
Toward Affective Dialogue Management

using Partially Observable

Markov Decision Processes

Trung H. Bui

PhD dissertation committee:

Chairman & secretary:
Em. prof. dr. C. Hoede

Promotor:
Prof. dr. ir. A. Nijholt

Assistant-promotor:
Dr. J. Zwiers

Members:
Prof. dr. L. Boves, University of Nijmegen, NL
Prof. dr. H.C. Bunt, University of Tilburg, NL
Prof. dr. ir. F.C.A. Groen, University of Amsterdam, NL
Prof. dr. ir. M. Pantic, Imperial College & University of Twente, UK & NL
Prof. dr. M. Rajman, Swiss Federal Institute of Technology in Lausanne, CH
Prof. dr. D.R. Traum, University of Southern California, USA

CTIT Dissertation Series No. 08-122
Center for Telematics and Information Technology (CTIT)
P.O. Box 217, 7500AE, Enschede, The Netherlands
ISSN:1381-3617

The research reported in this dissertation has been carried out in the
ICIS (Interactive Collaborative Information Systems) project. ICIS is
one of nine ICT projects that were selected for funding by the BSIK
program of the Dutch government in the fall 2003.

SIKS Dissertation series No. 2008-32
The research reported in this dissertation has been carried out under
the auspices of SIKS, the Dutch Research School for Information and
Knowledge Systems.

ISBN: 978-90-365-2714-9

Cover design: Trung H. Bui
Printed by PrintPartners Ipskamp, Enschede
Copyright c© 2008 by Trung H. Bui

TOWARD AFFECTIVE DIALOGUE MANAGEMENT

USING PARTIALLY OBSERVABLE

MARKOV DECISION PROCESSES

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W. H. M. Zijm,

on account of the decision of the graduation committee
to be publicly defended

on Thursday, October 9, 2008 at 16:45

by

Bui Huu Trung

born on July 5, 1975
in Nghe An, Vietnam

This dissertation is approved by the promotor,
prof. dr. ir. A. Nijholt,
and the assistant-promotor,
dr. J. Zwiers.

In memory of my father Bùi Hữu Độ(1941-2002)

Acknowledgements

First of all, I want to thank my promotor Anton Nijholt for giving me the opportunity
to conduct my PhD research in the Human Media Interaction (HMI) group. I received
tremendous support from him not only in my research activities but also in solving
personal issues during my first year in Twente. Anton also gave me a lot of freedom
to choose my research topic and to combine it with my previous research experience.

Next, I would like to thank my daily supervisor Job Zwiers for all his help and
advice during my PhD study and especially in helping me to make a good balance on
the time spent for the project and my PhD work. I am thankful to Mannes Poel for his
guidance as my second daily supervisor. Mannes’s comments are always concise and
very insightful, especially on the mathematical background presented in this thesis.

The first part of this thesis (Chapters 3 & 4) originates from the work I did in
Switzerland under supervision of Martin Rajman. I would like to thank Martin for
teaching me how to do research and introducing me to the Natural Language Pro-
cessing topic. I found his specific advice and direct guidance very helpful during the
first period of my research carrier. Martin also gave me great help in administrative
procedures for my small family during the time we stayed in Lausanne.

I am grateful to all members of my committee for their reading and evaluating my
thesis. Special thanks to David Traum for his helpful comments.

Some years ago, I read a preface from a friend who had just finished his PhD
in the HMI group before I arrived. He mentioned that HMI is the best part of
living in the Netherlands. I highly appreciate his comment after working for four
years in the group. I thank Charlotte Bijron and Alice Vissers-Schotmeijer for their
administrative support, Lynn Packwood for proofreading almost all my manuscripts
including this thesis, Rieks op den Akker for his advice on the dialogue research
topic and helpful comments on this thesis, Dennis Hofs and Boris van Schooten for
their collaboration on practical issues relevant to the main topic of this thesis, Hendri
Hondorp for his technical support. Many thanks to all other HMI colleagues and
friends (especially Natasa Jovanovic, Ronald Poppe, Dolf Trieschnigg, Martijn van
Otterlo, and Marijn Huijbregts) for their help and fruitful discussions about work
and life in the Netherlands. Special thanks are devoted to my colleagues in the CHIM
cluster.

My original schedule in Europe was only for six months for my Master’s project.
It turns out that I have been staying at least 12 times longer (six years). During that
time, I have received great help from, and have had enjoyable discussions with, my

vii

viii

Vietnamese friends in Switzerland (Toàn, Việt, Vũ, Huy, and others), France (Đạt),
Vietnam (Bình, Chi, Dương), and the Netherlands (Châu, Cương, Duy, Giang-Chi,
Hà-Hạnh, Hà-Hương, Hiển-Như, Hoà, Kim-Vân Anh, Bình Minh, Đức Minh, Nhi,
Phong, Phương-Hà, So, Sơn, Thắng-Mai, Tú-An). Especially, I would like to thank Vũ
Xuân Hạ for all fruitful discussions during which we have been talking about research
and life since we both worked for the same company in Vietnam and continued to
work in the same office at EPFL. I also want to thank my close friend Vũ Chí Kiên
for his non-research help and advice since the first time I came to the Netherlands
and before that when we both studied in the same English course in 1994.

I am indebted for great support from my family in Vietnam. I deeply thank my
parents in law for their constant care to my small family. I am very grateful to my
mother, my brother, my older sister, and my younger sister for their great love and
belief to the progress in my life. Their encouragement makes me stronger and more
confident.

Most importantly, I want to thank my wife for her love and extreme patience as
well as her daily care for me and our children Hiếu and Thư. This thesis is dedicated
to them.

Enschede, September 2008
Trung H. Bui

Contents

Acknowledgements vii

List of Acronyms xv

List of Figures xviii

List of Tables xx

1 Introduction 1
1.1 Research context: The ICIS project . 2
1.2 Goals of the Thesis . 3
1.3 Contributions of the Thesis . 4
1.4 Outline . 5

2 Background and definitions 7
2.1 Introduction . 7
2.2 Overview of a dialogue system . 9

2.2.1 Input . 10
2.2.2 Fusion . 10
2.2.3 Dialogue manager . 11
2.2.4 Fission . 11
2.2.5 Output . 12

2.3 Approaches to dialogue management 12
2.3.1 Finite state dialogue models . 12
2.3.2 Frame-based dialogue models 14
2.3.3 Information state dialogue models 16
2.3.4 MDP-based dialogue models 18

2.4 Toward affective dialogue systems . 19
2.4.1 Affect recognition . 20
2.4.2 Affective user modeling . 20
2.4.3 Affective system modeling and expression 22

2.5 Theory of POMDPs . 24
2.5.1 Basic framework . 24
2.5.2 Empathic dialogue agent example 26

ix

x CONTENTS

2.5.3 Computing belief states . 28
2.5.4 Finding an optimal policy . 31

2.6 Review of POMDP solution techniques 37
2.6.1 Exact value iteration algorithms 38
2.6.2 Approximate value iteration algorithms 42

3 Dialogue management for single-application systems 45
3.1 Introduction . 45
3.2 Producing the task model . 46
3.3 Deriving the initial dialogue model . 47

3.3.1 Generic Dialogue Nodes . 47
3.3.2 Local dialogue flow management strategy 49
3.3.3 Global dialogue flow management strategy 50
3.3.4 Generating the initial dialogue model and dialogue-driven in-

terface . 55
3.4 Improving the initial dialogue model using WoZ experiments 56

3.4.1 WoZ experiments . 56
3.4.2 The WoZ interface . 57

3.5 Case study 1: the INSPIRE system . 58
3.6 Extending the RDPM for multimodal applications 62

3.6.1 Multimodal generic dialogue nodes 63
3.6.2 Case study 2: The ARCHIVUS system 64

3.7 Conclusions . 66
3.8 Historical remarks . 66

4 Dialogue management for multi-application systems 67
4.1 Introduction . 67
4.2 Producing finalized dialogue models for applications using the RDPM 68
4.3 Designing an application interaction hierarchy 70

4.3.1 Application interaction hierarchy 70
4.3.2 Vector space model for the finalized dialogue models 71
4.3.3 Hierarchical clustering algorithm 72

4.4 Navigating between applications based on the user’s application of in-
terest . 73

4.5 Scenario example . 75
4.6 Possible extensions . 76

4.6.1 Crossing-application . 76
4.6.2 Task selection . 76

4.7 Conclusions . 77

5 Affective dialogue management using factored POMDPs 79
5.1 Introduction . 79
5.2 Components of an affective dialogue system 80
5.3 Review of the POMDP-based dialogue management 81
5.4 The factored POMDP approach . 83

CONTENTS xi

5.5 User simulation . 85
5.6 Single-slot route navigation example 86
5.7 Evaluation . 89

5.7.1 Parameter tuning . 91
5.7.2 Influence of stress to the performance 93
5.7.3 Comparison with other techniques 94
5.7.4 Tractability . 94

5.8 Conclusions . 97

6 Scaling up: The DDN-POMDP approach 99
6.1 Introduction . 99
6.2 The DDN-POMDP approach . 100

6.2.1 Slot level dialogue manager . 100
6.2.2 Global dialogue manager . 104
6.2.3 Dialogue manager activity process 105
6.2.4 User simulation . 106

6.3 Multi-slot route navigation example 107
6.3.1 Slot level dialogue manager representation 109
6.3.2 Global dialogue manager representation 111

6.4 Evaluation . 112
6.4.1 Tractability . 113
6.4.2 Comparison with approximate POMDP and handcrafted poli-

cies (single slot) . 116
6.4.3 Comparison with enhanced handcrafted policies (two slots) . . 121
6.4.4 Look-ahead performance . 125

6.5 Discussion . 126
6.6 Conclusions . 128

7 Conclusions 131
7.1 Summary of the Thesis . 131
7.2 Future directions . 133

A Practical dialogue manager development using POMDPs 135
A.1 Introduction . 135
A.2 Methodology . 136

A.2.1 Design guidelines . 136
A.2.2 Evaluation setup and toolset 136

A.3 Evaluation . 136
A.3.1 Ritel QA dialogue system. 136
A.3.2 Virtual Guide application. 138

A.4 Conclusions . 139

B Example interaction 141
B.1 Single slot . 141
B.2 Ten slots . 141

xii CONTENTS

Abstract 163

Samenvatting 165

Curriculum Vitae 167

SIKS Dissertation Series 169

List of Acronyms

AR Affect Recognition . 79

AS Action Selector . 104

ADS Affective Dialogue System . 99

ASR Automatic Speech Recognition . 136

BN Bayesian Network . 21

DBN Dynamic Bayesian Network . 99

DDN Dynamic Decision Network . 99

DIS Dialogue Information State . 104

DM Dialogue Manager . 135

DS Dialogue System . 100

GDN Generic Dialogue Node . 47

HMI Human Media Interaction . 8

MDP Markov Decision Process . 82

MDS Multimodal Dialogue System . 80

NLG Natural Language Generation . 80

NLU Natural Language Understanding . 80

PBVI Point-Based Value Iteration . 37

POMDP Partially Observable Markov Decision Process . 163

RDPM Rapid Dialogue Prototyping Methodology . 163

SDS Spoken Dialogue System . 82

TTS Text To Speech . 80

VI Value Iteration . 99

VSM Vector Space Model . 68

WoZ Wizard of Oz. .133

xiii

xiv CONTENTS

List of Figures

1.1 Related research topics (boxes in gray color) in the CHIM cluster . . . 3

2.1 Conceptual architecture of a multimodal dialogue system designed and
partially implemented in the ICIS project. In our current prototype,
the system was implemented as a distributed system where all modules
exchange messages through an interaction middleware. 9

2.2 Simplified finite-state dialogue model for the RestInfo system 12
2.3 Frame-based dialogue model for the RestInfo system based on Bui et

al. [27]. Each slot is modeled as a generic dialogue node. See Chapter 3
for a further explanation. 15

2.4 MDP-based dialogue model for the RestInfo system (adapted from [126]) 18
2.5 Two-phase approach for dialogue strategy learning 19
2.6 Emotion recognition module proposed by Lee and Narayanan [96] . . 21
2.7 Affective user model proposed by Ball and Breese [14] 22
2.8 High level abstraction of DBN-based affective user models, each node

is composed of a set of variables . 23
2.9 Emotion model proposed by Bui et al. [25] 23
2.10 Modularized view of the interaction between the dialogue manager and

the user in a dialogue management context 25
2.11 (a) Bayesian network representation illustrating the agent reasoning

process in T steps, (b) Equivalent dynamic Bayesian network repre-
sentation (T > 1). The shaded nodes are hidden, the clear nodes are
observable. The dashed nodes (i.e. belief nodes) are shown to clarify
how the system updates its internal beliefs and selects actions. In the
actual implementation, these nodes are derived from the hidden nodes. 30

2.12 Representation of α-vectors of (a) Γ1 and (b) Γ′2. Solid lines are useful
vectors. Dashed lines are extraneous vectors. Upper bounds of the
solid lines (i.e. bold lines) are optimal value functions. 35

2.13 Number of useful vectors vs. planning horizon 36
2.14 Representation of the optimal value functions for different planning

horizons (a) T = 10, (b) T = 20, and (c) T = 494. Lines are useful
vectors. Upper bounds of these lines (i.e. bold lines) are optimal value
functions. 37

xv

xvi LIST OF FIGURES

2.15 Optimal policy for the empathic dialogue agent represented as a policy
graph. Given the initial belief B0 = (0.5, 0.5)T the start node is check5.
Shaded nodes are unreachable from check5, therefore we can remove
them from the policy graph. 38

2.16 Conceptual idea of how to compute the Bellman residual r in Algo-
rithm 1: r = max{l1, l2, l3, l4}, where Γ = {α1, α2, α3} and Γ′ = {α′1, α′2}. 39

3.1 Example of a generic dialogue node “Price Range" 49
3.2 Excerpt of the INSPIRE solution table which is transformed from a set

of interconnected tables. For the purpose of clarity, only eight fields of
the solution table are shown. 60

3.3 Block diagram of the dialogue model for the INSPIRE system 61
3.4 WoZ interface for the INSPIRE system generated automatically by the

WoZ interface generator . 62
3.5 WoZ interface for the INSPIRE system (Java version) 63
3.6 First design of the ARCHIVUS system [102] 64

4.1 Architecture of dialogue systems produced by RDPM 69
4.2 Determining the active node based on the user’s query 74
4.3 Binary tree . 75
4.4 Application interaction hierarchy . 75
4.5 Navigating between the applications 76

5.1 Components of an affective speech-based dialogue system. Bold arrows
show the main flow of the interaction process. Dashed arrows show the
links from the system’s belief state to its individual modules. 81

5.2 (a) Standard POMDP, (b) Two time-slice of factored Partially Observ-
able Markov Decision Process (POMDP) for the dialogue manager . . 83

5.3 Simulated user model using the Dynamic Bayesian Network (DBN).
The user’s state, action at each time-step are generated from the DBN.
Only the observation of the user’s action, affective state, and the reward
are sent to the dialogue manager. 87

5.4 Average return vs. the discount factor used for the planning phase. Er-
ror bars show the 95% confidence level. The threshold of the planning
time is 60 seconds. Policies with γ ≤ 0.95 converge (ε = 0.001) before
this threshold. 92

5.5 Average return vs. number of belief points. Error bars show the 95%
confidence level. 92

5.6 Average return vs. planning time in seconds. Error bars show the 95%
confidence level. 93

5.7 Average returns of the affective policy and non-affective policy vs. the
probability of the user’s action error induced by stress pe 94

LIST OF FIGURES xvii

5.8 Three handcrafted dialogue strategies for the single-slot route naviga-
tion problem (x is the observed location): (a) first ask and then select
ok action if the observation of the user’s action ãu is answer (otherwise
ask), (b) first ask, then confirm if ãu = answer (otherwise ask) and
then select ok action if ãu = yes (otherwise ask), (c) first ask, then
confirm if ãu = answer & ẽu = stress and select ok action if ãu = yes. 95

5.9 Average return of the POMDP policy vs. other policies 95
5.10 Planning time vs. number of slot values 96

6.1 (a) Standard POMDP, (b) Two time-slice of the factored POMDP for
slot i, where state set S is factored into four features Gui, Eu, Aui,
and Dui, observation set Z is factored into two features OAui and OEu.
This figure is similar to Fig. 5.2. 101

6.2 The structure of (a) kDDN and (b) kDDNA with one-step look-ahead
(i.e., k = 1). Shaded-round nodes are hidden, clear-round nodes are ob-
servable, rectangular nodes are decision nodes, diamond shaped nodes
are reward nodes. Both networks have similar structures except the
kDDNA does not have the action node in the first slice. In our imple-
mented prototype Dialogue Manager (DM) we use the simpler network
kDDNA (to reduce the computation time for the belief update pro-
cess) directly because the DM can keep track of the last system action,
therefore it can update directly on the relevant kDDNA instead of kDDN.103

6.3 Activity process of the DM. The Dialogue Information State (DIS)
component is represented by three nodes Z, S, and A. Node Z is com-
posed of oau and oeu. Node S is composed of P(Gu), P (Eu),P(Au),P(Du).
Node A is composed of hlsa and a. 106

6.4 Simulated user model using Dynamic Bayesian Networks (DBNs). The
user’s state and action at each time-step are generated from the DBNs.
Only the observation of the user’s action and the user’s affective state,
and the reward are sent to the DM. The structures of slot DBNs are
identical, therefore only one DBN is shown. 108

6.5 Average kDDNA belief updating time over 10 runs in seconds with
different numbers of slot values using the SMILE library. The best
result is found using the Pearl exact inference algorithm and the Find
Best Policy update. 114

6.6 Average kDDNA belief updating time over 10 runs with different look-
ahead steps. 115

6.7 Three handcrafted dialogue strategies for the 1-slot case (x is the slot
value): (a) first ask and then select ok action if userSpeechAct = answer
(otherwise ask), (b) first ask, then confirm if userSpeechAct = answer
(otherwise ask) and then select ok action if userSpeechAct = yes (oth-
erwise ask), (c) first ask, then confirm if userSpeechAct = answer &
oeu = high or extreme and select ok action if userSpeechAct = yes. . . 116

xviii LIST OF FIGURES

6.8 Average return of the DDN-POMDP policies and the approximate
POMDP policy for a one slot, three values case. Error bars show
the 95% confidence level. The caption “*” at the end of a policy title
indicates that the internal reward function of the dialogue manager
associated with the policy is tuned. 118

6.9 Internal reward optimization for a one slot, three values case. Experi-
ments were conducted with pe in the range from 0 to 0.8. All average
returns are optimal in the range [−1000, −200]. Only three lines are
shown for the purpose of clarity. Error bars show the 95% confidence
level. 119

6.10 Average return vs. the user’s action error being induced by stress (pe).
Error bars show the 95% confidence level. 119

6.11 Average return vs. the observation error of the user’s action poa. Error
bars show the 95% confidence level. 120

6.12 The performance of the DDN-POMDP policy with fixed pe 121
6.13 Average return vs. the user’s action error being induced by stress (pe)

for a 2-slots case. Error bars show the 95% confidence level. 124
6.14 Performance of the DDN-POMDP policy with different look-ahead val-

ues k . 126
6.15 Behavior of the DDN-POMDP policy (first two turns) with different

look-ahead steps . 127
6.16 Performance of the DDN-POMDP policy with different look-ahead val-

ues k . 128

A.1 Performance comparison of POMDP and optimised hand-crafted mod-
els for different problem sizes and ASR error rates. The solid line is the
POMDP, the dashed line is the hand-crafted model. For three values,
an error more than 0.6 would result in the probability of hearing the
wrong question being higher than the right one. For nine values and
error=0.8, no sensible policy could be calculated. 137

A.2 Average returns for simulation with different observation errors 138

List of Tables

2.1 Restinfo dialogue session to illustrate the finite-state approach 13
2.2 RestInfo dialogue session to illustrate the frame-based approach 14
2.3 Restinfo dialogue session to illustrate the information-state approach . 17
2.4 Restinfo information state after U1 (adapted from [94]) 17
2.5 Transition function, observation function, and reward function for the

empathic dialogue agent . 27
2.6 Benchmark of exact POMDP algorithms for small problems (computed

on a Sun SPARC-10 computer) [41] . 42
2.7 Performance comparison of the Tag problem (|S| = 870, |A| = 5, |Z| =

30) . 44

3.1 Excerpt of the RestInfo solution table 47
3.2 An example of a filtered solution table. 52
3.3 Dialogue excerpt of the interaction between the INSPIRE system and

the user . 59

5.1 Characteristics of some POMDP-based dialogue managers (n is the
number of slots) . 82

5.2 An episode of the interaction between the system and the user 90

6.1 An example of the DIS for a 2-slot case, slot f1 has 2 values, slot f2

has 3 values. 105
6.2 Handcrafted user’s stress model with pec = 0.1, eu is the user’s stress

at time t− 1 and eu′ is the user’s stress state at time t 110
6.3 Extract of the user’s action model (a = ask and g′u = v1) with m =

3, pe = 0.1, and Kask = 1. 111
6.4 Average belief updating time in seconds over 10 runs with different

kDDNA structures, with m slot values. The structure of the kDDNA1
is the simplified structure without linkage from the system action and
user’s goal nodes to the user’s emotion node. The structure of the
kDDNA2 is the complete structure as described in Figure 6.2. 115

6.5 User’s model for slot selection adapted from the training model of the
SACTI corpus [177] with several extensions 122

xix

xx LIST OF TABLES

6.6 Percentage of achieved goals and average number of turns per episode.
Bold numbers show the highest percentage of achieved goals for each pe 125

B.1 Representative dialogue example for a 1-slot case 142
B.2 Dialogue example for a 10-slot case . 143

Chapter 1

Introduction

Look Dave, I can see you’re really upset about this. I honestly think you
ought to sit down calmly, take a stress pill, and think things over.

Excerpt from the Kubrick’s science fiction film: “2001: A Space Odyssey"

The HAL 9000 computer character is popular in the speech and language tech-
nology research field since his capabilities can be linked to different research topics
of the field such as speech recognition, natural language understanding, lip reading,
natural language generation, and speech synthesis [88, chap. 1]. This artificial agent
is often referred to as a dialogue system, a computer system that is able to talk with
humans in a way more or less similar to the way in which humans converse with each
other.

Furthermore, HAL was affective1. He is able to recognize the affective states of the
crew members through their voice and facial expressions, and to adapt his behavior
accordingly. HAL can also express emotions, which is explained by Dave Bowman, a
crewman in the movie:

Well, he acts like he has genuine emotions. Of course, he’s programmed
that way to make it easier for us to talk with him.

Precisely, HAL is an “ideally" Affective Dialogue System (ADS), a dialogue sys-
tem that has specific abilities relating to, arising from, and deliberately influencing
people’s emotions [123].

Designing and developing ADSs have recently received much interest from the
dialogue research community [7]. A distinctive feature of these systems is affect
modeling. Previous work was mainly focused on showing system’s emotions to the user
in order to achieve the designer’s goal such as helping the student to practice nursing
tasks [77] or persuading the user to change their dietary behavior [56]. A challenging

1We use the term “emotional" and “affective" interchangeably as adjectives describing either
physical or cognitive components of the interlocutor’s emotion [123, pg. 24].

1

2 1. Introduction

problem is to infer the interlocutor’s affective state (hereafter called “user") and to
adapt the system’s behavior accordingly.

Solving this problem could enhance the adaptivity of a dialogue system in many
application domains. For example, in the information seeking dialogue domain, if
a dialogue system is able to detect the critical phase of the conversation which is
indicated by the user’s vocal expressions of anger or irritation, it could determine
whether it is better to keep the dialogue or to pass it over to a human operator [15].
Similarly, many communicative breakdowns in a training system and a telephone-
based information system could be avoided if the computer was able to recognize the
affective state of the user and to respond to it appropriately [105]. In the intelligent
spoken tutoring dialogue domain, the ability to detect and adapt to student emotions
is expected to narrow the performance gap between human and computer tutors [17].

This thesis addresses this problem from an engineering perspective using Partially
Observable Markov Decision Process (POMDP) techniques and a Rapid Dialogue
Prototyping Methodology (RDPM). We argue that POMDPs are suitable for use
in designing affective dialogue management models for three main reasons. First,
the POMDP model allows for a realistic modeling of the user’s affective state, the
user’s intention, and other (user’s) hidden state components by incorporating them
into the state space. Second, recent dialogue management research [127, 142, 177,
187] has shown that a POMDP-based Dialogue Manager (DM) is able to cope well
with uncertainty that can occur at many levels inside a dialogue system from speech
recognition, natural language understanding to dialogue management. Third, the
POMDP environment can be used to create a simulated user which is useful for
learning and evaluation of competing dialogue strategies [147].

In the following, we first present the research context. We then describe briefly
the goals and the main contributions of the thesis. Finally, we give an outline of the
remaining chapters.

1.1. Research context: The ICIS project

The work presented in this thesis has been mainly developed in the framework of
the Computational Human Interaction Modeling (CHIM) research cluster of the In-
teractive Collaborative Information Systems (ICIS) project2. The main goal of the
project is to develop better techniques for making complex information systems more
intelligent and supportive in decision making situations.

In the scope of the CHIM research cluster, we aim to develop a multimodal system
framework for research in well-defined professional task environments such as the crisis
management domain or the air traffic control domain. In these domains, users often
experience stress and critical task demands. Our framework, therefore, puts emphasis
on the adaptive behavior of the system in recognizing and responding to the user’s
affective states. Further, robustness of the system toward environment noise also
needs to be taken into consideration [66]. Our multimodal system (Fig. 1.1) allows
users to interact with it in an action cycle style. Input recognition modules detect

2ICIS is sponsored by the Dutch government under the contract BSIK 03024

1.2. Goals of the Thesis 3

Audio-Visual

Speech Recognition

Gesture

Recognition

Face Detection and

Facial Expression

Recognition

Pen Input

Recognition

Icon-map

Application

Fusion &

Interpretation

Dialogue

Manager

Fission

(Information

Presentation)

Presentation

Agent

Language

Generator

Speech

Synthesis

Figure 1.1: Related research topics (boxes in gray color) in the CHIM cluster

the user’s speech, lip movement, affective state (through facial expressions or vocal
features), pose gestures, and pen input (writing and sketches). These inputs are
then preprocessed by the fusion module and are sent to the DM. The DM selects an
appropriate system action and sends it to the user through output generation modules
where the system action is represented as text, speech, or icon maps or in a mixed
form. Modules in gray color (Fig. 1.1) are studied by our colleagues in the CHIM
cluster. Section 2.2 will discuss in detail about the architecture of this multimodal
system.

1.2. Goals of the Thesis

As mentioned at the beginning of this chapter, the challenging problem in the design
of an ADS is to infer the user’s affective state and adapt the system’s behavior ac-
cordingly. This thesis addresses this problem by introducing a dialogue management
system which is able to act appropriately by taking into account some aspects of
the user’s affective state. The computational model used to implement this system
is called the affective dialogue model . Concretely, our system processes two main
inputs, namely the observation of the user’s action (e.g., dialogue act) and the obser-
vation of the user’s affective state. It then selects the most appropriate action based
on these inputs and the context. In human-computer dialogue, building this sort of
system is difficult because the recognition results of the user’s action and affective
state are ambiguous and uncertain. Furthermore, the user’s affective state cannot
be directly observed, and usually changes over time. Therefore, an affective dialogue
model should take into account basic dialogue principles, such as turn-taking and

4 1. Introduction

grounding, as well as dynamic aspects of the user’s affect.
In short, the central goal of this thesis is to develop a computational model for

implementing a robust dialogue manager that is able to adapt its strategies accordingly
given observations (with uncertainty) of the user’s action and affective state. This goal
is fulfilled by investigating the following research issues:

• Development of a dialogue management framework for traditional (i.e., non-
affective) dialogue systems;

• Enhancement of the framework to adapt the dialogue strategy based on the
inferred user’s affective state.

This stepwise division is appropriate if we consider that an ADS first needs to fulfill
requirements in design of a dialogue system in general. The first issue is presented in
Chapters 3 and 4. The second one is presented in Chapters 5 and 6.

1.3. Contributions of the Thesis

The following is a summary of major contributions of the thesis. More details about
these contributions are reported at the end of Chapters 3, 4, 5, and 6.

1. The most important contribution of the thesis is the tractable hybrid DDN-
POMDP method presented in Chapter 6. The distinctive feature of proposed
method (compared with other POMDP-based dialogue management methods
from the literature) is the ability to handle frame-based dialogue problems with
hundreds of slots and hundreds of slot values.

2. The second contribution is the factored POMDP approach for affective dialogue
management (Chap. 5). The proposed approach illustrates that the POMDPs
are an attractive model for building affective dialogue systems. Further, var-
ious technical issues of using the POMDP technique for developing dialogue
management are empirically examined, especially scalability problems.

3. The third contribution is the approach to developing multimodal interfaces for
multi-application systems which are dialogue systems that allow the user to nav-
igate between a set of applications (Chap. 4). The proposed approach provides
a promising framework for designers and developers to implement a dialogue
system that is able to handle a large number of applications smoothly and
transparently.

4. The fourth contribution is involved in the design and development of the Rapid
Dialogue Prototyping Methodology (RDPM) for a quick production of frame-
based dialogue models and the associated dialogue-driven interfaces (Chap. 3).
My own contributions are mostly involved in extending the RDPM proposed
by Rajman et al. [134, 135], which was originally used for implementing finite-
state spoken dialogue models. In particularly, I invented the solution table and
developed the dialogue strategies and the Wizard of Oz (WoZ) Generator. The

1.4. Outline 5

usability of the RDPM has been validated through the implementation of several
prototype dialogue systems [28, 102, 136].

Additional contributions In the framework of this thesis we have developed sev-
eral software toolkits that are useful for the practical development of spoken and mul-
timodal dialogue systems: (i) the POMDP toolkit for the development of POMDP-
based dialogue managers3; (ii) the DDN-POMDP dialogue manager module for the
ICIS-CHIM multimodal system demonstrator4; and (iii) the RDPM toolkit for a quick
production of frame-based dialogue models and their associated dialogue-driven in-
terfaces.

1.4. Outline

The remaining part of the thesis is organized as follows:

Chapter 2 presents the essential background, definitions, and state-of-the-art work
that are relevant to the topic of this thesis. Sections 2.1, 2.2, and 2.3 present termi-
nologies related to the research on dialogue systems and four popular state-of-the-art
dialogue management approaches. This section is relevant for all the chapters of the
thesis. Section 2.4 describes three issues that are important for designing and de-
veloping ADSs. This section is relevant for Chapters 5 and 6. Section 2.5 is about
the theory of POMDPs and how to find an optimal policy using the simplest exact
algorithm. The background is necessary for the work described in Chapters 5 and 6.
Section 2.6 discusses the state-of-the-art POMDP algorithms from the literature. It
is relevant to Chapters 5 and 6.

Chapter 3 presents the RDPM framework for the development of frame-based
dialogue models for single-application systems. We first present core components of
the methodology. Second, we illustrate the usability of the methodology through the
prototype INSPIRE Smart Home system. Third, we present our preliminary work
to extend the methodology for multimodal dialogue models. This chapter is written
based on Bui et al. [28] and part of the work that is related to my own contribution
reported in [102, 136].

Chapter 4 presents a novel approach to developing interfaces for multi-application
systems. We first describe in detail the main idea of the approach. We then present
a scenario example for producing a dialogue system accessing ten applications in the
ICIS domain. This chapter is written based on Bui et al. [30].

3http://wwwhome.cs.utwente.nl/∼hofs/pomdp/
4http://hmi.ewi.utwente.nl/icis/demonstrator/

6 1. Introduction

Chapter 5 presents a factored POMDP approach to affective dialogue manage-
ment. It is composed of two main parts. The first part is about the description of
an affective dialogue model. The second part is the evaluation of the model and the
comparison with other techniques. Part of this chapter is written based on Bui et al.
[31, 33].

Chapter 6 presents a tractable hybrid DDN-POMDP approach to affective dia-
logue management. The first part of this chapter is about the description of the
approach. The second part is about the experiments and evaluation of the method
through a multi-slot route navigation example. Part of this chapter is written based
on Bui et al. [32, 34].

Chapter 7 summarizes the main points of the thesis and discusses future directions.

Chapter 2

Background and definitions

2.1. Introduction

Dialogue is conversation between two or more agents, be they human or computer.
Research on dialogue usually follows two main directions: human-human dialogue and
human-computer dialogue. The former is relevant to the study of discourse analysis
and conversation analysis [see 99, chap. 6]. This thesis focuses on human-computer
dialogue which is involved in a Dialogue System (DS), a computer system that is
able to talk with a human (hereafter called “user"). In the following, we describe
briefly key concepts and related work from studies of human-human dialogue that are
particularly important for designing DSs:

• Speech act and dialogue act. The term speech act originates from Austin’s
work [11]. His point of view is that an utterance in a dialogue is an action per-
formed by the speaker. Speech acts, therefore, are considered as performative
verbs such as name, second, and best. Speech acts are mainly referred to as
illocutionary acts which Austin defined as acts of asking, answering, making a
request, making a promise. Searle further developed the theory of speech acts
described in his influential book [150]. In designing DSs, the notion of speech
act is expanded, and Bunt coined the term dialogue act. Dialogue acts refer to
functional units used by the speaker to change the dialogue context [35]. Con-
cretely, a dialogue act is composed of three aspects: the utterance form (e.g.
“Is it raining?"), the communicative function (e.g. “Yes-No-Question"), and the
semantic content (e.g. the proposition “it is raining"). Concepts similar to
dialogue acts were proposed by a number of researchers who aimed to anno-
tate dialogue corpora and to generalize the dialogue management framework:
conversation acts [167], conversational moves [37], and dialogue moves [51].

• Turn-taking. In a conversation, two participants exchange turns in sequence
(one talks, stops; another starts, talks, stops and so on) like two persons play-
ing tennis. Each turn is composed of one or more utterances performed by the

7

8 2. Background and definitions

speaker to addressees. Turn transfers are assumed to occur at certain points
called Transition Relevance Places (TRPs) and not at others [146]. Levinson[99,
pp. 296-297] described two important empirical facts about turn-taking in human-
human dialogue: (i) less than five percent of the speech stream is delivered in
overlap and (ii) the gap between two consecutive turns is on average only a few
tenths of one second. Sacks et al. [146] suggest that the turn-taking mechanism
can be described by a set of rules, called the SSJ model, which are simplified
as follows: (i) if C (current speaker) selects N (next speaker) then C must stop
speaking and N must speak next; (ii) if C does not select N, then any other party
may self-select and the first one will take the next turn; and (iii) if C has not
selected N and no other party self-selects then C may continue. Although the
SSJ model has been widely used as a normative description of interactive sys-
tems, there are cases where the simultaneous expressive behavior of speaker and
listener are important. For example, Nijholt et al. [115] have recently discussed
the important role of this behavior in three non-verbal interactive applications
(an interactive dancer, an interactive conductor, and an interactive trainer) de-
veloped at the Human Media Interaction (HMI) group. In these applications,
expressive behavior of a virtual human has to be synchronized with that of the
user.

• Grounding. In conversation, both the speaker and the addressee need to estab-
lish a common ground [162] in order to ensure that the addressee understands
clearly the speaker’s meaning and intention. Clark and Schaefer [47] proposed
a significant formal model, called the contribution model, for detecting and re-
pairing communication errors in human-human conversations. Traum [166] de-
veloped an online reformulation of the contribution model, called the grounding
acts model, which was used in developing a collaborative conversational agent in
the TRAINS project [5]. Cahn and Brennan [36] formalized and extended the
contribution model to explicitly represent the system’s private model. Paek and
Horvitz [119] proposed a formalization of grounding based on inference and de-
cision making under uncertainty. This model was used to develop two prototype
dialogue systems: Presenter and Bayesian Receptionist [118].

There are many types of DSs that are classified by modality, device, initiative,
application, and task complexity [53]. In the framework of this thesis, I am partic-
ularly interested in goal-oriented (or task-oriented) DSs. The main objective of a
goal-oriented DS is to cooperate (and partly, collaborate) with the user to help the
user achieve their goal. Among goal-oriented DSs, we distinguish two popular types:
(i) Spoken Dialogue Systems (SDSs) and (ii) Multimodal Dialogue Systems (MDSs).

A SDS, also called conversational agent, is a dialogue system that understands
and responds to the user using speech. A good survey of SDSs is described in detail
in McTear [107, 108].

An MDS is a dialogue system that processes two or more combined user input
modes - such as speech, pen, touch, manual gestures, gaze, and head and body move-
ments - in a coordinated manner with multimedia system output [117]. We view an
SDS as a particular type of MDS.

2.2. Overview of a dialogue system 9

In the following sections, we first give an overview of an MDS. We then present
the related dialogue management approaches from literature.

2.2. Overview of a dialogue system

AnMDS usually consists of the following components: Input, Fusion, Dialogue Manager
(DM) and Knowledge Sources, Fission, and Output. Figure 2.1 shows a conceptual
architecture of an MDS designed and partially implemented in the framework of the
ICIS project.

Audio-visual Speech Recognition

Knowledge

Sources

Dialogue Management

Audio

(Microphone)

Video

(Camera)

Pen

(Pen, Tablet

PC, touch

screen)

Text

(Keyboard)

Speech

Feature Extraction

Gesture Recognition

Handwriting Recognition

Natural Language

Understanding

Task Model

Dialogue

Model

Domain

Model

Modality

Selection

Reasoning

Natural Language

Generation

Speech

Synthesis

Graphic

Generation

User Model

Video

Generation

Text

(Screen)

Audio

(Speakers)

Video

(Screen)

Fission

Fusion

Facial Detection and Facial

Expression Recognition

Semantic-level

Fusion

Input

Output

Dialogue

History

Graphic

(Screen)

Lips-reading

Feature Extraction

Feature-level

Fusion

Figure 2.1: Conceptual architecture of a multimodal dialogue system designed and
partially implemented in the ICIS project. In our current prototype, the system was
implemented as a distributed system where all modules exchange messages through
an interaction middleware.

10 2. Background and definitions

2.2.1. Input

Inputs of an MDS are a subset of the various modalities such as speech, pen, facial
expressions, gestures, and gazes. Two types of input modes are distinguished: active
input modes and passive input modes [117]. Active input modes are the modes that
are deployed by the user intentionally as an explicit command to the computer such as
speech. Passive input modes refer to naturally occurring user behavior or actions that
are recognized by a computer (e.g., facial expressions). They involve user input that
is unobtrusively and passively monitored, without requiring any explicit command to
a computer [117]. Examples of MDSs that combine multiple input modalities are:

• Speech and (hand, pen, or pointing) gesture [42, 48, 87, 102, 154],

• Speech and haptics [77],

• Speech, gestures, and facial expressions [173].

2.2.2. Fusion

Information from various input modalities is extracted, recognized and fused. Fusion
processes the information and assigns a semantic representation which is eventually
sent to the dialogue manager. In the context of MDSs, two main levels of fusion are
often used: feature-level fusion, semantic-level fusion. The first one is a method for
fusing low-level feature information from parallel input signals within a multimodal
architecture (for example, in Fig. 2.1, feature-level fusion happens between speech
and lip-reading input). The second one is a method for integrating semantic infor-
mation derived from parallel input modes in a multimodal architecture (for example,
in Fig. 2.1, semantic-level fusion happens between input modality action recognition
modules such as speech and gesture).

Another related work on low-level fusion is sensor fusion. Sensor fusion combines
sensory data from disparate sources to gain a more accurate information1.

Semantic-level fusion is usually involved in the DM and needs to consult the shared
knowledge sources (see Fig. 2.1). Three typical semantic fusion techniques are used
from the literature: frame-based fusion, unification-based fusion, and hybrid sym-
bolic/statistical fusion. Frame-based fusion is a method for integrating semantic in-
formation derived from parallel input modes in a multimodal architecture, which has
been used for combining speech and gesture (e.g. Vo and Wood [171]). Unification-
based fusion is a logic-based method for integrating partial meaning fragments derived
from input modes into a common meaning representation during multimodal language
processing. Compared with frame-based fusion, unification-based fusion derives from
logic programming, and has been more precisely analyzed and widely adopted within
computational linguistics (e.g. Johnston [86]). Hybrid symbolic/statistical fusion is
an approach to combine statistical processing techniques with a symbolic unification-
based approach (e.g. Members-Teams-Committee (MTC) hierarchical recognition
fusion [180]).

1http://en.wikipedia.org/wiki/Sensor_fusion[accessed 2008-04-25]

2.2. Overview of a dialogue system 11

2.2.3. Dialogue manager

The DM is the core component of a dialogue system. It processes semantic inputs
from fusion (either semantic concepts, dialogue acts or communicative intentions) and
decides what the system should do next in response to the user in order to fulfil the
user’s goal.

In the following we briefly describe a number of knowledge sources that are usually
used by the Dialogue Manager, Fusion, and Fission. The knowledge sources deployed
in DSs are discussed further in Flycht-Eriksson [67].

• Dialogue history. Dialogue history is composed of a set of utterances (or con-
cepts, dialogue acts) which were uttered by the system and the user from the
beginning of a dialogue session to the current turn.

• Task model. A precise definition of the task model depends on each application
domain. Generally speaking, we can say that the task model is composed of
the information the system needs to gather to complete the system’s task that
fulfils the user’s goal. For example, in the information seeking domain, the task
model is composed of a set of information pieces that the system needs to collect
from the user to execute its task (such as making a database query).

• Domain model. A model with specific information about the application do-
main. For example, in the flight information domain, we can apply constraints
to disambiguate input, such as, the departure location and the destination lo-
cation must be different.

• User model. This model may contain relatively stable information about the
user that may be relevant to the dialogue such as the user’s age, gender, and
preferences (user preferences) as well as information that changes over the course
of the dialogue, such as the user’s goals, beliefs, and intentions (user’s mental
states).

2.2.4. Fission

Fission is the process of realizing an abstract message through output on some com-
bination of the available channels. The tasks of a fission module is composed of three
categories [69]:

• Content selection and structuring : the presented content must be selected and
arranged into an overall structure.

• Modality selection: the optimal modalities are determined based on the current
situation of the environment, for example, when the user device has a limited
display and memory, the output can be presented in graphic form such as a
sequence of icons.

• Output coordination: the output on each of the channels should be coordinated
so that the resulting output forms a coherent presentation.

12 2. Background and definitions

2.2.5. Output

Various output modalities can be used to present the information content from the
fission module such as speech, text, 2D/3D graphics, avatar, and haptics. Popular
combinations of the output modalities are: (1) graphics and avatar, (2) speech and
graphics, (3) text and graphics, (4) speech and avatar, (5) speech, text, and graphics,
(6) text, speech, graphics, and animation, (7) graphics and haptic, (8) speech and
gesture.

2.3. Approaches to dialogue management

Four popular state-of-the-art approaches to design and development of dialogue man-
agement models2 are: finite state, frame-based, information state, and MDP-based.
These approaches will be described in the next sections. Other approaches are re-
ported in Bui [26]. To illustrate the main idea of each approach, we use the restaurant
information system, RestInfo, which was developed in the framework of the InfoVox
project [136]. The RestInfo DS aims to provide information about the restaurants of
the city of Martigny, Switzerland.

2.3.1. Finite state dialogue models

The finite state approach [75, 106, 134] models dialogue as a finite state machine [88,
chap. 2] where the nodes correspond to system prompts and the arcs correspond to the
user’s choices. Transitions between nodes determine all possible paths of the dialogue
flow. The interaction is usually system-initiative and all the system’s prompts are
predetermined. Figure 2.2 shows a simplified model for the Restinfo system. The
system interacts with the user to collect pieces of information step by step and to
confirm all the collected values before conducting a query to the database. A dialogue
session using this model is shown in Table 2.1 where S and U denote the system and
the user, respectively.

Figure 2.2: Simplified finite-state dialogue model for the RestInfo system

2We defer discussion on the POMDP-based dialogue management approach from the literature
to Chapters 5 and 6.

2.3. Approaches to dialogue management 13

Utterance Active node
S1 : Welcome to the RestInfo service.

I can help you to find a restaurant. Start
What type of food are you looking for? Type of food

U1 : Italian.
S2 : and what location? Location
U2 : in the center.
S3 : and what time of the day? Opening time
U3 : Evening.
S4 : and which day of the week? Opening day
U4 : Sunday.
S5 : and what price level? Price range
U5 : Average.
S6 : So you want to find an average Italian restaurant Confirm all

in the center on Sunday, in the evening.
Is that correct?

U6 : Yes.
S7 : Please wait a moment. Stop

[queryDB(?x.info:x.typeOfFood=Italian,
x.location=center, x.openingTime=evening,
x.openingDay=sunday,x.priceRange=cheap)]
I found “Le café de Martigny".
Thank you for using our service.

Table 2.1: Restinfo dialogue session to illustrate the finite-state approach

14 2. Background and definitions

Finite state dialogue models are easy to construct and robust to cope with the
speech recognition problem. This approach is suitable for simple applications with
well-structured tasks. However, this approach is inflexible, unnatural, and difficult to
apply to more complex tasks [107].

2.3.2. Frame-based dialogue models

The frame-based approach [19, 21, 45, 73, 83, 143] is able to solve some of the limita-
tions of the finite-state approach. A frame-based dialogue model is represented by a
set of frames: each frame is composed of a number of slots (Fig. 2.3). The task of the
dialogue manager is considered as a slot-filling or form-filling task. A predefined set
of information is gathered in a more flexible way. An example of the dialogue between
the system and the user is shown in Table 2.2. Frame-based DSs can handle more
flexible user input. For example, the user can provide extra information other than
that the system has asked for in the previous turn. Most of the current commercial
DSs are frame-based DSs [125].

S1 : Welcome to the RestInfo service. What can I do for you?
[focus GDN: start, active GDNs: all]

U1 : Find a restaurant with Italian food near the center.
[typeOfFood=Italian, location=center]

S2 : For Italian as type of food and Center as location. What time?
[implicit_confirm=true, focus GDN: time, active GDNs: all]

U2 : Sunday evening.
[openingTime=evening, x.openingDay=Sunday]

S3 : For Evening as time and Sunday as day. What price range?
[implicit_confirm=true, focus GDN: priceRange, active GDNs: all]

U3 : Cheap.
[priceRange=cheap]

S4 : Please wait a moment.
[queryDB(?x.info:x.typeOfFood=Italian, x.location=center,
x.openingTime=evening, x.openingDay=sunday, x.priceRange=cheap)]

S5 : I found “Le café de Martigny". What else can I do for you?
U4 : No, thanks.
S6 : Thank you, good bye.

Table 2.2: RestInfo dialogue session to illustrate the frame-based approach

The original idea of representing knowledge as frames was proposed by Minsky
[111]. One of the oldest frame-based DSs is GUS [19]. GUS was designed to act
as a travel agent that helps clients to make a simple return trip to a single city
in California. It mainly focuses on language-understanding problems such as that
in understanding indirect answers to questions, resolving anaphora. Although the
motivational dialogue example is speech-based, the implemented version of the system
is text-based and does not have a separate dialogue management module. However,

2.3. Approaches to dialogue management 15

Type of

food

Location

Opening

time

Price

range

Opening

day

Generic Dialogue Nodes

Branching Logic

Stop

Start

Figure 2.3: Frame-based dialogue model for the RestInfo system based on Bui et
al. [27]. Each slot is modeled as a generic dialogue node. See Chapter 3 for a further
explanation.

16 2. Background and definitions

the idea of using frames for the reasoning component is explained clearly and the idea
of using an agenda for the system control is mentioned. Significant efforts to develop
spoken and multimodal frame-based dialogue managers are contributed by a number
of authors [21, 45, 73, 83, 143]. Chapters 3 and 4 present our contribution to rapid
prototyping for designing spoken and multimodal frame-based DSs.

2.3.3. Information state dialogue models

The information state theory of dialogue consists of five main types of unit: a descrip-
tion of informational components, formal representations of the informational compo-
nents, a set of dialogue moves, a set of update rules, and an update strategy [95, 165].
These units [165] are briefly described as follows:

• The informational components include aspects of common context and inter-
nal motivational factors such as participants, common ground, linguistic and
intentional structure, obligations and commitments, beliefs, intentions and user
models.

• The formal representations of the information components might be imple-
mented as lists, sets, typed feature structures, records, discourse representation
structures, propositions or modal operators within a logic, et cetera.

• Dialogue moves will be used to trigger the update of the information state.
These moves are correlated with externally performed actions such as natural
language utterances being realized by the Natural Language Generation (NLG)
module.

• The update rules govern the updating of the information state given various
conditions of the current information state and performed dialogue moves, in-
cluding a set of selection rules, that license choosing a particular dialogue move
to perform given conditions of the current information state.

• The update strategy decides which rule(s) to apply at a given point from the set
of applicable ones. This strategy can range from something as simple as “pick
the first rule that applies" to more sophisticated arbitration mechanisms, based
on game theory, utility theory, or statistical methods.

Table 2.3 shows an example of the interaction between the user and the Restinfo
system formulated based on the information state theory. The information state after
turn U1 is shown in Table 2.4. Dialogue moves include: greet, offer, ask, inform,
answer, and quit.

The information state approach is intended to be a unified model for design-
ing dialogue management. A wide range of applications can be modeled using this
approach from simple applications such as Restinfo to more complex applications
(e.g., [64, 168]).

2.3. Approaches to dialogue management 17

S1 : Welcome to the Restinfo service. What can I do for you?
[greet, offer]

U1 : I am looking for a restaurant.
[ask(x.info)]

S2 : What type of food are you looking for?
[ask(x.typeOfFood)]

U2 : Italian food near the center.
[answer(x.typeOfFood=Italian, x.location=center)]

S3 : and what time do you prefer?
[ask(x.openingTime)]

U3 : Sunday evening.
[answer(x.openingTime=evening, x.openingDay=sunday)]

S4 : and what about the price range: cheap, average, or expensive?
[ask(x.priceRange)]

U4 : Cheap.
[answer(x.priceRange=cheap)]

S5 : Please wait a moment.
[queryDB(?x.info:x.typeOfFood=Italian, x.location=center,
x.openingTime=evening, x.openingDay=sunday, x.priceRange=cheap)]

S6 : I found “Le café de Martigny". What else can I do for you?
[answer(x.info), offer]

U5 : No.
[answer(no)]

S7 : Thank you, good bye.
[quit]

Table 2.3: Restinfo dialogue session to illustrate the information-state approach

PRIVATE =

AGENDA = 〈〉

PLAN =

ask(?x.typeOfFood)
ask(?x.location)
ask(?x.openingTime)
ask(?x.openingDay)
ask(?x.priceRange)
queryDB(?x.info)

BEL = {}

SHARED =

COM =
QUD = 〈?x.info〉
LU = SPEAKER = user

MOVES = 〈ask(?x.info)〉

Table 2.4: Restinfo information state after U1 (adapted from [94])

18 2. Background and definitions

2.3.4. MDP-based dialogue models

A key limitation of the information state dialogue models (as well as finite-state and
frame-based dialogue models) is that designers have to define update rules, which
can be very time-consuming and labor-expensive. This triggered the quest to find
mechanisms to learn a good dialogue strategy from dialogue corpora automatically.
The Markov Decision Process (MDP) based dialogue models were proposed. The idea
is to formulate dialogue as an MDP and then use reinforcement learning techniques
to find an optimal policy (i.e. dialogue strategy). Figure 2.4 shows an MDP-based
dialogue model for the RestInfo system adapted from the Pietquin model [126]. The
state space is composed of variables for slots and variables to monitor the current state
of the dialogue such as grounding (Status), Automatic Speech Recognition (ASR)
confidence level (ASR confidence), and the number of retrieved records from the
database (number of DB records). The action set is composed of slot independent
actions (such as greet, ask all, confirm all, query database, and quit) and slot dependent
actions such as (ask slot X, confirm slot X, and relax slot X). The reward function is
defined based on the number of system and user turns and the task completion [126,
pg. 200].

Type of

food

Location
Opening

time

Opening

day
Price range

Status
ASR

confidence

Number of

DB records

Type of

food

Location
Opening

time

Opening

day
Price range

Status
ASR

confidence

Number of

DB records

Figure 2.4: MDP-based dialogue model for the RestInfo system (adapted from [126])

A popular approach to find the optimal dialogue strategy for an MDP-based dia-
logue model is to use user simulation techniques [98, 126]. The task is composed of a
two-phase approach (Fig. 2.5): (i) a simulated user is first trained (using supervised

2.4. Toward affective dialogue systems 19

learning techniques) on a small human-computer dialogue corpus to learn responses
of a real user given the dialogue context; (ii) the learning DM then interacts with this
simulated user in a trial-and-error manner to learn an optimal dialogue strategy.

Figure 2.5: Two-phase approach for dialogue strategy learning

2.4. Toward affective dialogue systems

Emotion has been taken into consideration in designing DSs since the start of the
1970s. Artificial Paranoia, developed by Colby et al. [49], was the first text-based DS
that could express fear and anger based on keywords extracted from the user’s input.
But only recently, the design and development of Affective Dialogue Systems (ADSs)
have received much interest from the dialogue research community [7].

A DS that can detect the user’s affective state could be beneficial in many appli-
cation domains. For example, in the information seeking dialogue domain, if a DS
is able to detect the critical phase of the dialogue which is indicated by the user’s
vocal expressions of anger or irritation, it could determine whether it is better to
keep the dialogue or pass over to a human operator [15]. Similarly, Martinovsky and
Traum [105] showed that many communicative breakdowns in a training system and
a telephone-based information system could be avoided if the computer was able to
recognize the emotional state of the user and to respond to it appropriately. In the
intelligent spoken tutoring dialogue domain, the ability to detect and adapt to student
emotions is expected to narrow the performance gap between human and computer
tutors [17].

A DS that can express emotions appropriately based on social norms and the
dialogue context is also advantageous [77, 122]. The main motivations behind this
work are based on the empirical studies of Reeves and Nass [138]. They claimed that
users tend to apply social norms to computers. Showing system’s affect to the users
when appropriate, therefore, could enhance users’ satisfaction and preferences. For
example, the Cosmo pedagogical agent intentionally expresses emotions to encourage
the student in problem-solving tasks. Greta [122] is provided with a personality and
a social role that allow her to decide whether to show her emotion or not depending

20 2. Background and definitions

on the current dialogue context. INES [77] exploits different tutoring strategies and
expresses empathic emotions toward the student depending on whether the student
is confident or insecure.

Beyond development issues of an MDS, three important issues need to be taken
into account for the design of an ADS:

• How does the system recognize the user’s affect?

• How does the system incorporate the user affect model?

• How does the system express emotion during a conversational session with the
user?

These issues are presented in Sections 2.4.1, 2.4.2, and 2.4.3, respectively. We also
describe the related work that is particularly useful in the DS development framework.

2.4.1. Affect recognition

The user’s affect can be recognized or inferred from speech [9, 82, 181], facial expres-
sions [151], physiological signals [124, 137], or multiple modalities [57]. A good survey
of different approaches to recognize affect is presented in Zeng et al. [186]. Which
modality is best to use for the recognition task depends on the application domain.
For example, in a telephone-based DS, the obvious source is from the user’s vocal
input. In an in-car DS, besides speech we can take advantage of facial expressions
(detected from the cameras installed inside the car) and physiological signs recognized
through devices which can be quite easily set up inside the car system [65].

Figure 2.6 shows an emotion recognition system proposed by Lee and Narayanan
[96] which is able to recognize two emotional states: negative and non-negative. The
user’s speech input is first processed by the feature extraction module. The acoustic
features (fundamental frequency (F0), energy, duration, first and second formant
frequencies and their bandwidths) are then combined with the lexical information
(emotionally salient words) and discourse information (five speech act labels of the
user’s response to the system: rejection, repeat, rephrase, ask-start over, and none of
the above) by the emotion recognizer module. The best classification result for both
male and female speakers is about 90%.

2.4.2. Affective user modeling

When building an ADS, an interesting question is which emotion category should we
use to model the user’s affect and which user’s affective states should we select? It
depends on the application domain. For example, in the tutoring domain, D’Mello
et al. [57] showed that the user (in this case the student or learner) rarely experienced
sadness, fear, or disgust. Therefore, modeling the user’s affect using six basic emotions
(fear, anger, happiness, sadness, disgust, and surprise), on which most of the state-of-
the-art emotion classification work is focusing, is not a good choice for this domain.

The task of integrating the user affective state model into the system is called af-
fective user modeling. Most of the affective user models categorize the user’s affective

2.4. Toward affective dialogue systems 21

Feature extraction Emotion Recognizer

Spoken Dialogue

System

Lexical (emotionally salient words)

& Discourse (5 speech acts: reject, repeat,

rephrase, ask-start over, none of the above)

Acoustic

AcousticSpeech
negative

non-negative

F0

Energy

Duration

...

Figure 2.6: Emotion recognition module proposed by Lee and Narayanan [96]

state based on a subset of 22 emotion types in the OCC model developed by Ortony
et al. [116] such as Conati [50], Elliott et al. [60], Katsionis and Virvou [91], Martinho
et al. [104] or on dimensional-based models [144] such as Ball and Breese [14], Kort
et al. [93]. These models are then represented using Bayesian Networks (BNs) [121].

Key advantages of using BNs to model the user’s affect are: (i) They deal explicitly
with uncertainty between the user’s affect and their observed behaviors; (ii) The
links between nodes are meaningful because we can interpret these links as the causal
relations between variables; (iii) The network can be easily extended by adding new
behavior nodes and linking them to the most relevant hidden nodes; and (iv) They
can handle mixed emotions in a flexible manner [38].

One of the first affective user models was proposed by Ball and Breese [14]. The
user’s emotion and personality are modeled by four variables: valence, arousal, domi-
nance, and friendliness. The values of these variables are inferred from the observable
user’s behaviors such as speech, gesture, posture, and facial expressions (Fig. 2.7). This
model can also be used for the system to express emotions.

However, Ball’s model and other static BN-based models [114] do not represent
the temporal evolution of the user’s emotional state as well as the causal relation-
ships between the emotional states and the personality states (i.e. dominance and
friendliness). To correct these shortages, Dynamic Bayesian Networks (DBNs) have
been proposed to model the user’s affect, their causes and the relevant observable
behaviors [13, 38, 50, 101] (Fig. 2.8).

For example, Conati [50] proposed a model for her application game Prime Climb,
where the causal relationships between the user’s affective states and their causes are
based on the OCC model. The causes are composed of: user’s traits (conscien-
tiousness, agreeableness, extraversion), user’s goals (avoid falling, succeed by myself,
have fun), user’s action outcomes, and goals satisfied. The affective states are
composed of seven variables: reproach, shame, joy, negative valence, positive valence,
arousal, and engagement. The observable behaviors are composed of two levels:

22 2. Background and definitions

Figure 2.7: Affective user model proposed by Ball and Breese [14]

bodily expressions (eyebrow position, skin conductance, and heart rate) and sensors
(visual based recognizer, Electromyogram (EMG), Galvanic Skin Response (GSR),
and heart monitor).

Similarly, in Liao’s model [101], which is also used for a real-time stress recognition
task, the causes are composed of: context (complex or simple), profile (health, age,
skill), goal (important, not important), workload (high, normal, low). The affective
states are composed of stress, fatigue, and nervous. The observable behaviors are
composed of: physical (eyelid movement, pupil, facial expression, head movement),
physiological (Electrocardiogram (ECG), Electroencephalogram (EEG), GSR, and
General Somatic Activity (GSA), behavioral (mouse movement, mouse pressure, and
typing speed), and performance (response and accuracy).

2.4.3. Affective system modeling and expression

Early DSs such as Artificial Paranoia used a set of simple rules to express emotions
toward the user. Much of research interest has focused on developing computational
models of emotion for designing and developing agents (believable agents, virtual
humans) that can express realistic and complex emotions as humans do [16, 25, 59,
61, 74, 139, 169]. For example, an emotion model, called ParleE, developed at the
Human Media Interaction Group, University of Twente is shown in Figure 2.9 [25].

ParleE is an MDP-based model developed based on the OCC model [116] and the
personality model [140]. Emotional states are generated based on events from a fully
observable environment. ParleE is appropriate for modeling multi-agent systems in a
virtual world. It was partially integrated into the INES system [77] which allows the

2.4. Toward affective dialogue systems 23

Affective

States

Causes

Obervable

Behaviors

time t-1

Affective

States

Causes

Obervable

Behaviors

time t
P
re
d
ic
tiv
e

D
ia
g
n
o
s
tic

Figure 2.8: High level abstraction of DBN-based affective user models, each node is
composed of a set of variables

Planner

Emotion Appraisal Component

Emotion Impulse Vector

Emotion Component Motivational State

Models of other agents

Emotion Decay

Personality

Event

Emotion Vector

Figure 2.9: Emotion model proposed by Bui et al. [25]

24 2. Background and definitions

system to express four emotion states (joy, distress, happy-for, and sorry-for) through
a 3D talking head.

One great difficulty of applying ParleE and other emotion models mentioned above
directly to the design of ADSs is that these models do not take into account the
uncertainty of the user’s states such as the uncertainty about the user’s emotion,
goal, and belief. For example, consider a situation in which the user’s affective state
is joy and the system recognizes it as distress and expresses sorry-for emotion toward
the user by applying the OCC rules. This expression is not appropriate regardless of
how realistic the emotions that the system can show are.

2.5. Theory of POMDPs

A Partially Observable Markov Decision Process (POMDP) is a generalization of a
Markov Decision Process (MDP) which permits uncertainty regarding the state of
the environment. Howard [81] described a transition in an MDP as a frog in a pond
jumping from lily pad to lily pad. In a POMDP environment, the lily pond is covered
by the mist, therefore the frog is no longer certain about the pad it is currently
on [112]. Before jumping, the frog can observe information about its current location.
This intuitive view is very appropriate to model the affective dialogue management
problem as being illustrated in Section 2.5.2.

In a dialogue management context, the agent is the dialogue manager, loosely
called, the system (Fig. 2.10). Part of the POMDP environment represents the user’s
state and user’s action. Depending on the design for a particular dialogue application,
the rest of the POMDP environment might be used to represent other modules such
as the speech recognition and the emotion recognition (see Chap. 5). Because the
user’s state cannot be directly observed, the agent uses a state estimator (SE) to
compute its internal belief (called belief state) about the user’s current state and an
Action Selector (AS) where the policy π is implemented to select actions. The SE
takes as its input the previous belief state, the most recent system action and the
most recent observation, and returns an updated belief state. The AS takes as its
input the agent’s current belief state and returns an action that will be sent to the
user.

In the following sections, we first describe a basic framework of POMDPs. Second,
we present a simple empathic dialogue agent example for the tutoring domain. Third,
we describe two main tasks of the agent: belief updating and finding an optimal policy.

2.5.1. Basic framework

A POMDP is defined as a tuple 〈S, A, Z, T,O, R〉, where S is a set of states of the
environment (usually called state space), A is a set of the agent’s actions, Z is a set of
observations the agent can experience of its environment, T is a transition function,
O is an observation function, and R is a reward function. We assume that S, A, Z are
finite and that the interaction between the agent and environment follows a sequence
of discrete time steps.

2.5. Theory of POMDPs 25

SE AS

Action

At=a
Observation

Zt+1=z’

Agent (SYSTEM)

Belief Bt=b

Environment (USER)

State St=s, St+1=s’

 Reward Rt=r

Figure 2.10: Modularized view of the interaction between the dialogue manager and
the user in a dialogue management context

Let St, At, Zt+1, and Rt be random variables taking their values from the sets
S, A,Z, and R (the set of real numbers), respectively. At each time step t, the envi-
ronment’s state is St. The agent selects an action At and sends it to the environment.
The environment’s state changes to St+1. The agent receives an observation Zt+1 and
a reward value Rt. Following this interaction description, the transition function T ,
observation function O, and reward function R are formally defined as follows.

• The transition function is defined as T : S × A × S → [0, 1]. Given any state
and action, s and a, the probability of the next possible state, s′, is

Pa
ss′ = T (s, a, s′) = P{St+1 = s′|St = s,At = a}, for all t. (2.1)

These quantities are called transition probabilities. Transition function T is time-
invariant and the sum of transition probabilities over the state space

∑
s′∈S Pa

ss′ =
1, for all (s, a).

• The observation function is defined as O : S×A×Z → [0, 1]. Given any action
and next state, a and s′, the probability of the next observation, z′, is

Pa
s′z′ = O(s′, a, z′) = P{Zt+1 = z′|At = a, St+1 = s′}, for all t. (2.2)

These quantities are called observation probabilities. Observation function O is
also time-invariant and the sum of observation probabilities over the observation
space

∑
z′∈Z Pa

s′z′ = 1, for all (a, s′).

26 2. Background and definitions

• The reward function3 is defined as R : S×A → R. Given any current state and
action, s and a, the expected immediate reward that the agent receives from the
environment is

Ra
s = R(s, a) (2.3)

Let Rmin and Rmax be the lower bound and upper bound of the reward function,
that is to say

Rmin < R(s, a) < Rmax, for all (s, a). (2.4)

The state space might also contain some special absorbing state that only transitions
to itself and the reward gained when the agent takes any action is 0. Suppose s is an
absorbing state, we have

T (s, a, s′) =

{
1 if s′ = s

0 otherwise
and R(s, a) = 0, for all a.

Given the POMDP model, we want to design a framework in which the agent’s
goal is to maximize the expected cumulative reward over time

V = E

(T −1∑
t=0

γtRt

)
(2.5)

where E(.) is the mathematical expectation, T is the planning horizon (T ≥ 1), γ is
a discount factor (0 ≤ γ ≤ 1). The closer γ to 1 the more effect future rewards have
on current agent action selection. This framework is called finite-horizon optimality.
When T → ∞ and γ < 1, the framework is called infinite-horizon optimality. It
is necessary to set the value of discount factor γ smaller than one in the infinite-
horizon case to guarantee that the expected cumulative reward is bounded. From
Equations 2.4 and 2.5, we have:

E

(∞∑
t=0

γtRmin

)
< V < E

(∞∑
t=0

γtRmax

)
⇒ Rmin

1− γ
< V <

Rmax

1− γ
. (2.6)

2.5.2. Empathic dialogue agent example

To illustrate the main principle of a POMDP-based dialogue management, we use a
simple empathic dialogue agent example for the tutoring domain, which is described
as follows. A student (“the user") is interacting with the agent to learn a subject
matter. The agent tries to infer the user’s affective state to give an appropriate
empathic feedback which aims to enhance the student’s learning. Suppose that the
user’s affective state is either s1 = pos (positive) or s2 = neg (negative). The agent’s
goal is to select the most appropriate action from the following three actions: a1 =

3We can also define the reward function as (R : S → R) or (R : S × A × S → R) or (R :
S×A×S×Z → R). However, the first definition is sufficient and does not change the fundamental
properties of the framework.

2.5. Theory of POMDPs 27

comfort , a2 = check , and a3 = encourage. The comfort action is expressed by saying
“I am sorry that you feel bad about the last question". The check action is the agent
action to infer the user’s affective state from outcome of an affect recognition module
assumed to be available. The encourage action is expressed in the verbal form such
as “Very good!" or “Well done!". If the agent knows exactly the user’s true affective
state, the action selection problem is trivial. The agent just selects the encourage
action when the user’s affective state is positive and the comfort action otherwise.
Unfortunately, the user’s affective state cannot be directly observed. Therefore, the
agent must sometime use the check action to infer the user’s affective state.

A POMDP model for this problem is represented by: (i) S = {s1, s2} = {pos,neg},
(ii) A = {a1, a2, a3} = {comfort , check , encourage}, and (iii) Z = {z1, z2} = { ˜pos, ˜neg}.
The transition function, observation function, and reward function are shown in Ta-
ble 2.5. All transition and observation probabilities are handcrafted based on the
common sense knowledge from the tutoring domain and affect recognition literature.

P (s′|a, s) P (z′|a, s′) R(s, a)
a s s′ = pos s′ = neg s′ z′ = ˜pos z′ = ˜neg s r
comfort pos 0.80 0.20 pos 0.5 0.5 pos -10

neg 0.30 0.70 neg 0.5 0.5 neg 10
check pos 0.90 0.10 pos 0.9 0.1 pos -1

neg 0.10 0.90 neg 0.1 0.9 neg -1
encourage pos 0.95 0.05 pos 0.5 0.5 pos 5

neg 0.05 0.95 neg 0.5 0.5 neg -10

Table 2.5: Transition function, observation function, and reward function for the
empathic dialogue agent

The transition probability distribution in Table 2.5 is based on the following in-
tuition. The user’s affective state is dynamic and might change even without direct
intervention from the agent. Therefore, when the agent selects the check action,
which does not directly influence the user, the user’s affective state might change
from positive to negative or vice versa with probability 0.1. If the user is in a pos
state, and the agent selects the encourage action which is the right one, the user,
therefore, remains in a positive state with a high probability (0.95). Vice versa, if
the user is in a neg state, the encourage is not appropriate and therefore, the chance
that the negative state remains is high (0.95). Similarly, if the user’s affective state is
negative, the comfort action is appropriate and therefore the probability of changing
to the positive state is higher than the check action.

When the agent selects the check action, it can infer the user’s affective state
with a 90% correctness (Table 2.5). The correctness rate here is interpreted as the
classification accuracy of the affect recognition module as described in Section 2.4.1.
When the agent selects encourage or comfort action, the observation probabilities are
equally distributed.

Reward values are specified by the designer. They represent what the designer
wants the agent to achieve, not how the designer wants it achieved [163, pg. 57].

28 2. Background and definitions

In this example, we want the agent to select an appropriate action given uncertainty
about the user’s affective state. When the user’s affective state is positive, the encour-
age action is appropriate and therefore receives a positive reward. When the user’s
state is negative, the comfort action is appropriate and a positive reward is assigned
for this action. When the agent selects check action, it incurs a small negative reward
and in return the agent is more certain about the user’s current affective state.

2.5.3. Computing belief states

The state of the user cannot be directly observed. Therefore, in order to select good
actions, the agent needs to maintain a complete trace of all the observations and
actions that have happened so far. This trace is known as a history4. It is formally
defined as:

Ht+1 := {A0, Z1, ..., Zt, At, Zt+1}, (2.7)

Astrom [10] showed that history Ht+1 can be summarized via a belief distribution. A
belief distribution is exactly the belief state of the agent.

Bt+1(s′) = P{St+1 = s′|B0,Ht+1}, (2.8)

Assuming the Markov property and using Bayes’ rule, Equation 2.8 is transformed
to the following equation (see the proof in Smallwood and Sondik [155], Appendix A):

Bt+1(s′) = P{St+1 = s′|Zt+1 = z′, Zt = a,Bt = b} (2.9)

Formally, let the belief space B be an infinite set of belief states. A belief state
b ∈ B is encoded as a |S|-dimensional column vector (b1, b2, ..., b|S|)T , where each
element bi = b(si) is the probability that the current state of the environment is si,
bi ≥ 0, ∀i ∈ [1, |S|], and ∑|S|

i=1 bi = 1. Geometrically, a belief state is a point in a
(|S| − 1)-dimensional belief simplex.

Concretely, the agent starts with an initial belief state B0 = b0. At time t, the
agent’s belief is Bt = b, it selects action At = a and sends this to the environment.
The state changes to St+1 = s′. State St+1 cannot be directly observed and the
agent only gets observation Zt+1 = z. The agent also receives a reward Rt = r, the
value of which depends on the actual values of state s and agent’s action a. At this
moment the agent needs to update its belief state Bt+1 = b′ given known values for
b, a, z. Starting from Equation 2.9, b′(s′) is computed using the basic laws from the
probability theory as follows:

4In a dialogue management context, this trace is the dialogue history

2.5. Theory of POMDPs 29

b′(s′) = P (s′|z, a, b)

=
P (z|s′, a, b)P (s′|a, b)

P (z|a, b)

=
P (z|s′, a)P (s′|a, b)

P (z|a, b)
, (Zt+1 and Bt are independent)

=
Pa

s′z
∑

s∈S P (s′|a, b, s)P (s|a, b)
P (z|a, b)

=
Pa

s′z
∑

s∈S P (s′|a, s)P (s|b)
P (z|a, b)

=
Pa

s′z
∑

s∈S Pa
ss′b(s)

P (z|a, b)

=
Pa

s′zT
a
s′b

P (z|a, b)
,

= ηPa
s′zT

a
s′b,

(2.10)

where T a
s′ is a |S|-dimensional row vector:

T a
s′ =

(
Pa

s1s′ , ...,Pa
s|S|s′

)
, |S| is the number of elements of S.

η = 1/P (z|a, b) is a normalizing constant, independent of state s′.
The belief state b′ is represented as

b′ = ηW a
z b (2.11)

where W a
z is a |S| × |S| matrix,

W a
z =

Pa
s1zPa

s1s1
Pa

s1zPa
s2s1

... Pa
s1zPa

s|S|s1

Pa
s2zPa

s1s2
Pa

s2zPa
s2s2

... Pa
s2zPa

s|S|s2

...
Pa

s|S|zPa
s1s|S| Pa

s|S|zPa
s2s|S| ... Pa

s|S|zPa
s|S|s|S|

 (2.12)

The agent-environment interaction process for planning horizon T is shown in
Figure 2.11a. When T > 1, the interaction process can be represented as a DBN as
in Figure 2.11b.

Let us now illustrate the belief monitoring process of the empathic dialogue agent
example where the agent selects an action randomly (e.g. at the beginning of the
learning process). At the beginning, the agent starts with a uniform belief state
B0 = (0.5 0.5)T . The agent selects a random action, let say A0 = check and receives
an immediate reward R0 = −1 and an observation Z1 = ˜pos. The belief state B1 is
computed as follows:

B1 = ηWA0
Z1

B0

From Equation 2.12 and Table 2.5, we have:

WA0
Z1

=
[PA0

s1Z1
PA0

s1s1
PA0

s1Z1
PA0

s2s1

PA0
s2Z1

PA0
s1s2

PA0
s2Z1

PA0
s2s2

]
=

[
0.9× 0.9 0.9× 0.1
0.1× 0.1 0.1× 0.9

]
=

[
0.81 0.09
0.01 0.09

]

30 2. Background and definitions

S0 S1 St-1 St SΤ-1

Z1 Zt-1 Zt ZΤ-1

A0 A1 At-1 At AΤ-1

R0 R1 Rt-1 Rt RΤ-1

... ...

time 0 time 1 time t-1 time t time Τ-1

(a)

St-1 St

Zt-1 Zt

At-1 At

Rt-1 Rt

time t-1 time t

(b)

B0 B1 Bt-1 Bt BΤ-1 Bt-1 Bt

Figure 2.11: (a) Bayesian network representation illustrating the agent reasoning
process in T steps, (b) Equivalent dynamic Bayesian network representation (T > 1).
The shaded nodes are hidden, the clear nodes are observable. The dashed nodes
(i.e. belief nodes) are shown to clarify how the system updates its internal beliefs
and selects actions. In the actual implementation, these nodes are derived from the
hidden nodes.

2.5. Theory of POMDPs 31

Substitute the computed value WA0
Z1

to Equation 2.5.3 we have:

B1 = η

[
0.81 0.09
0.01 0.09

] [
0.5
0.5

]
= η

[
0.45
0.05

]

Normalize B1 so that B1(s1) + B1(s2) = 1 we have B1 = (0.9 0.1)T . Note that we do
not need to compute η.

Now starting with B1, the agent selects a random action, let say A1 = encourage.
It receives an immediate reward R1 = 5 and an observation Z2 = ˜pos. Similarly, we
can easily compute B2 from B1, A1, Z2. It will result in:

B2 =
[

0.86
0.14

]

2.5.4. Finding an optimal policy

A policy is a function:
π(b) −→ a, (2.13)

where b is a belief state and a is the action chosen by the policy π.
An optimal policy π∗ is a policy that maximizes the expected cumulative reward:

π∗ = argmaxπE

[∞∑
t=0

γtRt

]
, (2.14)

where Rt is the reward when the agent follows policy π.
We define value functions Vi : B → R. Vn(b) is the maximum expected cumulative

reward when the agent has n remaining steps to go. Its associated policy is denoted
by πn. When the agent has only one remaining step to go (i.e. n = 1), all it can do
is to select an action and send it to the environment, we have:

V1(b) = max
a∈A

∑

s∈S

R(s, a)b(s)

= max
a∈A

rab,
(2.15)

where ra is a row vector, ra =
(
Ra

s1
, ..., Ra

s|S|

)
.

When the agent has n remaining steps to go (n > 1), the value function Vn is
defined inductively as [155]:

Vn(b) = max
a∈A

[
rab + γ

∑

z∈Z

P (z|a, b)Vn−1(bz
a)

]
(2.16)

where bz
a is the belief state of the agent after selecting action a, and the observation

of the environment change to z.

32 2. Background and definitions

When n →∞, the optimal value function for the infinite-horizon case is denoted
by V ∗. Puterman[131, Theorem 6.9] proved that Vn converges to V ∗ when n goes to
infinity. Therefore, from Equation 2.16 we have:

V ∗(b) = max
a∈A

[
rab + γ

∑

z∈Z

P (z|a, b)V ∗(bz
a)

]
(2.17)

For any positive number ε, the policy πn is ε-optimal if

V ∗(b)− Vn(b) ≤ ε for all b ∈ B. (2.18)

Equation 2.16 is used to develop an important type of algorithms called Value
Iteration (VI) (Section 2.6). Value iteration is an algorithm for finding ε-optimal
policies. It is terminated when [131]:

sup
b
|Vn(b)− Vn−1(b)| ≤ ε(1− γ)

2γ
, (2.19)

where sup |X| stands for supremum norm of set X. The left part of Equation 2.19 is
called the Bellman residual.

Because there are an infinite number of belief states, we cannot compute Vn−1

directly for each belief state b. Sondik [158] proved that Vn−1 can be represented
through a finite set of α-vectors Γn−1 = {α1, ..., α|Γn−1|}, where each vector α ∈ Γn−1

is a |S|-dimensional row vector (also called a hyperplane, hereafter it is called an
α-vector), and

Vn−1(b) = max
α∈Γn−1

αb (2.20)

Therefore, from Equations 2.11 and 2.20 we can rewrite Equation 2.16 as

Vn(b) = max
a∈A

[
rab + γ

∑

z∈Z

P (z|a, b) max
α∈Γn−1

αbz
a

]

= max
a∈A

[
rab + γ

∑

z∈Z

P (z|a, b) max
α∈Γn−1

α
W a

z b

P (z|a, b)

]

= max
a∈A

[
rab + γ

∑

z∈Z

max
α∈Γn−1

αW a
z b

]

= max
a∈A

[
rab + γ(max

l1
αl1 .W

a
z1

b + ... + max
l|Z|

αl|Z|W
a
z|Z|b)

]

= max
a∈A

[
rab + γ max

l1
... max

l|Z|
(αl1W

a
z1

b + ... + αl|Z|W
a
z|Z|b)

]

= max
a∈A

rab + γ max

l1
... max

l|Z|

|Z|∑

k=1

αlkW a
zk

b

= max
a∈A

max
l1

... max
l|Z|

ra + γ

|Z|∑

k=1

αlkW a
zk

 b,

(2.21)

2.5. Theory of POMDPs 33

where l1, l2, ..., l|Z| ∈ [1, |Γn−1|].
The set Γn can now be generated from set Γn−1 by the following update:

Γn ← α′ = ra + γ

|Z|∑

k=1

αlk .W a
k ,∀a ∈ A,αlk ∈ Γn−1, (2.22)

where n ≥ 1 and Γ1 = {ra1 , ra2 , ..., ra|A|}.
Finding the optimal policy (for planning horizon T = n) is now considered as

solving a set of |A||Γn−1||Z| linear constraints derived from Equation 2.21. To gain
the computational tractability, it is necessary to keep only the vectors that contribute
to the optimal value function because the number of α-vectors generated from Equa-
tion 2.22 is very large. We distinguish two types of α-vectors: useful vectors and
extraneous vectors [190]. A vector α ∈ Γn is useful5 if:

∃b ∈ B : αb > α′b, for all α′ ∈ Γn − α (2.23)

A vector α′ ∈ Γn that does not satisfy Equation 2.23 is an extraneous vector. A
set Γn that is composed of useful vectors is called a parsimonious set [188]. From
Equation 2.20 it is obvious that we can safely remove all the extraneous vectors from
the set Γn. Monahan [112] proposed a procedure to remove extraneous vectors by
solving the following linear program for each α ∈ Γn:

variables: x, bi, ∀i ∈ [1, |S|]
maximize x

subject to constraints: b(α− α′) ≥ x; ∀α′ ∈ Γn &
|S|∑

i=1

bi = 1

(2.24)

If x < 0, remove α from Γn.
When the set of useful α-vectors Γn is found. The agent’s action â is determined

as â ← α̂6, where
α̂ = argmax

α∈Γn

αb (2.25)

Let us again illustrate the process of finding the optimal policy for the empathic
dialogue agent example with the discount factor γ = 0.95. For n = 1, we have

Γ1 =

α1,

α2,

α3

=

ra1 ,

ra2 ,

ra3

=

(-10 10),
(-1 -1),
(5 -10)

(2.26)

All vectors of the set Γ1 are useful vectors (see Fig. 2.12a). Apply Equation 2.20, we

5Assume that the identical vectors in Γn are merged.
6Because each α-vector is associated with only one action, see Equation 2.22

34 2. Background and definitions

have
V1(b) = max

α∈Γ0
αb

=

−10b1 + 10b2 if 0.00 ≤ b1 ≤ 0.55,

−1 if 0.55 < b1 ≤ 0.60
5b1 − 10b2 if 0.60 < b1 ≤ 1.00,

(2.27)

where b2 = 1− b1.
For n = 2, Γ2 is composed of |A||Γ1||Z| = 27 vectors generated from Γ1 as follows:

Γ2 =

α′1,

α′2,

α′3,

α′4,

α′5,

α′6,

α′7,

α′8,

α′9,

α′10,

α′11,

α′12,

α′13,

α′14,

α′15,

α′16,

α′17,

α′18,

α′19,

α′20,

α′21,

α′22,

α′23,

α′24,

α′25,

α′26,

α′27

=

ra1 + γα1W
a1
z1

+ γα1W
a1
z2

,

ra1 + γα1W
a1
z1

+ γα2W
a1
z2

,

ra1 + γα1W
a1
z1

+ γα3W
a1
z2

,

ra1 + γα2W
a1
z1

+ γα1W
a1
z2

,

ra1 + γα2W
a1
z1

+ γα2W
a1
z2

,

ra1 + γα2W
a1
z1

+ γα3W
a1
z2

,

ra1 + γα3W
a1
z1

+ γα1W
a1
z2

,

ra1 + γα3W
a1
z1

+ γα2W
a1
z2

,

ra1 + γα3W
a1
z1

+ γα3W
a1
z2

,

ra2 + γα1W
a2
z1

+ γα1W
a2
z2

,

ra2 + γα1W
a2
z1

+ γα2W
a2
z2

,

ra2 + γα1W
a2
z1

+ γα3W
a2
z2

,

ra2 + γα2W
a2
z1

+ γα1W
a2
z2

,

ra2 + γα2W
a2
z1

+ γα2W
a2
z2

,

ra2 + γα2W
a2
z1

+ γα3W
a2
z2

,

ra2 + γα3W
a2
z1

+ γα1W
a2
z2

,

ra2 + γα3W
a2
z1

+ γα2W
a2
z2

,

ra2 + γα3W
a2
z1

+ γα3W
a2
z2

,

ra3 + γα1W
a3
z1

+ γα1W
a3
z2

,

ra3 + γα1W
a3
z1

+ γα2W
a3
z2

,

ra3 + γα1W
a3
z1

+ γα3W
a3
z2

,

ra3 + γα2W
a3
z1

+ γα1W
a3
z2

,

ra3 + γα2W
a3
z1

+ γα2W
a3
z2

,

ra3 + γα2W
a3
z1

+ γα3W
a3
z2

,

ra3 + γα3W
a3
z1

+ γα1W
a3
z2

,

ra3 + γα3W
a3
z1

+ γα2W
a3
z2

,

ra3 + γα3W
a3
z1

+ γα3W
a3
z2

=

(-15.7 13.8),
(-13.325 11.425),
(-13.325 11.425),

(-11.9 9.2875),
(-11.9 9.2875),
(-10.95 9.05),

(-9.525 6.9125),
(-9.525 6.9125),

(-9.0275 -8.6475),
(-8.771 -1.779),

(-8.6 6.6),
(-8.1 4.775),
(-3.55 -1.45),

(-2.2065 -8.8185),
(-1.95 -1.95),

(-1.779 6.429),
(0.25 -6.2),
(0.25 -6.2),

(2.325 -9.075),
(2.5815 -2.2065),

(2.74375 -10.11875),
(2.74375 -10.11875),

(2.7525 6.1725),
(4.05 -10.95),

(6.54375 -14.86875),
(6.54375 -14.86875),

(9.0375 -18.7875)

(2.28)

Six pairs of α-vectors of Γ2 are identical: {α′2, α′3}, {α′4, α′5}, {α′7, α′8}, {α′17, α′18},
{α′21, α′22}, and {α′25, α′26}. After merging these pairs, we have the set of 21 non-

2.5. Theory of POMDPs 35

identical vectors Γ′2. These vectors are represented in Figure 2.12b. Among these 21
vectors, there are only three useful vectors: α′1, α′23, and α′27. Pruning the extraneous
vectors from the set Γ′2 we have a new set of useful vectors Γ′′2 = {α′1, α′23, α′27}.

-25

-20

-15

-10

-5

0

5

10

15

20

0 1

-25

-20

-15

-10

-5

0

5

10

15

20

0 1

)(2 bV

)(1 bV

0.55 0.6

b1 b1

(a) (b)

0.2925 0.7989

α1

α3

α2

α’1

α’23

α’27

Figure 2.12: Representation of α-vectors of (a) Γ1 and (b) Γ′2. Solid lines are useful
vectors. Dashed lines are extraneous vectors. Upper bounds of the solid lines (i.e.
bold lines) are optimal value functions.

We now compute the optimal value function V2(b) as the following.

V2(b) = max
α∈Γ′′2

αb

=

−15.7b1 + 13.8b2 if 0.0000 ≤ b1 ≤ 0.2925
2.7525b1 + 6.1725b2 if 0.2925 < b1 ≤ 0.7989
9.0375b1 − 18.7875b2 if 0.7989 < b1 ≤ 1.0000,

(2.29)

where b2 = 1− b1.
Note that each α-vector is associated with an action (as we can see from Equa-

tions 2.26 and 2.28). Therefore, the action selection problem is equivalent to selecting
an α-vector from a set of useful vectors given the agent’s belief state. For example,
given the initial belief state B0 = {0.5 0.5}, the best action the agent can choose at
the beginning based on V1 is a1 = comfort (correspond to α1) and based on V2(b) is
a3 = encourage (correspond to α′23).

Continuing this process, we obtained two distinctive properties of this problem.
First, Figure 2.13 shows that the number of useful α-vectors does not increase ex-

36 2. Background and definitions

ponentially with the number of planning horizons. Indeed, the number of useful
α-vectors is a constant (equal to 13) when T ≥ 26.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
1
0
0
4
0
0
4
9
4

Planning horizon

N
u
m
b
e
r
o
f
u
s
e
fu
l
v
e
c
to
rs

Figure 2.13: Number of useful vectors vs. planning horizon

Second, the optimal value function converges at T = 494 (ε = 10−9). This means
we also obtain the optimal policy for the infinite-horizon case as well when T =
494. The optimal value functions for T = 10, T = 20, and T = 494 are shown in
Figure 2.14.

As mentioned, the optimal value function for the infinite-horizon case V ∗(b) is
equal to V494(b) and is computed as follows:

V ∗(b) ≈ V494(b) =

28.4278b1 + 58.6604b2 if 0.0000 ≤ b1 ≤ 0.1004
35.3949b1 + 57.8826b2 if 0.1004 < b1 ≤ 0.2098
36.1418b1 + 57.6843b2 if 0.2098 < b1 ≤ 0.3502
46.7367b1 + 51.9739b2 if 0.3502 < b1 ≤ 0.4049
47.9208b1 + 51.1681b2 if 0.4049 < b1 ≤ 0.5015
48.4500b1 + 50.6358b2 if 0.5015 < b1 ≤ 0.5355
49.1138b1 + 49.8703b2 if 0.5355 < b1 ≤ 0.7548
49.3500b1 + 49.1432b2 if 0.7548 < b1 ≤ 0.7563
49.3969b1 + 48.9976b2 if 0.7563 < b1 ≤ 0.8319
51.9081b1 + 36.5667b2 if 0.8319 < b1 ≤ 0.8688
53.5840b1 + 25.4671b2 if 0.8688 < b1 ≤ 0.9098
54.5692b1 + 15.5293b2 if 0.9098 < b1 ≤ 0.9553
54.9864b1 + 6.60722b2 if 0.9553 < b1 ≤ 1.0000,

(2.30)

2.6. Review of POMDP solution techniques 37

-40

-30

-20

-10

0

10

20

30

40

50

60

70

0 1

-40

-30

-20

-10

0

10

20

30

40

50

60

70

0 1

-40

-30

-20

-10

0

10

20

30

40

50

60

70

0 1

)(10 bV

)(20 bV

)(494 bV

b1 b1 b1

(a) (b) (c)

Figure 2.14: Representation of the optimal value functions for different planning
horizons (a) T = 10, (b) T = 20, and (c) T = 494. Lines are useful vectors. Upper
bounds of these lines (i.e. bold lines) are optimal value functions.

where b = (b1, b2)T and b2 = 1− b1.

The optimal policy can also be represented by a policy graph (Fig. 2.15). A policy
graph is a directed graph where each of the nodes are the agent’s actions and the arcs
are the observations. Each node in the policy graph is associated with an α-vector in
the set Γ. The index i below the action label of each node corresponds to the α-vector
ith in Γ. For example, each index of the policy graph in Figure 2.15 corresponds to
one vector in Equation 2.30. An advantage of using the policy graph as an action
selection function is that the agent does not need to compute its belief state during
the system-user interaction process as described at the beginning of this section.

2.6. Review of POMDP solution techniques

In this section, we present a popular class of POMDP algorithms, called Value Itera-
tion (VI), that are usually used to compute an optimal or near-optimal policy (based
on the literature). Other POMDP algorithms are reviewed in Aberdeen [1], Murphy
[113], Thrun et al. [164]. Section 2.6.1 is about the exact VI algorithms. Section 2.6.2
describes approximate Point-Based Value Iteration (PBVI) algorithms which are used
to compute near-optimal policies for dialogue problems presented in Chapters 5 and 6.

38 2. Background and definitions

comfort

3

comfort

1

check

5

encourage

11

encourage

10

encourage

13

encourage

12

check

9

gen~

gen~sop~

gen~
sop~

sop~

gen~
sop~

gen~
sop~gen~

sop~

gen~
sop~gen~sop~

check

6

comfort

2

gen~

sop~

check

7

sop~

gen~

check

8

gen~

sop~

check

4

gen~
sop~

gen~

start [B0=(0.5 0.5)
T
]

Figure 2.15: Optimal policy for the empathic dialogue agent represented as a policy
graph. Given the initial belief B0 = (0.5, 0.5)T the start node is check5. Shaded nodes
are unreachable from check5, therefore we can remove them from the policy graph.

2.6.1. Exact value iteration algorithms

In this section, we present three representative algorithms that aim to illustrate core
ideas of the exact VI solution. Algorithm 1 (derived from Eq. 2.16 and 2.19) is a gen-
eral form (i.e., global level) of all exact VI algorithms. Figure 2.16 shows a conceptual
idea of how to compute the Bellman residual r (Alg. 1) for two sets of alpha-vectors
Γ = {α1, α2, α3} and Γ′ = {α′1, α′2}. Further technical details about computing the
Bellman residual is presented in Zhang and Zhang [190]. Algorithm 2, the simplest
algorithm, is used to show the computational complexity issue. Algorithm 3, pruning
extraneous vectors, is an important routine used in many recent algorithms (including
Alg. 2).

Almost all exact value iteration algorithms differ only in the way they compute
the set of useful vectors Γn given the set of useful vectors Γn−1, which is represented
as the update(Γ) function in Algorithm 1. In the following, we discuss them in detail.

Algorithm 2, called Enumeration, is derived from Equations 2.22 and 2.24 in Sec-
tion 2.5.4. It was proposed by Sondik [158] and Monahan [112]. The main idea of the
enumeration algorithm is to use the dynamic programming technique to generate the
set of all α-vectors Γn from Γn−1 and to prune them to get the set of useful α-vectors
using linear programming. This algorithm is inefficient because the step to gener-
ate the set Γn from Γn−1 might be computationally expensive (|Γn| = |A||Γn−1||Z|).

2.6. Review of POMDP solution techniques 39

Algorithm 1: exactVI(Γ0, γ, ε) (Value iteration for POMDPs)
Input: Initial set of vectors Γ0, discount factor γ, and positive number ε
Output: Set of useful vectors Γ
begin

Γ ← Γ0; δ ← ε(1−γ)
2γ ; r ←∞;

while r > δ do
Γ′ ← update(Γ);
r ← maxb∈B,α∈Γ,α′∈Γ′ |α′b− αb|; // See [190] for a proposal to
compute the Bellman residual.
Γ ← Γ′;

return Γ;
end

Figure 2.16: Conceptual idea of how to compute the Bellman residual r in Algorithm 1:
r = max{l1, l2, l3, l4}, where Γ = {α1, α2, α3} and Γ′ = {α′1, α′2}.

40 2. Background and definitions

For example, the run-time to solve the 4 × 3 maze problem [120] is more than eight
hours([41], see Table 2.6). This is because, unlike the emphatic dialogue agent prob-
lem, the number of useful α-vectors of the 4×3 maze problem increases quickly in the
planning horizon. The numbers of useful vectors when the planning horizon increases
from 1 to 10 are: 1, 3, 4, 4, 15, 41, 133, 430, 1289, 3593. In consequence, at T = 11,
there is already a very large number of α-vectors (4 × 35936) being generated from
the set of useful vectors Γ10.

Algorithm 2: update(Γn−1) (Enumeration [112, 158])
Input: Set of useful vectors Γn−1

Output: Set of useful vectors Γn

begin
Γn ← ∅;
forall actions a ∈ A do

forall (l1, l2, ..., l|Z|) = (1, 1, ..., 1) to (|Γn−1|, |Γn−1|, ..., |Γn−1|) do
α′ ←

[
ra + γ

∑|Z|
k=1 αlkW a

zk

]
;

Γn ← Γn

⋃
(a; α′);

return Γn ← prune(Γn); // See Alg. 3

end

To alleviate this computational difficulty, Sondik [158] proposed another algo-
rithm, called one-pass, that can generate the set of useful α-vectors Γn directly. In-
stead of generating all α-vectors, the one-pass algorithm only produces a set of useful
vectors. The main idea of the algorithm is explained as follows. It starts with an
initial belief state b. It then finds the useful α-vector for b and the region in which
this vector is dominant. After that, it continues with the start and end points of this
region to find other useful α-vectors. The process is then repeated until no new useful
α-vector is found.

Cheng [44] starts with Sondik’s one-pass idea but opts for less strict constraints.
The linear support algorithm starts with extreme points of the belief space. It then
picks a point, generates the vector for that point, and checks the region of this vector
to see if it is the correct one at all corners (vertices) of the region.

Instead of computing the set of useful vectors Γn directly, Cassandra et al. [40]
first convert the value function Vn to the state-action value function Qa

n for each
action a:

Qa
n(b) = rab + γ

∑

z∈Z

P (z|a, b)Vn−1(bz
a). (2.31)

Then they compute a set of useful vectors Γa
n for Qa

n(b) and prune the extraneous
vectors. See Kaelbling et al. [89] for further details of the algorithm. They also show
that Witness performs better than the previous algorithms for a class of problems
which have a small number of useful α-vectors Γa

n.
Zhang and Liu [189] use a clever pruning technique to further reduce the computa-

tional intractability. Their algorithm, Incremental Pruning(IP), is the most efficient

2.6. Review of POMDP solution techniques 41

Algorithm 3: prune(Γ) (Adapted from [62])
Input: Set of vectors Γ
Output: Set of useful vectors Γ′

begin
Γ′ ← ∅;
while Γ 6= ∅ do

α ← any element in Γ;
if pointwise-dominate(α, Γ) then Γ = Γ− {α};
else

b ← lp-dominate(α, Γ);
if b = nil then Γ = Γ− α else

α ← best(b,Γ);
Γ′ ← Γ′

⋃{α};
Γ ← Γ− α;

end
pointwise-dominate(α, Γ):
begin

forall α′ ∈ Γ do
if αi ≤ α′i, ∀i ∈ [1, |S|] then return true;

return false;
end
lp-dominate(α, Γ):
begin

solve the following linear programs:
variables : x, bi, ∀i ∈ [1, |S|]
maximize: x
subject to the constraints: b(α− α′) ≥ x, ∀α′ ∈ Γ &

∑|S|
i=1 bi = 1

if x ≥ 0 then return b else return nil;
end
best(b,Γ):
begin

max ← −∞
forall α ∈ Γ do

if (αb > max) or ((αb = max) and (α <lex α′)) then
α′ ← α; // <lex denotes lexicographic ordering (see [39,
pg. 67])
max ← αb;

return α′
end

42 2. Background and definitions

exact algorithm when compared with previous algorithms. Recent work reported
a number of extensions from the IP algorithm: GIP [41], RR [41], IBIP [62], and
RBIP [63].

Table 2.6 [41] shows the benchmark of some of these exact POMDP algorithms7.
We can see that all these algorithms can only handle problems with a few dozen
states, actions, and observations. As illustrated in Section 2.5.4, the optimal policy is
computed for all belief points in the belief simplex B, many of them are unreachable
from the initial belief state B0. In consequence, the complexity of the exact algorithms
grows exponentially with the planning horizon T (curse of history problem). They,
therefore, are not appropriate for solving realistic dialogue management problems
except toy problems such as the empathic agent example presented in Section 2.5.2.
Fortunately, recent progress in finding approximate algorithms provides some hope
for designing more realistic POMDP-based dialogue management models. We will
discuss these algorithms in the next section.

Specification Time (s)
Problem |S| |A| |Z| Enumeration Witness Incremental Pruning
1D maze 4 2 2 2.2 9.3 2.3

Part painting 4 4 2 1116.9 5608.4 4249.2
Network 7 4 2 >8h 6422.9 1066.6
Shuttle 8 3 5 >8h 1676.7 200.8
4x3 maze 11 4 6 >8h 727.1 346.0
Cheese 11 4 7 >8h 351.8 215.7
4x3 CO 11 4 11 >8h 24.6 22.8

Aircraft ID 12 6 5 >8h 417.0 234.1
4x4 maze 16 4 2 216.7 3226.0 1557.0

Table 2.6: Benchmark of exact POMDP algorithms for small problems (computed on
a Sun SPARC-10 computer) [41]

2.6.2. Approximate value iteration algorithms

The main idea of an approximate point-based VI algorithm is to approximate the
entire belief space by a set of reachable belief points Br starting from the initial belief
point b0 (Alg. 4).

One of the first approximate point-based algorithms, called PBVI, was proposed
by Pineau et al. [128]. PBVI has features distinctive from its previous approximated
algorithms. First, the set of reachable belief states Br is increased gradually during
the run-time. Second, the algorithm is implemented as anytime style. That is to say
the quality of its solution is improved over time. PBVI can find a good solution for the
Tag problem (|S| = 870, |A| = 5, |Z| = 30) [128] in 50 hours. One year later, Spaan
and Vlassis [160, 161] proposed another algorithm called Perseus. Perseus uses a
fixed set of belief points Br. These points are sampled by taking a random-walk into

7The experiments were conducted on a Sun SPARC-10 computer as mentioned in [41].

2.6. Review of POMDP solution techniques 43

Algorithm 4: approximateVI(Γ0, Br, γ, ε) (Approximate VI for POMDPs)
Input: Initial set of vectors Γ0, set of reachable belief states Br, discount

factor γ, and positive number ε
Output: Set of useful vectors Γ′

begin
Γ ← Γ0; δ ← ε(1−γ)

2γ ; r ←∞;
while r > δ do

Γ′ ← update(Γ, Br);
r ← maxb∈B,α∈Γ,α′∈Γ′ |α′b− αb|;
Γ′ ← Γ;

return Γ′;
end
update(Γ, Br)
begin

Γ′ ← ∅;
foreach b ∈ Br do

(a∗, α∗) ← backup(Γ, b);
if (a∗, α∗) /∈ Γ′ then Γ′ ← Γ′

⋃
(a∗; α∗);

return Γ′;
end
backup(Γ, b)
begin

α′a,z ← argmaxα∈Γ αba
z ;

α′a ← ra + γ
∑

z∈Z α′a,zW
a
z ;

return (a∗;α∗) ← argmaxα′a
α′ab;

end

44 2. Background and definitions

the reachable belief space, starting from the initial belief state. Perseus was reported
to solve the Tag problem in less than 30 minutes. In (the year) 2005, Smith and
Simmons [157] proposed a new algorithm called HSVI2 which was based on their
HSVI1 algorithm [156]. HSVI2 computes both lower bound and upper bound of the
optimal value function using heuristic search techniques [157]. HSVI2 solved the Tag
problem in only 24 seconds. They also proposed a more complex benchmark problem
called RockSample [157]. HSVI2 can scale to solve a POMDP problem greater than
105 states (RockSample(10,10) with |S| = 102401, |A| = 19, |Z| = 2). The benchmark
of the Tag problem is shown in Table 2.7. In Chapter 5 and Appendix A, we will report
our practical tests for different dialogue management problems using Perseus and
HSVI2. Recent PBVI algorithms that refine the scaling up issue and the performance
are reported in Shani et al. [153], Virin et al. [170].

Method Goal% Reward Time(s) Number of α-vectors
PBVI 59 -9.18 180880 1334
HSVI1 n.a. -6.37 10113 1657
Perseus n.a. -6.17 1670 280
HSVI2 n.a. -6.36 24 415

Table 2.7: Performance comparison of the Tag problem (|S| = 870, |A| = 5, |Z| = 30)

To tackle larger POMDP problems, Poupart has recently implemented an algo-
rithm called Symbolic Perseus. This algorithm, based on Perseus, reduces the dimen-
sionality of α-vectors by using Algebraic Decision Diagrams [12]. Symbolic Perseus
has been used to solve a real-word application where the state space is composed of 50
million states [78]. In Chapter 5 we will discuss in detail how to find a near-optimal
policy for a number of dialogue problems [31, 71, 79].

Chapter 3

Dialogue management for
single-application systems

This chapter is written based on Bui et al. [28]. The work was conducted (at the
Artificial Intelligence Laboratory, Swiss Federal Institute of Technology in Lausanne)
in collaboration with Martin Rajman. The content focuses on the work related to my
own contributions that are stated in Chapter 1.

3.1. Introduction

Building a usable dialogue system is a challenging task. Many approaches to modeling
dialogue have been proposed as described in Chapter 2. However, due to the com-
plexity of the management of spoken language interfaces and their strong dependence
on the interaction context, there is not yet a really generic approach for dialogue
design; each application requires the development of a specific dialogue model. Dia-
logue prototyping, therefore, represents a significant part in the development process
of interactive systems, especially for the ones with a vocal interface. In other words,
there is a strong demand for an efficient rapid prototyping methodology.

This chapter presents a Rapid Dialogue Prototyping Methodology (RDPM) for the
development of dialogue models for single-application systems. A single-application
system is a dialogue system designed to fulfil a particular task from a predefined set
of tasks that are bound to the application1. The general idea underlying the pro-
posed RDPM is that the dialogue model is a frame-based model that can be quite
easily and systematically derived from a relational representation of the application
itself, hereafter called the task model. More precisely, the RDPM consists of five

1A precise definition of the terms application and task is presented in Section 3.2. Two tasks are
belonged to the same application if they are closely related. However, this depends on the designer’s
opinion and requirements about the system underdevelopment. For example, “booking a flight” and
“booking a hotel” might be connected to the same application (e.g., travel booking) or to two different
applications (e.g., flight booking application and hotel booking application).

45

46 3. Dialogue management for single-application systems

main consecutive steps: (1) producing a task model for the targeted application; (2)
automatically deriving an initial dialogue model (and the associated dialogue-driven
interface) from the produced task model; (3) using the generated interface to carry
out Wizard-of-Oz experiments (i.e. dialogue simulations) to improve the initial di-
alogue model; (4) carrying out an internal field test to further refine the dialogue
model (reformulation of system messages, improved feedback, etc.), and validate the
evaluation procedure (coherence, understandability); and (5) carrying out an external
field test to evaluate the final dialogue model.

Steps 1, 2, and 3 are the core components of the methodology. They are presented
in detail in Sections 3.2, 3.3, and 3.4, respectively. Steps 4 and 5 are reported else-
where [28, 136]. For the purpose of clarity, we again use the Restinfo system presented
in Chapter 2. A case study of a more complex spoken dialogue system is presented
in Section 3.5.

3.2. Producing the task model

In the RDPM framework, a task is modeled as a frame the slots of which represent the
various attributes that need to be informed for the task to be performed (e.g., [107]).
More precisely, a task is defined as a function the arguments of which correspond
to the above-mentioned attributes and the call to which results in the fulfillment of
the task. An application is seen as a set of functions the user can invoke through
the dialogue-driven interface to perform various functionalities that are provided by
the application. In this perspective, an application is modeled as a set of relational
tables, where the rows correspond to the possible functions (also called “solutions" or
the “targets") and the columns are the attributes needed to uniquely identify each of
the functions, and to invoke them.

In other words, the values of the attributes in a row of the solution table (also
referred to as canonical values or concepts) correspond to the values of the arguments
of the function, the call of which results in the fulfillment of the corresponding ap-
plication functionality. For example, the task model of the RestInfo system can be
represented as a single generic function selectRestaurant(typeOfFood, location,
openingTime, openingDay, priceRange), the attributes of which identify the five
selection features available for the restaurant search. Therefore, the task model of
the RestInfo system is simply a table with five attributes: Type of food, Location,
Opening time, Opening day, and Price range. The rows of these attributes are the
various value combinations of the attributes corresponding to existing restaurants.
At the computational level, the calls to the selectRestaurant() function are imple-
mented in the form of SQL queries to the project database containing the required
information.

Notice that the current version of the RDPM presupposes that the task model
consists of a single relational table, also called the solution table (e.g., Table 3.1).

However, in the case of complex models consisting of several interconnected tables
(for example a main table containing the acceptable value combinations of the main
attributes and several additional tables relating the values present in the main table

3.3. Deriving the initial dialogue model 47

Type of food Location Opening time Opening day Price range
Chinese Museum 11h-22h Mon-Sat Cheap
Italian Center 11h-23h Tue-Sun Average
French Bourg 18h-23h Mon-Fri Cheap

...

Table 3.1: Excerpt of the RestInfo solution table

to additional attributes), standard database normalization procedures such as joint
operations can be first applied to transform the original tables into a single large one.

3.3. Deriving the initial dialogue model

A dialogue model is defined as a set of interconnected Generic Dialogue Nodes (GDNs)
(e.g., [18]), where each of the dialogue nodes is associated with one of the attributes
(also called “slots" or “fields”) in the solution table. For any given slot, the role of
the associated GDN is to perform a simple interaction with the user to obtain a valid
value for the associated attribute.

In the architecture that we have selected for implementing our dialogue-driven
interfaces, the processing of the GDNs (i.e. the actual interaction with the user ac-
cording to the specification of the GDNs) is performed by a specific module called the
local dialogue manager. However, this is not sufficient to carry out any real dialogue:
some form of global dialogue management also has to be integrated. For example,
in addition to the definition of the GDNs and the specification of the local dialogue
manager, a branching logic responsible for the management of the global dialogue flow
needs to be specified. In the current implementation, this branching logic is hard-
coded in a specific dialogue management module, called the global dialogue manager.
We assume that the encoded local and global dialogue flow management strategies
are application-independent. In most situations, they lead to an acceptable, though
not always optimal behavior for the system. Consequently, in our approach, dialogue
model design essentially reduces to the application-dependent, declarative specifica-
tion of the GDNs where the encoded dialogue management strategies are being used
without modification for all applications.

In short, a dialogue model consists of two main parts: (1) the application-dependent,
declarative specification of the GDNs; and (2) the application-independent (local and
global) dialogue flow management strategies encoded in the corresponding (local and
global) dialogue manager. Both of these components are described in more detail in
the next sections.

3.3.1. Generic Dialogue Nodes

To deal with the various attributes appearing in the solution table defining the task
model, we consider three main types of GDNs:

48 3. Dialogue management for single-application systems

1. Simple GDNs (also called static GDNs) associated with static fields, that is to
say the fields of which the values do not change over time, or only change very
slowly; for example the price range for a given restaurant2;

2. List processing GDNs (also called dynamic GDNs) associated with dynamic
fields, that is to say fields the values of which quickly change in time; for example
the types of food in a selected restaurant;

3. Internal GDNs used to perform the interactions that are required by various
special functions implemented in the dialogue manager (e.g. confirm a selected
solution, start/reset the dialogue, etc.).

As already mentioned, the role of each GDN is to perform a simple interaction
with the user to obtain a valid value for the associated attribute. In this perspective,
the difference between static and dynamic GDNs is that the former expect the user
to provide a value for the associated attribute directly. For example, a static GDN
associated with the “Price Range" attribute might ask a question such as “What price
level are you ready to accept for a meal at the restaurant to be selected?" and will be
expecting an answer containing a value taken from a predefined list of values such as
“Cheap", “Average" or “Expensive". On the other hand, a dynamic GDN will ask the
user to choose from a dynamically computed list of values. For example, a dynamic
GDN associated with the “Type" attribute will generate a list of meal types and ask
the user to indicate the position of their selection in the list. The list processing
GDNs are an important component of the targeted dialogue model as they allow us
to take into account dynamic vocabularies that could not be reliably processed by
simple GDNs because of the limited performance of the speech recognition module in
such conditions.

To realize the interaction for which it is responsible, each GDN contains two main
types of components: prompts and grammars (Figure 3.1).

Prompts

The prompts are the messages uttered by the GDN during the interaction. Several
types of prompts are defined, among which are the main prompt, corresponding to the
initial question asked by the GDN, and the help prompt that is uttered or visualized
if a request for help is expressed by the user. The formulation of the prompts plays
an important role during the dialogue. In particular, it influences the level of mixed
initiative (i.e. the degree of flexibility that the system allows in the interaction). For
instance, a main prompt such as “What can I do for you?" expresses the fact that the
system is ready to accept a quite broad range of user requests, while a more precise
prompt such as “Do you agree to select the Chinese restaurant near the center, yes
or no?" implies a low level of mixed initiative as the user is only expected to answer
with either yes or no.

2Note that prices might be changed quite often, but the values of the price range are usually fixed.
For example, in the Restinfo system, the price range is composed of three values: cheap, average,
and expensive.

3.3. Deriving the initial dialogue model 49

Figure 3.1: Example of a generic dialogue node “Price Range"

Grammars

The role of the grammars is to make a connection between the surface forms appearing
in the natural language utterances made by the user and the canonical values used in
the task model (i.e. the set of values defined for the attributes associated with the
GDNs in the solution table for the application). As such, the grammars represent the
main Natural Language Processing (NLP) elements in the system, and they might
also be used in the speech recognition engine to improve the quality of the recognition.

In addition, the control of the level of mixed initiative is implemented through
the notion of active grammars. that is to say each GDN is associated with a set
of grammars that define the types of answers that are considered acceptable for the
interaction that the GDN is responsible for. For example, the GDN associated with
the “Time" field will be associated with the “Time" grammar (recognizing utterances
such as “at 8 o’clock", “in the afternoon"), but might also be associated with other
grammars such as the “Day" grammar in order to be able to extract, in the case of an
utterance such as “tomorrow evening" not only the time (“evening") but also the date
(“tomorrow"). Eventually, the first of the active grammars is considered as the active
grammar in focus (i.e. the one that will be given precedence in case of ambiguity).

Finally, each GDN is always associated with some specific global grammars such
as the help and repetition grammars. These grammars correspond to Request for Help
and Request for Repetition situations which are mentioned in the next section.

3.3.2. Local dialogue flow management strategy

Each GDN is able to locally process five types of generic situations: (1) OK : the
user answers the question in an acceptable way; (2) Request for Repetition: the user
asks for repetition of the last system prompt; (3) Request for Help: the user does
not know how to answer the question and asks for more explanation; (4) NoInput :

50 3. Dialogue management for single-application systems

the user produces no utterance; and (5) NoMatch: the user answers but nothing
useful can be extracted from the produced utterances. Notice that, for the cases
where the user’s answer is ambiguous or uncertain, the ambiguity is handled by the
grammars associated with the GDNs as presented in Section 3.3.1. For example, in
a travel booking application, if the user provides a value (e.g., city name) that might
be belonged to either the Departure GDN or the Destination GDN. A solution for
this case is as follows:

• If one of these two GDNs is in focus, then the value is only assigned to this
GDN3;

• If the two GDNs are active (but not in focus), then the value is assigned to the
GDN coming first in the order defined in the solution table;

• If none of these two GDNs are active, then the value is discarded.

The presented solution to handle the ambiguous and uncertain answer is of course
not optimal. Other recent approaches from the literature are given in [175, chap 4].
A promising solution is to model dialogue as a Partially Observable Markov Decision
Process (POMDP). This will be presented in Chapter 5 and 6.

In the case of the OK situation, control is simply handed back to the global
dialogue manager which applies the global dialogue management strategy for the ac-
tivation of the next GDN. In the other four situations, there is a need to repair the
dialogue, hence, control remains at the GDN level. In these “problematic" cases, the
system operates in the following way: (a) Request for Repetition: the current GDN
is reactivated and its main prompt is played if it is the first request for repetition,
otherwise a reformulated prompt is played; (b) Request for Help: the GDN is reac-
tivated and the associated help prompt is played instead of the main prompt; and
(c) NoInput/NoMatch: the current GDN is reactivated and the NoInput/NoMatch
prompt is concatenated at the beginning of the main prompt.

Notice that, in all cases, there is an upper limit to the number of consecutive times
that a given GDN can be activated. If this limit is exceeded, control is handed back
to the global dialogue manager with an appropriate error message.

3.3.3. Global dialogue flow management strategy

The Global Dialogue Flow Management consists of five complementary strategies:

• a branching strategy (also called branching logic) defining the next GDN to be
activated;

• a dialogue dead-end management strategy to deal with dialogue situations where
no solution corresponds to the request expressed by the user;

• a confirmation strategy to provide the system with validation possibilities for
the values acquired during the interaction;

3There is only one focus GDN at a time.

3.3. Deriving the initial dialogue model 51

• a dialogue termination strategy to define when the interaction with the user
should be terminated (i.e. a solution proposed); and

• a strategy to deal with incoherences (i.e. situations where there are at least two
incompatible values provided by the user).

As already mentioned, all these strategies are encoded in the global dialogue man-
ager and are, therefore, application-independent. These strategies are explained in the
next sections. Additionally, our dialogue manager can work either in system driven
or in mixed initiative mode. We can therefore use the information from the passive
modality (i.e. emotion recognition) to automatically and smoothly alternate between
the two modes to enhance natural communication between the system and the user.

Branching Logic

The proposed branching logic only relies on the fact that the task model is expressed
in the form of a relational table. It consists of the following four steps:

1. Acquire: some canonical values are obtained from the user through the interac-
tion with the current GDN;

2. Filter: the obtained values are added to the set of already acquired ones and
the current solution table is filtered in order to contain only the solutions that
are compatible with the current set of values;

3. Propagate: for the attributes of which all the current solutions have the same
canonical value, the value is propagated, that is to say considered as “implicitly"
acquired for the attribute;

4. Activate: the next “open" attribute (i.e. the first attribute in the current solu-
tion table still associated with a heterogenous set of values) is identified, and
the associated GDN is activated.

For example4:

S1: What do you want to do?
U1: Find a Chinese restaurant near the center.
S2: For Chinese as type of food and center as location, which day of the week?

1. Acquire: The canonical values extracted from the U1 utterance are: Type of
food = “Chinese", Location=“Center" ;

2. Filter: If we assume that the solution table only contains three solutions com-
patible with the above acquired values, after filtering, the current solution table
will reduce to these three solutions, as illustrated in table 3.2.

4In all examples, utterances identified by Si (resp. Ui) correspond to the utterances produced by
the system (resp. the user) in the ith turn.

52 3. Dialogue management for single-application systems

Type of food Location Opening time Opening day Price range
Chinese Center Evening Sun Cheap
Chinese Center Evening Sat Cheap
Chinese Center Evening Mon Cheap

Table 3.2: An example of a filtered solution table.

3. Propagate: the value “Cheap" and “Evening" are propagated for the “Price
range" and “Opening time" attributes respectively;

4. Activate: the next “open" attribute is “Opening day" (still active with three
different values); therefore, the associated GDN becomes the new active one
and the question S2 is asked.

Dialogue dead-end management

This strategy is required to deal with cases where the current solution table is empty
(i.e. no solution corresponds to the canonical values acquired from the user). To cope
with dead-end situations, we use the following relaxation strategy:

1. Determine how many solutions are compatible with all the values that have
been explicitly acquired (i.e. not propagated) but one. If the obtained number
of solutions is smaller than or equal to a predefined threshold called the dead-end
management threshold, then provide all the relaxed solutions to the user and
ask him/her to select the desired one. Otherwise, choose one of the attributes
corresponding to a non-zero number of solutions when relaxed;

2. Remove the value associated with the selected attribute, re-propagate from the
remaining ones, and activate a yes/no GDN to get the user’s decision about the
relaxation;

3. If the user agrees with the relaxation, activate the next GDN according to the
standard activation rule, otherwise, go to step 2;

4. If the user rejects all relaxation possibilities, reset the dialogue.

For example:

S1: What do you want to do?
U1: Find a Chinese restaurant near the museum.

At this stage of the dialogue, the system has acquired the canonical values “Chi-
nese" for “Type of food" and “museum" for “Location". If we assume that there is no
Chinese restaurant near the museum, the system is in a dead-end situation. It then
first relaxes “Chinese" and computes the number of solutions (say three) compati-
ble with the unique constraint "Location=museum" and then relaxes “museum" and
computes the number of solutions (say five) compatible with “Type of food=Chinese".
The total number of relaxed solutions is, therefore, eight and:

3.3. Deriving the initial dialogue model 53

• if the dead-end management threshold is greater than or equal to eight, the
system will display/utter these eight solutions and ask the user to select one:

S2: Your selection does not correspond to a possible solution. Please select a
possible solution from the list!

• otherwise, the system will start the relaxation confirmation process:

S2: Your selection does not correspond to a possible solution. Do you agree to
reconsider “museum" as location?

Confirmation

The confirmation strategy is the procedure used during the dialogue to obtain con-
firmation from the user for the values that have been acquired by the system. There
are two complementary approaches:

• Explicit confirmation: the confirmation is obtained by explicitly asking the user;

For example:

S1: Now you can select your restaurant from the list.
U1: I select the first one.
S2: You have selected the first solution. Is that correct?

• Implicit confirmation: the confirmation is induced from the reaction of the user
to an automated confirmation information associated with the next question.

For example:

S1: Which day of the week do you want to go to the restaurant?
U1: Monday.
S2: For Monday as day , what type of food are you looking for?
U2: Chinese.

In this example, the fact that the user did not react negatively to the indication
“For Monday as day,..." is interpreted as an (implicit) positive confirmation.
The underlying hypothesis is that the user would have reacted in a negative way
(by saying something like: “I didn’t say Monday!...") if the proposed choice has
not been correct.

Implicit confirmation usually leads to shorter dialogues and is often considered
as more natural by the user. Explicit confirmation is useful in special cases, such
as the invocation of irreversible actions (e.g. “cancel my reservation in the selected
restaurant").

54 3. Dialogue management for single-application systems

Dialogue termination

The idea behind the dialogue termination strategy is that it might be more efficient,
once a limited set of solutions have been reached through dialogue, to simply dis-
play/utter the solution list and let the user choose the correct one, instead of trying
to continue the dialogue to refine the user request in order to reduce the solution set
to a unique solution. For example, when the user wants to find a restaurant far from
the city, and the number of available restaurants is sufficiently small, the system will
display all the possibilities and ask the user to select a restaurant, instead of asking
for additional selection criteria (e.g. the type of food). To implement such a behav-
ior, a limit on the number of current solutions, called the termination threshold is
defined. The termination strategy then simply corresponds to stopping the dialogue
and switching to explicit solution selection as soon as the current number of solutions
is smaller than or equal to the termination threshold. Once the selection is done, the
task is completed and the dialogue is reset.

Incoherences

This strategy is necessary to deal with the cases where the user provides (at least
two) incompatible values for one or several attribute(s). For example, if the user first
indicates “Monday" for the Day attribute and later on provides the value “Saturday",
an incoherence occurs for this attribute. To deal with such situations, an incoher-
ence prompt, such as, for example: “I am not sure about the day you have provided:
Monday or Saturday. Could you please repeat your choice?" is generated in order to
force the user to make an explicit choice.

The above mentioned incoherence management strategy is only used for incom-
patible values that were all explicitly provided by the user (i.e. “true" incoherences).
If only propagated values are involved, the new value is used to overwrite the old
one. In the remaining cases (propagated against the given or vice versa), a dialogue
dead-end management is triggered.

In the case of several simultaneous incoherencies, only one is processed and all
other new values that lead to incoherences are removed. The rule to choose the
incoherence pair to process is the following:

1. If the current GDN defines a context (i.e. is associated with a specific attribute
on which the current question was focused) and if there is an incoherence asso-
ciated with that attribute, then this incoherence should be processed;

2. Otherwise (e.g. in the case of GDNs corresponding to fully open questions such
as: “What do you want to do?"), the incoherence corresponding to the attribute
associated with the GDN coming first in the order defined in the solution table
should be processed.

Notice that the used incoherence prompts are in fact automatically generated from
prompt patterns (such as “I am not sure about the $attributeName you have provided:

3.3. Deriving the initial dialogue model 55

$attributeValue1 or ...") that contain references to the attribute name and values to
be used.

3.3.4. Generating the initial dialogue model and dialogue-driven
interface

Each attribute in the solution table is associated with a GDN in the dialogue model,
the type (static or dynamic) of which is derived from the type of the attribute. No-
tice that the dialogue model might also contain some GDNs that are not explicitly
associated with an attribute in the solution table. For example, the initial (mixed
initiative) Start GDN as mentioned in 3.3.1.

The generated GDNs are minimalist in the sense that their prompts are auto-
matically generated and that they do not contain any interpretation grammars (or,
possibly, only word spotting grammars limited to the canonical values of the associ-
ated attribute). The generated prompts are produced in a very simple way: if the
attribute to be queried about is X, then the associated question is simply: “What
X?”. Following this trivial generation procedure, we can now produce, as the final
part of our illustration, an example of what could be an interaction between a user
and the automatically generated dialogue model that is described in this section:

S1: What type of food?
U1: French.
S2: For French as type of food, what location?
U2: Center.
S3: For Center as location, what time?
U3: Evening.
S4: For Evening as time, what day?
U4: Tomorrow.
S5: Searching French restaurants near the center on Friday evening, January 31st

In reality, if the generated dialogue model does not contain any interpretation
grammars, it will, in fact, not be able to produce a dialogue, such as the one shown
above, because it will be unable to interpret any of the user’s answers. If the initial
grammars are the automatically generated word spotting grammars, the dialogue-
driven interface is operational, but, for any realistic validation, it will still require
human intervention to replace the missing (or too limited) interpretation grammars.
Validation is then done in the framework of Wizard of Oz (WoZ) experiments as
described in the next section.

56 3. Dialogue management for single-application systems

3.4. Improving the initial dialogue model usingWoZ
experiments

3.4.1. WoZ experiments

A WoZ experiment [70] is defined as a simulation of a human-machine interaction,
during which a user is exposed to a system they believe to be fully automatic, while
a hidden human operator (the wizard) is manually operating (at least) some of the
system functionalities that have not yet been fully implemented (sometimes, no imple-
mentation at all has been done at the WoZ stage and the experiment then corresponds
to a complete simulation) [54, 72].

Within such a setup, the main goal of a WoZ experiment is to provide “realistic"
experimental data about the “true" behavior of the members of some targeted user
group when faced with an automated system for a given application. To this end,
the experimental data are gathered (the experiments are often recorded or filmed)
and analyzed by the system designers, in order to obtain valuable insights to guide
subsequent modeling and implementation decisions [55].

The underlying hypothesis is that it is easier (quicker, cheaper, etc.) to set up
and modify a manually operated simulation than to specify, develop, and modify a
real implementation of a system. While this hypothesis is undoubtedly very often
true, it is, however, important to notice that a WoZ experiment is by no means a
cheap operation. It is not an easy task to convince the user that they are really faced
with a machine when the simulation is in fact operated by a human. All clues that
could reveal the presence or intervention of the wizard must be thoroughly removed.
Thus, actions need to be taken to physically hide the wizard during the interaction
and an interaction interface, even simplified, usually needs to be developed to this
end. Furthermore, the wizard has to undergo a specific training so that they can
consistently behave in a manner that is as convincing as the one the user is expecting
from a machine (no sophisticated inferences, no emotional reactions, no apparent
tiredness, etc.). In addition, it can be quite difficult to guarantee that the behavior
of the simulated system will remain uniform over time (the wizard can be in better
shape one day than the other, they might not consistently remember the provided
instructions to operate the simulation over a longer period of time, etc.) [107].

A WoZ experiment can significantly improve the design of an interactive system
(e.g. the design of the user interface [23]). Indeed, the results of the experiments are
not only used for a first evaluation of the adequacy of the initial decisions (architec-
ture, functions, interface, etc.) of the designers for the targeted system; in addition,
the experimental data gathered during the experiment can also serve, if thoroughly
recorded, as initial and strongly relevant training data for the system.

The general experimental setup of WoZ experiments consisted of a wizard interact-
ing with the user via prerecorded messages. The messages were selected by the wizard
on the basis of dialogue management rules operating on the keywords extracted from
the utterances of the user. The extraction of keywords was performed by the wizard
through a specific interface, the WoZ interface (see section 3.4.2). All user utterances
were recorded.

3.4. Improving the initial dialogue model using WoZ experiments 57

3.4.2. The WoZ interface

An interesting and practical solution to increase the ergonomics of the WoZ exper-
iments is to integrate the WoZ capabilities directly into the dialogue development
environment, that is to say in the dialogue manager automatically generated from
the task model.

However, in order to do so, it is necessary to identify precisely the different entry
points into the system that should be effectively provided to the wizard for potential
intervention in system behavior. In the most general case, this might be an extremely
difficult issue, as, in theory, the different dialogue models that can be considered
might be of arbitrarily deep complexity.

In the case of the RestInfo system, however, the dialogue model was sufficiently
simple to allow an alternative approach that did not require modification of the dia-
logue manager.

The dialogue model was completely re-implemented as a set of interconnected
HTML forms, each representing one of the GDNs in the model and the branching
logic was directly implemented in the form of hyperlinks between the HTML forms.

Each of the forms provided the wizard with necessary functionalities to operate the
simulation (the option to play pre-recorded messages containing the various prompts,
the option to store and visualize the various attribute values progressively acquired
from the user during their interaction, the option to decide on what the wizard thinks
the interpretation produced by the GDN grammar should have been, etc.).

As far as the dialogue management was concerned, it fully relied on the wizard
who had to manually select the next active GDN or local processing (help, repetition,
etc.) by clicking on the corresponding hyperlink.

One of the main advantages of this approach was that it made it possible to set
up the WoZ experiment rapidly and at a low cost. However, the fact that the WoZ
experiment was carried out in the form of a pure simulation (i.e. the WoZ environ-
ment was never connected with any of the running versions of the dialogue manager
prototype) made the task of the wizard quite difficult (operating the simulation in
real time appeared to be a task with quite a high cognitive load).

For this reason, we have implemented an extended WoZ interface that relies on
a tighter integration of the WoZ functionalities in the dialogue management environ-
ment. In particular, the WoZ interface now integrates the same dialogue management
strategy as the one implemented in the dialogue manager itself. This allows the wiz-
ard to rely on the system for the dialogue flow management and to fully concentrate
on processing the user utterances (i.e. the transcription and/or the extraction of the
adequate canonical values).

To guarantee an easy production of the extended WoZ interface, we have devel-
oped a WoZ Interface Generator which allows us to automatically create the WoZ
Interface required for a given WoZ experiment (Fig. 3.4). The WoZ Interface Gener-
ator needs two types of input: the solution table and the configuration file containing
the description of the GDNs (i.e. the dialogue model).

The result (i.e. the produced WoZ interface) consists of two main components: an
application-independent library of HTML templates and Java Scripts common for all

58 3. Dialogue management for single-application systems

generated WoZ Interfaces, and an application-dependent component corresponding
to a HTML interface, which allows the wizard to simulate the system in the WoZ
experiments.

The main advantage of the WoZ Interface Generator is that it allows a very quick
production of WoZ Interfaces that are simple to use and easy to modify, making it a
very valuable tool for iterative dialogue model improvement.

3.5. Case study 1: the INSPIRE system

The INSPIRE Smart Home system was developed in an EU funded project5. The
final version provides English and German language speech controls over a number
of home devices (lights, TV, video recorder, electronic program guide, blinds, fan,
answering machine) installed in a living room. The system is mixed-initiative. Three
settings have been implemented for the output module: multiple intelligent devices,
a single visible assistant, and an invisible assistant. In the first setting, the speech
output is located near the location of the device, which gives a sense that the user is
communicating directly with the device under control. In the second, a talking head
is shown on the TV screen. It is responsible for operating the devices on behalf of
the user. In the third, the speech output is similar to the second setting except the
assistant is invisible like a “ghost" in the room. The prototype system has been used
by several partners in the project to explore user behavior. In these experiments, the
speech recognition module is usually replaced by a human wizard. A typical dialogue
with the INSPIRE system is shown in Table 3.3.

In the following we discuss the production of the task model, dialogue model, and
the WoZ interface.

Task model The task model is shown in the upper part of Figure 3.2. From
the task model we derive the solution table which is composed of 13 fields: Device
name, Device location, Action name, Type, Day, Time, Main actors, Title, Show ID,
Channel name, User name, Message, and Confirm action. Each row of the solution
table corresponds to an instance of the user’s command. For example, the first row
corresponds to the command “switch on the fan". We use a special character “-" to
denote the value of attributes that are not available for the corresponding command.

Dialogue model The dialogue model is shown in Figure 3.3. The linkage between
nodes is application-dependent and can easily be specified in the XML configuration
file. The bi-directional branches6 indicate what are the other active nodes if a node is
set in focus. For example, if the focus node is “User Name”, the other active nodes are

5IST-2001-32746
6Note that these branches are not the flow of the dialogue as in a finite-state dialogue model

because in a frame-based dialogue model we do not need to represent the dialogue flow explicitly. In
the XML configuration file of our current prototype, it is also possible to specify the branching logic
branches asymmetrically.

3.5. Case study 1: the INSPIRE system 59

S1 : Welcome to the INSPIRE smart home. What can I do for you?
U1 : What is on TV tonight?
S2 : I understood TV as device, today as day, and evening as time.

What type of show are you looking for?
U2 : Film.
S3 : I understood films as type of show.

Your query has returned several matches.
Please refine your query by selecting people from the list
[A numbered list of people involved in films schedule tonight are shown
on the TV screen]

U3 : Three [corresponding to Tom Cruise who plays in 2 scheduled films]
S4 : [A numbered list of films where Tom Cruise plays is displayed]

Now you can select your show from the list.
U4 : One.
S5 : What do you want me to do with this?
U5 : Help.
S6 : You can record it or set an alarm before the program starts.
U6 : Record it.
S7 : You can see a summary of your selection on the screen. Is it OK?

[Information about the selected show to be recorded is displayed]
U7 : That’s right. Thank you.
S8 : May I still help you?
U8 : Dim the light.
S9 : Select a location please?
U9 : Left.
S10 : [the light on the left is dimmed] May I still help you?
U10 : No, Thank you.
S11 : I will go now. Whenever you need, I will be at your disposal.

Table 3.3: Dialogue excerpt of the interaction between the INSPIRE system and the
user

60 3. Dialogue management for single-application systems

Device ID Action ID

LocationDevice nameDevice ID

-TVD1

.........

RightLightD4

LeftLightD3

-FanD2

Show IDAction nameAction ID

-switch onA1

.........

recordA3

-switch offA2

DayTypeShow ID

MonFilmS1

.........

TueNewsS2

TitleMain actorTime

Vanilla SkyTom CruiseEvening

.........

--Noon

Action nameDevice locationDevice name

switch on-Fan

record-TV

dimLeftLight

TimeDayType

EveningMonFilm

TitleMain actor

--

Vanilla SkyTom Cruise

--

.........

Solution table

Interconnected tables

Figure 3.2: Excerpt of the INSPIRE solution table which is transformed from a set
of interconnected tables. For the purpose of clarity, only eight fields of the solution
table are shown.

3.5. Case study 1: the INSPIRE system 61

“Device Name” and “Action Name”. Some nodes have fewer branches than the other
because when we merge all relational tables into one big table (i.e. solution table) we
do not need to make connections between nodes, the values of which are irrelevant in
the context of the application. For example, the values of the field “Location” are only
used for lamps, not for the TV. Therefore, there are no connection from “Location”
node to the “Main Actor” node. At the beginning, the system activates the Start
GDN. It then processes the user’s input based on the local and global dialogue flow
management strategies presented in Section 3.3. During the interaction process, the
user can end the dialogue at any time by saying “quit” command. All the current
collected information will be reset. Otherwise, the system will move to the Restart
GDN7 after the task has been completed.

Start

Device

name
Type

Title

User

name

Confirm

action

Stop

Action

name

Time

ShowID

Channel

name

Device

location

Main

actor

Day
Message

Figure 3.3: Block diagram of the dialogue model for the INSPIRE system

WoZ interface Figure 3.4 shows the first HMTL page of the WoZ interface for
the INSPIRE system. These HMTL pages are automatically generated from the

7This functionality of this node is similar to the Start node.

62 3. Dialogue management for single-application systems

solution table and the dialogue model. All the dialogue management functions are
integrated. The wizard can determine either to activate the functions of the dialogue
manager fully or partially depending on the experiment setup. A first WoZ experiment
was conducted using this interface where the Automatic Speech Recognition (ASR)
and Natural Language Understanding (NLU) modules are processed by the wizard.
To enhance the development of a fully automated dialogue system, we have also
implemented a second WoZ interface generator version using Java (Fig. 3.5). The
application-dependent part of the WoZ interface is loaded automatically at the run-
time of the WoZ interface. The Java version also allowed us to integrate different
ASR and Text To Speech (TTS) modules into the WoZ interface in a flexible way.
For example, it took only one working day (i.e. 8 hours) for two persons to build a
Dutch language speech control of the RestInfo system by integrating the SpeechPearl
speech recognition and synthesis modules for Dutch language to our RDPM software.

Figure 3.4: WoZ interface for the INSPIRE system generated automatically by the
WoZ interface generator

3.6. Extending the RDPM for multimodal applica-
tions

The RDPM presented in the previous sections has been developed for spoken dia-
logue systems. In this section, we present the extension of the methodology to build

3.6. Extending the RDPM for multimodal applications 63

Figure 3.5: WoZ interface for the INSPIRE system (Java version)

multimodal dialogue systems.

3.6.1. Multimodal generic dialogue nodes

The generic dialogue nodes presented in Section 3.3.1 are now extended to support
three active modes - text, voice, and gesture - which are used either simultaneously
or independently depending on the configuration of each node. The extended generic
dialogue node is called multimodal GDN or mGDN. The output of an mGDN consists
of semantic pairs of the form (name, value). A local fusion mechanism therefore needs
to be used inside each mGDN to combine the specific output produced by each of
the input modalities and to produce the validated output semantic pairs. We also
further divide the set of mGDNs into groups, where each group is considered as an
object and the mGDNs in the group are attributes of the object. For example, the
First name, Last name, and Function mGDNs belong to the Person group.

The prompts now contain messages and a pointing zone. The messages are either
visualized in the user interface or uttered by the mGDN during the interaction or
both. These messages are combined with the pointing zone (the content of which is
a map, calendar or table depending on the nature of the mGDN) to allow the user to
provide the desired value using keyboard, microphone, mouse click or touch screen.

64 3. Dialogue management for single-application systems

3.6.2. Case study 2: The ARCHIVUS system

The extended version of the RDPM has been used to design the ARCHIVUS sys-
tem [102]. It is a multimodal dialogue system that allows the user to access and
retrieve the content of stored multimodal meetings, either through directed search
or browsing. The user can use three input modes - voice, pointing gesture, and text
- to interact with the system. The system uses three output modalities (graphics,
sound, and text) to show the meeting related result to the user as well as multimedia
prompts during the interaction.

The user interface itself can be divided into seven general areas, shown graphically
in Figure 3.6 and explained in detail in Lisowska et al. [102]. In the following, we give
a brief overview of these areas.

Figure 3.6: First design of the ARCHIVUS system [102]

1. Bookcase
The bookcase area serves two primary purposes. The first is to provide an
overview of the entire database to the user. All of the meetings in the database
will be represented as books in the bookcase. The second purpose of the book-
case is to allow the user to browse the database without having to interact with
the search/dialogue engine. It should be kept in mind that browsing can be
done using any of the available modalities, including voice.

3.6. Extending the RDPM for multimodal applications 65

2. Prompt Bar
The prompt bar is used to visually display all prompts from the system. A
“speaker" icon on the right-hand side indicates the availability of speech output.
The user can click on this icon to deactivate and activate the speech output
modality.

3. Function buttons
In the upper right-hand corner of the interface there are four function buttons -
three directly related to the dialogue mode (Reset, Help, and Repeat), and one
system button (Exit). When the Reset button is selected, all of the constraints
that have been accumulated during a dialogue are erased and the system is
reset to accept a new query. The Repeat button enables the user to hear the
last prompt again, in cases where they misheard or misunderstood it. The Help
button provides access to online help which explains the functionalities available
in the interface, while the Exit button quits the ARCHIVUS system altogether.

4. Interactive display area
This area serves three purposes depending on the point of the interaction at
which the user finds themselves; a visual display of the interactive dialogue
mode, a space in which to view a meeting book, and a space in which to view
multimedia elements of the database such as video and accompanying docu-
ments.

5. User input box
The user input box is where the user can either type an information request,
or, in the case of speech input, the results of the speech recognition software
appear. This area effectively allows the user to initiate a natural language driven
directed search, where the user already has some idea of the information that
they are seeking and poses a specific request for information to the system.
Additionally, the microphone icon on the right side of the box indicates the
availability of voice as an input modality.

6. Criteria refinement buttons
In order to help refine a request during the dialogue mode the interface is
equipped with criteria refinement buttons. These buttons, selectable using any
of the three input modalities, help the user refine a particular request.

7. History area
A well-known HCI design principle is that the user should always be able to
follow and backtrack along the path which they used to reach a particular point
in their interaction. To this end we provide the history area, which shows the
user, in iconified and textual form, the constraints that they have imposed in
order to reach their goal. The content of the history will be represented in a
scrollable pane in reverse chronological order.

66 3. Dialogue management for single-application systems

3.7. Conclusions

This chapter describes the RDPM for a quick production of frame-based dialogue
models for single-application systems. The practical result shows that an initial di-
alogue model can be developed in several hours for simple applications such as the
RestInfo system. Our dialogue manager is able to handle a wide range of frame-based
dialogue management functions such as branching logic, dialogue dead-end manage-
ment strategy, confirmation strategy, dialogue termination strategy, incoherencies,
strategy defining level of initiative.

We also implemented a WoZ interface generator that allows an automatic creation
of WoZ interfaces. These interfaces are integrated with the dialogue management
library, which facilitate the tasks of the wizard and the operator in a WoZ experiment.

The methodology has been used in several projects. In the Inspire project, the
methodology was used to implement a more complex (than the RestInfo system)
spoken dialogue system that allows the user to operate various devices in the living
room. The strategies for dialogue management have been extended and validated.
Several modifications were made in the core of the dialogue management (e.g. a
cleaner dialogue dead-end management, a more sophisticated processing of the word
spotting grammars, etc.). In addition, functions related with user modeling and
system customization have been integrated. In particular: (1) Reset Patterns that
allow the system to adapt to the behavior of a specific user or population of users by
anticipating their next decisions [132], and (2) Custom Actions that allow the user to
dynamically associate sequences of solutions with a single new solution [29]. The main
goal of these extensions is to reduce the time to perform a task with the interface. The
hypothesis is that these functions will indeed increase the quality of the interaction as
perceived by the user. In the IM2 project, we extended the methodology for the design
of the first version of the ARCHIVUS multimodal dialogue system [102]. This work
provided an important background for a further implementation of the ARCHIVUS
system [4, 43, 110].

3.8. Historical remarks

The RDPM was first proposed by Rajman et al. [134, 135] for implementing finite-
state spoken dialogue models for simple applications such as the RestInfo system.
Based on this framework, we have extended the methodology which allows us to
build frame-based dialogue models for more complex dialogue applications [27, 28] in
a short time. We also proposed and extended the RDPM for the design of multimodal
dialogue management models. A first design of the ARCHIVUS system is described
in [102]. The framework provided an essential infrastrutre for implementing and test-
ing the dialogue management module of the ICIS-CHIM demonstrator (see Chap. 6).
A similar work that focuses on extending the RDPM for multimodal WoZ experiments
is reported in Melichar [109]. The further development of the ARCHIVUS system is
reported in [4, 43, 109, 110].

Chapter 4

Dialogue management for
multi-application systems

This chapter is written based on Bui et al. [30]. We propose a novel approach to
developing multimodal interfaces for multi-application dialogue systems. The targeted
interfaces allow transparent switching between a large number of applications within
one system.

4.1. Introduction

The RDPM presented in Chapter 3 allows us to develop single-application dialogue
systems in a short time. Each system is tailored to a specific application domain such
as flight booking, train time table information, and hotel reservation. Consider the
following example in the crisis management domain:

S1 Welcome to the crisis management support center. What can I do for you?
U1 I want a route description to the Benelux tunnel.
S2 I understood Benelux tunnel as destination. Where are you now?
U2 I am in the police station 1.
S3 The route description from the police station 1 to the Benelux tunnel is

shown on the map. Is it OK?
U3 Yes. Thank you.
S4 What else can I do for you?
U4 Umm, I want to have some information about a patient.

[single-application dialogue system]
S5a Sorry, the system only supports the route navigation tasks.

[multi-application dialogue system]
S5b Seeking for the patient information. What is the patient’s name?

This example shows a clear advantage of the multi-application dialogue system
over the single-application counterpart. Formally, a multi-application dialogue sys-

67

68 4. Dialogue management for multi-application systems

tem1 is defined as a dialogue system allowing the user to navigate between a set of
applications where each application is associated with a set of related tasks. Tasks in
each application considered range from simple tasks such as operating a home device
or booking a flight to more complex tasks such as controlling a smart-room or manag-
ing (road) traffic. Notice that the boundary between single-application systems and
multi-application systems is not necessary disjoint. If we consider each application is
composed of only one task and all tasks are related, a single application with multiple
related tasks is then considered as a multi-application. In any case, the methodology
that is going to be presented provides a potential solution for a transparent switching
between these applications (tasks).

In this chapter, we present a generic dialogue modeling methodology for the ef-
ficient production of interfaces for multi-application dialogue systems. The targeted
interface allows transparent switching between a large number of applications within
one system. The approach, based on the RDPM and the Vector Space Model (VSM)
techniques, is composed of three main steps: (1) producing finalized dialogue models
for applications using the RDPM, (2) designing an application interaction hierarchy
based on VSM techniques, and (3) navigating between the applications based on the
user’s application of interest.

These steps are described in Sections 4.2, 4.3, and 4.4 respectively. A scenario
example for producing a dialogue system accessing ten applications in the ICIS domain
is presented in Section 4.5. Possible extensions of the methodology and a recently
related work are discussed in Section 4.6. Section 4.7 summarizes the main points of
the chapter and possible further extensions of the methodology respectively.

4.2. Producing finalized dialogue models for appli-
cations using the RDPM

The finalized dialogue model for each application can be quickly produced using the
RDPM presented in Chapter 3. In the following we discuss in detail the general ar-
chitecture of the multimodal dialogue system corresponding to each single application
produced by the RDPM (Fig. 4.1).

Three input modalities: voice, text and pointing can be used independently or
simultaneously depending on the configuration of the current active mGDN [102].
These inputs are pre-processed by the Natural Language Understanding (NLU) mod-
ules and the Pointer Understanding (PU) module. The outputs from NLU and PU
modules are semantic triples (attribute, value, time-stamp). The fusion manager in-
tegrates the semantic triples received from the NLU and PU modules and sends a set
of integrated semantic triples to the dialogue manager. In the current implemented
version, the fusion manager simply collects the semantic triples based on their time-
stamp relation and forwards them to the dialogue manager.

The dialogue manager encodes the local dialogue flow management strategy and
global dialogue management strategy. Therefore, the input to the dialogue man-

1A similar name that is usually used by the dialogue research community is multi-domain dialogue
system.

4.2. Producing finalized dialogue models for applications using the RDPM 69

Global

Action Manager

Dialog State Info

NLU

(mapping table)

Prompt

Synthetizer

Audio Input

(from SR)

Fusion

Manager
Text Input

NLU

(mapping table)

Pointer

Understanding
Pointing Zone

Prompt

Visualizer

Visualizer

Dialogue History

Local

Database

Reset Pattern Custom Actions

Solution

Manager

Dialogue Manager

Figure 4.1: Architecture of dialogue systems produced by RDPM

ager is first processed by the local dialogue management strategy as described in
Section 3.3.2.

In the case of the OK situation, control is handed back to the global dialogue
manager which applies the global dialogue management strategy for the activation of
the next mGDN. The dialogue state information (e.g. the current dialogue state, the
active mGDN, etc.) and the recognized semantic triples are updated to the dialogue
state info module and the dialogue history module respectively. When the dialogue
manager gathers enough constraints 2, it sends the request to the action manager, the
application connected with this module performs the task and sends the feedback to
the action manager, the action manager then forwards this feedback to the dialogue
manager. In addition, functions related with user modeling and system customization
have been integrated such as Reset Patterns and Custom Actions. Reset Patterns
allow the system to adapt to the behavior of a specific user or population of users by
anticipating their next decisions. The idea is to develop an intelligent reset algorithm
that estimates the most probable values for some mGDN slots in a new dialogue
session according to the previous interactions with the user. Custom Actions allows
the user to dynamically associate sequences of solutions with a single new solution.
The main goal of these two functions is to reduce the time to perform a task with the
interface. The hypothesis is that these functions will indeed increase the quality of
the interaction as perceived by the user. These two functions are described in detail
in Bui et al. [29].

The outputs from the dialogue manager to the visualizer are multimedia prompts
containing messages and a pointing zone update content. The messages are visualized
in the user interface (Prompt Visualizer) and/or uttered by the mGDN during the
interaction (Prompt Synthesizer). The messages are combined with the pointing

2this happens when the number of solutions (extracted from the solution manger) satisfying the
current constraints is smaller than or equal to a pre-defined solution threshold.

70 4. Dialogue management for multi-application systems

zone update content (the content is a map, a calendar or a table depending on the
nature of the mGDN) to allow the user to provide the desired values using keyboard,
microphone or mouse click/touchscreen.

4.3. Designing an application interaction hierarchy

Applying the RDPM, it is possible to produce n finalized dialogue models M1, M2,
..., Mn from n applications A1, A2, ..., An

3. The question is how to integrate these
applications in one unique system (i.e. multi-application dialogue system).

Vrugt and Portele [172] introduced a dialogue system accessing multiple applica-
tions with a dynamic setup that can be changed at run-time. Their goal is achieved
by implementing an application-independent knowledge processing module inside the
dialogue system based on modular ontological descriptions. They also define a clear
interface between a dialogue system and applications by realizing a generic dialogue
functionality on top of the application independent knowledge processing. This ap-
proach assumes that the user knows exactly which application he is going to interact
with (similar work that uses this assumption is reported in Seneff et al. [152]) and
therefore it is not scalable to the development of dialogue systems with a large number
of applications.

Chu-Carroll and Carpenter [46] developed a call-routing dialogue system using
the VSM techniques. The system allows routing the user’s telephone call to the
right department. Two main modules in the system are the routing module and the
disambiguation module. When the routing module returns more than one candi-
date application, the disambiguation module is invoked. The disambiguation module
determines the number of terms relevant to the user’s request (say n) and uses a YN-
question (n = 1)4 or a WH-question (n > 1) to identify the desired application (i.e.
the department) or transfers the call to the operator (n = 0). The authors do not
view each application as a finalized dialogue model, therefore no further interaction
happens when an application is identified.

We organize applications in an hierarchy since it allows flexible dealing with a large
number of applications [52]. The hierarchy can be created manually or automatically.
When the number of applications is large (hundreds, thousands, or more5), it is
difficult to create the hierarchy manually, therefore an automatic process is suitable
for this case. In our approach, the hierarchy is produced automatically using VSM
techniques and an hierarchical clustering algorithm.

4.3.1. Application interaction hierarchy

An application interaction hierarchy is an m levels hierarchy of n finalized dialogue
models consisting of three types of nodes:

3Each application can have its own set of input modalities as described in Section 3.6
4This case corresponds to two candidate applications. Only one term with disambiguating power

is sufficient to distinguish the right application (see [46, pg. 377] for a further detail).
5We assume that each application is described by an associated textual document and the main

goal is to find out the user’s application of interest

4.3. Designing an application interaction hierarchy 71

1. Root (level m): unique node on the top of the hierarchy.

2. Internal nodes (levels from m − 1 to 2): each internal node consists of at least
two child nodes, a child node can be an internal node or a leaf. The hierarchy
accepts lattice nodes (i.e. internal nodes, each of them has more than one father
node).

3. Leaves(level 1): correspond to n applications.

An application interaction hierarchy (n = 10) is represented in Fig. 4.4. Notice that
the application interaction hierarchy is not always fully balanced such that all leaves
are the same distance from the root. The level of an internal node is determined
based on distance from the longest leaf that is originated from this node.

4.3.2. Vector space model for the finalized dialogue models

We assume that each finalized dialogue model of which the production is described
in Chapter 3 is characterized by a textual description of the associated application.
The textual description can be extracted from the mapping tables (cf. Fig. 4.1).
We represent these descriptions by k-dimension vectors d1, d2, ..., dn using the VSM
techniques.

The following paragraph presents the process of producing vectors and computing
the similarity between the textual descriptions of the applications using the standard
VSM technique (in the implementation phase, a suitable VSM and the number of
index terms are selected based on the content of textual descriptions. For example,
in the case where the textual description is a set of sentences, a semantic VSM taking
into account the dependence between terms such as [133] is appropriate):

1. Produce index terms from the textual descriptions
We analyze the textual descriptions using Natural Language Processing (NLP)
techniques (syntactic analysis, morphological & stop words filtering, term ex-
traction) to produce k index terms: t1, t2, ..., tk.

2. Construct occurrence matrix F
A description is represented by a lexical profile:

di = (wi1, wi2, ..., wik), (4.1)

where wij is the weight (or importance) of the jth indexing term tj in the textual
description di. The weight wij is often simply the number of occurrences of tj
in di or the inverted occurrence frequency.

The n× k occurrence matrix F is constructed as follows:

F =

d1

d2

...
dn

 =

w11 w12 ... w1k

w21 w22 ... w2k

...
wn1 wn2 ... wnk

72 4. Dialogue management for multi-application systems

3. Compute the score (or measure the similarity)
The most common similarity measure for the standard VSM is the cosine of the
angle between the two vectors:

sim(di, dj) = cos(
−→
di ,
−→
dj)

=

∑k
p=1(wip × wjp)√∑k

p=1 w2
ip
×∑k

p=1 w2
jp

.
(4.2)

We use this measure to determine the similarity between two applications, i.e.
the score between Ai and Aj : s(Ai, Aj) = sim(di, dj).

4.3.3. Hierarchical clustering algorithm

From the vectors d1, d2, ..., dn and their similarity computed by Equation 4.2, we
use the hierarchical clustering algorithm [85] to produce the application interaction
hierarchy:

1. Consider each di is a single cluster, we have n clusters. The distance between a
pair of clusters i and j (in this step) is:

D(i, j) = 1− sim(di, dj). (4.3)

2. Find the most similar pair of clusters (i.e. min(D(i, j)) and merge them into a
single cluster, so that we have one cluster less.

3. Compute distances between the new cluster and each of the old clusters.

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size n.

Step 3 can be done in several ways such as single-linkage, complete-linkage, or
average-linkage clustering [84]. Applying the single-linkage, the formula to calculate
the distance between two clusters C1, C2:

D(C1, C2) = min
i∈C1,j∈C2

[D(i, j)] (4.4)

The output of the presented clustering algorithm is a binary tree (Fig. 4.3), this
tree is transformed to an application interaction hierarchy based on the degree of
similarity between the applications (Fig. 4.4). For example, if a node N1 has two child
nodes (N2, N3) and N2 has two child nodes N4, N5 and [D(N2, N3)−D(N4, N5)] ≤ α,
α is a predefined threshold, then N2 is removed; N4 and N5 become child nodes of
N1.

4.4. Navigating between applications based on the user’s application of interest 73

4.4. Navigating between applications based on the
user’s application of interest

The system aims to find out the target application with a minimal number of dia-
logue turns. Based on the application interaction hierarchy produced in Section 4.3,
the preliminary experimented work presented in Forler [68], and the textual content
provided by the user, the user-system interaction process is described in detail in the
following algorithm:

1. Start
The system starts with a generic prompt: “What can I do for you?” (similar to
the internal GDN “Start” described in Chapter 3).

2. Active node determination
When receiving a user’s request, the system first represents the request in the
form of a vector q = (q1, q2, ..., qk) using the set of k index terms described
in Section 4.3.2, and then determines the active node on the hierarchy by the
following steps:

(a) Score computation
Compute the similarity between q and d1, d2, ..., dn, we obtain a set of
scores {s1, s2, ..., sn}, where si = sim(di, q).
For example, in Fig. 4.2 we have s1 = 0.85, s2 = 0.9, ..., s10 = 0.15.

(b) Upward propagation
Select the best scores at each level and propagate them upward until the
root is reached.
For example, in Fig. 4.2 we have s1−3 = max(s1, s2, s3) = 0.9.

(c) Downward traversal to determine the active node
Start from the root, compute the difference between two highest score child
nodes, if this difference is below a certain threshold (we call this threshold
the internal node stop threshold ts : (0 < ts ≤ 1)), then stop. If not, go
down to the highest score child node and continue to determine the active
node.
For example, in Fig. 4.2, starting from M1−10, we calculate the difference
between M1−5 and M6−10: dif (M1−5,M6−10) = 0.5, it is greater than
ts = 0.15, then we go down to M1−5, we still have dif (M1−3,M4−5) = 0.2 is
greater than ts then we go down to M1−3, we have dif (M1,M2) = 0.05 < ts
then M1−3 is the active node.

3. Response generation
The active node identified in the previous steps can be a root, an internal node
or a leaf. Two types of response depending on the position of the active node
are:

74 4. Dialogue management for multi-application systems

M1 M9M8M7M6M5M4M3

M1-3 M4-5 M6-8 M9-10

M1-5 M6-10

M1-10

M2 M10

User’s query

0.85 0.9 0.8 0.5 0.7 0.40.3 0.25 0.1 0.15

0.9 0.7 0.4 0.15

0.40.9

0.9

tl = 3, ts = 0.15

Figure 4.2: Determining the active node based on the user’s query

(a) The active node is the root or an internal node
In this case, the functionality of the active node is similar to the list process-
ing GDN described in Section 3.3.1. The system shows a list of application
candidates belonging to the active node and their score is not below the
highest score leaf outside the active node (e.g. in fig. 4.2, M5 is the highest
score leaf outside the active node M1−3). To avoid showing a bulky list to
the user (particularly in case of vocal dialogue), the maximum number of
application candidates is limited by a threshold called the list processing
threshold tl, with tl is a positive integer. The user can determine to go
next (i.e. show the tl following application candidates), previous (i.e.
show the tl previous application candidates), stop (i.e. restart the dia-
logue), up (i.e. move to the upper level on the hierarchy), down (i.e. move
to the highest score child node), or select the desired application.
If the user does not change the active node (i.e he does not use the com-
mand up or down) and after browsing all the applications (belonging to
the active node) he could not find his desired applications, the system tem-
porarily assigns the scores of the browsed leaves to zero and goes back to
step 2b.

(b) The active node is a leaf
The application takes control and interacts with the user as an application-
specific dialogue system. If the user’s request is out of the application
domain, go back to step 2.

An example of the algorithm with n = 10 and tl = 3 is presented in Fig. 4.5 and
explained in detail in section 4.5.

4.5. Scenario example 75

4.5. Scenario example

This section illustrates, on the global level, the process of developing a dialogue system
accessing 10 applications in the ICIS domain using three steps presented in the pre-
vious sections. The applications are: car route navigation (A1), air route navigation
(A2), traffic lanes (A3), map and fire management (A4), tunnel sensors management
(A5), weather forecast (A6), virtual control room (A7), road surface temperature
monitoring (A8), patient information search (A9), and medical worker verification
(A10).

Step 1 Applying the RDPM, we produce the finalized dialogue models: M1,M2, ..., M10.

Step 2 From the finalized dialogue models, we create the application interaction
hierarchy (cf. Fig. 4.4). Finalized dialogue models for the root and internal nodes
are the list processing mGDNs produced by the RDPM. The role of each node is to
select a subset of the applications belonging to it, for example the role of M1−3 is to
select a subset of {A1, A2, A3}.

M1 M9M8M7M6M5M4M3

M1-3

M4-5

M6-8

M9-10

M1-5 M6-10

M1-10

M2 M10

M1-2 M6-7

Figure 4.3: Binary tree

M1 M9M8M7M6M5M4M3

M1-3 M4-5 M6-8 M9-10

M1-5 M6-10

M1-10

M2 M10

A1 A10A9A8A7A6A5A4A3A2

Figure 4.4: Application interaction hierar-
chy

Step 3 An example of the system-user interaction is presented in Fig. 4.5. The
“Start” mGDN sends the system’s prompt S1 to the user. According to the content
of the user’s prompt U2, the active node M1−3 is determined. M1−3 asks the user
to select an application from the list {A1, A2, A3} (all three applications are shown
because tl = 3). Based on the user’s answer in U4, M1 is activated. In steps from 5 to
k−1, M1 interacts with the user as an application-specific dialogue system. In step k,
the user’s request Uk is out of M1’s application domain, M1 then forwards Uk to the
system. The system analyzes Uk and activates M9. M9 continues the interaction with
the user and processes the “out of the application domain” case in a similar manner
M1 has done.

76 4. Dialogue management for multi-application systems

Figure 4.5: Navigating between the applications

4.6. Possible extensions

This section discusses two main possible extensions of the generic dialogue modeling
methodology: crossing-application and task selection.

4.6.1. Crossing-application

The application interaction hierarchy created in section 4.3 can be used to manage
several concurrent applications (i.e. crossing-application). This extension is signifi-
cant when the user wants to simultaneously execute several applications in order to
achieve his goal in an optimal way. For example, in the scenario presented in sec-
tion 4.5, the user’s goal is to find out an optimal route for sending a rescue team
to the disaster site. Suppose that the system contains two applications, the car root
navigation application and the traffic lanes application. Obviously, if the user can
interact with both these applications simultaneously, his goal can be more quickly
satisfied than if he interacts with each application sequentially.

4.6.2. Task selection

In the definition of the application interaction hierarchy in the section 4.3.1, we men-
tioned that each leaf corresponds to an application. In task-oriented dialogues, each
application usually consists of several tasks. We can extend the hierarchy for identi-
fying a task or a set of tasks in an application. To achieve this goal, the hierarchy
will be constructed from the set of tasks in the same way we have done for the set of
applications.

4.7. Conclusions 77

Recently, Song [159] has proposed a solution for solving the task sharing issue.
First, the application descriptions are merged into a unified application description.
The dialogue model is then constructed based on this unified application descrip-
tion. She also developed software to allow the developers to combine the different
application descriptions semi-automatically.

4.7. Conclusions

We have presented a framework for the development of interfaces for multi-application
dialogue systems. Three important steps in the framework are described and illus-
trated by a scenario example.

Currently, the RDPM software toolkit is available for the development of finalized
dialogue models for single applications. It has been used in two research projects: IN-
SPIRE and IM2.MDM to validate the principle idea of the methodology, and is being
extended for the development of a large number of applications in the ICIS domain.
The practical result shows that from a simple application, we can develop an initial
dialogue model in several hours. The dialogue manager, the most important part of
dialogue prototyping, covers most of the application independent dialogue function-
alities (i.e. branching logic, dialogue dead-end management strategy, confirmation
strategy, dialogue termination strategy, incoherencies, strategy defining level of ini-
tiative, etc.) Therefore, we can re-use the dialogue manager and the other modules
described in section 4.2 for the development of multi-application dialogue systems.

Some initial work toward developing the application interaction hierarchy and
navigating between the applications (sections 4.3 and 4.4) has been analyzed and
implemented (e.g. NLP Pre-Processing Tool, VSM). The multi-application dialogue
system for ICIS domain presented in section 4.5 is currently under development.

78 4. Dialogue management for multi-application systems

Chapter 5

Affective dialogue
management using factored
POMDPs

Part of this chapter is presented Bui et al. [31, 33]. The chapter provides both theoret-
ical and practical insights into applying the POMDP technique for modeling affective
dialogue.

5.1. Introduction

As mentioned in Chapter 1, a challenging issue in the design of an Affective Dialogue
System (ADS) is to infer the user ’s affective state and adapt the system’s behavior
accordingly. This chapter addresses this issue by introducing a dialogue management
system which is able to act appropriately by taking into account some aspects of
the user’s affective state. The computational model used to implement this system is
called the affective dialogue model . Concretely, our system processes two main inputs,
namely the observation of the user’s action (e.g., dialogue act) and the observation
of the user’s affective state. It then selects the most appropriate action based on
these inputs and the context. In human-computer dialogue, building this sort of
system is difficult because the recognition results of the user’s action and affective
state are ambiguous and uncertain. Furthermore, the user’s affective state cannot
be directly observed, and usually changes over time. Therefore, an affective dialogue
model should take into account basic dialogue principles, such as turn-taking and
grounding, as well as dynamic aspects of the user’s affect.

An intuitive solution is to extend the Rapid Dialogue Prototyping Methodology
(RDPM) presented in Chapter 3 by integrating an Affect Recognition (AR) module
and define a set of rules for the system to act given the observation of the user’s
affective state (e.g., using the OCC rules). However, it is not trivial to handle uncer-

79

80 5. Affective dialogue management using factored POMDPs

tainty using a pure rule-based approach such as the RDPM. A promising approach
to handle uncertainty is to model the dialogue as a Partially Observable Markov De-
cision Process (POMDP) [142, 177]. We follow this approach to design our affective
dialogue model.

In this chapter, we first introduce basic components of an ADS. Second, we give an
overview of POMDP techniques and their applications to the dialogue management
problem. Third, we describe our factored POMDP approach to affective dialogue
modeling. Finally, we address various technical issues when using state-of-the-art
approximate POMDP solvers to compute a near-optimal policy for a single slot route
navigation application.

5.2. Components of an affective dialogue system

An ADS is a Multimodal Dialogue System (MDS) where the user’s affective state
might be recognized from speech, facial expression, physiological sensors, or combined
multimodal input channels. The system expresses emotions through multimodal out-
put channels such as a talking head or a virtual human. Figure 5.1 shows an archi-
tecture of a speech-based ADS. The speech input is first processed by the Automatic
Speech Recognition (ASR) module and the semantic meaning is then derived by the
Natural Language Understanding (NLU) module. Similarly, the user’s affect is inter-
preted by the AR module and the result is sent to the Dialogue Manager (DM). The
DM processes both inputs from the NLU module and the AR module and produces
the system action and the system’s affective state which are processed by the Natural
Language Generation (NLG) module and the Text To Speech (TTS) module before
sending to the user.

The detailed interaction between the system and the user is described by the
following cycle1. The user has a goal gu in mind before starting a dialogue session
with the system. The user’s goal gu might change during the system-user interaction
process. At the beginning, the DM sends an action as (e.g., informing that the
system is ready or greeting the user) and optionally an affective state es (whether
it is appropriate to show the system’s affective state depends on each particular
application). Action as usually represents the system’s intent and is formulated as a
sequence of dialogue acts and their associated semantic content. The NLG module
processes the tuple < as, es > and realizes a sequence of utterances ws. The tuple
< ws, es > is then processed by the TTS module and the outcome is an audio signal
xs. The signal xs might be corrupted by the environment noise ns and the user
perceives an audio signal x̃s. Based on the perceived signal x̃s, the user infers the
system’s intent ãs and the affective state ẽs. Subsequently, the user maintains a belief
bu about the current system action and affective state. The tuple < ãs, ẽs > might
be different from its counterpart < as, es > due to a misunderstanding by the user
or the corrupted noise ns from the environment or both. Based on the user’s goal
gu and the user’s belief bu, the user forms a communicative action (i.e., intent) au.

1This description is based on a general statistical Dialogue System (DS) framework presented
in Young [182] and our prototype DSs presented in Chapters 3 and 4.

5.3. Review of the POMDP-based dialogue management 81

u
w
~

u
a
~

u
e
~

s
a

s
w

s
x

u
x

s
x
~

u
x
~

u
x
~

u
n

s
n

s
e

s
b

s
b

s
b

Figure 5.1: Components of an affective speech-based dialogue system. Bold arrows
show the main flow of the interaction process. Dashed arrows show the links from the
system’s belief state to its individual modules.

Action au might also be influenced by the user’s affective state eu. The user then
formulates a sequence of words wu and articulates a speech signal xu. See Levelt
[97] for further details of the transition from intention to articulation performed by
the user. The acoustic signal xu is processed by both the ASR module and the AR
module (the actual input of these modules is, x̃u, a corrupted signal of xu caused by
the environment noise nu). The output of the ASR module is a string of words w̃s.
This is then processed by the NLU module and the result is the observation of the
user’s action ãu. The output from the AR module (ẽu) and from the NLU module
(ãu) are sent to the DM. The DM selects a next system’s action based on these inputs
and the current system’s belief bs. The process is then repeated.

5.3. Review of the POMDP-based dialogue man-
agement

Section 2.5 explained the basic activity of a POMDP-based dialogue management
system. Young et al. [183] have argued that nearly all existing dialogue manage-
ment systems, especially those based upon the information state approach [165], can
be considered as direct implementations of the POMDP-based model with a deter-
ministic (i.e., handcrafted) dialogue policy. These systems have a number of “severe
weaknesses" such as using unreliable confidence measures, having difficulty coping
with the dynamic changing of the user’s goal and intention. Moreover, tuning the
dialogue policy is labor extensive, based on off-line analysis of the system logs [183].

The first work that applies the POMDP for the dialogue management problem

82 5. Affective dialogue management using factored POMDPs

was proposed by Roy et al. [142] for building a nursing home robot application. In
this application, a flat POMDP model is used where the states represent the user’s
intentions; the observations are the user’s speech utterances; and the actions are the
system responses. They showed that the POMDP-based DM copes well with noisy
speech utterances, for example their POMDP-based DMmakes fewer mistakes than an
MDP-based DM, and it automatically adjusts the dialogue policy when the quality of
the speech recognition degrades. Zhang et al. [187] extended the Roy model in several
dimensions: (1) a factored POMDP [22] is deployed for the state and observation sets,
(2) the states are composed of the user’s intentions and “hidden system states", (3)
the observations are the user’s utterances and other observations being inferred from
lower-level information of the speech recognizer, robust parser, and from other input
modalities. Williams et al. [178, 179] further extended the Zhang model by adding the
state of the dialogue from the perspective of the user which is hidden from the system’s
view (called user’s dialogue state) to the state set and adding the confidence score into
the observation set. All these approaches have shown that POMDP-based dialogue
strategies outperform Markov Decision Process (MDP) counterparts (e.g., Pietquin
[126]). Furthermore, these strategies cope well with different types of errors in a
Spoken Dialogue System (SDS), especially with ASR errors. Table 5.3 describes
characteristics of these POMDP-based DMs.

Application n, |S|, |A|, |Z| Algorithm Reward function
Nursing home
robot [142]

4, 13, 20, 16 AMDP [141] If the system action is la-
beled as correct : 100, ok : -1,
wrong : -100.

Tour guide [187] 3, 40, 18, 25 QMDP [103],
FIB [76]

If the answer matches user’s
request, the reward is posi-
tive. Otherwise, the reward
is negative.

Travel book-
ing [174]

2, 36, 5, 5 Perseus [161] If the system action & di-
alogue state is ask & not
stated : -1, ask & stated : -
2, ask & confirmed : -3, con-
firmed & not stated : -3, con-
firmed & stated : -1, confirm
& confirmed : -2. If the user’s
goal is determined correctly:
50, incorrectly: -50.

Table 5.1: Characteristics of some POMDP-based dialogue managers (n is the number
of slots)

5.4. The factored POMDP approach 83

5.4. The factored POMDP approach

We represent our affective dialogue model as a factored POMDP [22]. The state set
is composed of the user’s goal (Gu), the user’s affective state (Eu), the user’s action
(Au), and the user’s grounding state (Du) (similar to the user’s dialogue state de-
scribed in Williams et al. [179]). The observation set is composed of the observations
of the user’s action (OAu) and the observations of the user’s affective state (OEu).
Depending on the complexity of the application’s domain, these features can be rep-
resented by more specific features. For example, the user’s affective state can be
encoded by continuous variables such as valence and arousal, and can be represented
using a continuous-state POMDP [24]. The observation of the user’s affective state
might be represented by a set of observable effects such as response speech, speech
pitch, speech volume, posture, and gesture [13].

R

S

A

S

Z Z

Gu

Eu

Au

Du

Gu

Eu

Au

Du

A

OAu OEu OAu OEu

pec

pgc

poa

poe

pe

time t-1 time t time t-1 time t

(a) (b)

R

A

RR

A

pae

pae

Figure 5.2: (a) Standard POMDP, (b) Two time-slice of factored POMDP for the
dialogue manager

Figure 5.2b shows the structure of our affective dialogue model. The features of
the state set, action set, observation set, and their dependencies form a two time-slice

84 5. Affective dialogue management using factored POMDPs

Dynamic Bayesian Network (2TBN). Implicitly, some assumptions are made in this
model: the user’s goal only depends on the user’s goal in the previous slice and the
system action from the previous slice only influences the user’s emotion, the user’s
action, and the grounding state. We can easily modify this model for representing
other dependencies, for example the dependency between the user’s emotion and the
observation of the user’s action. Parameters pgc, pae, pec, pe, poa, and poe are used to
produce handcrafted transition and observation models in case no real data is available
(e.g., at the initial phase of the system development), where pgc is the probability of
the user goal change; pae is the probability of the user’s emotional change because of
the influence of the system action such as when the system confirms an incorrect user’s
goal (represented by two causal links from the system action and user’s goal to the
user’s affective state); pec is the probability that the user emotion change is due to the
emotion decay and other causes; pe is the probability of an error in the user’s action
being induced by emotion; poa and poe are the probabilities of the observation error
of the user’s action and the observation error of the user’s affective state, respectively.
The reward function is in principle different for each particular application. Therefore
it is not specified in our general affective dialogue model.

Suppose the set of user’s goals has m values which are represented by Gu =
{v1, v2, ..., vm}. The features of S and Z and the action set A are formulated as
follows:

• Eu = {neutral , stress, frustration, anger , happiness, ...}.
Note that we can extend the representation of the user’s emotion by adding
more relevant features into the state space. For example, if the user’s emotion
is described by two dimensions valence and arousal. Eu then becomes a sub-
network with two continuous variables.

• Au = {answer(x), yes,no, ...}, where x ∈ Gu.
The abstract format of Au is userSpeechAct(x), where userSpeechAct is an ele-
ment of the set of the user’s speech acts.

• Du = {notstated , stated , confirmed , ...}.
• OAu = {answer(x), yes,no, ...}, where x ∈ Gu.

The value y ∈ OAu depends on the level of abstraction of the observation of the
user’s action. For example if the observation of the user’s action is sent by the
ASR module, y is the word-graph or N-best hypotheses of the user’s utterance.
In our model, we assume a high level of abstraction for the observation of the
user’s action such as the output from a dialogue act recognition module or the
intention level in the simulated user model [58]. In the latter case OAu has the
same set of values as Au.

• OEu = {neutral , stress, frustration, anger , happiness, ...}.
Similar to the observation of the user’s action, the observation of the user’s
affective state can be represented by a set of observable effects such as response
speech, speech pitch, speech volume, posture, and gesture features [13]. In our
current model, we assume that the observations of the user’s affective states are

5.5. User simulation 85

the output of an AR module, and therefore OEu has the same set of values as
Eu.

• A = {ask , confirm(x), ...}, where x ∈ Gu.
The abstract format of A is systemSpeechAct(x), where systemSpeechAct is an
element of the set of the system speech acts.

For a random variable X, we denote x and x′ as the values of X at time t− 1 and
t, respectively. Based on the network structure shown in Figure 5.2b, the transition
function is represented compactly as follows:

Pa
ss′ = P (g′u|gu)P (e′u|a, eu, g′u)P (a′u|a, g′u, e′u)P (d′u|a, du, a′u). (5.1)

P (g′u|gu) is called the the user’s goal model, P (e′u|a, eu, g′u) is called the user’s emotion
model, P (a′u|a, g′u, e′u) is called the user’s action model, and P (d′u|a, du, a′u) is called
the user’s grounding state model. The observation function is as follows:

Pa
s′z′ = P (ã′u|a′u)P (ẽ′u|e′u), (5.2)

where ã′u ∈ OAu and ẽ′u ∈ OEu. P (ã′u|a′u) is called the observation model of the
user’s actions and P (ẽ′u|e′u) is called the observation model of the user’s emotions.

5.5. User simulation

The DM that we have described is a statistical DM. Dialogue corpora are usually used
to train this type of DMs. However, the (PO)MDP-based DM has a huge number
of states, therefore it is almost impossible to learn an optimal policy directly from
a fixed corpus, regardless of its size [147]. To solve this problem, user simulation
techniques have been used [58, 98, 126, 148, 149]. The main idea is a two-phase
approach. A simulated user is first trained on a small human-computer dialogue
corpus to learn responses of a real user given the dialogue context. The learning DM
then interacts with this simulated user in a trial and error manner to learn an optimal
dialogue strategy. Experimental results show that a competitive dialogue strategy can
be learnt even with handcrafted user model parameters [184, 185]. Recent work also
demonstrated that user simulation can be used for testing dialogue systems in early
phases of the iterative development cycle [3].

Our simulated user model, constructed based on the POMDP environment, is
shown in Figure 5.3. The structure of this model is similar to the structure of the
POMDP model (Fig. 5.2b), except that the state feature nodes (i.e., Gu,Eu, Au, and
Du) in the simulated user model are observable from the user’s perspective.

The process to generate observations of the user’s actions and of the user’s affective
states is as follows: First, the value at−1 from the DM is updated on node A of the
time-slice t− 1, the reward rt−1 is identified from node A of time-slice t− 1. Second,
the user’s goal, affective state, action, and dialogue state are randomly generated
based on the probability distributions of the nodes Gu,Eu, Au, and Du (of time-slice
t), respectively. Third, the network is updated, and the observation of the user’s

86 5. Affective dialogue management using factored POMDPs

action oaut and affective state oeut are randomly selected based on the probability
distribution of nodes OAu and OEu. The tuple < rt−1, oaut, oeut > is sent back to
the DM.

5.6. Single-slot route navigation example

We illustrate our affective dialogue model described in Section 5.4 by a simulated toy
route navigation example: “A rescue worker (denoted by “the user”) needs to get a
route description to evacuate victims from an unsafe tunnel. To achieve this goal, he
communicates his current location (one of m locations) to the system. The system can
infer the user’s stressed state and uses this information to adapt its dialogue policy.”

In this simple example, the system can ask the user about their current location,
confirm a location provided by the user, show the route description (ok) of a given
location, and stop the dialogue (i.e., execute the fail action) by connecting the user
to a human operator. The factored POMDP model for this example is represented
by:

• S = 〈Gu×Au× Eu×Du〉 ∪ end, where end is an absorbing state.

1. Gu = {v1, v2, ..., vm}
2. Au = {answer(v1), answer(v2), ..., answer(vm), yes,no}
3. Eu = {e1, e2} = {nostress,stress}
4. Du = {d1, d2} = {notstated,stated}

• A = {ask , confirm(v1), ..., confirm(vm), ok(v1), ok(v2), ..., ok(vm), fail},
• Z = 〈OAu ×OEu〉.

1. OAu = {answer(v1), answer(v2), ..., answer(vm), yes,no}
2. OEu = {nostress,stress}

The full flat-POMDP model is composed of 4m2 +8m+1 states, 2m+2 actions, and
2m + 4 observations, where m is the number of locations in the tunnel.

We use two criteria to specify the reward model, helping the user to obtain the
correct route description as soon as possible and maintaining the dialogue appropri-
ateness [179]. Concretely, if the system confirms when the user’s grounding state is
notstated, the reward is −2, the reward is −3 for action fail, the reward is 10 when the
system gives a correct solution (i.e., the system action is ok(x) where x is the user’s
goal), otherwise the reward is −10. The reward for any action taken in the absorbing
end state is 0. The reward for any other actions is −1. Designing a reward model
that leads to a good dialogue policy is a challenging task. It requires both expert
knowledge and practical debugging (see Appendix A).

The probability distributions of the transition function and observation function
are generated using the parameters pgc, pac, pec, pe, poa, poe defined in Section 5.4 and
two other parameters Kask and Kconfirm , where Kask and Kconfirm are the coeffi-
cients associated with the ask and confirm actions. We assume that when the user

5.6. Single-slot route navigation example 87

Simulated user

Gu

Eu

Au

Du

Gu

Eu

Au

Du

A

OAu OEu OAu OEu

time t-1 time t

RR

A

Dialogue

manager

at-1 oaut
oeut

rt-1

Figure 5.3: Simulated user model using the Dynamic Bayesian Network (DBN). The
user’s state, action at each time-step are generated from the DBN. Only the obser-
vation of the user’s action, affective state, and the reward are sent to the dialogue
manager.

88 5. Affective dialogue management using factored POMDPs

is stressful, he will make more errors in response to the system ask action than the
system confirm action because in our current model, the number of possible user ac-
tions in response to ask (m possible actions: answer(v1), answer(v2), ..., answer(vm))
is greater than to confirm (2 actions: yes,no).

Concretely, the handcrafted models of the transition, observation and reward func-
tion are described as follows. The user’s goal model is represented by:

P (g′u|gu) =

{
1− pgc if g′u = gu,

pgc

|Gu|−1 otherwise,
(5.3)

where gu is the user’s goal at time t − 1, g′u is the user’s goal at time t, |Gu| is the
number of the user’s goals. This model assumes that the user does not change their
goal at the next time step with the probability 1− pgc.

The user’s stress model:

P (e′u|a, eu, g′u) =

1− pec if e′u = eu and a ∈ X,

pec if e′u 6= eu and a ∈ X,

1− pec − pae if eu = e′u = e1 and a /∈ X,

pec + pae if eu = e1 and e′u = e2 and a /∈ X,

pec − pae if eu = e2 and e′u = e1 and a /∈ X,

1− pec + pae if eu = e′u = e2 and a /∈ X,

(5.4)

where pec ≥ pae ≥ 0, (pec +pae) ≤ 1 and X = {ask , confirm(g′u), ok(g′u)}. This model
assumes that system mistakes (such as confirming the wrong item) would elevate the
user’s stress level.

The user’s action model:

P (a′u|a, g′u, e′u) =

1 if a = a1, e′u = e1, and a′u = a2,

1− p1 if a = a1, e′u = e2, and a′u = a2,
p1

|Au|−1 if a = a1, e′u = e2, and a′u 6= a2,

1 if a = a3, e′u = e1, and a′u = a4,

1− p2 if a = a3, e′u = e2, and a′u = a4,
p2

|Au|−1 if a = a3, e′u = e2, and a′u 6= a4,

1 if a = a5, e′u = e1, and a′u = a6,

1− p2 if a = a5, e′u = e2, and a′u = a6,
p2

|Au|−1 if a = a5, e′u = e2, and a′u 6= a6,
1

|Au| if a = ok(y) or a = fail ,

0 otherwise,

(5.5)

where a1 = ask, a2 = answer(g′u), a3 = confirm(g′u), a4 = yes, a5 = confirm(x),
a6 = no, p1 = pe/Kask, p2 = pe/Kconfirm , x & y ∈ Gu, and x 6= g′u.

The main idea behind this handcrafted user’s action model is explained as follows.
When the user is not stressed, no communicative errors are made. When the user

5.7. Evaluation 89

is under stress, they might make errors. The probability that the user makes no
communicative errors when the system asks is 1− p1 and when the system confirms
is 1− p2.

The user’s grounding state model handcrafted. It is represented by:

P (d′u|a, du, a′u) =

1 if a = ask, du = d1, a′u = answer(x), and d′u = d2,

1 if a = ask, du = d1, a′u ∈ {yes, no}, and d′u = d1,

1 if a = confirm(x), du = d1, a′u = no, and d′u = d1,

1 if a = confirm(x), du = d1, a′u 6= no, and d′u = d2,

1 if a ∈ {ask , confirm(x)}, du = d2 and d′u = d2,

1 if a ∈ {ok(x), fail} and d′u = d1,

0 otherwise.

(5.6)

The observation model of the user’s actions:

P (ãu|au) =

{
1− poa if ã′u = au,

poa

|Au|−1 otherwise,
(5.7)

where au and ã′u are the user’s action and the observation of the user’s action, respec-
tively. |Au| is the number of the user’s actions. Parameter poa will be the concept
error rate if we consider each user’s action is a distinctive concept.

The observation model of the user’s stress:

P (ẽu|eu) =

{
1− poe if ẽu = eu,

poe

|Eu|−1 otherwise,
(5.8)

where eu and ẽu are the user’s stress state and the observation of the user’s stress
state, respectively. |Eu| is the number of the user’s stress states. Parameter poe can
be considered as the recognition error rate of an affect recognition module used for
the user’s stress detection.

The reward function:

R(s, a) =

0 if s = end,

−2 if a = ask and gu = stated ,

−2 if a = confirm(x) and gu = notstated ,

10 if a = ok(x) and gu = x,

−10 if a = ok(x) and gu 6= x,

−3 if a = fail ,
−1 otherwise.

(5.9)

5.7. Evaluation

To compute a near-optimal policy for the route navigation example presented in
Section 5.6 we use two state-of-the-art approximate POMDP solvers: Perseus2 and

2http://staff.science.uva.nl/ mtjspaan/software/approx/[accessed 2008-05-14]

90 5. Affective dialogue management using factored POMDPs

ZMDP3. These solvers are implemented based on the Perseus and HSVI2 algorithms
presented in Chapter 2. All experiments were conducted on a Linux server using a 3
GHz Intel Xeon CPU and a 24 GB RAM.

The performance of the computed policy is then evaluated using the simulated
user presented in Section 5.5. The discount factor is only used for the planning phase.
In the evaluation phase the total reward for each dialogue session is the sum of all the
rewards the system receives at each turn during the system-user interaction process
(i.e., γ = 1). There are two reasons for this decision. First, in the dialogue domain,
the number of turns in a dialogue session between the system and the user is finite.
Second, the intuitive meaning of the discount factor (γ < 1) is reasonable for positive
reward values but is not appropriate for negative reward values. For example, it is
less likely that the second confirm action bears a smaller cost than the first one on a
given piece of information provided by the user.

A dialogue session between the system and the user is defined as an episode. Each
episode in the route navigation application starts with the system’s action. Following
the turn-taking mechanism, the system and the user exchange turns4 until the system
selects an ok or fail action (Table 5.2). The episode is then terminated5. Formally,
the reward of each episode is calculated from the user side as follows

Re =
n∑

t=0

Rt(St, At), (5.10)

where n is the number of turns of the episode, the reward at turn t Rt(St, At) is equal
to Ra

s (see Section 2.5) if the user’s state and action at turn t is St = s and the system
action at turn t is a. Note that each turn is composed of a pair of system and user’s
actions except the last turn. Table 5.2 shows an example of a 3-turns episode of the
single-slot route navigation application.

Turn Utterance Reward
1 S1 : Please provide the location of the victims? [ask] -1

U1 : Building 1. [answer(v1)]
2 S2 : The victims are in the Building 1. Is that correct?

[confirm(v1)] -1
U2 : Yes. [yes]

3 S3 : Ok, the route description is shown on your PDA.
[ok(v1)] 10

Reward of the episode: 8

Table 5.2: An episode of the interaction between the system and the user

3http://www.cs.cmu.edu/ trey/zmdp/[accessed 2008-05-14]
4Each time step in a formal POMDP definition in Chapter 2 is now considered as a turn.
5Appendix A shows a telephone-based dialogue example where the episode is ended when the

user hangs up.

5.7. Evaluation 91

The average return of N episodes is defined as follows:

RN =
1
N

N∑
e=1

Re (5.11)

In the following sections, we first present the experiments for tuning three impor-
tant parameters: the discount factor, the number of belief points and the planning
time. Second, we show the influence of the stress to the performance of computed
policies. Third, we compare the performance of the approximate POMDP policies
versus three handcrafted policies and the greedy action selection policy. We then
conduct experiments to address tractable issues.

5.7.1. Parameter tuning

Figures 5.4, 5.5, and 5.6 show the average returns of the simplest instance of the route
navigation problem (3 locations) where the near-optimal policy is computed based on
different values of the discount factor, the number of belief points (only for Perseus),
and the run-time for the planning phase.

Based on the result shown in Figure 5.4, the discount factor value γ = 0.99 is se-
lected for subsequent experiments that will be presented in this chapter. Interestingly,
it turns out that the de facto discount factor value (γ = 0.95) that is usually used
for POMDP-based dialogue problems from the literature (e.g., Williams and Young
[177]) is not a good solution, at least for this example. It is worth noting that the off-
line planning time to get an ε-optimal policy increases monotonically with the value
of the discount factor especially when the convergence threshold ε is small. Perseus
converges to a stable solution quicker than ZMDP6. For example, the time to get an
ε-optimal policy (ε = 0.001) computed using the Perseus solver for γ is equal to 0.9,
0.95, and 0.99 is 7, 17, and 98 seconds, respectively. Meanwhile, the time to get a
similar policy computed using the ZMDP solver for γ is equal to 0.9, 0.95, and 0.99
is 3, 53, and > 106 seconds. However, the time-bounded solution (Fig. 5.4) computed
by both solvers performs well when we conduct the test with our simulated user.

Figure 5.5 shows that a reasonable solution is achieved with the number of belief
points starting from 200. Given a fixed threshold of the planning time, the number
of iterations decreases when the number of belief points increases. That is why the
average return of the case of 10000 belief points is low when the planning time is
limited to 60 seconds. A default number of belief points for all subsequent experiments
is set to 1000.

Figure 5.6 shows that a stable solution is achieved for both Perseus and ZMDP
solvers when the planning time threshold is 60 seconds. ZMDP converges to a good
solution quicker than Perseus (0.5 seconds vs. 60 seconds). For all the subsequent
experiments for the 3-locations case the default threshold for the planning time is

6This comparison is only relative based on our empirical test. The convergence threshold of
ZMDP is the difference between the upper bound and lower bound value functions. On the other
hand, the convergence threshold of Perseus is the difference between the current value function and
the previous one. It is obvious that the convergence threshold of ZMDP is closer than that of Perseus.

92 5. Affective dialogue management using factored POMDPs

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999

Discount factor used for the planning phase

(3 values, Pgc=Pae=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=1.5)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
0
0
0
 e
p
is
o
d
e
s
)

Perseus ZMDP

Figure 5.4: Average return vs. the discount factor used for the planning phase. Error
bars show the 95% confidence level. The threshold of the planning time is 60 seconds.
Policies with γ ≤ 0.95 converge (ε = 0.001) before this threshold.

7.4

7.42

7.44

7.46

7.48

7.5

7.52

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

10
00
0

Number of belief points
(3 values, Pgc=Pae=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=1.5, discount=0.99)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
 m
il
li
o
n
 e
p
is
o
d
e
s
)

60s 180s

Figure 5.5: Average return vs. number of belief points. Error bars show the 95%
confidence level.

5.7. Evaluation 93

set to 60 seconds. When the number of locations increases both Perseus and ZMDP
need a longer time to get a good solution. For example, for a 10 locations case, the
minimum time for Perseus is 30 minutes and for ZMDP is 10 minutes.

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

0.1 0.2 0.5 1 5 15 30 60 120 180 240 300 360 420 480 540 600

Planning time in seconds

(3 values, Pgc=Pac=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=1.5, discount=0.99)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
 m
il
li
o
n
 e
p
is
o
d
e
s
)

Perseus ZMDP

Figure 5.6: Average return vs. planning time in seconds. Error bars show the 95%
confidence level.

5.7.2. Influence of stress to the performance

Figure 5.7 shows the influence of stress to the performance of two distinctive policies
computed using Perseus: the non-affective policy (SDS-POMDP) and the affective
policy (ADS-POMDP). The SDS-POMDP does not incorporate the stress variable
in the state and the observations set (similar to the SDS-POMDP policy described
by Williams and Young [177]). The ADS-POMDP is our affective dialogue model
described in Section 5.4. The probability of the user’s action error being induced by
stress pe changes from 0 (stress has no influence to the user’s action selection) to
0.8 (the user is highly stressed and acts almost randomly). The average returns of
both policies decreases when pe increases. When stress has no influence on the user’s
action error, the average returns of the two policies are equal. When pe ≥ 0.1, the
ADS-POMDP policy outperforms the SDS-POMDP counterpart7.

7We then assume that the ADS-POMDP policy is better than the MDP policy since Williams
[175] demonstrated that the SDS-POMDP policy outperforms its MDP counterpart.

94 5. Affective dialogue management using factored POMDPs

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Probability of the user's action error being induced by stress Pe

(m=3, Pgc=Pae=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=1.5)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
k
 e
p
is
o
d
e
s
)

ADS-POMDP SDS-POMDP

Figure 5.7: Average returns of the affective policy and non-affective policy vs. the
probability of the user’s action error induced by stress pe

5.7.3. Comparison with other techniques

In this section, we evaluate the performance of the POMDP DM by comparing the per-
formance of the approximate POMDP policy computed using Perseus (ADS-POMDP)
and four other dialogue strategies: HC1, HC2, HC3 (Fig. 5.8), and the greedy action
selection strategy. HC1 is the optimal dialogue policy when pgc = pe = poa = 0
(the user’s goal does not change; stress has no influence on the user’s action and
there is no error in observing the user’s action i.e., the speech recognition and spoken
language understanding errors are equal to 0). HC1 and HC2 are considered as the
non-affective dialogue strategies since they ignore the user’s stress state. HC3 uses
commonsense rules to generate the system behavior. The greedy policy is a special
case of the POMDP-based dialogue with the discount factor γ = 0 (this strategy is
similar to the one used in two real-world dialogue systems [118, 185]).

As expected, the ADS-POMDP policy outperforms all other strategies (Fig. 5.9).
HC3 outperforms its handcrafted counterparts

5.7.4. Tractability

The ε-optimal policy presented in Sections 5.7.1, 5.7.2, and 5.7.3 is computed for the
simplest instance of the single-slot route navigation example which is composed of
only three locations (m = 3). In reality, even with a single-slot dialogue problem, the
number of slot values m is usually large. Section 5.6 presents a connection between

5.7. Evaluation 95

Figure 5.8: Three handcrafted dialogue strategies for the single-slot route navigation
problem (x is the observed location): (a) first ask and then select ok action if the
observation of the user’s action ãu is answer (otherwise ask), (b) first ask, then con-
firm if ãu = answer (otherwise ask) and then select ok action if ãu = yes (otherwise
ask), (c) first ask, then confirm if ãu = answer & ẽu = stress and select ok action if
ãu = yes.

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe

(m=3, Pgc=Pae=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=1.5)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
k
 e
p
is
o
d
e
s
)

ADS-POMDP HC1 HC2 HC3 Greedy

Figure 5.9: Average return of the POMDP policy vs. other policies

96 5. Affective dialogue management using factored POMDPs

m and the size of the POMDP problem (state, action, and observation sets). For
the single-slot route navigation example, the number of states is a quadric function
of m. The numbers of actions and observations are also a linear function of m. In
this section, we address the POMDP tractable issues by increasing the number of slot
values gradually and trying to compute the ε-optimal policy for each case.

Figure 5.10 shows that a portion of the planning time of the ZMDP solver (time
after first call to the solver) increases exponentially in the dimension of m. A reason-
able policy can only be obtained with m ≤ 45. Perseus scales worse than ZMDP. It
can only handle the problem with m ≤ 15.

0

2000

4000

6000

8000

10000

12000

3 5 10 15 20 25 30 35 40 45

Number of slot values

T
im
e
 a
ft
e
r
1
s
t
c
a
ll

to
 Z
M
D
P
 s
o
lv
e
r
(s
)

Figure 5.10: Planning time vs. number of slot values

This is because although the approximate PBVI algorithms such as Perseus or
HSVI2 are able to handle the curse of history problem, the curse of dimensionality
(i.e., the dimensionality of α-vectors grows exponentially with the number of states)
remains. Another practical issue is that the size of the optimized POMDP parame-
ter file also increases exponentially in the dimension of m. A recently implemented
POMDP solver, Symbolic Perseus, allows for a compact representation of the POMDP
parameter files. Symbolic Perseus can help to scale the range of solvable problems to
two orders of magnitude compared with the ZMDP solver. As described in Chapter 2,
it was demonstrated to solve a hand-washing problem with the size of 50 million states,
20 actions, and 12 observations. Although this is one of the most complex problems
in the POMDP research community, it is only a toy problem compared with real-
world dialogue problems. For example, the affective dialogue model for the RestInfo
problem presented in Chapter 2 is composed of more than 600 million states and its
spoken counterpart is composed of more than 300 million states.

5.8. Conclusions 97

5.8. Conclusions

We have presented a factored POMDP approach to affective dialogue modeling and
illustrated our affective dialogue model through a single-slot route navigation exam-
ple. The 2TBN representation allows integration of the features of states, actions,
and observations in a flexible way. We have also shown that even if the observation
is perfect, the expected return of the optimal dialogue strategy depends on the corre-
lation between the user’s affective state and the user’s action. The POMDP dialogue
strategy outperforms four other strategies (three handcrafted and greedy action selec-
tion strategies). Furthermore, the POMDP dialogue strategy copes well with different
types of errors such as the speech recognition error8 and the user’s action error being
induced by stress as shown in Section 5.7.2. However, solving the POMDP problem
(i.e., finding a near-optimal policy) is computationally expensive. Therefore, all cur-
rently developed POMDP dialogue management work is limited to toy frame-based
dialogue problems with the size of several slots (e.g., two slots in Williams and Young
[174], three slots in Zhang et al. [187], and four slots in Roy et al. [142]) (Table 5.3).
Chapter 6 proposes a method to overcome this limitation.

8See the evaluation of two other dialogue problems reported in Appendix A

98 5. Affective dialogue management using factored POMDPs

Chapter 6

Scaling up: The
DDN-POMDP approach

Part of this chapter is presented in Bui et al. [32, 34]. The DDN-POMDP approach
described in this chapter is an important contribution of the thesis.

6.1. Introduction

In Chapter 5 we showed that Partially Observable Markov Decision Processs (POMDPs)
are an elegant model for designing Affective Dialogue Systems (ADSs). We also ana-
lyzed the limitation of the current state-of-the-art approximate POMDP algorithms.
This approach, therefore, is only applicable for small-scale dialogue problems with
the size of only a few slots and slot values (see Table 5.3). Recently, Williams and
Young [176] proposed a scaled-up POMDP method, called CSPBVI, to deal with the
multi-slot problem. The Dialogue Manager (DM) is decomposed into two POMDP
levels, a master POMDP and a set of summary POMDPs. Each summary POMDP
corresponds to a slot. The optimization or planning step of this method is conducted
off-line by simplifying the user behavior (assuming that when the users are asked
about a certain slot, they only provide a value for that slot) and reducing the size
of the POMDP structure (e.g., approximating the number of values of each slot by
only two values best and rest). However, the affective dialogue model requires a more
complex POMDP structure than that of the spoken counterpart. Compressing the
POMDP structure prevents us to incorporate a rich model of the user’s affect into
the state space and might loose dependencies between the user’s emotion, goal, and
other hidden state variables.

Looking beyond the POMDP framework, another technique to deal with par-
tially observable situations is Dynamic Decision Networks (DDNs). A DDN is an
extension of the Dynamic Bayesian Network (DBN) with decision and utility nodes.
DDNs provide a concise representation for large POMDPs and can be used as in-
puts for any POMDP algorithm such as Value Iteration (VI) and policy-iteration

99

100 6. Scaling up: The DDN-POMDP approach

based algorithms [145, chap. 17]. A special case of the DDNs (selecting actions
based on immediate reward) was used to model real-world dialogue management sys-
tems [118, 185]. DBNs and DDNs are also suitable for use in developing the affective
user model [56, 100, 191].

In this chapter, we propose a novel method to handle multi-slot dialogue problems
without compressing the POMDP structure. Our approach focuses on a real-time
belief update and an on-line action selection for a general probabilistic frame-based
(or slot-filling) Dialogue System (DS)1. The term “probabilistic frame-based" is used
because, instead of keeping track of the slot values provided by the user, the DM
maintains their probability distributions. Each slot is first formulated as a POMDP
and then approximated by a set of DDNs [90]. The approach is, therefore, called the
DDN-POMDP approach. It has two new features: (1) being able to deal with a large
number of slots (with a large number of slot values) and (2) being able to take into
account some aspects of the user’s affective state in deriving the adaptive dialogue
strategies.

In the following, we first describe a general affective dialogue model using the
DDN-POMDP approach. We then present a simulated multi-slot route navigation
example and an evaluation of our method. Finally, we summarize the proposed ap-
proach.

6.2. The DDN-POMDP approach

The main idea of the DDN-POMDP approach is to split the DM into two levels: (1)
the slot level DM and (2) the global DM. The first part is composed of a set of n slots
f1, f2, ..., fn where each slot fi is formulated as a POMDP (called the slot-POMDP
and denoted by SPi). The second part, the global DM, is handcrafted. The global
DM aims to keep track of the current dialogue information state and to aggregate the
system slot actions nominated by the slot-POMDPs. These two parts and the DM
activity process are explained in detail in the next sections.

6.2.1. Slot level dialogue manager

We represent each slot as a factored POMDP [22] where the state set and observation
set are composed of six features similar to the one presented in Section 5.4. The state
set is composed of the user’s goals for the slot i (Gui), the user’s affective states (Eu),
the user’s actions for the slot i (Aui), and the user’s grounding states for the slot i
(Dui). The observation set is composed of the observations of the user’s actions for
the slot i (OAui) and the observations of the user’s affective states (OEu). Two of
these six features (Eu and OEu) are identical for all slots. The action set defines the
system actions for slot i (Ai).

1When designing a frame-based DS, the application is usually formulated by a set of frames, each
frame is composed of a set of relevant slots. The set of frames can easily convert to a set of slots by
using standard database normalization procedures (see Chapter 3).

6.2. The DDN-POMDP approach 101

Ri

Si

Ai

Si

Zi Zi

Gui

Eu

Aui

Dui

Gui

Eu

Aui

Dui

Ai

OAui OEu OAui OEu

pec

pgc

poa

poe

pe

time t-1 time t time t-1 time t

(a) (b)

Ri

Ai

RiRi

Ai

pae

pae

Figure 6.1: (a) Standard POMDP, (b) Two time-slice of the factored POMDP for slot
i, where state set S is factored into four features Gui, Eu, Aui, and Dui, observation
set Z is factored into two features OAui and OEu. This figure is similar to Fig. 5.2.

102 6. Scaling up: The DDN-POMDP approach

Let us consider a simple example: “A rescue worker needs to get a route description
to evacuate victims from an unsafe tunnel. To achieve this goal, he communicates the
location of the victims (one of three locations) to the system. The system can infer
the user’s stress state and uses this information to adapt its dialogue policy2”.

The factored POMDP model SPi for this example is represented by:

• S = 〈Gui ×Aui × Eu×Dui〉 ∪ end, where end is an absorbing state.

1. Gui = {v1, v2, v3}
2. Aui = {answer(v1), answer(v2), answer(v3), yes,no}
3. Eu = {nostress,stress}
4. Dui = {notstated,stated}

• A = {ask , confirm(v1), confirm(v2), confirm(v3), ok(v1), ok(v2), ok(v3), fail},
• Z = 〈OAui ×OEu〉.

1. OAui = {answer(v1), answer(v2), answer(v3), yes,no}
2. OEu = {nostress,stress}

We are interested in finding an optimal dialogue policy for our POMDP-based DSs.
One intuitive approach (as presented in Chapter 5) is to compute a near-optimal di-
alogue policy using a good approximate POMDP algorithm and to use the result,
usually in the form of a policy graph or value function (see Section 2.5), for selecting
the appropriate system action. Exact POMDP algorithms such as the Witness [40]
cannot be applied even for the above slot-POMDP because of the computational in-
tractability. However, a good approximate algorithm such as Perseus is only tractable
for a small number of slot values (≤ 15).

Therefore, to maintain the tractability and allow the real-time belief update for
applications having a large number of slot values, we approximate each slot-POMDP
by a k-step look-ahead DDN (denoted by kDDN, k ≥ 0). Conceptually, this ap-
proximation gains the tractability by limiting the number of look-ahead steps (an
infinite-horizon POMDP is equivalent to a kDDN with k = ∞). The kDDN has
(k + 2) slices. The first two slices are similar to the 2TBN shown in Figure 6.1b, the
next k slices are used to predict the user behavior in order to allow the DM to select
the appropriate system action. Because the DM only needs to update its current be-
lief state relevant to the system’s last action, each kDDN (of slot i) can be converted
to a set of DDNs (called action DDNs and denoted by kDDNAs), one for each action
for slot i to simplify the computability in implementing the system. Figure 6.2 shows
a structure of the kDDN and kDDNA (k = 1) used for SPi of our route navigation
example (Section 6.3). The connections from the action nodes to immediate reward
nodes in the next slices are used to model that when a system slot action is selected
that leads to the absorbing end state (such as ok or fail), the reward in all next slices
are equal to zero3.

2This example is an instance of the single-slot route navigation example described in Section 5.6.
3An alternative solution is to add end nodes into the kDDNA (one for each slice) and redirect

the connections from the action nodes to the immediate reward nodes to these end nodes.

6.2. The DDN-POMDP approach 103

Gui

Eu

Dui

Ri

Gui

Eu

Aui

Dui

OAui

OEu

Ri

Ai

Gui

Eu

Aui

Dui

Ri

Ai

time t-1 time t time t+1

Ai

(a)

pec

pgc

poa

poe

pe

pec

pgc

pe

Gui

Eu

Dui

Ri

Gui

Eu

Aui

Dui

OAui

OEu

Ri

Ai

Gui

Eu

Aui

Dui

Ri

Ai

time t-1 time t time t+1

(b)

pec

pgc

poa

poe

pe

pec

pgc

pe

paepae pae pae

OAui

OEu

OAui

OEu

Figure 6.2: The structure of (a) kDDN and (b) kDDNA with one-step look-ahead
(i.e., k = 1). Shaded-round nodes are hidden, clear-round nodes are observable,
rectangular nodes are decision nodes, diamond shaped nodes are reward nodes. Both
networks have similar structures except the kDDNA does not have the action node in
the first slice. In our implemented prototype DM we use the simpler network kDDNA
(to reduce the computation time for the belief update process) directly because the
DM can keep track of the last system action, therefore it can update directly on the
relevant kDDNA instead of kDDN.

104 6. Scaling up: The DDN-POMDP approach

6.2.2. Global dialogue manager

The global DM is composed of two components: the Dialogue Information State
(DIS) and the Action Selector (AS). The DIS component is considered as the ac-
tive memory of the DM. It updates and memorizes the current probability distri-
butions of the user’s goal, the user’s affective state, the user’s action, the user’s
grounding state of all slots, the previous system action, and the recent observa-
tion of the user’s action and affective state. The DIS is formally defined by a tuple
〈P(Gu), P (Eu),P(Au),P(Du), hlsa, a, oau, oeu〉, where:

• P(Gu) is an n-tuple, of which each element i represents the current probability
distribution of the user’s goal for the slot i. Similarly, P(Au) and P(Du) are
n-tuples, of which each element i represents the current probability distribution
of the user’s action and the user’s grounding state for the slot i, respectively;

• P (Eu) is the probability distribution of the user’s affective state;

• hlsa is an n-tuple, of which each element i is the most recent local action nomi-
nated by slot i. The tuple hlsa is used by the AS to determine the global system
action;

• a ∈ A is the previous system action, where A is described in Equation 6.2;

• oau ∈ OAu and oeu ∈ OEu are the recent observations of the user’s action and
affective state. Let F = {f1, f2, ..., fn} be the set of slots, the observation set of
the user’s action is represented by:

OAu = {userSpeechAct(I)}, (6.1)

where I ⊂ F ∪ {(f = x)|f ∈ F, x ∈ Gui}, Eu and OEu are defined in the
previous chapter (Section 5.4).

Table 6.1 shows a snapshot of the DIS component of a 2-slot DS taken from
our current prototype DM. The first slot has two values, the second slot has three
values. The previous system action is askopen. The current observation is oau =
answer(f1 = v1) and oeu = no. Only the probability distributions of the first slot
are updated based on the observation of the user action.

The DM selects relevant kDDNAs based on the last system action a and the recent
observation of the user’s action oau. When a kDDNA for the slot i is selected, the
element i of tuples P(Gu), P(Au), and P(Du) are used to initialize the kDDNAs.

The AS component is responsible for aggregating the system’s slot actions nom-
inated by slot-POMDPs. The system action set generated by the AS component is
represented by:

A = {systemSpeechAct(I), giveSolution(J), stop}, (6.2)

where I ⊂ F ∪ J and J = {(f = x)|f ∈ F, x ∈ Gui}. giveSolution and stop are
two special system actions that lead to the absorbing end state. The giveSolution

6.2. The DDN-POMDP approach 105

Current user’s goal P (Gu1) = (0.921 0.079)
P(Gu) = 〈P (Gu1), P (Gu2)〉 P (Gu2) = (0.333 0.333 0.333)
Current user’s emotion P (Eu) = (0.917 0.025 0.023 0.022 0.013)
Current user’s action P (Au1) = (0.958 0.035 0.003 0.003)
P(Au) = 〈P (Au1), P (Au2)〉 P (Au2) = (0.2 0.2 0.2 0.2 0.2)
Current user’s dialogue state P (Du1) = (0.006 0.994)
P(Du) = 〈P (Du1), P (Du2)〉 P (Du2) = (1.000 0.000)
Current observation of the user action oau = answer(f1 = v1)
Current observation of the user emotion oeu = no
History of previous system slot actions hlsa = 〈ask ask〉
Previous system action a = askopen

Table 6.1: An example of the DIS for a 2-slot case, slot f1 has 2 values, slot f2 has 3
values.

action aims to provide a solution to the user’s request. The stop action terminates
the current dialogue session.

The AS is heuristic and application-dependent. An example of a set of rules to
select a global system action is described in Section 6.3.2.

The idea of splitting the DM into two levels was inspired by the Rapid Dialogue
Prototyping Methodology (RDPM) (see Chapter 3). The factored POMDP model for
each slot is extended from Williams’s model [179]. Two recent dialogue management
frameworks using DDNs [118, 185] are comparable to the special case of our method
with zero-step look-ahead DDN (k = 0). The DDN-POMDP dialogue manager cur-
rently does not use a confidence score. However, it is straightforward to incorporate
this feature by adding a confidence score variable into the observation set similar to
the one used in Williams’s model.

6.2.3. Dialogue manager activity process

When the DM is initialized, it loads n slot-POMDP parameter files and creates a set
of kDDNAs (|Ai| kDDNAs are created from the slot-POMDP parameter file i). The
entire process of the DM is explained in this section by a cycle of four steps (Fig. 6.3).

• Step 1
When the DM starts, the kDDNAs nominate greedy actions (i.e., actions as-
sociated with highest immediate utilities) to the global DM based on the set
of prior probability distributions specified in the slot-POMDP parameter files.
These actions are combined by the AS. The output is sent to the user (through
the output generation module).

• Step 2
The global DM then receives the observation of the user’s action and user’s
affective state (oau ∈ OAu and oeu ∈ OEu) (sub-step 2.1). The kDDNAs
relevant to oau are activated to compute the next slot action (sub-step 2.2).

106 6. Scaling up: The DDN-POMDP approach

The relevant previous belief and current observation (taken from Z and S) are
then updated to these kDDNAs (sub-step 2.3). The result computed from the
kDDNAs (i.e., the updated probability distributions of the state set, see Fig. 6.3)
is propagated back to the DIS component (sub-step 2.4).

• Step 3
All new actions computed from the selected kDDNAs are updated to variable
hsla. The AS then produces a new system action.

• Step 4
The process repeats from step 2 until the global DM selects either giveSolution
or stop action.

Ai=a1

SZ
41

2

3

A

SP1 SPi SPN

Action

Selector

Global dialogue manager

Slot level dialogue manager

Dialogue Information State

Si

Ri

Si

Zi

Ri

Ai

Si

Ri

Ai

time t-1 time t time t+1

2

Ai=aj

Si

Ri

Si

Zi

Ri

Ai

Si

Ri

Ai

time t-1 time t time t+1

Ai=ak

Si

Ri

Si

Zi

Ri

Ai

Si

Ri

Ai

time t-1 time t time t+1

a

2

2

oau, oeu
1

2

3

4

slot-POMDP

Set of kDDNAs

kDDNA

2 3

Zi Zi Zi

Figure 6.3: Activity process of the DM. The DIS component is represented by three
nodes Z, S, and A. Node Z is composed of oau and oeu. Node S is composed of
P(Gu), P (Eu),P(Au),P(Du). Node A is composed of hlsa and a.

6.2.4. User simulation

The user simulation model presented in Section 5.5 only works for a single-slot dia-
logue problem. For a multi-slot dialogue problem, the simulated user needs to decide
(probabilistically) which slots are going to be selected given the system action. This
section presents an extension of the single-slot user simulation model (Sec. 5.5) for the
multi-slot dialogue problems. The multi-slot user simulation (Fig. 6.4) is composed

6.3. Multi-slot route navigation example 107

of a slot selection module, an observation generation module, a global reward func-
tion module, and an n-tuple of DBNs (one for each slot). The slot selection module
determines which slots will be included into the user’s response based on the system
action and a slot probability distribution Psd. Psd can be estimated from a dialogue
corpus as illustrated in Section 6.4.3. The observation generation and global reward
function modules simply combine observations and rewards from the selected slots,
respectively. Note that it is sufficient to generate the observation of the user’s affec-
tive state from the first selected slot. The structure of each DBN (Fig. 6.4) is similar
to the structure of the POMDP model for each slot (Fig. 6.1b), except that the state
feature nodes (i.e. Gui, Eu,Aui, and Dui) in the simulated user model are observable
from the user’s perspective.

The process to generate observation of the user’s actions and affective states is as
follows. First, the value a from the DM is sent to the slot selection module. This
module randomly selects a subset of slots being included in the (user’s) response based
on the probability distribution Psd. If no slot is selected, then the user’s action is
null. Second, the slot action extracted from the DM action a is then updated on
node Ai of the time-slice t− 1, the reward r1 is identified from node Ai of time-slice
t− 1. Third, the user’s goal, affective state, action, and dialogue state are randomly
generated based on the probability distribution of the nodes Gui, Eu, Aui, Dui (of
time-slice t), respectively. Fourth, the network is updated, and the observation of
the user’s action oau′1 and affective state oeu′ are randomly selected based on the
probability distribution of nodes OAui and OEu. The observations and the rewards
are then sent to the observation generation and the global reward function modules.
Other selected slots are processed in the same manner as the first one. Finally, the
tuple < r, oau′, oeu′ > from the observation generation and the global reward function
modules is sent back to the DM.

Our simulated user model is goal-oriented. The user’s action is consistent with the
user’s goal except when the user is stressed, then they might make a communicative
error. The technique used is similar to the Pietquin model which is one of the best
simulated user models [92, 147]. Schatzmann et al. [147] showed that a strategy learnt
with a good user model still performs well when tested on a different user model.
Therefore, we expect that our dialogue policy will still be robust when tested with
different user simulators.

6.3. Multi-slot route navigation example

The hypothetical scenario example to illustrate our proposed DDN-POMDP approach
is as follows: “A serious accident has happened in the Benelux tunnel, Rotterdam,
The Netherlands. A rescue team is sent to the tunnel to evacuate a large number of
victims. The rescue members are currently at n different locations in and around the
tunnel. Each location might have one or more rescuers. The team leader (denoted by
“the user") needs a route description to coordinate with all other team members. He
communicates with the DS to get this information. The system is able to produce the
route description when it knows the n locations of the rescue members. The current

108 6. Scaling up: The DDN-POMDP approach

Simulated user

Gui

Eu

Aui

Dui

Gui

Eu

Aui

Dui

Ai

OAui OEu OAui OEu

time t-1 time t

Ri

Dialogue

manager

Slot selection

Global

reward

function

Observation

generation

...

Selected slot

r1

r2

rm

oau1'

oeu’

oau2'

oaum’

m1 2

Figure 6.4: Simulated user model using DBNs. The user’s state and action at each
time-step are generated from the DBNs. Only the observation of the user’s action
and the user’s affective state, and the reward are sent to the DM. The structures of
slot DBNs are identical, therefore only one DBN is shown.

6.3. Multi-slot route navigation example 109

situation in the tunnel is very noisy". In this scenario, the user might be in a highly
stressed situation, and can make errors in communicating with the system about the
locations. Therefore, the DM needs to be robust to cope with errors from the user’s
mistakes and the system’s input recognition and fusion modules [26, 66].

The route navigation example in Section 6.3 can be formulated as n slots (f1, ..., fn)
where Gu1 = Gu2 = ... = Gun = V = {v1, v2, ..., vm} (the set of all locations in and
around the tunnel)4. The user’s goal is represented as a function findRoute(g1, ..., gn),
with gi = x, i ∈ [1, n], x ∈ V and gi 6= gj if i 6= j. In a frame-based DS, the user’s
goal states can be simplified as a set of n-tuples 〈g1, g2, ..., gn〉. The user’s affective
states are five levels of the user’s stressed situation: no stress (no), low stress (low),
moderate stress (moderate), high stress (high), and extreme stress (extreme). We
assume that the user only uses a limited set of main actions, that is to say that the
set of user’s speech acts is answer, yes, and no. Note that various combinations of
the user’s speech acts are allowed such as the user can respond no for some slots
and respond answer for other some other slots in one turn. The user’s grounding
state is composed of two values notstated and stated. The set of system’s speech
acts is ask, confirm, ok, fail, giveSolution, and stop. The combination of these speech
acts and the slots and slot values forms a complete system action such as ask(f1) or
confirm(f2 = v3). The two last special system acts (giveSolution and stop) are only
used at the global DM level as being defined in Section 6.2.2. The user’s objective
is to find out the route description for n locations (the locations are known by the
user). The system aims at showing the user the correct route as soon as possible.

6.3.1. Slot level dialogue manager representation

Using the formal formulation described in Section 5.4, the remaining features of slot
fi is represented by Eu = {e1, e2, ..., e5} = {no,low, moderate, high, extreme}, Aui =
{answer(x), yes,no|x ∈ V }, Dui = {notstated,stated},OAui = Aui,OEu = Eu, Ai =
{ask , confirm(x), ok(x), fail |x ∈ V }. The flat POMDP model for this slot (including
a special end state) is composed of 10m2+20m+1 states, 2m+2 actions, and 5m+10
observations, where m is the number of locations in the tunnel.

The reward model for each slot is similar to the reward model of the single-slot
route navigation example presented in Section 5.6 except that when slot i nominates
an incorrect slot value the reward is -50. The high negative reward for selecting the
incorrect slot value (-50) is used to motivate the dialogue manager agent to verify
the information provided by the user when the user’s stress level is high.

The probability distributions for each kDDNA are similar to that of the single-
slot route navigation POMDP model described in Section 5.6 except that the user’s
stress model and user’s action model are a bit different (because the stress variable
Eu is now composed of five values). We also assume that the system action does
not influence the user’s stress. It means that the structure of kDDNAs is simpler.
There are no links from the system action and the user’s goal nodes to the user’s
stress node. This assumption does not circumvent the tractability of the kDDNA

4Our approach is generic and allows slots to have a different set of values

110 6. Scaling up: The DDN-POMDP approach

belief updating process as we will show in Section 6.4.1. Furthermore, we simplify
the kDDNA network structure by pruning the observation nodes in the look-ahead
slices5.

Let c(x) be the cardinal number of the element x in the list X (e.g., c(x) = 1 if
x is the first element of list X), the simplified user’s stress model (assuming that the
system action does not influence the user’s stress) is represented by (we consider set
Eu is a list):

P (e′u|eu) =

1− pec if e′u = eu,

pec if |c(e′u)− c(eu)| = 1 & eu ∈ {no, extreme},
pec

2 if |c(e′u)− c(eu)| = 1 & eu ∈ {low,moderate, high},
0 otherwise.

(6.3)

An example of the user’s stress model with pec = 0.1 is shown in Table 6.2. This model
is consistent with the empirical work of stress recognition and modeling reported
in Liao et al. [101]. The user’s stress level changes gradually during the system-user
interaction process. We simplified the influence of factors such as workload, trait, and
context [101] to stress by parameter pec.

eu

e′u no low moderate high extreme
no 0.9 0.05 0 0 0
low 0.1 0.90 0.05 0 0
moderate 0 0.05 0.90 0.05 0
high 0 0 0.05 0.90 0.1
extreme 0 0 0 0.05 0.9

Table 6.2: Handcrafted user’s stress model with pec = 0.1, eu is the user’s stress at
time t− 1 and eu′ is the user’s stress state at time t

5We thought that it was sufficient to maintain only the state variables for the look-ahead slices.
However, this simplification does not improve the performance of the DDN-POMDP policy when
we increase the number of look-ahead steps k. A further discussion about this issue is described in
Section 6.4.4.

6.3. Multi-slot route navigation example 111

The user’s action model is represented by:

P (a′u|a, g′u, e′u) =

1 if a = ask, e′u = no, and a′u = answer(g′u),
1 if a = confirm(g′u), e′u = no, and a′u = yes,

1 if a = confirm(x), e′u = no, and a′u = no,

1− p1 if a = ask, e′u ∈ {e2, e3, e4}, and a′u = answer(g′u),
p1

|Au|−1 if a = ask, e′u ∈ {e2, e3, e4}, and a′u 6= answer(g′u),

1− p2 if a = confirm(g′u), e′u ∈ {e2, e3, e4}, and a′u = yes,

1− p2 if a = confirm(x), e′u ∈ {e2, e3, e4}, and a′u = no,
p2

|Au|−1 if a = confirm(g′u), e′u ∈ {e2, e3, e4}, and a′u 6= yes,
p2

|Au|−1 if a = confirm(x), e′u ∈ {e2, e3, e4}, and a′u 6= no,
1

|Au| if (a = ok(y) or fail) or (e′u = e5 & pe > 0),

0 otherwise,
(6.4)

where p1 = p/Kask, p2 = p/Kconfirm , p = [c(e′u) − 2] × intensity + pe, intensity =
min{0.1, (1− 1/|Au| − pe)÷ (|Eu| − 1)}, x, y ∈ Gu and x 6= g′u.

The main idea behind this handcrafted user’s action model is as follows. When
the user’s stress level is no, no communicative errors are made. When the user’s
stress level is extreme, user’s actions are selected randomly (except when pe = 0, the
stress does not have any influence on the user’s action, i.e., the user’s stress model
for e′u 6= no is similar to that for e′u = no). In the remaining cases, the user’s action
accuracy depends on the parameter pe and the user’s stress level. An example of the
probability distributions when the system action at time t − 1 is a = ask and the
user’s goal at time t is g′u = v1 is shown in Table 6.3.

e′u
a′u no low moderate high extreme
answer(v1) 1 0.9 0.8 0.7 0.2
answer(v2) 0 0.025 0.05 0.075 0.2
answer(v3) 0 0.025 0.05 0.075 0.2
yes 0 0.025 0.05 0.075 0.2
no 0 0.025 0.05 0.075 0.2

Table 6.3: Extract of the user’s action model (a = ask and g′u = v1) with m = 3, pe =
0.1, and Kask = 1.

6.3.2. Global dialogue manager representation

Let F = {f1, f2, ..., fn} be the set of slots, the system action set and the observation
set of the user actions are now represented by:

• A = {ask(I), confirm(J), giveSolution(L), stop}

112 6. Scaling up: The DDN-POMDP approach

• OAu = {answer(J), yes,no}

where I ⊆ F , J ⊆ L, and L = {(f = x)|f ∈ F, x ∈ V }. The AS generates the global
system action based on the following rules (applying the first rule that satisfies the
set of nominated actions):

1. If all slots nominate ask action then the global action is askopen;

2. If all slots nominate confirm action then the global action is confirmall(f1 =
x, f2 = y, ..., fn = z), where x, y, z ∈ V ;

3. If all slots nominate ok action then the global action is giveSolution(f1 = x, f2 =
y, ..., fn = z), where x, y, z ∈ V ;

4. If some slots (fi, fj , ..., fk) nominate confirm action with the values (x, y, ..., z)
then the global action is confirm(fi = x, fj = y, ..., fk = z), where x, y, z ∈ V ;

5. If some slots (fi, fj , ..., fk) nominate ask action then the global action is ask(fi);

6. Otherwise, the global action is stop.

We can also divide the confirm action into explicit confirm (denoted by econfirm)
and implicit confirm and ask (denoted by iconfirm_ask). When some slots nominate
confirm action and some other slots nominate ask action, the action selector can
either select econfirm or iconfirm_ask action. Further discussion about this issue is
beyond the scope of this chapter.

Our prototype DM is a distributed multi-agent system developed using the Java
programming language and the middleware iROS platform6. The DM agent ex-
changes messages with other input and output agents using the iROS Event Heap, a
blackboard-like communication mechanism. The kDDNAs are created and integrated
with the DM using the SMILE library7. A dialogue example of the 10-slot case
(n = 10,m = 10, pgc = 0, pec = pe = poa = poe = 0.1, Kask = 1,Kconfirm = 10, k = 1)
is described in Appendix B.2.

6.4. Evaluation

In this section we evaluate our DDN-POMDP approach on several important issues for
building a realistic DS. Section 6.4.1 is about the tractability of the belief monitoring
and action selection processes when we scale up number of slots and slot values. The
benchmark of the DDN-POMDP, approximate POMDP, and handcrafted policies
for a 1-slot case is described in Section 6.4.2. The evaluation of the DDN-POMDP
approach for a multi-slot case is presented in Section 6.4.3. Section 6.4.4 examines
the performance of the DDN-POMDP policy with different look-ahead steps.

6http://sourceforge.net/projects/iros[accessed 2008-03-28]
7http://genie.sis.pitt.edu[accessed 2008-03-28]

6.4. Evaluation 113

6.4.1. Tractability

Three computational tractability issues are tackled in this section: (i) scaling up the
number of slots; (ii) scaling up the number of slot values; and (iii) comparison of the
belief updating time with different kDDNA structures.

We conducted various experiments with different numbers of slots. In a 1,000 slots
test case, our DDN-POMDP DM is able to handle the information provided by the
user in real-time. This is because the number of slots does not influence the complexity
of the kDDNAs. To our knowledge, the ability to handle such a large number of slots
is sufficient for developing all practical frame-based dialogue problems.

A detailed description of the 1000-slot test case (each slot has 10 values) is as
follows. First, one thousand POMDP parameter files are generated. Each file contains
a compact representation of a slot POMDP problem (S, A,Z, T, O, R, γ). Although
the POMDP parameter files are identical, we treat them as if they are different to
guarantee that the test is applicable to frame-based dialogue problems of which slots’
structures might be different. Second, when the system starts, the DM reads these files
and creates kDDNAs. Each slot has 11 kDDNAs (only kDDNAs for ask and confirm
actions are sufficient because when the system selects ok or fail action, no further
belief updates are required). The total number of the created kDDNAs is 11000.
The time taken to create, initialize probability distributions, and store these 11000
kDDNAs (using the SMILE library) in the computer memory is only 14 seconds8.
Third, the initial belief states of slots are taken from the POMDP parameter files and
updated into the DIS. Fourth, all slots nominate greedy action (ask action) and the
askopen action is sent to the output module. Note that we have not yet executed any
kDDNA belief update at this moment. Finally, when the DM receives the observation
of the user’s action and emotion, only relevant kDDNAs are activated for the belief
update and on-line action selection tasks. With k = 0, the time taken to update 200
different kDDNAs simultaneously is around one second.

Scaling up the number of slot values increases the complexity of the kDDNAs.
Using the SMILE library, our DDN-POMDP dialogue manager (k = 0) can handle
problems of up to 500 slot values in real-time (belief update time for one slot is
smaller than one second, Fig. 6.5). Note that the kDDNA belief update is a combined
process: computing the belief state9 and selecting the best slot action. Figure 6.5 also
shows that the kDDNA belief update time is longer when the number of slots being
processed simultaneously increases. A solution for many slots updating simultaneous
is to deploy more computers and to divide the belief update task over these computers.
This solution is not expensive, because in reality, the information provided from the
user is usually relevant to a small number of slots. Because we make an independence
assumption between slots, when the system gains information of a slot, the probability
distributions of the values of slots relevant to it are not updated. This can lead to
the case that two slots nominate the same value and the action selector must decide
which one will be included in the global system action.

8The test was conducted on a PC with 3.2 GHz CPU and 2 GB of RAM. Hereafter, this PC
configuration is used as the default platform for our experiments. Otherwise, we will state explicitly.

9Similar to the belief monitoring in a standard POMDP model.

114 6. Scaling up: The DDN-POMDP approach

Unfortunately, the kDNNA belief updating time increases exponentially with the
number of look-ahead steps (Fig. 6.6). This suggests that when k ≥ 2, it is better
to conduct the policy search off-line and integrate the result (either in the form of
a policy graph or an alpha file) into the dialogue management module for action
selection. Further details about the off-line policy search issue will be explored in the
future.

kDDNA belief update

0

1

2

3

4

5

6

7

8

100 200 300 400 500 600 700 800 900

Number of slot values

(Pgc=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=10, |Eu|=5, k=0)

S
e
c
o
n
d
s

1 slot

2 simultaneous slots

3 simultaneous slots

Figure 6.5: Average kDDNA belief updating time over 10 runs in seconds with dif-
ferent numbers of slot values using the SMILE library. The best result is found using
the Pearl exact inference algorithm and the Find Best Policy update.

Table 6.4 shows the belief updating time over 10 runs on different kDDNA’s struc-
ture. The kDDNA1’s structure is the simplified structure used for our next exper-
iments (without linkage from the user’s action and user’s goal nodes to the user’s
emotion node). The kDDNA2’s structure is described in Figure 6.2b. The belief
updating time of the kDDNA2 is a bit slower when k = 1.

When a slot has thousands of values (called many-value slot), one solution is to
bundle slot values into partitions and to update the belief directly on these partitions
as proposed by Young et al. [185]. In Chapter 3, we formulated the many-value slot as
a list processing slot. This is based on our practical experience of building real-world
frame-based dialogue systems. For some slots, we cannot determine all possible values
at the design time such as the type of foods in the restaurant search application or
the title of movies to be recorded in a smart-home application. Therefore, values of
these slots are defined as ordinal numbers such as one, two, ..., ten, previous, and next.
The DM and the user then only work with these list processing values. A mapping
between these values and the real values is done automatically by the DM. However,
whether this idea is useful for statistical dialogue management models, where slot
values are represented as a probability distribution, is still an open issue. We defer
the study of this representation to the future.

6.4. Evaluation 115

kDDNA belief update

0

1

2

3

4

5

6

7

8

9

3 4 5 6 7 8 9 10 15 20 25 30 35 40

Number of slot values

(Pgc=0, Pec=Pe=Poa=Poe=0.1, Kask=1, Kconfirm=10)

S
e
c
o
n
d
s k=1

k=2

k=3

Figure 6.6: Average kDDNA belief updating time over 10 runs with different look-
ahead steps.

k=0 k=1
m kDDNA1 kDDNA2 m kDDNA1 kDDNA2
100 0.0313 0.0312 3 0.0485 0.0500
200 0.1281 0.1282 5 0.1063 0.1109
300 0.2875 0.2860 10 0.2031 0.3922
400 0.5063 0.5046 15 0.7438 0.8985
500 0.7859 0.7860 20 1.5375 1.5922
600 1.1407 1.1390 25 2.5968 2.6000
700 1.5328 1.5373 30 3.8937 3.9124
800 1.9906 1.9906 35 5.5624 5.9797
900 2.5297 2.5375 40 7.8593 8.2421

Table 6.4: Average belief updating time in seconds over 10 runs with different kDDNA
structures, with m slot values. The structure of the kDDNA1 is the simplified struc-
ture without linkage from the system action and user’s goal nodes to the user’s emo-
tion node. The structure of the kDDNA2 is the complete structure as described in
Figure 6.2.

116 6. Scaling up: The DDN-POMDP approach

6.4.2. Comparison with approximate POMDP and handcrafted
policies (single slot)

The performance of the DDN-POMDP dialogue policy depends on both the global
DM and the slot level DM (Section 6.2). In this section, we evaluate the performance
of the slot level DM by comparing the DDN-POMDP dialogue policy with an ap-
proximate POMDP policy and three handcrafted dialogue strategies HC1, HC2, and
HC3 (Fig. 6.7) for the 1-slot case. HC1 is also the optimal dialogue policy when
pgc = pe = poa = 0 (the user’s goal does not change; stress has no influence on the
user’s action and no error in observing the user’s action i.e., the speech recognition
and spoken language understanding errors are equal to 0).

Figure 6.7: Three handcrafted dialogue strategies for the 1-slot case (x is the slot
value): (a) first ask and then select ok action if userSpeechAct = answer (other-
wise ask), (b) first ask, then confirm if userSpeechAct = answer (otherwise ask)
and then select ok action if userSpeechAct = yes (otherwise ask), (c) first ask, then
confirm if userSpeechAct = answer & oeu = high or extreme and select ok action if
userSpeechAct = yes.

The evaluation is conducted by letting each dialogue policy interact with the same
simulated user (the simulated user model is constructed using the DBN described in
Fig. 6.4). We conducted a large number of dialogue episodes (10,000) to guarantee
the statistical significance. Error bars in the figures (from 6.8 to 6.11) show the 95%
confidence level.

Figure 6.8 shows the average return of the DDN-POMDP policies and a best ap-
proximate POMDP policy computed using Perseus for a simple dialogue problem (one

6.4. Evaluation 117

slot, three values). The probability distributions and the internal reward models10 of
the DDN-POMDP and DDN-POMDP* models are similar to the one used in the sim-
ulated user except that in the DDN-POMDP* model, we set a lower internal reward
when the DM gives an incorrect solution (rOkIncorrect = −200). However, Figure 6.8
also shows that the performance of the DDN-POMDP policy is significantly improved
(close to the standard POMDP policy) when we tune its internal reward model. The
idea to tune the DDN-POMDP internal reward model is based on our practical ex-
perience. The behavior of the DDN-POMDP policy is sensitive to its internal reward
model. When the rOKIncorrect value is low, the DDN-POMDP DM is more sensi-
tive in confirming the information provided by the user before giving a solution. It
is clear that, when the number of slots and slot values is small, the POMDP dia-
logue policy is the best solution, because the policy computed by the approximate
POMDP solver is similar to the DDN-POMDP policy with k = ∞. Note that when
computing the average return of all three cases, we do not change the reward model
of the simulated user which is defined in Section 6.3.1. The average return of the
DDN-POMDP is low when pe = 0.1 or 0.2. We looked at the behavior of this policy
in case pe = 0.1 and found that it uses the confirm action when the observation of the
user’s affective state is high or extreme (similar to the HC3 policy). On the other
hand, both DDN-POMDP* and POMDP policies use the confirm for all observations
of the user’s affective state (similar to the HC2 policy). It means that in this case, it
is better to confirm after the user provides a location no matter what the observation
of the (simulated) user’s affective state is.

We conducted further experiments with different internal reward values of provid-
ing an incorrect solution (rOkIncorrect ∈ [−107,−10], Fig. 6.9). At the beginning,
the average return increases monotonously with the absolute value of rOkIncorrect.
The DDN-POMDP policy performs best when rOkIncorrect ∈ [−1000,−200]. When
rOkIncorrect < −1000, the average return degrades. Interestingly, there is a corre-
lation between the high negative value of rOkIncorrect and the number of times the
system selects confirm action before giving a solution to the user.

Figure 6.10 shows the average return of five dialogue strategies when the proba-
bility of the user’s action error being induced by stress pe changes from 0 (stress has
no influence on the user action selection) to 0.8 (stress has high influence on the user
action selection). The results of the average return (Fig. 6.10) show that with a 95%
confidence level the DDN-POMDP dialogue policy outperforms all other remaining
dialogue strategies when pe ≥ 0.111. The DDN-POMDP copes well when the user’s
action error being induced by stress increases. An example of the interaction between
the DDN-POMDP DM and the simulated user (three dialogue episodes) is shown in
Appendix B.1.

Figure 6.11 shows that the DDN-POMDP dialogue policy also copes well with

10Note that we distinguish two types of reward models. The first type is the reward model from
the POMDP environment. It is called the external reward model or simply reward model. This type
of reward model is described in Section 6.3.1. The other type of reward model is placed inside the
agent or the DM. It is called internal reward model [163].

11Perseus fails to find a near-optimal policy because of the run out of memory problem (tested on
a PC with 3.2 GHz CPU and 2 GB of RAM)

118 6. Scaling up: The DDN-POMDP approach

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe

(Pgc=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=10, k=1)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
0
0
 d
ia
lo
g
u
e
 e
p
is
d
o
e
s
)

POMDP

DDN-POMDP*

DDN-POMDP

DDN-POMDP

DDN-POMDP*

POMDP

Figure 6.8: Average return of the DDN-POMDP policies and the approximate
POMDP policy for a one slot, three values case. Error bars show the 95% confi-
dence level. The caption “*” at the end of a policy title indicates that the internal
reward function of the dialogue manager associated with the policy is tuned.

6.4. Evaluation 119

-8

-6

-4

-2

0

2

4

6

8

10

-1
0

-2
0

-3
0

-4
0

-5
0

-1
00

-1
50

-2
00

-2
50

-3
00

-1
000

-1
000

0

-1
000

00

-1
000

000

-1
E
+07

rOkIncorrect

(Pgc=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=10, |Eu|=2,k=0)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
0
0
 d
ia
lo
g
u
e
 e
p
is
o
d
e
s
)

Pe=0.0

Pe=0.4

Pe=0.8

Pe=0.8

Pe=0.4

Pe=0.0

Figure 6.9: Internal reward optimization for a one slot, three values case. Experiments
were conducted with pe in the range from 0 to 0.8. All average returns are optimal in
the range [−1000, −200]. Only three lines are shown for the purpose of clarity. Error
bars show the 95% confidence level.

DDN-POMDP vs. hand-crafted (1 slot, 10 values)

-50

-40

-30

-20

-10

0

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe

(Pgc=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=10, k=1)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
0
0
 d
ia
lo
g
u
e
 e
p
is
o
d
e
s
)

Random

HC1

HC2

HC3

DDN-POMDP

Random

HC1

HC3

HC2

DDN-POMDP

Figure 6.10: Average return vs. the user’s action error being induced by stress (pe).
Error bars show the 95% confidence level.

120 6. Scaling up: The DDN-POMDP approach

the observation error of the user’s action poa. When the observation error poa is too
high (poa ≥ 0.6), the DDN-POMDP DM always selects the fail action therefore the
average return is a constant (equal to -4). The fail action in this example means that
the system stops the dialogue and transfers the user’s request to a human operator.
Note that whether the system selects the fail action or not depends on the negative
reward associated with this action. In the above example, selecting the fail action
at the beginning is equivalent to getting the correct location after 13 turns (in both
cases, the system receives the same amount of reward). One interesting point is
that although dialogue policy HC2 copes well with the change of pe (Fig. 6.10), its
performance decreases rapidly when poa increases (Fig. 6.11).

DDN-POMDP vs. hand-crafted (1 slot, 10 values)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Poa

(Pgc=0, Pec=Pe=Poe=0.1, Kask=1, Kconfirrm=10, k=1)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
0
0
 d
ia
lo
g
u
e
 e
p
is
o
d
e
s
)

Random

HC1

HC2

HC3

DDN-POMDP

Figure 6.11: Average return vs. the observation error of the user’s action poa. Error
bars show the 95% confidence level.

We also evaluated the performance of the DDN-POMDP dialogue policy with a
number of different setups: (1) the transition and observation probability distributions
of the DDN-POMDP and the simulated user are the identical (source model); and (2)
the probability distributions of the DDN-POMDP are fixed with pe = 0.15, 0.45,
and 0.6 respectively. Figure 6.12 shows that the DDN-POMDP dialogue policy can
cope robustly with the variant of the user’s model (the POMDP policy is shown as an
upper-bound of the performance). Note that the performance of the DDN-POMDP
policy in this figure is different when compared with the one in Figure 6.10 because
we use a different (external) reward model12. Reward for selecting the incorrect slot

12This does not influence the robustness of the DDN-POMDP policy when tested with the reward
model presented in Section 6.2.1.

6.4. Evaluation 121

value is -10, and -5 for action fail. The user’s affective states are classified simply as
nostress and stress. The reward function used in Figures 6.10, 6.11, and 6.12 is not
tuned except that we set the internal reward for confirm action on the user’s goal to
−0.99 (instead of−1). The modified internal reward function helps the DDN-POMDP
DM avoid a pitfall with the confirm action. We detected that when we incorporated
the external reward model into the DDN-POMDP DM, the system might repeatedly
uses the confirm(v1) action. The DDN-POMDP policy after including this modified
internal reward function acts on goals.

DDN-POMDP vs. different user models (1 slot, 3 values)

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe

(Pgc=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=1.5, k=1)

A
v
e
ra
g
e
 r
e
tu
rn
 (
1
0
0
0
0
 d
ia
lo
g
u
e
 e
p
is
o
d
e
s
)

POMDP Source Model DM with fixed Pe = 0.15 DM with fixed Pe=0.45 DM with fixed Pe=0.6

Figure 6.12: The performance of the DDN-POMDP policy with fixed pe

6.4.3. Comparison with enhanced handcrafted policies (two
slots)

This section evaluates the performance of the DDN-POMDP versus enhanced hand-
crafted policies for a 2-slot case. The user’s model at the global level is adapted from
the SACTI training corpus [177]. The model is shown in Table 6.5.

Note that we extend several user’s options from the original model to illustrate the
ability of our method to cope with different variabilities of the user’s response. For
example, when the user is asked on a slot, he might answer on another slot. Similarly,
when the system confirms a slot (Do you mean the second location is A?), the user
might respond to both slots (No, A is the first location.).

122 6. Scaling up: The DDN-POMDP approach

System action User action Probability
ask open no response 0.013

respond to the first slot 0.207
respond to the second slot 0.207
respond to both slots 0.573

ask slot f no response 0.013
respond to slot f 0.843
respond to the remaining slot 0.044
respond to both slots 0.100

confirm slot f no response 0.013
respond to slot f 0.943
respond to both slots 0.044

confirm all no response 0.013
respond to both slots 0.987

Table 6.5: User’s model for slot selection adapted from the training model of the
SACTI corpus [177] with several extensions

Based on the three 1-slot handcrafted dialogue strategies presented in Figure 6.7 we
implemented three multi-slot handcrafted dialogue strategies HC1+ (Alg. 5) , HC2+
(Alg. 6), and HC3+ (Alg. 7). All three strategies start with the askopen action. Every
time the dialogue manager receives an observation it filters the incoherent responses
before the action selection process to minimize the unnecessary dialogue turns. For
example, if two slots have the same value, only the slot relevant to the last system
action is selected. Further, based on the experience with the 1-slot case, we improve
the performance of all three handcrafted strategies by selecting stop action when the
observation of the user’s emotion is extreme and pe > 0, similar to the behavior of
the DDN-POMDP policy. In addition, the inter-turn inconsistency is also handled
to prevent the system from providing incoherent solutions such as giveSolution(f1 =
x, f2 = x). Note that the updateUserState function of the HC3+ algorithm is similar
to the one of the HC2+ algorithm except the updateUserState function of the HC3+
changes the dialogue state du from −1 to 1 when the observation of the user’s action
is answer and the observation of the user’s emotion is no or low or moderate stress.

Figure 6.13 shows the average return of the DDN-POMDP* (the best internal
reward rOkIncorrect for k = 0 is −250 and for k = 1 is −500)13 and handcrafted
strategies. It is still valid that when the error rate is high, the DDN-POMDP*
strategy performs better than the enhanced version of the handcrafted counterparts.
Because the behavior of the handcrafted strategies does not depend on the numeric
value of the reward function, we further compare the average number of turns and
the percentage of correct goals. Table 6.6 shows that the percentage of achieved goals
of the policy HC2+ is high as expected. The DDN-POMDP* policy gained a higher
number of achieved goals with fewer number of turns compared to the HC2+ policy.

13We also re-tuned the internal reward model at each value pe. The re-tuned policy performs
slightly better when compared with the best policy with a fixed internal reward rOkIncorrect.

6.4. Evaluation 123

Algorithm 5: HC1+(oau, oeu) (Enhanced handcrafted strategy 1)
Input: observation of the user slot actions oau, observation of the user’s

emotion oeu
Output: system action a
begin

initializeEpisode();
oau := filterInconsistency(oau);
updateUserState(a, oau);
if du = [0 0] then a := giveSolution(gu);
else a := ask first open slot;
return a;

end
initializeEpisode()
begin

User slot goals gu := [−1− 1];
// -1: not provided or open, otherwise: index of slot goal
Slot dialogue states du := [−1− 1];
// -1: notstated or open, 0: stated, 1: confirmed
System action a := askopen;

end

Algorithm 6: HC2+(oau, oeu) (Enhanced handcrafted strategy 2)
Input: observation of the user slot actions oau, observation of the user’s

emotion oeu
Output: system action a
begin

initializeEpisode();
oau := filterInconsistency(oau);
updateUserState(a, oau);
if du = [1 1] then a := giveSolution(gu);
else if some slots are stated then a := econfirm(statedSlots);
else a := ask first open slot;
return a;

end

124 6. Scaling up: The DDN-POMDP approach

Algorithm 7: HC3+(oau, oeu) (Enhanced handcrafted strategy 3)
Input: observation of the user slot actions oau, observation of the user’s

emotion oeu
Output: system action a
begin

initializeEpisode();
oau := filterInconsistency(oau);
updateUserState(a, oau, oeu);
if du = [1 1] then a := giveSolution(gu);
else if some slots are stated then a := econfirm(statedSlots);
else a := ask first open slot;
return a;

end

DDN-POMDP vs. enhanced handcrafted policies

(2 slots, 10 values each slot)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe

(Pgc=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=10)

A
v
e
ra
g
e
 r
e
tu
rn

(1
0

0
0

0
 d

ia
lo

g
u

e
 e

p
is

o
d

e
s
)

HC1+

HC2+

HC3+

k=0*

k=1*

k=0*

k=1*

HC2

HC1

HC3

Figure 6.13: Average return vs. the user’s action error being induced by stress (pe)
for a 2-slots case. Error bars show the 95% confidence level.

6.4. Evaluation 125

% achieved goals Average number of turns per episode
pe HC1+ HC2+ HC3+ k=0* k=1* HC1+ HC2+ HC3+ k=0* k=1*
0.0 0.850 0.986 0.900 0.998 0.998 2.507 4.574 3.192 4.861 5.277
0.1 0.533 0.802 0.611 0.807 0.809 2.479 4.873 3.065 5.164 5.337
0.2 0.473 0.795 0.558 0.814 0.807 2.516 5.387 3.186 5.763 5.778
0.3 0.392 0.789 0.481 0.805 0.802 2.548 5.885 3.317 6.183 6.265
0.4 0.341 0.780 0.415 0.800 0.798 2.587 6.766 3.486 6.411 6.692
0.5 0.278 0.772 0.349 0.790 0.789 2.611 7.730 3.656 6.936 7.251
0.6 0.236 0.742 0.293 0.792 0.806 2.625 8.991 3.806 7.241 7.744
0.7 0.198 0.740 0.242 0.796 0.802 2.637 10.614 3.912 7.757 8.304
0.8 0.179 0.701 0.206 0.796 0.801 2.659 12.963 4.130 8.202 8.874

Table 6.6: Percentage of achieved goals and average number of turns per episode.
Bold numbers show the highest percentage of achieved goals for each pe

6.4.4. Look-ahead performance

Figure 6.6 shows that the belief update time increases in the dimension of the number
of look-ahead slices k. A follow-up question is how does k influence the performance
of the DDN-POMDP policy. The result conducted in Section 6.4.3 does not show a
clear advantage of the DDN-POMDP policy conducted with k = 1 compared with
the one conducted with k = 0. This is because we do not incorporate the observation
nodes into the look-ahead slices of the kDDNA network structure (as mentioned in
Section 6.3.1). This section explores the performance of DDN-POMDP policy on the
full kDDNA network structure (Fig. 6.2b).

Figure 6.14 shows that the performance of the DDN-POMDP policies increases
in the value of k as expected. The DDN-POMDP policies with k = 1 and k = 2
outperform the one with k = 0 when pe ≥ 0.1. The DDN-POMDP policy with k = 2
outperforms the one with k = 1 when 0.1 ≤ pe ≤ 0.3.

Looking at the logfile of the dialogue simulation (Fig. 6.15) we found that when
pe ≥ 0.1, the DDN-POMDP-2 policy (hereafter the DDN-POMDP with k look-ahead
step is denoted by DDN-POMDP-k) starts to confirm the location provided by the
user while the DDN-POMDP-1 and DDN-POMDP-0 policies only change to this
behavior when pe ≥ 0.4 and pe = 0.8 respectively.

We further examined the performance of the DDN-POMDP policies versus the
observation error poa(Fig. 6.16). The DDN-POMDP-2 policy outperforms the other
cases (i.e. k = 0 and k = 1) when 0.1 ≤ poa ≤ 0.4. However, this trend does not
hold when poa ≥ 0.5. It suggests that when the observation error is too high, looking
ahead two steps (i.e., k = 2) is not sufficient to derive a distinctively good system
action.

126 6. Scaling up: The DDN-POMDP approach

Look-ahead performance (1 slot, 3 values, rOkIncorrect=-10)

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Pe

(Pgc=0, Pec=Poa=Poe=0.1, Kask=1, Kconfirm=1.5,|Eu|=2)

A
v
e
ra

g
e
 r

e
tu

rn
 (

1
0
0
0
0
 e

p
is

o
d

e
s
)

k=0

k=1

k=2

Figure 6.14: Performance of the DDN-POMDP policy with different look-ahead values
k

6.5. Discussion

When the application domain has a small number of slots and slot values, a POMDP
DM is an ideal solution as described Chapter 5. In this case, the POMDP dialogue
policy outperforms the proposed DDN-POMDP dialogue policy (Fig. 6.8). However,
when the application is more complex, we cannot compute a near-optimal POMDP
dialogue policy using standard approximate POMDP algorithms such as Perseus.
Thus, our solution is a good starting point to allow for creating a workable prototype
DM. The DDN-POMDP method can also be applicable for spoken dialogue systems
(by removing the Eu and OEu nodes from the state and observation sets). Therefore,
it would be interesting to compare our method with the CSPBVI method [176].

Furthermore, the ability to handle many slot values also helps when modeling
complex affective states of the user. Suppose that the user’s emotion model is repre-
sented by a set of six basic emotions (happiness, surprise, anger, sadness, fear, and
disgust) and ten levels of intensity for each emotion (0.0, 0.1, ..., 0.9). If we integrate
this emotion model into the state space, the number of states is bigger than 106

(equivalent to a kDDNA model in Figure 6.2 with 300 slot values), which cannot be
solved by current approximate POMDP algorithms such as Perseus. This problem
can easily be solved by our DDN-POMDP approach.

6.5. Discussion 127

Behavior of the DDN-POMDP policy (first two turns) with different look-ahead values k

ask

k=0 k=1 k=2

Pe=0

Pe=.5

Pe=.4

Pe=.3

Pe=.2

Pe=.1

ok(x)

x

confirm(v1)

other

ask

ok(x)

x

ask

ok(x)

x

confirm(v1)

other

ask

ok(x)

x-nostress

confirm(x)

x-stress

ask

ok(x)

x

confirm(v1)

yes,no

(nostress)

ask

ok(x)

x-nostress

confirm(x)

x-stress

Pe=.8 ask

ok(x)

x
-n
o
s
tre

s
s

confirm(x)

x-stress

confirm(v1)

no-nostress

Idem

Idem

Idem

Idem

Idem

Idem

Idem

Pe=.6 Idem

Pe=.7 ask

ok(x)

x-nostress

confirm(x)

x-stress

confirm(v1)

y
e
s
,n
o
 (n

o
s
tre

s
s
) confirm(v2)

yes,no (stress)

Idem

Idem

Idem

Idem

Idem

Idem

Idem

Idem

Idem

Idem

Idem

other

other

other

other

other

other

Figure 6.15: Behavior of the DDN-POMDP policy (first two turns) with different
look-ahead steps

128 6. Scaling up: The DDN-POMDP approach

Look-ahead performance (1 slot, 3 values, rOkIncorrect=-10)

-4

-2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Poa

(Pgc=0, Pec=Pe=Poe=0.1, Kask=1, Kconfirm=1.5,|Eu|=2)

A
v
e
ra

g
e
 r

e
tu

rn
 (

1
0
0
0
0
 e

p
is

o
d

e
s
)

k=0

k=1

k=2

Figure 6.16: Performance of the DDN-POMDP policy with different look-ahead values
k

6.6. Conclusions

In this chapter, we have presented an approach to developing a tractable affective
dialogue model for probabilistic frame-based DSs. Our approach is based on the
POMDP and DDN techniques. The DM is divided into two parts: the slot level DM
and the global DM. The first part is composed of n slots where each slot is modeled
as a factored POMDP and approximated as a set of DDNs. The second part (i.e. the
global DM) is composed of two components: (1) the DIS, the active memory of the
DM, is responsible for updating and memorizing the current probability distributions
of the user’s goal, the user’s affective state, the user’s action, the user’s grounding
state of all slots, and the recent observation of the user’s action and affective state;
(2) the AS is responsible for aggregating the system’s slot actions nominated by the
slots. The DM activity process is explained by a cycle of four steps (Fig. 6.3).

Two key features of our model are realistic affective modeling and ability to handle
many slots and slot values. Our dialogue model takes into account the user’s affective
state with uncertainty and dynamic aspects (i.e., change over time). In previous work
the user’s affective state was either considered as fully observable [8, 80, 129] or static
(i.e., does not change during the system-user interaction [130]). The ability to handle
many slots and slot values helps when modeling real-world frame-based problems. Our
current implemented prototype DM can handle problems with the size of hundreds
of slots, where each slot might have hundreds of values. Possible solutions for very
large numbers of slot values were also suggested.

We conducted experiments for the slot level DM and compared the results with

6.6. Conclusions 129

a state-of-the-art approximate POMDP technique and different handcrafted policies.
When the number of slot values is very small, the policy computed by approximate
POMDP solvers such as Perseus is the best solution (Fig. 6.8). The performance of
the DDN-POMDP policy after optimizing its internal reward is close to the state-of-
the-art approximate counterpart. For problems with a larger number of slot values,
the DDN-POMDP policy works well when tested with different types of errors: the
probability of an error in the user’s action induced by stress (Fig. 6.10, 6.13), the
probabilities of the observation of the user’s action and the observation of the user’s
affective state errors (Fig. 6.11). The DDN-POMDP policy is also robust enough to
cope with variation in the user’s model (Fig. 6.12).

130 6. Scaling up: The DDN-POMDP approach

Chapter 7

Conclusions

As stated in Chapter 1, the central goal of this thesis is to develop a computational
model for implementing a robust dialogue manager that is able to adapt its strategies
accordingly given observations (with uncertainty) of the user’s action and affective
state. The thesis has fulfilled this goal by proposing a tractable hybrid DDN-POMDP
method that:

• is robust to cope with errors from observations of the user’s action and affective
state;

• is able to take into account the uncertainty (i.e., partially observable) and dy-
namic aspects (i.e., change over time) of the user’s goal, intention, and the user’s
affect;

• is tractable for real-world frame-based dialogue problems.

Section 7.1 further discusses about the method and summarizes the main points pre-
sented in this thesis. Future directions are presented in Section 7.2.

7.1. Summary of the Thesis

Despite the progress in the fields of affect recognition and dialogue system in re-
cent years, design and development of affective dialogue systems pose many research
challenges. Computers are still not very good at recognizing speech from the user.
Recognizing emotions is even harder for both humans and computers. Extending
spoken dialogue systems with multimodal input and output capacities might alleviate
the speech recognition error and improve the affect recognition accuracy, but cannot
completely solve uncertainty factors such as user’s goal, user’s intention and user’s
affective state. For example, the user might change their mind (e.g., goal) during the
system-user interaction process.

Given the attractiveness of the POMDP theory presented in Section 2.5, I first in-
vestigated a factored POMDP approach to modeling affective dialogue (Chap. 5). The

131

132 7. Conclusions

proposed dialogue model, called ADS-POMDP, is able to handle the user’s goal, user’s
action, user’s affective state and other (user’s) hidden components in an elegant man-
ner. We evaluated the performance of the ADS-POMDP policy and compared it with
three handcrafted policies and a greedy policy. The experimental results conducted
for a single-slot route navigation example demonstrated that the ADS-POMDP policy
outperforms the greedy and handcrafted policies (Fig. 5.9). Furthermore, the ADS-
POMDP policy also outperforms its spoken counterpart (i.e. SDS-POMDP [179])
when the probability of the user’s action error induced by stress pe is greater than 0
(Fig. 5.7).

To confirm the goodness of the POMDP-based dialogue management model, we
further developed the POMDP-based dialogue managers for two real-world dialogue
systems: the Ritel system [71] and the Virtual guide system [79]. The results (see
Appendix A) showed that the POMDP policy outperforms the optimized handcrafted
policy. In addition, we could significantly improve performance of the handcrafted
policies by adapting them according to the strategies found by the POMDP policies.

However, we identified several problems with modeling dialogue as a POMDP.
First, the definition of a good reward model is a hard problem. The POMDPs proved
very sensitive to small change in the reward model, in particular the relative magni-
tude of different types of reward. Designing a good reward model, therefore, requires
both expert knowledge and practical debugging. Second and also the major problem,
is the tractability. Most of the current POMDP-based dialogue managers are only
restricted themselves to toy frame-based dialogue problems with a few slots and slot
values (see Table 5.3).

A recent scaled-up method for spoken dialogue is to compress the POMDP struc-
ture [176]. However, the affective dialogue model requires a more complex POMDP
structure than that of the spoken counterpart. Compressing the POMDP structure
prevents us to incorporate a rich model of the user’s affect into the state space and
might loose dependencies between the user’s emotion, goal, and other hidden state
variables.

We therefore proposed a hybrid DDN-POMDP method to handle multi-slot dia-
logue problems without compressing the POMDP structure (Chap. 6). The method
is inspired by the Rapid Dialogue Prototyping Methodology (RDPM) presented in
Chapter 3. That is the dialogue manager is divided into two parts: a slot level dia-
logue manager and a global dialogue manager. Each slot in the first part is modeled as
a factored POMDP and approximated as a set of DDNs. The second part is responsi-
ble for updating the dialogue information state and selecting the system action. The
dialogue manager activity process is explained by a cycle of four steps (Sec. 6.2.3).

To allow for a real-time belief update and an on-line action selection, the DDN-
POMDP method only maintains a small number of look-ahead steps (see Sec. 6.2.1).
The experimental results showed that the performance of the DDN-POMDP policy
outperforms three handcrafted policies when tested with different types of errors:
the probability of an error in the user’s action induced by stress (Fig. 6.10, 6.13),
the probabilities of observed user’s action and observed user’s affective state errors
(Fig. 6.11). The DDN-POMDP policy is also robust enough to cope with variation
in the user’s model (Fig. 6.12).

7.2. Future directions 133

However the DDN-POMDP policy is suboptimal when compared with the approx-
imate POMDP policy. This is because the approximate POMDP policy is computed
with infinite look-ahead steps. To improve the performance of the DDN-POMDP
policy, we have found an elegant way to use short-term reward function to maximize
the long-term goal. The idea is to tune the internal reward function to achieve a
better policy (Sec. 6.4.2). The performance of the DDN-POMDP policy after opti-
mizing its internal reward is close to the approximate POMDP counterpart (Fig. 6.8).
To our knowledge (at least in the dialogue research community), no other work have
mentioned this promising solution.

In short, this thesis explored possibilities of applying the POMDPs for model-
ing affective dialogue. Although a substantive research is still required to design a
POMDP-based dialogue model for real-world affective dialogue systems, we belief that
this sort of model is beneficial in solving many practical issues in the dialogue manage-
ment design. A key contribution of this thesis is the proposed DDN-POMDP method
that is able to handle frame-based problems with hundreds of slots and hundreds of
slot values.

Beside the affective dialogue issue, this thesis makes several contributions to the
design and development of traditional frame-based dialogue system. We proposed a
RDPM that allows for a quick production of frame-based dialogue models (Chap. 3).
Two distinctive features of the methodology are: supporting rapid prototype and
facilitating (spoken) WoZ experiments. The practical result showed that an initial
dialogue model for simple applications such as the RestInfo system can be developed
in several hours. WoZ interfaces are generated automatically from a WoZ interface
generator. These interfaces are integrated with the dialogue management library,
which facilitates the tasks of the wizards in a WoZ experiment. The extended version
of the methodology was used as a WoZ experiment platform for the INSPIRE project.
It is also used for developing several prototype spoken and multimodal prototype
dialogue systems (for demonstration purposes). Based on the RDPM, we proposed
a generic dialogue modeling methodology for the design of multi-application systems
(Chap. 4). This has been illustrated in a scenario example of the ICIS project.

Last but not least, in the framework of this thesis, we created several software
toolkits that are useful for building practical dialogue systems: (i) the POMDP toolkit
for the development of POMDP-based dialogue managers1; ii) a prototype DDN-
POMDP dialogue management module for the ICIS-CHIM demonstrator2; and (iii)
the RDPM toolkit (including the Wizard of Oz (WoZ) interface generator) allows for a
quick production of frame-based dialogue models and their associated dialogue-driven
interfaces.

7.2. Future directions

The DDN-POMDP approach presented in Chapter 6 is a starting point to allow for
creating a workable POMDP-based dialogue manager that is able to handle hundreds

1http://wwwhome.cs.utwente.nl/∼hofs/pomdp/
2http://hmi.ewi.utwente.nl/icis/demonstrator/

134 7. Conclusions

of slots with hundreds of slot values. The current version of the global dialogue man-
ager is based on a set of rather simple rules and a small number of global system
actions. Therefore, improving this part, such as modeling the action selection com-
ponent as a POMDP, might help to enhance the performance of the DDN-POMDP
dialogue manager as well as to allow the DDN-POMDP dialogue manager to handle
other practical issues, which we addressed in Chapter 3, such as a dialogue dead-end
situation (i.e. zero solution is retrieved from the database). Our dialogue manager
provides a potential framework for investigating tractable factored POMDP algo-
rithms.

Although the current models of user behavior are handcrafted, we believe that
they are appropriate for modeling the user affect. Various DBN-based models have
been empirically used for modeling the user’s affect [56, 65, 100, 101, 191]. It will be
interesting to extend our slot POMDP structure, especially by adding more specific
features related to the user’s affect such as mood and personality, and specifying their
dependencies. This extension will help to explain more clearly not only how the user
expresses emotions in context but also why they express them.

Another important research topic that is closely related to statistical dialogue
management is user simulation. Recent work puts emphasis on building the proba-
bilistic user model for spoken dialogue systems from a small dialogue corpus [147].
Design of the affective user simulation needs to incorporate both data from corpora
and knowledge about emotions from psychology and other related disciplines. This
will be an interesting research avenue to generate artificial corpora for well-defined
task environments such as crisis management and use them for training and testing
dialogue systems.

Modeling the user’s goal for the information seeking dialogue is quite straightfor-
ward. We would like to see the extension of the POMDP-based dialogue model for
other application domains such as the tutoring domain where no clear user goal can
be defined [2]. This extension might help to (partially) answer an open research ques-
tion posed by D’Mello et al. [57]:“How can an affect-sensitive dialogue tutor respond
to the learner in a fashion that optimizes learning and engagement?”.

Finally, the POMDP-based dialogue management model clearly belongs to the
agent-based dialogue model which is the most complex dialogue models [6, 107]. This
thesis has restricted itself to applying the model to the frame-based or slot-filling ap-
plications. Generally speaking, it is possible to combine the POMDP model with the
information state model [165] similar to the hidden information state model [185]. An
immediate step is to extend the POMDP-based dialogue model for multi-application
systems presented in Chapter 4. That is to say, each node in the dialogue model
hierarchy is modeled as a POMDP. These POMDPs will nominate their local actions
when they are activated. The root POMDP will determine how to combine these
actions and to send a final action to the user. A similar idea (for MDPs) is discussed
in Bohus [20].

Appendix A

Practical dialogue manager
development using POMDPs

This appendix is written based on Bui et al. [33]. It shows several practical issues
in applying Partially Observable Markov Decision Processs (POMDPs) for other real-
world dialogue problems being developed at the Human Media Interaction Group, Uni-
versity of Twente. The work was conducted in collaboration with Boris van Schooten
and Dennis Hofs.

A.1. Introduction

Partially Observable Markov Decision Processs (POMDPs) are attractive for dialogue
management in the cases where the Dialogue Manager (DM) has to make choices
which depend on statistical information. They can determine optimal strategies in
the face of error and partial information. POMDPs can take advantage of statisti-
cal information about behavior or error to the fullest extent, and take into account
extensive hidden information.

Using POMDPs for spoken dialogue management has been examined thoroughly
in Williams and Young [177]. Current POMDP-based dialogue managers model a
complete slot-filling dialogue including all slots with all values. Large numbers of
slots and values lead to a large state space, which is not tractable for current POMDP
solvers. Usually, this restricts us to toy problems. Recent efforts to scale up POMDP-
based models are reported in Bui et al. [32], Williams and Young [177].

It is not yet clear enough how to employ POMDPs in a systematic development
cycle. A number of practical issues with POMDPs has not really been addressed
yet. How do you obtain the user model and the probability distributions? How
do you test and debug POMDPs? How do you tweak reward values? How do you
evaluate and compare performance of the POMDP policy which other approaches?
We address these questions by using the factored POMDP models [32, 177] as a basis,
and applying them to two dialogue management systems.

135

136 A. Practical dialogue manager development using POMDPs

A.2. Methodology

A.2.1. Design guidelines

The state space represents the user’s state and action. It is defined as a set of
features. We should keep it compact. This can be done by specifying only features
which are relevant in selecting the system action and by pruning all unreachable
states. For example, when analyzing the Williams’s 1945-state travel problem [177],
we found that we could increase tractability by pruning 1626 states1, leaving only
319 reachable states. The system actions are not only the actions toward the user
but also actions for other DM tasks such as querying the database. Similar to the
state space, the observation space is also defined as a set of observation features
such as user’s action with noise (from the Automatic Speech Recognition (ASR)) and
observed user’s emotional state.

Designing a reward model that leads to a good policy is a very challenging task.
The typical parameters used to design a reward model are task success, the number of
turns, and dialogue act appropriateness (e.g., the system should not confirm a value
if it has not yet been provided by the user). The precise numerical values used may
have significant impact on the policy and convergence behavior.

A.2.2. Evaluation setup and toolset

From the literature, the typical approach is first to test the quality of the POMDP-
based dialogue policy with a simulated user. The real-user evaluation is considered
at the final step. An advantage of modeling dialogue as a POMDP is that we can use
the POMDP environment model itself as a simulated user model. The probability
distributions of the simulated user (testing model) might be varied with the ones of the
DM (training model). The probability distributions of all the user models used in our
two applications are handcrafted. We have developed a software toolkit to conduct
our experiments, which includes a factored POMDP to flat POMDP translator, and
an interactive simulator for both the user and the system. The POMDP problem
is first solved with a POMDP solver (we used Perseus [161] and ZMDP [157]). The
generated alpha file is then used to carry out the performance test with simulated user
models. Section A.3 shows our test results on two different problems. We conducted a
large number of dialogue episodes (≥ 10, 000) to guarantee the statistical significance.

A.3. Evaluation

A.3.1. Ritel QA dialogue system.

Ritel [71] is a telephone-based question answering (QA) dialogue system. Dialogue
functionality includes confirmation of key phrases and the type of the answer sought,
and handling follow-up questions. In our model, we focus on confirmation, modeling
key phrases and answer type as slots. In the real system, there are thousands of

1For example, the states which the user’s goal feature is ab and the user’s action feature is c

A.3. Evaluation 137

possible key phrases, but answer type only has a few possible values. To make it
tractable, we simplified the model to one slot with between 3 and 10 values, suitable
at least for modeling answer type fully.

The POMDP state space consists of the user goals and the user actions (S =
Gu × Au). The user goals are the different questions or question types that the
user may ask, Gu = q1, ..., qn. The user actions are composed of the questions,
plus positive and negative feedback, a ‘bye’ utterance, and a ‘hang-up’ signal, Au =
q1, ..., qn, pos, neg, bye, null. The observation set Z is the same as Au. The system
actions consist of confirming each question, answering it, and the ‘ask’ action, posing
an open question to the user, A = confirmqi

, answerqi
, ask. When the system an-

swers the correct question, the user poses a new question, otherwise the user either
repeats or gives negative feedback. The user may hang up in any dialogue turn, with
a fixed probability 0.1.

We made the reward model as simple as possible: give a reward of 1 for answering
the right question, −1 for answering a wrong one, zero otherwise. We found that mod-
eling the dialogue state was not necessary, and it increases state space to intractable
levels. This model yields the desired behavior, though like Williams and Young [177],
we found that the system starts confirming even when the user has not yet said any-
thing. This can be remedied by rewarding the ask action with a reward slightly more
than 0. Note that it is not necessary to give an explicit penalty for dialogue length.
The problem can be translated as: answer as many questions as possible before the
user hangs up. The results of Perseus were not useable, so the experiments were done
with ZMDP only. Convergence was good up till nine slot values. We observed that,
when the ASR error becomes high, 0.7 or above, the system actually wants to hear
a question multiple times in a row before answering it. The policy was compared to
a hand-crafted policy (Fig. A.1), similar to the actual Ritel policy, which is based
on counting the number of times a particular keyword was heard. It was optimized
to each particular problem by determining the optimal number of times a question
should be heard before confirmation is sufficient, just as the POMDP does.

Figure A.1: Performance comparison of POMDP and optimised hand-crafted models
for different problem sizes and ASR error rates. The solid line is the POMDP, the
dashed line is the hand-crafted model. For three values, an error more than 0.6 would
result in the probability of hearing the wrong question being higher than the right
one. For nine values and error=0.8, no sensible policy could be calculated.

138 A. Practical dialogue manager development using POMDPs

A.3.2. Virtual Guide application.

The Virtual Guide is a character in a Virtual Reality model of the Music Centre
in Enschede [79]. The character can help users find their way in the building. It
encompasses a multimodal dialogue system that allows users to refer to locations and
objects with spoken or written language or by pointing at a location on a map. The
system uses clarification questions and implicit confirmations. The user can continue
a dialogue with follow-up questions.

It is currently impossible to create a tractable POMDP model for the system. In
our simplified models the user can only ask for the route between two objects, and the
world is limited to three or eight objects. Moreover we made a closed model where
follow-up questions are not allowed. We fitted the problem into the SDS-POMDP
dialogue model [177]. A reward is given when the system gives the correct route and
the user provided both locations.

Evaluations were performed for four models. For each of them we compared the
solutions of Perseus and ZMDP and an adapted hand-crafted system. The solvers
were run until convergence was usually slowing down (about ten minutes), although
it had not always reached a desirable level. We then ran dialogues with an automatic
user simulation based on the user model of the POMDP.

The first model stops after giving any answer, has observation error 0.2, and three
locations. We varied the observation error of the simulator. The results in Figure A.2
show that with increasing errors the POMDP solutions produced higher returns than
the hand-crafted system.

Figure A.2: Average returns for simulation with different observation errors

For the second model, we increased the observation error to 0.6. The Perseus
solution contained a state from which the dialogue never ended. ZMDP did not
converge acceptably. Therefore its solution performed worse than the hand-crafted
system.

The third model has observation error 0.2 again, but the dialogue only stops after

A.4. Conclusions 139

giving a correct answer. The average returns for Perseus, ZMDP and the hand-crafted
system were 8.08, 6.84 and 6.69 (higher than the first model, because of a reward for
an extra system action).

In the last model we increased the number of locations to eight, resulting in 729
POMDP states instead of about 80. Perseus was not able to load this problem. The
average returns obtained with ZMDP and the hand-crafted system were 5.08 and 4.04.

A.4. Conclusions

Although our experiments indicate that POMDP-based dialogue systems can perform
better than hand-crafted ones, we identified several problems with modeling them.
One of the major problems remains tractability. It is not possible to obtain useful
solutions for any but strongly simplified models, which may bear little relation to
the original problem. For example, when reducing the number of slot values, the
strategy of trying them one by one can be employed, something that may not have
been feasible for the original number of values. Another example was the need to
simplify an open model, where the end of a dialogue is determined by the user, to a
closed model.

The definition of a good reward model is another hard problem. While the reward
model models psychological factors such as user satisfaction, which cannot easily be
quantified precisely, the POMDPs proved very sensitive to small changes in the reward
model, in particular the relative magnitude of different types of reward. In practice
we had to experiment with different reward values.

The POMDP policies sometimes came up with surprising strategies. For example,
some policies decided to confirm multiple times in a row, something which our original
hand-crafted models did not. We could significantly improve performance of the hand-
crafted policies by adapting them according to the strategies found by the POMDP
policies. This shows how POMDPs could be used to improve hand-crafted systems.

140 A. Practical dialogue manager development using POMDPs

Appendix B

Example interaction

B.1. Single slot

Table B.1 shows three representative dialogue episodes of the interaction between
the DDN-POMDP dialogue manager and the simulated user for a 1-slot case. In
all dialogue episodes, the prior probability distributions of Gu and Eu are equally
distributed. The initial state of Du is notstated. Based on these probability distri-
butions and the initial state, the dialogue manager selects the ask action in its first
turn. The hidden part is the information generated by the simulated user and it is
unobservable to the dialogue manager. The example illustrates some adaptive behav-
ior of the DDN-POMDP dialogue manager such as it chooses the fail action when
oeu = extreme (dialogue episode 1), the ok action when oeu = no or oeu = low (di-
alogue episode 3), the confirm action when oeu = moderate or oeu = high (dialogue
episode 2). The average time for each turn is about 93 ms.

B.2. Ten slots

Table B.2 illustrates the interaction between the DDN-POMDP prototype dialogue
manager and the author of this thesis. The prior probability distributions of 10
slot-POMDP parameter files are equally distributed, therefore all slots nominate the
ask action, the AS applies the first rule specified in Section 6.3.2 (rule 1) and the
ask(open) action is selected. Rules 4, 5, 5, and 3 are used in S2, S3, S4 and S5,
respectively.

141

142 B. Example interaction

Dialogue episode 1
S1 : Please provide the location of your team members? [ask]
U1 : Building 6

oau=v6; oeu=extreme; r=-1.0 [gu=v6, eu=extreme, au=v6, du=stated]
S2 : Please wait a moment, I will connect you through our route planning team.

[fail]
End of the episode: episodeReward=-4.0

Dialogue episode 2
S1 : Please provide the location of your team members? [ask]
U1 : Building 9

oau=v9; oeu=high; r=-1.0 [gu=v9, eu=high, au=v9, du=stated]
S2 : I understood Building 9. Is that correct? [confirm(v9)]
U2 : Yes

oau=yes; oeu=high; r=-1.0 [gu=v9, eu=high, au=yes, du=stated]
S3 : Ok, the route description is shown on your PDA. [ok(v9)]

End of the episode: episodeReward=8.0
Dialogue episode 3
S1 : Please provide the location of your team members? [ask]
U1 : Building 7

oau=v7; oeu=low; r=-1.0 [gu=v7, eu=low, au=v7, du=stated]
S2 : Ok, the route description is shown on your PDA. [ok(v7)]

End of the episode: episodeReward=9.0
{v1 = Bakkerskade, v2 = Bakkersweg, v3 = Propaanweg,
v4 = Buttaanweg, v5 = Beneluxweg, v6 = Building 6, v7 = Building 7,
v8 = Building 8, v9 = Building 9, v10 = Building 10}

Table B.1: Representative dialogue example for a 1-slot case

B.2. Ten slots 143

S0 : What can I do for you?
U0 : I need a route description to coordinate with my team members.

They are currently located at 10 different locations.
S1 : What are these locations?

[rule 1 : ask(open)]
U1 : first location is Bakkerskade, second one is Bakkersweg

[oau=answer(f1=v1, f2=v2), oeu=high]
S2 : So, the first location is Bakkerskade and the second location is

Bakkersweg. Is that correct?
[rule 4 : confirm(f1=v1, f2=v2)]

U2 : yes
[oau=yes, oeu=moderate]

S3 : What about the third location?
[rule 5 : ask(f3)]

U3 : The third, fourth, and fifth locations are: Propaanweg, Buttaanweg,
and Beneluxweg
[answer(f3=v3, f4=v4, f5=v5), oeu=low]

S4 : And what is the sixth location?
[rule 5 : ask(f6)]

U4 : The remaining locations are buildings six, seven, eight, nine, ten.
[answer(f6=v6, f7=v7, f8=v8, f9=v9, f10=v10), oeu=no]

S5 : Ok, the route description is shown on your PDA.
[rule 3 : giveSolution(f1=v1, f2=v2, f3=v3, f4=v4, f5=v5, f6=v6, f7=v7,
f8=v8, f9=v9, f10=v10)]
{v1 = Bakkerskade, v2 = Bakkersweg, v3 = Propaanweg,
v4 = Buttaanweg, v5 = Beneluxweg, v6 = Building 6, v7 = Building 7,
v8 = Building 8, v9 = Building 9, v10 = Building 10}

Table B.2: Dialogue example for a 10-slot case

144 B. Example interaction

Bibliography

[1] Aberdeen, D., A (revised) survey of approximate methods for solving partially
observable Markov decision processes, Tech. rep., National ICT Australia, 2003.

[2] Ai, H., and D. J. Litman, Knowledge consistent user simulations for dialog
systems, in Proceedings of the 8th Annual Conference of the International Speech
Communication Association (INTERSPEECH ’07), pp. 2697–2700, Antwerp,
Belgium, 2007.

[3] Ai, H., and F. Weng, User simulation as testing for spoken dialog systems, in
Proceedings of the 9th SIGDial Workshop on Discourse and Dialogue (SIGdial
’08), edited by D. Schlangen and B. A. Hockey, pp. 164–171, Columbus, Ohio,
USA, 2008.

[4] Ailomaa, M., M. Melichar, A. Lisowska, M. Rajman, and S. Armstrong,
Archivus: A multimodal system for multimedia meeting browsing and retrieval,
in Proceedings of the COLING/ACL on Interactive presentation sessions (COL-
ING/ACL ’06), edited by J. Curran, pp. 49–52, Sydney, Australia, 2006.

[5] Allen, J. F., The TRAINS project: A case study in building a conversational
planning agent, Journal of Experimental and Theoretical AI (JETAI), 7, 7–48,
1995.

[6] Allen, J. F., D. K. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and A. Stent,
Toward conversational human-computer interaction., AI Magazine, 22 (4), 27–
38, 2001.

[7] André, E., L. Dybkjær, W. Minker, and P. Heisterkamp (Eds.), Affective Di-
alogue Systems, Tutorial and Research Workshop (ADS 2004), Kloster Irsee,
Germany, June 14-16, 2004, Proceedings, Lecture Notes in Computer Science,
vol. 3068, Springer, 2004.

[8] André, E., M. Rehm, W. Minker, and D. Bühler, Endowing spoken language
dialogue systems with emotional intelligence, in Proceedings of ADS 2004, pp.
178–187, 2004.

[9] Ang, J., R. Dhillon, A. Krupski, E. Shriberg, and A. Stolcke, Prosody-based
automatic detection of annoyance and frustration in human-computer dialog, in

145

146 BIBLIOGRAPHY

Proceedings of the 7th International Conference on Spoken Language Processing
(ICSLP-2002), pp. 2037–2040, Denver, Colorado, USA, 2002.

[10] Astrom, K. J., Optimal control of Markov processes with incomplete state in-
formation, Journal of Mathematical Analysis and Applications, 10, 174–205,
1965.

[11] Austin, J. L., How to Do Things with Words, Harvard University Press, 1962.

[12] Bahar, R. I., E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi, Algebraic decision diagrams and their applications, in Proceed-
ings of the IEEE/ACM International Conference on Computer-aided Design
(ICCAD ’93), pp. 188–191, IEEE Computer Society Press, Los Alamitos, CA,
USA, 1993.

[13] Ball, E., A Bayesian heart: Computer recognition and simulation of emotion, in
Emotions in Humans and Artifacts, edited by P. P. Robert Trappl and S. Payr,
chap. 11, pp. 303–332, The MIT Press, 2003.

[14] Ball, G., and J. Breese, Relating personality and behavior: posture and gestures,
in Affective Interactions: Towards a New Generation of Computer Interfaces,
Lecture Notes in Computer Science, vol. 1814/2000, edited by A. Paiva, pp.
196–203, Springer Berlin/Heidelberg, 2000.

[15] Batliner, A., K. Fischer, R. Huber, J. Spilker, and E. Nöth, How to find trouble
in communication, Speech Communication, 40 (1-2), 117–143, 2003.

[16] Becker, C., N. Lessmann, S. Kopp, and I. Wachsmuth, Connecting feelings
and thoughts - modeling the interaction of emotion and cognition in embodied
agents, in Proceedings of the 7th International Conference on Cognitive Modeling
(ICCM ’06), edited by D. Fum, F. Del Missier, and A. Stocco, pp. 32–37, Trieste,
Italy, 2006.

[17] Bhatt, K., S. Argamon, and M. Evens, Hedged responses and expressions of
affect in human/human and human/computer tutorial interactions, in Proceed-
ings of the 26th Annual Conference of the Cognitive Science Society (CogSci
’04), edited by K. Forbus, D. Gentner, and T. Regier, pp. 114–119, Chicago,
Illinois, USA, 2004.

[18] Bilange, E., Dialogue personne-machine : modỗlisation et rỗalisation informa-
tique, Hermès, Paris, 1992.

[19] Bobrow, D. G., R. M. Kaplan, M. Kay, D. A. Norman, H. Thompson, and
T. Winograd, GUS, a frame-driven dialog system, Artificial Intelligence, 8,
155–173, 1977.

[20] Bohus, D., Error awareness and recovery in task-oriented spoken dialogue sys-
tems - PhD thesis proposal, Tech. rep., Carnegie Mellon University, 2004.

BIBLIOGRAPHY 147

[21] Bohus, D., and A. Rudnicky, Ravenclaw: Dialog management using hierarchical
task decomposition and an expectation agenda, in Proceedings of the 8th Eu-
ropean Conference on Speech Communication and Technology (EUROSPEECH
’03), pp. 597–600, Geneva, Switzerland, 2003.

[22] Boutilier, C., and D. Poole, Computing optimal policies for partially observable
decision processes using compact representations, in Proceedings of the 13th
National Conference on Artificial Intelligence (AAAI ’96), vol. 2, pp. 1168–
1175, Portland, Oregon, USA, 1996.

[23] Boyce, S., and A. Gorin, User interface issues for natural spoken dialog systems,
in Proceedings of the International Symposium on Spoken Dialogue (ISSD), pp.
65–68, Philadelphia, USA, 1996.

[24] Brooks, A., A. Makarenkoa, S. Williamsa, and H. Durrant-Whytea, Parametric
POMDPs for planning in continuous state spaces, Robotics and Autonomous
Systems, 54 (11), 887–897, 2006.

[25] Bui, T. D., D. Heylen, M. Poel, and A. Nijholt, ParleE: An adaptive plan
based event appraisal model of emotions, in KI 2002: Advances in Artificial
Intelligence, 25th Annual German Conference on AI, KI 2002 Aachen, Ger-
many, September 16-20, 2002 Proceedings, Lecture Notes in Computer Science,
vol. 2479/2002, edited by M. Jarke, J. Koehler, and G. Lakemeyer, pp. 1–9,
Springer Berlin/Heidelberg, 2002.

[26] Bui, T. H., Multimodal dialogue management - State of the art, Tech. rep.,
University of Twente, 2006.

[27] Bui, T. H., and M. Rajman, Rapid dialogue prototyping methodology, Tech.
Rep. IC/2004/01, Ecole Polytechnique Federale de Lausanne, 2004.

[28] Bui, T. H., M. Rajman, and M. Melichar, Rapid dialogue prototyping method-
ology, in Text, Speech and Dialogue: 7th International Conference, TSD 2004,
Brno, Czech Republic, September 8-11, 2004, Proceedings, Lecture Notes in
Computer Science, vol. 3206/2004, edited by P. Sojka, I. Kopecek, and K. Pala,
pp. 579–586, Springer Berlin/Heidelberg, 2004.

[29] Bui, T. H., M. Rajman, and S. Quarteroni, Extending the rapid dialogue pro-
totyping methodology: User modeling, Tech. Rep. WP4 Deliverable 4.3, Ecole
Polytechnique Federale de Lausanne, 2004.

[30] Bui, T. H., J. Zwiers, A. Nijholt, and M. Poel, Generic dialogue modeling
for multi-application dialogue systems, in Machine Learning for Multimodal
Interaction: Second International Workshop, MLMI 2005, Edinburgh, UK,
July 11-13, 2005, Revised Selected Papers, Lecture Notes in Computer Sci-
ence, vol. 3869/2006, edited by S. Renals and S. Bengio, pp. 174–186, Springer
Berlin/Heidelberg, 2006.

148 BIBLIOGRAPHY

[31] Bui, T. H., J. Zwiers, M. Poel, and A. Nijholt, Toward affective dialogue mod-
eling using partially observable Markov decision processes, in Proceedings of
Workshop Emotion and Computing, 29th Annual German Conference on Arti-
ficial Intelligence, edited by D. Reichardt, P. Levi, and J.-J. Meyer, pp. 47–50,
Bremen, Germany, 2006.

[32] Bui, T. H., M. Poel, A. Nijholt, and J. Zwiers, A tractable DDN-POMDP
approach to affective dialogue modeling for general probabilistic frame-based
dialogue systems, in Proceedings of the 5th IJCAI Workshop on Knowledge and
Reasoning in Practical Dialogue Systems (KRPD ’07), edited by D. Traum,
J. Alexandersson, A. Jonsson, and I. Zukerman, pp. 34–37, Hyderabad, India,
2007.

[33] Bui, T. H., B. van Schooten, and D. Hofs, Practical dialogue manager develop-
ment using POMDPs, in Proceedings of the 8th SIGdial Workshop on Discourse
and Dialogue (SIGdial ’07), edited by S. Keizer, H. Bunt, and T. Paek, pp.
215–218, Antwerp, Belgium, 2007.

[34] Bui, T. H., M. Poel, A. Nijholt, and J. Zwiers, A tractable hybrid DDN-POMDP
approach to affective dialogue modeling for probabilistic frame-based dialogue
systems, Natural Language Engineering, 2008 (accepted for publication).

[35] Bunt, H. C., Context and dialogue control, THINK Quarterly, 3, 19–31, 1994.

[36] Cahn, J. E., and S. E. Brennan, A psychological model of grounding and repair
in dialog, in Working Papers of the AAAI Fall Symposium on Psychological
Models of Communication in Collaborative Systems, edited by S. E. Brennan,
A. Giboin, and D. Traum, pp. 25–33, AAAI Press, Sea Cliff, Massachusetts,
USA, 1999.

[37] Carletta, J., A. Isard, S. Isard, J. Knowtko, G. Doherty-Seddon, and A. Ander-
son, HCRC dialogue structure coding manual, Tech. rep., University of Edin-
burgh, 1996.

[38] Carofiglio, V., F. de Rosis, and R. Grassano, Dynamic models of mixed emotion
activation, in Animating expressive characters for social interactions, edited by
D. Canamero and R. Aylett, 2003.

[39] Cassandra, A. R., Exact and approximate algorithms for partially observable
markov decision processes, Ph.D. thesis, Brown University, 1998.

[40] Cassandra, A. R., L. P. Kaelbling, and M. L. Littman, Acting optimally in
partially observable stochastic domains, in Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI ’94), vol. 2, pp. 1023–1028, AAAI
Press, Seattle, Washington, USA, 1994.

[41] Cassandra, A. R., M. L. Littman, and N. L. Zhang, Incremental pruning: A
simple, fast, exact method for partially observable markov decision processes,

BIBLIOGRAPHY 149

in Proceedings of the 13th Annual Conference on Uncertainty in Artificial In-
telligence (UAI ’97), edited by D. Geiger and P. Shenoy, pp. 54–61, Morgan
Kaufmann, San Francisco, CA, 1997.

[42] Cassell, J., T. W. Bickmore, M. Billinghurst, L. Campbell, K. Chang, H. H.
Vilhjálmsson, and H. Yan, Embodiment in conversational interfaces: Rea, in
Proceedings of the SIGCHI conference on Human factors in computing systems:
the CHI is the limit (CHI-99), pp. 520–527, ACM, Pittsburgh, Pennsylvania,
US, 1999.

[43] Cenek, P., M. Melichar, and M. Rajman, A framework for rapid multimodal
application design, in Text, Speech and Dialogue: 8th International Conference,
TSD 2005, Karlovy Vary, Czech Republic, September 12-15, 2005. Proceed-
ings, Lecture Notes in Computer Science, vol. 3658/2005, pp. 393–403, Springer
Berlin/Heidelberg, 2005.

[44] Cheng, H.-T., Algorithms for partially observable Markov decision processes,
Ph.D. thesis, University of British Columbia, 1988.

[45] Chu-Carroll, J., Form-based reasoning for mixed-initiative dialogue manage-
ment in information-query systems, in Proceedings of the 6th European Confer-
ence on Speech Communication and Technology (EURSPEECH 99), pp. 1519–
1522, Budapest, Hungary, 1999.

[46] Chu-Carroll, J., and B. Carpenter, Vector-based natural language call routing,
Computational Linguistics, 25 (3), 361–388, 1999.

[47] Clark, H. H., and E. F. Schaefer, Contributing to discourse, Cognitive Science,
13, 259–294, 1989.

[48] Cohen, P. R., M. Johnston, D. McGee, S. Oviatt, J. Pittman, I. Smith,
L. Chen, and J. Clow, QuickSet: Multimodal interaction for distributed appli-
cations, in Proceedings of the 5th ACM International Conference on Multimedia
(MULTIMEDIA-97), pp. 31–40, ACM, Seattle, Washington, US, 1997.

[49] Colby, K. M., S. Weber, and F. D. Hilf, Artificial paranoia, Artificial Intelli-
gence, 2, 1–25, 1971.

[50] Conati, C., Probabilistic assessment of user’s emotions in educational games,
Applied Artificial Intelligence, 16 (7-8), 555–575, 2002.

[51] Cooper, R., S. Larsson, C. Matheson, M. Poesio, and D. R. Traum, Coding
instructional dialogue for information states, Tech. rep., G oteborg University,
1999.

[52] Cutting, D. R., D. R. Karger, J. O. Pedersen, and J. W. Tukey, Scatter/gather:
a cluster-based approach to browsing large document collections, in Proceedings
of the 15th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval (SIGIR-92), edited by N. Belkin, P. Ingwersen,
and A. M. Pejtersen, pp. 318–329, ACM, Copenhagen, Denmark, 1992.

150 BIBLIOGRAPHY

[53] Dahlbäck, N., Towards a dialogue taxonomy, in Dialogue Processing in Spoken
Language Systems: ECAI’96 Workshop Budapest, Hungary, August 13, 1996
Revised Papers, Lecture Notes in Computer Science, vol. 1236/1997, edited by
E. Maier, M. Mast, and S. LuperFoy, pp. 29–40, Springer Berlin/Heidelberg,
1997.

[54] Dahlbäck, N., A. Jönsson, and L. Ahrenberg, Wizard of Oz studies - why and
how, Knowledge Based Systems, 6 (4), 258–266, 1993.

[55] Daly-Jones, O., N. Bevan, and C. Thomas, Wizard-of-Oz prototyping, in
Handbook of User-Centred Design, http://www.ejeisa.com/nectar/inuse/6.2/3-
3.htm, 1999.

[56] de Rosis, F., N. Novielli, V. Carofiglio, A. Cavalluzzi, and B. D. Carolis, User
modeling and adaptation in health promotion dialogs with an animated char-
acter, Journal of Biomedical Informatics, 39 (5), 514–531, 2006.

[57] D’Mello, S., R. W. Picard, and A. Graesser, Toward an affect-sensitive autotu-
tor, IEEE Intelligent Systems, 22 (4), 53–61, 2007.

[58] Eckert, W., E. Levin, and R. Pieraccini, User modelling for spoken dialogue
system evaluation, in Prococeedings of the IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU-97), pp. 80–87, IEEE, Santa Barbara,
California, 1997.

[59] El-Nasr, M. S., J. Yen, and T. R. Ioerger, Flame - fuzzy logic adaptive model of
emotions, Autonomous Agents and Multi-Agent Systems, 3 (3), 219–257, 2000.

[60] Elliott, C., J. Rickel, and J. C. Lester, Lifelike pedagogical agents and af-
fective computing: An exploratory synthesis, in Artificial Intelligence Today:
Recent Trends and Developments, Lecture Notes in Computer Science, vol.
1600/1999, edited by M. J. Wooldridge and M. Veloso, pp. 195–211, Springer
Berlin/Heidelberg, 1999.

[61] Elliott, C. D., The affective reasoner: A process model of emotions in a multi-
agent system, Ph.D. thesis, Northwestern University, 1992.

[62] Feng, Z., and S. Zilberstein, Region-based incremental pruning for pomdps,
in Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence
(UAI ’04), edited by M. Chickering and J. Halpern, pp. 146–153, AUAI Press,
Banff, Canada, 2004.

[63] Feng, Z., and S. Zilberstein, Efficient maximization in solving pomdps, in Pro-
ceedings of the 20th National Conference on Artificial Intelligence (AAAI ’05),
edited by M. M. Veloso and S. Kambhampati, pp. 975–980, AAAI Press, Pitts-
burgh, Pennsylvania, USA, 2005.

[64] Ferguson, G., and J. F. Allen, TRIPs: an integrated intelligent problem-solving
assistant, in Proceedings of the 15th National Conference on Artificial intelli-
gence (AAAI ’98), pp. 567–572, AAAI Press, Menlo Park, CA, USA, 1998.

BIBLIOGRAPHY 151

[65] Fernandez, R., and R. W. Picard, Modeling drivers’ speech under stress, Speech
Commununication, 40 (1-2), 145–159, 2003.

[66] Fitrianie, S., et al., A multimodal human-computer interaction framework for
research into crisis management, in Proceedings of the fourth international con-
ference on information systems for crisis management (ISCRAM ’07), pp. 149–
158, Academic and Scientific Publishers NV, 2007.

[67] Flycht-Eriksson, A., A survey of knowledge source in dialogue systems, in Pro-
ceedings of 1st IJCAI Workshop on Knowledge and Reasoning in Practical Di-
alogue Systems (KRPD ’99), Stockholm, Sweden, 1999.

[68] Forler, E., Intelligent user interface for specialized web sites, Master’s thesis,
Ecole Polytechnique Federale de Lausanne, 2000.

[69] Foster, M. E., State of the art review: Multimodal fission, Tech. rep., University
of Edinburgh, 2002.

[70] Fraser, N. M., and G. N. Gilbert, Simulating Speech Systems, Computer Speech
and Language, 3-5, 1991.

[71] Galibert, O., G. Illouz, and S. Rosset, Ritel: an open-domain, human-computer
dialog system, in Proceedings of the 8th Annual Conference of the International
Speech Communication Association (INTERSPEECH ’05), pp. 909–912, Lis-
bon, Portugal, 2005.

[72] Geutner, P., F. Steffens, and D. Manstetten, Design of the VICO spoken di-
alogue system: Evaluation of user expectations by wizard-of-oz experiments,
in Proceedings of the 3rd International Conference on Language Resources and
Evaluation (LREC ’02), Las Palmas, Spain, 2002.

[73] Goddeau, D., H. Meng, J. Polifroni, S. Seneff, and S. Busayapongchaiy, A
form-based dialogue manager for spoken language applications, in Proceedings
of the 4th International Conference on Spoken Language Processing (ICSLP
’96), vol. 2, pp. 701–704, Philadelphia, PA, 1996.

[74] Gratch, J., and S. Marsella, A domain-independent framework for modeling
emotion, Cognitive Systems Research, 5-4, 269–306, 2004.

[75] Hansen, B., D. G. Novick, and S. Sutton, Systematic design of spoken prompts,
in Proceedings of the SIGCHI conference on Human factors in computing sys-
tems: common ground (CHI 96), edited by M. J. Tauber, pp. 157–164, ACM,
Vancouver, Canada, 1996.

[76] Hauskrecht, M., Value-function approximations for partially observable Markov
decision processes, Journal of Artificial Intelligence Research (JAIR), 13, 33–94,
2000.

[77] Heylen, D., A. Nijholt, and R. op den Akker, Affect in tutoring dialogues,
Applied Artificial Intelligence, 19, 287–311, 2005.

152 BIBLIOGRAPHY

[78] Hoey, J., A. von Bertoldi, P. Poupart, and A. Mihailidis, Assisting persons
with dementia during handwashing using a partially observable markov decision
process, in Proceedings of the 5th International Conference on Vision Systems
(ICVS ’07), Bielefeld, Germany, 2007.

[79] Hofs, D., R. op den Akker, and A. Nijholt, A generic architecture and dia-
logue model for multimodal interaction, in Proceedings of the 1st Nordic Sym-
posium on Multimodal Communication, edited by P. Paggio, K. Jokinen, and
A. Jönsson, pp. 79–92, Copenhagen, Denmark, 2003.

[80] Holzapfel, H., C. Fuegen, M. Denecke, and A. Waibel, Integrating emotional
cues into a framework for dialogue management, in Proceedings of the 4th IEEE
International Conference on Multimodal Interfaces (ICMI ’02), pp. 141–146,
Pittsburgh, Pennsylvania, USA, 2002.

[81] Howard, R. A., Dynamic Programming and Markov Process, The MIT Press,
1960.

[82] Huber, R., A. Batliner, J. Buckow, E. Nöth, V. Warnke, and H. Niemann,
Recognition of emotion in a realistic dialogue scenario, in Proceedings of the 6th
International Conference on Spoken Language Processing (ICSLP 2000), vol. 1,
pp. 665–668, Beijing, China, 2000.

[83] Hulstijn, J., R. Steetskamp, H. ter Doest, S. van de Burgt, and A. Nijholt, Topics
in SCHISMA dialogues, in Proceedings of the Twente Workshop on Language
Technology 11 (TWLT 11), edited by S. LuperFoy, A. Nijholt, and G. V. van
Zanten, pp. 89–99, Enschede, The Netherlands, 1996.

[84] Jain, A., M. Murty, and P. Flynn, Data clustering: a review, ACM Computing
Surveys, 31 (3), 264–323, 1999.

[85] Johnson, S. C., Hierarchical clustering schemes, Psychometrika, 32 (3), 241–254,
1967.

[86] Johnston, M., Unification-based multimodal parsing, in Proceedings of the 36th
annual meeting on Association for Computational Linguistics (ACL 98), vol. 1,
pp. 624–630, ACL, Montreal, Quebec, Canada, 1998.

[87] Johnston, M., S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen, M. A. Walker,
S. Whittaker, and P. Maloor, MATCH: An architecture for multimodal dialogue
systems, in Proceedings of the 40th Annual Meeting on Association for Compu-
tational Linguistics (ACL-02), pp. 376–383, ACL, Philadelphia, Pennsylvania,
USA, 2002.

[88] Jurafsky, D., and J. Martin, Speech and Language Processing: An Introduction
to Natural Language Processing, Prentice Hall, Englewood Cliffs, NJ, 2000.

[89] Kaelbling, L. P., M. L. Littman, and A. R. Cassandra, Planning and acting
in partially observable stochastic domains, Artificial Intelligence, 101 (1-2), 99–
134, 1998.

BIBLIOGRAPHY 153

[90] Kanazawa, K., and T. Dean, A model for projection and action, in Proceedings
of the 11th International Joint Conferences on Artificial Intelligence (IJCAI
’89), vol. 2, pp. 985–990, Morgan Kaufmann, Detroit, MI, USA, 1989.

[91] Katsionis, G., and M. Virvou, A cognitive theory for affective user modelling in a
virtual reality educational game, in Proceedings of the 2004 IEEE International
Conference on Systems, Man and Cybernetics (SMC ’04), vol. 2, pp. 1209–1213,
IEEE, The Hague, The Netherlands, 2004.

[92] Kim, D., H. S. Sim, K.-E. Kim, J. H. Kim, H. Kim, and J. W. Sung, Effects of
user modeling on POMDP-based dialogue systems, in Proceedings of INTER-
SPEECH ’08, Brisbane, Australia, 2008 (to appear).

[93] Kort, B., R. Reilly, and R. W. Picard, An affective model of interplay between
emotions and learning: Reengineering educational pedagogy-building a learn-
ing companion, in Proceedings of the 2nd IEEE International Conference on
Advanced Learning Technologies (ICALT 2001), pp. 43–46, IEEE Computer
Society, Madison, WI, USA, 2001.

[94] Larsson, S., Issued-based dialogue management, Ph.D. thesis, Göteborg Uni-
versity, Sweden, 2002.

[95] Larsson, S., and D. R. Traum, Information state and dialogue management
in the TRINDI dialogue move engine toolkit, Natural Language Engineering,
6 (3-4), 323–340, 2000.

[96] Lee, C. M., and S. S. Narayanan, Toward detecting emotions in spoken dialogs,
IEEE Transactions on Speech and Audio Processing, 13-2, 293–303, 2005.

[97] Levelt, W. J., Speaking: From Intention to Articulation, The MIT Press, 1989.

[98] Levin, E., R. Pieraccini, and W. Eckert, A stochastic model of human-machine
interaction for learning dialogue strategies, IEEE Transactions on Speech and
Audio Processing, 8(1), 11–23, 2000.

[99] Levinson, S. C., Pragmatics, Cambridge University Press, 1983.

[100] Li, X., and Q. Ji, Active affective state detection and user assistance with
dynamic bayesian networks, IEEE Transactions on Systems, Man and Cyber-
netics, Part A, 35 (1), 93–105, 2005.

[101] Liao, W., W. Zhang, Z. Zhu, Q. Ji, and W. D. Gray, Toward a decision-theoretic
framework for affect recognition and user assistance, International Journal of
Man-Machine Studies, 64 (9), 847–873, 2006.

[102] Lisowska, A., M. Rajman, and T. H. Bui, Archivus: A system for accessing the
content of recorded multimodal meetings, in Machine Learning for Multimodal
Interaction, First International Workshop,MLMI 2004, Martigny, Switzerland,
June 21-23, 2004, Revised Selected Papers, vol. 3361, edited by S. Bengio and
H. Bourlard, pp. 291 – 304, Springer, 2004.

154 BIBLIOGRAPHY

[103] Littman, M. L., A. R. Cassandra, and L. P. Kaelbling, Learning policies for
partially observable environments: Scaling up, in Proceedings of the 12th In-
ternational Conference on Machine Learning (ICML-95), edited by A. Prieditis
and S. J. Russell, pp. 362–370, Morgan Kaufmann, Tahoe City, California, USA,
1995.

[104] Martinho, C., I. Machado, and A. Paiva, A cognitive approach to affective
user modeling, in Affective Interactions: Towards a New Generation of Com-
puter Interfaces, Lecture Notes in Computer Science, vol. 1814/2000, edited by
A. Paiva, pp. 64–75, Springer Berlin/Heidelberg, 2000.

[105] Martinovsky, B., and D. R. Traum, The error is the clue: Breakdown in human-
machine interaction, in Proceedings of the ISCA Tutorial and Research Work-
shop on Error handling in Spoken Dialogue Systems (EHSD ’03), pp. 11–16,
Château d’Oex, Vaud, Switzerland, 2003.

[106] McTear, M., Modelling spoken dialogues with state transition diagrams: experi-
ences with the CSLU toolkit, in Proceedings of the 5th International Conference
on Spoken Language Processing (ICSLP-98), pp. 1223–1226, Sydney, Australia,
1998.

[107] McTear, M., Spoken dialogue technology: Enabling the conversational user in-
terface, ACM Computing Survey, Volume 34, No 1, 2002.

[108] McTear, M. F., Spoken dialogue technology: toward the conversational user
interface, Springer Verlag, 2004.

[109] Melichar, M., Design of multimodal dialogue-based systems, Ph.D. thesis, Ecole
Polytechnique Federale de Lausanne, 2008.

[110] Melichar, M., and P. Cenek, From vocal to multimodal dialogue management, in
Proceedings of the 8th international conference on Multimodal interfaces (ICMI
’06), pp. 59–67, ACM, Banff, Alberta, Canada, 2006.

[111] Minsky, M., A framework for representing knowledge, Tech. rep., Massachusetts
Institute of Technology (MIT), Cambridge, MA, USA, 1974.

[112] Monahan, G. E., A survey of partially observable markov decision processes:
Theory, models, and algorithms, Management Science, 28-1, 1–16, 1982.

[113] Murphy, K. P., A survey of POMDP solution techniques, Tech. rep., University
of California, Berkeley, USA, 2000.

[114] Nasoz, F., and C. L. Lisetti, Affective user modeling for adaptive intelligent
user interfaces, in Human-Computer Interaction. HCI Intelligent Multimodal
Interaction Environments: 12th International Conference, HCI International
2007, Beijing, China, July 22-27, 2007, Proceedings, Part III, Lecture Notes in
Computer Science, vol. 4552/2007, edited by J. A. Jacko, pp. 421–430, Springer
Berlin/Heidelberg, 2007.

BIBLIOGRAPHY 155

[115] Nijholt, A., D. Reidsma, H. van Welbergen, H. op den Akker, and Z. Rut-
tkay, Mutually coordinated anticipatory multimodal interaction, in Nonverbal
Features of Human-Human and Human-Machine Interaction, Lecture Notes in
Computer Science, pp. 73–93, Springer Verlag, Berlin, 2008.

[116] Ortony, A., G. L. Clore, and A. Collins, The Cognitive Structure of Emotions,
Cambridge University Press, 1988.

[117] Oviatt, S., Multimodal interfaces, in The Human-Computer Interaction Hand-
book: Fundamentals, Evolving Technologies and Emerging Applications, edited
by J. A. Jacko and A. Sears, pp. 286–304, Lawrence Erlbaum Assoc., Mahwah,
NJ, 2003.

[118] Paek, T., and E. Horvitz, Conversation as action under uncertainty, in Proceed-
ings of the 16th Conference on Uncertainty in Artificial Intelligence (UAI ’00),
pp. 455–464, Morgan Kaufmann, San Francisco, CA, USA, 2000.

[119] Paek, T., and E. Horvitz, Grounding criterion: Toward a formal theory of
grounding, Tech. Rep. MSR-TR-2000-40, Microsoft Research, 2000.

[120] Parr, R., and S. J. Russell, Approximating optimal policies for partially observ-
able stochastic domains, in Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence (IJCAI ’95), vol. 2, pp. 1088–1095, Morgan
Kaufmann, Montréal, Québec, Canada, 1995.

[121] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Francisco, CA, USA, 1988.

[122] Pelachaud, C., V. Carofiglio, B. D. Carolis, F. de Rosis, and I. Poggi, Embodied
contextual agent in information delivering application, in Proceedings of the 1st
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’02), vol. 2, pp. 758–765, ACM, Bologna, Italy, 2002.

[123] Picard, R. W., Affective Computing, The MIT Press, 1997.

[124] Picard, R. W., E. Vyzas, and J. Healey, Toward machine emotional intelligence:
Analysis of affective physiological state, IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 23 (10), 1175–1191, 2001.

[125] Pieraccini, R., and J. Huerta, Where do we go from here? research and com-
mercial spoken dialog systems, in Proceedings of the 6th SIGdial Workshop on
Discourse and Dialogue (SIGdial ’05), edited by L. Dybkjær and W. Minker,
pp. 1–10, Lisbon, Portugal, 2005.

[126] Pietquin, O., A framework for unsupervised learning of dialogue strategies,
Ph.D. thesis, Universitaires de Louvain, 2004.

[127] Pineau, J., N. Roy, and S. Thrun, A hierarchical approach to pomdp plan-
ning and execution, in Workshop on Hierarchy and Memory in Reinforcement
Learning (ICML), 2001.

156 BIBLIOGRAPHY

[128] Pineau, J., G. Gordon, and S. Thrun, Point-based value iteration: An anytime
algorithm for pomdps, in Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI ’03), edited by G. Gottlob and T. Walsh, pp.
1025–1032, Morgan Kaufmann, Acapulco, Mexico, 2003.

[129] Pittermann, J., A. Pittermann, H. Meng, and W. Minker, Towards an emotion-
sensitive spoken dialogue system - classification and dialogue modeling, in Pro-
ceedings of the 3rd IET International Conference on Intelligent Environments
(IE ’07), pp. 239–246, Ulm, Germany, 2007.

[130] Polzin, T., and A. Waibel, Emotion-sensitive human-computer interfaces, in
Proceedings of the ISCA Tutorial and Research Workshop (ITRW) on Speech
and Emotion (SpeechEmotion ’00), pp. 201–206, Newcastle, Northern Ireland,
UK, 2000.

[131] Puterman, M. L., Markov decision processes, in Handbook in Operations Re-
search and Management Science, vol. 2, edited by D. Heyman and M. Sobel,
pp. 331–434, Elsevier, 1990.

[132] Quarteroni, S., M. Rajman, and M. Melichar, Introducing reset patterns: an ex-
tension to a rapid dialogue prototyping methodology, in Proceedings of the IEE
International Workshop on Intelligent Environments, pp. 276– 282, Colchester,
UK, 2005.

[133] Rajman, M., R. Besanồon, and J.-C. Chappelier, The dsir model: A distribu-
tional semantics based approach to information retrieval, Information Retrieval-
Oriented Natural Language Processing (TAL), 41 (2), 549–578, 2001.

[134] Rajman, M., A. Rajman, F. Seydoux, and A. Trutnev, Assessing the usability
of a dialogue management system designed in the framework of a rapid dialogue
prototyping methodology, in Proceedings of the 1st ISCA Tutorial and Research
Workshop on Auditory Quality of Systems (AQS-2003), pp. 126–133, Akademie
Mont-Cenis, Germany, 2003.

[135] Rajman, M., A. Rajman, F. Seydoux, and A. Trutnev, Prototypage rapide et
évaluation de modèles de dialogue finalisés, TALN, Traitement Automatique des
Langues Naturelles, Batz-sur-Mer, 2003.

[136] Rajman, M., T. H. Bui, A. Rajman, F. Seydoux, A. Trutnev, and S. Quarteroni,
Assessing the usability of a dialogue management system designed in the frame-
work of a rapid dialogue prototyping methodology, Acta Acustica united with
Acustica, the Journal of the European Acoustics Association (EAA): Interna-
tional Journal on Acoustics, 90 (6), 1096–1111, 2004.

[137] Rani, P., C. Liu, N. Sarkar, and E. Vanman, An empirical study of machine
learning techniques for affect recognition in human-robot interaction, Pattern
Analysis and Applications Journal, 9 (1), 58–69, 2006.

BIBLIOGRAPHY 157

[138] Reeves, B., and C. Nass, The media equation: how people treat computers,
television, and new media like real people and places, Cambridge University
Press, 1996.

[139] Reilly, W. S. N., Believable social and emotional agents, Ph.D. thesis, Carnegie
Mellon University, 1996.

[140] Rousseau, D., Personality in computer characters, in Proceedings of the AAAI
Workshop on Entertainment and AI/A-Life, pp. 38–43, AAAI Press, Portland,
Oregon, USA, 1996.

[141] Roy, N., and S. Thrun, Coastal navigation with mobile robots, in Advances
in Neural Information Processing Systems 12, [NIPS Conference, Denver, Col-
orado, USA, November 29 - December 4, 1999], edited by S. A. Solla, T. K.
Leen, and K.-R. Müller, pp. 1043–1049, The MIT Press, Denver, Colorado,
USA, 2000.

[142] Roy, N., J. Pineau, and S. Thrun, Spoken dialogue management using proba-
bilistic reasoning, in Proceedings of the 38th Annual Meeting of the Association
for Computational Linguistics (ACL-00), pp. 93 – 100, ACL, Hong Kong, China,
2000.

[143] Rudnicky, A., and X. Wei, An agenda-based dialog management architecture for
spoken language systems, in Proceedings of IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU-99), 1999.

[144] Russell, J. A., A circumplex model of affect, Journal of Personality and Social
Psychology, 39-6, 1161–1178, 1980.

[145] Russell, S., and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.,
630 pp., Prentice Hall, 2003.

[146] Sacks, H., E. A. Schegloff, and G. Jefferson, A simplest systematics for the
organization of turn-taking for conversation, Language, 50 (4), 696–735, 1974.

[147] Schatzmann, J., K. Weilhammer, M. Stuttle, and S. Young, A survey of statis-
tical user simulation techniques for reinforcement-learning of dialogue manage-
ment strategies, Knowledge Engineering Review, 21(2), 97–126, 2006.

[148] Schatzmann, J., B. Thomson, K. Weilhammer, H. Ye, and S. Young, Agenda-
based user simulation for bootstrapping a POMDP dialogue system, in Human
Language Technologies 2007: The Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL-HLT ’07), pp. 149–152,
ACL, Rochester, New York, 2007.

[149] Scheffler, K., and S. J. Young, Automatic learning of dialogue strategy using
dialogue simulation and reinforcement learning, in Proceedings of the 2nd In-
ternational Conference on Human Language Technology Research (HLT 2002),
edited by M. Marcus, pp. 12–18, Morgan Kaufmann, 2002.

158 BIBLIOGRAPHY

[150] Searle, J. R., Speech Acts: An Essay in the Philosophy of Language, 216 pp.,
Cambridge University Press, 1969.

[151] Sebe, N., M. S. Lew, Y. Sun, I. Cohen, T. Gevers, and T. S. Huang, Authentic
facial expression analysis, Image and Vision Computing, 25 (12), 1856–1863,
2007.

[152] Seneff, S., R. Lau, and J. Polifroni, Organization, communication, and control
in the GALAXY-II conversational system, in Proceedings of the 6th European
Conference on Speech Communication and Technology (EUROSPEECH 99),
pp. 1271–1274, Budapest, Hungary, 1999.

[153] Shani, G., R. I. Brafman, and S. E. Shimony, Forward search value iteration for
pomdps, in Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI ’07), edited by M. M. Veloso, pp. 2619–2624, Hyderabad,
India, 2007.

[154] Sharma, R., M. Yeasin, N. Krahnstoever, I. Rauschert, G. Cai, I. Brewer,
A. MacEachren, and K. Sengupta, Speech-gesture driven multimodal interfaces
for crisis management, Proceedings of the IEEE, 91 (9), 28, 2003.

[155] Smallwood, R. D., and E. J. Sondik, The optimal control of partially observable
Markov processes over a finite horizon, Operations Research, 21-5, 1071–1088,
1973.

[156] Smith, T., and R. G. Simmons, Heuristic search value iteration for POMDPs,
in Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence
(UAI-04), edited by D. M. Chickering and J. Y. Halpern, pp. 520–527, AUAI
Press, Banff, Canada, 2004.

[157] Smith, T., and R. G. Simmons, Point-based POMDP algorithms: Improved
analysis and implementation, in Proceedings of the 21st Conference in Uncer-
tainty in Artificial Intelligence (UAI ’05), pp. 542–547, AUAI Press, Edinburgh,
Scotland, 2005.

[158] Sondik, E. J., The optimal control of partially observable markov decision pro-
cesses, Ph.D. thesis, Stanford University, 1971.

[159] Song, D., Combining speech user interfaces of different applications, Ph.D. the-
sis, University of Munich, 2006.

[160] Spaan, M. T. J., and N. Vlassis, Perseus: randomized point-based value iteration
for POMDPs, Tech. rep., Universiteit van Amsterdam, 2004.

[161] Spaan, M. T. J., and N. Vlassis, Perseus: Randomized point-based value it-
eration for POMDPs, Journal of Artificial Intelligence Research (JAIR), 24,
195–220, 2005.

[162] Stalnaker, R. C., Assertion, Pragmatics: Syntax and Semantics, 9, 315–332,
1978.

BIBLIOGRAPHY 159

[163] Sutton, R. S., and A. G. Barto, Reinforcement Learning: An Introduction, 322
pp., The MIT Press, 1998.

[164] Thrun, S., W. Burgard, and D. Fox, Probabilistic Robotics, 667 pp., The MIT
Press, 2005.

[165] Traum, D., and S. Larsson, The information state approach to dialogue man-
agement, in Current and New Directions in Discourse and Dialogue, edited by
J. van Kuppevelt and R. W. Smith, chap. 15, pp. 325–353, Kluwer Academic
Publishers, 2003.

[166] Traum, D. R., A computational theory of grounding in natural language con-
versation, Ph.D. thesis, University of Rochester, 1994.

[167] Traum, D. R., and E. A. Hinkelman, Conversation acts in task-oriented spoken
dialogue, Tech. Rep. TR425, University of Rochester, 1992.

[168] Traum, D. R., and J. Rickel, Embodied agents for multi-party dialogue in im-
mersive virtual worlds, in Proceedings of the 1st International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2002), pp. 766–773,
ACM, Bologna, Italy, 2002.

[169] Velásquez, J. D., Modeling emotions and other motivations in synthetic agents,
in Proceedings of the 14th National Conference on Artificial Intelligence (AAAI
’97), p. 10Ê15, AAAI Press, Providence, Rhode Island, USA, 1997.

[170] Virin, Y., G. Shani, S. E. Shimony, and R. Brafman, Scaling up: Solving
POMDPs through value based clustering, in Proceedings of the 22nd of Na-
tional Conference on Artificial Intelligence (AAAI ’07), pp. 1290–1295, AAAI
Press, Vancouver, British Columbia, Canada, 2007.

[171] Vo, M. T., and C. Wood, Building an application framework for speech and pen
input integration in multimodal learning interfaces, in Proceedings of the 1996
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP-96), pp. 3545–3548, IEEE Computer Society, Atlanta, Georgia, USA,
1996.

[172] Vrugt, J., and T. Portele, Application-Independent Knowledge-Processing in a
Task-Oriented Speech-Dialog-System, it – Information Technology, 46 (6), 306–
314, 2004.

[173] Wahlster, W., N. Reithinger, and A. Blocher, SmartKom: Multimodal commu-
nication with a life-like character, in Proceedings of the 7th European Conference
on Speech Communication and Technology (EUROSPEECH 2001), vol. 3, pp.
1547–1550, Aalborg, Denmark, 2001.

[174] Williams, J., and S. Young, Scaling up POMDPs for dialogue management: the
summary POMDP method., in Proceedings of the IEEE workshop on Automatic
Speech Recognition and Understanding (ASRU ’05), pp. 250–255, Cancún, Mex-
ico, 2005.

160 BIBLIOGRAPHY

[175] Williams, J. D., Partially observable Markov decision processes for dialog man-
agement, Ph.D. thesis, Cambridge University, 2006.

[176] Williams, J. D., and S. Young, Scaling POMDPs for dialog management with
composite summary point-based value iteration (CSPBVI), in Proceedings of the
AAAI Workshop on Statistical and Empirical Approaches for Spoken Dialogue
Systems, pp. 37–42, The AAAI Press, Boston, MA, USA, 2006.

[177] Williams, J. D., and S. Young, Partially observable markov decision processes
for spoken dialog systems, Computer Speech and Language, 21 (2), 393–422,
2007.

[178] Williams, J. D., P. Poupart, and S. Young, Partially observable Markov decision
processes with continuous observations for dialogue management, in Proceedings
of the 6th SigDial Workshop on Discourse and Dialogue (SIGdial ’05), 2005.

[179] Williams, J. D., P. Poupart, and S. Young, Factored partially observable Markov
decision processes for dialogue management, in Proceedings of the 4th Workshop
on Knowledge and Reasoning in Practical Dialog Systems (KRPD ’05), edited
by I. Zukerman, J. Alexandersson, and A. Jönsson, pp. 76–82, Edinburgh, Scot-
land, 2005.

[180] Wu, L., S. L. Oviatt, and P. R. Cohen, From members to teams to committee -
a robust approach to gestural and multimodal recognition, IEEE Transactions
on Neural Networks, 13 (4), 11, 2002.

[181] Yacoub, S., S. Simske, X. Lin, and J. Burns, Recognition of emotions in interac-
tive voice response systems, in Proceedings of the 8th European Conference on
Speech Communication and Technology (EUROSPEECH 2003), pp. 729–732,
Geneva, Switzerland, 2003.

[182] Young, S., Talking to machines (statistically speaking), in Proceedings of the
7th International Conference on Spoken Language Processing (ICSLP 2002),
pp. 9–16, Denver, Colorado, USA, 2002.

[183] Young, S., J. D. Williams, J. Schatzmann, M. Stuttle, and K. Weilhammer,
The hidden information state approach to dialogue management, Tech. Rep.
CUED/F-INFENG/TR.544, University of Cambridge, 2005.

[184] Young, S., J. Schatzmann, B. Thomson, K. Weilhammer, and H. Ye, The hid-
den information state dialogue manager: A real-world pomdp-based system, in
Proceedings of the NAACL HLT Demonstration Program (NAACL-HLT ’07),
pp. 27–28, ACL, Rochester, New York, USA, 2007.

[185] Young, S., J. Schatzmann, K. Weilhammer, and H. Ye, The hidden information
state approach to dialogue management, in Proceedings of the 2007 Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP ’07),
vol. 4, pp. 149–152, Honolulu, Hawaii, USA, 2007.

BIBLIOGRAPHY 161

[186] Zeng, Z., M. Pantic, G. I. Roisman, and T. S. Huang, A survey of affect recog-
nition methods: audio, visual and spontaneous expressions, in Proceedings of
the 9th International Conference on Multimodal interfaces (ICMI ’07), edited
by D. W. Massaro, K. Takeda, D. Roy, and A. Potamianos, pp. 126–133, ACM,
Nagoya, Aichi, Japan, 2007.

[187] Zhang, B., Q. Cai, J. Mao, and B. Guo, Spoken dialog management as planning
and acting under uncertainty, in Proceedings of the 7th European Conference on
Speech Communication and Technology (EUROSPEECH ’01), pp. 2169–2172,
Aalborg, Denmark, 2001.

[188] Zhang, N. L., Efficient planning in stochastic domains through exploiting prob-
lem characteristics, Tech. Rep. HKUST-CS95-40, Hong Kong University of Sci-
ence and Technology, 1995.

[189] Zhang, N. L., and W. Liu, Planning in stochastic domains: Problem character-
istics and approximation, Tech. Rep. HKUST-CS96-31, Hong Kong Univesity
of Science and Technology, 1996.

[190] Zhang, N. L., and W. Zhang, Speeding up the convergence of value iteration in
partially observable markov decision processes, Journal of Artificial Intelligence
Reseasrch (JAIR), 14, 29–51, 2001.

[191] Zhou, X., and C. Conati, Inferring user goals from personality and behavior in
a causal model of user affect, in Proceedings of the 8th international conference
on Intelligent user interfaces (IUI ’03), pp. 211–218, ACM, Miami, FL, USA,
2003.

162 BIBLIOGRAPHY

Abstract

Designing and developing affective dialogue systems have recently received much in-
terest from the dialogue research community. A distinctive feature of these systems is
affect modeling. Previous work was mainly focused on showing system’s emotions to
the user in order to achieve the designer’s goal such as helping the student to practice
nursing tasks or persuading the user to change their dietary behavior. A challeng-
ing problem is to infer the user’s affective state and to adapt the system’s behavior
accordingly. This thesis addresses this problem from an engineering perspective us-
ing Partially Observable Markov Decision Process (POMDP) techniques and a Rapid
Dialogue Prototyping Methodology (RDPM).

We argue that the POMDPs are suitable for use in designing affective dialogue
management models for three main reasons. First, the POMDP model allows for
realistic modeling of the user’s affective state, the user’s intention, and other (user’s)
hidden state components by incorporating them into the state space. Second, recent
dialogue management research has shown that the POMDP-based dialogue manager
is able to cope well with uncertainty that can occur at many levels inside a dialogue
system from speech recognition, natural language understanding to dialogue manage-
ment. Third, the POMDP environment can be used to create a simulated user which
is useful for learning and evaluation of competing dialogue strategies.

In the first part of this thesis, we first present the RDPM for a quick produc-
tion of frame-based dialogue models for traditional (i.e., non-affect sensitive) single-
application dialogue systems. The usability of the RDPM has been validated through
the implementation of several prototype dialogue systems. We then present a novel
approach to developing interfaces for multi-application systems which are dialogue
systems that allow the user to navigate between a large set of applications smoothly
and transparently. The work in this part provides an essential infrastructure for
implementing our prototype POMDP-based dialogue manager.

In the second part, we first describe a factored POMDP approach to affective
dialogue management. This approach illustrates that POMDPs are an elegant model
for building affective dialogue systems. Further, the POMDP-based dialogue strategy
outperforms all other known strategies from the literature when tested with small-
scale dialogue problems. However, a well-known drawback of POMDP-based dialogue
managers is that computing a near-optimal dialogue policy is extremely computation-
ally expensive. We then propose a tractable hybrid DDN-POMDP method to tackle
many of these scalability problems. The central contribution of our method (com-

163

164 BIBLIOGRAPHY

pared with other POMDP-based dialogue management methods from the literature)
is the ability to handle frame-based dialogue problems with hundreds of slots and
hundreds of slot values.

Keywords: dialogue modeling, dialogue management, dialogue systems, rapid proto-
typing, partially observable Markov decision processes, multimodal, multi-application,
multi-domain, affective computing.

Samenvatting

Het ontwerpen en ontwikkelen van affectieve dialoogsystemen heeft de afgelopen tijd
veel belangstelling genoten binnen het onderzoek naar dialogen. Een bijzonder ken-
merk van deze systemen is het modelleren van emoties. Het voorafgaande werk was
voornamelijk gericht op het weergeven van de emoties van het systeem naar de ge-
bruiker om het doel van de ontwerper te bereiken, zoals het helpen van een student
bij het oefenen van taken in de verpleging, of het helpen van de gebruiker zijn of
haar eetgedrag aan te passen ten behoeve van een dieet. Een uitdagend probleem is
het afleiden van de gemoedstoestand van de gebruiker en het gedrag van het systeem
daarop aan te sluiten. Dit proefschrift gaat op dit probleem in vanuit een praktisch
perspectief met behulp van de technieken Partially Observable Markov Decision Pro-
cess (POMDP) en Rapid Dialogue Prototyping Methodology (RDPM).

Wij tonen aan dat POMDP’s geschikt zijn om te gebruiken bij het ontwerpen van
affectieve modellen van dialoogmanagement en wel om drie redenen. Ten eerste maakt
het POMDP-model een realistische modellering mogelijk van de gemoedstoestand van
de gebruiker, de bedoeling van de gebruiker, en andere componenten van een verbor-
gen toestand (van de gebruiker), door ze in te bedden in de toestandsruimte. Ten
tweede heeft recent onderzoek naar dialoogmanagement aangetoond dat dialoogman-
agers gebaseerd op POMDP’s, goed kunnen omgaan met onzekerheden die kunnen
optreden op allerlei niveaus binnen een dialoogsysteem, van spraakherkenning, natu-
urlijke taalverwerking tot dialoogmanagement. Ten derde kan de POMDP-omgeving
worden gebruikt om een gesimuleerde gebruiker te maken, wat nuttig is voor het leren
en evalueren van alternatieve dialoogstrategieộn.

In het eerste deel van dit proefschrift zullen we eerst de RDPM voorstellen voor het
snel produceren van op frames gebaseerde dialoogmodellen voor traditionele (d.w.z.
niet-affectieve) dialoogsystemen voor ỗỗn toepassing. De bruikbaarheid van de RDPM
is gevalideerd door de implementatie van verschillende prototypen van dialoogsyste-
men. Daarna stellen we een nieuwe benadering voor om interfaces te ontwikkelen
voor systemen voor meerdere toepassingen. Dit zijn dialoogsystemen waarin de ge-
bruiker transparant en zonder merkbare overgangen kan navigeren binnen een grote
verzameling van toepassingen. Het werk in dit deel vormt een essentiộle infrastruc-
tuur voor het implementeren van ons prototype van een dialoogmanager gebaseerd
op POMDP’s.

In het tweede deel beschrijven we eerst een een benadering van gefactoreerde
POMDP’s voor affectief dialoogmanagement. Deze benadering illustreert dat POMDP’s

165

166 BIBLIOGRAPHY

een elegant model zijn voor het bouwen van affectieve dialoogsystemen. Bovendien
overtreft de prestatie van de POMDP-gebaseerde dialoogstrategie alle overige bekende
strategieộn uit de literatuur, zodra ze getest worden met kleinschalige dialoogproble-
men. Een bekende tekortkoming van POMDP-gebaseerde dialoogmanagers is echter
dat het berekenen van een bijna optimaal dialoogbeleid buitengewoon veel rekenkracht
vereist. We stellen dan een haalbare hybride methode van DDN-POMDP voor om
veel van deze schaalbaarheidsproblemen het hoofd te bieden. De voornaamste bij-
drage van onze methode (vergeleken met andere POMDP-gebaseerde methoden van
dialoogmanagement uit de literatuur) is de mogelijkheid op frames gebaseerde di-
aloogproblemen te verwerken met honderden slots en honderden slotwaarden.

Zoekwoorden: dialoogmodellering, dialoogmanagement, dialoogsystemen, rapid pro-
totyping, partially observable Markov decision processes, multimodaal, meerdere toepassin-
gen, meerdere domeinen, affectieve computers

Curriculum Vitae

Trung H. Bui (Vietnamese: Bùi Hữu Trung) was born on July 5, 1975, in, Vinh, a
city located in the north central coast of Vietnam. He attended the special school for
mathematically gifted pupils at the Vinh University and was selected two times as a
member of the university team to attend the National Mathematics Competitions in
1991 and 1992, respectively. In 1992, at the age of 17, he moved to Hanoi to study
computer science at the Hanoi University of Technology. In 1997, after graduating
with an engineer’s degree, he worked for several ICT companies as a software and
network engineer and finished a Master program in computer science at the Franco-
phone Institute for Informatics. In 2002, he went to work at the Artificial Intelligence
Laboratory, Swiss Federal Institute of Technology in Lausanne (EPFL), first as a re-
search intern and then as a research assistant. He also took a one-year pre-doctoral
program at the School of Computer and Communication Sciences, EPFL. In Novem-
ber 2004, he moved to Enschede to work for the Human Media Interaction (HMI)
group, University of Twente, as as a research assistant and a PhD student. The main
part of this thesis describes the results of his work carried out at the HMI group.

167

168 BIBLIOGRAPHY

SIKS Dissertation Series

Since 1998, all dissertations written by Ph.D. students who have conducted their
research under auspices of a senior research fellow of the SIKS research school are
published in the SIKS Dissertation Series. This thesis is the 196th in the series.

2008-32 Trung H. Bui (UT), Toward Affective
Dialogue Management Using Partially Observable
Markov Decision Processes

2008-31 Loes Braun (UM), Pro-Active Medical
Information Retrieval

2008-30 Wouter van Atteveldt (VU), Semantic
Network Analysis: Techniques for Extracting,
Representing and Querying Media Content

2008-29 Dennis Reidsma (UT), Annotations and
Subjective Machines – Of Annotators, Embodied
Agents, Users, and Other Humans

2008-28 Ildiko Flesch (RUN), On the Use of In-
dependence Relations in Bayesian Networks

2008-27 Hubert Vogten (OU), Design and Imple-
mentation Strategies for IMS Learning Design

2008-26 Marijn Huijbregts (UT), Segmentation,
Diarization and Speech Transcription: Surprise
Data Unraveled

2008-25 Geert Jonker (UU), Efficient and Equi-
table Exchange in Air Traffic Management Plan
Repair using Spender-signed Currency

2008-24 Zharko Aleksovski (VU), Using back-
ground knowledge in ontology matching

2008-23 Stefan Visscher (UU), Bayesian net-
work models for the management of ventilator-
associated pneumonia

2008-22 Henk Koning (UU), Communication of
IT-Architecture

2008-21 Krisztian Balog (UVA), People Search in
the Enterprise

2008-20 Rex Arendsen (UVA), Geen bericht, goed
bericht. Een onderzoek naar de effecten van de in-
troductie van elektronisch berichtenverkeer met de
overheid op de administratieve lasten van bedri-
jven.

2008-19 Henning Rode (UT), From Document to
Entity Retrieval: Improving Precision and Perfor-
mance of Focused Text Search

2008-18 Guido de Croon (UM), Adaptive Active
Vision

2008-17 Martin Op ’t Land (TUD), Applying Ar-
chitecture and Ontology to the Splitting and Ally-
ing of Enterprises

2008-16 Henriëtte van Vugt (VU), Embodied
agents from a user’s perspective

2008-15 Martijn van Otterlo (UT), The Logic
of Adaptive Behavior: Knowledge Representation
and Algorithms for the Markov Decision Process
Framework in First-Order Domains.
2008-14 Arthur van Bunningen (UT), Context-
Aware Querying; Better Answers with Less Effort
2008-13 Caterina Carraciolo (UVA), Topic
Driven Access to Scientific Handbooks
2008-12 József Farkas (RUN), A Semiotically
Oriented Cognitive Model of Knowledge Represen-
tation
2008-11 Vera Kartseva (VU), Designing Controls
for Network Organizations: A Value-Based Ap-
proach
2008-10 Wauter Bosma (UT), Discourse oriented
summarization
2008-09 Christof van Nimwegen (UU), The para-
dox of the guided user: assistance can be counter-
effective
2008-08 Janneke Bolt (UU), Bayesian Networks:
Aspects of Approximate Inference
2008-07 Peter van Rosmalen (OU), Supporting
the tutor in the design and support of adaptive e-
learning
2008-06 Arjen Hommersom (RUN), On the Ap-
plication of Formal Methods to Clinical Guide-
lines, an Artificial Intelligence Perspective
2008-05 Bela Mutschler (UT),Modeling and sim-
ulating causal dependencies on process-aware in-
formation systems from a cost perspective
2008-04 Ander de Keijzer (UT), Management of
Uncertain Data – towards unattended integration
2008-03 Vera Hollink (UVA), Optimizing hierar-
chical menus: a usage-based approach
2008-02 Alexei Sharpanskykh (VU), On
Computer-Aided Methods for Modeling and Anal-
ysis of Organizations
2008-01 Katalin Boer-Sorbán (EUR), Agent-
Based Simulation of Financial Markets: A mod-
ular, continuous-time approach
2007-25 Joost Schalken (VU), Empirical Investi-
gations in Software Process Improvement
2007-24 Georgina Ramírez Camps (CWI), Struc-
tural Features in XML Retrieval
2007-23 Peter Barna (TUE), Specification of Ap-
plication Logic in Web Information Systems

169

170 BIBLIOGRAPHY

2007-22 Zlatko Zlatev (UT), Goal-oriented de-
sign of value and process models from patterns
2007-21 Karianne Vermaas (UU), Fast diffusion
and broadening use: A research on residential
adoption and usage of broadband internet in the
Netherlands between 2001 and 2005
2007-20 Slinger Jansen (UU), Customer Config-
uration Updating in a Software Supply Network
2007-19 David Levy (UM), Intimate relation-
ships with artificial partners
2007-18 Bart Orriëns (UvT),On the development
an management of adaptive business collabora-
tions
2007-17 Theodore Charitos (UU), Reasoning
with Dynamic Networks in Practice
2007-16 Davide Grossi (UU), Designing Invisible
Handcuffs. Formal investigations in Institutions
and Organizations for Multi-agent Systems
2007-15 Joyca Lacroix (UM), NIM: a Situated
Computational Memory Model
2007-14 Niek Bergboer (UM), Context-Based Im-
age Analysis
2007-13 Rutger Rienks (UT), Meetings in Smart
Environments; Implications of Progressing Tech-
nology
2007-12 Marcel van Gerven (RUN), Bayesian
Networks for Clinical Decision Support: A Ratio-
nal Approach to Dynamic Decision-Making under
Uncertainty
2007-11 Natalia Stash (TUE), Incorporating
Cognitive/Learning Styles in a General-Purpose
Adaptive Hypermedia System
2007-10 Huib Aldewereld (UU), Autonomy vs.
Conformity: an Institutional Perspective on
Norms and Protocols
2007-09 David Mobach (VU), Agent-Based Me-
diated Service Negotiation
2007-08 Mark Hoogendoorn (VU), Modeling of
Change in Multi-Agent Organizations
2007-07 Nataša Jovanović (UT), To Whom It
May Concern – Addressee Identification in Face-
to-Face Meetings
2007-06 Gilad Mishne (UVA), Applied Text An-
alytics for Blogs
2007-05 Bart Schermer (UL), Software Agents,
Surveillance, and the Right to Privacy: a Legisla-
tive Framework for Agent-enabled Surveillance
2007-04 Jurriaan van Diggelen (UU), Achieving
Semantic Interoperability in Multi-agent Systems:
a dialogue-based approach
2007-03 Peter Mika (VU), Social Networks and
the Semantic Web
2007-02 Wouter Teepe (RUG), Reconciling Infor-
mation Exchange and Confidentiality: A Formal
Approach
2007-01 Kees Leune (UvT), Access Control and
Service-Oriented Architectures
2006-28 Börkur Sigurbjörnsson (UVA), Focused
Information Access using XML Element Retrieval
2006-27 Stefano Bocconi (CWI), Vox Populi:
generating video documentaries from semantically
annotated media repositories
2006-26 Vojkan Mihajlović (UT), Score Region
Algebra: A Flexible Framework for Structured In-
formation Retrieval
2006-25 Madalina Drugan (UU), Conditional log-
likelihood MDL and Evolutionary MCMC

2006-24 Laura Hollink (VU), Semantic Annota-
tion for Retrieval of Visual Resources
2006-23 Ion Juvina (UU), Development of Cog-
nitive Model for Navigating on the Web
2006-22 Paul de Vrieze (RUN), Fundaments of
Adaptive Personalisation
2006-21 Bas van Gils (RUN), Aptness on the Web
2006-20 Marina Velikova (UvT), Monotone mod-
els for prediction in data mining
2006-19 Birna van Riemsdijk (UU), Cognitive
Agent Programming: A Semantic Approach
2006-18 Valentin Zhizhkun (UVA), Graph trans-
formation for Natural Language Processing
2006-17 Stacey Nagata (UU), User Assistance
for Multitasking with Interruptions on a Mobile
Device
2006-16 Carsten Riggelsen (UU), Approximation
Methods for Efficient Learning of Bayesian Net-
works
2006-15 Rainer Malik (UU), CONAN: Text Min-
ing in the Biomedical Domain
2006-14 Johan Hoorn (VU), Software Require-
ments: Update, Upgrade, Redesign – towards a
Theory of Requirements Change
2006-13 Henk-Jan Lebbink (UU), Dialogue and
Decision Games for Information Exchanging
Agents
2006-12 Bert Bongers (VU), Interactivation –
Towards an e-cology of people, our technological
environment, and the arts
2006-11 Joeri van Ruth (UT), Flattening Queries
over Nested Data Types
2006-10 Ronny Siebes (VU), Semantic Routing
in Peer-to-Peer Systems
2006-09 Mohamed Wahdan (UM), Automatic
Formulation of the Auditor’s Opinion
2006-08 Eelco Herder (UT), Forward, Back and
Home Again – Analyzing User Behavior on the
Web
2006-07 Marko Smiljanic (UT), XML schema
matching – balancing efficiency and effectiveness
by means of clustering
2006-06 Ziv Baida (VU), Software-aided Service
Bundling – Intelligent Methods & Tools for Graph-
ical Service Modeling
2006-05 Cees Pierik (UU), Validation Techniques
for Object-Oriented Proof Outlines
2006-04 Marta Sabou (VU), Building Web Ser-
vice Ontologies
2006-03 Noor Christoph (UVA), The role of
metacognitive skills in learning to solve problems
2006-02 Cristina Chisalita (VU), Contextual is-
sues in the design and use of information technol-
ogy in organizations
2006-01 Samuil Angelov (TUE), Foundations of
B2B Electronic Contracting
2005-21 Wijnand Derks (UT), Improving Con-
currency and Recovery in Database Systems by Ex-
ploiting Application Semantics
2005-20 Cristina Coteanu (UL), Cyber Consumer
Law, State of the Art and Perspectives
2005-19 Michel van Dartel (UM), Situated Rep-
resentation
2005-18 Danielle Sent (UU), Test-selection
strategies for probabilistic networks
2005-17 Boris Shishkov (TUD), Software Specifi-
cation Based on Re-usable Business Components

BIBLIOGRAPHY 171

2005-16 Joris Graaumans (UU), Usability of
XML Query Languages
2005-15 Tibor Bosse (VU), Analysis of the Dy-
namics of Cognitive Processes
2005-14 Borys Omelayenko (VU), Web-Service
configuration on the Semantic Web; Exploring how
semantics meets pragmatics
2005-13 Fred Hamburg (UL), Een Com-
putermodel voor het Ondersteunen van Eu-
thanasiebeslissingen
2005-12 Csaba Boer (EUR), Distributed Simula-
tion in Industry
2005-11 Elth Ogston (VU), Agent Based Match-
making and Clustering – A Decentralized Ap-
proach to Search
2005-10 Anders Bouwer (UVA), Explaining Be-
haviour: Using Qualitative Simulation in Interac-
tive Learning Environments
2005-09 Jeen Broekstra (VU), Storage, Querying
and Inferencing for Semantic Web Languages
2005-08 Richard Vdovjak (TUE), A Model-driven
Approach for Building Distributed Ontology-based
Web Applications
2005-07 Flavius Frasincar (TUE), Hypermedia
Presentation Generation for Semantic Web Infor-
mation Systems
2005-06 Pieter Spronck (UM), Adaptive Game
AI
2005-05 Gabriel Infante-Lopez (UVA), Two-Level
Probabilistic Grammars for Natural Language
Parsing
2005-04 Nirvana Meratnia (UT), Towards
Database Support for Moving Object data
2005-03 Franc Grootjen (RUN), A Pragmatic
Approach to the Conceptualisation of Language
2005-02 Erik van der Werf (UM)), AI techniques
for the game of Go
2005-01 Floor Verdenius (UVA), Methodological
Aspects of Designing Induction-Based Applica-
tions
2004-20 Madelon Evers (Nyenrode), Learning
from Design: facilitating multidisciplinary design
teams
2004-19 Thijs Westerveld (UT), Using generative
probabilistic models for multimedia retrieval
2004-18 Vania Bessa Machado (UvA), Supporting
the Construction of Qualitative Knowledge Models
2004-17 Mark Winands (UM), Informed Search
in Complex Games
2004-16 Federico Divina (VU), Hybrid Genetic
Relational Search for Inductive Learning
2004-15 Arno Knobbe (UU), Multi-Relational
Data Mining
2004-14 Paul Harrenstein (UU), Logic in Con-
flict. Logical Explorations in Strategic Equilibrium
2004-13 Wojciech Jamroga (UT), Using Multiple
Models of Reality: On Agents who Know how to
Play
2004-12 The Duy Bui (UT), Creating emotions
and facial expressions for embodied agents
2004-11 Michel Klein (VU), Change Manage-
ment for Distributed Ontologies
2004-10 Suzanne Kabel (UVA), Knowledge-rich
indexing of learning-objects
2004-09 Martin Caminada (VU), For the Sake of
the Argument; explorations into argument-based
reasoning

2004-08 Joop Verbeek (UM), Politie en de
Nieuwe Internationale Informatiemarkt, Grensre-

gionale politiẨle gegevensuitwisseling en digitale
expertise
2004-07 Elise Boltjes (UM), Voorbeeldig onder-
wijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes
2004-06 Bart-Jan Hommes (TUD), The Evalua-
tion of Business Process Modeling Techniques
2004-05 Viara Popova (EUR), Knowledge discov-
ery and monotonicity
2004-04 Chris van Aart (UVA), Organizational
Principles for Multi-Agent Architectures
2004-03 Perry Groot (VU), A Theoretical and
Empirical Analysis of Approximation in Symbolic
Problem Solving
2004-02 Lai Xu (UvT), Monitoring Multi-party
Contracts for E-business
2004-01 Virginia Dignum (UU), A Model for
Organizational Interaction: Based on Agents,
Founded in Logic
2003-18 Levente Kocsis (UM), Learning Search
Decisions
2003-17 David Jansen (UT), Extensions of Stat-
echarts with Probability, Time, and Stochastic
Timing
2003-16 Menzo Windhouwer (CWI), Feature
Grammar Systems – Incremental Maintenance of
Indexes to Digital Media Warehouses
2003-15 Mathijs de Weerdt (TUD), Plan Merging
in Multi-Agent Systems
2003-14 Stijn Hoppenbrouwers (KUN), Freezing
Language: Conceptualisation Processes across
ICT-Supported Organisations
2003-13 Jeroen Donkers (UM), Nosce Hostem –
Searching with Opponent Models
2003-12 Roeland Ordelman (UT), Dutch speech
recognition in multimedia information retrieval
2003-11 Simon Keizer (UT), Reasoning under
Uncertainty in Natural Language Dialogue using
Bayesian Networks
2003-10 Andreas Lincke (UvT), Electronic Busi-
ness Negotiation: Some experimental studies on
the interaction between medium, innovation con-
text and culture
2003-09 Rens Kortmann (UM), The resolution of
visually guided behaviour
2003-08 Yongping Ran (UM), Repair Based
Scheduling
2003-07 Machiel Jansen (UvA), Formal Explo-
rations of Knowledge Intensive Tasks
2003-06 Boris van Schooten (UT), Development
and specification of virtual environments
2003-05 Jos Lehmann (UVA), Causation in Arti-
ficial Intelligence and Law – A modelling approach
2003-04 Milan Petković (UT), Content-Based
Video Retrieval Supported by Database Technology
2003-03 Martijn Schuemie (TUD), Human-
Computer Interaction and Presence in Virtual
Reality Exposure Therapy
2003-02 Jan Broersen (VU),Modal Action Logics
for Reasoning About Reactive Systems
2003-01 Heiner Stuckenschmidt (VU), Ontology-
Based Information Sharing in Weakly Structured
Environments

172 BIBLIOGRAPHY

2002-17 Stefan Manegold (UVA), Understanding,
Modeling, and Improving Main-Memory Database
Performance
2002-16 Pieter van Langen (VU), The Anatomy
of Design: Foundations, Models and Applications
2002-15 Rik Eshuis (UT), Semantics and Veri-
fication of UML Activity Diagrams for Workflow
Modelling
2002-14 Wieke de Vries (UU), Agent Interaction:
Abstract Approaches to Modelling, Programming
and Verifying Multi-Agent Systems
2002-13 Hongjing Wu (TUE), A Reference Ar-
chitecture for Adaptive Hypermedia Applications
2002-12 Albrecht Schmidt (Uva), Processing
XML in Database Systems
2002-11 Wouter C.A. Wijngaards (VU), Agent
Based Modelling of Dynamics: Biological and Or-
ganisational Applications
2002-10 Brian Sheppard (UM), Towards Perfect
Play of Scrabble
2002-09 Willem-Jan van den Heuvel (KUB), In-
tegrating Modern Business Applications with Ob-
jectified Legacy Systems
2002-08 Jaap Gordijn (VU), Value Based Re-
quirements Engineering: Exploring Innovative E-
Commerce Ideas
2002-07 Peter Boncz (CWI), Monet: A Next-
Generation DBMS Kernel For Query-Intensive
Applications
2002-06 Laurens Mommers (UL), Applied legal
epistemology; Building a knowledge-based ontology
of the legal domain
2002-05 Radu Serban (VU), The Private Cy-
berspace Modeling Electronic Environments inhab-
ited by Privacy-concerned Agents
2002-04 Juan Roberto Castelo Valdueza (UU),
The Discrete Acyclic Digraph Markov Model in
Data Mining
2002-03 Henk Ernst Blok (UT), Database Opti-
mization Aspects for Information Retrieval
2002-02 Roelof van Zwol (UT), Modelling and
searching web-based document collections
2002-01 Nico Lassing (VU), Architecture-Level
Modifiability Analysis
2001-11 Tom M. van Engers (VUA), Knowledge
Management: The Role of Mental Models in Busi-
ness Systems Design
2001-10 Maarten Sierhuis (UvA), Modeling and
Simulating Work Practice BRAHMS: a multiagent
modeling and simulation language for work prac-
tice analysis and design
2001-09 Pieter Jan ’t Hoen (RUL), Towards Dis-
tributed Development of Large Object-Oriented
Models, Views of Packages as Classes
2001-08 Pascal van Eck (VU), A Compositional
Semantic Structure for Multi-Agent Systems Dy-
namics.
2001-07 Bastiaan Schonhage (VU), Diva: Archi-
tectural Perspectives on Information Visualization
2001-06 Martijn van Welie (VU), Task-based
User Interface Design
2001-05 Jacco van Ossenbruggen (VU), Process-
ing Structured Hypermedia: A Matter of Style
2001-04 Evgueni Smirnov (UM), Conjunctive
and Disjunctive Version Spaces with Instance-
Based Boundary Sets

2001-03 Maarten van Someren (UvA), Learning
as problem solving
2001-02 Koen Hindriks (UU), Agent Program-
ming Languages: Programming with Mental Mod-
els
2001-01 Silja Renooij (UU), Qualitative Ap-
proaches to Quantifying Probabilistic Networks
2000-11 Jonas Karlsson (CWI), Scalable Dis-
tributed Data Structures for Database Manage-
ment
2000-10 Niels Nes (CWI), Image Database Man-
agement System Design Considerations, Algo-
rithms and Architecture
2000-09 Florian Waas (CWI), Principles of Prob-
abilistic Query Optimization
2000-08 Veerle Coupé (EUR), Sensitivity Analyis
of Decision-Theoretic Networks
2000-07 Niels Peek (UU), Decision-theoretic
Planning of Clinical Patient Management
2000-06 Rogier van Eijk (UU), Programming
Languages for Agent Communication
2000-05 Ruud van der Pol (UM), Knowledge-
based Query Formulation in Information Re-
trieval.
2000-04 Geert de Haan (VU), ETAG, A Formal
Model of Competence Knowledge for User Inter-
face Design
2000-03 Carolien M.T. Metselaar (UVA),
Sociaal-organisatorische gevolgen van kennistech-
nologie; een procesbenadering en actorperspectief.
2000-02 Koen Holtman (TUE), Prototyping of
CMS Storage Management
2000-01 Frank Niessink (VU), Perspectives on
Improving Software Maintenance
1999-08 Jacques H.J. Lenting (UM), Informed
Gambling: Conception and Analysis of a Multi-
Agent Mechanism for Discrete Reallocation.
1999-07 David Spelt (UT), Verification support
for object database design
1999-06 Niek J.E. Wijngaards (VU), Re-design of
compositional systems
1999-05 Aldo de Moor (KUB), Empowering
Communities: A Method for the Legitimate User-
Driven Specification of Network Information Sys-
tems
1999-04 Jacques Penders (UM), The practical
Art of Moving Physical Objects
1999-03 Don Beal (UM), The Nature of Minimax
Search
1999-02 Rob Potharst (EUR), Classification us-
ing decision trees and neural nets
1999-01 Mark Sloof (VU), Physiology of Quality
Change Modelling; Automated modelling of Qual-
ity Change of Agricultural Products
1998-05 E.W. Oskamp (RUL), Computeronders-
teuning bij Straftoemeting
1998-04 Dennis Breuker (UM), Memory versus
Search in Games
1998-03 Ans Steuten (TUD), A Contribution to
the Linguistic Analysis of Business Conversations
within the Language/Action Perspective
1998-02 Floris Wiesman (UM), Information Re-
trieval by Graphically Browsing Meta-Information
1998-01 Johan van den Akker (CWI), DEGAS –
An Active, Temporal Database of Autonomous Ob-
jects

