feature space and the average quanti-
sation error

• the norms used in the computation of the quality functions QE and TE.

A preliminary experiment is performed to find a first estimate for sufficiently
good values of the mentioned parameters. As a result the Euclidean norm was
used (as in [77]) for the distance computations in the training algorithm; in a
later experiment this choice will be reconsidered.

For the moment the norm for the SOM training is not decided on yet; this
choice is the subject of the next section. However, since we need a norm for the
current dimension model, we selected the average of the three norms in order to
avoid a bias to a particular norm. When the choice of the norms for training is
fixed (see Section 6.4.2.3) we will reconsider the choice for the norms used in the
computation of the quality measures QE and TE. So for now the topology error
TE is computed by TEavg = 1

3 · (TE2 + TE1 + TE∞). The average quantisation
error QEavg is computed by QEavg = 1

3 · (QE2 + QE1 + QE∞).
The end result of the experiment, where the three candidate dimensions (256,

315, 512) for the dimensionality Nc are tested, is depicted in Figure 6.7. The
quantisation error QEavg is dominated by the 1-norm component which is linear
in Nc, as confirmed by Table 6.4, which is derived from Figure 6.7. A better
indication for quality is given by QEavg

Nc
. To have optimal behaviour and to avoid

overtraining (in particular visible in the topology error on the test set in Fig-
ure 6.7), the number of epochs should be in the range 80-140 (TE < 2). In this
range the difference between the three dimensions is neglectable. The conclu-
sion is that for our application a value of 256 for the high dimensionality Nc is
sufficient.

6.4.2.3 Choice for Norms

Now that the size of the high dimensional space is fixed, a next investigation
concerns the norms for the high dimensional distance comparison as well as that
of the low dimensional distance (2D). In the specification of the SOM algorithm
the Euclidean norm is used, see the distance computations in lines 8 and 12 of
Algorithm 6.1. The purpose of this subsection is to explore the design space for
computationally ”cheaper” alternatives such as the 1-norm or the ∞-norm.

Since the norms are subject of investigation, we perform three separate exper-
iments for the computation of the high dimensional distance: one for the 2-norm,

172

6.4 – Transformational development

0 50 100 150 200 250

9.5

10

10.5

0 50 100 150 200 250

0

2

4

0 50 100 150 200 250

8

10

0 50 100 150 200 250

0

2

Epochs

Q
ua

nt
is

at
io

n
T

es
ts

et
 E

rr
or

T
op

ol
og

y
T

es
ts

et
 E

rr
or

Q
ua

nt
is

at
io

n
E

rr
or

T
op

ol
og

y
E

rr
or

2-norm
1-norm
max-norm

Figure 6.8: The choice of the high dimensional norm

173

Chapter 6 – Case: Mining Dynamic Document Spaces

hci(t)

Gaussian
function

Box
function

|| rs-ri ||neighbourhood range

σ

Figure 6.9: The approximation of a Gaussian neighbourhood by a box function

the 1-norm and the ∞-norm. For the quality measures we use the same functions,
QEavg and TEavg as in Section 6.4.2.2. The size of the feature space is taken to be
Nc = 256 and the number of epochs is taken sufficiently large for this experiment
T = 300. See Figure 6.8 for the result. For now the optimum number of epochs is
taken in the range of 80 < T < 150 (for a low QE and reasonable TE < 2). Since
the QE values practically are in the same range for all norms it is favourable to
select the ∞-norm because the Linedancer can implement the ∞-norm with fewer
clock cycles than the 1-norm. The computation for the 2D-distance will be done
with the 1-norm since for short vectors it is faster than the ∞-norm.

The topology error on the test set in Figure 6.8 (the ∞-norm graph) has a
higher slope than the topology error for Dimension(= Nc) = 256 in the test set
in Figure 6.7. To exclude that this effect is caused by a too few training epochs
(under-training) it is therefore recommended to train more gradually and enlarge
the number of epochs for the next trade-off issues.

6.4.2.4 Boxed neighbourhood

Another issue that touches on the quality-performance trade-off is the choice of
the neighbourhood function. The SOM algorithm (Algorithm 6.1) uses a Gaussian
function, but its computation on the Linedancer is expensive. The purpose of this
subsection is to devise an acceptable alternative. Kohonen [77] suggests to use a
box-function, see Figure 6.9.

The training algorithm is changed with respect to the neighbourhood function,
the Gaussian N(µ, σ) is replaced by the box function B(µ, σ) with same values
for µ and σ. For the experiment the size of the high dimensional space Nc is set
to 256, the number of training epochs is increased to T = 400, and the norms are
fixed to∞-norm for the high dimensional distance and 1-norm for the 2D distance.
The same applies to the quality measures QE = QE∞ and TE = TE1 since this
does not influence relative comparison with these measures. See Figure 6.10 for
the result of the experiment.

174

6.4 – Transformational development

0 50 100 150 200 250 300 350

2

2.5

3

0 50 100 150 200 250 300 350

0

2

4

6

0 50 100 150 200 250 300 350

2

3

0 50 100 150 200 250 300 350

0

5

Epochs

Q
ua

nt
is

at
io

n
E

rr
or

 T
es

ts
et

T
op

ol
og

y
E

rr
or

 T
es

ts
et

Q
ua

nt
is

at
io

n
E

rr
or

T
op

ol
og

y
E

rr
or

Figure 6.10: Result of the approximation of the Gaussian neighbourhood by a
boxed neighbourhood

175

Chapter 6 – Case: Mining Dynamic Document Spaces

The experiment shows that the optimal range of epochs is dictated by the
topology error on the test set. This range has moved up from 80 < T < 140 to
150 < T < 250 and the TE has increased from 2 →≈ 5. In the stable interval
for QE and TE for T > 300 there is no indication that a larger number of
epochs would improve the quality measures. From experiments we saw that the
placement of similar articles close to each other is not critical for this increase of
topology error. We therefore accept the replacement of the box function.

Since the neighbourhood function is centered around µ = rw the function can
be rewritten by

B(rw, σ) =
{

1, if ‖r − rw‖1 < σ
0, otherwise. (6.12)

When a lot more articles have to be accomodated in the map it is recommended
to approximate the Gaussian neighbourhood in a better way with a mixture of
box functions, for example β ·B(µ, σ1)+(1−β) ·B(µ, σ2), where each box function
B(µ, σ) has unit area.

6.4.2.5 Precision

The topic of this subsection is on managing the memory resources of the two
Linedancer chips that comprise the hardware system. This should be done in such
a way that an optimal balance between quality (accuracy) and map size is ob-
tained. For implementation reasons the Nc-dimensional neuron weights ~mr have
to be reduced from single precision floats to a fixed point representation. To reason
about the influence of fixed point precision we use the format integer • fraction ,
as introduced in Section 4.4.2.2.

In [97] it is reported that a precision of 8 or 16 bit for the representation
of neuron components in ~m in a SOM training is adequate in some cases. Our
hypothesis is that an 8 bit integer 0 • 8 is sufficient, which also applies for the
learning rate α(t). The hypothesis also includes the neighbourhood size σ(t),
which is truncated to a 4 bit integer 4 • 0 , see Table 6.7.

To test the hypothesis the code has been changed to accomodate for the re-
duction in accuracy. The memory allocation details are described in Table 6.8.
The result of the test is shown in Figure 6.11. What can be observed clearly
from this figure is the plateau behaviour (quantisation effects) of all QE and TE
quality measures: 200 < T < 240 for all quality measures, and 240 < T < 300
for the topology error on the test set and the quantisation error. The optimal
value for the TE = 5 in the epoch range 100 < T < 200, whereas for QE = 2.5
an epoch range 110 < T < 240 is best. The choice of the accuracy of the neuron
weight ~mr is directly coupled to the size of the neuron map, given a fixed number
of Linedancer processors. For a 0 • 16 format a maximum map size of 16 × 16
is possible given the current Linedancer configuration. A 0 • 8 format allows for
a doubling of the map size. From the maps that we created we found that the
choice of 8 bit for the neuron weights ~mr and learning rate α, and 4 bit for the
neighbourhood size gave sufficient qualitative results. However, more extensive

176

6.4 – Transformational development

0 50 100 150 200 250 300 350

2

2.5

3

0 50 100 150 200 250 300 350

0

5

10

0 50 100 150 200 250 300 350

0

2

0 50 100 150 200 250 300 350

0

10

Epochs

Q
ua

nt
is

at
io

n
E

rr
or

 T
es

ts
et

T
op

ol
og

y
E

rr
or

 T
es

ts
et

Q
ua

nt
is

at
io

n
E

rr
or

T
op

ol
og

y
E

rr
or

Figure 6.11: Result of a precision of 8 fractional bits for neuron weights and 8
integer bits for sigma

177

Chapter 6 – Case: Mining Dynamic Document Spaces

tests are needed with quantitative results before the training parameters can be
fixed. For now the optimal number of training epochs is set to T = 175.

We did not investigate the effect of increasing the number of samples beyond
300, or the effect of increasing the precision to 0 • 16 . However, the model can be
adapted easily and the quantitative results can be correlated with the perceptual
quality of the SOM-maps.

At the end of the trade-off subphase all concessions to quality (and implicitly
also to the functionality) are made and a so called golden reference is determined.
The golden reference is defined as the output of carefully constructed test cases
and is used to build up confidence of a correct working of the system. From
this point on the functionality of the models will be kept bit true. The quality
measures QE and TE, fixed to QE∞ and TE1 respectively in Section 6.4.2.3, can
subsequently be calibrated to a sufficiently perceptual quality. In this way these
measures can be taken as a first baseline for quality in case of a design iteration.

6.4.3 Reorganisation subphase

The purpose of the reorganisation phase is to gradually expand the executable
models such that they get ”closer” to the target hardware architecture by each
transformation step. Each individual transformation is behaviour preserving (bit-
wise accurate).

As an example we selected an optimisation of the update step (line 14 of
Algorithm 6.1)10. The computation of the update step is defined by (6.6) and is
coded by the assignment:

~mr = ~mr + α · hr,rw · (~xs − ~mr).

In the trade-off subphase (Section 3.8.1) the neighbourhood function hr,rw has
been reduced to B(rw, σ) (6.12) and the update step simplifies to:

~mr =
{

~mr + α · (~xs − ~mr), if ‖r − rw‖1 < σ}
~mr, otherwise. (6.13)

We will now estimate the execution time of performing the update step. Let
ADDwidth, SUBwidth and MULwidth stand for the number of cycles for adding,
subtracting and respectively multiplying two bit-fields that result in a bit-field
with length width, as defined in Section A.1. Note also that an even field width
is used for performance reasons, see same Section A.1. Then for each neuron –
within the current neighbourhood range – this accounts for
Tupd =SUB10+MUL8,10+ADD10 clock cycles, where SUB10 corresponds to the
computation of ~xs− ~mr, MUL8,10 cycles corresponds to the scalar-vector multipli-
cation by learning rate α, and ADD10 corresponds to the vector-vector addition
with ~mr. According to Table A.1, a subtraction with a 10 bit result (SUB10) takes
10 A trivial optimisation, namely storing and reusing the common subexpression ~xs− ~mr (steps

1 and 5 or lines 8 and 14 of Algorithm 6.1), is not feasible because of memory constraints.

178

6.4 – Transformational development

12 cycles for w = 8 bit operands. The multiplication MUL8,10 takes (l1 − 1) = 7
(conditional) additions of w = 10 bit integers (see Section A.1) and 4 + l1 + l2
cycles for initialisation, where l1 = 8 and l2 = 10. The multiplication accounts for
(l1−1) ·(4+w)+(4+ l1+ l2) = 7 ·(4+10)+(4+8+10) = 120 cycles. The addition
(ADD10) takes, like the SUB10, another 12 cycles. The total is Tupd = 144 cycles.

However, (6.6) can be rewritten as:

~mr =
{

(1− α) · ~mr + α · ~xs, if ‖r − rw‖1 < σ
~mr, otherwise. (6.14)

This is computed in time Topt = (MUL16 + MUL16
H + ADD10), since the compu-

tation of α · ~xs is constant for at least a row of H = 16 neurons and is computed
once per sample. A MUL16 is computed in 112 cycles, according to Table A.1
(=6 · w + w2 for w = 8). The other terms are 7 and 12 cycles, yielding a total of
131 cycles. To summarise: the original equation (6.6) takes Tupd = 144 cycles to
compute, compared to Topt = 131 (6.14). In this case the optimisation is not so
large (relative improvement 9%).

The algorithm is transcribed as an adaptation of Fsample in page 162, see func-
tional code below, where norm1 computes the Manhattan norm (Section 6.4.2.1),
and where the neighbourhood function is approximated by a box function.

Fsample’ ms s = [

if (norm1(r -^ rw) < sigma)

((1 - alpha) *^ ms!r +^ alpha *^ x!s)

(ms!r)

| r<-rs

],

where -^, +^, *^ are the same vector operators as introduced on page 162, and
with rw as on page 162.

6.4.4 Template subphase

The goal of the template subphase is to derive common parts of code or com-
ponents. One relevant category of components is the handling of the Run Time
Support (RTS) instructions that is used for more advanced mathematical func-
tions, see Section A.1. Besides the computation of the result, also the setting
of involved status registers has to be modelled in a bit true way for subsequent
instructions. To show these aspects, as well as checking the calling conventions
to decrease coding time, we included the following example.

Example
We selected the RTS vector subtraction to demonstrate the usefulness of
checking the calling conventions and performing a full system emulation for
the relevant instruction subset. The template is called with two operands

179

Chapter 6 – Case: Mining Dynamic Document Spaces

and one result bit-field. The calling conventions, dependencies and other
constraints comprise:

1. only one of the operands can be in EXT memory,
2. the width of the result field should fit the computed result,
3. the restriction of even operand sizes because of performance reasons,
4. the RTS SUB function modifies register ab1, and
5. the result is computed only for those PEs that have register ab0 set

(==1).

Because the template arguments are passed via a call-by-name mechanism
(argument follows the variable naming convention
<name>_<start_position>_<length>, see Section 3.8.2), the template can
check constraints 1-3. Full system emulation handles, for example, con-
straints 4 and 5, and performs besides the subtraction also the update of
flag ab1 for each PE except for those that have ab0 == 0.

End example

6.4.5 Translation subphase

The final step of developing code is the generation of a target hardware language
description. Templates can also play a role in this step, because they can also
provide additional information, that facilitates the translation process.

Example
To demonstrate the transformation of the model to the source code of the
target hardware, we show the translation of an instance of the subtractVec-
tor -template. The example demonstrates the generation of Linedancer code
from a template. The arguments of the template call are literally taken and
substituted in the RTS frame, see Section A.1.

subtractVector(X0,X1,Xresult)

⇒
aop{

// subtract X1 from X0 and store the result in Xresult

RTS(Sub, Int, -, @{Xresult}, @{X1}, @{X0)

};

End example

6.5 Results and Discussion

In this section the results of the previously elaborated developments are dis-
cussed and combined in order to formulate a conclusion on the feasibility of the
Linedancer implementation.

180

6.5 – Results and Discussion

DMA

ASP

0

load 16x32

XY-locations

of neurons

load

packed

sample

vector

1K clocks

18K
clocks

25K9 clocks / (sample.epochs)

512
clocks

[n]

2K
clocks

load sample

vector (PDT)

[n]

1
 15

[n-1]

step1: High dimensional distance (iterated H times)

load XY-

location (PDT)

0
 1
 15

step2: Winner

selection

min

step3: 2D

distance

100
clocks

step4: Determine

neighbourhood

38
clocks

5K5
clocks

0
 1
 15

step5: Update neurons

(iterated H times)

load

packed

sample

vector

512
clocks

[n]

Figure 6.12: Timing diagram for the 5 processing steps in the inner loop, based
on the ∞-norm variant

Timing. The timing diagram for the 5 steps ’in the inner loop’ of Algorithm 6.1
(lines 8 · · · 14) is depicted by Figure 6.12. As can be observed the DMA controller
activities for loading the next sample vector and the reloading of the 2D positions
of the neurons, can be hidden in the processing by the ASP.

The performance measurements of the Linedancer are now compared with
two – manually optimised – Intel Pentium 4 implementations, one with Stream-
ing SIMD Extensions 2 (SSE2) instructions and one without SSE2 instructions.
See Figure 6.13 and Table 6.5 for a detailed comparison. The timing results of
Figure 6.13 are based on W = 16, H = 32 and Nc = 256 for the map dimensions,
S = 500 for the number of samples and T = 250 for the number of epochs. Both
Pentium implementations are based on estimates under ideal conditions, that is,
using the most optimal SSE2 instructions and large enough caches to host all
data. Since the SSE2 can operate on 4 single precision floats at a time, it is ex-
pected that the computation speeds up the sequential computation with a factor
4 for parallel operations (like step 5). Both Pentium versions use the 1-norm
for computing the length of a vector. The two Linedancer results are measured
cycles; the Pentium results are best estimates.

The SSE2 estimate is almost 5 times as fast as the sequential version, in par-
ticular step 1 has a relatively high speedup. The Linedancer versions however, are
disappointing compared to the SSE2 implementation, in particular when consid-
ering the various concessions to the precision of computation. The performance
of step 1 falls short for the 1-norm as well as for the ∞-norm. Especially for the
∞-norm, which was expected to take fewer cycles because there is no need to
sum up all components as in the 1-norm. The reason for this poor performance is

181

Chapter 6 – Case: Mining Dynamic Document Spaces

Pentium estima-
tes un-
der ideal condi-
tions (2 GHz)

Aspex Linedancer-
P1 measure-
ments (300
MHz)

Training step sequen-
tial
[cycles]

SSE2
[cycles]

1-norm
[cycles]

∞-
norm
[cycles]

1. Distance in highD 393216 65024 43384 18028
2. Winner selection 768 768 2158 2158
3. Distance in 2D 2560 2560 100 100
4. Determine neighbourhood 512 512 38 38
5. Update neurons 393216 98304 5590 5536
total [cycles] 790272 167168 51270 25860
total time [sec] for a estimated 49.4 10.4 21.4 10.8
particular training job measured 125 75 21.1 10.7

Table 6.5: Comparison of training cycles per sample per epoch, and the total
training time of S = 500 samples and T = 250 epochs

the relatively slow adding tree implementation for the 1-norm and slow maximum
operator for the ∞-norm. At a local level, however, the Linedancers do speed up
step 5 significantly and compensate amply for the lower clock frequency of the
Linedancer (fP4 : fLD = 2.0 GHz : 300 MHz).

Both Pentium implementations have also been run on a 2.0 GHz Pentium
processor. Both versions are made by compiling the Algorithm 6.1 with the Intel
C++ compiler (version 8.0), one with the SSE2 optimising option. The sequential
Pentium implementation takes 125 sec to complete (for 500 samples, 250 epochs).
The SSE2 version runs at a disappointing 75 sec; inspection of the generated
assembly code revealed sub-optimal SSE2 code. Moreover, both versions suffer
from L1 and sometimes L2 cache overflow; the SOM neural network and the
samples already take 1MB of memory11.

The main reason for the poor performance of the dual Linedancer system is
the relatively high communication overhead in the inner loop. We collected for
the most dominant part, the high dimensional distance (step 1), how many cycles
were spent in communication and how many in computation, see Figure 6.14.
This figure shows that the communication overhead dominates the computation
cost.

When communication would improve such that processing and communica-
tion could be perfectly balanced then this would result in a 2.5× performance

11 Cache overflow depends on the size of the caches. The L1 cache in the Pentium 4 processors
is far less than 1MB in size; average value for L1 is 16 KB and for L2 512KB.

182

6.5 – Results and Discussion

Pentium (seq) Pentium (SSE2) LD 1-norm LD max-norm
0

10

20

30

40

Implementation alternatives

T
im

e
[s

ec
]

Update Neuron
2D distance + Determine neighbours
HD distance + Winner selection

Figure 6.13: Comparison of implementation
alternatives for SOM training

Other operations
Inter-PE communication

Figure 6.14: Distribution of
communication and compu-
tation in High Dimensional
Distance computation (∞-
norm)

improvement for 1-norm (21.4 → 8.6 sec) and 2× for ∞-norm (10.8 → 5.3 sec).
When the next generation Linedancer (HD, see Section 2.3.4) would be used then
the performance could improve with a factor of 2.1 (10.8 → 5.2 sec)12. Since
the performance specifications of the Linedancer-HD and the chip itself are not
available no further estimates on HD timing can be given.

Concluded is that the inter-PE communication, in particular the asynchronous
communication, of the Linedancer architecture should be improved significantly
in order to be competitive even to non-embedded processors for this application.

Memory allocation. The final memory allocation for this mining case is pre-
sented in two tables, one for fixed parameters used by the algorithm (Table 6.7)
and the other for the variables used in the algorithm (Table 6.8).

The first table lists all parameters used in Algorithm 6.1, complete with the
domain they are defined on, and the chosen fixed point representation. Of the
parameters, only the learning rate α is stored in the Linedancer; the other pa-
rameters are hosted on the SPARC. All other parameters are either used in
immediate mode on the PEs for direct processing or kept on the SPARC (e.g., for
flow control in case of n). Note that the Linedancer architecture has a preference
for even field width, see Section A.1. Some variables are dimensioned a bit wider
than necessary (e.g., rw and r), because these are not involved in time critical
sections of the code.

12 The estimate is based on the following assumptions: the time for a maximum-operation
is divided in half because of the two-channel architecture (see Section 2.3.4), the improved
inter-PE communication network (chordal ring), and finally the higher clock frequency (400
: 300 MHz).

183

Chapter 6 – Case: Mining Dynamic Document Spaces

Figure 6.15: Part of a sample SVG-map (zoomed in)

The final allocation of variables to the local memory is more complex than for
the other cases because the usage of the memory fields dynamically changes over
time and is dependent of the location of the PE. For example, the computation
of the high dimensional distance (step1, algorithm line 8) prefers a segmentation
per neuron (H == 32 segments of 256 PEs each), whereas for the computation
of the winning neuron (step 2, line 10) we prefer one single large segment.

Quality of the maps. No formal user tests are performed. The quality of the
maps are informally discussed since the quality of the maps is not the focus of
this study. The quality measures are only used for comparison purposes and to
obtain an indication of the number of epochs T .

An example of a SVG map is shown in Figure 6.15. It has been created from
newsgroups BBC News and BBC Sports in June 2005. Each square represents
a neuron vector, containing Nc = 256 components, which is generalised from
samples located in its neighbourhood. Similar neurons form a cluster, indicated
by the colour of the neurons. This colour represent how much neighbouring
neurons resemble the one in focus: e.g., the colour yellow and green indicate
similarity whereas purple and pink indicate differences. Each cluster (or country)
is bordered by red lines, to indicate the dissimilarity of two adjacent clusters.
See for example the country ”microsoft, yahoo” in the left part of the map in
Figure 6.15. Table 6.6 describes some articles of the two largest countries.

184

6.5 – Results and Discussion

Country
name

ID Title

microsoft,
yahoo

9323 Microsoft Delivers SQL Server Preview (TechWeb)
8138 Gates spotlights windows, Office updates (USATO-

DAY.COM)
8242 Microsoft Xbox 360 aims at Sony’s hold on Japan

(Reuters)

img,
game

8656 Woods has open mind on Presidents Cup Pairings
8640 Woods has open mind on Presidents Cup Pairings
9458 Pierce returns to favorite venue for Fed Cup final

Table 6.6: Some articles in two countries of the map in Figure 6.15

185

Chapter 6 – Case: Mining Dynamic Document Spaces

d
es

cr
ip

ti
o
n

sy
m

b
o
l

ra
n
g
e

fi
x
ed

p
o
in

t
sc

h
em

e

m
em

o
ry

fi
el

d
d
o
m

a
in

h
o
st

le
a
rn

in
g

ra
te

α
(0

,1
]

0
•8

im
m

ed
ia

te
fi
x
ed

p
o
in

t
S
P
A

R
C

n
ei

g
h
b
o
u
rh

o
o
d

si
ze

σ
[1

,m
a
x
(W

,H
)/

2
]

4
•0

im
m

ed
ia

te
fi
x
ed

p
o
in

t
S
P
A

R
C

le
a
rn

in
g

ra
te

fa
ct

o
r

f α
(0

,1
]

g
lo

b
a
l

fl
o
a
t

S
P
A

R
C

n
ei

g
h
b
o
u
rh

o
o
d

si
ze

fa
ct

o
r

f σ
(0

,1
]

g
lo

b
a
l

fl
o
a
t

S
P
A

R
C

ep
o
ch

n
u
m

b
er

t
[1

,2
5
5
]

g
lo

b
a
l

fi
x
ed

p
o
in

t
in

t
S
P
A

R
C

tr
a
in

in
g

sa
m

p
le

in
d
ex

s
[0

..
2
3
2
−

1
]

g
lo

b
a
l

fi
x
ed

p
o
in

t
in

t
S
P
A

R
C

T
ab

le
6.

7:
F
ix

ed
po

in
t

ac
cu

ra
cy

of
pa

ra
m

et
er

s
in

th
e

SO
M

tr
ai

ni
ng

al
go

ri
th

m

d
es

cr
ip

ti
o
n

d
ep

en
d
en

cy
ra

n
g
e

fi
x
ed

p
o
in

t
sc

h
em

e

m
em

o
ry

fi
el

d
a
lg

o
-

ri
th

m
-

li
n
en

o

w
ei

g
h
t

v
ec

to
r

~m
r

=
(1
−

α
)
·~m

r
+

α
·~x

s
[0

,1
)

0
•8

E
X

T
6
4
−

1
9
1
(8

)
1
4

tr
a
in

in
g

sa
m

p
le

~x
s

[0
,1

)
0
•8

C
A

M
0
(8

)

h
ig

h
d
im

en
si

o
n
a
l
d
is

ta
n
ce

δ r
=
‖~x

s
−

~m
r
‖ ∞

(−
1
,1

)
2
•8

C
A

M
1
6
(1

6
)

8

lo
ca

ti
o
n

w
in

n
in

g
u
n
it

r w
=

a
rg

m
in

r
(‖

~x
s
−

~m
r
‖)

([
0
,W

−
1
],

[0
,H

−
1
])

8
•0

C
A

M
4
8
(8

),
5
6
(8

)
1
0

lo
ca

ti
o
n

o
f
a
ll

u
n
it

s
r

([
0
,W

−
1
],

[0
,H

−
1
])

8
•0

C
A

M
1
6
(8

),
2
4
(8

)

lo
w

d
im

en
si

o
n
a
l
d
is

ta
n
ce

d
r
,r

w
=
‖r
−

r w
‖ 1

[0
,4

6
]

8
•0

C
A

M
1
6
(8

)
1
2

n
ei

g
h
b
o
u
rh

o
o
d

m
a
tr

ix
h

r
=

(d
r
,r

w
≤

σ
)

=
B

ox
(r

w
,σ

)
{0

,1
}

8
•0

C
A

M
1
6
(8

)
1
3

T
ab

le
6.

8:
F
ix

ed
po

in
t

ac
cu

ra
cy

of
va

ri
ab

le
s

us
ed

in
th

e
SO

M
tr

ai
ni

ng
al

go
ri

th
m

186

6.6 – Conclusions

For the user interface an interaction functionality is supported. A mouse-over
event on the name label of an article returns the title in a semi-transparent text
balloon (tooltip), see Figure 6.15. Clicking on this label will open an internet
browser window with the content of the whole article. A mouse-over event on a
neuron will return information about its specialisation. SVG has native support
for zooming and panning.

Methodology and Architectural language issues. The high level design
stages are developed with the proposed evolutionary development methodology.
The methodology contributed in the estimation of the value of training parame-
ters as well as of their precision, justification of the various simplifications, the
calibration of the two quality measures QE and TE, and the mapping of the
variables used.

The various simplifications, conducted in the trade-off subphase, include the
choice for the dimension of the feature space, choice for norms, boxed neighbour-
hood, and the precision of parameters and variables. Also behaviour preserving
optimisations are guided by IRIS. Especially for the trade-off subphase the in-
stant graphics capability of the architectural language environment proved to be
very valuable.

The unique contribution of this case to IRIS as compared to the other cases
are:

• providing for a non-printing application (extending IRIS beyond image
processing),

• the dynamic segmentation of the Linedancer array (run time configurable),

• the handling of two quality functions,

• the extensive use of (hashing based) string handling functions needed for
the various text handling in feature extraction (Figure 6.2), and, finally,

• the sparse matrix support for handling the very large dimensions of the
uncompressed document space in feature extraction and compression (Fig-
ure 6.2).

The last two items are very convenient for modelling parts of the context of our
system.

6.6 Conclusions

A dual Linedancer P1 is approximately 5 times faster than a sequential Pentium
implementation in training a SOM neural network: 10.8 sec versus 49.4 sec (ne-
glecting cache effects for the Pentium). Disappointing is that the dual Linedancer-
P1 system is not faster than the Pentium SSE2 implementation, despite that the

187

Chapter 6 – Case: Mining Dynamic Document Spaces

SSE2 figures were estimated under optimum conditions (disregarding, e.g., cache
misses).

Improving on inter-PE communication such that computation and communi-
cation are better balanced would slightly increase the performance of the Linedancer-
P1 (factor of 2.5 for 1-norm and 2 for ∞-norm). The Linedancer-HD would
increase the performance with a factor of 2.1 with respect to the P1 1-norm im-
plementation.

It is recommended to improve the performance of the inter-PE communication,
and in particular the asynchronous communication network. This would not only
improve the performance, but also the effectivity of scalability to larger network
dimensions using multiple Linedancers.

The case contributed to the IRIS methodology in several unique aspects,
among which there are: the use of the run-time configurable segmentation, and
for the architectural language the extensive use of string handling and sparse
matrices in the modelling of the problem context.

188

CHAPTER 7

Evaluation and Conclusions

7.1 Introduction

This thesis describes IRIS, a firmware development methodology for synchro-
nously coupled many-core architectures such as SIMD and VLIW processing cores.
This chapter concludes the work of this thesis.

First the general conclusions are drawn (Section 7.2). Subsequently the claims,
stated in the Chapter 1, are revisited, see Section 7.3. Finally, remaining problems
are discussed and directions for future research are given (Section 7.4).

7.2 Conclusions

IRIS can be characterised as a confidence-by-construction framework: it offers an
incremental approach to system construction, that gradually converges to a target
language implementation. Interactivity and executability provide early feedback,
in particular on incorrect problem interpretation or design faults. In case of
design iterations, models of previous phases or iterations can serve as a solid base
for continuation in an alternate design refinement. Decoupling the development
language from the target hardware architecture language offers freedom of choice
for either migration to different target hardware architectures or different problem
domains. Design space exploration and the decision recording during development
raises quality and takes less time because the evaluation of design alternatives can
be done in situ. All this is realised by using a development framework, that is
based on a single architectural language for the whole trajectory, and in this
fashion the foundation for our integral IRIS framework is layed.

Chapter 7 – Evaluation and Conclusions

7.3 Claims

The validity of the claims about IRIS, raised in Chapter 1, is illustrated with
examples.

1. For an effective and efficient implementation on a massively parallel process-
ing core it is necessary to manually (re)model the problem in a suitable
parallel representation.

We showed for image quantisation that stochastic modelling leads to
a simpler parallel algorithm, and that it performs efficiently when
mapped onto a massively parallel hardware architecture (Sections 4.2,
4.3, 4.4).

2. A semi-automatic and interactive development process is needed for map-
ping a task on a dedicated massively parallel processing core efficiently.

In the stochastic image quantisation case the effect of the width of
variables (in bits) on quality – used in a Random Number Genera-
tor – can be quickly modelled by using IRIS without implementing it
(Section 4.4.2.3). A simple executable specification, an instant display
of a quality versus bit-width graph (Figure 4.17), and visualisation of
results (Figure 4.18), suffices for this purpose.

3. A single architectural language firmly based on mathematics for all devel-
opment phases reduces development time and reduces the number of design
errors.

The stochastic image quantisation case demonstrates the use of a sin-
gle language through all phases. To mention a few phases: modelling
the problem and its parallel implementation with simulated anneal-
ing (familiarisation, Section 4.2), a concise functional architecture and
a quality function, both coded in a functional language (incremental
prototype, Section 4.3), followed by an evaluation of various quality-
performance trade-offs using instant graphics (Section 4.4.2) and finally
the automatic translation to Linedancer code (Section 4.4.5).

4. Most of the relevant extra-functional requirements can be handled by in-
tegrating them into the regular functional flow; as a consequence the ar-
chitectural language should support in situ monitoring and visualisation of
quantifiable extra-functional properties.

As an example the trade-off of quality versus performance in the data
mining case, involved the comparison of a Gaussian neighbourhood
with a box-shaped neighbourhood (Section 6.4.2.4, Figure 6.9). This
resulted in an acceptable trade-off, by inspection of Figure 6.10 and
relating it to sample maps.

190

7.4 – Discussion and future research

5. In the development process small steps and immediate feedback are crucial.

As an example we take the data mining case (Chapter 6, Sec-
tion 6.4.2.3) where the computation of the 1-norm of a vector took
too much time on the Linedancer. A less computationally intensive al-
ternative norm, the ∞-norm, was quickly prototyped and had a small
but acceptable quality loss.

6. The development process should have a phased approach serving the various
development roles, and should subsequently include:

(a) a familiarisation phase with respect to the problem and the target
hardware architecture(s),

(b) an incremental prototyping phase (hardware architecture independent),

(c) a transformational development phase (hardware architecture depen-
dent),

which are performed in a cyclic manner when needed (e.g., in case of design
iterations).

An illustration of a phase-role interaction is a possible design iteration
in the stochastic image quantisation case. During the behaviour pre-
serving expansion of the functional model (reorganisation phase), an
exceeded memory constraint can enforce reconsidering the precision of
certain variables (trade-off phase). See Chapter 4, Subsection 4.4.2.2
and Figure 4.16 for the details.

7.4 Discussion and future research

In this section we address remaining problems and give direction for future re-
search.

• The development framework IRIS is targeted to assist firmware develop-
ment for many-core processing systems. To be more precise, the applica-
bility of IRIS is restricted to the programming of cores that operate in a
synchronous domain such as a control processor extended with SIMD cores
(e.g., Linedancer Section 2.3.4) or a VLIW core (e.g., Avispa+1 [24]). The
Linedancer demonstrates that the constraint of the synchronous domain
is not that strict, but the applicability of IRIS to Globally Asynchronous
Locally Synchronous (GALS) [38] cores needs to be investigated in more
detail.

• Processor manufacturers see a toolchain for firmware development as a an
unavoidable obligation instead of a strategic opportunity to attract potential

1 Silicon Hive designed the Avispa+, a VLIW-type processor.

191

Chapter 7 – Evaluation and Conclusions

users for their processor chips. The toolchains are without exception based
on C with intrinsic functions or instructions. In this thesis the applications
are specified in a functional language, which is more natural to specify
parallelism. The question remains whether application programmers are
willing to accept functional languages.

• In this thesis the functional specification is leading the development. How-
ever, the cases suggest that in the trade-offs between functional and extra-
functional properties, print quality is just as important as functionality. It
is not clear what the consequences are for IRIS if print quality is prime and
functionality an outcome. Furthermore, the monitoring of extra-functional
properties or constraints is now integrated in the functional flow. It is not
clear whether this works for all extra-functional constraints (as for example
development effort).

• Integration of the template and translation subphases into an interactive
compiler framework is desirable, and therefore needs to be investigated.

• In this thesis we have shown that image processing functions and data min-
ing can benefit from massively parallel compute models. The question is
what other kind of advanced functionality around document processing is
expected to profit from these kinds of hardware architectures; such as pro-
posed in Intel’s Recognition-Mining-Synthesis platform Section 1.2.1.

192

APPENDIX A

Relevant Linedancer Details

This appendix describes the relevant details of the used Linedancer
processor family1. The programming aspects of the associative SIMD
processor (ASP) and the communication hierarchy are addressed.

A.1 Relevant Linedancer instructions

This section describes various programming aspects of the Linedancer [106], that
are used in the three cases, see Chapter 4, Chapter 5, and Chapter 6. In the fol-
lowing paragraphs we address: associative functions, high level library functions,
inter-PE communication, and run-time segmentation. At the end the bit-field
dependent instruction timing is described.

Associative functions. The associative functionality of the Linedancer allows
for fast data dependent processing. For example a table-look-up-and-replace can
be done efficiently on an associative array, see code fragment below. Multiple
native Linedancer instructions are collected and specified in a special macro lan-
guage (see the aop{...} macro block) to distinguish it from sequential C-code
specifications. The search item (key) is looked up in parallel (Tag), and sets tag-
register (tr1) for each PE that matches the search item (executed in the first
cycle). The next instruction, Activate, actually activates the PEs that may par-
ticipate in the subsequent operations. Finally, during cycle 3, the specified value
(value) is written into the activated PEs in parallel. The total operation takes
only 3 cycles, regardless of the number of data items.

1 Aspex Semi-conductor, http://www.aspex-semi.com/.

http://www.aspex-semi.com/�

Appendix A – Relevant Linedancer Details

aop{

Tag(Binary, key, Byte, 1, tr1, -), // cycle 1

Activate(Matching, -, tr1, -), // cycle 2

Write(Binary, value, Byte, 0) // cycle 3

}

RTS library functions. One relevant category of programming components is
the Run Time Support (RTS) function-library, that is used for more advanced
mathematical functions.

The RTS library provides high level instructions for manipulating multiple-bit
vector and scalar operands. Multiple RTS-instructions are specified and collected
in aop{...} macro blocks. A variety of instructions are provided to perform
assignment, arithmetic, logical and relational operations. RTS Instructions may
operate on a PE memory fields (on the ASP) or between a PE memory field and
a scalar value (ASP and SPARC repectively). This so called RTS frame have six
parameters:

aop{

RTS (Function , DataType , CommsOpt , Result , Operand1 , Operand2),

}

where:
Function: Specifies the function of the RTS instruction. For example arith-

metic functions include addition (ADD), subtraction (SUB), and
multiplication (MUL).

Datatype: Specifies the type of data processed by the specified function. For
example the datatype is used to distinguish between signed (INT)
and unsigned subtraction (CARD).

CommsOpt: The CommsOpt parameter specifies if the communication is local
or remote. For example getting a bitfield from a remote PE is
coded by co{Get,disp}, where disp specifies the communication
displacement.

Result,
Operand1,
Operand2:

There are three result and operand parameter formats. First,
memory field specifications of the form @{Size, Address} for a
vector operand. Second, scalar operand specification (e.g., a vari-
able hosted on the SPARC. Third, an operand may also take on
a literal value.

RTS instructions implicitly use two particular activity bits (ab0 and ab1, two
of the eight programmable bit-flags) for its operation. The RTS functions are
governed by the following rules:

• if two vector operands are used then only one vector operand can come from
extended memory (EXT),

194

A.1 – Relevant Linedancer instructions

ab0

Byte 0

Byte 2

Byte 1

Byte 3

n
 n+4
n-5

Leftwards
 Rightwards

PE

Figure A.1: Example of synchronous inter-PE communication

• only those PEs that have their activity bit ab0 set participate, and

• activity bit ab1 is modified.

It is beyond the scope of this thesis to describe further details. For more
details we refer to [106].

Inter-PE communication. Communication between PEs is facilitated by a
shift register, effectively 1 bit per clock cycle but for all PEs in parallel. The
Linedancer-HD supports a chordal ring – similar to the MiMagic6 [91] – with a
chord length of 32, meaning that long communication distances are reduced by a
factor of 32 with respect to the Linedancer-P1. Longer distances or wider data
fields increase the communication time. As is the case with the RTS functions,
register ab0 activates the PE that may participate. For example, in Figure A.1,
PE n is allowed to receive a byte from its right neighbour on distance 4, see the
first RTS(Assign...) instruction in the Linedancer-C code fragment below.

aop{

RTS(Assign, Bitset, co{Get,4}, @{Byte2}, @{Byte1}, -),

RTS(Assign, Bitset, co{Put,-5}, @{Byte0}, @{Byte2}, -)

}

The subsequent Assign instruction executes a byte transfer from the current PE
to the 5th PE left of the current activated PE. When all PEs would have their
ab0-register set, then all would participate in the parallel communication process.
Effectively, moving byte1 to byte2 and byte2 to byte0 for all processing elements
in parallel.

Segmentation. The string of PEs can be split into a number of independent
segments and in fact makes the Linedancer run-time reconfigurable. Commu-
nication cannot take place between segments, therefore, when the string is split

195

Appendix A – Relevant Linedancer Details

operation operand and result
bit-width

estimated num-
ber of clocks

add w + w → w + 2 4 + w
subtract w − w → w + 2 4 + w
add/subtract w ± w → w + 2 4 + 2 · w
multiply w ∗ w → 2 · w ±6 · w + w2

less or equal w ≤ w → (w + 2) → 1 6 + w
xor w ⊕ w → w 4 + w
min/max (segment size 8K) {w0 · · ·wN−1} → w ±75 · w
min/max (segment size 4K) {w0 · · ·wN−1} → w ±54 · w
local assign w → w 4 + w
synchronous remote assign (P1) w → w 22 + d · w
synchronous remote assign (HD) w → w ±d · w/32
asynchronous remote assign w → w 6 + 16 · w
PDT: (EXT,CAM)↔PDS w → w 14 + 12 · w

Table A.1: Estimated performance of some native Linedancer-P1 instructions in
number of clocks for fields with even bit-width. The parameters w and d are used
for bit-width of variables and communication distance where appropriate.

each segment and their associated PEs can be considered as independent (smaller)
SIMD engines driven by a common instruction bus. The Inter-PE communication
network can only be split into segments that are multiples of sixteen PEs. Most
of the time a segment of the maximum number of PE is chosen. In some case, for
example in Chapter 6 we alternately use 256 and 8K.

Instruction timing. The Linedancer is in essence a bit-oriented architecture.
This has its implications on the timing of basic functions as addition or mul-
tiplication. See for example Table A.1, that contains the estimated number of
instruction cycles for even length bit-fields (w is even). This table shows the
performance figures of some popular functions, some with two operands (dyadic)
and some with a single operand (monadic). The dyadic functions include arith-
metic and logical functions. The size of the operand bit-field is denoted by w,
and for the dyadic functions the table only holds equal operand sizes. Since the
Linedancer ALU actually is 2 bit wide, even length bit-fields are computed almost
twice as fast as odd length bit-fields.

The monadic functions include special functions, such as maximum and min-
imum on a set of values (vector components), and assignment instructions which
can use inter-PE communication. Two types of communication exists: synchro-
nous (distance is denoted by d), and asynchronous for the longer distances.

In particular during feasibility and optimisation studies, an estimation of the
time to compute arithmetic operations is often required. For convenience a second
timing model is used that is parameterised by the length of the resulting bit-field.

196

A.2 – Storage hierarchy

TDS
 SDS
 PDS

EXT,

CAM

ASP

tile

storage

(4K . n)

full

bitmap

storage

PC bulk

storage

tile

storage

(4K . n)

512-4K

cycle

latency

single

cycle

latency

TDT
 SDT
 PDT

Figure A.2: The storage hierarchy of a Linedancer based system. Indicated are
the four memory subsystem and the three involved communication processes (n
is the number of Linedancers).

The reason for this second model is the opportunity to combine at least three
concerns in a single way: the coding of the functionality, the memory resource
consumption and the timing. In particular the better control on the memory
consumption is the reason to base the (timing) model on the length of the result
field. The model includes the operations add, subtract and multiply and their
execution time is denoted by ADD l, SUB l, and MULl respectively, where l is
the width of the result field (both operands are equally wide). For example, an
addition with an l-bit result takes a time of l+2 cycles (l = w+2, see Table A.1).

Multiplications with not equal operand sizes are also used in the cases. The
time for such a multiplication – denoted as MULl1,l2 – is parameterised by two
numbers, the length of multiplier l1, and the length of multiplicand l2. For ex-
ample a multiply instruction of a l1 = 4 bit variable by a l2 = 6 bit variable
can be computed by l1 − 1 = 3 times a shift-add-pair on a 6 bit operand and
would take (l1 − 1) · (4 + w) cycles, where w = 6 (see Table A.1 for add timing).
Additionally an initialisation is needed of a l1 + l2 = 10 bit result field that uses a
local assign and takes an additional 4+w (w = 10), see Table A.1 for local assign
timing. The total time for a l1 + l2 = 10 bit-field multiplication result is around
3 · (4 + 6) + (4 + 10) = 44 cycles.

A.2 Storage hierarchy

Optimal performance not only requires balancing the computation and commu-
nication for the ASP, but also that of the complete data ’supply’ chain. See
Figure A.2 where the complete data supply chain is pictured. The three stores
Primary Data Store (PDS), Secondary Data Store (SDS), and Ternary Data
Store (TDS) are involved in three linked data communication processes: Pri-
mary Data Transfer (PDT), Secondary Data Transfer (SDT) and Ternary Data

197

Appendix A – Relevant Linedancer Details

storage element transfer process description
EXT, CAM PDT: EXT, CAM↔PDS Figure 2.9
PDS SDT: PDS↔SDS Figure 2.9
SDS TDT: SDS↔TDS Figure 2.10, Figure 2.11

(external data DRAM)
TDS bulk-storage (e.g PC based)

Table A.2: Storage elements and their related communication processes

Transfer (TDT), see Table A.2. The SDT and the TDT are sequential DMA-like
processes, while the PDT is a massively parallel communication process. At the
start the local memory store (EXT, CAM) of the ASP is initialised with the data
for the first job. Then, during computation by the ASP, the SDT communication
process stores the previous result and loads new data into the PDS. After com-
putation, the ASP usually performs a PDT communication process that swaps
the content of a result vector in local memory with the content of the PDS in
parallel for all PEs in a few cycles (see Table A.1 for PDT timing). When the
SDS memory empties its data buffer for the final computation, a TDT process is
triggered to request new data.

198

BIBLIOGRAPHY

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and In-
terpretation of Computer Programs. MIT Press, 1996.

[2] A. Anjewierden, R. de Hoog, R. Brussee, and L. Efimova. Knowledge flows in
weblogs. In Proceedings of the 13th International Conference on Conceptual
Structures (ICCS 2005), Kassel, Germany, 2005.

[3] Joe Armstrong. Programming Erlang, Software for a Concurrent World. Prag-
matic Bookshelf, 2007.

[4] Arnulfo P. Azcarraga and Teddy N. Yap Jr. SOM-Based Methodology for
Building Large Text Archives. In DASFAA, pages 66–73, 2001.

[5] Arnulfo P. Azcarraga and Jr. Teddy N. Yap. Extracting meaningful labels for
WEBSOM text archives. In Proceedings of the tenth international conference
on Information and knowledge management (CIKM 2001), pages 41–48, New
York, NY, USA, 2001. ACM Press.

[6] Andrew D. Bagdanov. Style Characterisation of Machine Printed Texts. PhD
thesis, University of Amsterdam, May 2004.

[7] Arnab Banerjee, Pascal T. Wolkotte, Robert D. Mullins, Simon W. Moore,
and Gerard J.M. Smit. An energy and performance exploration of network-
on-chip architectures. To appear in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems Special Section on Networks-on-Chip, 2008.

[8] H. P. Barendregt. Introduction to lambda calculus. In Aspenæs Workshop on
Implementation of Functional Languages, Göteborg. Programming Methodol-
ogy Group, University of Göteborg and Chalmers University of Technology,
1988.

Bibliography

[9] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt.
PACT XPP – A Self-Reconfigurable Data Processing Architecture. Journal
of Supercomputing, 26(2):167–184, September 2003.

[10] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2nd edition, 2004.

[11] J.B.C. Beckers, W.P.M.H. Heemels, B.H.M. Bukkems, and G.J. Muller. Ef-
fective industrial modeling for high-tech systems: The Example of Happy
Flow. In The International Council on Systems Engineering (INCOSE), San
Diego, 2007.

[12] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cyclo-
static dataflow. In IEEE Transactions on Signal Processing, pages 397–408,
1996.

[13] Richard Bird. Introduction to Functional Programming using Haskell. Pren-
tice Hall Press, 2nd edition, 1998.

[14] Gerrit A. Blaauw and Frederick P. Brooks Jr. Computer Architecture, Con-
cepts and Evolution. Addison Wesley Longman, Inc., 1997.

[15] Maarten Boasson. Architecture and design: a case study. In NATO Research
& Technology Organisation: Building robust systems with fallible construction
(IST-064/RWS-011), 2006.

[16] Barry W. Boehm. Software Engineering Economics. Prentice-Hall, Inc.,
1981.

[17] Barry W. Boehm. Understanding and controlling software costs (invited pa-
per). In International Federation for Information Processing Congress (IFIP),
pages 703–714, 1986.

[18] A.D. Booth. A signed binary multiplication technique. The Quarterly Journal
of Mechanics and Applied Mathematics, 4(2):236–240, 1951.

[19] L.B. Brisolara, M.F.S. Oliveira, R. Redin, L.C. Lamb, L. Carro, and F. Wag-
ner. Using UML as Front-End for Heterogeneous Software Code Generation
Strategies. In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE 2008), pages 504–509, Munich, 2008.

[20] William W. Broenkow. Introduction to Programming with MATLAB for
Scientists and Engineers. ML Books, The mathWorks, 2001.

[21] Frederick P. Brooks. The Mythical Man-Month: Essays on Software En-
gineering, 20th Anniversary Edition. Addison-Wesley Professional, August
1995.

200

Bibliography

[22] Alan Brown. Model Driven Architecture: Principles and practice. Journal
of Software and System Modeling, 3(4):314–327, 2004.

[23] M.D. van de Burgwal, G.J.M. Smit, G.K. Rauwerda, and P.M. Heysters. Hy-
dra: an Energy-efficient and Reconfigurable Network Interface. In Proceedings
of the International Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’06), pages 171–177, Las Vegas, Nevada, USA, June 2006.

[24] G. Burns, P. Gruijters, J. Huisken, and A. van Wel. Reconfigurable accel-
erator enabling efficient sdr for low-cost consumer devices. In SDR Technical
Forum, Orlando, Florida, November 2003.

[25] Francky Catthoor. The software washing machine. In Proceedings of the 15th
international symposium on System Synthesis (ISSS 2002), New York, NY,
USA, 2002. ACM. (invited talk).

[26] Peter Checkland. Systems Thinking, Systems Practice: Includes a 30-Year
Retrospective. John Wiley & Sons, September 1999.

[27] Theo A. C. M. Claasen. System on a Chip: Changing IC Design Today and
in the Future. IEEE Micro, 23(3):20–26, 2003.

[28] Mirko Conrad and Heiko Dörr. Model-based development of in-vehicle soft-
ware. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE 2006), pages 89–90, 2006.

[29] M.J. Crawley. The R Book. John Wiley, 2007.

[30] John Crinnion. Evolutionary Systems Development, a practical guide to the
use of prototyping within a structured systems methodology. Hyperion Books,
1990.

[31] Rui Dai. Real time clustering and visualization of dynamic information us-
ing a massively parallel embedded processor. Master’s thesis, University of
Singapore, 2005.

[32] William J. Dally, Ujval J. Kapasi, Brucek Khailany, Jung Ho Ahn, and
Abhishek Das. Stream processors: Progammability and efficiency. Queue,
2(1):52–62, 2004.

[33] Ahmet Demir. Comparison of Model-Driven Architecture and Software Fac-
tories in the Context of Model-Driven Development. In Proceedings of Model-
Based Development of Computer-Based Systems and Model-Based Methodolo-
gies for Pervasive and Embedded Software (MBD/MOMPES), pages 75–83,
Berlin, 2006.

[34] Michael Dittenbach. The growing hierarchical self-organizing map: Uncov-
ering hierarchical structure in data. Master’s thesis, Technical University
Vienna, 2000.

201

Bibliography

[35] Edward R. Dougherty. Digital Image Processing Methods. Marcel Dekker,
Inc., New York, NY, USA, 1994.

[36] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
John Wiley & Sons, Inc., second edition, 2001.

[37] Petru Eles, Krzysztof Kuchcinski, and Zebo Peng. System Synthesis with
VHDL: A Transformational Approach. Kluwer Academic Publishers, Norwell,
MA, USA, 1998.

[38] Bevan Baas et al. Hardware and applications of asap: An asynchronous array
of simple processors. In IEEE HotChips Symposium on High-Performance
Chips (HotChips 2006), August 2006.

[39] David A. Patterson et al. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley, December 2006.

[40] D.C. Pham et al. Overview of the architecture, circuit design, and physical
implementation of a first-generation Cell processor. Solid-State Circuits, IEEE
Journal of, 41(1):179–196, Jan. 2006.

[41] E. Waingold et al. Baring it all to software: Raw machines. Computer,
30(9):86–93, 1997.

[42] Richard P. Kleihorst et al. Xetal: a low-power high-performance smart cam-
era processor. The IEEE International Symposium on Circuits and Systems
(ISCAS 2001), 5:215–218 vol. 5, 2001.

[43] Simon Peyton Jones et al. Haskell 98 language and libraries: The revised
report, 2002.

[44] S.R. Vangal et al. An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm
CMOS. Solid-State Circuits, IEEE Journal of, 43(1):29–41, Jan. 2008.

[45] T. Kohonen et al. Self organization of a massive document collection. In
IEEE Transactions on Neural Networks, volume 11, pages 574 – 585. IEEE,
2000.

[46] Teuvo Kohonen et al. Self organization of a massive text document collection,
pages 171–182. Elsevier, Amsterdam, 1999.

[47] R.W. Floyd and L. Steinberg. An adaptive algorithm for spatial gray scale.
In Society for Information Display, Symposium of Technical Papers, pages
36–, 1975.

[48] Bernd Freisleben and Andreas Schrader. An evolutionary approach to color
image quantization. In Proceedings of 1997 IEEE International Conference on
Evolutionary Computation (ICEC 97), pages 459–464, Indianapolis, IN, USA,
1997.

202

Bibliography

[49] Jon Friedman. Matlab/simulink for automotive systems design. In Proceed-
ings of the Conference on Design, Automation and Test in Europe (DATE
2006), pages 87–88, 2006.

[50] D. D. Gajski, N. D. Dutt, Allen C-H. Wu, and Steve Y-L. Lin. High-Level
Synthesis: Introduction to Chip and System Design. Kluwer Academic Pub-
lishers, 1992.

[51] C. Garćıa, Manuel Prieto, and Alberto D. Pascual-Montano. A speculative
parallel algorithm for self-organizing maps. In Proceedings of Parallel Com-
puting 2005 (ParCo 2005), pages 615–622, 2005.

[52] Robert Geist, Robert Reynolds, and Darrell Suggs. A markovian framework
for digital halftoning. ACM Transactions on Graphics, 12(2):136–159, 1993.

[53] Jason Ghidella and Jon Friedman. Model-Based Design Streamlines Devel-
opment of Body Electronics Systems. Automotive Electronics, 05(6), 2005.

[54] Harry Goldstein. Winner: Cure for the multicore blues. IEEE Spectrum,
44(1), 2007.

[55] Solomon W. Golomb. Shift Register Sequences. Aegean Park Press, Laguna
Hills, CA, USA, 1981.

[56] R. Gonzales and R. Woods. Digital Image Processing. Prentice Hall, 2002.

[57] A. Gulli and A. Signorini. The indexable web is more than 11.5 billion pages.
In Proceedings of the 14th International World Wide Web Conference, 2005.

[58] Yuanqing Guo. Mapping Applications to a Coarse-Grained Reconfigurable
Architecture. PhD thesis, University of Twente, Enschede, The Netherlands,
September 2006.

[59] P. Haffner, L. Bottou, P. Howard, and Y. Le Cun. Djvu: Analyzing and
compressing scanned documents for internet distribution, 1999. citeseer.
ist.psu.edu/haffner99djvu.html.

[60] B. Hailpern and P. Tarr. Model-driven development: the good, the bad, and
the ugly. IBM Systems Journal, 45(3):451–461, 2006.

[61] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of data
mining. MIT Press, Cambridge, MA, USA, 2001.

[62] Simon Haykin. Neural Networks, a comprehensive foundation. Prentice-Hall
International (UK) Ltd., London, England, 1999.

[63] Paul Heysters. Coarse-Grained Reconfigurable Processors - flexibility meets
efficiency. PhD thesis, University of Twente, September 2004.

203

citeseer.ist.psu.edu/haffner99djvu.html�
citeseer.ist.psu.edu/haffner99djvu.html�

Bibliography

[64] Paul Horn. Autonomic Computing: IBM’s Perspective on the State of In-
formation Technology, 2001. http://www.research.ibm.com/autonomic/
manifesto/autonomic computing.pdf.

[65] Arthur L. Hsu and Saman K. Halgamuge. Enhancement of topology preser-
vation and hierarchical dynamic self-organising maps for data visualisation.
Int. J. Approx. Reasoning, 32(2-3):259–279, 2003.

[66] Kenneth E. Iverson. A Programming Language. John Wiley & Sons Inc.,
1962.

[67] H. Kang. Color Technology for Electronic Imaging Devices. SPIE-
International Society for Optical Engine, 1997.

[68] Steven T. Karris. Introduction to Simulink with Engineering Applications.
Orchard Publications, 2006.

[69] Zoltan Kato. Modelisations markoviennes multiresolutions en vision par ordi-
nateur. Application a la segmentation d’images SPOT. PhD thesis, University
of Nice, December 1994. [English translation].

[70] Zoltan Kato and Ting-Chuen Pong. A markov random field image segmen-
tation model using combined color and texture features. In Proceedings of the
9th International Conference on Computer Analysis of Images and Patterns
(CAIP 2001), pages 547–554, London, UK, 2001. Springer-Verlag.

[71] Stuart A. Kauffman. The Origins of Order: Self-Organization and Selection
in Evolution. Oxford University Press, May 1993.

[72] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System level design: Orthogonalization of concerns and platform-based design.
IEEE trans on Computer-Aided Design, 19(12), December 2000.

[73] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[74] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor
communication network: Built for speed. IEEE Micro, 26(3):10–23, 2006.

[75] Anneke Kleppe. MDA Explained, The Model Driven Architecture: Practice
and Promise. Addison-Wesley, 2003.

[76] Donald E. Knuth. The Stanford GraphBase: A Platform for Combinatorial
Computing. ACM Press, 1993.

[77] T. Kohonen. Self-Organizing Maps. Springer, 1997.

204

http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf�
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf�

Bibliography

[78] Teuvo Kohonen. Self-organization of very large document collections: State
of the art. In L. Niklasson, M. Bodén, and T. Ziemke, editors, Proceedings
of the 8th International Conference on Artificial Neural Networks (ICANN
1998), volume 1, pages 65–74, London, 1998. Springer.

[79] A. Krikelis and C.C. Weems. Associative Processing and Processors. IEEE
Computer Society, 1997.

[80] Brian Lawrence, Karl E. Wiegers, and Christof Ebert. The top risks of
requirements engineering. IEEE Software, 18(6):62–63, 2001.

[81] Yann LeCun, Sumit Chopra, Marc Aurelio Ranzato, and Fu-Jie Huang.
Energy-based models in document recognition and computer vision. In Pro-
ceedings of the International Conference on Document Analysis and Recogni-
tion (ICDAR 2007), 2007. (keynote address).

[82] Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers. A
methodology for architecture exploration of heterogeneous signal processing
systems. In Proceedings of the 1999 Workshop on Signal Processing Systems
(SiPS 1999), pages 181–190, Taipei, Taiwan, October 1999.

[83] Prabhu S. M. and Mosterman P. J. Model-Based Design of a Power Window
System: Modeling, Simulation and Validation. In Proceedings of IMAC-XXII:
A Conference on Structural Dynamics, Society for Experimental Mechanics,
Dearborn, 2004.

[84] Thate J. M., Kendrick L. E., and Nadarajah S. Caterpillar automatic code
generation. In Society of Automotive Engineers World Congress (SAE 2004),
Detroit, 2004.

[85] Bingfeng Mei. A coarse-grained reconfigurable architecture template and its
compilation techniques. PhD thesis, Katholieke Universiteit Leuven, January
2005.

[86] Wen mei Hwu et al. Implicitly parallel programming models for thousand-
core microprocessors. In Proceedings of the 44th annual conference on Design
Automation (DAC 2007), pages 754–759. IEEE, 2007.

[87] J. Meij, editor. Dealing with the data flood. Mining data, text and multimedia,
chapter Introduction to Multidimensional Scaling. STT/Beweton, The Hague,
The Netherlands, 2002.

[88] Microsoft. The F# Manual, 2008.

[89] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Def-
inition of Standard ML. The MIT press, 1997.

205

Bibliography

[90] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8):114–117, April 1965.

[91] NeoMagic Corporation. MiMagic 6+ enables exciting multimedia for feature
phones (whitepaper). Website, 2008.

[92] Tomas Nordström and Bertil Svensson. Using and designing massively par-
allel computers for artificial neural neural networks. Journal of Parallel and
Distributed Computing, 14(3):260–285, 1992.

[93] Dimitre Novatchev. Functional programming in XSLT using the FXSL li-
brary. In Extreme Markup Languages, 2003.

[94] Jukka K. Nurminen. Using software complexity measures to analyze algo-
rithms – an experiment with the shortest-paths algorithms. In Computers &
Operations Research, pages 1121–1134. Elsevier Science, 2003.

[95] Ivan Perelomov, Arnulfo P. Azcarraga, Jonathan Tan, and Tat Seng Chua.
Using structured self-organizing maps in news integration websites. In 11th
International World Wide Web Conference (WWW 2002), 2002.

[96] Rolf Pfeifer and Christian Scheier. Understanding intelligence. MIT Press,
Cambridge, MA, USA, 2001.

[97] Christopher Pohl, Marc Franzmeier, Mario Porrmann, and Ulrich Rückert.
gNBX reconfigurable hardware acceleration of self-organizing maps. In Pro-
ceedings of the IEEE International Conference on Field Programmable Tech-
nology (FPT 2004), pages 97–104, Brisbane, Australia, December 2004.

[98] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 6th edition, April 2004.

[99] Anand Rajaraman. The story behind google’s crawler upgrade, 2008.

[100] G.K. Rauwerda, P.M. Heysters, and G.J.M. Smit. Towards software de-
fined radios using coarse-grained reconfigurable hardware. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 16(1):3–13, Jan. 2008.

[101] H. Ritter and K. Schulten. Kohonen’s self-organizing maps: Exploring their
computational capabilities. In Proceedings of the International Conference on
Neural Networks (ICNN 1988), volume 1, pages 109–116, New York, 1988.
(San Diego 1988), IEEE.

[102] Gerard Salton. Automatic Text Processing – The Transformation, Analysis,
and Retrieval of Information by Computer. Addison–Wesley, 1989.

[103] Erich Schikuta and Claus Weidmann. Data parallel simulation of self-
organizing maps on hypercube architectures. In Proceedings of the Workshop
on Self-Organizing Maps (WSOM 1997), pages 142–147, Espoo, Finland, 1997.
Helsinki University of Technology, Neural Networks Research Centre.

206

Bibliography

[104] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented
Modeling. John Wiley & Sons, 20 edition, 1994.

[105] Abigail J. Sellen and Richard H. R. Harper. The Myth of the Paperless
Office. The MIT Press, 2001.

[106] Aspex Semiconductor. Programmers Reference Guide for Activate Release
2.3.0 (Document reference SP230-APRG.doc), 2005.

[107] A. Skupin. A cartographic approach to visualizing conference abstracts. In
IEEE Computer Graphics and Applications, pages 50–58, 2002.

[108] G. J. M. Smit, A. B. J. Kokkeler, P. T. Wolkotte, and M. D. van de Burg-
wal. Multi-core architectures and streaming applications. In I. Mandoiu and
A. Kennings, editors, Proceedings of the Tenth International Workshop on
System-Level Interconnect Prediction (SLIP 2008), Newcastle, UK, pages 35–
42, New York, NY, USA, April 2008. ACM.

[109] Gerald Jay Sussman and Guy L. Steel Jr. The first report on Scheme
revisited. In Higher-Order and Symbolic Computation, page 399404, 1998.

[110] T. Sziranyi, Josiane Zerubia, Laszlo Czuni, David Geldreich, and Zoltan
Kato. Image segmentation using Markov random field model in fully parallel
cellular network architectures. Real-Time Imaging, 6:195–221, 2000.

[111] Radoslaw Szymanek, Francky Catthoor, and Krzysztof Kuchcinski. Time-
energy design space exploration for multi-layer memory architectures. In
DATE ’04: Proceedings of the conference on Design, automation and test in
Europe, page 10318, Washington, DC, USA, 2004. IEEE Computer Society.

[112] Jeroen Teitsma. Object classification in colour document images with asso-
ciative array technology. Master’s thesis, Twente University, 1999.

[113] D. Thomson. J: The Natural Language for Analytic Computing. Research
Studies Pre, 2001.

[114] Michael Trott. The Mathematica Guidebook: Programming. Springer, 2004.

[115] Edward Tufte. Envisioning Information. Graphics Press USA, 1990.

[116] Alfred Ultsch. U*-matrix: a tool to visualize clusters in high dimensional
data. Technical Report 36, Philipps-University Marburg, Germany, 2003.

[117] Alfred Ultsch and Dieter Korus. Automatic acquisition of symbolic knowl-
edge from subsymbolic neural networks. In Proceedings of the 3rd European
Congress on Intelligent Techniques and Soft Computing (EUFIT 1995), vol-
ume I, pages 326–331, 1995.

207

Bibliography

[118] Anneke Jansen van de Vrie. Cartography/GIS for large document spaces: a
case in visualisation and navigation. Master’s thesis, Twente University, 2006.

[119] H.W. Van Dijk, H.J. Sips, and E.F. Deprettere. Context-aware process net-
works. In IEEE International Conference on Application-specific systems, ar-
chitectures, and processors (ASAP 2003), pages 6–16, The Hague, the Nether-
lands, December 2003.

[120] Leroy van Engelen. Massively parallel quantization implementation using
simulated annealing. Master’s thesis, Twente University, 2006.

[121] Colin Ware. Information Visualization, Second Edition: Perception for
Design (Interactive Technologies). Morgan Kaufmann, April 2004.

[122] Guido Westenberg. Evolutionary design, tools en toepassingen [dutch]. Mas-
ter’s thesis, Twente University, 1990.

[123] Maarten Wiggers, Marco Bekooij, and Gerard J. M. Smit. Efficient compu-
tation of buffer capacities for cyclo-static dataflow graphs. In Proceedings of
the Design Automation Conference (DAC 2007), pages 658–663, 2007.

[124] C.-H. Wu, R. E. Hodges, and C. J. Wang. Parallelizing the self-organizing
feature map on multiprocessor systems. Parallel Computing, 17(6-7):821–832,
1991.

208

LIST OF PUBLICATIONS

[P1] Jan W.M. Jacobs, W. Bond, R. Pouls, and Gerard J.M. Smit. High volume
colour image processing with massively parallel embedded processors. In
Proceedings of Parallel Computing (ParCo 2005), pages 583–590, 2005.

[P2] Jan W. M. Jacobs, Rui Dai, and Gerard J. M. Smit. Mining dynamic doc-
ument spaces with massively parallel embedded processors. In Proceedings
of the International Symposium on Systems, Architectures, MOdeling and
Simulation (SAMOS), pages 69–78, 2006.

[P3] Jan W. M. Jacobs, Leroy van Engelen, Jan Kuper, and Gerard J. M.
Smit. Image quantisation on a massively parallel embedded processor.
In Proceedings of the International Symposium on Systems, Architectures,
MOdeling and Simulation (SAMOS), pages 139–148, 2007.

[P4] Jan W. M. Jacobs, Leroy van Engelen, Rui Dai, Jan Kuper, and Gerard
J. M. Smit. IRIS: a firmware design methodology for SIMD architectures.
In Euromicro Conference on Digital System Design, pages 609–617, 2008.

[P5] Jan W. M. Jacobs and Roger J. H. Hacking. An integrated microprogram
development methodology based on APL. In Proceedings of the APL 1987
Conference, pages 323–328, 1987.

[P6] Jan W.M. Jacobs. Developing a raster detector system with the J ar-
ray processing language. Computing & Control Engineering Journal,
13(6):299–304, December 2002.

[P7] Samuel Driessen, Jan W. M. Jacobs, and Wolf Huijsen. Combining query
and visual search for knowledge mapping. In Information Visualization
(IV 2006), pages 216–224, 2006.

List of Publications

[P8] Wolf Huijsen, Samuel Driessen, and Jan W. M. Jacobs. Explicit conceptu-
alizations for knowledge mapping. In Proceedings of the 6th International
Conference on Enterprise Information Systems (ICEIS 2004), pages 231–
236, 2004.

[P9] Gerard J. M. Smit, A. B. J. Kokkeler, G. K. Rauwerda, and Jan W. M.
Jacobs. ”State of the Art Massively Parallel Embedded Architectures”, sub-
mitted as bookchapter for Model-Based Design of Heterogeneous Systems,
edited by Pieter Mosterman and Gabriela Nicolescu. 2008.

210

