Resource-based Verification for Robust
Composition of Aspects

Ir. Pascal Eugéne Alois Diirr



Ph.D. dissertation committee:
Chairman and secretary:
Prof. dr. J.J.W. van der Vegt, University of Twente, The Netherlands
Promoter:
Prof. dr. ir. M. Aksit, University of Twente, The Netherlands
Assistant promoter:
Dr. ir. L.M.J. Bergmans, University of Twente, The Netherlands
Members:
Prof. dr. E. Brinksma, University of Twente, The Netherlands
Dr. A. Garcia MSc, Lancaster University, United Kingdom
Prof. dr. W. Joosen, Katholieke Universiteit Leuven, Belgium
Dr. S. Katz, The Technion, Israel
Dr. L. Ferreira Pires MSc, University of Twente, The Netherlands
Prof. dr. C. Wohlin, Blekinge Institute of Technology, Sweden

stTn-,Jl

CTIT

Centre for Telematics and
Information Technology

“V“‘)?ﬂ/

}4,,‘7((“ H 40

W
N
>
%0

Ly
Vo gy E°

CTIT Ph.D. thesis Series No. 08-119. Centre for Telematics and Information
Technology (CTIT), P.O. Box 217 - 7500 AE Enschede - The Netherlands.

This work has been carried out as part of the Ideals project under the respon-
sibility of the Embedded Systems Institute. This project is partially supported
by the Netherlands Ministry of Economic Affairs under the SenterNovem TS
program (grant TSIT3003). The work in this thesis has been carried out under
the auspices of the research school IPA (Institute for Programming research and
Algorithmics).

ISBN 978-90-365-2685-2
ISSN 1381-3617 (CTIT Ph.D. thesis Series No. 08-119)
IPA Dissertation Series 2008-15.

Cover design: Blue Lagoon, Iceland Oct. 2006 by Pascal Diirr
Printed by PrintPartners Ipskamp, Enschede, The Netherlands
Copyright (© 2008, Pascal Diirr, Enschede, The Netherlands



RESOURCE-BASED VERIFICATION FOR
ROBUST COMPOSITION OF ASPECTS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit van Twente,
op het gezag van de rector magnificus,

Prof. dr. W.H.M. Zijm,

volgens het besluit van het College voor Promoties
in het openbaar te verdedigen

op donderdag 26 Juni 2008 om 16.45 uur

door

Ir. Pascal Eugéne Alois Diirr

geboren op 12 December 1977
te 's-Gravenhage



This dissertation is approved by

Prof. dr. ir. M. Aksit (promoter)
Dr. ir. L.M.J. Bergmans (assistant promoter)

Copyright (© 2008, Pascal Diirr, Enschede, The Netherlands
ISBN 978-90-365-2685-2



“I believe all suffering is caused by ignorance. People inflict pain on others in
the selfish pursuit of their happiness or satisfaction. Yet true happiness comes
from a sense of peace and contentment, which in turn must be achieved through

the cultivation of altruism, of love and compassion, and elimination of
ignorance, selfishness, and greed."”

Tenzin Gyatso, Dalai Lama,
Nobel Peace Prize laureate.






Acknowledgments

The first person I want to thank, is my daily supervisor and assistant-promoter,
Lodewijk Bergmans. A lot of the results achieved in this thesis can be partially
contributed to his guidance and advice. He not only encouraged me to do a
PhD in the first place but also ensured that I never regretted it. During our
four years we never had a dull moment and I have yet to remember a meeting
or trip were we did not have a lot of fun. Although our professional relationship
ends on the first of July, I am sure that I will continue our excellent personal
relationship with you and your wife Ingrid.

Secondly, my promotor Mehmet Aksit, his initial elegant brain-child “Composition
Filters” has had a huge impact on the thesis and has motivated my quest to
continue to improve and extent this approach to software composition. His
feedback, advice and guidance can be found throughout this thesis.

Hereby I also thank the other members of my defense committee: prof. dr. ir.
Ed Brinksma, dr. Alessandro Garcia, prof. dr. Wouter Joosen, dr. Shmuel Katz,
dr. Luis Ferreira Pires, and prof. dr. Claes Wohlin.

I would like to thank all members of the Software Engineering group and of the
Formal Methods group. In particular, Tom Staijen with whom I have enjoyed
great hiking trips in Ireland and Vancouver. Giircan Giilesir, with whom I worked
closely in the Ideals project and shared the burden of traveling to Veldhoven



every week for three years, Wilke Havinga, Klaas van der Berg, Arend Rensink
and my sushi-buddy Mariélle Stoelinga.

The work described in this thesis has been carried out within the Ideals project.
From this project, I would like to mention several people: Magiel Bruntink (CWT),
Tom Tourwé (CWI), Joris van der Aker (ESI), Jan-Mathijs Wijnands (Sioux),
Ad van Dongen (ESI) and Frans Beenker (ESI). Part of the work described in
this thesis has been conducted at ASML. And a lot of the results of especially
the first chapters can partially be contributed to the effort of Remco van Engelen.
The WeaveC team at ASML really helped out with the experiment, in particular
Steven de Brouwer and Istvan Nagy.

Conducting controlled experiments was a completely new endeavor for me.
Fortunately, Vincent Buskens and Richard Zijdeman from the Department of
Sociology at the University of Utrecht helped out with their expertise in the
area of controlled experiments.

During my PhD, I continued to live in a dorm called HabeDabeDebeDoe. We had
some great activities the past 6 years. Thanks for all the great times. I especially
would like to mention: Daphne de Klerk, Niels Zijlstra, Steven Fokkenrood,
Jeroen Jonker, Kirsten Rutgers and Ruben Wassink.

)

Ben Bruggeman also influenced this thesis, I will never forget our “Den-Helder’
sessions. Piet van der Vlist, rose to the same challenge as me, finishing his PhD
one year earlier under much tougher conditions.

Diana, although our timing could have been better, the prospect of being with
you motivated me during the last months. I am thankful that I went to Nepal,
where I met you and 21 other great friends.

Finally, I would to thank my family:

My oldest sister Natasha, her boyfriend Alex, and their two children Shanon
and Meagan. Almost every summer during my PhD, I did some “real”
engineering work with them, building a hangar and their future home.

My twin sister Nicole and her husband Richard, my twin sister is my paranymph
and my brother in law helped out with the statistics in this thesis, and
will finish his PhD in September, good luck!

And last, but definitely not least, my parents Lia and Eugéne. They have
encouraged and supported me the entire four yours. Especially my father
did not only impact the defense ceremony as a paranymph, but also a lot
of his influence can be found throughout the thesis.

ii



Abstract

Aspect Oriented Software Development has been proposed as a means to improve
modularization of software in the presence of crosscutting concerns. Compared
to object-oriented or procedural approaches, Aspect Oriented Programming
(AOP) has not yet been applied in many industrial applications. In this thesis
we investigate the application of AOP within an industrial context and propose
a novel solution to the problem of behavioral conflicts between aspects.

We report on our experience transferring an aspect-oriented solution to a company
called Advanced Semi-conductor Material Lithography (ASML). We investigate
the acceptance criteria for AOP in industry, based on two industrial cases studies.
We present a process that includes quantification of the benefits of AOP and
elicitation of key worries expressed by stakeholders.

We conducted a controlled experiment to assess the advantages and disadvantages
of an aspect-based approach using a tracing example. Twenty developers from
ASML were requested to carry out five maintenance scenarios. This experiment
has shown that, in case the tracing concern is implemented using an AOP
implementation instead of a procedural language, the development effort is on
average 6% reduced while the impact of errors is reduced by 77%, for maintaining
code related to tracing. For a subset of the scenarios, the results were statistically
significant on a confidence interval of 95%.

iii



The so-called aspect interference problem is one of the major concerns in in-
troducing AOP. Aspects can be developed independently and behave correct
in isolation. However, due to intended or unintended composition of aspects,
undesired behavior can emerge. In this thesis we focus on behavioral conflicts
between aspects at shared join points. These are illustrated by a realistic example
based on crosscutting concerns from ASML. We present an approach for the
detection of behavioral interference that is based on a novel abstraction of the
behavior of aspects, using resources and operations. This abstraction enables
the expression of behavior in a simple manner that is suitable for automated
detection of interference among aspects. The approach employs a set of conflict
detection rules that can be used to detect both generic conflicts as well as domain
specific conflicts.

Our approach is general for AOP languages, its application to one specific AOP
language Composition Filters is also illustrated in this thesis. The application to
Composition Filters demonstrates how the use of a declarative advice language
can be exploited for automated conflict detection. We detail the analysis process
and discuss what information is required from the aspect developer to be able
perform the analysis. We also discuss when static analysis is insufficient for
detecting behavioral conflicts. We present a run time extension aiming at
detecting dynamic conflicts. We discuss optimizations for this run time approach,
which exploits the static verification results.

Finally, we propose three improvements to the Composition Filters model to
support automated and manual reasoning even further. The first improvement
separates what behavior is executed from when this behavior is executed. Se-
condly, we introduce atomic filters that can be used to build more complex filters.
The semantics of these filters are well defined. Although this approach has clear
benefits from an automated reasoning perspective, the introduction of atomic
filters results in the definition of numerous filters for specifying more complex
behavior. Therefore, we introduce a filter composition language that enables the
declarative composition of (atomic) filters, such that composed filter behavior
can be reused elsewhere.



Contents

[1__Introduction| 1
(1.1 Crosscutting Concerns| . . . . . . . . . . .. ... ... .. ... 3
1.2 How to introduce AOP in Industry?| . .. ... ... ... .... 10
(1.3 Does AOP reduce the Software Development Effort?] . . . . . .. 11
1.4 Behavioral Conflicts among Aspects| . . . . ... ... ... ... 11
[L.5 Limitations of Automated Reasoning| . . . . . .. ... ... ... 12

2 Experiences in _introducing Aspect-Oriented Programming at |

_ASML 15
App hl .o 16

RIT TnfialBenefitd . . . . .. .. ... .. . L 17

EI2 Contextl . « .« « v v v oo 17

1.3 Aspects| . . . . . . 17

RI4 Worries . . .. ... ... 18

D15 TOONNE] . o o o o o e e e 19



2.1.6  Quantified Benefits|. . . . . . . . ..o 19

2.1.7 Acceptance] . . . . .. ..o Lo 20

2.2 Aspectsin C| . . ... . .. ... ... e 20
22.1 Initial Bepefits] . . . . . ... ... 00000 20
222 Confext] . . .. ... 21
............................ 22
24 Worried . . ... ... 28
2.25 Tooling| . . ... .. ... 31
2.2.6  Quantified Benefits|. . . . . . .. ..o 34
2.2.7 Acceptancel . . . . . ... ... o 36

2.3 Aspectsin NET| . . . ... ... ... .. 0. 36
2.3.1 Initial Benefits| . . . . .. ... ..o 37
32 Comfext] . . . . .t 37
............................ 37
R34 Worrded . . . ... 39
2.3.5 Tooling] . . ... ... ... ... 42
2.3.6  Quantified Benefits|. . . . . . .. ..o 43
2.3.7 Acceptance] . . . . .. .. 44

24 Related Workl . . . . . ... ... o oo 44
2.5 Conclusions| . . . . . . ... oo o 45
I3 An Assessment of an Aspect-based Approach to Tracing) 47
3.1 ACING] .« v e e e e e e e e e e e e e e 47
3.1.1 Concern ITracing| . . . ... ... ... ... ........ 48
3.1.2  Aspect Tracing in WeaveC| . . . . ... ... ... .... 50

[3.2  Experiment Setup| . . .. ... ... Lo 51
3.2.1 Subjects| . . . ... 53
8.2.2  Environment and Tooling| . . . ... ... ... ... ... 53

vi



4 Objects| . . . ... 55

3.2.56  Variables . . ... ... ... ... . o 0 0oL 59
3.2.6  Hypotheses| . . . . .. ... ... ... L. 60

[3.3  Experiment Results|. . . . . . ... ... ... ... 0000, 60
3.3.1 ubjects| . . . . ..o 61
13.3.2  Inmitial processing| . . . . . . ... 61
8.3.3  Development Eftort] . ... ... ... ... . ....... 62
B34 Errord . . ... ... 65
13.3.5  Verification of the Hypotheses|. . . . . . . ... ... ... 67

BA Validafionl . . . . . . .. ... 68
................................. 72
3.6 Related Workl . . . . . .. ... oo 73
[3.7  Generalizability of the experiment| . . . . . ... ... ... ... 76
B.1 Otherconcernsl . . . . ... ... ... ... ... ..... 76
13.7.2  Other aspect languages| . . . ... ... ... ... .... 76
3.7.3  Other base languages| . . . .. .. ... ... .. ..... 7
13.7.4  Other organizations| . . . . .. .. ... ... ....... 77

3.8 Conclusionsl . . . ... ... ... ... oo 7
4 Behavioral Conflicts among Aspects| 81
41 Motivationl . . . . .. ... 81
4.1.1 Parameter Checkingl . . . . ... .. ... ... ...... 82
4.1.2  Error Propagation . . . ... ... ... ... ..., 83
4.1.3  An aspect-based design| . . .. ... ... .. ... 84

4.2 Problem Statementl . . . . . . ... o000 85
[4.3  Other examples of Behavioral Conflicts|. . . . . . .. . ... ... 87
4.4 Background and Related Workl . . . . ... ... ... ... ... 88

vii



4.4.1  Composition type| . . . . . .. .. ... L. 88
4.4.2  Type of Superimposition|. . . . . . . .. ... .. ... .. 90
4.4.3  Type of interaction|. . . . . . . . . ... oL 90
4.4.4 Typeot JomPoint| . . . ... ... .. ... .. ...... 91
4.4.5 Orderingl . . .. ... .. ... 92
4.4.6  Generality]. . . . . ... o 92
4.4.7  Advice specification form| . . . . .. ..o oL 93

4.5 App h . 94
4.5.1  Composition Phase|. . . . . . ... ... ... 95
4.5.2 Advice Behavior Abstraction Phasel . . .. ... ... .. 97
4.5.3 Conflict Detection Phasel . . . .. ... .. ... ..... 98

[4.6  Application to the ASML example| . . . . . ... ... ... ... 99
4.6.1 Composition Phase|. . . . . . ... ... ... ... ... 99
4.6.2 Advice Behavior Abstraction Phasel . . . ... ... ... 101
4.6.3 Conflict Detection Phasel . . . . ... ... ... ... .. 102

[4.7  Application to other examples|. . . . . . .. ... ... 103
MR DISCUSSION! -« « « v v vt e e 104
4.8.1 Can all behavior be modeled as a sequence of operations?| 105
4.8.2  Is 1t applicable to any paradigm or approach?|. . . . . . . 105
4.8.3  Can all behavior be specified?|. . . . . .. ... ... ... 107
4.8.4  Can all conflicting patterns be detected?|. . . . . . . . .. 107
4.8.5  Which types of conflicts can be modeled?| . . . . . .. .. 108
4.8.6  What is required for and what is the effect of detecting |

| different categories of conflicts?| . . . . . .. .. ... ... 108
49 Conclusions| . . . . . . ... oo o 110




[0.2  Composition Filters| . . . .. ... ... ... 0. 112

[5.3  Application of Behavioral Conflict Detection to Composition Filters|120

[0.4  Composition Phasel . . . . . . ... ... ... 0 0oL, 121
............................. 121
.42 Transformation| . . . . . .. .. ... oo 126

l Output| . . . . .. .. . 128

0.0 Advice Behavior Abstraction Phasel. . . . ... .. ... ... .. 129
5.0.1 Inputs| . . . .. .. .o 129
15.0.2  Transformationl . . . . .. .. ... L oo 137
5.5.3 Output| . . . ... .. . 143

0.6 Conflict Detection Phasel. . . . . . ... ... ... ... ... .. 145
5.6.1 Inputs| . . . . . ... 145
0.6.2 Transformation| . . . . . . . .. ..o 146
5.6.3 Output| . . .. .. ... . 149

BZ DISCUSSIOnl . .+« v v vt e e 149
.7.1  Generality of the approach and implementation|. . . . . . 149
0.7.2  Complex behavioral specifications] . . ... ... ... .. 151
b.7.3  Alternative conflict rule specifications| . . . . .. ... .. 153
b.7.4  False positives and false negatives| . . . . .. .. ... .. 153
p.7.5  Computational complexity|. . . . . ... ... .. ... .. 155
p.7.6  Output and returning filters|. . . . . . . ... .. ... .. 157
0.7.7  Conflicts within filter modules) . . . ... ... ... ... 160

[5.8  Runtime conflict detectionl . . . . . . . . .. ... ... ... 160
p.8.1 An example conflict: Security vs. Logging| . . . . . .. .. 160
0.8.2  Limitations of static checking in AOP| . . . .. ... ... 162
2.8.3 Conflict detection at runtimel . . . . . . . ... ... ... 163

0.9 Related Workl . . . .. .. ... ..o oo 166

ix



16 Extending Composition Filters for improved Reasoning|

[6.1  Sphtting Filter sets|. . . . . . .. ..

6.1.1  Initial Tracing Implementation| . . . . . ... .. ... ..

6.1.2  An Alternative Tracing Implementation| . . . . . . .. ..

6.1.3  Proposal: Distinct Filter Sets|

173
173
174
176
178
180
188
188
191
193
202
208
209
211
212
213
215

219
220
220
222
223

227

227



237

xi



Xii



Introduction

The work in this thesis has been conducted as part of the Ideals [IDE| project.
One of the assumptions of this project was that the software development
effort increases in the presence of crosscutting concerns. ASML [ASM| was
the industrial partner, providing case studies and motivating examples for the
project. The line of reasoning and the structure of this thesis is presented in

figure

In this first chapter we discuss the symptoms of crosscutting concerns and
their impact. The first step in the project was to show that aspect-oriented
programming (AOP) could address these concerns efficiently: this is discussed
in chapter [2l Once we demonstrated that aspect-oriented programming could be
applied in the context of ASML, we transferred the solution: a tool called WeaveC.
ASML matured the tooling and introduced it into the mainstream development
process. Once the first users wrote program code without crosscutting concerns
in the code, we tested the impact and benefits of AOP. We conducted a controlled
experiment to measure the time it takes to execute a set of common change
scenarios related to tracing. We also measured the severity of errors a developer
makes while executing these scenarios (chapter [3)).

If aspects are adopted, new problems can arise. In chapter[4] we discuss one such
problem, namely behavioral conflicts among aspects: aspects may interfere with

P.E.A. Diirr 1



Section 1.0

Crosscutting concerns are problematic
(Chapter 1)

1
Show that AOP can address CCCs efficiently |

Y

Experiences in introducing AOP
at ASML (Chapter 2)

Accept th'e solution

Transfer Solution: WeaveC

Verify assumbtions of AOP |

Y

Controlled Experiment
(Chapter 3)

New problems W/l16‘I7 using aspects

Y

Behavioral Conflicts among Aspects
(Chapter 4)

Apply reasoning approach

Y

l Behavioral Conflicts applied to J

Composition Filters (Chapter 5)

Increase ability to automatically reason about aspects |

Y

Revising Composition Filters for
Improved Reasoning (Chapter 6)

Conélude

Conclusions
(Chapter 7)

Figuur 1.1: Overview of the thesis

P.E.A. Diirr



Introduction Chapter 1

the behavior of other aspects. In this chapter we present a concrete example of
a behavioral conflict that is based on the actual crosscutting concerns used by
ASML. We present a novel abstraction based on an (abstract) resource-operation
model and discuss how conflicts are detected using a set of conflict detection
rules. In chapter [5] we apply our conflict detection approach to Composition
Filters and discuss how we utilize some unique properties of Composition Filters
to implement (partially) automated reasoning. In the analysis of Composition
Filters performed in chapter [ we encountered some constructs in Composition
Filters that hinder automated and manual reasoning. In chapter [} we discuss
these constructs and their limitations in detail and propose extensions to address
these limitations. Finally, we conclude in chapter [7}

In the following sections, we discuss each item in figure in detail.

1.1 Crosscutting Concerns

The Aspect-Oriented Software Development (AOSD) community has promoted
aspects as a solution to complexities introduced by crosscutting concerns. Within
the Ideals project, we focused on addressing crosscutting concerns in an industrial
setting. In the project ASML waver scanners (machines that create computer
chips) are used for providing case studies and motivating examples. These
are complex embedded systems with over 16 million lines of (mostly) C code,
structured into circa 200 components and 6 layers. The scanners use multiple
(parallel) system boards and processors. Throughput and availability are key
quality factors. To achieve these qualities, ASML has implemented several
mechanisms for performance analysis, traceability and robustness. Many of these
mechanisms have been implemented in software and exhibit the symptoms of
crosscutting concerns: Scattering, Code Replication and Tangling.

Scattering occurs when one logical concern is distributed over multiple locati-
ons. Since, for example, measuring the performance of the machine has to be
implemented at many different locations in the code-base, it is scattered over the
base program. The resulting code is hard to maintain, i.e. “What if the program
is extended, or crosscutting concerns are updated?”. Also, it is hard to keep an
overview, i.e. “In which places is a concern implemented?”.

Code replication occurs due to the scattered implementation of a concern.
The result is that the same or similar code is implemented in numerous locations
in the program. This is often done via a “copy-paste-edit” process, where a
developer copies a piece of code, pastes it in the new or modified function and
adapts it to fit the context. This process still requires a lot of effort. Also, many

P.E.A. Diirr 3



Section 1.1 Crosscutting Concerns

errors occur in such “boilerplate code”. For example, in [BvDT06|, Bruntink
et. al. showed 154 faults in error handling code within 67 KLOC (i.e. 2 faults
per 1000 lines of code). Changing a crosscutting concern may require many
updates. In addition, often the same functionality is designed and implemented
inconsistently in distinct components.

Tangling occurs when a program unit contains a mixture or interleaving of
concerns. Most functions do not only implement the main functionality but
also have to implement code for performance measurements, for example. This
reduces comprehensibility, as one has to know which statements belong to which
concern, and this may not always be obvious. Tangling reduces maintainability,
because updating one concern may break surrounding code related to other
concerns.

To illustrate the symptoms and the impact of crosscutting concerns, listing [T.1]
presents a example function from ASML. The purpose of this function is to
return a pointer, referring to mod _data.ROI, (line 16) to the caller, in essence
this function is a simple getter function.

UL W N =

R
D O VIO U

oo 1o

int get_roi(ROI_struct* ROI_ptr)
{
const char* func_name = "get_roi";
int result = 0K;
timing_handle timing_hdl = NULL;
TIMING_IN;
trace_in(mod_data.tr_handle, func_name);
if ((result == OK) && (ROI_ptr == null))
{
result = SYS_PARAMETER_ERROR;
SYS_Log(r, "f: Output parameter ROI_ptr is NULL.");
}
if (result == OK)
{
/* Retrieve current ROI */
*ROI_ptr = mod_data.ROI;
}
LC(result, GET_ROI_FAILED_obj);
trace_out (mod_data.tr_handle, func_name, result, ROI_ptr);
TIMING_OUT;
return result;

Listing 1.1: Example function in C

We can identify the following crosscutting concerns in this example function:
Reflective Information (line 3), Exception Handling (lines 1, 4, 8, 10, 11, 13, 18
and 21), Profiling (lines 5, 6 and 20), Parameter Tracing (lines 7 and 19) and
Parameter Checking (line 8). The overhead of crosscutting concerns is usually
not as extreme as in this function. This function illustrates that even a simple
“getter” function becomes complicated in the presence of multiple crosscutting

4 P.E.A. Diirr




Introduction Chapter 1

concerns.

To illustrate the impact of some of these crosscutting concerns on a large scale, we
present several visualizations that represent the impact of crosscutting concerns
on a component of ASML. We used AspectBrowser [oC] for creating these
visualizations. All images are created from the same component CC from the
codebase of ASML. Each vertical bar represents a file in this component and each
gray line in such a vertical bar represents a line of code related to a particular
concern. The height of each vertical bar relates to the size of the file, some large
files have a scroll bar at the right side of the bar.

Figure shows the impact of concern Parameter Tracing on component CC.
Concern Parameter Tracing accounts for 8% of the statements in component CC.

s 777

vscNe |vscvic [vscvze [vscvace [vscvdce [vseNe [vsite |vskpe [vsive [vsaue [vssic |vsTMe |vSTRIc |vSTRzc |vSTRIc |VSTs.c

Figuur 1.2: Visualization of concern Parameter Tracing

Figure [L.3| shows the impact of concern Parameter Checking on component CC.
Concern Parameter Checking accounts for 7% of the statements in component

CC.

Figure[1.4 shows the impact of concern Error Handling on component CC. Concern
Error Handling accounts for 17% of the statements in component CC.

Figure shows the impact of concern Memory Allocation Error Handling on
component CC. Concern Memory Allocation Error Handling accounts for 5% of

P.E.A. Diirr 5



Section 1.1

Crosscutting Concerns

VSCN.o

vscvio [vsevac |vsovae |vscvao | VSaNe

VSIT.o

VSKP.o -

VSLV.c

vsaue

vSsSlo |

T — T 0 T
VSCN.c |VSCVlc |VSCV2c |VSCV3c | VSCV4c |VSGNe |VSITe |VSKPe |VSLV.e |JvsQuUc |VSSlc VSTMc |VSTRI.c |VSTR2c |VSTR3.c |VSTS.c
| =
|—
| =
Figuur 1.3: Visualization of concern Parameter Checking
Bvs

VSTM.o |VSTRLc |VSTR2c |VSTRIC |VSTS.c

Figuur 1.4: Visualization of concern Error Handling

P.E.A. Diirr



Introduction Chapter 1

the statements in component CC.

vscNe  |vscvice [vscvze [vsevae [vscvdc [vsoNe |vsite  Juskpe |vsive '|vsaue |vssic [vsTMc |vsTRie |vsTRze |vsTRac |vsTs.c

Figuur 1.5: Visualization of concern Memory Allocation Error Handling

We combined all four concerns in one figure, the result is shown in figure [T.6]

These four concerns together requires 29% of the statements in this component.
This is less than the combined total of the individual concerns, which is 37%.
This is caused by the overlap between concerns.

Separation of Concerns

Separation of concerns is one of the key goals of software and system engineering.
The term was first coined by Dijkstra in 1982 [Dij82]. There have been many
techniques in different fields which aim at separating concerns. A widely used
example of separation of concerns today is the HyperText Markup Language
(HTML) and Cascading Style Sheets (CSS), in web pages. Here the content
that is written in HTML is separated from the layout specifications that are
written in CSS. These specifications are combined by a web browser. Aspect-
oriented software development (AOSD) aims at separating concerns at all levels
in the software development life-cycle, from architecture to code implementations.
In particular, aspect-oriented programming has been promoted as a means to
address crosscutting concerns at the implementation level.

P.E.A. Diirr 7



Section 1.1 Crosscutting Concerns

Fvs

vscNe |vscvic [vscvze |vscvae [vscvdce [vseNe |vsime |vskpe [vswve [vsaue [vssic  |vsTMe |vSTRIc |vSTRzc |vSTRIc |vsTs.c

Figuur 1.6: Visualization of all four concerns

It is clear from figure [I.6] and listing [T.I] that the four crosscutting concerns
Parameter Tracing, Parameter Checking, Error Handling and Memory Allocation
Error Handling are not cleanly separated from the concern that implements the
core functionality of this function, namely getting a value. If we would separate
the four crosscutting concerns into separate modules, we could refactor the
function in listing [I.] to the function in listing [T.2]

ROI_struct get_roi()
{

return(mod_data.ROI);
}

Listing 1.2: Refactored function in C

In this particular example the savings are extreme: up to 26%, in general this is
not so extreme.

Aspect-oriented programming separates what behavior should be executed from
when and where this behavior should be executed. A crosscutting concern
is implemented in a separate module as an Aspect. This aspect can contain
two elements, an advice representing what behavior is to be inserted, and a
distribution function or pointcut that specifies where and when to execute the
behavior. A pointcut can select locations in the program, where each of these

8 P.E.A. Diirr




Introduction Chapter 1

locations is referred to as a join point. Aspects have to be combined with the
program in some manner, to yield the complete program. Combining aspects
with the base program is handled by a weaver. Such a weaver will resolve all
pointcuts to a set of join points and insert the advice at those points. In this thesis
we use the term Concern to indicate the behavior of a particular functionality
and the term Aspect to refer to the implementation of such functionality in an
aspect-oriented language. We use the term Base System and Base Program to
indicate the system to which the join points are resolved, these can be aspects
themselves.

In this thesis we show that aspect-orientation can indeed address these cross-
cutting concerns in the context of ASML. We also assess, using a controlled
experiment, the merits of an aspect based approach to tracing.

Composition Filters

In this thesis we will make extensive use of the Composition Filters approach.
The Composition Filters model has evolved from the first (published) version of
the Sina language in the late 1980s [AT8S8| [ABV92], to a version that supports
language independent composition of crosscutting concerns [Unial [BA05|. In this
chapter we use the language Compose™ as an implementation of the Composition
Filters model. A key design goal of the Composition Filters model has always
been to contribute to object-oriented and aspect-oriented programming languages
by improving their ability to compose.

The Composition Filters model can be applied to object-based systems. In
such a system, objects can send messages to each other, e.g. in the form of
method calls or events. In the Composition Filters model, these messages can
be filtered using filters. Each filter has a filter type, which defines the behavior
that should be executed if the filter accepts the message and the behavior that
should be executed if the filter rejects the message. The matching behavior
of a filter is specified by a sequence of filter expressions, which o?er a simple
declarative language for state and message matching. Filters defining related
functionality are grouped in so-called filter modules. Such filter modules can also
encapsulate some internal state or share state with other objects. To indicate
which filter modules should be applied (superimposed) to which objects, we use
superimposition selectors. A superimposition selector selects a set of classes
using a Prolog-based selector language. To the selected set of classes a certain
filter module is applied. The result is that all messages sent to and received
by all instances of those selected classes, are subjected to the filters within the
filter module. In chapter [5| we provide a more detailed explanation and code

P.E.A. Diirr 9



Section 1.3 How to introduce AOP in Industry?

examples.

1.2 How to introduce AOP in Industry?

Aspect Oriented Software Development (AOSD) has been promoted as a solution
to complexities introduced by crosscutting concerns. However, there is still no
(reported) wide-spread industrial adoption of Aspect Oriented Programming
(AOP). Several papers [CC04, WHMO07, \GSE™07, BCMS03|] have stated that
lack of industrial success stories and lack of experimental validation of the
claims are two important barriers to wide-spread adoption of AOP by industry.
For example, in the (Informal Workshop Proceedings of the) first Workshop on
Assessment of Aspect-Oriented Technologies |GSET07|, the following comment
was made. “Several workshop participants raised the issue that empirical evidence
based on industrial-strength applications is crucial to convince the industry to
adopt new AO techniques, and that there is a lack of such experiments in the
AOSD field.”. Similarly, in How to Convince Industry of AOP, by Wiese et. al.
[WHMOQT], the following quote can be found: “We see a kind of a vicious circle
here: Industry needs large scale success stories to be convinced. But, to produce
such success stories you have to apply AO in industrial projects.”. In chapter
we report on our experience in introducing AOP at ASML. The approach
we used is a step-by-step process that not only elicits and addresses functional
requirements, but also elicits quality requirements. In our experience, these
qualities are important to address, before AOP can be adopted by a company.
The process we used requires the following elements to be defined:

Context : The environment in which an AO solution should operate.

Aspects : The crosscutting concerns that are addressed by an AO solution.

Benefits : The expected gains when using an AO solution.

Worries : The possible problems, preventing the adoption of an AO solution.

Tooling : The previous four ingredients are requirements for the chosen tooling.
In some case one can reuse existing tooling, while in others one has to
develop new tooling or adjust existing ones.

Acceptance : Once an industrial prototype has been developed and all worries
are addressed, the company has to decide whether to adopt an AO solution
or not.

We have applied this process in two distinct projects, which are discussed in
detail in sections and

10 P.E.A. Diirr



Introduction Chapter 1

1.3 Does AOP reduce the Software Development
Effort?

As mentioned in the previous section, we do not only need success stories of
industrial adoption of AOP, but also controlled experiments that assess the
benefits of using AOP, for example in terms of development effort reduction and
error reduction. These two variables are some of the key benefits of AOP. In
chapter [3] we report on a controlled experiment to quantify an aspect-based
approach to Tracing. The experiment was performed in an industrial setting
at ASML. We believe that Tracing is a stereotypical aspect-oriented problem.
Participants (20 ASML developers) of the experiment were requested to carry
out five common and simple maintenance scenarios that affected Tracing. All
participants were asked to execute these scenarios with and without aspects. We
wanted to assess the benefits for developers while developing and maintaining
base code, so we did not include any scenarios that required the development or
maintenance of aspect code. In chapter [3] we explain the context, the design
and the results of the experiment in detail.

1.4 Behavioral Conflicts among Aspects

In chapter 4] we discuss the problem of behavioral interference among aspects.
Aspects can be developed independently and behave correct in isolation. However,
due to intended or unintended composition of aspects, undesired behavior can
emerge. We present one example conflict that we encountered at ASML. We also
show examples of other behavioral conflicts. To illustrate the kinds of conflicts
we focus on, we show an example here. Assume that there is a base system
that uses a Protocol to interact with other systems. Class Protocol has two
methods: one for transmitting data, sendData(String) and one for receiving data,
receiveData(String). Now imagine, that we would like to secure this protocol. To
achieve this, we encrypt all outgoing messages and decrypt all incoming messages.
We implement this as an encryption advice on the execution of method sendData.
Likewise, we superimpose a decryption advice on method receiveData. Next,
imagine a second aspect that traces all the methods and possible arguments.

These two advices are superimposed on the same join point, in this case Pro-
tocol.sendData. We only focus on join point Protocol.sendData, but a similar
situation presents itself for join point Protocol.receiveData. As the advices have
to be sequentially executed, there are two possible execution orders here. Now
assume that we want to ensure that no one accesses the data before it is encryp-

P.E.A. Diirr 11



Section 1.5 Limitations of Automated Reasoning

ted. This constraint is violated, if the two advices are ordered in such a way that
advice tracing is executed before advice encryption. We may end up with a log
file that contains “sensitive” information. The resulting situation is what we call
a behavioral conflict. Both orderings are correct and can be executed without
problems, but they yield different behavior, where one order is characterized as
a conflict.

In chapter [4, we present our approach for detecting behavioral conflicts that
is based on an abstraction of the behavior of advices in terms of operations
on resources. We verify that conflict rules, which reason about the possible
patterns of operations on resources, are not violated. We apply the resource-based
approach to Composition Filters in chapter [5| We show that the Composition
Filters model has several unique characteristics that enable (partially) automated
reasoning about filters.

1.5 Limitations of Automated Reasoning

Chapter [f] presents some constructs of Composition Filters that hinder manual
and automated reasoning. We explain why these constructs reduce the ability
to reason about filters, and we present extensions to Composition Filters to
overcome these restrictions. The chapter addresses three problems:

e In most AOP languages, one can apply advice either before, after or around
the execution of a join point. In Composition Filters this execution moment
is encapsulated inside the filter definitions. This hinders reasoning and
reuse, since the filters do not only encapsulate what behavior should be
executed, but also when this behavior is executed.

e The current set of predefined filter types are not atomic with respect to
the actions carried out. Most filters manipulate certain properties of the
message and affect the control flow.

e Composition Filters offers a declarative way for composing filters within a
filter set and filter modules. However, there is no way to compose filters
from either filter actions or from a sequence of other (atomic) filters.

Table [[.I]shows the problems, solutions and in which chapters these are discussed,
using a language, problem and solution pattern.

12 P.E.A. Diirr



Introduction

Chapter 1
Tabel 1.1: Thesis contents overview
[ Language [ Problem [ Solution [ Chap. |
Object-Oriented Crosscutting Concerns Aspect-Oriented EI
and Imperative Programming
Aspect-Oriented How to introduce Experiences in introducing
AOP in Industry? AOP at ASML
Aspect-Oriented Does AOP reduce the An Assessment of an Aspect-
Software Development Effort? based Approach to Tracing
Aspect-Oriented Behavioral Conflicts Behavioral Conflict 4] &
among Aspects Detection Tools 5
Composition Filters Limitations of Automated Improved Composition 6
Reasoning Filters Design

P.E.A. Diirr 13



Section 1.5 Limitations of Automated Reasoning

14 P.E.A. Diirr



Experiences in introducing
Aspect-Oriented
Programming at ASML

In this chapter we report on our experience on the introduction of aspect-oriented
programming (AOP) at ASML. This chapter should be considered as a necessary
step for adopting AOP at ASML, and creates the context for the next chapters.

We believe the presented experience can be useful for transferring AOP solutions
to practice. The approach we used is a step-by-step process which not only elicits
and addresses functional requirements, but also elicits quality requirements. In
our experience, these qualities are important to address, before AOP can be
adopted in industry.

This chapter is structured as follows. First we outline our approach, which
consists of several steps. Next we show our experience with the approach in two
projects. We conducted both projects at ASML. The first project addresses three
crosscutting concerns within the C code base. The second project addresses one
crosscutting concern within the .NET code base. Finally, we relate our work to
others and conclude.

P.E.A. Diirr 15



Section 2.1 Approach

2.1 Approach

First we have to know exactly what the problem is, we want to address. This
is imperative as all steps outlined are dependent on finding, quantifying and
addressing the problem. Also, convincing a company of a certain technology
requires showing them that they indeed have the problem you are trying to
address. Once the problem definition is clear we can commence our process.

Initial
Benefits

Requirements

Requirements Requirements

'S

Suit:
Too

Quantified
Benefits

Figuur 2.1: Overview of technology acceptance process

v
able
ling

We can distinguish four phases in our process (see figure . Initially, we have
some expected benefits. In most cases these benefits are expressed in papers that
cover the topic. Next, there are three main drivers for determining a suitable
tool or process. These three drivers are Context, Aspects and Worries. Once
a suitable tool or process is selected, we can quantify the benefits in the real
case. These might not be the same as the initial benefits, as the tool itself can
introduce some overhead. Finally, the tool or process has to be accepted. The

16 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

next sections discuss the benefits, drivers, tooling and acceptance in more detail.

In this chapter, we focus on the problem of crosscutting concerns. Chapter
detailed the symptoms and problems of crosscutting concerns. It is important
to realize that most companies already experience the symptoms and worries
related to crosscutting concerns. They may not label them as such, but use
terms such as idiom, coding conventions or coding guidelines.

2.1.1 Initial Benefits

The benefits are usually the key drivers to introduce a new technology. Sometimes
the benefits may not be immediately visible. The benefits of both case studies
included a better software structure and less code and . Especially,
the latter benefit translates into error, effort and lead-time reduction. Code
size reduction can serve as a primary driver to adopt AOP. There are studies,
e.g. [S.04], that show that even in rigorously tested and verified software, there
are still 3 bugs in every 1000 lines of code. Thus code size reduction increases
the quality of the code and decreases the number of bugs in the code. At this
point in our approach we can not yet verify these benefits since we have yet to
implement the solution.

2.1.2 Context

The first step in our process is to determine in which context the solution should
operate. This is important, as some companies use slightly different or modified
programming languages and libraries. The context is also the environment in
which the solution has to operate. The context helps to determine whether
certain concerns are inherent to the usage of a certain programming language,
domain, application or inherent to a previous design choice.

Some crosscutting concerns may be inherent to a specific programming language
or paradigm, an example is error propagation in C code. Other languages like
Java and .NET provide a native exception handling mechanism, with automated
exception propagation usually along the call stack.

2.1.3 Aspects

Once we know the details of the context, we can start to search for crosscutting
concerns. As mentioned previously, the chosen programming language or libraries

P.E.A. Diirr 17



Section 2.1 Approach

may already provide some indicators to crosscutting concerns. Also, investigating
software and architecture documentation and manuals can provide information
about possible crosscutting concerns.

In parallel one can use tooling that detects recurring patterns in the code.
In[BvDvETO05|, Bruntink et. al. propose a technique based on clone detection.
But even simpler tooling like grep and AspectBrowser [oC] can provide hints as
to which crosscutting concerns may be present.

Once a set of crosscutting concerns has been identified, we have to describe
these concerns clearly. All elements, dependencies and interactions must be
documented. These elements form part of the requirements for the language and
tooling.

Examples of these elements are: if the concern uses a library, there could
be dependencies to import, using or include statements. To be able to insert
these kind of statements, one must have a language that supports some sort
of introductions. Another example is the execution time of the behavior, e.g.
before or after the execution of a function.

All details should be documented carefully, as this directly drives the requirements
of the tooling and expressiveness of the aspect-oriented language. Also, from
a migration point of view, it is imperative to know exactly which elements are
required to replace the original functionality with a similar behavior. Exact
behavior migration may not always be feasible or desirable, for example there
could be many deviations from the idiom.

2.1.4 Worries

In this phase we elicit the worries that stakeholders express about the intro-
duction of the tooling or process. There are usually many roles and tasks in
an organization, all with different focus. Examples of these roles and tasks are:
test, integration, core and aspect developers, customer support, management,
hardware design, etc. The stakeholders responsible for these tasks and roles can
be impacted by the proposed tooling or process. Before these stakeholders accept
the solution, we first need to elicit their worries and address them accordingly.

Once all worries are collected, we need to prioritize them. Usually, there is
limited time and we have to trade-off certain quality requirements against each
other. Some of these quality requirements might even contradict each other. In
the case studies, we selected around seven worries. After discussions with the
stakeholders, we selected a set of worries that were deemed the most important.

18 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

After this selection and prioritization, we must address these worries. For some
worries it could be a matter of documenting or providing training. In other
projects, a change in the design of the tooling or process might be required.
Also, the costs of addressing the worries should be in balance with the expected
benefits. For example, in the first case AOP was incrementally introduced within
the company. The costs of the initial implementation was quite high compared to
the benefits of the approximately first ten users. However, since there was clear
potential to scale up to 600 developers, as such the initial costs were accepted.

2.1.5 Tooling

Once the precise requirements for the crosscutting concerns, context and worries
are documented, we can start to build new or use and possibly adapt existing
tooling which addresses these concerns. There are off-the-shelf aspect-oriented
solutions for most popular programming languages. These differ mostly in
granularity of join points, pointcut language and advice language. However,
there are cases for which no appropriate tooling exists and needs to be developed.
Other cases might simply require adaptation of the current tooling.

The tooling should not only be driven by functional requirements but also by
quality requirements, discussed in the previous step. It is advisable to execute
this phase in parallel with the previous phase, since some of the quality factors
may limit or alter your choice of tooling, or the design of new tooling.

The result of this phase should be a tool chain or prototype that can address the
selected crosscutting concerns on a representative component or set of source
files. This prototype should also address the key worries. The prototype is an
academic prototype and as such does not have to be industry strength yet.

2.1.6 Quantified Benefits

Once we have implemented the solution to problem we want to address, we can
quantify the benefits. The benefits will vary from project to project. Once the
context and impact of the selected crosscutting concerns are clear, we can start
to determine the benefits of modularizing these concerns. Lines of code is usually
a key indicator of the expected effort reduction. Also, talking to developers
about the problems they encounter can be insightful. In [BvDTO06], Bruntink et.
al. present the results of a study that tries to detect faults in manual exception
handling. They showed that, for one component, there were 2 errors per 1000
lines of code, w.r.t. error handling. This illustrates that even in boiler plate

P.E.A. Diirr 19



Section 2.2 Aspects in C

code, people make mistakes. Code size reduction thus reduces the number of
errors and can serve as a clear motivation to adopt AOP.

2.1.7 Acceptance

After all steps have been executed and there is a working prototype, we can
convince a company to use such a tool. If all worries are addressed and the
benefits are accepted by all stakeholders, there is no technical reason not to
accept the solution. The process presented in this thesis is no guarantee for
acceptance. However, it does try to cover the best conditions for acceptance.

A prototype implementation can serve as a guideline for a more robust version,
once the project is accepted. In some projects the developed prototype will
have a limited scope and possibly a limited feature set. For example, in the
first project we were unable to address all worries within the limited time frame,
but we did show that there is no fundamental problem. This was sufficient to
convince the company.

In the next two sections we present two examples of projects that we were
involved in at ASML. In both projects we introduced AOP to address crosscutting
concerns.

2.2 Aspects in C

The first project started in September of 2005, and the deadline for the project
was end of November of the same year. This short time frame forced us to
limit the scope of the tooling and the number of crosscutting concerns we could
address.

2.2.1 Initial Benefits

The expected benefits of an aspect-oriented approach are: statement reduction,
effort and lead-time reduction, a general solution to address crosscutting concerns
and a in general a better software structure. We cannot quantify these claims
at this point. Once we have an implementation we can determine the exact
statement reduction, for example.

20 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

2.2.2 Context

For this project, we used a component called CCIEL composed of 30458 lines of
source code, containing 6389 executable statements. The former definition of lines
is code is defined as Physical Lines of Code (PLOC). Whereas the latter definition
is defined as Logical Lines of Code (LLOC) This component was selected by
ASML, because it was considered representative in terms of crosscutting concerns.
In addition, component CC1 was restructured for better modularity, which would
increase our chances to identify the real crosscutting concerns, i.e. not the ones
due to the deterioration of the design of the component.

Listing [2.1]shows function get _roi from component CC1, this is the same function
as shown in listing Most of the functions contain more base functionality
than this one. As a result, the crosscutting concern overhead is not always as
extreme as in this example.

int get_roi(ROI_struct* ROI_ptr)
{
const char* func_name = "get_roi";
int result = 0K;
timing_handle timing_hdl = NULL;
TIMING_IN;
trace_in(mod_data.tr_handle, func_name);
if ((result == OK) && (ROI_ptr == null))
{
result = SYS_PARAMETER_ERROR;
SYS_Log(r, "f: Output parameter ROI_ptr is NULL.");

if (result == OK)
{
/* Retrieve current ROI */
*ROI_ptr = mod_data.ROI;
}
LC(result, GET_ROI_FAILED_obj);
trace_out (mod_data.tr_handle, func_name, result, ROI_ptr);
TIMING_OUT;
return result;

Listing 2.1: Example function in C

The details of listing [2.1] are explained in the next section. For now it suffices to
state that line 16 implements the base functionality of this function, the other
lines address different crosscutting concerns.

ASMLs C code base uses the Gnu Compiler Collection (GCC) as the main
programming environment. The C version of GCC is a modified version of the
ANSI-C programming language. The build environment uses ClearCase as a

1For confidentiality reasons, all identifiers in the text and in the code listings have been
altered. This does not affect the work presented here.

P.E.A. Diirr 21




Section 2.2 Aspects in C

source versioning system and a collection of make scripts. The proposed solution
had to integrate with these version control and build systems.

2.2.3 Aspects

To identify crosscutting concerns, we manually investigated source code and used
automatic tooling like grep and AspectBrowser [oC|. Some of these concerns were
already mentioned in the Software Architecture Manual of ASML. We identified
six crosscutting concerns in component CC1l. Almost all of these crosscutting
concerns could be identified in listing [2.1] These crosscutting concerns were:

Reflective Information (line 3): This concern provides meta information
about the function, file or component, in this case the name of the function.
There are other kinds of information, like build target and component
name.

Error Handling (lines 1, 4, 8, 10, 11, 13, 18 and 21): In the C programming
language, one has to manually implement exception handling, since C does
not feature a native exception handling mechanism. In most cases this is
done through the use of an integer return value. A value not equal to zero
indicates a failure, otherwise success.

Profiling (lines 5, 6 and 20): Profiling is used to measure the execution time of
functions. This information is used to determine performance bottlenecks.

Parameter Tracing (lines 7 and 19): Tracing ensures that the value of all
parameters is written to a log file, this includes function arguments and
the return value.

Parameter Checking (lines 8 to 12): This is an implementation of the Design
by Contract methodology [JM97]. This concerns checks for null pointers
and prevents potential memory leaks.

Memory Handling (not shown in the listing): C and its derivatives do not
feature automatic memory management. As such , one has to explicitly
allocate and free memory at the appropriate locations in the code.

Out of the identified crosscutting concerns, we only addressed concerns Parameter
Tracing, Profiling, and Reflective Information. These three crosscutting concerns
already made up 28% LLOC, and realizing them using aspects was feasible within
our limited time frame. We will now detail each of the three selected concerns.
These concerns are not component-specific, but occur in all components.

22 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

2.2.3.1 Concern “Profiling”

Figure illustrates the impact of concern Profiling on component CC1. The
figure has been created using AspectBrowser[oC].

(& ala zd

Hll

L]

Figuur 2.2: Visualization of Profiling code in component CC1

Figure visualizes component CC1 and the impact of concern Profiling. Each
vertical bar in the figure represents a file in component CC1. The height of each
vertical bar relates to the size of the file, some large files have a scroll bar at
the right side of the bar. Each shaded horizontal gray line indicates a line in a
source file that deals with, in this case, concern Profiling.

Purpose: The goal of the concern is to measure the execution time of each
function in the component. This information is used to determine potential
performance bottlenecks and to provide indications which functions to consider
for optimization.

Design: There is a library that implements functionality to start and stop
profiling. This library also maintains a database that stores the execution time of
functions. Each function in the component must call the start (line 6) and stop
(line 20) functions at the appropriate locations, i.e. after declaration of the local
variables and just before returning to the caller. The start and stop functions

P.E.A. Diirr 23



Section 2.2 Aspects in C

are defined in two macros called TIMING _IN (line 6) and TIMING _OUT (line
20). These start and stop functions must be called with a variable that identifies
the function, this is a so-called timing handler (line 5).

Example: Lines 5, 6 and 20 of listing [2.I] show an example snippet of concern
Profiling.

Implications: The calls to the profiling library and the corresponding initiali-
zation and registration of the handler are crosscutting the component.

Impact: This concern accounts for 3% of PLOC and 14% of LLOC of that
component.

Implementation details: The following 5 actions are required to successfully
implement concern Profiling. These are thus functional requirements.

e Introduce a global profiling variable or handler in the structure which
contains all the general information about this file or module. A module is
considered the same as a file.

e In the start-up function of the module, register this module to the profiling
library, using the global profiling handler.

e Introduce a local profiling handler in each function of the module.

e Call a function to start the profiler (TIMING IN) at the start of the
function with the local profiling handler.

e Call a function to stop the profiler (TIMING OUT) at the end of the
function with the local profiling handler.

2.2.3.2 Concern “Parameter Tracing”

Figure visualizes component CC1l and the impact of concern Parameter
Tracing.

Purpose: The goal of the concern is to trace the values of the parameters of
all functions in component CC1l. The parameters can either be input, output or
both. Input parameters are only read in a function, whereas output parameters
are only written in a function. Input and output parameters are both read and
written in a function. At the end of the function the return value must be traced.
The return value is a special case of output parameter.

Design: Input parameters must be traced at the start of a function, using
function trace in (line 7). Output parameters must be traced at the end of
a function, using function trace out (line 19). Input and output parameters
should be traced at both locations. The return value must also be traced at
the end of a function. There is a library that provides functions with variable

24 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

zd

-

]
T
t
N
,
TT1
T

,
{
ol

.

Figuur 2.3: Visualization of Tracing code in component CC1

arguments to implement trace in and trace out.

Example: Lines 7 and 19 of listing show an example of concern Parameter
Tracing.

Implications: The calls to the tracing library and the corresponding initializa-
tion and registration of the handler are crosscutting the component.

Impact: This concern accounts for 2% of PLOC and 8% of LLOC. The actual
impact can be larger, since this component does not trace all functions.

Implementation details: The following 3 actions are needed to successfully
implement concern Tracing. These are thus requirements for our solution.

e Introduce a global tracing handler in the main module struct. This is
similar to concern Profiling.
e For functions without arguments;

— At the start of a function, call function trace in of the tracing library
using the global tracing handler and the name of the function.

— At the end of a function, call function trace out of the tracing library
using the global tracing handler, the name of the function and the
return value of the function.

e For functions with arguments;

P.E.A. Diirr 25



Section 2.2 Aspects in C

— At the start of a function, call function trace in of the tracing library
using the global tracing handler, the name of the function and any
arguments that are read.

— At the end of a function, call function trace out of the tracing
library using the global tracing handler, the name of the function,
any arguments that have been written and the return value of the
function.

To automatically determine which parameters are input, output or both, we
have to do detailed control and data flow analysis of each function, since we
have to determine which parameters are read and which are written. We did
not do this in this project, due to limited time. However, the theory behind
this is well known, and there are tools which provide this information, such as
CodeSurfer[Gral. We have chosen to use annotations attached to functions and
arguments to provide the necessary information.

2.2.3.3 Concern “Reflective Information”

Figure visualizes component CC1 and the impact of concern Reflective Infor-
mation.

oo e zd

INNNERERN

Figuur 2.4: Visualization of Reflective Information code in component CC1

26 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

Purpose: The goal of the concern is to provide meta information to all functions
in component CC1. For this project we were only concerned with the name of
the function.

Design: A local constant contains the name of the function. This could also be
generated at compile time, using, for example, the construct ~ FUNCTION _
of GCC.

Example: Line 3 of listing [2.1] shows an example of concern Reflective Informati-
on.

Implications: This concern is relatively trivial. However, there are several
reasons why we also addressed this concern. Firstly, keeping this kind of meta
information consistent with the actual implementation is hard. For example if
the file is relocated to a new component, we have to update this information.
Secondly, if we want to introduce additional meta information, we can do this in
one single location.

Impact: This concern accounts for 1% of PLOC and 5% of LLOC.

Implementation details: The following is required to successfully implement
concern Reflective Information:

e Introduce a local constant that holds the name of the function.

2.2.3.4 Composition of Concerns

The three concerns are all applied to all functions within the same component.
As such we need to determine if the order of application matters, and if so in
which order should these concerns be applied. Concern Reflective Information is
order independent of the other two concerns, and as such can be woven in before
or after the other two concerns. The execution order of concerns Profiling and
Tracing does affect the behavior. If concern Profiling is executed before concern
Tracing we will also measure the time it takes to trace this function. If we apply
the two concerns the other way around, we will measure the execution time of
a function without tracing. ASML expressed the desire to include tracing in
the execution time of a function. This resulted in the requirement to be able to
specify the order of concerns.

P.E.A. Diirr 27



Section 2.2 Aspects in C

2.2.4 Worries

This section describes some of the worries that we elicited from several stakehol-
ders. Although we elicited these in an ASML context, we believe that they are
applicable for many organizations.

2.2.4.1 Migration

ASML has a lot of legacy code, actually up to 15 million lines of code. Obvious-
ly, it would be nice to experience the benefits of AOP not only for new code,
but also for legacy code. This requires a transformation from the old manual
implementation to the new one. Concerns Profiling and Reflective Information
were implemented on separate lines in the code and were easy to identify with
“simple” tooling. Migrating these concerns involves removing the lines. However,
migrating concern Tracing was more difficult, because determining whether to
trace a variable at the start or end of a function relies on the parameters input
and output specification. We implemented this by annotating which parame-
ters are input, output or both. Automatically generating these annotations
requires control flow analysis and read-write analysis of the parameters. Also,
in [BvyDDT07], Bruntink et. al. showed that there is a lot of variation in the
implementation of tracing, e.g. some components have 10 different ways of
tracing. This variation hinders automatic migration. Manually migrating the
concerns is possible, albeit laborious. We investigated automatic migration, but
it turned out to be impractical. This worry was addressed by only applying our
solution to newly developed code. This was not considered a major issue as for
this project a lot of components were rewritten.

2.2.4.2 Avalilability of the tooling and maturity of the process

Our solution was implemented in a tool called WeaveC, see section [2.2.5] WeaveC
has been developed as a prototype. Clearly, WeaveC had to mature to reach
industry strength. This required (substantial) investments of money and people.
The use of AOP requires a seamless integration into the development and build
process. In an industrial development process there are usually many specific
developer roles, with different responsibilities. These roles should remain clearly
separated even in the presence of aspects. If one uses AOP, there will be
additional roles in the development life-cycle. Most notably, an aspect developer,
a weave tool maintainer, and an integrator. The latter is responsible for the
correct behavior of the entire system. If problems arise due to the composition

28 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

of aspects, we have to have tooling that verifies this composition. This problem
is addressed in chapter

Figure [2.5] depicts the current build process.

C Files Executables

el

Figuur 2.5: Build process without AOP

(@)
o
=
o
@)
@
<
o
(o]
el
0]
=

Figure 2.5 shows a set of C files developed and maintained by developers. These
are compiled using GCC and result in a set of executables. Figure 2.6 depicts
the build process with AOP.

i®} C Files Preprocessed

@ C Files

2 r Preprocess r

< |

w I I Executables

=y = l $|:I$ l Weave Woven

c s GCC Clles oo r'
[

o ol oL o i

8 Spec. I GCC B

- I WeaveC

= Irl

@

<

g .

S

S |

o)

Figuur 2.6: Build process with AOP

Figure shows that we now have two sets of source files: a set of C files that
are developed and maintained by core developers, and a set of aspect files that
are maintained by aspect developers. The first step is to pre-process the C
files, this is a requirement of WeaveC. The preprocessed C files and the aspect
specifications are inputs for WeaveC. The result is a set of woven C files that
have the combined functionality of both the core and aspect code. These are
compiled using GCC, and the result is a set of executables. The semi-transparent
shaded files in figure [2:6] are intermediate results.

P.E.A. Diirr 29



Section 2.2 Aspects in C

2.2.4.3 Ability to control the application of aspects

It should be possible to control the application of aspects for two reasons. Firstly,
for error purposes; if the aspect code contains a bug, the system should still be
able to compile without a specific aspect. This is only possible if there are no
base-aspect or aspect-aspect dependencies. For example, profiling information is
typically not used during the execution of the program, but error handling can
impact the execution of the program.

Secondly, to control aspect application. For example, some functions can not be
traced by design, since these functions are active before the tracing framework
is active. Other methods should not be traced due to performance issues. Some
parameter types need to be traced differently. In order to facilitate this can we
use annotations to control the weaver. In the prototype we only implemented
an annotation that turned tracing off for a specific function.

2.2.4.4 TUnderstandability

ASML uses the C programming language, hence adopting AOP is a change of
paradigm. This was considered a possible worry. This could be addressed by a
clear separation between aspect developers and core developers. Aspect develo-
pers will need be trained in writing and maintaining aspects. Core developers
will only have to be trained how to control the weaving process using annotations.
Core developers can still see the result of weaving, since there is an intermediate
source file.

2.2.4.5 Compile-time Performance

In large systems with many developers and many dependencies between compo-
nents, the build time can be quite substantial. One of the key problems with
aspects is that the impact of the aspect can be quite high in case of a large
pointcut.

The prototype we developed introduced a 100% performance penalty on the
build time. This did not reach the targeted 30% overhead. However, as there
were no optimization efforts made on the prototype, we expect that the build
overhead would have roughly matched the requirement.

30 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

2.2.4.6 Run-time performance

As the throughput at run-time must be guaranteed, a run-time performance
penalty was not acceptable. A static weaving approach was implemented instead
of more dynamic types of weaving. WeaveC resolves all pointcuts and advices
statically. As such, no run-time penalty is introduced by WeaveC itself. Run-time
penalties are purely caused by the aspects themselves.

2.2.4.7 Ability to Debug

Debugging a program with aspects is considered to be an issue. Especially, if an
error occurs, who is responsible for fixing this error? First of all, this requires
determining whether the error is in the aspect code, in the core code or in the
composition of aspect with core code. Core developers indicated that they did
not want to see the woven code. As such, they may not be aware of which
aspects are applied to their code.

We explored the following three options for debugging:

1. Debug with the inserted code visible. This may surprise core developers,
since these may not be aware of aspects and obfuscates the base code.

2. Debug with the inserted code hidden, similar to the way macros are
handled.

3. Debug normally and jump to the aspect definition while executing the
inserted code.

A preference for the second option was expressed by the stakeholders, such as
architects.

One implication of using static weaving was that we broke the standard debugging
facility of GCC, called GNU Debugger (GDB). Since, our solution introduced
aspect code, the line directives of the original program are no longer valid. We
did not address this issue in our prototype, but we did show that it was feasible
to implement each of the three options, using adjusted line directives.

2.2.5 Tooling

In this project we developed an improved version of WeaveC[Unib]. This is a
source-to-source weaver for the C programming language, and it was developed at
an earlier time in the ldeals project. It uses an XML input format and supports
the following join points and introductions:

P.E.A. Diirr 31



T W N

= e e
G WN R OO U

16

v}

NN N NN
10 ORI =

[\
~

Section 2.2 Aspects in C

Function call

Function execution

Local variable introduction in a function
Global variable introduction in a file
Field introduction in a global structure

The first two elements are join points, where one can apply before and after advice.
These join points and introductions were sufficient to address Tracing, Profiling
and Reflective Information. The prototype implementation uses a grammar which
can parse only preprocessed C code. There is also limited support for annotations
and plug-ins to add more complex advice. Plug-ins are written as Java classes
and have access to the full program model and weaving library.

To illustrate how one can write aspects using WeaveC, we show the implementa-
tion of concern Profiling in listing

<?xml version="1.0" encoding="UTF-8"7>
<aspect id="ProfilingConcern">
<pointcut id="generic profiling">
<elements files="*.c" data=".*" identifier="function"/>
<advices>
<adviceapplication id="profiling_handler_introduction" type="before"/>
<adviceapplication id="start_profiler" type="before"/>
<adviceapplication id="end_profiler" type="after"/>
</advices>
</pointcut>
<pointcut id="register profiler module">
<elements files="*.c" data="}MODULE_NAME_UPPER),_startup" identifier="function"/>
<advices>
<adviceapplication id="profiler_module_registration" type="before"/>
</advices>
</pointcut>
<pointcut id="add profiler handle to module struct">
<elements files="*.c" data="%MODULE_NAME_UPPERY,_module_data_struct" identifier="struct"/
>
<advices>
<adviceapplication id="profiler_handler_addition" type="before"/>
</advices>
</pointcut>
<advice id="profiling_handler_introduction" type="function_variable_introduction">
<code>
<I[CDATAI Profiler_handle timing_hdl = NULL; ]1]>
</code>
</advice>
<advice id="start_profiler" type="execution" priority="10">
<code>
<I[CDATATI CC_start_profiler(func_timing_hdl, %MODULE_NAME}_mod_data.ti_handle,
func_name, &timing_hdl); 11>
</code>
</advice>
<advice id="end_profiler" type="execution" priority="10">
<code>
<I[CDATAT[ CC_stop_profiler(func_timing_hdl, %MODULE_NAME), mod_data.ti_handle,
func_name, &timing_hdl); 11>
</code>
</advice>

32 P.E.A. Diirr




16

Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

<advice id="profiler_module_registration" type="execution" priority="10">
<code>
<I[CDATA[
if (result == OK)
{
result = CC_register_module("%MODULE_NAME_UPPERY%", & %MODULE_NAMEY,_mod_data.
ti_handle);
¥
11>
</code>
</advice>
<advice id="profiler_handler_addition" type="structure_introduction">
<code>
<I[CDATAT[ CC_module_handle ti_handle; ]]>
</code>
</advice>
</aspect>

Listing 2.2: Concern Profiling in WeaveC

Listing defines aspect Profiling. It defines three pointcuts:

generic profiling (lines 3 to 10): this selects (line 4) all functions in all C
files. Selection is based on regular expressions. To the join points selected
by this pointcut, we apply three advices:
profiling handler introduction: this advice is specified at lines 23
to 27, and inserts a local profiling handler in the functions.

start profiler : this advice is specified at lines 28 to 32, and is applied
before the execution of the functions. The result is that a call to
function CC_start_profiler (line 30) is inserted just after the variable
declarations of each function.

end profiler : this advice is specified at lines 33 to 37, and is applied
before the execution of the functions. The result is that a call to
function CC_stop profiler (line 35) is inserted just before returning
to the caller in the functions.

register profiler module (lines 11 to 16): this selects (line 12) all func-
tions with the name %MODULE NAME UPPER% _startup. %MODU-
LE_NAME_UPPER% is a internal variable that is substituted for the
file name in uppercase characters. To the resulting join points, we apply
advice profiler _module registration, defined at lines 38 to 47. The result
is that before the execution of each startup function we call function
CC_register _module (line 43).

add profiler handle to module struct (lines 17 to 22): this selects
(line 18) all structures named %MODULE _NAME_UPPER% _
module data_struct. To this structure we add a field ti__handle of type
CC_module handle (line 50).

P.E.A. Diirr 33




Section 2.2 Aspects in C

We have implemented rudimentary support of advice ordering at shared join
points. Each advice has an optional priority (e.g. line 28), advices with higher
priorities are woven before lower priority advices. This mechanism was sufficient
for the case study. In general a more detailed and fine-grained ordering mechanism
might be necessary.

2.2.6 Quantified Benefits

This section explains the results we achieved with our project. Most of these
are considered to be the key motivations for using AOP. We discuss these in the
context of the project.

First, we show the combined impact of the three concerns on the component

(figure 2.7).

000 2d

|
|
|
|
||

[l

[INNNRENREN
I
|

T
T
T

|

|

T
I

LI E LT

[INNnnnnnn
I

[TTTTTT

[TT
(11

ok t

LI T T

T
s
[
[§

MTTTIIm I I

-
[

» i
[}

Figuur 2.7: Visualization of three aspects in component CC1

Even though these three concerns are simple, they do have a large impact on the
base code. In this case 6% PLOC and 27% LLOC. One quarter of the statements
that implement this component corresponds to one of these three concerns.

34 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

2.2.6.1 Statement reduction

As stated previously, our project was carried out on a component of about 6K
LLOC. In our project, we achieved a reduction of 26% of LLOC, compared to the
original code. The tracing annotations and the aspect definition added 1% LLOC
to the code. We could achieve such a dramatic reduction (96%) of the code
related to aspects, since we addressed three highly homogenous aspects. In our
project, we only implemented three aspects. If we would also address parameter
checking and error handling, the reduction would be up to 50%. However, the
migration path, especially for the error handling concern, is more difficult as the
error handling code is highly tangled with the base code.

2.2.6.2 Effort and Lead time reduction

We used an intermediate COnstructive COst MOdel (CoCoMo) II model, to
estimate the reduction of effort and lead time. This model was created and
instantiated with the details of ASML by the Ideals liaison officer. The results
show about 7% effort reduction and about 3% lead time reduction. This may
not seem that much, but our solution can be scaled up to around 600 developers
at ASML. Hence a substantial amount of person years reduction can be achieved.
Chapter [3] quantifies the benefits in terms of effort and error reduction, using a
controlled experiment. There is a discrepancy between the effort reduction (7%)
and the statement reduction (26%). We cannot quantify this discrepancy, but
this may be caused by developers that may spend more time developing the core
functionality, writing other crosscutting concern code or other tasks.

2.2.6.3 Generality of solution

The solution we proposed was not specific to the current component. We also
applied concern Profiling to a component without profiling, within 10 minutes.
We also demonstrated that one could easily change an aspect definition to adapt
or implement new functionality. This clearly showed that the tooling was indeed
generic and not specific to either a component or set of aspects.

2.2.6.4 Local deviations

The solution we proposed still allows for local deviations. For example, there
are functions which are called often and for these functions tracing is removed.
There are also low level components which do not perform tracing, as these are

P.E.A. Diirr 35



Section 2.3 Aspects in .NET

active before the logging and tracing component is initiated. Although we do
not encourage these deviations, they can be implemented with annotations and
an appropriate pointcut description language.

2.2.6.5 Better software structure

A better software structure has been stated as one of the primary benefits of
AOP, and separation of concerns in general (J[LB05, IGSFT05, \GBET07]|). The
pointcut and advice mechanisms provide an easy way to deal with changing
coding guidelines. This flexibility, in advice, could partly be achieved in the
original implementation through the use of macros in C. However, macros do
not offer a mechanism comparable to superimposition, so that one always has
to explicitly import macro libraries in each file and place macro calls in the
appropriate locations.

2.2.7 Acceptance

At the end of this project, we had a meeting with a group leader and several
developers. We demonstrated the prototype and, using a presentation, discussed
all details, benefits and worries. These were the worries that they themselves
had expressed, they saw the benefits and were confident that all worries were
addressed accordingly.

The prototype was accepted, initially only for concern Tracing and a transfer
project was started. This transfer project developed the tooling from scratch.
This was needed as the prototype lacked the ability to perform control and
data flow analysis. Also, there were optimizations possible that did not fit into
the design of the prototype. The development of the tooling required almost a
year and required around 4 persons. In January 2007, the first source files were
automatically woven. In April 2007, the first components could use the tooling.
In November 2007, 42 components used the weaver, to weave 1007 source files
and aspect Tracing was used.

2.3 Aspects in .NET

The next project we conducted, was on a different system at ASML. This was a
new system that was developed using the Microsoft .NET framework [Micb| and
mostly used the C# programming language [Mical. This was a new approach for

36 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

the company, as all previous systems were built using C. We were approached
by the architect of the project, whether we could help them in preventing the
problems with crosscutting concerns that had plagued the C based system. They
realized that they now had the opportunity to develop differently from the start,
thus avoiding migration problems later. However, they had no idea about what
kind of tooling was available.

2.3.1 Initial Benefits

Similar to section 2.2.1] the expected benefits of an aspect-oriented approach
are: statement reduction, effort and lead-time reduction, a general solution to
crosscutting concerns and a in general a better software structure. We cannot
quantify these claims at this point. Once we have an implementation we can
determine the exact statement reduction, for example.

2.3.2 Context

The new system was developed using the .NET framework, version 2. Visual
Studio 2005 |Micc| and MSBuild [Micd] were used as development environment.
In listing 2.3] we provide here an example method found in this new system.

DU W N -

S © 00

public void PickFromFoup(Port fromPortId, int fromSlotNumber)

¢ Logging.TraceMethodEntry (Constants. ComponentName, fromPortId, fromSlotNumber) ;
checkSlotNumber (fromSlotNumber) ;
ngef‘éx;l.FaceStation (m_WaferStageStation, m_WaferStageSlot, m_UnloadGripper) ;
Logging.TraceMethodExit (Constants.ComponentName, null);

}

Listing 2.3: Example method in C#

The details of the method will be elaborated upon in the next section. One can
see that the method has two trace statements (lines 3 and 9). Also notice, that
the error handling code is no longer scattered and tangled in this method, since
C# offers a native exception handling mechanism.

2.3.3 Aspects

The .NET framework offers a native exception handling mechanism. Therefore,
we were not expecting error handling to have a major impact on the code base.

P.E.A. Diirr 37




Section 2.3 Aspects in .NET

We received a copy of the source code and we investigated this. The only
crosscutting concern we found was:

Parameter Tracing (lines 3 and 9 in listing [2.3): Tracing ensures that the
value of all parameters is written to a log file, which includes method
arguments and the return value.

This concern was also present in the previous project. We do expect more
crosscutting concerns once more code is developed, but at the time of the project,
concern Tracing had the highest priority. Concern Profiling was mentioned as a
likely candidate. The architect of the system stated that they wanted general
purpose tooling, and not tracing-specific tooling, since he was aware that in the
future new crosscutting concerns could be addressed using the same tooling.

2.3.3.1 Concern ‘“Parameter Tracing”

The definition of concern Parameter Tracing, or Tracing for short, is almost exactly
the same as in the previous project (see section [2.2.3.2)).

Purpose: The goal of the concern is to trace the values of the formal parameters
of all methods within a certain namespace or package. Tracing should be turned
on and off for specific components at run-time.

Design: Input arguments should be traced at the start of a method, using me-
thod Logging. TraceMethodEntry (line 3). Output arguments and the return value
should be traced at the end of a method, using method Logging. TraceMethodExit
(line 9). Input and output arguments should be traced at both location. There
was a library that provided methods with variable arguments to implement Trace-
MethodEntry and TraceMethodExit. This design of tracing can not be satisfactory
implemented using inheritance, since it would still require inserting code at the
start and end of each method as well as modifying one or more common super
classes.

Example: Lines 3 and 9 of listing [2.3] show an example snippet of concern
Tracing.

Implications: The calls to the tracing library are crosscutting the component.

Impact: The impact is unknown, since this is newly developed system. However,
each class has to import the tracing library and call the tracing library twice in
each method.

Implementation details: The following 2 elements are required to successfully
implement concern Tracing. These are thus requirements for our solution.

38 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

e Trace the name of the component and any arguments that have the implicit
in specifier at the start of a method.

e Trace the name of the component, any arguments that are have the explicit
out specifier and the return value at the end of a method.

C+# has explicit support for input and output parameters, using keywords in
and out respectively, and to our knowledge these were used consistently and
correctly. This property can be queried using reflection, as such there was no
need for annotations, as used in the WeaveC project.

2.3.4 Worries

We now discuss the worries that were expressed by the stakeholders of the project.
Some of these worries are shared with the previous case. We matured the tooling
and addressed the worries detailed in the rest of this section, with funding from
ASML. This project was called StarLight. StarLight has been released on the
Compose* SourceForge website: http://composestar.sourceforge.netl

2.3.4.1 Migration

Migration was not considered an issue, as the system was newly developed. There
were already some crosscutting tracing calls in the source of the application.
However, these could be identified and removed easily using simple tooling.

2.3.4.2 Availability and maturity of tooling and process

As mentioned previously, Compose®*.NET was developed as an academic proto-
type for research purposes. The focus therefore had not been on robustness and
maturity. With funding from ASML we were able to create robust and mature
tooling. We verified the robustness by weaving on a test version of the new
system. All tasks and tests succeeded, and a huge trace file was generated.

2.3.4.3 Ability to control the application of aspects

Currently only aspect Tracing is implemented and this aspect can be removed in
case of problems. However, this does affect diagnostics capabilities in the field.
As Compose* already supported annotations we could easily enable developers
to add annotations that prevented weaving of tracing code or other aspects.

P.E.A. Diirr 39


http://composestar.sourceforge.net

Section 2.3 Aspects in .NET

For example, when we tested the system in simulation mode, there was a huge
performance hit of around 600%. We investigated this further and found out
that it was solely caused by one library. This was an image processing library
that performed a large number of complex mathematical operations on a large
20 Mega Pixel image. However, the implementation of the image processing
library was such that all get and set access of each individual pixel was traced.
This produced a staggering amount of mostly useless tracing information. We
therefore introduced an annotation that could be attached to a .NET assembly
(library) and that prevented weaving on that assembly.

2.3.4.4 .NET Framework Version 2 Compatibility

The original implementation of Compose* only supported .NET Framework
version 1. Version 2 introduced numerous enhancements, such as generics, to the
intermediate language. As a result, our original version did not work with code
from version 2. This thus required redesigning and re-implementing parts of the
Compose™ tool set. However, this was required any way, since we switched from
an interpreter based implementation to an in-lining implementation (see section

B3,

2.3.4.5 Compile-time Performance

The requirement for the compile-time performance was at most 100% extra build
time overhead. At the end of the project we had achieved an overhead of around
65%, with clear potential to reduce this even further. We have chosen to increase
the compile-time overhead slightly to gain more performance at runtime. We
evaluated all superimpositions and filters as much as possible statically. We only
inject code relating to filter actions which can be executed in a specific method.
This requires more analysis and thus more compile time. However, the runtime
overhead is decreased.

2.3.4.6 Run-time Performance

The performance of the machine at run time was only allowed to be decreased
by at most 10%. We reduced the performance of the machine by 0.9%, when
not tracing and were faster than the manually inserted tracing statements, when
tracing was enabled for a specific component. We analyzed the base code in
detail and stored this analysis. This original implementation used reflection

40 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

to gather input and output parameter specifications. The result was that our
tracing implementation was 65% faster than the original tracing implementation.

Conditional Superimposition: Although we had adequate performance in
our testing environment, when we tested the system on the actual machine, we
found that implementation was 60% slower when tracing was disabled. This was
caused by the repeated construction of context information that was required to
determine whether to trace or not. Building up this context takes a substantial
amount of time. However, only after creating the context, the condition that
checked whether to trace or not was evaluated. We solved this problem by
implementing a new feature in Compose*, called conditional superimposition.
Conditions that are specified in such a construct are evaluated before the context
object is created. As such they only have access to a limited set of context
information. With this extra feature we reached the 0.9% performance reduction.

2.3.4.7 Ability to Debug

As with the C project, we limited the ability to debug, since we changed the
intermediate language. We had to update the corresponding Program Debug
DataBase(PDB) files to reflect this change. We used the CECIL [Eva) framework
for manipulating the IL code. The latest version of the framework also updates
the debug database to reflect the changes in the intermediate language. This
restored debugging of the original code and allowed debugging of the filter actions.
Debugging of the concern code itself was not supported, but not required either.

2.3.4.8 Integration within the Development Environment

ASML uses Visual Studio and MSBuild for developing the system in this project.
To ensure a minimal learning curve, a tight integration with this environment
was required. Figure [2.§ shows the about screen of Visual Studio 2005. The last
item in the installed features is StarLight.

Our Visual Studio integration provides several features:

e Compose* language services, supporting keywords, limited command com-
pletion and early syntax error detection.

e A Compose* project type that can be used to define a project with filters.
All referenced libraries of this project will be subjected to weaving.

e MSBuild integration. Compose* uses MSBuild for incremental compilation
and for the compilation process itself.

P.E.A. Diirr 41



Section 2.3 Aspects in .NET

21
« Visual Studio 2005

Professional Edition

Microsoft Viswal Studio 2005 Microsoft NET Framework.
Wersion 8.0.50727.42 (RTM.0S0727-4200) Wersion 2,0.50727
#® 2005 Microsaft Corparation. # 2005 Marosoft Corporation.
Al rights reserved. Al rights reserved,
A ¥SIP license is requined bo use this version of Microsoft Visual Studio,
Installed products
_coto |
Microsoft Visusl 1 2005 77626-005-0000007-4 1220
o ar Starlight 1.0
Product details:
E Wisudl Studio Integration of Composestar StarLight Project System =|
=
El
Warning: This computer program is probecked by copyright law and international |II
treaties, Unauthorized reproduction or distribution of this program, or arry portion of
i, may result in severe chl and criminal penaties, and wil be prosecuted to the Info ]
e extent possble undar the las, ystem

Figuur 2.8: About screen of Visual Studio 2005

Especially the first item was important, since none of the developers was familiar
with the Compose* language or AOP.

2.3.5 Tooling

We used Compose*.NET [Unia] as a starting point for the project. Compose*
has been developed at the University of Twente. It is an implementation of
the Composition Filters model. At the time the project started, we had an
academic prototype implementation based on a run time interpreter suitable for
.NET framework version 1. Compose* features a lot of advanced features and
analysis tools. We used Compose* to demonstrate our solution on their code.
The developers were immediately convinced of its functionality and potential.

Listing [2.4] presents the implementation of concern Tracing.

concern TracingConcern
{
filtermodule TracingModule
{
inputfilters
trace : Tracing = { [*.*] }

}
superimposition
conditions

shouldTrace : TracingLib.Tracer.ShouldTraceComponent;
selectors

42 P.E.A. Diirr




Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

14 traceClasses = { Class | isClass(Class), not(classHasAnnotation(Class, Annotation)),
isAnnotationWithName (Annotation, ’NoTrace’) };

15 filtermodules

16 shouldTrace => traceClasses <- TracingModule;

17 }

18|}

Listing 2.4: Implementation of concern Tracing in StarLight

Listing defines concern TracingConcern. This has a single filter module (li-
nes 3 to 7) and a superimposition specification (lines 9 to 17). Filter module
TracingModule declares only one input filter, called trace of type Tracing (lines
5 and 6). The exact implementation of filter type Tracing is not shown here.
Filter trace accepts all messages, and will trace these accordingly. We superim-
pose filter module TracingModule on all classes that are not annotated with a
NoTrace annotation (lines 14 and 16). We only superimpose the filter module
(line 16), if condition shouldTrace is true, this condition is a call to method
TracingLib. Tracer.Should TraceComponent (line 12).

2.3.6 Quantified Benefits

We now discuss the benefits of our AOP solution. These are similar to the
previous project. We do not have as detailed information about the system as
in the other project though, since most of the code was still being developed.

2.3.6.1 Potential Statement reduction

This system was newly developed, and as such we had no idea about the possible
amount of tracing code that would have been manually inserted. It is hard to
make an estimation, but we estimate around 4% LLOC. As this 4% does not
have to be written, the developers can spend their time on other parts of the
code.

2.3.6.2 Effort and Lead time reduction

We did not calculate the effort and lead time reduction for this specific system.
We expect that the results are similar to those results gained in the previous
project. The effort reduction and lead time reduction will be smaller, since we
only address one concern instead of three. Therefore, we expect about 2-3%
effort reduction and about 1-2% lead time reduction. Again, this reduction scales
up to all software developers of this system, currently around 60.

P.E.A. Diirr 43



Section 2.4 Related Work

2.3.6.3 Generality of solution

We used an already existing tool, Compose* to implement the solution. This is
a general purpose and extensible software composition environment that also
supports AOP. We showed that we could also profile methods using Compose*.

2.3.6.4 Local deviations

Compose* supports the usage of annotations. This enabled the developers to
turn off tracing or even weaving for certain components or external libraries.
This was primarily required to achieve better performance.

2.3.6.5 Better software structure

This benefit has been stated as one of the primary benefits of AOP and separation
of concerns in general. The pointcut and advice mechanisms provide an easy
way to deal with changing coding guidelines or changes in the tracing idiom.
This project also showed that even with a modern language like C#, there are
still crosscutting concerns that are not adequately addressed.

2.3.7 Acceptance

At the beginning of 2007, we delivered a version of StarLight that addressed all
worries. At that time though, there were problems with the core functionality of
the machine that required more immediate attention. As such it is still unclear
whether ASML will adopt StarLight. ASML has continued to express interest
in the tooling. We are hopeful that we will be able to transfer the tooling to
ASML in the future. We expect the need for this tooling to only increase.

2.4 Related Work

There are numerous papers about the importance of industrial success stories,
such as [WHMO7], |GSET07] and [BCMS03]. However, papers actually reporting
on success stories are rare.

There are some success stories about the industrial adoption of AOP. In [BF06],
Bodkin et. al. report an experience where the authors applied aspects to provide

44 P.E.A. Diirr



Experiences in introducing Aspect-Oriented Programming at ASML Chapter 2

feedback on user behavior, system errors, and to provide a robust solution for a
widely deployed diagnostic technology for DaimlerChrysler. Aspects are used as
a reflective means to gather information about the system.

In [CCO04], Colyer and Clement discuss large scale AOSD for middleware. The
authors report on a project they conducted at IBM. They present a set of
challenges they faced while executing the project. One of the aspects tackled in
the project is also Tracing. They also showed that even a “simple” concern like
Tracing can be an excellent driver to adopt AOP. The conclusion of the authors
is that AOP can be used successfully on a large scale.

In [MKT97], Mendhekar, Kiczales and Lamping presented the results of a project
that compared the implementations of an image processing system. The authors
compared the performance of a naive OO implementation, an optimized OO
implementation and an AOP implementation. The authors showed that the
performance of the AOP solution was comparable to the performance of the
optimized OO version. The performance of the naive OO implementation was
much slower. The AOP solution required 88% fewer lines of code (including the
weaver).

2.5 Conclusions

In this chapter we motivated that there is currently no wide-spread reported
adoption of AOP in industry. In the Ideals project, we conducted two case-
studies for transferring an aspect-oriented solution to ASML. These case studies
were executed on two distinct systems at ASML. These systems had widely
different development methods. In this chapter, we reported on our experience
introducing AOP at ASML. We proposed a process that consists of several steps
that aim at providing a solution which fits into the context of the company.
This context consists of the programming language, design methods, software
development process, etc. Understanding this context is in our view imperative
for a successful adoption of AOP. Knowing the context also helps in better
expressing the benefits and drawbacks of the solution. Finally, we have to elicit
and address key quality requirements, before an aspect-oriented solution can be
transferred.

The proposed process does not guarantee acceptance of an aspect-oriented
solution, as one project demonstrated. However, it provides guidelines to create
the optimal conditions for technology transfer. In one of the described projects
the proposed technology and prototype have been transferred to the company.
Parts of the work described in this chapter have been published in [DGB™06].

P.E.A. Diirr 45



Section 2.5

Conclusions

46

P.E.A. Diirr



An Assessment of an
Aspect-based Approach to
Tracing

In this chapter, we aim at providing reliable evidence of the advantages and
possible limitations of AOP languages so that adoption of this technology can
be based on rational arguments. We first explain concern tracing, which we
used in our experiment. Next we explain the design of the experiment, here we
discuss the subjects, environment, treatments, objects, variables and hypotheses.
Subsequently, we discuss results of the experiment and verify our hypotheses.
Finally, we provide a detailed discussion about possible validity treats, the
generalizability of the experiment and conclude.

3.1 Tracing

AOP is suitable to address many (complex) crosscutting concerns besides Tracing
and Logging, as motivated in [Lad06]. Tracing was chosen as the main driver for
the adoption of AOP by ASML. The concern accounted for around 7% |[DGB™06]
of the executable statements, for one specific component. Although this varies
per component, the amount of scattered and replicated code of concern Tracing
is large. Concern Tracing, at first glance, seems to be a "simple* and “trivial”
aspect. However, in practice this is not the case. In [BvDDTO07], Bruntink et. al.

P.E.A. Diirr 47



W N =

NN

25
26

27

Section 3.1 Tracing

discuss the variation of the implementation of concern Tracing. This variation
does not impact the representativeness of the tracing aspect, since this variation
was mostly syntactic and did not impact the essence of the concern. The paper
argues that for automated migration even this mostly syntactic variation is a
problem. The functionality implemented by concern Tracing is required for
effective diagnostics of the machines. As such, moving to an AOP solution should
exceed, or at least match, the requirements stated for concern Tracing. We only
elaborate on those details of concern Tracing and its aspect implementation,
which are relevant to the developers of the base code. First, we show the manual
solution of tracing. Second, we present aspect Tracing, which is now in use at
ASML and which was used for the experiment.

3.1.1 Concern Tracing

We show an example of concern Tracing as it is currently implemented in C.
The current tracing implementation uses the so-called THXA framework, which
is a tracing framework developed internally at ASML.

int CCXA_change_item_ids(ITEM_DEF *item_def_1, ITEM_DEF *item_def_2)
{

int result = 0K;

int item_id = LO_UNDEFINED_ITEM_ID;

THXAtrace("CC", TRACE_INT FUNCTION__, "> (item_id_1 = %d, item_id_2 = %d, active = %b)",

item_def_1 !'= NULL ? item_def_1 -> item_id : O,
item_def_2 != NULL ? item_def_2 -> item_id : O, MACHINE_IS_ACTIVE);

if (result == OK && ( item_def_1 == NULL || item_def_2 == NULL )
{

result = CC_PARAMETER_ERROR;
}

if (result == OK && MACHINE_IS_ACTIVE )

{
item_id = item_def_1 -> item_id;
item_def_1 -> item_id = item_def_2 -> item_id;
item_def 2 -> item_id = item_id;

}

THXAtrace("CC", TRACE_INT, __FUNCTION "< (item_id_1 =
item_def_1 != NULL ? item_def_1 -> item_id : O,
item_def_2! = NULL ? item_def_2 -> item_id : O,

%d, item_id_2 = %d) = %R",

==9

result) ;

return result;

}

Listing 3.1: Tracing example in C

48 P.E.A. Diirr




An Assessment of an Aspect-based Approach to Tracing Chapter 3

Listing [3.1] declares one function called CCXA _change_item_ids. This function
exchanges the identifiers of two items. Lines 17 to 19 show the implementation
of these two item identifiers. This function also implements error handling (see
lines 3, 10, 12, 15 and 26). Concern Parameter Checking is implemented at lines
10-13. More interestingly are lines 6-8 and 21-24. At these lines two trace calls
are stated using function THXAtrace.

Trace call THXAtrace at lines 6-8, has several arguments. The first is a textual
representation of the component in which this file is located, in this case CC.
The second is a constant passed to indicate whether this is an internal or
external tracing call. For this chapter, this distinction is not relevant. The
third argument is a GCC meta variable( FUNCTION ) is used, which is
replaced by the name of the function at compile-time. The fourth argument is a
format string which controls how this trace entry should look like. In this case
we are tracing the item identifiers of both arguments and a global variable called
MACHINE IS _ACTIVE. The next two arguments are the actual argument values
which should be inserted in the appropriate places in the format string. We
also verify that the arguments are not NULL. If they are NULL and we do refer
to the field item id, since this could cause a segmentation fault in the system,
effectively shutting down the machine. Implementing a guard ensures that if
the arguments are null, a zero is printed in the trace file. Since global variable
MACHINE IS _ACTIVE is being read inside this function, we pass this variable
as the last argument of the THXAtrace call.

The trace call at lines 21-24 is similar to the former trace call. One difference is
that since global variable MACHINE IS ACTIVE has not been changed in this
function, we no longer have to trace this variable. Another difference is that we
trace the return value of this function, since the return value indicates whether
the function executed successfully. Similar to the previous trace call, the two
item identifiers are traced, as these may be modified in this function. Again, we
check whether any of the arguments are not NULL.

In general all functions within the codebase are to be traced in the manner
illustrated above. There are some exceptions, e.g. there is a subset of functions
which cannot be traced, as the tracing framework has not been initialized yet
when these functions executed. All parameters of all traceable functions should
be traced. The parameters of a function include the following:

e Function arguments that are either queried, manipulated, or both in this
function.

e Global variables that are either queried, manipulated, or both in this
function.

e The return value of a function.

P.E.A. Diirr 49



Section 3.1 Tracing

Furthermore, we distinguish between parameters that are input, output or both:

e Input parameters are those parameters which are only read.

e (Output parameters are those parameters which are only manipulated, this
includes those parameters passed to other functions.

o [nOutput parameters are those parameters which are read and manipulated.

Concern Tracing should behave as follows:

e At the start of a function, trace the following items:

the name of the component,

— an internal or external trace specifier,
the name of the function,

Input and InOutput parameters.

e At the end of a function, trace the following items:

— the name of the component,

— an internal or external trace specifier,
— the name of the function,

Output and InOutput parameters.

— the return value of the function.

The just described behavior shows that concern Tracing is far from trivial. Even
modern AOP languages have problems addressing this effectively. Implementing
this concern requires detailed control and data flow analysis to determine the
Input, Output and InOutput classification for all arguments and variables that
are used inside a specific function. Most AOP approaches do not support this
detailed analysis.

3.1.2 Aspect Tracing in WeaveC

Now that the requirements of concern Tracing have been elaborated, we present
the details of the aspect specification that are required to understand the
experiment. We used an industrial-strength C weaver developed by ASML,
called WeaveC, and an AOP language, called Mirjam, which are detailed in
INVEvdPO7]. Aspect Tracing uses the THXA framework for tracing the values.

The requirements of concern Tracing, can be implemented solely in a single
aspect specification. However, there are cases where developers need to deviate
from the concern, mostly for performance reasons. To allow such deviations,
WeaveC' supports annotations. The following annotations have been defined for
aspect Tracing:

50 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

o $trace(TRUE | FALSE): controls if a module(file), function, parameter,
variable or type should be traced.

o Strace _as(fmt = “..."  expr =
type in a different manner.

“...): traces a parameter, variable or

In short, aspect Tracing can be defined as:

e All functions should be traced
— Except for functions that are annotated with
$trace(FALSE) or whose module is annotated with
$trace(FALSE).
e For each traceable function, trace the input parameters at the start and
the output parameters at the end of the function.
— Except for parameters annotated with $trace(FALSE) or whose type
is annotated with $trace( FALSE).

Concern Tracing has been implemented by ASML. Within ASML there are
only a few developers that write aspects. Most developers write base code that
is subjected to these aspects. Therefore, the impact of aspects on base-code
development is much more significant. In this experiment we purely focused
on the development and maintenance of base code. Base code developers will
not see the aspect specification, since it is assumed that all functions the base
developers write are traced. The base developers only need to write annotations
to influence the aspects, if required.

The development of the aspect and weaver are out of the scope of this experiment.
The developers of the weaver also created the aspect specification of tracing, and
used it as a test case for the tooling. Also, since the tracing aspect still uses the
THXA framework, the extra overhead of writing the aspect is minimal. For the
experiment we assume that the weaver and an implementation of aspect tracing
are present.

3.2 Experiment Setup

We first informally present the setup of the experiment. For the statistical results
we used the theory and guidelines as presented in [WRHT00| and |[KPPT02]|.
The experiment was conducted in combination with a training on WeaveC. Figure
[3:1] presents an overview of the training and the experiment.

The goal of the experiment was to determine whether using an aspect-oriented
approach to Tracing helps to reduce the development and maintenance effort. We
determined this by measuring both the time it takes to implement tracing-related

P.E.A. Diirr 51



Section 3.2 Experiment Setup

~ Without AOP —————————————  With AOP

Change Change
Set 1 s
St Introdustion inslruln‘:ggn and
and 1
instructions faulse‘;(s};?gsnce
Change Change
Set2 Set1
Group 2
S— —

Figuur 3.1: Overview of the experiment and training. Change Set 1 and Change Set 2
represent the same type of change requests on two different source codes.

change scenarios, and the errors introduced while implementing these scenarios.

The subjects were split into two groups while executing the change scenarios. To
prevent possible differences between the subjects in the groups, all subjects were
present at the instructions. The introduction included not only the overview
of the training but also a brief explanation of concern Tracing. This ensured
that all subjects had the same notion of tracing. During the introduction a
balanced selection of groups was made, based on the years of software engineering
experience and the years of working at ASML. Section [3.4] provides a discussion
about the differences between the groups.

After the introduction, the groups were split. Group 1 executed change scenario
set 1, while group 2 executed change scenario set 2. Both groups had to implement
5 change scenarios using the current, manual, way of tracing. Change sets 1 and
2 contained similar scenarios. However, the code base on which the scenarios
were executed was distinct. The subjects were allowed to spend at most 45
minutes on this part of the experiment.

After the first session, a general introduction into AOP and a specific explanation
on the way of working with WeaveC was presented, again all subjects were present.
Next, the subjects had the opportunity to familiarize themselves with the new
process and tooling, using a set of simple exercises.

Subsequently, group 1 had to implement change scenario set 2 using WeaveC,
while group 2 implemented change scenario set 1 using WeaveC. Again the
subjects executed up to 5 scenarios within 45 minutes. We used this so-called
cross-over design to prevent or minimize learning effects between sessions without
WeaveC' and with WeaveC. Section [3.4] discusses the implications of this choice
on the validity of the experiment.

For each completed scenario, we determined the time and the error classification.

52 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

We used the command logs and version control information for this.

3.2.1 Subjects

The experiment was conducted as part of a training of WeaveC. As such we had
no control over the selection of the subjects. The possibility of a training was
published within the company to software group leaders. Subsequently, subjects
could register themselves for the training.

We have gathered some characteristics of the subjects. We asked the subjects
to fill in a questionnaire before the training started. The characteristics in the
questionnaire were:

Years of experience in software development
Years working at ASML

Gender

Age

Education Level

C Level

Regular THXA user

We used these characteristics for two reasons. Firstly, it allowed us to find
possible interesting correlations between the performance of the subjects and
these characteristics. Secondly, we distributed the subjects into two groups.
We used the sum of the years of software development and years working at
ASML to distribute the subjects into two groups. We made an ordered list with
these sums. Next we assigned subjects to groups in an alternating fashion. This
process provided a somewhat balanced selection of groups.

3.2.2 Environment and Tooling

The experiment and training were conducted at an external location, i.e. not
ASML. The two groups were both located in different rooms. During the
presentations and instructions all persons were in the same room.

We used an external location to prevent the impact of the working environment
on the experiment. The subjects could use their own build environment and
tools, using remote log-in. This ensured that the build performance would not
influence the experiment as the subjects used the build farm at the company. We
restricted the usage of shell aliases, to prevent overriding our command logger
and timing facilities.

P.E.A. Diirr 53



Y UL W N =

1

Section 3.2 Experiment Setup

We gathered data from two data sources: command log data, and source versio-
ning data. The first was a list of commands which were entered in the terminal,
with time stamps. In addition the exit codes of the build commands were logged.
An example is shown here:

Tue Jul 3 09:34:37 MEST 2007, cleartool co -nc CCEWdata.c
Tue Jul 3 09:44:40 MEST 2007, > ccmake CCEWdata.osparc
Tue Jul 3 09:45:13 MEST 2007, < ccmake 1
Tue Jul 3 09:45:39 MEST 2007, > ccmake CCEWdata.osparc
Tue Jul 3 09:46:04 MEST 2007, < ccmake O

3

Tue Jul 09:46:18 MEST 2007, cleartool ci -nc CCEWdata.c

Line 1 states a checkout of file CCEWdata.c. After ten minutes the subject
proceeded to build the file (line 2). This build fails after 30 seconds (exit code 1).
After 20 seconds the subject builds the file again, see line 4. This build executed
successfully (exit code 0), see line 5. Finally, at line 6 the user checks in the file.

The second data source was the check-in and checkout information from a version
control system. We used this as a backup, if for some reason the key logger
did not work. Here is a line from this data source, corresponding to the above
mentioned data source of file CCEWdata.c:

CCEWdata.c;20070703.115123;20070703.094618;20070703.093438;20070703.093438

This line has to be read from right to left. One can see the same time stamps as
in the previous example. To determine the error classification, we examined the
committed version of the edited source files to classify the changes the subjects
had made to the functions in the files.

3.2.3 Treatments

We used change requests as treatments to determine the possible gain of using
WeaveC. We only selected change requests which affect Tracing. Since there was
only limited time to execute the scenarios, we selected the top four requests.
This selection was made with input from ASML to decide which requests were
the most frequently occurring and most valuable, according to ASML. These
were the selected change requests:

1. Add tracing to a (traceless) function.

Change the parameters of a function.

Remove tracing from a function.

Selective tracing - only trace a specific parameter.
Remove a function.

Gl W

54 P.E.A. Diirr




An Assessment of an Aspect-based Approach to Tracing Chapter 3

We added a fifth scenario, that was executed first, to account for an initial
overhead (see section . We did not include a scenario related to changing
concern Tracing. We only focus on the scenarios which impact the developers
of the base code. At ASML only a small set of developers will write or change
aspects. The vast majority will write base code that is subjected to aspects.
Also, changing concern Tracing is not often done. With AOP this becomes a lot
easier but this is out of the scope of this experiment. For each scenario we will
now show what is required to fulfill these requests without and with AOP.

1. Add tracing to a traceless function:
Without WeaveC: Add the appropriate tracing code to the function,
accounting for parameter usage and null pointer checks.
With WeaveC': Nothing
2. Change the parameters of function: (from Input to InOutput)
Without WeaveC': This requires adding null pointer checks and adding or
altering tracing at the end of a function.
With WeaveC': Nothing
3. Remove tracing from a function:
Without WeaveC': Remove trace statements from the function.
With WeaveC': Attach a $trace(FALSE) annotation to the function.
4. Selectively tracing - Only trace a specific parameter:
Without WeaveC': Alter the trace statements to reflect this situation,
removing all the other parameters from these statements.
With WeaveC': Attach a $trace(FALSE) annotation to all parameters
except the one which should be traced.
5. Remove a function: This is used to reduce the initial overhead and to
measure possible learning effects between scenarios.
Without WeaveC': Remove function body.
With WeaveC': Remove function body.

In the last scenario, we cannot remove the entire function, since the call sites
would have to be adjusted then as well, to enable a successful build. The subjects
did not have to reflect changes to the core functionality only changes to the code
related to tracing.

3.2.4 Objects

The code we used in our treatments has been taken from the ASML codebase.
We used the largest component(CC) as a source for objects. We measured several
metrics of the code to ensure that we selected representative objects. We used
three metrics to select representative functions: Number of parameters, Lines

P.E.A. Diirr 55



Section 3.2 Experiment Setup

of Code and McCabe cyclomatic complexity. We chose the first metric because
the complexity of tracing directly relates to the number of parameters. The
latter two are well established metrics for the perceived complexity of source
code [McCT6].

3.2.4.1 Number of Parameters

Figure [3.2] shows the distribution of the number of parameters within component
CC. There are many functions which have one parameter. This is mostly caused
because the return value of the functions is used for error handling and even
simple “getter” functions use a parameter. Based on the graph and the average
(2.71), we chose to select only functions with between 2 and 4 parameters.

#Parameter Distribution

1200

1000

Frequency

o
+ 2 4 & B 10 alz) i
200

#Parameters

Figuur 3.2: Parameter Distribution

3.2.4.2 Lines of code(LOC)

Figure [3.3] shows the distribution of LOC within component CC. We chose to
select only those functions that have between 40 and 55 lines of code. This was
based on the graph and the average (47.08),

3.2.4.3 McCabe cyclomatic complexity

Figure shows the distribution of the McCabe complexity of functions within
component CC. Based on the graph and the average (6.16), we chose to select
only functions with McCabe complexity between 5 and 10.

56 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

LOC Distribution

1ioc0

80 T——

60

40

Frequency

20

50 100 150 200 250

-20

Figuur 3.3: LOC Distribution

McCabe Distribution

Frequency

5 10 s 20 25 30 35 4|

McCabe complexity

Figuur 3.4: McCabe Distribution

3.2.4.4 Values of the metrics

Table provides the values for these metrics for each object and treatment
combination. This combination is called a Change Scenario.

During the design of the experiment we had a rough idea of the average time of
the execution of all five scenarios. This was 36 minutes. There was a chance the
subjects would take a lot more time than anticipated. Since we used a paired
sample test for analyzing the experiment, we had to ensure that we had the
most paired scenarios from the subjects. We also wanted to ensure that we had
results for the most important set of scenarios. We ordered the scenarios with
input from ASML, to get the most valuable information out of the experiment.

We used a process called clustered randomization to randomize the scenarios.

P.E.A. Diirr 57



Section 3.2 Experiment Setup

Change Change Description #Params #LOC McCabe

Set Scenario ‘ ‘

CS1 CS1_1 Add tracing 3 44 9
CS1 CS1_2 Change the parameters 2 49 6
CS1 CS1_3 Remove tracing 3 44 5
CS1 CS1 4 Selectively trace a parameter 3 53 8
CS1 CS1 5 Remove a function 3 53 5
CS2 CS2 1 Add tracing 2 50 6
CS2 CS2 2 Change the parameters 4 48 8
CS2 CS2 3 Remove tracing 2 48 5
CSs2 CS2 4 Selectively trace a parameter 2 51 8
CS2 CS2_5 Remove a function 3 52 7

Tabel 3.1: Metric values for each change scenario.

CS5 was always put first, since this captures the initial overhead. Next CS1 and
CS2 were randomly selected. Finally, CS3 and CS4 were randomly selected.
The following permutations were possible:

CS5 CS1 CS2 CS3 CS4
CS5 CS1 CS2 CS4 CS3
CS5 CS2 CS1 CS3 CS4
CS5 CS2 CS1 CS4 CS3

We assigned the order within a change scenario set to the subjects at random.

3.2.4.5 An example scenario
We show part of an instruction sheet for one scenario, in this case CS1_1: Change
Set 1 - Adding tracing to a function.

1. Navigate to directory: CC/CCQM/int/bin:

1 ‘cd CC/CCQM/int/bin ‘

2. Check out file: CCEWdata.c:

1 ‘cleartool co -nc CCEWdata.c ‘

3. Locate the following function: CCEWDA _set wafer _state,
4. Generate tracing code for this function.
5. Build the file:

1 | ccmake CCEWdata.osparc

6. In case of build errors, please go to step four and fix the build errors and
rebuild the system, until there are no more build errors.

58 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

7. Check in file: CCEWdata.c

1 ‘cleartool ci -nc CCEWdata.c

3.2.5 Variables
3.2.5.1 Factors

WeaveC' is the only factor of this experiment. This factor is measured in the
nominal scale, at two levels: without WeaveC and with WeaveC.

3.2.5.2 Independent Variables

The independent variables of our experiment are:

Years of experience in software development: Numeric

Years working at ASML: Numeric

Gender (0=Male, 1=Female): Numeric

Age: Numeric

Education Level (4=PhD, 3= MSc, 2=BSc, 1=Practical Educa-
tion): Numeric

C Level (5=Expert, 1=None): Numeric

¢ Regular THXA user (1=Yes, 0=No): Numeric

3.2.5.3 Dependent Variables

The dependent variables of our experiment are:

e Time to execute a change scenario, in secs: Numeric
e Error classification of a change scenario: Numeric

3.2.5.4 Error classification

We chose to use an error classification instead of simply counting the number
of errors. Most of the time only one error is introduced into the concern code.
Also, the impact of the errors differ. Therefore, we used the following error
classification:

0 : No errors,

P.E.A. Diirr 59



Section 3.3 Experiment Results

: Typo in tracing text string,

: Tracing less than is required,

: Wrong tracing,

: No parameter checking code for possible invalid or null pointers.

=W N =

An error of class 4 can result in a segmentation fault, and is as such considered
the worst case. A higher number indicates a more severe error. In case of two
errors we used the worst case, this only occurred once in the data set. We
manually inspected the committed version to determine which class of errors
were introduced, if any. Since a scenario was only completed if there were no
compilation errors, we purely focus on those errors that are detected at testing
or execution time.

3.2.6 Hypotheses

We defined the following null hypotheses:

o WeaveC' does not reduce the development time, while developing and
maintaining code related to Tracing:
H(;ﬁme: timewithout_WeaveC < timewith_ WeaveC

e WeaveC' does not reduce the severity of errors, while developing and
maintaining code related to Tracing:

Hoerror: ETTO0Twithout  WeaveC < ETT0Twith _ WeaveC
For this experiment we defined the following alternative hypotheses:

o WeaveC does reduce the development time, while developing and maintai-
ning code related to Tracing:

time. 4 ;
Hazme. tzme'without_ WeaveC > tzmewith_ WeaveC
o WeaveC' does reduce the severity of errors, while developing and maintai-

ning code related to Tracing:
Haerror: erro'rwithouti WeaveC > errorwithi WeaveC

These hypotheses will be tested in the next section for each of the five scenarios.

3.3 Experiment Results

We split the total group of subjects into two groups. The training was scheduled
for one day with a morning and an afternoon session.

60 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

3.3.1 Subjects

Table [3.2] presents the so-called descriptives of the subjects. These contain; the
number of scenarios, the minimum values, the maximum value, the mean and
the standard deviation.

[ Characteristic [ N [ Min | Max | Mean [ Std. Dev |
Age 17 26 45 34.88 5.73
Education 17 2 3 2.41 0.51
Years at ASML 17 0 7 3.40 2.78
Years in SW development 16 1 20 9.12 5.62
Clevel 17 1 5 3.71 0.99
THXA 17 0 1 0.59 0.51

Tabel 3.2: Descriptives of the Subjects

In the morning session, two subjects were accidentally included in group one.
This is why, in the morning session, group one had more subjects than group
two. Section [3.4] discusses this discrepancy more thoroughly. Furthermore, we
excluded three subjects and a series of data points (see section for more
details).

3.3.2 Initial processing

Since the number of subjects is low, it is hard to get statistically significant
results. Before we present these statistical results, we will first present our
observations based on these results.

Table presents the number of data points and the average development effort
of each scenario respectively without and with WeaveC, as well as the delta
for these scenarios. A negative delta indicates that the subjects executed the
scenario faster with WeaveC.

Scenario without WeaveC with WeaveC Effort

’ H +# [ Average # [ Average A ‘
Adding Tracing 15 824 17 328 -60.2%
Changing Parameters 14 523 15 422 -19.4%
Removing Tracing 9 143 11 230 60.6%
Selectively Tracing 8 292 13 227 -22.2%
Remove Function 17 250 17 185 -26.2%

Tabel 3.3: Development Effort

P.E.A. Diirr 61



Section 3.3 Experiment Results

Table[3.4] presents the number of data points and the average severity of errors of
each scenario without and with WeaveC, as well as the delta for these scenarios.
A negative delta indicates that the subjects introduced less errors with WeaveC.

Scenario without WeaveC with WeaveC Error
’ # || Average # | Average A ‘
Adding Tracing 15 0.67 17 0.00 -100.0%
Changing Parameters 14 2.57 15 0.20 -92.2%
Removing Tracing 9 0.00 11 0.00 0%
Selectively Tracing 8 1.38 13 0.92 -32.9%
Remove Function 17 0.00 17 0.00 0%

Tabel 3.4: Errors

Observations
Based on the results in tables [3:3] and [3.4] we observe the following:

e Overall, users were able to implement 10 more change scenarios with the

use of WeaveC.

Overall, users were 6% faster with the use of WeaveC.

Overall, users made 77% less severe errors with the use of WeaveC.

Most scenarios require less effort with WeaveC' than without WeaveC.

Removing tracing from a function requires more effort with WeaveC' than

without. This is probably caused by the lack of experience in using the

newly introduced annotations.

o Adding tracing and changing parameters introduces almost no errors with
WeaveC, whereas manually implementing these changes result in more
severe errors.

e Selectively tracing a function with WeaveC introduces (on average) less
severe errors than without WeaveC.

o WeaveC' introduces no new errors while removing tracing and a function.

e The manual implementation contained 8 critical errors, which could have
resulted in a segmentation fault during run-time.

Table 3.5 presents the distribution of the errors for the five scenarios, without
and with WeaveC. For each error class the number of errors for this class is
presented in the corresponding cells.

3.3.3 Development Effort

We now present the statistical results from the experiment. We used SPSS
Version 13.0 for Windows[SPS]| to process the raw data and to execute the tests.

62 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

Scenario without WeaveC with WeaveC
‘!0111213141011121314
Adding Tracing 7 1 1 2 0 15 0 0 0|0
Changing Parameters 3 3 0|0 7 15 0 0 00
Removing Tracing 9 0 0|0 0 11 0 0 0|0
Selectively Tracing 4 0 2 1 1 9 0 0 410
Remove Function 17 0 0 0 0 17 0 0 0 0

Tabel 3.5: Error Distribution over the scenarios

We have removed all statistical outliers from the data-set (see section [3.4)).

3.3.3.1 Descriptives

Table presents several details for all scenarios and development effort (mea-
sured in seconds), namely; the number of scenarios, the minimum values, the
maximum values, the means and the standard deviations.

[ Scenario [ N [ Min | Max | Mean [ Std. Dev. |

Adding Tracing w/o WeaveC 11 254 902 583 227
Changing Parameters w/o WeaveC 12 76 648 412 177
Removing Tracing w/o WeaveC 9 91 210 143 45
Selectively Tracing w/o WeaveC 7 142 339 249 72
Remove Function w/o WeaveC 15 84 347 189 80
Adding Tracing with WeaveC 13 106 379 218 79
Changing Parameters with WeaveC 15 153 910 422 243
Removing Tracing with WeaveC 10 59 333 217 86
Selectively Tracing with WeaveC 13 89 421 227 120
Remove Function with WeaveC 15 106 253 179 46

Tabel 3.6: Descriptives of Effort

3.3.3.2 Significance

We calculated the significance through the use of a standard paired sample test
with a confidence interval of 95%. Table shows the results for each scenario.

Figure [3.5] presents the differences of each change scenario.

3.3.3.3 Observations

The following observations can be made with a statistical significance of 95%:

P.E.A. Diirr 63



Section 3.3 Experiment Results

[ Scenario [ N [ Mean | Std. Dev. | Sig.(2-tailed) |
Adding Tracing 8 500 179 0.00
Changing Parameters 11 -47 370 0.68
Removing Tracing 6 -91 75 0.03
Selectively Tracing 6 95 78 0.03
Remove Function 13 16 69 0.41

Tabel 3.7: Significance of Effort

Effort Reduction

70.0

70
52.5
35.0

17.5

-65
-17.5

-35.0
-52.5
-70.0

Add Change Remove Select RemoveF
Change Scenario

Figuur 3.5: Effort Reduction

e Adding tracing to a function takes less time with WeaveC' than without.

e Removing tracing from a function takes more time with WeaveC' than
without.

e Selective tracing the parameters of a function, takes less time with WeaveC
than without.

3.3.3.4 Correlations

We found the following correlations between the subjects and their performance
without and with WeaveC'":

e There was a strong, positive correlation between the difference in effort
while changing a function and the number of years in software development
[correlation factor=.624, number of measurements=11, significance<.05].
In other words: subjects with more years of experience in software devel-

64 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

opment, worked faster when using WeaveC.

3.3.4 Errors

We now present the statistical results from the experiment with respect to the
errors.

3.3.4.1 Descriptives

Table [3.8 presents several details for all scenarios related to the errors, namely
the number of scenarios, the minimum values, the maximum values, the means
and the standard deviations.

[ Scenario “ N [ Min [ Max [ Mean [ Std. Dev. ]

Adding Tracing w/o WeaveC 11 0 3 0.82 1.25
Changing Parameters w/o WeaveC 12 0 4 2.58 1.78
Removing Tracing w/o WeaveC 9 0 0 .00 .00
Selectively Tracing w/o WeaveC 7 0 4 1.57 1.62
Removing Function w/o WeaveC 15 0 0 .00 .000
Adding Tracing with WeaveC 13 0 0 .00 .000
Changing Parameters with WeaveC 15 0 0 .00 .000
Removing Tracing with WeaveC 10 0 0 .00 .000
Selectively Tracing with WeaveC 13 0 3 0.92 1.44
Removing Function with WeaveC 15 0 0 .00 .000

Tabel 3.8: Descriptives of Errors

3.3.4.2 Significance

We calculated the significance through the use of a standard paired sample test
with a confidence interval of 95% (see table [3.9)).

[ Scenario [ N [ Mean [ Std. Dev. | Sig.(2-tailed) |
Adding Tracing 8 .0.38 0.74 0.20
Changing Parameters 11 2.50 1.81 0.00
Removing Tracing 6 0 0 -
Selectively Tracing 6 0.50 2.60 0.66
Removing Function 13 0 0 -

Tabel 3.9: Significance of Errors

P.E.A. Diirr 65



Section 3.3 Experiment Results

Figure [3.6] presents the error reduction of each change scenario.

Error Reduction

0
-33
-25
xR -50
-75
-100
Add Change Remove  Select RemoveF

Change Scenario

Figuur 3.6: Error Reduction

3.3.4.3 Observations

The following observations can be made with a statistical significance of 95%:

e Changing the parameters of a function manually introduces more errors
than with WeaveC.

3.3.4.4 Correlations

We found the following correlations between the subjects and the difference
between without and with WeaveC':

e There was a strong, negative correlation between the difference in errors
while changing the parameters of a function and the number of years in soft-
ware development [correlation factor=-.723, number of measurements=11,
significance<.05]. In other words the subjects introduced less severe errors,
with WeaveC, if they were more experienced in software development.

e There was a strong, negative correlation between the difference in errors
while changing the parameters of a function and the age of subjects
[correlation factor=-.624, number of measurements=11, significance<.05].

66 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

In other words the subjects introduced less severe errors, with WeaveC, if
they were older.

e There was a strong, negative correlation between the difference in errors
while selectively tracing a parameter of a function and the number of
years in software development [correlation factor=-.879, number of mea-
surements=7, significance<.01]. In other words the subjects introduced
less severe errors, with WeaveC, if they were more experienced in software
development.

e There was a strong, negative correlation between the difference in errors
while selectively tracing a parameter of a function and the age of the
subjects [correlation factor=-.879, number of measurements=7,
significance<.05]. In other words the subjects introduced less severe errors,
with WeaveC, if they were older.

e There was a strong, negative correlation between the difference in errors
while selectively tracing a parameter of a function and the experience with
C [correlation factor=-.789, number of measurements=7, significance<.05].
In other words the subjects introduced less severe errors, with WeaveC, if
they had more experience in C.

3.3.5 Verification of the Hypotheses

We now verify the hypotheses that were stated in section [3.2.6

We can reject the Hi"™¢ for scenarios Adding Tracing and Selectively Tracing. We
can thus accept alternative hypothesis H!*™¢ for these scenarios.

We cannot reject Hl"™¢ for scenarios Changing Parameters and Remove Function.
Also, we have to accept H{"™¢ for scenario Remove Tracing. Therefore, we cannot
accept alternative hypothesis H/™¢ for these scenarios.

We can reject H;""*" for scenario Changing Parameters. We can thus accept
alternative hypothesis HZ™°" for this scenario.

We cannot reject Hy"™"°" for scenarios Adding Tracing, Remove Tracing, Selectively
Tracing and Remove Function. Therefore, we cannot accept the alternative
hypothesis H{™°" for these scenarios.

Concluding, the results from the experiment showed with statistical significance
of 95% that adding tracing to a function and selectively tracing (only one
parameter) takes less time to implement with the use of WeaveC. The results
also showed that changing the parameters of a function reduces the severity of
errors substantially with the use of WeaveC.

P.E.A. Diirr 67



Section 3.4 Validation

3.4 Validation

There are many possible threats to the execution and validity of the results
of the experiment. In this section we present some of the threats which could
have impacted the experiment, discuss our counter measures and the possible
impact of these threats. Although, we use an informal question answer style,
all questions can be mapped to the categorization proposed in [CC79|. These
categories are: construct, internal and external validity and reliability. We used
the guidelines proposed in [KPPT02| to cover all validity threats.

You combined the results from both groups, is this valid? Table
shows the descriptives of the subjects in both groups.

[ Group [ Characteristic [ N [ Min [ Max [ Mean [ Std. Dev ]

1 Age 12 26 45 35.42 5.66
Education 12 2 3 2.50 0.52

Years SW 11 1.0 20.0 9.00 5.80

Years ASML 12 0 7.0 4.21 2.71

Clevel 12 1 5 3.50 1.09

THXA 12 0 1 0.58 0.52

2 Age 5 26 43 33.60 6.35
Education 5 2 3 2.20 0 .45

Years SW 5 1.0 17.0 9.60 5.86

Years ASML 5 0 5.0 1.46 2.03

Clevel 5 4 5 4.20 0.45

THXA 5 0 1 0.60 0.55

Tabel 3.10: Groups

From table we can observe the following:

e Subjects in group one had (on average) worked longer at ASML.
e Subjects in group two had (on average) more experience with C.

We do not feel that this impacts the results of the experiment very much, especi-
ally since we did not find any significant correlation between these observations
and the performance of the subjects. Also, intuitively these two differences may
compensate each other. As one can see there were more subjects in group 1 than
in group 2, there are two reasons for this. Firstly, three subjects we excluded
were in group 2. Secondly, two subjects accidentally received the instructions
of group 1 in the without WeaveC' session. We chose to move them to group 1
once we discovered this.

Could the separation over two sessions have influenced your results?
Similar to the previous question, we also verified whether there we no major

68 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

differences between the subjects participating in the morning session and in the
afternoon session. We observed the following:

e Subjects in the morning session had (on average) worked longer at ASML.
e Subjects in the morning session had (on average) worked longer in Software
Engineering.

We believe that this does not impact the results of the experiment a lot, as we
did not find any significant correlation between this time of day variable and the
performance of the subjects. More importantly, we take the composed results of
the both sessions which eliminates this threat. The subject executed the same
treatments and we did not measure the difference between the sessions.

Were the subjects representative? We had no control over the selection of
the subjects. Therefore, we could not make a representative selection from the
population. Also, we do not have any statistics about the characteristics of the
population, therefore we cannot extrapolate our results to a specific population.
However, we believe that the characteristics of the subjects are not ASML or
industry-specific and, as such, can serve as an indicator for the whole software
industry. However, we cannot support this claim with statistical evidence.

Could the subject’s knowledge about the source code have any im-
pact? We used the largest component(CC) as a source for objects. We cannot
ensure the subjects were not familiar with the selected functions. We tried to
minize the this threat by selecting functions from different subcomponents. Also,
there are 600 developers developing and maintaining 15 MLOC, the change that
all subjects were familiar with this component was slim, since there were also
new developers. We do not think that the impact of the threat would be that
severe, since tracing is a general concern and not component specific. Using
artificial examples would have introduced more validity threats in our opinion.

Why are not all scenarios significant? There may be several reasons why
we did not get significance for some scenarios. One of these reasons can be that
the sample size is too small. Another can be that the expected benefits may not
exist in those scenarios, although most scenarios indicate that there are benefits.

Were the without and with WeaveC treatments equivalent?

1. Adding Tracing: In one scenario the subjects had to trace four input
parameters and one output parameter. In the other scenario the subjects
had to trace two input parameters and two output parameters. There is a
difference in complexity, and we also saw indications in the results that
this might have impacted the results. Group 1, which first executed the
hard scenario without WeaveC and then the simple scenario with WeaveC;

P.E.A. Diirr 69



Section 3.4 Validation

benefited more from WeaveC' than group 2. Group 2 executed the simple
scenario first and then the hard scenario, and thus benefited less from
WeaveC. However, we are unable to establish the precise impact of this
difference.

2. Changing parameters of a function: In one scenario, the subjects had
to change one parameter from an input int to an input and output int.
The other scenario had a similar change but this required changing two
parameters from input to input and output. There is a small complexity
difference here that may have impacted the experiment. However, we saw
no evidence of this in the results.

3. Removing Tracing: Removing trace statements from the functions in
the scenarios has the same complexity in both scenarios. Therefore, we do
not expect an impact on the results.

4. Selectively Tracing: Only tracing one specific parameter is equally
complex in both scenarios. Therefore, we do not expect an impact on the
results.

5. Removing Function: Removing a function is equally complex in both
scenarios.

Did you exclude any subjects? We excluded three subjects from the results.
The check-in and check-out time stamps for these subjects were not valid. This
was either caused by a bug in the monitor tooling, or because the subjects did
not check-in the files.

Did you exclude any data points? We removed 8 individual scenarios
from the session without WeaveC, and 6 individual scenarios from the session
with WeaveC. These were all statistical outliers related to the development
effort. These statistical outliers were determined using SPSS [SPS|. We removed
the individual scenarios, and after wards we verified that there were no more
statistical outliers related to the errors. This was indeed the case.

Was there an impact of the tooling on the results? We had to ensure
that the build performance did not influence the experiment results too much, i.e.
approaching the scenario times or an order of magnitude slower than a regular
build. We used the command logger to determine the build times. The results

are presented in table

#C builds Average C #AOP builds | Average AOP A
build time build time
[ 65 [ 24.71 Il 88 | 51.82 [[ 210% |

Tabel 3.11: Build times

70 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

From the table we can observe that the average build time is roughly doubled.
However, as this is a realistic delay which we expect will only decrease as the
tooling is improved, we did include the build times in our experiment results.

Why didn’t you inquire about prior knowledge about AOP? We did
not introduce a variable representing the knowledge on AOP, since the subjects
were base code developers and had no or minimal prior knowledge on WeaveC'
and aspect tracing. More importantly, prior knowledge about AOP does not
affect the results of the experiment, since we only execute scenarios related to
the base code, and not scenarios related to the aspect code.

Did you address the initial start up effects of the subjects? To prevent
an initial start up time from influencing our results, we added a scenario (Remove
Function) as the first scenario. Any initial start up effects should be captured by
this first scenario.

Was there a learning effect between scenarios? We used clustered random-
ness to prevent learning effects between scenarios. This ensured that even if
there was insufficient time for the participants to finish all scenarios, we would
have results from the two most important scenarios. The order in which the
scenarios were executed in each session was randomly assigned.

Was there a learning effect between sessions? We introduced scenario
Remove Function not only to determine the initial start up effects, but also to
determine whether there was a learning effect between the without WeaveC
session and with WeaveC' session. The actions required for executing this scenario
are the same in both sessions. However, we are unable to state whether there
was a learning curve as there are no significant results for this scenario. Also
there is no clear separation between the times of the initial start up effects and
the learning curve.

How did you ensure that the users were motivated? As the experiment
was part of a voluntary training, we can assume that most subjects were motivated
to learn WeaveC. To further ensure the motivation, we promised the best 10
subjects a small gadget (around 10 euro). We explained to the subjects that the
definition of “the best” was a function of both time and errors. This should have
prevented the users from rushing the scenarios.

How did you ensure that all subjects had a similar notion of tracing?
At the start of the course we presented the current tracing concern to all users.
The subjects were all present during the same presentation, to remove the possible
influence of different instructors. Similarly, we presented to the subjects the
concepts of AOP and the new way of working, before the second session. Again
the subjects attended the same presentation, presented by the same instructor.

P.E.A. Diirr 71



Section 3.5 Survey

How did you ensure that the users were familiar with the tooling and
process? As part of the training, we included a tool experience session before
the session with WeaveC. In this session, the subjects had to go through all the
steps of the new way of working and use all features of the weaver. Therefore,
all subjects were familiar with the tooling and process before they started with
the WeaveC' session.

Did you satisfy the requirements for the T paired sample test? The
T paired sample test requires normally distributed results. We verified the
normality of effort and severity of errors using the Kolmogorov-Smirnov statistics
and histograms produced by SPSS [SPS|. Almost all scenarios were normally
distributed. Five scenarios were reasonably normally distributed, probably as
a result of the low number of measurements and the variation between these
measurements. These scenarios related to the effort were Remove Tracing w/o
WeaveC and Selectively Tracing with WeaveC. Regarding the severity of errors
these scenarios were Add Tracing w/o WeaveC, Change Function Parameter w/o
WeaveC and Selectively Tracing with WeaveC.

Is the raw data available? Due to confidentiality reasons we cannot publish
the raw results of the experiment. We can be contacted to provide these results
based on a nondisclosure agreement or a similar construction.

3.5 Survey

A survey was conducted three months after the training and experiment. The
purpose of this survey was to determine the current usage and acceptance of
WeaveC, as well as to determine any issues users faced.

Out of 50-60 current users of WeaveC, 26 users responded. In this group were 8
persons who also attended the training and experiment. The survey consisted
of several questions about the current acceptance of the tooling and usage of
WeaveC' within ASML. The users were also questioned about the usage, any
issues and benefits of WeaveC.

The respondents stated that they would like to have more training or docu-
mentation about the usage of annotations. They also proposed several new
annotations. This strengthens the assumption that the negative development
effort while removing tracing, is caused by the newly introduced annotations.
Similarly, for changing parameters where the subjects also still introduced errors.
Both scenarios use annotations.

The users also stated that they would like to see more (complex) aspects like

72 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

Profiling and especially Error Propagation. This implies that the users have
confidence in WeaveC' and want to use it for more aspects than just Tracing.
The following benefits of WeaveC' were expressed by the 8 respondents that were
also subjects in the experiment:

e Better handling of crosscutting concerns.
e Lead time reduction.

e Effort reduction.

e Less boring work.

e Better quality: less errors and cleaner code.

The results from the survey confirm our results from the experiment. Overall
the users experience the benefits of WeaveC. They also mention the need for
appropriate and more elaborate documentation and training for those elements
of WeaveC which are new to them, especially annotations.

3.6 Related Work

As mentioned in the introduction there are numerous papers about the importance
of industrial controlled experiments and success stories, e.g. [WHMOT], |GSET07]
and [BCMS03]. However, papers about controlled experiments with AOP are
scarce.

In [SHHT05|, Sjoberg et. al. present a survey of controlled experiments in
software engineering. The authors calculated that only 1.9% of journal and
conference articles in a representative set of journals and conferences reported
on controlled experiments in software engineering. Only 0.2% of the papers
reported to use professionals for the experiments. Similarly, 0.3% reported on
experiments which measured the effects of changing the code. This indicates
that empirical validation of software engineering methodologies which improve
development effort is rare. In the area of AOP this is even more rare.

There are some success stories about the industrial adoption of AOP. In [BF06],
Bodkin et. al. report an experience where the authors applied aspects to provide
feedback on user behavior, system errors, and to provide a robust solution for a
widely deployed diagnostic technology for DaimlerChrysler. Aspects are used
as a reflective means to gather information about the system. Although the
authors present a discussion about benefits and challenges, they do not provide
a quantitative assessment of the benefits of AOP.

In [CC04|, Colyer and Clement discuss large scale AOSD for middleware. The
authors report on a case-study they conducted at IBM. They present a set of

P.E.A. Diirr 73



Section 3.6 Related Work

challenges they faced while executing the case-study. One of the aspects tackled
in the case study is also Tracing. This supports our statement that even a
“simple” concern like Tracing can be an excellent driver to adopt AOP. The
conclusion of the authors is that AOP can be used successfully on a large scale.
They do not provide a quantitative assessment of the benefits of AOP.

In [MKL97|, Mendhekar, Kizales and Lamping presented the results of a case-
study that compared the implementations of an image processing system. The
authors compared the runtime performance of a naive OO implementation,
an optimized OO implementation and an AOP implementation. The authors
showed that the runtime performance of the AOP solution was comparable to
the performance of the optimized OO version. The performance of the naive
OO implementation was much slower. The AOP solution required 88% less lines
of code (including the weaver). They only considered the runtime performance
and not the development time and effort in a controlled manner.

In [LB05], Lopes et. al. study the evolution of the design of a web services
application. The authors observe the effects of applying aspect-oriented modula-
rization. In this study the authors compare the Net Options Value (NOV) of a
design without AOP with the NOV of an aspect-oriented design. NOV has been
developed by Baldwin and Clark [BCOQ], and can be used to evaluate modular
design structures. NOV states that the outcome of a design is unknown and
models this uncertainty. NOV assumes the expected value of a module to be a
normally distributed random variable. It includes the costs of making a design
based on the complexity of individual modules and its dependencies. The study
by Lopes et. al. shows that after applying aspect-oriented modularization the
NOV increased significantly, thus indicating a better design. The work supports
our conclusions. However, it uses different dependant variables from our work
and it is not a controlled experiment, it does support our conclusions.

In several papers (e.g. |CSET06, IGSFT05]) Garcia et. al. present studies that
assess the benefits of AOP for design patterns. In [GSFT05], the authors present
a quantitive study for verifying whether AOP improves the modularization of
crosscutting concerns with respect to design patterns. The paper compares
object-oriented implementations of the 23 Gang-Of-Four patterns [GHJIV95], to
the same patterns implemented using aspect-oriented approaches. The authors
measured several attributes of both implementations, namely coupling, cohesion,
size and separation of concerns. These four attributes were derived from a set
of metrics, like Depth Inheritance Tree, Lines of Code, Number of Attributes,
Concern diffusion over Components, etc. Based on these metrics, for each
design pattern in an object-oriented and an aspect-oriented implementation,
the authors concluded that for most of the design patterns the aspect-oriented

74 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

implementations improve the separation of concerns. Some patterns result in
higher coupling, more complex operations and more lines of code.

In [CSFT06], the authors verify whether AOP improves the ability to compose
design patterns. The paper presents a study on how aspect-oriented programming
handles the modularization of pattern-specific concerns in the presence of pattern
interactions. The authors use four software attributes to assess object-oriented
and aspect-oriented implementations: separation of concerns, coupling, cohesion
and conciseness. The results from the study show that the benefits of aspectizing
patterns depend on the patterns in question, the interaction between these
patterns and application requirements. As such no firm conclusion can be drawn
about applying aspects to patterns in general for all compositions of patterns.

All of the above related work is based on collecting code metrics rather than
measuring the performance of software developers. The next two paragraphs
discuss related work based on the performance of software developers.

In |[GBFT07|, Greenwood et. al. present the setup and results of an empirical
study to assess the impact of aspectual decompositions on design stability. The
study compares the design stability between object-oriented and aspect-oriented
implementations, while executing some software maintenance tasks. The authors
analyze the execution of these tasks in terms of modularity, change propagation,
concern interaction, identification of ripple-effects and adherence to well-known
design principles. The authors present two categories of results. The first is
where aspectual decomposition did improve design stability and a second where
aspectual decomposition did not improve design stability. In the first category,
the authors state that aspectized concerns tend to show superior modularity
design, require less intrusive modification. Also, both object-oriented and aspect-
oriented implementations exhibited stability of high-level design structures. In
the second category the authors observe significant violation of pivotal design
principles, such as narrow interfaces and low coupling, and aspectizing exception
handling showed no improvements.

Walker, Murphy and Baniassad [WBM99, MWB99, WBMO05| present an ini-
tial assessment of AOP. Here the authors present several experiments. One
experiment to determine whether users of AOP were able to more quickly and
easily find and correct faults in a multi-threaded program. The results of this
experiment showed that AspectJ users were indeed faster for one scenario, while
for two other scenarios the difference was smaller compared to the regular Java
developers. The intention of the second experiment was to investigate whether
the separation of concerns provided in AOP enhances the ability to change the
functionality of a multi-threaded, distributed program. The results of this expe-
riment showed that the users of AOP(Cool, Ridl and JCore) were slower than

P.E.A. Diirr 75



Section 3.7 Generalizability of the experiment

the users who manually changed the program using Emerald. There are several
differences between our experiment and the one described by the authors. The
main difference is that the authors conducted semi-controlled empirical studies
rather than “statistically valid experiments” [MWB99]. Other differences are the
smaller set of subjects in the studies and that the subjects are not professionals,
but students and professors. However the results from these experiments confirm
our findings.

3.7 Generalizability of the experiment

In this chapter we have presented and discussed the design and results of our
experiment. In this section we provide a discussion about the generalizability
of the design of experiment and the experiment results. We can generalize the
design and results of the experiment in several different ways: for other concerns,
aspect and base languages and organizations.

3.7.1 Other concerns

Although tracing is a (in)famous example of a crosscutting concern, there are
many other concerns. Examples have been mentioned in the first chapter, like
error propagation and parameter checking.

Design: The design can be reused to a large extent for other concerns, only the
change scenarios would require adoption.

Results: The results of the experiment are hard to generalize, since the com-
plexity of aspects can differ significantly. However, concerns with a similar
dependency on the signature of a function, like for example parameter checking,
may show similar results.

3.7.2 Other aspect languages

In our experiment we used WeaveC' and its language called Mirjam. How would
our experiment design and results be effected, if there were other language and
tools capable of expressing tracing, as defined in this chapter?

Design: The design can remain the same, only the scenarios need to be adjusted,
since the current set of change scenarios uses WeaveC-specific annotations.

76 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

Results: Since we only assess the benefits of aspect-orientation for base code
developers, we would expect similar results. Comparing different AOP imple-
mentations is out of the scope of this work.

3.7.3 Other base languages

The tracing concern is not specific for C, as illustrated by section [2.3.3] where
concern tracing was implemented in C#. Other base languages like Java or PHP
could also be used.

Design: Again, we can reuse the design of the experiment to a large extent.
However, the change scenarios will differ in their exact implementation.

Results: We would expect similar results, since crosscutting concerns are not
addressed differently in most languages.

3.7.4 Other organizations

The experiment was conducted with 20 ASML developers. Since crosscutting
concerns are a widespread problem, we discuss the impact of generalizing to
other companies.

Design: Again the design would remain the same, but only the scenarios may
differ.

Results: If we assume that the same base language, weaver and aspect are used,
then the reusability of the results would depend on the independent variables of
the specific company. Most companies in large scale industries will use bachelor
and master student. As such the results should be in line with our findings.

To summarize, the design of the experiment can be reused for other experiments.
The results are not necessary generalizable to all aspects for all companies.

3.8 Conclusions

The experiment we report on in this chapter has adopted the Tracing aspect,
explained in section B} Tracing is sometimes dismissed as a trivial aspect,
however, we showed that this is not the case in the actual realization of Tracing
at ASML. Additionally, this “simple” aspect can serve as an excellent driver to
adopt AOP, as also mentioned by Colyer et. al.. [CC04]. Aspects can be used

P.E.A. Diirr 7



Section 3.8 Conclusions

to address a wide range of crosscutting concerns, but the benefits of adopting
AQOP are not as clear for heterogeneous or more complex concerns, as with
homogeneous concerns like Tracing and Profiling. As such these more “simple”
aspects should not be overlooked, but rather be embraced as effective examples
to introduce AOP in industry.

One of the contributions of this chapter is the design of a controlled experiment
that can be used to quantify the benefits of AOP in other organizations. The
design can easily be adopted for other aspects, other base code, and other
scenarios. We believe that the proposed integration with an introductory course
is an elegant solution to reduce the reluctance of a development organization for
spending time on an experiment.

We conducted the experiment with 20 ASML developers. The developers had
to execute five simple tracing-related change scenarios twice. First, the develo-
pers had to implement the scenarios manually. After this the subjects had to
implement the scenarios using WeaveC. We offer a detailed discussion of validity
threats in section [3.4]and we have tried to reduce validity threats through careful
design of the experiment (see section [3.2).

The results from this experiment, presented in section [3.3] showed that, overall,
the subjects were able to execute the scenarios 6% faster using the AOP solution.
There were scenarios where the subjects were slower with AOP. Since the actual
amount of work was much less, we believe that this is caused by the fact that
the subjects were new to the tooling, especially the required annotations. More
prominent however, was the reduction in errors when using the AOP solution by
77%. We can safely conclude that in the experiment case, a substantial reduction
of errors was achieved with even slightly less effort.

The statistical results of the experiment are limited, as —probably due to the
limited number of participants— not all executed treatments give results that are
statistically significant (at a 95% confidence interval). For two common change
scenarios there is a statistically significant benefit in terms of development effort
w.r.t. Tracing. There is a statistically significant severity error reduction for one
scenario.

The profile of the subjects in terms of education and software development
experience (see section seems representative for ASML and (medium-
to large-sized) software development organizations, but we had no comparable
profile information about these populations to substantiate such a conclusion.

A survey was conducted amongst 26 users of WeaveC. Firstly, the respondents
expressed the need for more complex aspects, like errors handling. This indicates
that the respondents were confident in WeaveC. Secondly, the respondents

78 P.E.A. Diirr



An Assessment of an Aspect-based Approach to Tracing Chapter 3

expressed the need for more explanation about annotations, as this was a new
concept. This strengthens our belief that there is still some extra gain in
development effort, which we were unable to measure.

Concluding, the survey confirms that the users do “experience” the benefits of
AOP.

The current set of subjects is limited. We hope to conduct more experiments in
the future to validate our results and achieve —presumably— statistically more
significant results.

The contributions of this chapter are:

o A detailed description of a real-world aspect: Tracing. Although this is
usually considered simple, we show that this aspect is complex (Section
51).

e A design of a controlled experiment that can be used to quantify the
benefits of using an aspect-based approach to Tracing in an industrial
setting (Section [3.2).

e The results of a controlled experiment with 20 professional software devel-
opers, using an aspect-based approach to Tracing (Section .

P.E.A. Diirr 79



Section 3.8 Conclusions

80 P.E.A. Diirr



Behavioral Conflicts among
Aspects

In this chapter we discuss the problem of behavioral conflicts among aspects.
We present an example conflict based on an industrial case study. We also show
examples of other behavioral conflicts. We use a problem space of composition
conflicts to discuss the related work and to show which kind of composition
conflicts we address. Next, we present our approach, which is based on creating
abstractions of the behavior of aspects as resources and operations. Next, we
apply our approach to the above mentioned example conflicts. Finally, we discuss
the generality of the approach and conclude. In this chapter we only discuss
the problem of behavioral conflicts and present an approach for detecting these
behavioral conflicts. In chapter |5, we show in detail how this can be used in a
concrete AOP language: Composition Filters.

4.1 Motivation

In this section we present an example application, which serves two purposes:
first, it should define of conflicts we address in our approach. Second, since the
example has been identified in the context of a large industrial application, it
is intended to motivate the relevance of the problem. The example has been

P.E.A. Diirr 81



B W N =

~

9
10

12
13
14
15

16

18
19
20

Section 4.1 Motivation

identified within the Ideals project [IDE]. The presented example is taken from
this project. We present two aspectsﬂ that we have identified, namely Parameter
Checking and Error Propagation (section |1.1)).

4.1.1 Parameter Checking

The Design by Contract [JM97| approach to software development is based on
the principle that the interface between modules of a software system should
be bound by precise specifications. These specifications can be pre-conditions,
post-conditions and invariants. One application of design by contract is to check
whether the parameters of a method or function are valid. ASML adopts this
in its wafer scanner software to ensure the validity of the parameters. We call
this concern Parameter Checking. Parameters can be one of three types: input,
output and in- and output. This distinction depends on whether a parameter is
read, written or both. ASML employs two checks to verify the validity of the
parameters, and thus the contract. First, at the start of a function, function
input and in- and output pointer parameters should not be empty (i.e. not null)
. If the input parameter pointer is null, it could yield a fatal error whenever
this parameter is accessed. Second, every output pointer parameter must be null
at the start of a function. An output parameter is a parameter that is written
in the function body. If such a parameter points to a memory location that is
already in use, data in this location can be accidentally overridden, which is
undesirable. An example of this concern, as currently implemented by ASML,
applied to the function compare data() is shown in listing 4.1

static int compare_data(

const DATA_struct* pl, /* input */
const DATA_struct* p2, /* input */
boolx* changed_ptr) /* output */

int result = 0K;

/* Check preconditions */
if (p1 == NULL)
{

result = INVALID_INPUT_PARAMETER_ERROR;

}
if (p2 == NULL)
{
result = INVALID_INPUT_PARAMETER_ERROR;
}

if (changed_ptr != NULL)

result = INVALID_OUTPUT_PARAMETER_ERROR;
}

IThe example aspects presented here are slightly altered for reasons of confidentiality.
However, this does not affect the essence of the examples.

82 P.E.A. Diirr




NN N NN
UL W N =

DU W N -

~

Behavioral Conflicts among Aspects Chapter 4

// code that compares the structures and sets the changed_ptr boolean accordingly

return result;

}

Listing 4.1: Example of the Parameter Checking code

The function compares the two input parameters pl and p2 (declared in lines 2
and 3), and sets the changed ptr boolean output parameter accordingly (line 22,
not shown in detail here). At lines 9 to 20, the checks for the input and output
parameters are shown. Typically, the parameter checking concern accounts
for around 7% of the number of statements in the code, although the exact
percentage varies among components.

4.1.2 Error Propagation

The C programming language does not offer a native exception handling me-
chanism. The typical way to implement exception handling in C, is to use the
return value of a function. The function returns 'OK’ in case of success and an
error number in case of failure. The identifier 'OK’ has been defined in a macro
and resolves to integer value 0. This means that the caller of the function should
always get the return value and verify that the value is still OK, otherwise it
should either handle the error or return the error to its caller.

Exception propagation at ASML consists of (a) passing the error state through
a so-called errorvariable and as the return value of the function, (b) ensuring
that no other actions are performed in an error state, and (c) if an error state is
detected, it is logged. Listing [{.2] shows an example of the exception handling
scheme employed at ASML.

static int compare_data(

const DATA_struct* pl,
const DATA_structx* P2,
boolx changed_ptr)

{
int result = 0K;

if (result == 0K)
{
result = example_actionl(. K
if (result != OK)
{
LogError (result) ;
}
}

return result;

}

P.E.A. Diirr 83




Section 4.1 Motivation

Listing 4.2: Example of the Error Propagation code

The code in listing first (line 6) initializes a variable, result, to hold the
current error state, which is referred to as the errorvariable. To determine
whether to continue with normal execution, a check is placed which guards the
execution (line 8). In this case this might seem useless as the errorvariable
already contains OK. The reason it is inserted is that as the code evolves, such
a check might be required, if another statement is inserted before this. Next, a
call to a regular function (ezample actionl(...)) is done (line 10). If an error
is detected, this error is logged (lines 11 to 14). Finally, the errorvariable, here
named result, is returned at line 17.

It is out of the scope of this thesis to elaborate on the alternatives for exception
handling, especially since this was a given situation at ASML, and changing the
standard completely at once is not feasible. However, the integer return value
exception handling contributes substantially to the lines of code, in some extreme
cases even up to 25% of the code, depending on the component. Error handling
can be divided into three main elements: detection, propagation and handling,
but we only focus here on the propagation part. Detection and handling of errors
is highly context dependent at ASML, thus refactoring this into an aspect is
hard, and perhaps not even desirable. In [FGROT7], Filho et. al. discuss provide
situations where modularizing exception detection and handling into aspects
seems beneficial or harmful. In this section we purely focus on error propagation,
since it follows a more common pattern which can be refactored into an aspect
more easily.

4.1.3 An aspect-based design

We will now discuss how to refactor the crosscutting concerns above into an
AOP solution. Concern ParameterChecking should check the input and output
pointer parameters of each function to ensure the contract of the function is not
violated. We implement this functionality as an advice, named check. Concern
ErrorPropagation should check whether the system is not in an erroneous state
(i.e. the errorvariable is equal to zero), if the errorvariable is zero it should
execute the original call. If this call yields an error, we should log this. Similar
to the ParameterChecking concern, we also implement the functionality of error
propagation as an advice, named propagate. If we apply both concerns to a base
system, the resulting system is shown in figure

At the top of the picture, the two concerns ParameterChecking and ErrorPro-

84 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

ParameterChecking ErrorPropagation

check : Advice propagate : Advice

Base Program

Figuur 4.1: Parameter Checking and Error Propagation example

pagation and their advices are presented, namely check and propagate. The
figure also shows our example C function, compare_ data(...). This is one of
the functions that form the base system. The arrows show where each advice
is applied. The advices are superimposed on the same join point, in this case
compare_data(. .. ). However, concerns ParameterChecking and ErrorPropagation
implement coding conventions and are applied to all functions in the system, as
such there are many such shared join points. These are indicated by the gray
arrows and rectangles. Advices at shared join points have to be executed in some
order. We assume that advice propagate is applied before check; in this case,
the errors detected by check are never propagated to the caller. The alternative
ordering is not problematic.

If we examine the conflict more carefully we see that the conflict is caused
by a dependency between the two advices. The propagate advice reads the
errorvariable to determine the current error state and can subsequently write the
errorvariable and log the error if an error is detected. Advice check verifies that
the arguments are valid, and possibly writes the errorvariable. In this case the
presence of the conflict depends on a specific ordering of advice. Later in this
chapter, we present some examples where the ordering does not matter.

4.2 Problem Statement

We will now elaborate more on concerns ParameterChecking and ErrorPropagation
and the conflict between them. Individually, both aspects are consistent with
their requirements and therefore they can be considered sound. From the

P.E.A. Diirr 85



Section 4.3 Problem Statement

language compiler point of view, the program with either orderings of advices
can be considered as a valid program with no errors, there are no syntactical or
structural problems, and both orderings can be executed. However, once these
aspects are applied at the same join point, new behavior emerges. Such new
behavior may be undesirable, in which case we call it a behavioral conflict.

We use the terms aspect and advice inter-changeability in the context of behavioral
conflicts. Although a conflict is caused by interference between the behavior of
advices, since we consider only conflicts at shared join point, we have to include
the pointcut designator as well, and as such the complete aspect.

In the ASML example, if a developer is aware of such (potentially) conflicting
case and the order in which aspects are applied matters, an ordering can be
enforced. For example, it is possible to enforce an ordering in AspectJ [Asp],
using the declare precedence construct. However, the ordering constraint models
in some AOP languages may not be sufficiently expressive to specify the intended
ordering. For example, in the case of AspectJ one can only indicate a precedence
between aspects not between advices in different aspects. AspectJ does offer
precedence between advices within the same aspect, using the declaration order.
Composition Filters offers ordering language at the granularity of filter modules.

In practice, detecting emerging conflicts is hard, especially if the conflicting
aspects crosscut the entire base application and share many join points. The
conflicts are especially hard to detect when the conflicting situation emerges only
at specific shared join points. This implies that the conflict presents itself given
a specific context, the dependency between the aspects is not direct but rather
indirect, through some properties of the join point. These base system-dependent
conflicts are not addressed in this thesis, but we focus on conflicts caused solely
by the aspects themselves.

As aspects are becoming more and more adopted and widespread, these kinds of
emerging behavioral conflicts will become more prominent. Behavioral conflicts
are not new to programming languages. The same kinds of problems can occur
when using object-oriented or imperative programming languages. However,
since aspects are usually independently specified and can impact a large section
of the application, the problem is more prominent and harder to detect. It is
therefore necessary to develop techniques and tools that reason about (potential)
behavioral conflicts between aspects.

86 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

4.3 Other examples of Behavioral Conflicts

To further exemplify behavioral conflicts, and demonstrate that these may occur
in many different domains and applications, we introduce several other examples.
We assume that all these aspects apply to same join point.

Authorization and Persistence : An authorization aspect checks whether
an “action” is allowed to be executed for the current user. A persistence
aspect writes data to some persistent structure. A conflicting situation
arises if we first write the required data to the persistent structure, before
checking whether the user was allowed to perform this action.

Authorization and Authentication : An authentication aspect verifies the
identify of the user. Here a conflicting situation arises, if the authorization
aspect is executed before the authentication aspect, as the identify of the
user has not yet been verified.

Compression and Logging : A data compression aspect can decrease the
amount of traffic on a communication protocol. If this aspect is composed
with an aspect which logs all traffic, we have to ensure that the logging
advice is executed before compressing the data, else the log file will be
unreadable.

Encryption and Tracing : A comparable situation to the previous one pre-
sents itself for encryption and tracing aspects. However, in this case the
correct order of the advices depends on application specific requirements.
If the application resides in a hostile environment, we would like to ensure
that all data is encrypted before the tracing aspect reads this data, to
ensure the safety of the data in the log file. However, if the application
operates in a safe environment and we would like to verify the data, we
would like to see the plain text data and not the encrypted data. This
conflict is an example of an application-specific, or even deployment-specific
conflict. In these cases, the correct ordering of advice cannot be determined
automatically.

Data modification : Imagine two aspects at a shared join point which both
write the same field or table of a datastore. We assume that this is a
conflict as the value written by one aspect is overwritten by another aspect.
In this case there is no (in)valid ordering, since in any ordering a value
is overwritten. If one aspect would do a non-destructive update, which
first reads the value and then writes an updated VzaulueEI7 a valid ordering is
possible (i.e. update after write).

Real-time constraints and Concurrency : Assume that a real time aspect

2In general, an update can be considered nondestructive if the update is reversible because
no information is lost.

P.E.A. Diirr 87



Section 4.4 Background and Related Work

enforces some timing constraints on a certain action. If we now also apply
an aspect which enforces a synchronization constraint on that same action,
we can never ensure that the deadline is met, because of potential blocking.
This problem is again a conflict that cannot be solved by reordering the
aspects, unlike the first four example conflicts above.

4.4 Background and Related Work

In this section we discuss a part of the problem space of conflicts caused by the
composition of aspects, and position our approach into this space. We discuss
the problem space along the following dimensions:

Composition type (advice-base or advice-advice)

Type of superimposition (structural or behavioral)

Type of interaction (control-flow based or state-based)

Type of join point (shared or distinct)

Ordering (order-dependent or order-independent conflicts)

Generality (generic, domain-specific or application-specific conflicts)

7. Advice specification form (imperative vs. declarative, Turing-completeness)

SOt W=

These dimensions are not fully orthogonal, but in the presented order they allow
us to scope the context and to indicate the category of problems our approach
focuses on.

4.4.1 Composition type

One can identify three types of composition between aspects and base code, as
illustrated by figure

We can distinguish three types of composition:

e Base-base composition: the composition of the behavior of two elements in
the base system.

o Advice-base composition: the composition of the advice behavior with the
behavior of the base system.

e Advice-advice composition: the composition of the advice behavior with
one or more other advice behaviors; this happens when several advices are
superimposed at locations where their behavior ’joins’. As mentioned in
section we divide this type of composition into two categories:

— Advice-advice: In this case a conflict occurs due to the composition of

88 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

Aspects

et

Aspect-Base

Conflicts  agpect-Aspect
Conflicts

Base

System

Base-Base

Conflicts

Figuur 4.2: Aspect composition conflicts

the aspects themselves. As such this conflict will occur at any shared
join point.

— Advice-advice-base: In this case the conflicts occurs due to the com-
position of the aspects, but only for specific join points.

Base-base composition, e.g. using inheritance or method call, is usually already
verified, by for example the type checker of the compiler. This only guarantees
that the types are compatible or that a certain method call is valid. To verify
the correctness of the behavior after composition, we still need techniques like
model checking. Although advice-base composition is a very relevant category,
and in principle our approach could be applied here as well, we only focus on
interference among aspects: the main motivation for this is that automated
reasoning about the behavior of (Turing-complete) base code is notoriously
difficult. We consider the annotation of a complete base program with clues
about its behavior to be impractical in all but very special situations. As we
explain in the next chapter, we believe it is much more feasible to (automatically)
derive a sufficiently informative specification of its behavior from a declarative
aspect language.

P.E.A. Diirr 89



Section 4.4 Background and Related Work

4.4.2 Type of Superimposition

In general, a distinction can be made between behavioral and structural supe-
rimposition: behavioral superimposition refers to the adornment of a program
(at join points) with behavior (expressed as advice). Structural superimposition
refers to various disciplined forms of transformation of the program, typically
through the addition of program elements such as methods and fields. This
is also called introductions or inter-type declarations. One aspect module may
consist of a combination of behavioral and structural superimposition.

In our approach, we focus on the possible behavioral conflicts between com-
posed pieces of behavior. Although this applies in principle to any form of
behavior composition, to restrict the scope of the discussion we focus on be-
havioral superimposition, which is also the most common of the two types of
superimposition.

4.4.3 Type of interaction

Conflicts between aspects are caused by some form of interaction. In general, we
can distinguish between control-flow based interaction and state based interaction.
Control-flow based interaction means that the composition affects the flow of
execution in the program. State-based interaction means that the composition
brings the program into a state that would not occur (at that location) in the
program without that particular composition. It should be stressed that an
interaction is not necessarily bad, or should be considered a conflict; many
interactions are in fact desirable, and compositions may be specified exactly
to achieve such an effect on the control flow or state. One of the goals of our
approach is to present a means to distinguish among desired interactions and
undesired interactions (i.e. conflicts).

In [CL02|, Leavens and Clifton propose a classification of advice based on whether
or not the advice changes the specification of the base behavior where the advice
is superimposed. So called observers do not alter this effective specification,
whereas Assistants do.

In [Kat93l IKG99|, Katz et.al. propose three categories of aspects: spectative,
regulative and invasive. Spectative aspects do not influence the underlying
system, but only query the state. Regulative aspects can alter the control
flow of the underlying system. Finally, invasive aspects change the state of
the underlying system and may alter the control flow. In [GKO06], a further
distinction is made between weakly invasive and strongly invasive. A weakly

90 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

invasive advice always returns to a valid state of the base system, whereas this
is not the case for a strongly invasive advice.

Rinard et.al. [RSB04] have proposed a classification system for the possible effects
of advice on base code. The classification system distinguishes the dimension of
control flow and the dimension of state. For the dimension of control flow, the
following categories are distinguished:

Augmentation : the join point is always executed.

Narrowing : the join point is conditionally executed.

Replacement : the join point is not executed.

Combination : a combination of the base system and the aspect is executed.

For the dimension of state the following types of interaction are distinguished:

Orthogonal : the aspect and base system access disjoint fields.

Independent : neither the aspect nor the base system writes a field that the
other may read or write.

Observation : the aspect may read one or more fields that the base system
may write, but they are otherwise independent.

Actuation : the aspect may write one or more fields that the base system may
read, but they are otherwise independent.

Interference : the aspect and base system may write the same field.

In our approach we focus on both control flow and data flow related conflicts.

4.4.4 Type of Join Point

We mentioned that advice-advice composition may yield conflicts when the
advices ’join’. This only occurs when there is some direct influence or interaction
between advices. This depends on the relative locations where the respective
advices are superimposed; these join points can be either:

e shared join points:Multiple advices are applied to the same join point, so
they may interact.

o distinct join points: Advices are applied at distinct join points, they may
still influence each other, albeit less likely. For example, assume that a
first advice affects a state that another advice depends on (or changes as
well). If the second advice is within the control flow or data flow of the
first advice, the changed state may very well affect the second advice.

In our approach we focus on advice-advice composition at shared join points.
The primary reason for this restriction is that detecting the mutual influence

P.E.A. Diirr 91



Section 4.4 Background and Related Work

of advices at distinct join points requires extensive analysis of the base code of
programs, something that is not the primary aim of this work. However, our
approach could as far as we can envision be applied as well to aspect interaction
at distinct join points when such an analysis would be available.

Douence, Fradet and Sudholt [DFS02] state that two aspects do not interact if
they are independent of each other. Here, (in)dependence is expressed in terms
of having shared join points. They distinguish two forms of independence. The
first, Strong Independence, occurs when two crosscutting specifications never
overlap for any base system, whereas in the second form, Independence w.r.t. a
program, the independence of the aspects is relative to a given base system.

4.4.5 Ordering

Conlflicts caused by advice-advice composition can be divided into two categories:

e order-dependent: when the conflict only occurs in a specific ordering of
advices.

e order-independent: when the conflict is independent of the ordering of the
advices.

For advices applied at distinct join points, at least for imperative languages,
the ordering cannot be changed without changing the pointcuts or changing the
execution flow. In case of conflicts as a result of side-effects, this distinction has
only practical relevance for advices applied at shared join points. Many AOP
languages have support for ordering advices at shared join points, such as aspect
precedence declaration in Aspect]J [Xer| and declarative ordering constraints in
Compose* [NBAOS].

4.4.6 Generality

Most, behavioral conflicts are not cases where the execution of composed advice
leads directly to execution problems, or is otherwise fundamentally wrong or im-
possible, i.e. would result in an not compilable or executable program. Typically,
behavioral conflicts are detected through the use of domain knowledge. The
advice composition is problematic because in a specific domain or application
context, such a composition does not make sense for that context, since the
resulting behavior is semantically incorrect or undesired. For example, the
composition may lead to deadlock, incorrect scheduling, invalid application data,
advice that is accidentally not executed at all, and so forth. We can distinguish
the following categories conflicts:

92 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

e Generic: conflicts that are general to computing and program execution,
and hence may occur in any type of program. For example, when two
advices write the same variable consecutively, the value that was written
by the first advice may be lost, which means the intended behavior of the
first advice is not represented in the composed application.

e Domain-specific: conflicts that are specific to a particular domain, such
as concurrency, persistence, exception handling or security. Each of these
domains imposes specific rules about correct compositions. For example,
the combination of two advices may cause a wrong synchronization, which
can lead to e.g. deadlock or (indirectly) corrupt data.

o Application-specific: conflicts that only arise due to specific constraints that
can be traced back to the requirements of the application. For example,
when an encryption advice is composed with a logging advice, it depends
on the application requirements whether the encrypted, or the unencrypted,
information should be logged.

The approach presented in this chapter is applicable to all three categories.
However, for the domain-specific and especially the application-specific conflicts,
the programmer may need to provide specific information, e.g. in the form of
annotations or rules, so that the these more specific behavioral conflicts can be
identified.

4.4.7 Advice specification form

Finally, we briefly discuss the various forms of advice specification, and their
relationships with advice composition conflicts and the detection of such conflicts.
First, we can distinguish between advices that are specified in an imperative
manner and those that are specified in a declarative manner. The first group is
the common approach in most AOP languages, such as AspectJ, where advice is
expressed just like a method body in the base language. The latter group is less
common, and most examples appear in domain-specific aspect languages, such
as the COOL and RIDLE [Lop97] aspect languages for distributed programming.
There are definite advantages for programmers to be able to express advices in the
base language they are familiar with, and interfacing between the base language
and the advice languages is also straightforward in such cases, for example such
as sharing data structures. However, a declarative advice specification may
avoid certain categories of conflicts, and in general it is easier to analyze the
specification in such a language for the purpose of detecting conflicts.

A second categorization relates to the expressiveness of the advice language.
Most advice languages are expressed in an (imperative) Turing-complete langu-

P.E.A. Diirr 93



Section 4.5 Approach

age. Some usually domain-specific advice languages, however, have restricted
expressiveness and are not Turning-complete. This is a trade-off for the language
designer between expressiveness, and ease of understanding for both programmers
and machines (such as conflict detection tools).

Our approach is not restricted to any advice specification form. However, in the
next chapter we demonstrate that our approach can leverage the characteristics of
a declarative non Turing-complete advice language, to allow for better automated
conflict detection.

4.5 Approach

To reason about the behavior of advices and detect behavioral conflicts between
them, we introduce a formalization that enables us to express behavior, and
conflict detection rules over that behavior. A complete formalization of the
behavior of advice in general would be too complicated to reason about. In
most case the behavior is expressed using Turing complete languages, which are
notoriously hard to reason about, e.g. termination problems and undecidability
issues. Techniques like model checking have already encountered these issues
and use a variety of techniques to prevent state-space explosion and reduce
computational complexity. One of these techniques is the use of abstractions as
proposed in our approach.

Imagine an encryption advice which encrypts the arguments of a message. To do
this, this advice first reads the arguments, calls an encrypt method to encrypt
them, sets the encrypted arguments and calls the original method with the
encrypted arguments . Without extra information it is impossible to derive that
a read, followed by a call to some method (which does the actual encryption),
followed by a write on the arguments, is considered an encrypt operation. At
the implementation level this important information is lost. There are many
different ways to encrypt data, abstracting from these different ways is important
for detecting behavioral conflicts.

Therefore, we propose an abstraction that can represent the essential behavior
of advice, such that it can be used to detect behavioral conflicts between advices.
At the same time, the abstraction will reduce or simplify details such that
undecidability issues are avoided and computational complexity of the reasoning
process is reduced.

Our abstraction consists of a resource-operation model to abstract the relevant
behavior of advice. We have chosen to adopt a resource-operation model, since

94 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

this is a simple abstraction model that can represent both concrete, low-level,
behavior as well as abstract high-level behavior. The resource-based abstraction
is not unlike the idea of Abstract Data Types [KM80]: representing an abstraction
through its operations. Our approach to conflict detection can also be viewed
as an generalization of the Bernstein conditions [Ber66] for stating concurrency
requirements. A similar approach is also used for detecting and resolving
(concurrency) conflicts in transaction systems, such as databases [LMWEF93].
However, our approach generalizes from these domain-specific approaches.

The most primitive actions on shared data resources are read and write operations.
However, if desired by the programmer, we allow such actions to be modeled at a
higher level of abstraction, and thus introduce more specific information into the
model. These more specific operations can be derived from a specific domain, e.g.
the pass and free operations on a semaphore, or can even be application specific.
Like operations, resources can be refer to concrete elements in the application,
e.g. the target of a message or more abstract elements like a semaphore or thread.
Operations in our model are abstractions of a (complex) action executed by an
advice. We do not describe the implementation of an operation, just its notion.
Since, there may be many implementations that can be mapped to the same
operation, e.g. there are many ways to encrypt data.

The key idea of our approach is that for a conflict to occur, there must be an
interaction. A conflict is an interaction with undesirable consequences. This
interaction can be modeled by operations on one or more shared (abstract)
resources. A conflict is then modeled as the occurrence of a certain pattern of
operations on a shared resource.

We first explain the general outline of our approach. In the next section we
exemplify this approach using the ASML example. Figure presents the
behavior analysis process and its relationships to the program. We will use this
image as a guideline throughout sections [1.5.1] to [£.5.3]

Each shaded block in figure [£.3] presents a step in the behavioral conflict analysis
process, with its inputs and outputs. The conflict analysis process contains
three steps: Composition, Advice Behavior Abstraction and Conflict Detection.
Sections to each explain one such step, including the specific inputs,
how these are transformed, and the resulting outputs.

4.5.1 Composition Phase

Inputs This phase in the process has two kinds of inputs:

P.E.A. Diirr 95



Section 4.5

Approach

Aspects
+
ordering
specification

L

ClassZ

Operationt [ Composition
Operation2
Base Program

Advices per
shared join point
] Advice Behavior
Behavioral Abstraction

Specificaiton

Behavioral specification
sequence
per shared join point

Conflict Conflict Detection
Rules

Verdict

Figuur 4.3: An overview of the approach

96

P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

e Aspects: These are shown at the top of figure These aspects typically
contain:

— Advice: This is the behavior that should be inserted.

— Pointcut Designators: These specify where the behavior should be
inserted.

— Ordering Specifications: These allow the developer to influence
the ordering of advice at shared join points. These can be complete
or partial ordering specifications.

e Base Program: These are the classes or files that are subjected to the
aspects. The pointcuts are resolved on this base program, yielding a set of
join points.

Transformation During this phase all pointcut designators are evaluated with
respect to the base program. If a pointcut matches, a weaver typically inserts
the behavior that is specified in the advice into the join point. If there are
multiple advices, an execution order must be determined, based on the (partial)
ordering specifications. Most AOP approaches only support serial execution of
advice, hence we only consider this situation. For example, AOP approaches
that execute advices in parallel are out of the scope of our approach. Resolving
the pointcuts and ordering advice is usually carried out by an aspect oriented
weaver.

Outputs The result of this phase is a set of join points with a sequence of
advices attached to them. For conflict analysis, we only need to consider join
points with more than one superimposed advice. We could also carry out conflict
analysis for join points with one advice attached, however we assume that the
implementation of a single advice is correct. Our approach can equally be applied
to detect conflicts within a single advice.

4.5.2 Advice Behavior Abstraction Phase

Inputs This phase in the process has two kinds of inputs:

e Advice Execution Sequences: This is the result of phase Composition.
This is a set of join points with a sequence of advices attached to them.

e Behavioral Specifications: This is the behavioral specification for each
advice or filter type. This specification consists of a set of resources with a
sequence of operations attached to them. We assume that all operations
are executed sequentially, i.e. we do not take conditional or repetitive

P.E.A. Diirr 97



Section 4.5 Approach

execution into account, and assume the worst case.

We now discuss the way resources and operations are specified and the relationship
between these two concepts.

Resource : A resource represents a possible interacting area. A resource has
two elements:
e A string that represents the name of the resource.
e A set of operations that is the alphabet of operations for this resource.
Only operations that are in this alphabet are allowed to be carried
out on this resource.

Operation : An operation represents the effect an advice has on a certain
resource. An operation can by identified by a name. A possible extension
would be to also include arguments, thus providing parametrized operations.
For now we ignore this extension. An operation has only one element:

e A string that represents the name of the operation.

Transformation During the abstraction phase, the sequence of advices is
transformed into a sequence of operations per resource per shared join point.

Outputs The result of this phase is a sequence of operations per resource per
shared join point.

4.5.3 Conflict Detection Phase

Inputs

e Conflict detection rules (or conflict rules for short): A pattern that
describes for a set of resources what combination of operations are allowed
to occur on this resources. There are two types of rules : conflict rules and
assertion rules. A rule consists of three elements:

— A set of resources for which this rule applies. This may be all resources.

— An expression describing the conflict pattern. In this thesis, we work
mostly with extended regular expressions (IEEE standard 1003.1
[GI04]), but other options like linear temporal logic (LTL) [Pnu77]
would be possible as well.

— A message that is provided to a developer if a conflict rule matches,
or if an assertion rules fails to match.

e Behavioral sequence of operations per resource per shared join
point: The output of the previous phase.

98 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

Transformation Each conflict rule is transformed to an automaton. We can
do this since we use regular expressions or LTL (see [Sud97]). Also, for each
shared join point and for each resource, there is a resulting sequence of operations.
For each such sequence we determine whether the automata, that represent the
conflict detection rules, accept this sequence. If a conflict rule automaton accepts
the sequence, this indicates a conflict. If an assertion rule automaton does not
accept the sequence, this also indicates a conflict.

Outputs For each resource and each join point we determine whether the
conflict rules match or the assertion rules do not match. If so, we report an error
or warning to the user.

4.6 Application to the ASML example

In this section, we illustrate our approach by applying it to the ASML example.
We do this by enumerating the three phases of our approach and we discuss the
artifacts involved. We have instantiated the approach illustrated in figure [£:3]
for the ASML example, as shown by figure [4.4]

Figure [£.4 has the same structure and layout as the overview of the approach in
figure However, now all artifacts are instantiated for the ASML example.
Similar to section [£.5] we discuss each phase of the approach.

4.6.1 Composition Phase

Inputs This phase in the process has two kinds of inputs:

e Aspects: In this case we have two aspects: Error Propagation and Parameter
Checking. These aspects contain the following elements:

— Advice: Aspect Error Propagation contains advice Propagate. Aspect
Parameter Checking contains advice Check.

— Pointcut Designators: Since both aspects implement coding con-
ventions, we assume that both advices are applied to numerous places
in the base program. However, aspect Error Propagation is only applied
to functions returning an integer, which should be the case for the
vast majority of functions.

— Ordering Specifications: In this case we do not provide an ordering
specification.

P.E.A. Diirr 99



Section 4.6

Application to the ASML example

Error Parameter
Propagation Checking

Propagat Check
Base Q Aspects
Code
CC.CX.FS m
compare_datal...) Composition
Advices per
Propagate shared join
point
CC.CX.FS
compare_data(...)
Propagate: Behavioral Q
errorvariable: read; | Specifications
write;read;read Advice Behavior
Abstraction
Check: bstractio.
arguments: read
errorvariable: write @
Behavioral

arguments: read specification
errorvariable: read; sequence
write;read,read;write per shared join

CC.CX.FS point
compare_data(...)

Conflict @
Detection

Rules

Conflict: Conflict Detection
errorvariable:
(.*)write$
Verdict:
A written errorvariable
must be read

Figuur 4.4: Approach instantiated for the ASML example

100

P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

e Base Program: There are numerous files and functions in the base
program that should be considered for aspects Error Propagation and
Parameter Checking. Here, we only focus on one function in particular,
namely function compare data(...). The discussion and our approach
applies equally well to other functions.

Transformation Function compare data(...) is a shared join point, as both
advice Propagate and Check are applied to this point. Since we have to sequenti-
ally compose both advices, an ordering has to be chosen. We assume that advice
Propagate is executed before advice Check; this is the order that results in a
conflict.

Outputs The result of this phase is one shared join point: function compa-
re_data(...). This join point has a sequence of advices attached to it, this
sequence is: Propagate followed by Check.

4.6.2 Advice Behavior Abstraction Phase

Inputs This phase in the process has two kinds of inputs:

e Advice Execution Sequence: This is the result of phase Composition.
In this case this is one shared join point, function compare data(...).
This join point has a sequence of advices attached to it, this sequence is:
Propagate followed by Check.

e Behavioral Specifications: We have two behavioral specifications, in
this example. One for advice Propagate and one for advice Check. These
behavioral specifications are shown here:

— Propagate:

errorvariable: read;write;read;read

This specification is only concerned with resource errorvariable. This
resource directly corresponds to local variable result, as shown in
listing [4.1] (line 6). It states that on this resource we perform four
operations, namely: a read, followed by a write, followed by a read
and finally a read is performed. The first read corresponds to line 8
in listing [£.2] The write operation corresponds to line 10 in listing
The next two reads are caused by lines 11 and 13 in listing |4.2
respectively.
— Check:

P.E.A. Diirr 101



Section 4.6 Application to the ASML example

arguments: read
errorvariable: write

Advice Check reads the arguments and can possibly write the errorva-
riable.

Transformation For each shared join point we have to compose the behavioral
specifications of the individual advices. Since these advices are sequentially
composed, we can also compose the behavioral specifications sequentially. We
have to do this for each resource, in this case for resources arguments and
errorvariable.

Outputs The result is a sequence of operations per resource for each shared
join point. In this case we only have one shared join point and two resources.
The results is as follows:

arguments: read
errorvariable: read;write;read;read;write

4.6.3 Conflict Detection Phase

Inputs

e Conflict Detection Rules: In the ASML example we stated that if an
error is detected, it should be logged. A conflicting situation occurs if the
operation sequence for resource errorvariable ends with a write, or if we have
two consecutive writes in the operation sequence for resource errorvariable.
These two cases can be translated into the following rules:

Conflict(errorvariable): (write)$
Conflict (errorvariable): (write) (write)

We have expressed the rules using extended regular expressions.
e Behavioral sequence of operations per resource per shared join
point: The sequences of operations from the previous phase:

arguments: read
errorvariable: read;write;read;read;write

Transformation In this example, we see that the conflict rule:
Conflict(errorvariable): write$, accepts the S€eqUENCE read;write;read;read;write of re-
source errorvariable. As such we have encountered a conflict.

102 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

Outputs The verdict for the ASML example is: advices Propagate and Check
are conflicting on resource errorvariable for rule: conflict(errorvariable): writeg. If
the advices were ordered differently, this conflict would not occur.

4.7 Application to other examples

As an additional illustration, we show how several of the behavioral conflict
examples implemented in section [£.3] can be described using the resource-
operation model. We discuss the following potential behavioral conflicts:

Authorization and Persistence : If data is made persistent before data
access is authorized, this is considered a conflict.

Authorization and Authentication : A conflict is present if the authoriza-
tion aspect is executed before the authentication aspect, as the identify of
the user has not yet been verified.

Data modification : If two aspects both (destructively) write the same field
or entry of a datastore, a conflict occurs, as the value written by one aspect
is overwritten by another aspect. In this case there is no order that does
not yield a conflict; either way a value is overwritten.

Again, we would like to stress that there are many possible ways to model the
above behaviors (and conflicts); in this section we aim to show that this can
be done using resources and operations, and we do so in the simplest possible
way. All these behaviors can be expressed upon the same abstract resource, data,
which represents some storage container. The data resource can model either a
single (pseudo-)variable, a field or record in a database, a complex data structure
or a complete database.

We now discuss the operations that can express each of the above individual
behaviors:

Authorization : This can be expressed by a single operation autr, which
indicates that an authorization check is executed. This check verifies
that the current user is allowed to access the data resource. To keep
things simple, we assume that there is a clear notion of ’current user’ (e.g.
associated with the current execution thread), and we do not distinguish
among the various forms of access, such as read, write or execute. The latter
could be modeled easily by introducing multiple different authorization
operations (and would then also require more refined conflict detection
rules that distinguish among these forms of access to the data resources).

Persistence : We only need to model operations that make the data resource

P.E.A. Diirr 103



Section 4.8 Discussion

persistent. This could be a dedicated operation, such as persist, but we
generalize this to the generic access operation write. The assumption is
that operation write commits the data to some persistence structure.

Authentication : We propose a single operation autn on the data resource to
represent authentication. We assume that this operation corresponds to
some actions (e.g. password requests, biometrics) that verify whether the
notion of ’current user’ can be considered to be correct.

Data(base) modification : We use the general read and write operations to
model data access.

The following conflict detection rules can express potential behavioral conflicts
among the above behaviors:

Data access without authorization : The following assertion rule guaran-
tees that no data access takes place without preceding authorization:
Assert(data): ~ (!((read) | (write))* | ((read) | (write))* autr .* $
This rule demands that either there are no data access operations at all,
or all operations before the authorization operation are not data access
operations, after operation autr, any operation (.*) is allowed. This has to
be the case in the entire sequence, from start (‘) to the end (‘$’).

Authorization without authentication :

Conflict(data): ~ [!(autn)]* (autr) $; this detects a conflict if there is no
authentication preceding an authorization operation.

All other conflicts between the data access operations are addressed by the
following conflict rules (caused by distinct advices):

o Conflict(data): read write: In this case the read operations obtains a value
that is no longer valid, since the resource is changed afterwards.

o Conflict(data): write write: In this case the effect of the first write operation
is lost due to a subsequent write operation.

As mentioned previously, these rules do not distinguish between conflict cau-
sed within a single advice or between multiple pieces of advice. The tooling,
implementing our approach should take care of this distinction.

4.8 Discussion

In this section we discuss to what extent our approach is general applicable to
a wide range of situations. The key questions to consider are: can we describe
conflicts among aspects at all (i.e. how expressive is our model)? Secondly, can
we describe these in a generic way, independent of a specific application, or can

104 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

we describe application-specific conflict models, or both? We will argue that the
method we propose is indeed general enough to represent both generic conflict
models and domain- or application-specific conflict models.

4.8.1 Can all behavior be modeled as a sequence of ope-
rations?

We currently only investigated a fully serialized list of operations per resource:
although it is always possible to create such a serialization (in a deterministic
way), and it appears to suffice in many cases, this does abstract from the
control flow logic among the operations. For example, if a certain behavior is
implemented within a control structure, and hence does not always occur, there
are two options how to model this in a serialized form: first, one can assume
that it is safer to ignore this conditional operations. In this way, assertions
that require such an operation to occur would not match and yield a conflict.
Second, one can assume it is safer to include it, which ensures that a conflict rule
that matches upon such an operation is always triggered (but possibly including
cases where this would not apply). Clearly, modeling the alternatives is a better
way, where the matching algorithm can encode the most safe (or optimistic)
assumption for both the assertion and the conflict rules. We envision also using
an automaton to describe the behavior, since this can accommodate control flow.

4.8.2 Is it applicable to any paradigm or approach?

Our behavioral conflict detection approach is in fact independent of Aspect-
Oriented Programming, and can be used to describe any behavioral composition
and related behavioral conflicts. Figure serves to illustrate that our approach
can also be applied to general software composition verification.

Figure [£.5] is divided into two sections, the top section shows our approach
for general software composition verification. We assume that there are some
program elements, and a set of composition operators that compose these
program elements into a system. Each program element also has a behavioral
specification, in terms of resources and operations. All these ingredients are
composed to create the complete application. The application can be viewed as a
set of possible execution traces. These can be statically determined or monitored
at run time. We try to match a set of conflict rules on the possible execution
traces. True concurrency cannot be modeled using this approach. However,
concurrent executions that are serialized can be represented. In this case we can

P.E.A. Diirr 105



Section 4.8 Discussion

Program element
- =

Program element . .
Possible execution traces

Composition
Operators

Base Class Possible execution traces
method

Aspect

T

Super-
imposition

l Behavioral
Specifications

Figuur 4.5: The instantiation of the approach for respectively general and aspect-
oriented software composition.

106 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

still apply our approach.

The lower part of figure [£.5] presents the approach for aspect composition. The
program elements are aspects and base classes. Aspects have advices with a
behavioral specification. Classes have methods which are subjected to advices.
The composition operator in this case is superimposition of advice on methods.
For each join point, we can create a set of possible execution traces, as explained
in the previous sections. This is also detailed in chapter [5| Similar to generic
software composition, we try to match a set of conflict rules on the possible
execution traces.

There are two reasons why we believe AOP, and especially composition filters,
are a more suitable domain for applying our method. The first reason is that,
due to obliviousness, the risk of having unplanned interactions among aspects
is much more serious in AOP. The second reason is that a suitable aspect
language can help or ease the (automated) derivation of behavior from code. In
general, we believe that, from a practical perspective, automatic derivation of the
resources and operations from regular Turing complete code is computationally
complex and suffers from termination and undecidability problems. We think
that with the addition of domain-specific and application-specific information
and our abstract resource-operations, (partial) automatic derivation of behavioral
specifications from (declarative) aspect languages is feasible, as illustrated by

chapter

4.8.3 Can all behavior be specified?

This depends on the expressiveness of our resource-operation model. The key
contribution of this model is that it allows for the encapsulation of possibly
complex implementation details within abstract operations. This means that it
is not necessary to be able to accurately represent those implementation details.

4.8.4 Can all conflicting patterns be detected?

This depends on the chosen language for expressing the conflict rules. In this
thesis, and in our current implementation, we use extended regular expressions
to specify patterns over a sequence of operations on a single resource. However,
other languages could be chosen instead. For example, we plan to investigate
the applicability of linear temporal logic as an alternative. In addition, one may
consider patterns that express (un)desired interaction among operations between
resources.

P.E.A. Diirr 107



Section 4.8 Discussion

4.8.5 Which types of conflicts can be modeled?

A key underlying assumption of our method is that conflicts occur because
of shared state or shared behavior among aspects. This would be reflected in
conflict rules that look for multiple operations on shared resources. In fact,
such rules can also identify conflicting patterns that do not come from different
advices, but are written in a single advice. This category of detected conflicts
can be turned off in tools. The proposed method is suitable for cases where
(potentially complex) behavior can be abstracted into one or more operations,
and a conflict can be described as the occurrence of a certain pattern of those
operations. Some other categories of conflicts would be detectable in different
ways, e.g. by a complex data flow (dependency) analysis. It is hard to determine
for which types of conflicts our approach is or is not applicable.

4.8.6 What is required for and what is the effect of detec-
ting different categories of conflicts?

In this thesis we distinguish between three categories: Generic, Domain-specifc
and Application-specific. These are not on a discrete scale, since a mixture of
categories is possible. We compare the three categories using three properties:

Reuse : To what extent are the resources, operations and rules reusable in
other applications?

Specification : To what extent can the resources, operations be automatically
derived?

Number of false positives and negatives : Does the choice between gene-
ral or more specific resources, operations and rules influence the errors in
conflict detection?

We now discuss these three properties for each category.

4.8.6.1 Generic conflicts

An example of a generic conflict would be: a data resource that can only be read
or written, is not allowed to be written twice.

Reuse : The resources, operations and rules are reusable for all applications.
All imperative programming languages assume that there is some data and
that one performs transformations, e.g. read and write, on this data. As
such generic conflicts can be detected in all applications.

108 P.E.A. Diirr



Behavioral Conflicts among Aspects Chapter 4

Specification : In imperative languages, resources can represent local or global
variables or parameters. Read and write operations on these resources
can be automatically extracted using appropriate tooling, e.g. CodeSurfer
[Gra] for C code.

Number of false positives and negatives : General resources, operations
and rules are prone to identify too many conflicts since there is no specific
behavioral information. The rule in the ASML example detects all duplicate
writes, but if a write is actually an update; in that case we might detect a
problem where there is none.

4.8.6.2 Domain-specific conflicts

An example of a domain-specific conflict would be the ASML example, as
described in section E.1.3

Reuse : The resources, operations and rules are reusable for a specific domain,
e,g. synchronization, security or exception handling. A common set of
resources, operations and rules should be defined for a specific domain.
With this set one should be able to express all domain-specific behavior,
and detect conflicts.

Specification : Usually, domain specific resources, operations and rules cannot
be automatically derived from a program. However, as there are probably
general patterns for a given domain, we can use this information to partially
automate behavior specification extraction. Some manual specification
may still be required for a given domain.

Number of false positives and negatives : The number of false positives
and negatives, depends on the accurate specification of the domain. As-
suming that this specification is accurate, a more detailed analysis can
be performed. Also, domain-specific conflict rules only identify those pat-
terns that are conflicting within the domain. As such the number of false
positives and negatives should be reduced.

4.8.6.3 Application-specific conflicts

Reuse : Resources, operations and rules that are specific for one application
or even for a part of application are only reusable to variations of that
application.

Specification : In practice, it is be very hard to extract application specific
behavioral specification automatically from the code. This category of
conflicts requires detailed information from the developers. This can be

P.E.A. Diirr 109



Section 4.9 Conclusions

achieved by manually annotating the source code with detailed behavioral
specifications.

Number of false positives and negatives : An application specific behavi-
oral model will capture numerous, if not all, details for that application.
As such the number of false positives and negatives should be low.

Which category of behavioral conflicts one wants to detect is a trade-off between
the three described properties. For example, in a critical application, we might
want to gain better conflict detection by specifying many details. The approach
we propose in this thesis does not make any assumptions about a specific
instantiation. However, we favor domain-specific conflicts, since this seems to us
the optimal trade-off between the three properties.

4.9 Conclusions

In this chapter we have discussed the problem of behavioral conflicts among
aspects. We explained the problem of behavioral conflicts using an example
which we encountered at ASML. This illustrates the relevance of the problem.
The main contribution of this chapter is to present an approach for detecting
behavioral conflicts, based on a novel abstraction of advice behavior in terms of
resources and operations. Such an abstraction has several advantages:

e It allows for expressing behavior (and conflicts) without involving (needless)
implementation-level details.

e It allows to express not only generic, or universal, conflicts, but also domain-
and application-specific conflicts.

e It strongly reduces the computational complexity of the conflict detection
analysis.

In section [£.4] the relation with other work in the area of aspect composition
problems is described. The next chapter will provide a detailed instantiation of
the approach for Composition Filters. In the next chapter, we also discuss the
related work in more detail.

The current and earlier versions of the abstract conflict detection approach have
been published in [DSBAO5| and [DBAOG].

110 P.E.A. Diirr



Behavioral Conflict
Reasoning applied to
Composition Filters

In this chapter we show how the approach that was introduced in the previous
chapter is instantiated for one specific aspect-oriented language, namely Compo-
sition Filters. We first explain the rationale for using Composition Filters. Next
we will go through the three main phases of our approach for behavioral conflict
detection, and describe in detail how to apply each phase to the Composition
Filters approach. We also explore how suitable language constructs can aid in
(partially) automating the reasoning process. Finally, we discuss the related
work in this area and conclude.

5.1 Motivation

Chapter (4] explained the motivation for behavioral conflict detection among
aspects. That chapter also presented an approach for the detection of behavioral
conflicts using a resource-operation based abstraction of advice behavior. This
approach can be used to model both generic behavioral conflicts, as well as more
specific behavioral conflicts.

Chapter [4] also showed an example of a behavioral conflict among aspect that we

P.E.A. Diirr 111



Section 5.2 Composition Filters

encountered at ASML. This example illustrated the need for behavioral conflict
detection in industry. Hence, we would like to demonstrate an implementation
of our behavioral conflict detection approach.

We demonstrate behavioral conflict detection on the Composition Filters ap-
proach and its implementation in Compose* [Unia]. The Composition Filters
model has some characteristics that support (partial) automatic derivation of
behavioral specifications:

e Filters encapsulate domain or application knowledge for which it is usually
possible to provide a specification of the behavior, in terms of resource and
operations.

e Given a message and system state, a filter can either accept or reject the
message. In both cases a filter action is executed.

e The filter pattern language is a declarative language for message matching
and substitution, which can be analyzed statically.

e Superimpositions are expressed in Prolog, which resolve to a set of join
points.

e The ordering of filters within a filter module is defined by the declaration
order.

e Optional (partial) ordering specifications can be provided by the program-
mer, to determine the ordering constraints among filter modules, at the
same join point. If there are multiple orderings, the compiler selects an
arbitrarily one.

5.2 Composition Filters

Section discussed the basic concepts behind Composition Filters. In this
section we discuss all elements in detail, including a precise specification of the
elements in the language. We use the Vienna Development Method (VDM)
[Jon90l [Jon92l [Daw91] notation. We first define some primitive types:

String = char*
Name = String
Undefined = String

Object = Name

112 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters

Chapter 5

Class = Name

Method = Name

MessageObject = Name

In VDM, a ’* indicates a sequence and a compose statement a record. Figure
[6:1] presents an overview of the elements in the Composition Filter model and

their relations.

Concern

[-

[

. . . Base
Filter module Superimposition Progam
inputfilters outputfilters Y
A d Class
1
Filter 0— Filter Type
Filter
Expression
S
1 E 1
Condition Matching Substitution
Expression Expression Expression

Figuur 5.1: Overview of Composition Filters

We have two types of elements in figure The first is the Base program and

the other elements are part of the Composition Filters model.

The base system, depicted in ﬁgure represents a program. In this program we
can have classes, containing methods and fields. We use here an object-oriented
program, but Composition Filters is not limited to object-oriented languages,
procedural languages can also be used.

P.E.A. Diirr

113



Section 5.2 Composition Filters

Base system

Class Class

(  Field 9 (  Field 9
( Method 9 ( Method 9

Figuur 5.2: Base system

Base System

A Composition Filters Concern (figure [5.3]) is a module that addresses (crosscut-
ting) concerns in the base system.

Concern

Concern

‘ Filter module

é\A/gSuperimposition

Figuur 5.3: Concern in Composition Filters

A Concern in Composition Filters consists of a set of Filter modules and a Superim-
position specification. A Filter Module specifies what behavior should be executed.
Superimposition specifies where the Filter Modules should be applied. To formalize:

compose Concern of
filermodules : FilterModule-set,
superimposition : SuperImposition-set
end

114 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

Superimposition

Superimposition provides a mechanism to address crosscutting concerns. A
superimposition specification selects a set of relevant classes in the base program
and superimposes filter modules on each class in this set.

Superimposition
(setector Filter
Module
Bindings
Filter
Module
Orderings

Figuur 5.4: Superimposition in Composition Filters

A superimposition specification (figure[5.4)) is composed of:

e A set of Selectors, which refer to elements in the base program. These
selectors are Prolog queries over a representation of the base program. The
selectors yield a set of classes, i.e. the join points.

e Filter Module Bindings link selectors to filter modules.

e Filter Module Orderings allow the developer to indicate an ordering between
filter modules at join points where multiple filter modules are superimposed.

Superimposition can be formalized as follows:

Selector = Class-set
OrdeningsEzecutionConstraint = String

compose SuperImposition of
selectors : String — Selector,
filterModuleBindings : Selector — FilterModule-set,

filterModuleOrderings : OrdeningsFExecutionConstraint-set
end

Filter Module

A Filter Module (figure [5.5)) is the primary unit of superimposition and reuse, it
can be compared to an advice. A filter module is composed of:

P.E.A. Diirr 115



Section 5.2 Composition Filters

Filter Module

C Input Filter ) C Output Filter )
C  InputFitter > (_ Output Filter )

@ Conditions @Internals © Externals

Figuur 5.5: Filter Module in Composition Filters

e A sequence of input filters, which are filters that match incoming messages.
Messages pass through filters in the sequence.

A sequence of output filters, which are filters that match outgoing messages.
A set of conditions, which are references to methods in the base program
that return a Boolean value. Conditions are used within filter expressions,
these expressions explained shortly.

A set of internals, which are classes that are instantiated each time a filter
module is superimposed. They represent the internal state of a filter module.
A set of externals, which are instances of classes that are shared between
all superimpositions of this filter module.

Formally, a filter module can be defined as:

compose FilterModule of

inputfilters : Filter™,

outputfilters : Filter™,
internals : Name — Object,
externals : Name —— Object,

conditions : Name - Method
end

Filter

Filters (figure [5.6)) in Composition Filters execute behavior, depending on a set
of filter expressions. A filter has a Filter Type and a sequence of Filter Expressions.
We define a filter as:

116 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters

Chapter 5

Filter
Filter
Type

‘ Filter Expression

Figuur 5.6: Filter in Composition Filters

compose Filter of
: Name,
filterexprs :
: FilterAction,
rejectaction :

type
acceptaction

end

Filter Type

Figuur 5.7: Filter Type in Composition Filters

FilterExpression™,

FilterAction

Filter Type

Accept Reject
Filter Filter
Action Action

A Filter Type (figure [5.7) encapsulates reusable (domain-specific) behavior with

powerful parametrization. It is composed of two filter actions:

e An Accept Filter Action is executed if the filter accepts a message. A Filter
Action is implemented as a special method in the base program. This
method has a single context object as a parameter. This context object
allows the filter action to query and manipulate properties of a message
and affect the control flow.

e A Reject Filter Action is executed if the filter does not accept a message.

A FilterAction is defined as:

P.E.A. Diirr

117



Section 5.2 Composition Filters

compose FilterAction of
name : String,
effect : Undefined
end

Filter Expression

Filter Expression

Condition
Expression
Matching
Expression
Substitution
Expression

Figuur 5.8: Filter Expression in Composition Filters

Whether a filter accepts or rejects a message depends on the filter expressions
(figure . A Filter Expression can be use to query the state, to select a specific
message or substitute certain properties of the message. A Filter Expressions is
composed of three elements:

o A Conditional Expression is a Boolean expression composed of Conditions
and Boolean operators: And (&&), Or (]|) and Not (!).

e A Matching Expression can match on two properties of the message: target
and selector: the object, respectively the method for which this message is
intended. One can match on specific targets and selectors or use wildcards
(*). Composition Filters support two kinds of matching: name matching
and signature matching. Name matching is purely syntactical, whereas
signature matching checks whether the message is in the signature of the
target object. A Matching Expression is only evaluated if the condition
expression resolves to true.

e A Substitution Expression can substitute the target and selector of a message.
This enables declarative rewriting of the message. A Substitution Expression
is only executed if the matching expression accepts a message.

Formally, a filter expression is defined as:

ConditionalExpression = B

118 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

compose FilterExpression of
conditionEzxpr : Conditional Expression,
matchingExpr : TargetSelectorTuple,

subsitutionExpr : TargetSelectorTuple
end

compose TargetSelectorTuple of
Target : Name,
Selector : Name
end

Dynamic Behavior of Filters

We now elaborate on the dynamic behavior of filters and filter modules. Consider
the situation in figure [5.9

@ Messages

FilterModule1 7

C | InputFitert
C Y InputFitter2
D

A

FilterModule2 \

( InputFilter3

<

FilterModule1

OutputFilter1 A )
OutputFilter2 | >

Figuur 5.9: Message Filtering in Composition Filters

Filter modules FilterModulel and FilterModule2 are superimposed on class Foo.

P.E.A. Diirr 119



Section 5.3 Application of Behavioral Conflict Detection to Composition Filters

All messages sent from, or to, instances of class Foo will be subjected to the
filters inside these two filter modules. A Message represents an interaction or
event in the system, and it has several properties:

Sender : The object that initiated the message.

Server : The object that initially received the message.

Target : The object for which the message is intended.

Selector : The name of the method to which the message is directed.
Arguments : The arguments of the message.

Return value : The return value of the message.

Assume that a message is sent to an instance of class Foo. It is first subjected
to the input filters in filter module FilterModulel, in this case first to filter
InputFilterl. Filter InputFilterl can either accept or reject this message, depending
on condition and matching expression. The exact behavior that is executed
in case of acceptation or rejection is filter type-specific. A filter can execute
some behavior on an incoming message and on the return of a message. This
behavior is linked, meaning that if the message accepts on an incoming message,
it will also execute the related accept return behavior. This does not have to
be the same behavior, obviously. Also, behavior that is executed on the return
of messages, is executed in the inverse order of the filter order, i.e. bottom-up
rather than top-down.

A filter can choose to continue with filter evaluation or redirect the message.
Assuming no filter affects the control flow, the message will pass through filters
InputFilter2 and InputFilter3. At this point it reaches the end of the input filters
of filter module FilterModule2. The message is sent to the current target and
selector. We assume that a method of class Foo is executed. Once this method
returns, the return behavior of the filters is executed in the reverse order.

If a method in class Foo calls a method of another class, in this case class Bar, the
message first has to pass through the output filters superimposed on class Foo.
In this example there are two output filters: OutputFilterl and OutputFilter2.
These filters are processed in the same way as input filters.

5.3 Application of Behavioral Conflict Detection
to Composition Filters

We now show a detailed instantiation of the approach presented in the previous
chapter. To structure the discussion in this chapter, we use a similar three phase
process as presented in the previous chapter. Figure shows the instantiation

120 P.E.A. Diirr



O U= W N~

-

oo

Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

of this process for the Composition Filters model.

Figure[5.10|shows the three phases of our approach. The first phase (Composition)
deals with superimposition and ordering. The result of this phase is a sequence
of filter modules per shared join point, i.e. per class. These sequences are
subsequently transformed (phase Advice Behavior Abstraction) into a structure
that enables automated reasoning about the control flow within the filter modules.
This structure is annotated with the resource-operation tuples from the behavioral
specifications. Finally in phase Conflict Detection, all conflict rules are translated
into a suitable structure and compared with the annotated representation of
the filters. From this comparison a verdict is expressed. These three phases are
explained in more detail in the next three sections.

5.4 Composition Phase

5.4.1 Inputs

Phase Composition expects a set of concerns and a base program as its inputs.
We first explain concerns Parameter Checking and ErrorPropagation from the
ASML example in Compose*. Next, we briefly discuss an example base program.

5.4.1.1 The Parameter Checking Concern in Compose*

We explain the composition filters model with the use of the example of the
parameter checking concern presented in the previous chapter. Listing 5.1
shows the implementation of the parameter checking concern in Compose*. The
behavior implementing the checking of parameters (as shown in listing is
implemented in a filter type called ParameterChecking (not shown here).

concern ParameterChecking
{
filtermodule check
{
internals
checker : ParameterChecker;
conditions
inputwrong : checker.inputParametersAreInvalid();
outputwrong : checker.outputParametersAreInvalid();
inputfilters
paramcheckfilter : ParameterChecking = {
inputwrong || outputwrong => [*.compare_data] *.* }

}

superimposition

P.E.A. Diirr 121




Section 5.4

Composition Phase

ClassA
ClassZ

Operation1
Operation2

=\

Base Program

Behavioral
Specification for
each Filter Action

Conflict
Detection
Rules

Compositiol
Filters
Concerns

L

Composition

Advice Behavior
Abstraction

Conflict Detection

@Verdict

Filter Modules
Class

per

Behavioral specification
sequences
per Class

Figuur 5.10: Approach instantiated for Composition Filters

122

P.E.A. Diirr



16
17
18

Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

{
selectors
pcsel = {Class | isClassWithName(Class, ’CC.CX.FS’)};
filtermodules
pcsel <- check;
}

2}

Listing 5.1: Source of the ParameterChecking concern

Before we discuss the code in listing [5.1] we first explain some generic concepts of
Composition Filters. In Composition Filters, the basic abstraction is a concern;
this is a generalization of both (object-oriented) classes and aspects. In this
example, the concern ParameterChecking corresponds to an aspect that imple-
ments a crosscutting concern, i.e. the contract enforcement for the parameters
of a function.

In general, composition filters concerns consist of three main parts, all of them
optional:

filter modules : are the unit of superimposition corresponding to the general
notion of advice. A filter module defines a certain behavior that is to be
superimposed at specific locations in the program. In the ParameterChec-
king example, there is one filter module, called check (lines 3 to 13). We
shortly discuss the filter module specification in more detail.

superimposition : is the specification of the actual crosscutting locations.
These specifications define the pointcut designators (called selectors), and
the binding of the behavior (expressed by filter modules) at the selected
join points. In the example, the filter module check is superimposed (line
20) at the locations indicated by the selector pcsel that designates all
relevant classes, in this case the class with the name CC.CX.FS (line 18).

implementation : the implementation part contains the definition of the object
behavior of a concern: this can be expressed in an arbitrary object-based
language (assuming it is supported by the implementation). In the example
no implementation part is necessary.

We now explain concern ParameterChecking in listing [5.1] in more detail. The
behavior of the filter module check (lines 3 to 13) is as follows: for each object
where this filter module is superimposed, internal object checker is instantiated.
For every incoming message, it first verifies whether both conditions inputwrong
and outputwrong are true. In case one of the two condition is true, the filter
tries to match the selector of that message to compare_data. In the example,
the target of the message is ignored. If the selector matches, no substitution has
to take place in this case, as indicated by the wildcards, and the filter accepts
the message. If the selector does not match compare data the filter rejects

P.E.A. Diirr 123



Section 5.4 Composition Phase

and the message is passed to the next filter. This triggers the accept action of
the ParameterChecking filter, the implementation details of this filter and filter
action are not shown here. This accept action sets the error variable. In a
programming language that supports exceptions, we could have used the general
Error filter, however since C does not support exceptions, and we have to set
the error variable to a specific value, and we used a dedicated filter for this. If
both conditions inputwrong and outputwrong are false, the filter will reject and
the message continues to the subsequent filter, if any.

Conditions inputwrong and outputwrong are implemented in the base programming
language and have to return a Boolean value. These conditions receive a context
object as a parameter. This context object provides reflection on the current
join point.

The superimposition part of the concern definition in line 15-21 of listing[5.1] starts
with a section labeled selectors. A selector corresponds to a pointcut designator;
it selects a number of join points within the program. This is expressed using
Prolog predicates, making use of a number of primitive predicates that express
properties of the program. For example, line 18 defines a selector with identifier
pcsel; its intention is to select all relevant classes. The parameter checking
concern implements a coding guideline, as such we may select all classes in the
system. Selector pcsel selects the specific class “CC.CX.FS”, to demonstrate the
selection language and to ensure a single concrete shared join point, for the
discussion in this chapter. The first part of the selector defines the unbound
variable that refers to all the join points identified by this selector, in this case
Class. The selector consists of a predicate, isClassWithName, which narrows down
the possible values for Class to those classes with the name “CC.CX.FS”. A class
is equal to a file and a method to a function, in the Compose* implementation
that targets C. This enables us to use the same matching language in the three
ports of Compose*: .NET, Java and C. After the declaration of the selectors,
the superimposition of filter modules is defined by binding selectors and filter
modules. A filter module will be superimposed on each join point identified by
the selector.

5.4.1.2 The Error Propagation Concern in Compose*

As a second aspect, we show how the error propagation concern can be described,
this is shown in listing [5.2] The behavior implementing the propagation of errors
(as shown in listing is implemented in a filter type called ErrorPropagation
(not shown here).

1 ‘concern ErrorPropagation

124 P.E.A. Diirr



16

O U= W N~

=
= O © 0w

Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

{
filtermodule propagate
{
inputfilters
errorpropagationfilter : ErrorPropagation = { [x] }
}
superimposition
{
selectors
epsel = {Class | isClass(Class) };
filtermodules
epsel <- propagate;
}
¥

Listing 5.2: Source of the ErrorPropagation concern

The concern ErrorPropagation defines one filter module named propagate, which
consists of an input filter named errorpropagationfilter of type ErrorPropagation.
The filter, defined on line 6, matches all messages, since the filter expression is
i1, and thus will always execute the accept action of the filter. The accept action
of the error propagation filter ensures that all calls are only executed in a non
erroneous state and that, if an error is detected, it will be logged and properly
propagated to the caller. The filter module propagate is to be superimposed on
all classes in the system, because of the selector epsel = {Class | isClass(Class)}, Se€
lines 12 and 14.

5.4.1.3 Base Program

The base program on which both aspects are superimposed is also input for
the Composition phase. We only show a sample from the base program. The
implementation details are not important for this discussion. Listing shows
function compare data, and we assume that this function resides in file FS in
directories CC and CX, and is thus selected by selectors pcsel and epsel in listings

Bl and B2

static int compare_data(
const DATA_structx* pl,
const DATA_struct* P2,

boolx*
{
int result = 0K;

// code that compares the structures and sets the changed_ptr boolean accordingly

return result;

}

changed_ptr)

Listing 5.3: Example base program

P.E.A. Diirr

125




Section 5.4 Composition Phase

5.4.2 Transformation

The first step is to construct a model of the base program. This must include all
entities that can be referred to in the superimposition specifications. Examples of
elements in this model are: Namespaces, Packages, Classes, Methods, Parameters,
Interfaces, etc. This model also contains all relationships between the elements,
for example: which methods does a class have, which interfaces are implemented
by a class, what is the superclass of a particular class, etc. Explaining all the
details about this program model is beyond the scope of this thesis, see [Hav(5|
for more information.

In the ASML example, the program model is relatively simple: there is only one
class FS that belongs to namespace CC.CX and this class has a single method,
called compare data. This is depicted by the object diagram in figure

[ CC:Namespace |
[ name : "CC" |

[ CX:Namespace |

[ name : "CX" |
FS:Class |~ [ compare_data : Method returntype
name : "FS" [ name : "compare_data" P
parameter parameter
[ p1:Parameter | [ p2:Parameter |
[ name : "p1" | [ name : "p2"
changed_ptr :
[ DATA _struct : Class | gecp bool : Class
“"DATA_struct” Parameter % name : "bool”
[name : _struct | Thame- "changed Pt :

Figuur 5.11: Object model of the example base program

Figure [5.11] shows the program model for our base program. In the top left
corner we see the two namespaces (CC and CX) and class FS. Class FS has
one method called compare data. This method has two parameter pl and p2
of type DATA _struct and one parameter changed ptr of type bool. Method

126 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

compare _data has class int as its declared return type. For larger base programs
a program model gets larger as well.

Once the program model is constructed, we iterate over all superimposition
selectors and resolve these w.r.t. the base program model. In this case there
are two superimposition selectors. The first at line 18 in listing [5.1} and this is:
pcsel = {Class | isClassWithName(Class, *CC.CX.Fs")};. The second selector is defined
at line 12 in listing and this is: epsel = {Class | isClass(Class)};.

For the given program model, these two selectors resolve to the same set of
classes, namely class CC.CX.FS. In larger applications this set will contain many
more classes.

Next, we iterate over all filter module bindings and attach the filter modules
to the join points, i.e. the classes resulting from evaluating the selectors. The
result is a set of filter modules per class. In our example there two bindings.
The first one is defined at line 20 in listing [5.1] and this is: pcsel <- check;. The
second binding is defined at line 14 in listing [5.2] and this is: epse1 <- propagate;.
The result of superimposition is depicted in figure [5.12

Propagaté\/ Check
CC.CX.FS
Compareidata(...)

Figuur 5.12: Resolved superimposition

Figure shows a single join point, in this case class CC.CX.FS, and two filter
modules: propagate and check.

We have not yet determined an ordering between filter modules at shared join
points. As explained before, the order of filter modules can be affected using
either a full or partial ordering specification. In this example we have not
included this specification. For examples and more details about the ordering
specification, we refer to [Nag05] and [NBAO5].

In this example case, we will assume the following order, as this order exposes the
conflict we are interested in: first propagate, then check. The result of ordering
is thus a sequence of filter modules per class.

P.E.A. Diirr 127



Section 5.4 Composition Phase

5.4.3 Output

The result of this first phase is a sequence of filter modules per class. In the
example case the result is illustrated by figure [5.13] Figure [5.13] shows class
CC.CX.FS with the two filter modules superimposed on it. In this case these are
propagate followed by check.

Check

CC.CX.FS
compareidata(...)

Figuur 5.13: Sequence of filter modules for class CC.CX.FS

We can define function Composition as follows:

SharedJoinPointMap = Class — FilterModule*

Composition : SuperImposition-set x FilterModule-set
— Class — FilterModule*

Composition(superimps, fms) 2
SharedJoinPointMap = . ..

post Vclass € dom SharedJoinPointMap-class € rng superimps.selectors
A rng SharedJoinPointMap C fms
AVfm-seq € rng SharedJoinPointMap - card fm-seq >= 2

Composition can be presented as a function that takes a set of join points, i.e.
a set of classes, and set of filter modules. Function Composition returns a map
named SharedJoinPointMap, which maps a class to a sequence of filter modules.

We constrain this map in three ways. First, we state that each class in the
domain of this map, should be an element of the set of join points. Second, we
state that the range of this map should only contain filter modules present in
the program. Finally, we state that each sequence of filter modules in the range
of map SharedJoinPointMap, should contain at least two filter modules. This

128 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

last constraint ensures that map SharedJoinPointMap contains only shared join
points.

5.5 Advice Behavior Abstraction Phase

The next phase in our approach is to transform the filter module sequences
to a structure that enables automated reasoning. To do this we also need to
have behavioral specifications from the filters that are used. Again, we start the
discussion of this phase by stating the inputs.

5.5.1 Inputs

This phase has two inputs:

e The first is the sequence of filter modules per class, which was the output
of the previous phase.

e The second input is the behavioral specification of the filters and filter
actions involved.

The behavior of a filter is consists of filter instance-specific behavior and filter type
behavior. The first behavior represents the condition, matching and substitution
behavior of a filter. The second behavior is defined per filter type and represents
the intention of the filter. The filter type-specific behavior is composed from the
following three categories.

e A filter can access the properties of a message.
e A filter can alter the control flow of filter evaluation and join point,
e A filter can execute some specific actions, e.g. encryption or compression.

We first explain the filter instance-specific behavior, followed by a discussion on
filter type-specific behavior and then discuss the behavior in terms of resources
and operations for each category.

5.5.1.1 Filter instance-specific behavior

Filter instance-specific condition, matching and substitution expressions also
operate on resources. In table [5.] we show examples of filter expressions and
their corresponding resource models. We also include the ASML example filter
expression from filter parameterchecking. Resources between angled brackets
are conditions. In the table we have assumed the worst case scenarios, since in

P.E.A. Diirr 129



Section 5.5 Advice Behavior Abstraction Phase

Composition Filters if a target match fails, we do not match the selector. This
conditional evaluation is addressed in section [5.5.2.2]

Tabel 5.1: Resource model for example filter expressions

Filter Target Selector <cond> <input- <output-
Expression H ‘ ‘ wrong> ‘ wrong> ‘
[t.s]*.* read read
[t.*]*.* read
[*.s]*.* read
[*.%x] %, %
[*x.*x]t.s write write
[*x.x]t.x write
[*.%x]*.s write
[*. %] %, %
cond => [t.s]t.s read read read
write write

inputwrong || outputwrong read read read
=> [*.compare_data]

Table [b.1] illustrates that wildcards in matching and substitution expressions are
ignored. In the last row, the matching expression from the Parameter Checking
filter (line 11 in listing is shown. The two conditions inputwrong and
outputwrong are (possibly) read as is the selector.

5.5.1.2 Message properties related behavior in filters

Message property related interference can be caused by one advice altering a
message property on which a second advice depends.

Resources: Message properties can be inspected or manipulated by advice.
These properties are usually bound via explicit context bindings or via pseudo
variables, like thisJoinPoint in AspectJ or JoinPointContext in Compose*. We
use the terminology of message based interception to describe the meaning of
these common resources .

Sender : The object that sent the message.

Server : The object that initially received the message, this remains the same
even if an if the message is dispatched to another object.

Target : The object for which the message is directed.

Selector : The name of the method to which the message is directed.

Arguments : The arguments of the message.

Returnvalue : The return value of the message.

130 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

We have chosen here to model the set of arguments as one simple resource. This
abstraction might lead to false positives, e.g. two advices can operate on distinct
arguments. However, we have chosen for this abstraction as writing a behavioral
specification which depends on the ordering of arguments is very fragile.

Operations: For each of the above resources, we assume the following operati-
ons:

read : This operation queries the state of the resource on which it operates,
write : This operation overrides the state of the resource on which it operates.

5.5.1.3 Control-related behavior in filters

Control-related interference can be caused by one advice affecting the control
flow of another advice. In this section we define the resources and operations
that capture the possible behavioral conflicts related to control flow.

Resources: We model control flow behavior as operations on the abstract
controlflow resource. All advices on the same join point operate on this single
resource.

Before we show the operations that can be carried out on resource controlflow,
we first have to elaborate on the different ways one can alter the control flow
within Composition Filters. A filter in Composition Filters can affect the control
flow in three ways: a filter can continue the control flow, return the control flow,
or exit the control flow. These three ways are from the perspective of a filter
in a filter module. Figure shows the three ways the control flow can be
affected by the filters.

Figure shows three similar situations. Two filter modules (FM1 and FM2)
are superimposed on a class. Filter module FM1 has one filter (filterl), filter
module FM2 has also one filter (filter2). There is a solid vertical gray line in
the middle of the figure. The parts of the filters that are to the left of this line
are executed before the execution of the join point, the parts to the right are
executed after the execution of the join point. Also, the filters on the returning
side are evaluated bottom up, while the filter on the incoming side are evaluated
top down.

In the left situation in figure [5.14] a black line indicates a continue control flow
action. This flow action is implicit in the composition operator between filters,
and corresponds to the semicolon between filters. This is thus the default, unless
other flow actions are specified. The semantics of the continue control flow
action depends on the location within the entire chain of filters. In most cases a

P.E.A. Diirr 131



Section 5.5 Advice Behavior Abstraction Phase

Continue Control Flow Return Control Flow Exit Control Flow

215

\ 1\
C e ||| el ||| >
FM1 A FM1 \ \ FM1
N
e[ e ] ||« >
FM2 FM2 FM2
Class Name Class Name Class Name
Attribute Attribute Attribute
Attribute Attribute Attribute
Operation Operation Operation
Operation Operation Operation

Figuur 5.14: Affecting the control flow in Composition Filters

continue control flow action results in passing the current message to the next
filter. The compiler inserts a default dispatch filter (not shown here) at the end
of the filter set, which ensures that messages reaching the end of the filter set
will be dispatched to the current target and selector. If we reach the last filter,
in this case filterl, on the return of the message, a continue control flow action
results in retuning the current return value to the caller.

The second control flow action one can do is called return. Return actions can
be identified in the middle situation in figure Again the semantics of this
action depend on the location within the filter chain. Before the execution of the
join point, issuing a return control flow action results in the control flow being
transferred to the first of the filters that execute on the return of the message,
in this case filter filter2. If a return flow action is issued on the returning side,
we immediately return to the caller. If a filter executes an accept filter action
for an incoming message, the accepting return action also executes, when the
message returns. The same situation holds for reject actions.

Finally, one can issue an exit control flow action. These can be identified in the
right situation in figure [5.14] In all cases, this results in completely stopping
the evaluation of the remaining filters. An example of such a case would be the
Error filter, which throws an exception.

Operations: The above mentioned control flow actions are translated to the

132 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

following operations:

continue : The advice does not change the control flow.

return : The advice returns immediately, and as such the original join point is
no longer executed.

exit : The advice terminates the entire control flow, e.g. a exception is thrown
or an exit call is made,

5.5.1.4 Filter types

In this section we can translate the current set of filters to the above mentioned
resources and operations. Compose* has several predefined filter types and
supports user-defined filter types. We first discuss these predefined filter types.
Next, we discuss how these filter types are mapped to accept and reject actions.
Finally, we map these actions to specific operations on resources. For more
detailed information about these and other filter types we refer to [BA0S] and
[DBAO5|. We have also included the two filters from the ASML example in the
list below.

Dispatch : The dispatch filter can be used for delegation or simulating (multiple)
inheritance. If the filter accepts, it performs a DispatchAction action, else
the next filter is evaluated, this is considered a NopAction action. Dispatch
filters can only be used in an input filter set.

Send : The send filter is similar to a dispatch filter, however it can only be used
in a output filter set. Also, it sets the sender of a message to the server
of that message and sets the server of a message to the current target of
that message. If the filter accepts, it performs a SendAction action, else
the next filter is evaluated, a NopAction action.

Error : The error filter can be used for assertion specifications, e.g. pre and
post conditions. If the error filter accepts, it performs a NopAction action,
if it rejects it executes an ErrorAction (i.e. throws an exception).

Meta : The meta filter enables the developer to create user-defined advice. If
the filter accepts, the message is reified and passed to a method as an
argument. Acceptance of a meta filter is referred to as the execution of
a MetaAction. In this advice, the user can introspect or manipulate the
properties of the message and the message execution. This method is
called an AdviCe Type (ACT) method. Rejection of this filter results in
the execution of a NopAction action.

Before : A before filter executes a method in the base program,. This is similar
to the meta filter. The only difference is that this filter only matches and
executes accepting action BeforeAction on incoming messages. If a before

P.E.A. Diirr 133



Section 5.5 Advice Behavior Abstraction Phase

filter fails to match a NopAction filter action is executed.

After : An after filter is similar to a before filter, only this filter matches and
executes accepting action AfterAction on the return of messages. If an after
filter fails to match a NopAction filter action is executed.

Substitute : The substitution filter allows the user to explicitly change the
target and selector of a message, without using a meta filter. If the filter
accepts, the specified substitutions are carried out, a SubstituteAction
action. If the filter rejects, the message continues to the next filter, which
corresponds to a NopAction action.

ErrorPropagation : If the error propagation filter accepts, it executes action
PropagateAction, meaning that any encountered error is logged. In case the
filter rejects, the next filter is evaluated, which corresponds to a NopAction
action.

ParameterChecking : In case of acceptance, action CheckAction is executed.
This action set the error variable. The message will be passed to the
subsequent filter, if the filter rejects, a NopAction action is executed.

Table [5.2] summarizes the filters and filter actions described above.

Tabel 5.2: Filters mapped to filter actions

[ Filter [[ Accept Filter Action | Reject Filter Action
Dispatch DispatchAction NopAction
Send SendAction NopAction
Error NopAction ErrorAction
Meta MetaAction NopAction
Before BeforeAction NopAction
After AfterAction NopAction
Substitute SubstituteAction NopAction
ErrorPropagation PropagateAction NopAction
ParameterChecking CheckAction NopAction

We now translate these filter actions to our resource model. Table [5.3] shows this
translation.

Table presents the translation from filter actions of the predefined filter to the
resource and operation model. Three filters of them execute some functionality
that is implemented in the language of the base program. These three filters
are Meta, Before and After, which are respectively mapped to filter actions
MetaAction, BeforeAction and AfterAction. We are unable to extract the precise
behavior of these three filter actions, since we do not reason about code in the
language of the base program. For these filter actions we assume a worst case
situation, i.e. all message properties in the scope of an advice are read and

134 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

Tabel 5.3: Effect of the current filter actions

Filter Sender Server Target Selector Args Return Control
Action H ‘ ‘ Value ‘ Flow ‘
DispatchAct. write write return
SendAction write read read write return
write write
ErrorAction exit
NopAction continue
SubstitutionAct. continue
MetaAction read read read read read read continue
write write write write write write return
exit
BeforeAction read read read read read continue
write write write
AfterAction read read read read read read continue
write write write write

written. Since a MetaAction can also affect the control flow, we assume that a
MetaAction can continue, return and exit the control flow. It is however possible
to override this by manually annotating the base program methods that are
called by these filters with a behavioral specification.

Table [5.4] shows the two filters that are used in the ASML example. In section
this abstraction was explained in detail.

Tabel 5.4: Effect of the two example filter actions

Filter arguments | errorvariable
Action
PropagateAction read
write
read
read
CheckAction read write

The behavioral specification for filter actions are defined in an XML file. This
file is input for the Compose* toolset to automatically detect behavioral conflicts
among aspects. The module that reasons about behavioral conflicts is called the
Semantic Reasoning Tool (SECRET). Listing shows the behavioral specifica-
tion in XML for the two filters from the ASML example; the other filters are
also included.

<secret>
<resources>
<resource name="sender" alphabet="read,write"/>

P.E.A. Diirr 135




Section 5.5 Advice Behavior Abstraction Phase

<resource name="target" alphabet="read,write"/>
<resource name="selector" alphabet="read,write"/>
<resource name="args" alphabet="read,write"/>
<resource name="returnvalue" alphabet="read,write"/>
<resource name="errorvariable" alphabet="read,write"/>
<resource name="controlflow" alphabet="continue,return,exit"/>
</resources>
<filters>

<filter type="ErrorPropagation">
<accept action="PropagateAction"/>
<reject action="NopAction"/>
</filter>
<filter type="ParameterChecking">
<accept action="CheckAction"/>
<reject action="NopAction"/>
</filter>
</filters>
<actions>

<action name="CheckAction">
<operation name="read" resource="arguments"/>
<operation name="write" resource="errorvariable"/>
</action>
<action name="PropagateAction">
<operation name="read" resource="errorvariable"/>
<operation name="write" resource="errorvariable"/>
<operation name="read" resource="errorvariable"/>
<operation name="read" resource="errorvariable"/>
</action>
</actions>
<constraints>

<conflict pattern="(write) (write)" resource="errorvariable" message="The previous
value of the error variable is overwritten!" />
<conflict pattern="write$" resource="errorvariable" message="A written error variable
must be read!" />
</constraints>
<secret>

Listing 5.4: Behavioral specification XML file

The XML file has a main tag called secret. This tag contains four sub tags:

resources : These describe which resources there are and what operations are
in the alphabet of these resources (see section . Since their details
have been discussed before, we will not explain these resources here.

filters : This states which filters are present in the system and what the
accept and reject actions for these filters are. We have omitted the filter
specifications for the common set of filters, since these can be derived easily
from table

actions : This maps filter actions to resource-operation tuples. These operations
are only allowed to occur, if they are defined in the alphabet of the resource
they operate on. We have omitted the mapping of the common filters,

136 P.E.A. Diirr




Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

these can be derived from table [5.3

constraints : This defines all the conflict rules. Here we only show the two
rules from our example. These rules are discussed in more detail in the
next section.

5.5.2 Transformation

In the transformation phase we transform the sequence of filter modules to a
representation that we can reason about and that incorporates the behavioral
specification of the individual filters. To accomplish this, three steps have to be
executed:

1. Transform a sequence of filter modules to a sequence of filters.
2. Transform a sequence of filters to a message flow graph.
3. Annotate the message flow graph with behavioral specifications.

5.5.2.1 Step 1 - Transform a sequence of filter modules to a sequence
of filters

The first step is to transform the sequence of filter modules to a sequence of filters.
The compositional operator between filters modules in Composition Filters is a
sequential composition operator. As such we can assume the following:

FilterModules ToInputFilters : Class — FilterModule*
— Class = Filter*

FilterModules ToInputFilters(fms) 2
for class : Class in elems dom fms
do FilterInputSequenceMap(
class — for fm-seq : FilterModule* in elems fms(class)

do FilterInputSequenceMap(class) ™ fm-seq.inputfilters

)

P.E.A. Diirr 137



Section 5.5 Advice Behavior Abstraction Phase

FilterModules ToOutputFilters : Class — FilterModule*
— Class — Filter*

FilterModules ToOutputFilters(fms) £
for class : Class in elems dom fms
do FilterOutputSequence Map(
class — for fm-seq : FilterModule* in elems fms(class)

do FilterOutputSequenceMap(class) " fm-seq.inputfilters)

We define two functions FilterModulesTolnputFilters and FilterModulesToOutput-
Filters which take the map from the previous phase (see section , i.e. that
maps classes to a sequence of filter modules. Functions FilterModulesTolnputFil-
ters and FilterModulesToOutputFilters both produce a map that maps classes to
a sequence of input and output filters. This is accomplished by iterating over
every shared join point, i.e. class, and concatenating (m ) all enclosed filters
in the sequence of filter modules. An overbar over a variable indicates that we
use the previous value of that variable, a — indicates a mapping relationship,
and the notation FilterInputSequenceMap(class) means that we want to get the
element (in this case a sequence of filter modules) associated with this class.

In the case of the ASML example map FilterInputSequenceMap looks like:

CC.CX.FS — [errorpropagationfilter: ErrorPropagation;
paramcheckfilter: ParameterChecking]

5.5.2.2 Step 2 - Transform a sequence of filters to a message flow
graph

A message flow graph models the control flow information of the sequence of
filters for a shared join point. This graph is not only used for behavioral conflict
detection, but is also required for consistency checking, signature calculation
and inlining of the filter code into the base program. This graph is thus not
specific for behavioral reasoning. As mentioned in the previous section we
distinguish between behavior that is filter type-specific and behavior that is filter
instance-specific. We construct a filter action graph, named Ggct0n and a filter
evaluation graph Gey,q. A message flow graph is the combination of both graphs:
Gmsgflow = Gaction X Vfilters - Geyq. We first explain the filter action graph,
next we explain the filter evaluation graph and show the complete message flow
graph. We do not explain all implementation details of how such a graph is
constructed, but only explain the message flow graphs themselves. For more
detailed information see [dROT].

138 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

The first step is to translate the filters into a filter action graph. This graph
is a binary tree, where the nodes are filters and the edges indicate either the
execution of an accept or reject filter action. Figure shows this graph for

the ASML example.

. Reachable Filter o
errorpropagationfilter
Unreachable Filter
) . A R
—— Reachable Filter Action P i AN
ropagate ;
— = Unreachable Filter Action Action w
paramcheckfilter ﬁaramcheckfilter
T —
A R A R
Check . Check | >p
Action | NopAction Action } NopAction
— —'\\
e —
EOFS EOFS EOFS EOFS

Figuur 5.15: Filter action graph (Gaction) from the ASML example

A couple of observations can be made from figure [5.15]. The first is that the
number of execution paths grows exponentially with the number of filters. Since
filters can either accept or reject, we get a number of paths of at most 2™, where
n is the number of filters in the filter sequence. The second observation we
can make is that not all paths are possible. For example. we know that filter
errorpropagationfilter always accepts, due to its matching expression (1 [+1 3),
which is discussed in more detail shortly. In this case we see that the number of
paths we have to analyze is only two as the other two paths are not reachable.
In practice, there will probably always be a reduction in the number of paths.
The number of filters will be also limited, since we know from experience that
most filter modules contain on average three to four filters, and the number of
filter modules per shared join point will also be limited, since the number of
concerns will probably be limited.

An optimization from which our approach could benefit is to do local reasoning.
All join points with the same combination of filter modules yield the same result
for an analysis by SECRET. Therefore, we only have to analyze distinct shared
join points. This optimization has not been implemented and is not discussed in
our approach.

We now explain how the condition, matching and substitution parts in the

P.E.A. Diirr 139



Section 5.5 Advice Behavior Abstraction Phase

filter expressions affect the message evaluation. If we would not consider filter
expressions and always assume the worst case, there would be many false positives.
We represent the evaluation of the matching expression, inputwrong || outputwrong =>

[*.compare_datal, using a graph (Geyq). Figure presents the filter evaluation
graph for filter paramcheckfilter of concern ParameterChecking. We do not show
the graph for filter errorpropagationfilter since it always matches.

|

<inputwrong> I<inputwrong>

sel == sel I= <outputwrong> | = l<outputwrong>

compare_data || compare_data
o L) Q/ \0

Accept Reject sel == sel I=

Reject
compare_data | compare_data d
Accept Reject

Figuur 5.16: Filter evaluation graph (Geyq) for filter paramcheckfilter in the ASML
example.

Initially, the start node in the graph has two edges. In case the condition
inputwrong (we use the notation ’<’ and ">’ to indicate a condition in the graph)
is true, we try to match the selector of the current message to: compare_ data. If
the match is successful, the filter will accept the message, and reject it otherwise.
Another path can be taken when inputwrong yields false, and outputwrong yields
true. As figure [5.16] shows, there are five ways for the filter to either accept or
reject. Condition inputwrong is always read, whereas condition outputwrong is
only sometimes read. Furthermore, we can assume that if the filter accepts, it
will have read the selector of the message, and written resource errorvariable.

Once all behavioral and control flow information is gathered, we can create a
so-called message flow graph. A message flow graph is a combination of Ggcyon
and Geyar. A message flow graph Gi,a0w is a directed acyclic graph and is
defined as < V, E >, where:

V is a set of vertices representing the evaluable composition filters elements.

140 P.E.A. Diirr



W N =

Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

These can be filter actions, condition expressions, matching expressions
and substitution expressions.
E : is the set of edges connecting the vertices, such that E = {(u,v) e u,v €

V Au# v}

For each shared join point a message flow graph Gi,a0. is created. This graph
is subsequently simulated to detect impossible or dependent paths through the
filter set. It is out of the scope of this thesis to discuss the full implementation
of this simulation (see [dROT]).

The general idea is that for each set of messages that have the same flow through
the sequence of filters, we create a so-called message class. In the worst case
the number of classes is equal to the number of individual messages that can
be accepted by the filters. However, in general this number is smaller, since
most filters will match the same set of messages. This transformation has been
implemented in Compose*, and uses graph transformation rules to build up the
message flow graph and to simulate the effect of messages on this graph.

We now show the message flow graph for the ASML example. These were the
two filters in the ASML example:

errorpropagationfilter : ErrorPropagation = { [x] };
paramcheckfilter : ParameterChecking = {
inputwrong || outputwrong => [*.compare_data] *.x }

Figure shows the message flow graph of the ASML example.

Message flow graph Gp,fiow  asmi Presents the control flow for the ASML example.
The bold labels on edges refer to matching expressions. In this case these edges
correspond to checking whether the selector is equal to compare data. The
underlined labels on edges refer to the execution of a particular filter action.
In this case there are three filter actions, namely PropagateAction, CheckAction
and NopAction. The label on edges that are not underlined or bold refer to the
evaluation of a particular condition, in this case inputwrong and outputwrong.
For more detailed information about this transformation we refer to [dROT].

5.5.2.3 Step 3 - Annotate the message flow graph with behavioral
specifications

Now that we have a representation of the message flow through a filter set we
can annotate the message flow graph with the behavioral specifications. This
requires four transformations:

Condition expressions Each time a condition is evaluated, we translate this

P.E.A. Diirr 141




Section 5.5 Advice Behavior Abstraction Phase

v

PropagateAction
inputwrong linputwrong
sel == sel I= /O\
compare_data compare_data ‘ outputwrong loutputwrong
1 * o8
sel == sel =
compare_data | compare_data
CheckAction NopAction ¥ N NopAction

‘ CheckAction NopAction

Figuur 5.17: Message flow graph of the ASML example(Gmﬁow_asml)

as a read on the resource representing this condition. In our example case we
have two conditions inputwrong and outputwrong, which are both read.

Matching expressions Each time a message is matched, using either name
or signature matching (the distinction is not relevant here), we interpret this
as a read on either target, selector or both, depending on the exact matching
expression. In the ASML example we only verify that the selector is equal to
compare__data, we thus only read the selector. A matching expression is only
evaluated if the related condition expression yields true.

Substitution expressions Similar to the matching expressions, we transform
each substitution expression to a write on either target, selector or both, again
depending on the exact substitution expression. In the ASML example, we do
not use a substitution expression. A substitution expression is only executed if
the related condition and matching expression match.

Filter actions This is the last transformation step. For each filter action in the
message flow graph, we retrieve the behavioral specification, i.e. the sequence of
resource-operation tuples for this action, and attach it to the appropriate edge.
In the ASML example there are three filter actions, namely PropagateAction,

142 P.E.A. Diirr



W N =

Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

CheckAction and NopAction. The behavioral specifications for these three actions
are repeated here:

PropagateAction ==> errorvariable: read;write;read;read
CheckAction ==> arguments: read, errorvariable ==> write
NopAction ==>

If we apply these four transformation rules on the message flow graph (G fiow)
we get the annotated message flow graph (Gamfiow). Gamfiow 1S a directed acyclic
graph and is defined as: < V, E, L >, where:

V is a set of vertices representing the evaluable composition filters elements.
These can be filter actions, condition expressions, matching expressions
and substitution expressions.

E : is the set of edges connecting the vertices, such that £ = {(u,v) e u,v €
V Au# v},

L : is the set of resource-operation labels attached to the edges, such that
L ={(e, rsrcop) e e € E A rsrcop € ResourceOperations}
ResourceOperations = Resource — Operation-set e
Vrsre € dom ResourceOperations -

ResourceOperations(rsrc) C rsrc.alphabet

An annotated message flow graph Gampow consists of a set of vertices, edges
and a set of resource-operation labels. We constrain set L to only allow resource-
operation tuples where the operations for a specific resource are in the alphabet
of that particular resource.

Figure presents the annotated control flow graph Gamﬂow_asml for the
ASML example.

Figure has a slightly modified structure than the original message flow
graph Gufiow asmi in figure @ The first edge is extended to accommodate
the four transitions caused by the unfolding of filter action propagate. All filter
actions have been rewritten as resource operation tuples, as have the condition
and matching expressions.

5.5.3 Output

An annotated message flow graph (Gamﬂowiasml) is the output of this phase
and serves as the input for the next phase, called Conflict Detection.

P.E.A. Diirr 143




Section 5.6 Advice Behavior Abstraction Phase

!

errorvariable.read |
errorvariable.write
errorvariable.read |

errorvariable.read |

<inputwrong>.read <inputwrong>.read

A Y

selector.read | | selector.read /QU\IPUTWf ong>.read

/ \ <outputwrong>.read
® o ®

arguments.read | selector.read selector.read

arguments.read

errorvariable.write |

errorvariable.write

YTV
® e o e o

Figuur 5.18: Annotated message flow graph for the ASML example (Gamﬂow_asml)

144 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

5.6 Conflict Detection Phase

5.6.1 Inputs
5.6.1.1 Annotated message flow graph

One input is an annotated message flow graph, called Gamfiow asmi from the
Abstraction phase.

5.6.1.2 Conflict Rules

The second input is a set of conflict rules. Similar to the previous section, we
make a distinction between message property conflicts, control flow conflicts and
other conflicts. For each kind of conflicts we have different conflict detection
rules.

Message properties-related conflict rules These conflict rules apply to the
following resources: sender, server, target, selector, arguments and returnvalue. We
use extended regular expressions as defined by IEEE standard 1003.1[GI04] to
specify the conflict patterns. These are the message properties-related conflict
rules:

o Conflict(data): read write: In this case the read operations obtains a value
that is no longer valid, since the resource is changed immediately afterwards.
We assume here that the operations are caused by different aspects.

o Conflict(data): write write: In this case the effect of the first write operation
is lost due to a subsequent write operation. We assume here that the
operations are caused by different aspects.

Control flow-related conflict rules We now show which combinations of
operations on resource controlflow yield a conflict:

e Conflict(controlflow): return . If an advice returns, another advice which
should be executed after this advice is never executed, hence if there are
one or more other operations after a return, this will be signaled as a
conflict.

e Conflict(controlflow): exit .*: Similarly, if an advice terminates the exe-
cution, the advice which should be executed after this advice will never
be executed. Hence if an exit operation is followed by one or more other
operations, this will be signaled as a conflict.

Especially these generic rules are typically conservative, i.e. they aim at detec-

P.E.A. Diirr 145



Section 5.6 Conflict Detection Phase

ting potential conflicts, and will also identify situations that in reality are not
conflicting.

Conflict rules from the ASML example We also have two rules from the
ASML example, we summarize these here:

o Conflict(errorvariable): (write)(write): The previous value of the error
variable is overwritten.

o Conflict(errorvariable): (write)$: A written error variable must be read
before the end of the operations sequence.

Once we have defined all the conflict rules we can transform them and match
them against the annotated message flow graph.

5.6.2 Transformation

We transform the conflict rules to graphs, which are matched to the message
flow graph. A conflict rule graph Geonfict is similar to the annotated message
flow graph, i.e. a directed acyclic graph and is defined as < V, F, L >, where:

V is a set of vertices,

E : is the set of edges connecting the vertices, such that E = {(u,v) e u,v €
V Au# v},

L : is the set of resource-operation labels attached to the edges, such that
L ={(e,rsrcop) e e € E A rsrcop € ResourceOperations}
ResourceOperations = Resource — Operation-set e
Vrsre € dom ResourceOperations -
ResourceOperations(rsrc) C rsrc.alphabet

Although this graph is similar to the annotated message flow graph, the semantics
of both graphs is very different. Message flow graphs describe control flow
behavior and conflict rule graphs describe conflicting situations.

We now show the two conflict graphs for resource errorvariable in the ASML
example. We transform these two rules into conflict graphs Gryue1 and Gryes,
as shown in figure[5.19

Figure shows the two conflict rule graph for the example. These graphs are
equivalent to the final state automata representations of both regular expressions.
We have added self edges that capture everything except the labeled outgoing
transitions.

To determine whether a particular conflict rule graph matches a given annotated
message flow graph, we intersect both graphs. A message flow graph is conflict-

146 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

: I ] * : Z ) *
errorvariable.write errorvariable.write

Y Y

o e

errorvariable.write

‘Q*

(write)(write)

JR (write)$ )

\

Figuur 5.19: Conflict rules Grue1 (left) and Gruez (right)

free if this intersection is empty. If the intersection is not empty, we have detected
a conflict. A shared join point contains a conflict if and only if:

3gruie € ConflictRules ® gryie N Gampiow 7# { } (5.1)

For each conflict we have a corresponding path Pconfict, or a set of paths if there
are more paths leading to the same conflicting situation. Pconpict is a subgraph
of Gamfiow- To get all conflicting paths we remove Peongiict from Gompiow, and
intersect the new Gamfiow With gryie, until no more matches are found.

To illustrate how the process works we now transform Gampow to a set of all
possible traces through the graph. In the ASML example we have five traces.
These five traces are listed here in terms of resource operation tuples.

[ ] TT’(IC€1 . errorvariable.read errorvariable.write errorvariable.read errorvariable.read
<inputwrong>.read selector.read arguments.read errorvariable.write

[ ] TT&C€2 . errorvariable.read errorvariable.write errorvariable.read errorvariable.read
<inputwrong>.read selector.read

[ TTCLC€3 . errorvariable.read errorvariable.write errorvariable.read errorvariable.read
<inputwrong>.read <outputwrong>.read selector.read arguments.read errorvariable.write

[ ] TT'CLC€4 . errorvariable.read errorvariable.write errorvariable.read errorvariable.read
<inputwrong>.read <outputwrong>.read selector.read

L Tmce5 . errorvariable.read errorvariable.write errorvariable.read errorvariable.read

P.E.A. Diirr 147



Section 5.6

Conflict Detection Phase

<inputwrong>.read <outputwrong>.read

We can organize all operations per resource. The result is presented here:

Tracey :

errorvariable : read write
<inputwrong> : read
<outputwrong>
selector : read
arguments : read

Traces :

errorvariable : read write
<inputwrong> : read
<outputwrong>
selector : read
arguments

Traces :

errorvariable : read write
<inputwrong> : read
<outputwrong> : read
selector : reaa
arguments : read

Tracey :

errorvariable : read write
<inputwrong> : read
<outputwrong> : read
selector : read
arguments

Traces :

errorvariable : read write
<inputwrong> : read
<outputwrong> : read
selector

arguments

read

read

read

read

read

read write

read

read write

read

read

We can check whether the two regular expressions represented by G1 and
Guie2 accept the traces presented above. There are two traces that are excepted
by the rules:

})confﬁctl - 17%1061
PconﬂictQ - TTG,CC?,

148

P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

5.6.3 Output

The output of the conflict detection phase is a set of paths through the filters
that contain a conflict. Our implementation in Compose* produces an HTML
file with the results from the analysis process. Figure [5.20] shows the report for
the ASML example.

Figure shows the conflicting situation for class CC.CX.FS. It states that for
selector compare _data a conflict has been detected on resource errorvariable. It
also shows the conflicting sequence of operations and the message related to this
conflict rule. In addition, a trace of the filter sequence is produced, in this case
errorpropagationfilter followed by paramcheckfilter. SECRET also checks the other
possible orderings of filter modules, thus ParameterChecking.check followed by
ErrorPropagationConcern.propagate. This does not yield any conflicts, and might
be an indication that a filter module ordering specification is required to solve
the problem. The current implementation does not report detailed paths: it
does report all conflicts.

5.7 Discussion

We now discuss several remaining issues and possible extensions.

5.7.1 Generality of the approach and implementation

We can generalize our approach in several ways:

e Can the approach be applied to other base languages? The Composition
Filters model is language agnostic. It only assumes a message, interaction
or event to be present. If such messages or events exist, the Composition
Filters approach can be applied. The behavioral conflict detection, as
presented here, only deals with conflicts among concerns. Therefore, we do
not make any assumptions about a particular base programming language.

e (Can the approach be applied to other aspect languages? The approach pre-
sented in this chapter is Composition Filters specific. However, the general
approach presented in the previous chapter can be applied to other aspect
languages. This may require different resources, operations and conflict
rules. Further, since we use the declarative properties of Composition
Filters, we can automatically derive a part of the behavioral specification
and accurately determine when conflicting situations occur. This may

P.E.A. Diirr 149



Section 5.7 Discussion

E ET Report for DEAS Case cenerated on 2008-02-25T16:30:020ET

concems rules resources actions

Concern Analysis for CC.CX.FS
—|Fi|ter set analzsis #1 :

Selected filter set:
true

Filter direction:
Input

Conflicts:
1

Filter module order

1. ErrorPropagationConcern.propagate
2. ParameterChecking.check

Conflict # 1

Resource:
errorvariable
Selector:
compare_data
Message:
a written errorvariable must be read ( [rule|)
Sequence:
read write read read write
Trace

1. ErrorPropagationConcern.propagate.errorpropagationfilter : ErrorPropagation
2. ParameterChecking.check.paramcheckfilter : ParameterChecking

—| Filter set analisis #2

Selected filter set:
false

Filter direction:
Input

Filter module order

1. ParameterChecking.check
2. ErrorPropagationConcern.propagate

Al

Figuur 5.20: Conflict detection report

150

P.E.A. Diirr



1
5

Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

be more difficult for more expressive and Turing complete languages like
AspectJ. One can automatically derive behavior specifications from advices
in AspectJ by inspecting the usage of thisJoinPoint and of explicit context
bindings. This does require advanced control and data flow analysis. For an
aspect language like AspectJ, the set of resources, operations and conflict
rules will be similar to the set presented here, i.e. the arguments and
return value are also present in these languages.

Can the approach be applied to detect conflicts between aspect and base
code or between composed base code? The approach presented in this
chapter is specific for the detection of behavioral conflicts among aspects.
The model for expressing and detecting behavioral conflicts is generic and
can be used to detect aspect and base code conflicts or composed base
code conflicts. However, this would require behavioral specifications from
the base program, and automatically deriving these is hard. However, if
behavioral annotations of the program units are available, the approach
can be applied.

Can the approach be applied to detect conflicts at the architectural level?
Our approach for detecting behavioral conflicts uses a resource-based
abstraction of the behavior of aspects. As such, our approach can also be
used for behavioral conflicts at an earlier phase in the software development
life-cycle. In these earlier phases, we do not have implementation details,
but we can specify the behavior abstractly using resource and operations.
In this case, we can also use our resource-based approach. In [DBTO08], we
proposed the usage of our resource-based approach for detecting behavioral
conflicts at the architectural level.

5.7.2 Complex behavioral specifications

In this chapter we have expressed the behavioral specifications as a sequence
of operations on resources. The control flow of an advice can be more complex
than just a sequence. Currently these more complex cases are serialized into
worst case sequences. To accommodate more complex control flow behavior we
can introduce a description of the behavior using an automaton. Consider for
example the behavior specification of filter action PropagateAction. We specified
this as:

errorvariable.read;errorvariable.write;errorvariable.read;errorvariable.read

This was derived from the following code extract (listing [4.2]).

‘ if (result == 0OK)

P.E.A. Diirr 151



Section 5.7 Discussion

3 {

4 result = example_action1(...);
5 if (result != OK)

6 {

7 LogError (result) ;

8 }

9 3

In reality, parts of this behavior are executed conditionally. To express such
behavior, we can use automata. In the example, the automaton expresses a
specification of the behavior including control flow (see figure |5.21)).

!

errorvariable.read

errorvariable.write

X

errorvariable.read

Y

errorvariable.read

Figuur 5.21: Complex behavior automaton

Figure [5.21] shows that there are three paths through the code. The impact
of introducing automata instead of sequential behavior specification on the
conflict detection process will be minimal. Consequently, there were will be
more nodes and edges in the annotated message flow graph, which increases
the computational complexity. However, it does not affect the ability to detect

152 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

conflicts.

5.7.3 Alternative conflict rule specifications

The rules we have presented in this chapter have been implemented using
extended regular expressions as defined by IEEE standard 1003.1 [GI04]. These
expressions are capable of detecting very complex combinations of operations
on resources. Alternatively, we can use Linear Temporal Logic(LTL)[Pnu77|
to express the conflict rules. LTL expresses properties on the states of a biichi
automaton, which represents the execution of a program. LTL is usually used for
expressing safety and liveliness properties. For example conflict rule: (urite) (urite),
can be translated to write X write, in words: write next write.

The operations on resources are limited to a finite alphabet. LTL formulas can
be transformed to deterministic finite automata, as is done with extended regular
expressions. As such, we can also use LTL formulas with minimal impact.

Computation Tree Logic (CTL) [CGP99] is used to verify properties along paths
in a tree-like structure. CTL can verify properties for all paths (V) or for a
specific one (3). These two quantifiers can be mapped to conflict and assertion
rules. Assertion rules should hold for all paths through the annotated message
flow graph. In contrast, there should be no path for which a conflict rule holds.
Both CTL and LTL can be used together in CTL*. This could be an alternative
rule expression language for detecting conflicts, and again the impact would be
minimal.

Another possible extension of the approach is concerned with detecting behavioral
interference when multiple resources are involved. It could be the case that the
combination of sequences of operations on distinct resources could be conflicting.
Currently, we only consider operation patterns on single resources. Detecting
interference between resources requires prefixing the operations with the specific
resources, and adjusting the conflict rules, to not only reason about operations,
but also about the resources on which these operations are executed.

5.7.4 False positives and false negatives

False positives and false negatives can be caused by several reasons.

Firstly, if the behavioral specifications are erroneous. Section discussed what
behavior can be expressed. In the approach and implementation presented in this
chapter, we assume that the behavior of filter actions and advice methods are

P.E.A. Diirr 153



Section 5.7 Discussion

adequately described. A detailed analysis by the developer of a filter action or
advice method is desired. However, since filters and filter actions are reused, we
only need to describe the behavior once. If a developer introduces a new domain
or application specific resource or operation, he or she must be aware that there
are other resources, operations and conflict rules, and adjust his specifications
to cope with the current set of resources, operations and conflict rules. Since
we do not analyze the implementation of the filter action or advice method, a
developer has to provide this information.

To aid in extracting behavioral specifications and keeping the specifications
consistent, one can try to automatically derive these specifications. In [vO06], we
explore the possibility to automatically derive behavioral specifications from base
code. This relies on detailed control and data flow analysis and implementation
details. For example, we analyze the base code for the usage of a context
parameter such as JoinPointContext in Compose* and thisJoinPoint in AspectJ.
These context parameters are usually the only way to query and manipulate
message properties or other context information. As such we can automatically
derive a behavioral specification. The work described in [vO06] has been executed
by M. van Oudheusden, and directed and supervised by P. Diirr and L. Bergmans.

Secondly, the conflict rules may be too strong or too weak. In section [5.6.1.2] we
proposed a set of conflict rules to capture conflicts on message properties within
Composition Filters. These have been formulated such that they capture read
and write conflicts between aspects. However, some read and write interactions
are intended. But we need to information from a developer to determine this.
In such a case a developer can exclude a particular rule for a resource or choose
to ignore the error, since it is a desired interaction and not a conflict.

Thirdly, we may detect conflicts that cannot occur, since certain paths through
the message flow graph are not possible. For example, in the current approach
we assume that conditions can change during the evaluation of the filters. If two
filters use the same condition, we assume that each filter can accept or reject
independent of each other. We do not assume that if the first filter accepts, the
second filter accepts as well.

Finally, certain conflicts cannot be detected statically. Filter specifications may
have dynamic elements like conditional and dynamic execution and superim-
position. Statically, we can detect the worst case. Section [5.§] discusses these
dynamic elements and proposes an extension to the static approach.

154 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

5.7.5 Computational complexity

We split the discussion about the computational complexity into two separated
discussions. The first discussion details the complexity for phases Composition
and Abstraction. The second discussion details the complexity for phase Conflict
Detection.

Composition and abstraction The described message flow graph (see section
, is an abstraction of the message flow graph in the implementation.
There is no fundamental difference, however the actual implementation has more
nodes and edges than the examples presented here. These extra nodes and
edges are required and introduced by the graph transformation rules used to
build the message flow graph. For example, in the implementation there is a
node called True that represents the condition part of filter errorpropagationfilter :
ErrorPropagation = { [*] }, since the transformation rules use the canonical form:
errorpropagationfilter : ErrorPropagation = { True => [*.*]*.% }. These nodes have been
excluded in the example graph in figure [5.17}

The implementation starts with an Abstract Syntax Tree (AST) representation
of the filters and transforms this to a flow chart. Then control flow edges are
added between the elements in the AST. The resulting flow chart is simulated
to achieve the execution model of the filters. During this simulation the control
flow paths of all distinct messages are calculated.

This entire process is executed using the Groove toolset [Ren|. In [dRO7], this
entire process in detailed. We use graph transformation rules to transform the
AST to the flow chart. Each rule results in a set of transformation steps. The
transformation steps for each rule are present in table[5.5] The work described
in [dRO7] has been executed by A. de Roo, and directed and supervised by P.
Diirr, L. Bergmans and T. Staijen.

Tabel 5.5: Computational steps when transforming an AST to a flowchart, from
[dRO7].

[ Rule “ #Steps ]
Join Point rule # FilterModules + 4
SI rule 5 - # FilterModules
Filter module rule # Filters 4+ 2 - # FilterModules
Filter rule 2 - # FilterElements + 10 - # Filters
Filter element rule 9 - # FilterElements
Matching pattern rule 2 - # MatchingPatterns + 4 - # FilterElements
Filter Action rule 8 - #Filter

P.E.A. Diirr 155



Section 5.7 Discussion

The total number of transformations is 8 - # FilterModules + 19 - # Filters +
15 - # FilterElements + 2 - # MatchingPatterns + 4. All the Composition Filters
elements are nodes in the AST. The number of nodes in the AST is linear with

the number of filters on a join point. The time complexity of the algorithm to
transform the AST into a flowchart is O(# Nodes).

Next, we have to simulate the execution of the message flow graph. In this
simulation all classes of messages are taken as inputs. A so-called message-class is
a set of messages (target and selector tuples) that exhibit the same flow behavior
through the sequence of filters. The number of message classes is usually a lot
smaller that all individual messages, but in the worst case the same. In such a
worst case, we can state that the number of states in the resulting execution space
of the simulation corresponds the number of nodes in the message flow graph
times the number of message classes. As such we can define the time complexity
of simulating the execution, as follows: O(#States) = O(# Nodes - # Message).

The number of messages is related to the number of matching parts, and thus
related to the size of the flow chart. For the maximum number of messages
it holds that O(# Message) = O(#Nodes?), since, the possible messages are
constructed by taking the cross product between the set of targets and the set of
selectors in the matching and substitution expressions. The total complexity of
the simulation is: O(#States) = O(#Nodes - # Nodes?) = O(# Nodes?). This is
a worst case situation, since in practice the number of possible message classes
is limited and thus the number of flow nodes in the graph is also limited.

The total time complexity of phases Composition and Abstraction is: O(# Nodes)+
O(#Nodes®) = O(#Nodes®). As such, it can be concluded that the filter
reasoning algorithm has polynominal time complexity.

Conflict Detection Each conflict rule is converted to an automaton and is
intersected with the automaton that represents the execution model. The time
complexity for conflict detection is O(#States(FlowChart)-

#States( ConflictRuleAutomaton) -# PossibleResourceOperationsTuples). The
number of possible resource-operation tuples are constrained by the finite and
limited alphabet of resources. The detection algorithm is thus linear in the size
of the execution model as well as linear in the size of the conflict rule.

The message flow analysis is always executed for each join point, since there
are other modules that also rely on the message flow graph, e.g. for calculating
the signatures of classes on which filter modules are superimposed. We could
implement an optimization that only analyzes unique shared join points. Then,
even if the number of shared join points is equal to the number of join points,
we only have to analyze the number of distinct filter module orderings on those

156 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

distinct join points, since we do not consider the base program. As such we only
introduce a small linear overhead for the detection of behavioral conflicts. For
all the details we refer to chapters 5 and 6 in [dRO7].

5.7.6 Output and returning filters

Input or output filters can not only execute behavior before the execution of the
join point, but also after the execution of the join point, namely on the return of
a message. The filter actions that are executed on the return of messages depend
on the condition and matching expressions of the filter. These are evaluated
when messages are received. If a filter executes an accept filter action for an
incoming message, the accepting return action also executes, when the message
returns. The same situation holds for reject actions. Condition and matching
expressions are thus not re-evaluated when messages return. Also, the order
in which the returning filter actions are executed, is the reverse order of the
incoming filter actions. The effect of this choice is that we have a simplified
message flow graph on the return of messages, since condition and matching
expressions are removed.

Figure [5.22) shows two message flow graphs. one for incoming messages and
another for returning messages.

The example that we use here has two filters. The first filter always accepts. We
also assume that both filters execute some behavior before and after join point
execution. The graph on the left represents the message flow of an incoming
message. This has two filter actions before action 1 and before action 2. We
only execute the second filter action if the target of the message is equal to
foo. The graph on the right represents the message flow for returning messages.
This is very similar to the incoming graph, but all condition and matching
expressions have been removed. Both these graphs can be annotated with
behavioral specifications. Since we do not consider conflicts within one filter
modules, we can analyze the graphs individually. The complexity of analyzing
returning message flow graphs is the same or smaller than the complexity of
incoming message flow graphs, since the returning message flow graphs do not
have condition and matching expressions.

Our approach could be applied to reason about behavioral conflicts between
incoming and returning behavior. In such a case we can create a composed
message flow graph (see figure |5.23)).

In this case there is a dependency between before join point execution filter
actions and after join point execution filter actions. This dependency is clearly

P.E.A. Diirr 157



Section 5.7 Discussion

¢
7 * o

(Filter1
before_action_1
after_action_1 | after_action_1
. \ J/
(Filter2 target==foo [ target!=foo | )

X

Q NopAction

before_action_2 NopAction after_action_2

Figuur 5.22: Incoming message flow graph (left) and returning message flow graph
(right)

158 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

!
>

before_action_1

target==foo |  target!=foo

7—15

before_action_2 NopAction |

after_action_. NopAction

Join Point
Execution

|
|
]
Y

Of--10<

O

after_action_1 after_action_1

Figuur 5.23: Composed before and after message flow graphs

P.E.A. Diirr 159



Section 5.8 Runtime conflict detection

visible in figure If the left branch is taken we execute two returning filter
actions after action 2 and after action 1. If the right branch is taken, we also
execute two returning filter actions, in this case NopAction and after action 1.
The composed graph can be annotated with behavioral specifications and the
conflict detection can be applied on this composed graph.

In this chapter we only showed the conflict detection approach for input filters.
Our approach can be applied equally well to output filters. The same composition
rules for input filters apply to output filters. Therefore, the analysis process does
not change.

5.7.7 Conflicts within filter modules

We can distinguish between conflicts caused between filter modules and within a
single filter module. We assume that the implementation within a single filter
module is correct. Within a filter module all filters are clearly visible, as such we
assume that any interaction between these filters is intended. Filter modules on
the other hand are independently developed and a developer cannot determine
easily whether his filter module conflicts with others. As such any interference
detected between filter modules is considered a conflict.

Currently we do not distinguish between behavioral conflicts that occur within
a filter module or conflicts that are between different filter modules. We could
distinguish between the conflicts and show a warning to the user if a conflict
rule matches within a filter module, and issues an error if a conflict rule matches
between filter modules.

5.8 Runtime conflict detection

This section discusses the need for a runtime extension to the described static
approach. It also presents a possible implementation approach of such an
extension in Compose*. This allows us to reason efficiently about the behavior of
aspects at runtime. It also enables us to detect behavioral conflicts with limited
overhead at runtime.

5.8.1 An example conflict: Security vs. Logging

Assume that there is a base system which uses a Protocol class to interact
with other systems. Class Protocol has two methods: one for transmitting

160 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

data, sendData(String) and another one for receiving data, receiveData(String).
Now imagine that we would like to improve the security of this protocol. To
achieve this, we encrypt all outgoing messages and decrypt all incoming messages.
We implement this by superimposing an encryption advice on the execution
of method sendData. Likewise, we superimpose a decryption advice on the
execution of method receiveData. Now imagine, a second aspect which traces
all methods including its arguments. The implementation of the tracing aspect
uses a condition to dynamically determine if a method should be traced, because
tracing all methods is not very efficient.

The two advices are superimposed at the same join point, in this case Proto-
col.sendDatd]l Now assume that we want to ensure that no one accesses the
data before it is encrypted. This constraint is violated if the two advices are
ordered in such a way that advice tracing is executed before advice encryption.
In this way the log file can contain “sensitive” information.

We can make two observations. The first is that there is an ordering dependency
between the aspects. The second observation is that, although this order can be
statically determined, we are unsure whether the conflicting situation will even
occur at runtime, because advice trace is conditionally executed.

We now show result of superimposition of aspects Encryption and Tracing. The
result is the following composed filter sequence on method Protocol.sendData:

trace : ParameterTracing = { ShouldTrace => [*.*] };
encrypt : Encryption = { [*.sendDatal] }

Listing 5.5: Composed filter sequence for join point Protocol.sendData.

Filter trace traces all parameters and return value at the start and end of a
method execution. Filter encrypt subsequently secures the data being sent. The
filter sequence presented in listing[5.5| can be translated to the annotated message

flow graph in figure [5.24]

This graph is a simplified version of the actual graph, for readability purposes.
The italic labels on the transitions are evaluations of the conditions (e.g. Should-
Trace), and the message matching, e.g. message.sel(ector) == sendData. The
bold labels on the transitions show the filter actions. The underlined labels are
resource-operations tuples, corresponding to the evaluation of the conditions,
matching parts and the filter actions.

In this case we specify the following conflict rule: confiict(arguments): (read) (encrypt).
This rule states that it is not allowed to read the arguments before they are

1Here, we only focus on join point Protocol.sendData, but a similar situation occurs for
join point Protocol.receiveData.

P.E.A. Diirr 161




Section 5.8 Runtime conflict detection

ShouldTrace ! ShouldTrace

Trace houldTrace.rea

args.read

sel == sendData /sel.rea sel I= sendData sel == sendData . sel I= sendData

Encrypt |args.encrypt NopAction| Encrypt | args.encrypt NopAction

Figuur 5.24: Annotated message flow graph representation of the filters in listing [5.5

encrypted. In figure we observe that the left most path matches the conflict
rule.

Now let us elaborate on this conflict a bit more. In the example we use two
filters, and one of these filters uses a condition. Condition ShouldTrace is used to
determine to trace this method or not. We assume that whether this condition is
true or false depends on certain runtime information. Statically, we observe that
there is a possibility of a conflict, as we consider both the true and false values
of the condition. This enhances our ability to detect behavioral conflicts but it
also introduces possible false positives. Such a condition can always yield a false
value, i.e. no methods should be traced. It thus requires dynamic monitoring
to determine whether such a conflict actually occurs at runtime. We prefer to
detect these conflicts statically, since that does not impact runtime performance
and can guarantee that an application is indeed correct before deploying.

5.8.2 Limitations of static checking in AOP

This section discusses two AOP constructs that limit the ability to statically
reason about behavioral conflicts.

5.8.2.1 Dynamic weaving

There are AOP approaches which employ dynamic weaving or proxy-base con-
structs to instrument an application. Although this provides some unique
features over statically based weaving, it does present difficulties when statically

162 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

reasoning about behavioral conflicts at shared join points. One such difficulty is
that not all shared join points are known statically. As such, it becomes hard to
know which advices are imposed at a shared join point.

An example of such a construct is conditional superimposition found in Com-
position Filters, see listing in section [2.3.4.6 We can assume a worst case
situation for dynamic weaving approaches. We assume that all advices can be
composed with any other advice. However, this can result in a large set of
possible orders and combinations of advices that have to be checked. This worst
case scenario is only an option when all aspects are known.

5.8.2.2 Dynamic advice execution

Most AOP approaches support conditional or dynamic properties in either
pointcut or advice language. Examples of such constructs are the if(...) pointcut
in AspectJ and conditions in Composition Filters. Even though all shared join
points are known, not all possible combinations of advice may occur at runtime.
This can depend on runtime state. In the example, we use condition ShouldTrace
to determine whether to trace or not. At runtime this condition can be true or
false. In our static conflict detection approach, we consider all possible values of
conditions.

5.8.3 Conlflict detection at runtime

As motivated by the previous section, we would like to extend our work to also
capture behavioral conflicts at runtime. A naive implementation would be to
simply instrument all advices and monitor all join points dynamically. However,
we can reason more efficiently. In section [5.6] we stated that for each possible
conflict we get a conflicting path called Pconpict. Fach edge in this path has a set
of labels attached to it, which represents the corresponding resource-operation
tuples.

The set of conflicting paths is most likely smaller than the set of all possible
paths. We only have to monitor those paths which are conflicting for a specific
resource, and of these paths only the paths that contain dynamic elements.

To informally outline the runtime extension, we use the example conflict, as
presented earlier. In figure [5.24] we saw that the left most path was a con-
ﬂicting path This full path is ShouldTrace.read, args.read, selector.read, args.encrypt.
However, only part of this path is conflicting with our requirement. In this
case: Conflict(args): (read)(encrypt). This conflict rule only limits the usage

P.E.A. Diirr 163



Section 5.8 Runtime conflict detection

of operations for resource args. We can thus reduce the conflicting path to:
args.read, args.encrypt. Where args.read is caused by the execution of filter action
Trace, and args.encrypt is caused by filter action Encrypt. We only have to monitor
the execution of these two filter actions to determine whether the conflict occurs
or not. In this case, even the execution of filter action Trace is sufficient, but
this is not true in the general case. There are cases where one has to moni-
tor the evaluation of conditions, message matching expressions and message
substitutions.

5.8.3.1 Instrumentation

To be able to monitor the system while running, we have to inject monitoring code
inside the advices. We assume that all code will be passed through the Compose*
compiler. Our compiler will inject the monitoring code in the appropriate places.
This ensures that the executing code will emit updates to the monitor. The next
section provides more details about this monitor.

5.8.3.2 Analysis process at runtime

There are multiple steps involved in checking at runtime for a behavioral conflict.
Our runtime extension uses a monitor to monitor the execution at runtime. The
monitor is instantiated each time a join point is executed. Alternatively, we
could have implemented the monitor as dedicated filters, this is considered future
work. This monitor contains the following elements:

ConflictingResources is the set of resources which should be monitored, where
ConflictingResources C Resources,

OperationSequence(rsrc) is the sequence of operations carried out on resour-
ce rsrc, where Vrsre € ConflictingResources -
OperationSequence(rsrc) C Alphabet(rsre),

ConflictRules(rsrc) is the set of conflict rules for resource rsrec.

Now that we have defined the monitor, we define three phases to be able to
reasoning about behavioral conflicts at a shared join point at runtime.

1. Initialization: At the start of the first edge in a conflicting path, we
initialize the monitor. This monitor is responsible for keeping the state of
the resources during the execution of this join point. It keeps track of all
operations that are carried out on the resources. If an operation is carried
out on a resource which does not exist, this resource is created. In our
running example the initialization is done before the filter action Trace

164 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

or the first continue action is executed. The monitor also initializes the
operation sequence for resource args to OperationSequence(args) = [].

2. Execution: As the program execution continues along the edges of the
paths, we execute the operations on the conflicting resources. These
are carried out on the monitor, and this monitor will update its state
accordingly. The execution of the operations has to be done just after the
corresponding filter actions and conditions have been executed or evaluated.
In the example, the execution step is carried out if the edge with label
args.read attached is taken. This corresponds to the execution of operation
read on resource args. The result is OperationSequence(args) = [read)].
The execution step is also done when the edge with label args.encrypt
attached is taken. This corresponds to the execution of operation encrypt
on resource args, resulting in OperationSequence(args) = [read encrypt].

3. Evaluation: If we reach the end of the execution path, we have to signal
the monitor to verify whether the conflict rules match on the given execution
path. If these rules match, we have encountered a conflict and the user
will be signaled, e.g. via a message or exception. At the end of a join point
we verify that: Vconfe. € ConflictRules(rsrc) -
confrye N OperationSequence(rsre) # {}. Section explained this in
more detail.

In the example case, this will occur after the edge that is labeled
args.encrypt is taken. It this case, rule Conflict(args): (read)(encrypt)
accepts OperationSequence(args) = [read encrypt], and the conflict is
detected.

The above process has to synchronize all conflict path thus, it should monitoring
is started at the beginning of the first conflicting path. Similarly, at the end of the
execution the evaluation phase has to be performed. To reduce the complexity,
we could initialize the monitor at the start of the join point. Similar, we could
verify the conflict rules at the end of the execution of the join point. However,
this might impose a larger runtime performance hit.

Another option would be to verify the rules continuously. This would provide
possibly earlier detection of the conflict. However, the runtime performance
might also decrease, due to the abundance of verifications. The runtime extension
presented in this chapter has been partially implemented in Compose*.

P.E.A. Diirr 165



Section 5.9 Related Work

5.9 Related Work

Aspect interference has been stated as one of the key issues that still remain in
the field of aspect-oriented software development [SROG, [DEFS05].

Our approach to behavioral conflict detection is considered model checking,
pioneered by E. Clarke, E. Emerson, J. Queille, and J. Sifakis. Model checking
techniques can verify certain properties (usually expressed in a temporal logic
language) of programs. They can automatically check if a finite state transition
system (modeling the program) conforms to a given state or event property.
In our approach we model the behavior of advice as (abstract) resources and
operations, and verify that properties, i.e. conflict rules, hold for the composed
behavior of advices. In [HDOI|, Hatcliff and Dwyer, discuss four problems that
are preventing model-checking technology from being applied successfully:

The state explosion problem : the exponential increase of the state space as
the complexity of the modeled system increases. To prevent this, aggressive
abstractions have to be made to produce traceable models. In our approach
we implemented an abstraction mechanism, through the use resources and
operations. Also, the use of Composition Filters restricts the possible
compositions and thus reduces the state space as well.

The model construction problem : the gap between the artifacts produced
by software developers and those accepted by the verification tools. This
is still a problem in our approach. One has to write the behavioral
specification next to writing the implementation of filters and advice.
However, we have shown that these can be reused to large extent and
can partially be automatically derived. The behavioral specification must
be consistent with the implementation for successful conflict detection,
keeping the implementation and specification consistent can be hard, but
can possible be verified.

The requirements specification problem : the specification form of most
temporal specification languages can be difficult to use, read and debug.
This is also a problem that is not solved by our approach. However,
since we are not tied to any particular conflict detection rule language, an
elegant and more user-friendly alternative can be used. The use of regular
expressions may appeal to more people than temporal logic.

The output interpretation problem : when a property fails, a model chec-
ker usually provides a counter example. This allows the developer to
examine the violation in detail. However, these traces can be very long and
are expressed in low-level model representations. In our implementation
we provide a complete overview of which rules were violated and caused by

166 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

which composition of filter modules. Our traces tend to be shorter since
we are reasoning locally instead of globally.

A lot of work has been conducted on the categorization of aspects. Categorizations
can be used to define which combinations of categories can be considered harmful.
These categories have been discussed in the previous chapter, section 4.4 Here
we only focus on work that deals with aspect interference.

Krishnamurthi et. al. propose one such approach in [KFGO04]. The paper
considers the base program and aspects separately. The authors discuss that a
set of desired properties, given a pointcut descriptor, can be verified by checking
the advice in isolation, thus providing modular reasoning. The paper focuses on
ensuring that the desired properties are preserved in the presence of aspects, in
other words, the situation where applying aspects causes the desired properties
of the base system to be invalidated. The paper only considers aspect-base
conflicts and not conflicts between aspects.

In [KKO§| and [GKOT|, Katz et. al. propose an approach to use model checking
to verify aspects modularly.

The authors create a generic state machine of the assumptions of an aspect. If
the augmented system, this is the state machine with the aspect applied, satisfies
certain desired properties, then all base systems satisfying the assumptions of
the aspect will satisfy the desired properties. The base system is expressed as
a state machine, which represents the execution of the base program. Aspects
are also expressed as state machines, if the assumption, i.e. the pointcut, of the
aspect matches the base system, the base system is augmented with the state
machine representing the execution of advice. Advice can be either before or
after, where around advice is split into before and after advices.

The authors identify three kinds of properties that should hold for a system:

Safety properties describe assertions that should hold for all states of all execu-
tions of a program.

Liveness properties describe properties that should hold at the end of all
executions of a program.

Existence properties describe properties that should hold for a particular
execution of a program.

The authors also map aspects into three categories:

Spectative aspects can only read certain properties of the message or variables
in a base system. They cannot alter the control flow, nor can they change
the value of message properties or variables in a base system. It is of course
allowed to change variables of the aspect itself. An example is the tracing

P.E.A. Diirr 167



Section 5.9 Related Work

aspect, as described in section (3.1

Regulative aspects can alter the control flow a base system. Aspects can
choose to delay, restrict or prevent the execution of operations in base
system. Examples are synchronization and authorization.

Invasive aspects can change message properties and variables in a underlying
base system. There are two types of invasive aspects. Weakly invasive
aspects return to already existing states in the base program. Strongly
invasive aspects create new states in the base program.

The authors emphasize that automatically determining whether an aspect is
spectative, regulative or invasive is far from trivial, and requires detailed control
and data flow analysis of program code to derive such a classification.

In [Kat06], the authors use the kinds of properties and aspect categories to
define aspect interference. Spectative aspects can be woven in any order without
affecting safety, liveness and existence properties. The order of application of
regulative and invasive aspects matters. As such the resulting augmented system
might have changed in such a way that the assumptions of another aspect are
not fulfilled anymore. For example one aspect could prevent the execution of
other aspects or base program.

A major benefit of their approach is that it does not discriminate between
conflicts caused by base-aspect and aspect-aspect interaction. Neither do they
require the notion of a shared join point. Both assumptions and effects of aspects
are expressed as temporal logic formulas. Also, the approach uses tableaus for
representing from specific bases system. The authors show that if a tableau
satisfies the assumptions of an aspect, then for all base systems that satisfy the
assumptions of the tableau, the assumptions of the aspect are satisfied. The
authors also prove that aspects only need to be verified pair-wise. If one can proof
that the composition of two aspects is sound, then the composition of another
aspect with these two other aspect is sound, assuming the pair-wise composition
of the three aspects is sound. This is an elegant solution for addressing a possible
state explosion.

In [KKO§|, the authors mention the use of Bandera [HDO1] to automatically
create the automaton representing the base system and advices. The authors
partially address some of the four problems mentioned in [HDOI]. The state
explosion problem is reduced by the authors, through the use of a tableau. The
model construction problem does not seem to be addressed by the authors, since
they do not offer any means of abstraction, as we do in our conflict detection
approach. The requirement specification problem, the authors use LTL for
expressing the assumptions and guarantees of advice, in practice it is difficult for
developers to accurately express complex properties. The output interpretation

168 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

problem is addressed in section 6 in [KK08]. The authors outline a process for
determining which advice is responsible for the interference.

In [SRO6], Staijen and Rensink model —part of— the Composition Filters behavior
with graph based semantics. This approach also detects aspect-aspect conflicts.
One step of the analysis is to construct a state space representation of the
execution of the composed filter sequence at a shared join point. The authors
propose an interference detection approach based on the ordering of filter modules.
The use the following definition of a conflict: the order in which the filter modules
are superimposed should not make any observable differences in the resulting state
spaces from these different order filter modules. If the order of superimposition
matters, an interaction among aspects is detected. There are three key differences
with our work.

e The authors only detect conflicts related to control flow. They only model
the control flow semantics of filter actions, not the behavior of the filter
actions themselves.

e Secondly, they detect interactions rather than interference. If the order
of application matters, then the program is considered ambiguous and as
such conflicting. However, there might be a harmless or desired interaction
between the aspects, there is no way to define what is desired and what
isn’t. This may lead to a lot of false positives.

e Thirdly, the approach does not allow the introduction of domain or
application-specific information, such as specific conflict rules.

In several papers (e.g. [DFS04], [DES05] and [SDMFT06]), Siidholt et. al.
present an event-based AOP technique to detect shared join points, based on
similarities in the crosscut specification of the aspects involved. The approach
does not consider the semantics of the advice that is inserted, it just considers
the presence of a shared join point to be an interaction. The authors define
an interaction as follows: two distinct aspects are said to interact when they
match the same join point. Two aspects are independent if their superimposition
specifications never match the same join point. Independence of two aspects
ensures that their parallel composition is well-defined: they can be woven in any
order. Dependent (i.e. interacting) aspects require the programmer to resolve
the interactions by changing aspects or making the composition ordering more
precise.

Program slicing is another approach to detect state based interactions among
aspects. In [BCMO05| Balzarotti et. al. present an approach to slice AspectJ
woven code. First a slice of the woven program for one aspect is created,
and subsequently the slice of the woven program for another aspect. If the
slices intersect, then the aspects interact. The approach is not only capable

P.E.A. Diirr 169



Section 5.10 Conclusions

of detection interaction between aspects, but also between aspects and a base
program. It supports the detection of conflicts that are due to side affects of
advice. However, the approach is unable to determine whether an interaction is
desired or undesired, hence it does not provide interference detection.

In [PDS05], Pawlak, Duchien and Seinturier present a language called CompAr,
which allows the programmer to specify a set of execution constraints over
the advice. The approach also provides an abstraction of the implementation
language. This technique also analyzes interactions of aspects at shared join
points. The CompAr compiler verifies whether the execution constraints hold for
that given abstract specification. The work focuses on determining the correct
order of composition given the execution constraints.

The notion of using resources and operations on these resources to model
dependencies and conflicts has already been applied in several specific fields
in software engineering, e.g. for synchronization constraints [Ber66] and for
transaction systems [LMWE93|.

In [EMK™06], Eichberg et. al., use resources and operations to model the
dependencies between static analysis tasks in a build system. The paper also
uses resources to represent build artifacts and analysis results. It proposes to
model the dependencies between these artifacts as operations, e.g. reads and
maintains. A scheduler is used to create a valid schedule. The goal is to define
analysis tasks independently from each other. The goal of the approach is
different since the authors are mainly interested in finding a valid order of the
analysis tasks and to run these tasks within an incremental build process.

5.10 Conclusions

This chapter presents a detailed instantiation for the resource-based conflict
detection approach that was presented in the previous chapter. We have used
the Composition Filters approach to automatically derive parts of the behavioral
specifications. The parts that are not automatically derived, have to be specified
explicitly by the concern or filter developer. Once this information is present
we can automatically detect behavioral conflicts and also indicate exactly when
such a conflict can occur.

The contributions of this chapter are:

e An analysis of possible behavioral conflicts among filters in Composition
Filters. This analysis can also be reused for detecting behavioral conflicts
in other AOP approaches.

170 P.E.A. Diirr



Behavioral Conflict Reasoning applied to Composition Filters Chapter 5

A detailed discussion about the instantiation of our approach for detecting
behavioral conflicts in Composition Filters.

e Implementation details explaining how the conflict detection approach has
been implemented in Compose*.

A discussion that motivates that through a careful language design with
declarative features, automated reasoning about the (composition of)
behavior of aspects becomes feasible.

e A discussion of several extensions of the approach, for example, to detect
conflicts at runtime.

The current and earlier versions of the conflict detection approach applied to

Composition Filters, have been published in [DSBAO05|, [DBAO6], and
[DBTOS].

P.E.A. Diirr 171



Section 5.10 Conclusions

172 P.E.A. Diirr



FExtending Composition
Filters for improved
Reasoning

This chapter discusses some constructs of Composition Filters that hinder manual
and automated reasoning. We explain why these constructs reduce the ability
to reason. We present novel extensions to Composition Filters, to improve the
ability to reason.

6.1 Splitting Filter sets

The goal of this section is to explain the issues with the current coarse- grained
filter sets, and to present a more fine-grained model that addresses these issues.
We first show one possible implementation of concern Tracing, as presented in
chapter [1} Next, we discuss the limitations of this implementation and propose
an alternative implementation. We discuss the limitations with this alternative
design. Subsequently, we propose a more fine-grained model and discuss the
benefits of this model. We also discuss some remaining issues and show how we
addressed them.

P.E.A. Diirr 173



TUBS W N =

-3

od]

Section 6.1 Splitting Filter sets

6.1.1 Initial Tracing Implementation

The first implementation uses a dedicated filter type to implement tracing. We
first present the implementation of concern Tracing in listing [6.1

concern Tracing

{
filtermodule TracingModule
{
inputfilters
tracing : TracingFilter = { [*.*] }
}
superimposition
{
selectors
sel = { Class | isClass(Class) };
filtermodules
sel <- TracingModule;
}
¥

Listing 6.1: Simplified Tracing Concern

Listing[6.1]defines concern Tracing. This concern contains a filtermodule definition
(lines 3 to 7) and a superimposition definition (lines 9 to 15). Filtermodule
TracingModule defines a single input filter tracing of type TracingFilter. This
matches all messages and thus traces all messages. Lines 9 to 15 superimpose
filtermodule TracingModule on all classes in the application.

Figure presents a class diagram of the implementation of filter TracingFilter.

We have two abstract classes in figure Class Filter has a name and a list of
filter expressions, which correspond to the condition, matching and substitution
expressions. Class FilterAction also has a name but also an abstract method called
Execute. Class Filter is subclassed by class TracingFilter. This class has four filter
actions attached: filter action TracinglnAction, filter action TracingOutAction
and twice filter action ContinueAction. These three filter actions are subclasses
of class FilterAction. Filter action TracinglnAction is executed if an instance of
filter TracingFilter accepts before the execution of the join point. Filter action
TracingOutAction is executed if an instance of filter TracingFilter accepts after
the execution of the join point. Filter action ContinueAction is executed if an
instance of filter TracingFilter rejects before or after the execution of the join
point. The (partial) source of filter TracingFilter and its related filter actions is
shown in Appendix B.

Now that we have elaborated on the design of concern tracing and its implemen-
tation, we discuss several issues with this design.

174 P.E.A. Diirr




Extending Composition Filters for improved Reasoning

Chapter 6

<abstract> Filter

name : String

filterexpr : List<FilterExpression>

<abstract> FilterAction

name : String

getName(): String
setName(String) : void

addFilterExpression(FilterExpression) : void
getFilterExpressions() : List <FilterExpressions>

getName(): String
setName(String) : void
Execute(JoinPointContext) : void

[ TracingFilter |
name : "TracingFilter"

VAN

AcceptBefore AcceptAfter
Action Action

TracinginAction ) TracingOutAction
name : "TracingInAction” RejectAfter e e ™racingOutAction”
Execute(JoinPointContext) : void Action Execute(JoinPointContext) : void

RejectBefore
Action
1 \

ContinueAction

name : "ContinueAction"

Execute(JoinPointContext) : void

Figuur 6.1: Implementation of filter TracingFilter

P.E.A. Diirr

175



=W N =

Section 6.1 Splitting Filter sets

Observation: No clear separation between behavior and execution
time

One of the cornerstone assumptions of Composition Filters is that filter types
provide encapsulation of behavior through abstraction. This abstraction provides
reusability of the filter types. In essence, the available filters is a so-called aspect
library. In Composition Filters we superimpose filter modules that contain
filters in filter sets. Superimposition specifies where a behavior is applied. Filter
modules specify what behavior is executed and partially when this behavior
should be executed, i.e. output filters (method call) or input filters (method
execution). Also, currently filter types encapsulate what behavior is executed,
and when this is executed, i.e. before or after.

Consider filtermodule TracingModule in listing [6.1} we see a single filter named
tracing of type TracingFilter. This filter encapsulates both what to trace, i.e.
the parameters of a method, and when to trace, i.e. at the start and end of a
method execution.

This encapsulation has several drawbacks:

e Manual reasoning is more complicated. A developer has to be aware that
different behavior may be executed before or after the execution of the
join point.

e Automated reasoning is hindered, since we have to take the moment of
execution into account. The compiler needs to know more information to
determine what is executed at which point in time.

e There is no way to specify different ordering constraints for returning
actions. If a filter accepts a message, also the accepting return action is
executed. Conditions are thus only checked when a message enters the
incoming filter set.

e Writing a concern that requires a slightly different combination of before
and after behavior, requires the definition of a new filter type.

The next section presents an alternative implementation which partly addresses
this problem.

6.1.2 An Alternative Tracing Implementation

Consider the implementation of concern Tracing in listing [6.2

concern Tracing
{
filtermodule TracingModule

{

176 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

externals
tracer : TracingLib.Tracer = TracingLib.Tracer.Instance;
inputfilters
tracingBefore : Before = { [*.x] tracer.StartTrace}
tracingAfter : After = { [*.*] tracer.EndTrace}

}
superimposition
{
selectors
sel = { Class | isClass(Class), not(isClassWithName(Class,’TracingLib.Tracer’)) };
filtermodules
sel <- TracingModule;
}
¥

Listing 6.2: Alternative Simplified Tracing Concern

Listing defines concern Tracing. This concern contains a filtermodule definiti-
on (lines 3 to 10) and a superimposition definition (lines 12 to 18). Filtermodule
TracingModule has a single external, called tracer of type TracinglLib.Tracer. This
is a singleton class that can be accessed at every join point. Next, we define two
filters; tracingBefore of type Before and tracingAfter of type After. These match all
messages and will call method tracer.StartTrace and tracer.EndTrace respectively,
to trace messages. Lines 12 to 18, superimpose filtermodule TracingModule
on all classes, except for class Tracer itself. Methods StartTrace and EndTrace
implement the corresponding trace functionality (not shown here).

Observation: lack of distinct orderings

The implementation in listing [6.2] uses filter types Before and After to implement
concern Tracing. These are built-in filter types. This solves one of the problems
mentioned in the previous section, since it is now clear when each filter is
executed.

However this solution also introduces some new drawbacks and emphasizes
certain other drawbacks.

e We no longer have a single dedicated filter type which implements tracing.
The implementation has been split into two filter types.

e The order in which after filter actions are executed is the reverse order of
before filter actions. There is no way to deviate from this.

e In Compose* we can only order filter modules as a whole. There are no
means to order filters differently before or after the execution of a join
point.

e Similar to the previous tracing implementation, we cannot filter messages
on the return of the message, as the filter matching expressions of filter
tracingAfter are still evaluated upon entering the filter set.

P.E.A. Diirr 177




Section 6.1 Splitting Filter sets

Figure [6.2] depicts the current situation.

Figuur 6.2: Filters according to the current model

Figure[6.2] shows class Foo that has a set of input and output filters superimposed
on it. For simplicity reasons, we assume here that these filters are specified in a
single filter module. There are also external and internal objects. The arrows
indicate the control flow through the filters. First a call to a method of class
Foo is received (1), this message is subjected to the input filters. If the message
reaches the end of the filter set, the join point is executed (2). If this method
returns (7), all returning filter actions are executed in the reverse order and
control is returned to the caller (8).

If a method within class Foo calls a method of, for instance, class Bar (3), the
corresponding message is subjected to output filters. If the message reaches the
end of the output filter set, the join point is executed (4). When this call returns
(5), all returning filter actions are executed and control is returned to the caller,
in this case class Foo (6).

6.1.3 Proposal: Distinct Filter Sets

To address some of the drawbacks exhibited by both implementations of concern
Tracing in sections [6.1.1] and [6.1.2] we propose a refinement to the Composition

178 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

Filters model. This extension involves the addition of two filter sets, namely;
InputReturnFilters and OutputReturnFilters. Graphically, the proposal looks like

figure [6.3]

Figuur 6.3: Filters according to the proposed model

Figure [6.3] shows a similar situation as figure [6.2] However, we now have four
distinct filter sets:

InputFilters : contains filters that filter incoming messages.

InputReturnFilters : contains filters that filter the return of incoming messa-
ges.

OutputFilters : contains filters that filter outgoing messages.

OutputReturnFilters : contains filters that filter the return of outgoing
messages.

All filters in such a set can be ordered individually, determined by the order in
which these filters are written. This is already possible in the current Composition
Filters approach, as is the ordering of filter modules at shared join points. Filter
modules can be ordered at shared join point using an ordering language, which is
elaborated in more detail later. Also, all filters in the four filter sets are evaluated
top to bottom, as opposed to bottom-up for the returning filter actions, in the
original model. Finally, all filter matching expressions are always evaluated,
which includes condition and message matching patterns. This happens now
also for retuning messages, which was not the case in the original model.

P.E.A. Diirr 179



TUAS W N

-

18

Section 6.1 Splitting Filter sets

To summarize, this design has several benefits over the original model:

e Separation between what a filter does and when it is executed.

e Same top to bottom control flow for all filter sets.

e Condition and message matching pattern are evaluated both before and
after the execution of the join point, for the corresponding filter sets.

Concern Tracing can now be expressed as follows:

concern Tracing
{
filtermodule TracingModule
{
inputfilters
tracingBefore : StartTracingFilter = { [*.*]}
inputreturnfilters
tracingAfter : EndTracingFilter = { [*.*]}

}
superimposition
selectors
sel = { Class | isClass(Class) };
filtermodules
sel <- TracinglModule;
}

}

Listing 6.3: Updated Tracing Concern

Listing[6.3]defines concern Tracing. This concern contains a filtermodule definition
(lines 3 to 9) and a superimposition definition (lines 11 to 17). Filtermodule
TracingModule defines a single input filter tracingBefore of type StartTracingFilter
and a single input return filter, called tracingAfter of type EndTracingFilter. Both
these filters match all messages and thus trace all messages. Lines 11 to 17
superimpose filtermodule TracingModule on all classes.

Filter types StartTracingFilter and EndTracingFilter are only slightly different
from filter type TracingFilter (in appendix B). Filter StartTracingFilter has three
properties: a name, an accept action TracinglnAction and a reject action Conti-
nueAction. Filter EndTracingFilter also has three properties: a name, an accept
action TracingOutAction and a reject action ContinueAction. The filter actions
have not been changed.

6.1.4 Discussion

In this section we discuss several remaining drawbacks and how to address them.

180 P.E.A. Diirr




Extending Composition Filters for improved Reasoning Chapter 6

6.1.4.1 Reusable Filter Modules

As mentioned in section [6.1.2] one of the drawbacks of splitting the filters in a
before and after part is that we no longer have a single filter that implements
for instance tracing. This issue is not solved by our proposal. However, we can
change the way we look at the reusability of the filter types. This reusability
is somewhat strange as we have no direct means of superimposing a filter, but
we can only superimpose filter modules. Filter modules are a primary unit of
reuse in Composition Filters, since they can be superimposed directly, and filter
modules encapsulate all the behavior involved, including internals, externals and
conditions.

One of the key benefits of filters is that they are parametrized by the condition,
matching and substitution patterns. One occurrence of a filter may have a
very complex matching and condition pattern, while another occurrence may
have a simple expression. This strongly increases the reusability of filters, since
application-specific information is filled in when instantiating a filter. Filter
modules on the other hand do not have such kind of parametrization. In [Doo06],
Doornenbal added parametrization to filter modules, to enable reuse of filter
modules. The author describes and proposes such an extension to filter modules
using superimposition.

We now illustrate the usage of the proposed filter module parameters mechanism.
We use the superimposition language of Compose* to extract elements from the
program model, e.g. a class or a method. While superimposing a filter module,
one can pass such information to the filter module. Listing[6.4] illustrates how to
create a reusable filter module definition for tracing.

UL W N =

-

==

o

= o

w

= ==
00~ O Ut

©

concern Tracing

filtermodule TracingModule(?tracer_class, 7get_trace_instance, ?7tracer_start_method,
?tracer_end_method)
{
externals
tracer : ?tracer_class = 7get_trace_instance;
inputfilters
tracingBefore : StartTracingFilter = { [*.*] tracer.?tracer_start_method}
inputreturnfilters
tracingAfter : EndTracingFilter = { [*.x] tracer.?tracer_end_method}

}

superimposition
{
selectors
sel = { Class | isClass(Class), not(isClassWithName(Class, ’TracingLib.Tracer’)) };
tracer_class = { Class | isClassWithName(Class, ’TracingLib.Tracer’) };
get_trace_instance = { Method | isClassWithName/(Class, ’TracingLib.Tracer’),
isMethodWithName (Method, >TracingLib.Tracer.Instance’), classHasMethod (
Class,Method)};

P.E.A. Diirr 181




Section 6.1 Splitting Filter sets

tracer_start_method = { Method | isClassWithName/(Class, ’TracingLib.Tracer’),
isMethodWithName (Method, >TracingLib.Tracer.StartTrace’), classHasMethod(
Class,Method)};

tracer_end_method = { Method | isClassWithName/(Class,’TracingLib.Tracer’),
isMethodWithName (Method, *TracingLib.Tracer.EndTrace’), classHasMethod (
Class,Method)};

filtermodules

sel <- TracingModule (tracer_class, get_trace_instance, tracer_start_method,

tracer_end_method) ;

Listing 6.4: Parameterized Tracing Filter Module Concern

Listing defines a filter module called TracingModule (lines 3-12) and a more
complex superimposition specification (lines 14-24). Filter module TracingModule
is parametrized with four parameters, where each parameter is identified by a
preceding question mark. In listing these parameters are:

7tracer class : is the type of the external.

?get trace instance : is the method used to get an instance of this external
type.

7tracer start method : is the method called on the external to create a
start trace.

7tracer _end method : is the method called on the external to create an
end trace.

We have now created a parametrized filter module for tracing (lines 3 to 12).
To use this filter module we have to provide actual values for these parameters.
This is carried out using the superimposition specification at lines 14 to 24. In
this superimposition specification, but we not only select the classes we want to
superimpose on, we also select the appropriate tracing class (TracingLib.Tracer),
a method for instantiation this tracing class (TracingLib.Tracer.Instance), start
trace method (TracingLib.Tracer.StartTrace) and end trace method (TracingLib.
Tracer.EndTrace). For simplicity reasons, we omitted the selection of an interface
to guarantee that the methods for instantiation, start trace and end trace are
present with the right signature.

Finally, at line 23 we superimpose filter module TracingModule and provide the
selected class and methods. The Compose* compiler verifies that none of the
selectors yields an empty set. The compiler also checks that there is only a single
element in the result sets of the parameters, since filter module TracingModule
expects single elements, indicated by a single question mark, for each of the
arguments, and not a list of elements, which would be indicated by a double
question mark.

In the example, we superimpose filter module TracingModule immediately after

182 P.E.A. Diirr




Extending Composition Filters for improved Reasoning Chapter 6

declaring it. If we include this filter module in a library, we can write a
superimposition specification at a later time, in a different concern, thus reusing
the same filter module multiple times within the same or different applications.

The presented approach provides the same modularity as the original Compo-
sition Filters model. However, filters can no longer execute behavior on both
incoming messages and the return of these messages. To achieve this one can
use parametrized filter modules.

6.1.4.2 Ability to reason

As mentioned previously, one of the drawbacks of not splitting the filter sets,
was that manual and automated reasoning was hindered. As all four filter sets
now exhibit similar behavior, we can assume that manual reasoning is indeed
improved. However, we still need to assess the impact on automated reasoning,
especially for those modules which reason about the composed sequence of filters
in Compose*. All modules that reason about the composed sequence of filters
rely on a module called FIRE (Filter Reasoning Engine).

The impact of our proposal on FIRE is limited. Our approach even improves
reasoning power, while preserving the original design of FIRE. In its current
incarnation, FIRE only reasons about the incoming messages of the input filter set
and output filter set. The latter reasoning is currently limited, since Compose*
does not determine the call sites of a class. FIRE analyzes the filter expression,
which includes condition, message matching and substitution expressions, to
determine how messages flow through a filter set. This analysis does not have to
be adapted, since:

e all four filter sets are evaluated in the same way, namely top-down,

e no new composition operators between filters are introduced,

e conditions are evaluated each time the filter is evaluated, in contrast with
the current design that only evaluates conditions before a join point is
executed,

e similar to conditions, message matching expressions are also evaluated each
time the filter is evaluated, in contrast with the current design that only
evaluates message matching before a join point is executed,

e substitution expressions are still allowed for returning messages. However
this can only affect further message matching and does not alter the object
to which the message is returned.

We assume that the execution of the join point does not alter properties of the
message, except for the return value. The execution of the join point can only

P.E.A. Diirr 183



Section 6.1 Splitting Filter sets

cause a change in the state of the system, thus it can affect conditions. However,
as conditions are independently evaluated, FIRE is not affected by this.

6.1.4.3 Around Constructs

Most AOP languages support some sort of around advice construction. In
Composition Filters this is usually done via Meta filters. There are two reasons
for using around advice. Either to alter the control flow, or to share data between
the before and after parts of an around advice in a convenient localized manner.

Affecting control flow - In Compose*, there is currently no way to affect
the control flow in the code of a filter action, short of throwing an exception.
Originally, Meta filters could be used to also affect the control flow. Currently,
the only way to affect the control flow is using an annotation attached to a filter
action. Listing [T]in Appendix B shows this annotation at lines 9 and 18. There
we explicitly state that the execution of these filter actions, does not affect the
control flow through the filter set. This design does not need to be changed and
can be used in the new filter sets as well. The semantics of using either continue,
exit or return actions differs in the incoming and returning filter sets (see figure
. Again, this is also the case in the current situation.

Sharing data - In the proposed design, we no longer have a direct way to
share data between before and after parts of a filter. However, this sharing can
still be implemented in several different ways:

e One can define and use custom message properties that can be queried
and altered. These properties have the same scope as a message, and as
such cannot be used for sharing data among join points that are not in
the same control flow.

e Sharing data at the same join point can also be achieved through the use of
internals. Internals are instantiated for each application of a filter module.
This thus provides a scope of the join point and not for an individual
message.

e In case one needs to share data between join points, once can use externals.
Externals are objects that already exist in the system and are aliased in a
filter module. Therefore, the scope of externals is the same as the life span
of the objects they refer to.

e Finally, one can share state through the implementation of the filter and
filter actions. Here one can use the facilities of the programming language
to implement the sharing of data. For example, one can use static variables
in a filter or filter action class.

184 P.E.A. Diirr



U W =

-~

9
10
12
13

Extending Composition Filters for improved Reasoning Chapter 6

The four presented ways of sharing data shows that the expressiveness of the
original design has remained. Some solutions do introduce a slight overhead
when sharing data. The exact implementation of these solutions might differ
slightly.

6.1.4.4 Fine-grained ordering language

To address the different ordering issues, we need a more fine-grained ordering
model. In [Nag05], Nagy presents the design of an ordering and execution
constraint language for aspects, in particular of filter modules in Composition
Filters. Only the ordering part of the language proposal is currently implemented
in Compose*. An example of such an ordering specification is presented in listing

lines 10 and 11.

concern ExampleOrderingConcern

{
superimposition
{
selectors
sel = { Class | isClassWithName(Class, >Foo.Bar’) };
filtermodules
sel <- TracingConcern :: TracingModule;
sel <- ProfilingConcern :: ProfilingModule;
orderings
TracingConcern :: TracingModule pre ProfilingConcern :: ProfilingModule;
}
¥

Listing 6.5: Current Ordering Specification

Concern ExampleOrderingConcern superimposes filter module TracingModule
from concern TracingConcern, and filter module ProfilingModule from concern
ProfilingConcern on class Foo.Bar. Lines 10 and 11 state that filter module
TracingModule must be executed before ProfilingModule, if present. In the current
implementation of Compose* this would yield the following execution order:

1. Before execution of the join point input filters from TracingModule.
Before execution of the join point input filters from ProfilingModule.
Execution of the join point.

After execution of the join point input filters from ProfilingModule.

After execution of the join point input filters from TracingModule.

Ol W

Now, imagine that we would like to have a different ordering before and after
the execution of the join point, i.e. not the inverse. This cannot be achieved
using the current implementation of Compose*. Our proposal is to extend the
ordering language to explicitly refer to the incoming and returning filter sets.
The result would be as in listing

P.E.A. Diirr 185




Section 6.1 Splitting Filter sets

DU W N

= O © 0

-
o

w

=

concern ExampleOrderingConcern
{

superimposition

selectors
sel = { Class | isClassWithName(Class, ’Foo.Bar’) };
filtermodules
sel <- TracingConcern :: TracingModule;
sel <- ProfilingConcern :: ProfilingModule;
orderings
TracingConcern :: TracingModule.inputfilters pre ProfilingConcern :: ProfilingModule.
inputfilters;
TracingConcern :: TracingModule.inputreturnfilters pre ProfilingConcern ::
ProfilingModule.inputreturnfilters;

Listing 6.6: Proposed Ordering Specification

Lines 10 to 12 in listing show one example of the proposed new ordering
language. The proposed ordering language has several assumptions:

e Operations pre and post both require the types of both operands to be the
same, i.e. both must be of type inputfilters, inputreturnfilters, outputfilters
or outputreturnfilters.

e Only referring to entire filter modules instead of filter sets results in the
same orderings at all four filter sets. This provides language backwards
compatibility. However, if the order of the returning filter actions mattered
in the original design, the behavior is different since the returning filter
actions are executed in the reverse order.

There is no need for a more fine-grained filter ordering language that refers
to individual filters, as this would break the design and encapsulation of the
enclosing filter module.

Another extension to the filter ordering language is the possibility to select
different orderings for different join points. For one join point, a user may want
a particular order, while for another the user may require a different order, e.g.
the reverse. We can extend the ordering language to accommodate this. An
example of such an extension is presented in listing [6.7]

O U= W~

-

concern ExampleOrderingConcern
{
superimposition
{
selectors
sell = { Class | isClassWithName/(Class, ’Foo’) };
sel2 = { Class | isClassWithName(Class,’Bar’) };

-
S © 0w

filtermodules
sell <- TracingConcern :: TracingModule;
sel2 <- TracingConcern :: TracingModule;

186 P.E.A. Diirr




11
12
13
14

16
17

Extending Composition Filters for improved Reasoning Chapter 6

sell <- ProfilingConcern :: ProfilingModule;
sel2 <- ProfilingConcern :: ProfilingModule;
orderings
sell = TracingConcern :: TracingModule pre ProfilingConcern :: ProfilingModule;
sel2 = ProfilingConcern :: ProfilingModule pre TracingConcern :: TracingModule;
}
}

Listing 6.7: Revision of the proposed Ordering Specification

Lines 14 and 15 in listing [6.7] state that filter module TracingModule must be
executed before filter module ProfilingModule, for class Foo, using selector sell,
and that filter module ProfilingModule must be executed before filter module
TracingModule, for class Bar, using selector sel2.

The proposals of splitting the filter sets, updating the affected modules and the
updated filter ordering language have not yet been implemented in Compose*.

6.1.4.5 Generality

The idea of splitting the behavior of an advice and when this behavior is executed,
is not new to AOP languages. For example, most languages use before, after and
around advice. However, such an execution time specification is usually tightly
coupled with the advice specification. In essence, these languages have a similar
situation as in the alternative implementation of concern Tracing (listing [6.2)).
They thus suffer from part of the same problems as described in this section.

One can imagine extending, for instance AspectJ, with a way to specify advice
separately from a specific execution time. This is already partially implemented
using pointcut languages, e.g. the difference between cai1 and execution. An
extension similar to the one proposed here to such a pointcut language would
simplify this and would create more reusable advice.

Also, we have proposed a fine-grained ordering language. Most AOP languages
only order at the granularity of aspects. In some languages the order in which
before, after and around advices are declared in the same aspect impacts the
selected ordering, similar to the declarative composition of filters within a filter
set. Languages like AspectJ, could implement a more fine-grained and elaborate
aspect ordering language than declare precedence or declaration order of advice
within a file.

P.E.A. Diirr 187



TS W N

-

oo

Section 6.2 Atomic Filters

6.2 Atomic Filters

A lot of heterogeneous crosscutting concerns implement behavior that is usually
not application-specific. Concerns like Profiling, Parameter Tracing and Para-
meter Checking, can be used in numerous applications. One of the benefits of
separation of concerns is that one is able to create reusable modules. Preferably,
we would like to have aspects in a library that addresses these common crosscut-
ting concerns, while providing enough parametrization to be useful in multiple
applications and environments. Ultimately, such an aspect library could also
contain “atomic” aspects that can be used to build up other (more complex)
aspects. We use the term atomic to indicate something that cannot be split. In
this section we demonstrate the benefits of having such atomic aspects. We also
create atomic filters for the Composition Filters model.

6.2.1 Delegation Example

Consider the example in listing [6.8]

concern Delegation
{
filtermodule DelegationModule
{
externals
delegator : Delegator;
outputfilters
send : Send = { [*.foo] delegator.newfoo }
}

superimposition

selectors
sels = { Class | isClassWithName(Class, ’Bar’) };
filtermodules
sels <- DelegationModule;
}
iy

Listing 6.8: Concern Delegation

Listing defines concern Delegation. This concern contains filtermodule Dele-
gationModule (lines 3 to 9) and a superimposition specification (lines 11 to 17).
Filtermodule DelegationModule declares a single external named delegator of type
Delegator. The filtermodule also has one output filter named send of type Send.
This filter matches all messages with a selector named foo, it is not interested in
a specific target. If such a message is encountered it is sent to method newfoo of
external delegator. Filtermodule DelegationModule is superimposed on class Bar.

188 P.E.A. Diirr




Extending Composition Filters for improved Reasoning Chapter 6

Now, imagine that a call from class Bar to Foo.foo is intercepted and this message
is thus passed to the send filter. The following execution steps are carried out:

1. The target is matched against the wildcard character, which always mat-
ches.
2. The selector of the message is matched against the selector matching
pattern, which is equal to foo, thus the filter accepts the message.
3. The target of the message is substituted with the target from the substitu-
tion expression, in this case delegator.
4. Similar to the target, the selector is also substituted with the selector from
the substitution expression, in this case newfoo.
5. The accept action of filter type Send is executed. This results in:
e changing the sender of the message to the current server of the
message, in this case class Bar,
e changing of the server of the message to the current target of the
message, in this case class Foo,
e setting the target of the message to the specified target, in this case
to external delegator,
e setting the selector of the message to the specified selector, in this
case method newfoo,
e sending the modified message to the current target and selector,
e ending the evaluation of filter set OutputFilters, and directing control
to filter set OutputReturningFilters once this filter returns.

This example shows that even using a simple filter like Send results in a complex
series of steps. Steps 1 to 4 are inherent to the filtering mechanism, and are
always executed for each filter. However, if we consider step 5 as the key action
of this filter, we see that the effect of this action is threefold. First, it changes
several properties of the message. Second, it calls another method. Third, it
changes the control flow. In Composition Filters, the goal of a filter type is to
encapsulate such behavior.

Encapsulation is a desirable property, however it does hinder automated and
manual reasoning and reduces the reusability of these kind of filters. Automated
and manual reasoning is impaired, since a tool or developer has to know the
exact semantics of this filter. The semantics of a filter cannot be derived from
its name. Reusability is impaired since it is hard to build other filters from a
complex filter, only if there is an exact match can we reuse a filter. Atomic filters
would increase not only manual and automated reasoning, since each filter only
performs one specific action. This would also increase reuse since more complex
filters can be built from these atomic filters.

P.E.A. Diirr 189



Section 6.2 Atomic Filters

We can perform the same kind of analysis for the other filters. We present the
current filter actions and their effect on properties of the message or control flow.
We do this on the basis of the resource-operation model introduced in chapter [
The result is depicted in table [6.1]

Tabel 6.1: Effect of the current filter actions

Filter Sender | Server | Target | Selector | Args | Return | Control
Action H ‘ Value ‘ Flow ‘
DispatchAct. write write return
SendAction write read read write return
write write
ErrorAction exit
NopAction continue
SubstitutionAct. continue
MetaAction read read read read read read continue
write write write write write write return
exit
BeforeAction read read read read read continue
write write write
AfterAction read read read read read read continue
write write write write

We have excluded all read and write operations on the target, selector and
conditions that are caused by filter expressions, since these are filter instance-
specific and have to be derived from the filter specification. Also we have opted
here to only show the filter actions. Filters consist of an accept and reject filter
action and all original filters have a NopAction either as an accepting or rejecting
action. Therefore, we can map these actions one-to-one to a filter. We have
excluded those features from the MetaAction that introduce concurrency, for
example to execute an advice in parallel with the filter evaluation. One can
create a dedicated filter action which introduces this concurrency, if required.

Table illustrates that the current filters are not atomic. As explained, this is
a desirable property because it enables easier building of new functionality. In
atomic filters, there are no filters that have the same or overlapping behavior.
Also, each atomic filter should perform only one basic functional action. The
atomic filters should be orthogonal in the sense that all (existing) filters can be
build from a linear combination of the atomic filters. This enables better manual
and automated reasoning about the composition of filters.

190 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

6.2.2 Filter Parametrization

Before we present the atomic filters, we first explain a construct in Composition
Filters that is used by several filters. This construct is called filter parameters,
and enables the passing of parameters to the filter.

Filter parameters should not be mistaken with either filter module parameters or
filter expressions. We clarify the distinction and show the relationship between
these three kinds of parametrization using figure[6.4. We have removed all details
that do not contribute to the parametrization.

FilterModule

filterModuleParameters : Map
1

FilterExpression
- cond : Condition
Filter mp : MatchingPattern

/ R sp : SubstitutionPattern
rejectAction

acceptAction /

|

FilterAction
name : String
filterParameters : Map

Figuur 6.4: Simplified UML model of filter modules and filters

At the top of figure[6.4] class FilterModule is defined. This class has a map of filter
module parameters. In section we discussed the details of filter module
parameters. These parameters can either refer to a single element (indicated with
a single question mark) or a list of elements (indicated with a double question
mark).

Each Filter (in the middle of figure has an accept and reject filter action,
as well as a sequence of FilterExpressions. These filter expressions are of the
form condition => [target.selector]target.selector. We assume here a Canonical fOI‘Hl
of filter expressions. All filter expressions can be rewritten to a sequence of these
canonical filter expressions. We ignore the difference between name and signature
matching, since this has no impact on this discussion. Filter expressions offer a
way to parametrize the accept or reject criteria for a filter. Each class Filter has
two associate FilterActions. These are, respectively, the accept and reject actions

P.E.A. Diirr 191



1

Section 6.2 Atomic Filters

for this Filter.

Filter parameters provide a way to pass properties to the filter, other than the
acceptance criteria. Imagine the following code snippet:

error : Error ( exception:ContractViolationException ) = { isContractValid => [*x,*] }

In this case we provide a custom exception class called ContractViolationException
that should be thrown if the filter rejects. The filter action can query the list
of filter parameters and decide what to do with each of the filter parameters.
The filter parameters are type-value tuples that are comma separated in case
there are more than one. The type of a filter parameter is always a String.
The value of a filter parameter can either be an Object or a String (enclosed
within a double quotation marks). Listing shows the implementation of class
ErrorFilterAction.

[FilterActionAttribute ("ErrorFilterAction", FilterActionAttribute.FilterFlowBehavior.Exit,
FilterActionAttribute.MessageSubstitutionBehavior.Original)]
public class ErrorAction : FilterAction

{
public override void Execute(JoinPointContext context)
{
String exceptionClass = context.GetFilterParameter ("exception");
if (exceptionClass != null)
{
Exception e = // Using reflection create a new instance of specified Exception class.
throw e;
}
else
{
throw new RuntimeException("Error Action");
}
}
}

Listing 6.9: ErrorFilterAction in C#

One can see that filter action ErrorAction (listing queries (line 6) the context
for a filter parameter called exception. If this exists, a new instance of the
exception class is created and thrown (lines 7 to 11). If this does not exist, a
generic RuntimeException is instantiated and thrown (lines 12 to 15).

All filter module parameters are available in the map of filter parameters. As
such, a filter action can use the reflective properties of the superimposition
language to gather information about the application. Filter module parameters
can be accessed through the name of the specific filter module parameter. We will
demonstrate this mechanism using a simplified version of the example presented
in listing Consider the example concern in listing [6.10]

192 P.E.A. Diirr




T W N =

~

Extending Composition Filters for improved Reasoning Chapter 6

concern Parametrization

filtermodule TracingModule(?tracer_class, 7get_trace_instance, 7tracer_start_method,
?tracer_end_method)
{
externals
tracer : 7tracer_class = 7get_trace_instance;
inputfilters
tracingBefore : StartTracingFilter (recurse:"false") = { [*.*] tracer.?
tracer_start_method}
inputreturnfilters
tracingAfter : EndTracingFilter (recurse:"false") = { [*.*] tracer.?tracer_end_method}

Listing 6.10: Parameterization Example

In listing [6.10, we have omitted the superimposition specification. Lines 9 and 11
show two filter definitions that are parametrized. In this case we use a parameter
to indicate that we do not want to trace recursive method calls. The filter
actions that implement start and end tracing, can access this parameter by
querying the context in the accepting filter actions. The filter parameter map of
these filters not only contains tuple (recurse:false), but also tuples: (7tracer_class
:TracingLib.Tracer), (?get_trace_instance:TracinglLib.Tracer.Instance), (?tracer_start_method:
TracingLib.Tracer.StartTrace), and (?tracer_end_method:TracingLib.Tracer.StopTrace). The
latter four parameters can only be read, i.e. they are not allowed to be changed.

In its current state, Composition Filters implements only rudimentary support
for filter and filter module arguments. The extension presented here is thus a
novel extension. The need for this extension will become more apparent in the
next section.

6.2.3 Proposal: Atomic Filters

In this section we propose atomic filters. One goal of these filters is to be able
to more easily create complex filters from these atomic filters. A second goal of
these filters is to improve automated and manual reasoning.

We use the analysis performed in chapter[5] to derive these filters. We distinguish
between behavior that accesses the properties of a message from behavior that
affects the control flow.

P.E.A. Diirr 193




Section 6.2 Atomic Filters

6.2.3.1 Message Properties Filter

In this section we only discuss filters, the behavior of a filter is implemented by
an accept and reject filter action. In this section this distinction is not important
as we map filter actions one-to-one to filters, see section [6.2.4.1] This distinction
does not affect the definition of the filters, as presented here.

We introduce one filter that can affect the properties of the message. This filter
is called SetProperty. Filter SetProperty can be used to set properties of the
message or custom properties. If a property does not exists, it is created. Filter
SetProperty can be used in the following three forms:

e SetProperty(property:propl,propertyl:prop2): sets the value of property
propl to the value of property prop2. Property prop2 must exist, else an
error is reported.

Example: SetProperty(property:sender, propertyl:server), this sets the
sender of the message to the server of the message.

e SetProperty(property:prop,variable:lvar): sets the value of property prop to
the value of variable var. Variables will be explained in more detail shortly.
Variable lvar must exist, else an error is reported.

Example: SetProperty(property:sender, var:Inewsender), this sets the sen-
der of the message to the value contained in variable !newsender.

e SetProperty(property:prop,value:"xxx"): sets the value of property prop to
a specified value, in this case "xxx".

Example: SetProperty(property:selector, value:instance"), this sets the
selector of the message to "instance".

Example: SetProperty(property:authenticated, value:"true"), this sets the
custom property authenticated to true.

Composition Filters declare the following set of properties:

Sender: the object that initiated the message

Server: the object that initially received the message

Target: the object that received the message, in most cases this is equivalent
to the server.

Selector: the method that is called.

Arguments: the arguments of the message.

ReturnValue: the return value of the message.

The above presented properties are all readable and writable.

There are also properties that provide reflection about the specific matching and

194 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

substitution expression. Equation shows the details of these expressions.

MatchingTarget SubstitutionTarget
—— —
err: Error = {[  targetl . selectorl ] target2 . selector2 '}
—— N——
MatchingSelector SubstitutionSelector

(6.1)

MatchingTarget: the object that matched the target of the message.

MatchingSelector: the text string that matched the selector of the message.

SubstitutionTarget: the object for which the target of the message is substi-
tuted.

SubstitutionSelector: the text string for which the selector of the message is
substituted.

The above stated properties are read-only; they can not be changed by filters.
Related to behavior conflicts, we assume that there can be no conflicts for these
properties, since they can not be changed and reading the same property multiple
times is not considered conflicting.

Some filters like Dispatch use the target and selector as specified in the substitu-
tion expression of a filter expression. However, other filters like Before and After
only use this to determine which advice method to execute, and the target and
selector of the message remains unchanged. Whether the target and selector of
the message is changed, depends on the filter action. We now state that filters
have to substitute to these properties explicitly, using the appropriate SetProper-
ty(property:target, ...) and SetProperty(property:selector, ...). Once can use the
previously mentioned properties SubstitutionTarget and SubstitutionSelector to
get specific values or use filter parameters.

Scope of properties The previously presented properties have a different
scope. Some properties are only present during the evaluation of one filter, while
others are present during the evaluation of join point. We now present the scope
of each of the properties:

Sender: always available during the execution of the thread, but may change
at each join point.

Server: always available during the execution of the thread, but may change at
each join point.

Target: always available during the execution of the thread, but may change at
each join point.

Selector: always available during the execution of the thread, but may change
at each join point.

P.E.A. Diirr 195



Section 6.2 Atomic Filters

Arguments: always available during the execution of the thread, but may
change at each join point.

ReturnValue: always available during the execution of the thread, but may
change at each join point.

MatchingTarget: evaluation of the enclosing filter.

MatchingSelector: evaluation of the enclosing filter.

SubstitutionTarget: evaluation of the enclosing filter.

SubstitutionSelector: evaluation of the enclosing filter.

Filter Module Parameters: evaluation of the enclosing filter module.

Custom: custom properties are retained during the execution of the thread.

Typing of properties The presented properties are typed. We define the
following types and show which properties below to which type.

Object : Sender, Server, Target, ReturnValue, MatchingTarget, Substitution-
Target

String : Selector, MatchingSelector, SubstitutionSelector

List : Arguments

Custom properties can be any type, depending on the last assignment of this
custom property. For example assigning the arguments of a message to the
target, is not allowed. Tables [6.2] and [6.3] show which properties or values can
be assigned to other properties.

Tabel 6.2: Types of properties - 1

Sender Selector Args Return Value
Server
Target
Sender
Server v \%
Target
Selector \
Args \
Return Value Vv \
Custom N4 N4 \ \

Most properties can be assigned only to similar properties. Selectors can be
assigned the value of another selector or a string value. A property can only
be assigned a custom property if their types are equivalent. A custom property
can be assigned any type. Properties that are inherited from the filter module
are only allowed to be queried, as are the matching and substitution target and
selectors. The compiler should enforce these typing rules.

196 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

Tabel 6.3: Types of properties - 2

Matching & Matching & Custom | Value
Substitution Substitution
Target Selector
Sender
Server v A\
Target
Selector Vv \ \
Args N
Return Value \% \
Custom N4 N4 Vv \

6.2.3.2 Variables

We introduce the notion of variables to offer a simple, light-weight mechanism to
transfer data between filters. Like properties, variables can be assigned the value
of a property, the value of another variable, or a string value. We introduce a
filter that manipulates variables, a so-called SetVariable filter. Variables must
be proceeded with a exclamation mark, e.g. !foo. This makes the difference
between properties and variables clear. The key difference between variables and
properties is that fact variables have a scope that is limited to a filter module,
whereas properties can have a longer life span. Filter SetVariable is similar to
filter SetProperty, the difference is that the first argument now is a variable
instead of a property. Filter SetVariable can be used in the following forms:

e SetVariable(variable:lvarl,variablel:lvar2): sets the value of variable varl
to the value of variable var2. Variable var2 must exist, else an error is
reported.

Example: SetVariable(variable:!x, variablel:ly), this sets the value of va-
riable x to the value of variable y.

e SetVariable(variable:!var, property:prop): sets the value of variable var to
the value of property prop. Property prop must exist, else an error is
reported.

Example: SetVariable(var:lnewsender, property:sender, ), this sets the
value of variable Inewsender to the sender of the message.

e SetVariable(variable:!lvar,value:"xxx"): sets the value of variable var to a
specified value in this case "xxx".

Example: SetVariable(var:lauthenticated, value:"true"), this sets the value
of variable authenticated to "true".

A key difference between properties and variables, is that properties are only
accessible in the filter specifications. An advice that wants to manipulate the

P.E.A. Diirr 197



Section 6.2 Atomic Filters

properties of the message need to do this via variables. Section [6.2.4.2] provides
more information about this.

Scope of variables The scope of variables is limited to a filter module. If a
larger scope is required, one must use properties.

Typing of variables The same typing rules that apply to properties, also
apply to variables. The compiler can enforce these typing rules.

6.2.3.3 Control Flow Filters

The following filters affect the control flow of message evaluation:

Return : This filter returns the control flow to the start of the returning filters
or to the caller.

Exit : This filter exits or terminates the evaluation of the filters completely. For
example, in case of an exception, in such a situation control is transferred
to the exception handler, and the filter evaluation is terminated.

In most cases we are not interested in changing the control flow. We execute
some behavior and continue to the next filter. This continuing behavior is
encapsulated in the composition operator between filters, this is indicated by a
semicolon at the end of filter specification. Also, sequential composition is the
default composition mechanism to compose two or more filter modules at the
same join point. Currently, Composition Filters only offer sequential composition
between filters.

6.2.3.4 Call and Advice Filters

There are filters that execute a method in the base system in order to implement
some functionality, typical examples are before and after filters. To accommodate
these filters, we introduce one filter called Advice and one called Call. Filter
Advice calls a method of the base code, with a context object, see appendix
A for more details about this context object. This context only exposes those
properties that have been explicitly queried using SetVariable filters. Setting
properties will have no effect, unless they are committed to the message using
SetProperty filters. The context it self only provides read-only access to certain
properties, like MatchingTarget. Filter Advice is similar to filters Before and
After. However, in the first section of this chapter, we proposed an extension of

198 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

Composition Filters, where we introduced filter sets for incoming and returning
messages. As such we do not need to distinguish between before and after, we
can unify this to a single filter. This filter has to be placed in the appropriate
filter set.

We immediately return to the filter set after executing the advice. All control
flow changes must be implemented using appropriate control flow filters. Filter
Advice refers to two properties to determine which method it should execute. It
first checks for the existence of filter parameters target and selector, if these do
not exist, the filter queries properties SubstitutionTarget and SubstitutionSelector.
To illustrate the usage of this filter, an example of filter Advice is presented here:

adv : Advice = { shouldTrace => [*.x]tracer.dotrace }

Listing 6.11: Example of filter Advice

The above filter definition states that, if a condition shouldTrace is true, method
dotrace of internal or external object tracer, is called. We now present part of
the implementation of filter Advice. We only show the accepting filter action,
called AdviceAction. The reject action does not execute anything.

[FilterActionAttribute("AdviceAction", FilterActionAttribute.FilterFlowBehavior.Continue,
FilterActionAttribute.MessageSubstitutionBehavior. Original)]

public class AdviceAction : FilterAction
{
public override void Execute(JoinPointContext context)
{
object target = context.GetFilterParameter("target");
string selector = context.GetFilterParameter ("selector");
if (target != null && selector != null)
// Lookup the target and call the selector method with the context
}
else
{
target = context.GetFilterProperty("SubstitutionTarget");
selector = context.GetFilterProperty("SubstitutionSelector");
if (target !'= null && selector != null)
{
// Lookup the target and call the selector method with the context
}
else
{
throw new RuntimeException("Advice Invocation Error");
}
}
}
}

Lines 6 and 7 retrieve filter parameters target and selector. These are filter
parameters that have to be explicitly passed to this filter, thus overriding
properties SubstitutionTarget and SubstitutionSelector. If none of these parameters

P.E.A. Diirr 199




Section 6.2 Atomic Filters

is empty (line 8), we lookup the target. This target object can be a reference
to an internal, external or a class, in the example this is an internal or external
called tracer, and we call a method of this object. In the example a method
called dotrace. This method has a single parameter representing the join point
context. If filter parameters target and selector are empty, we retrieve the target
and selector from properties SubstitutionTarget and SubstitutionSelector (lines 14
and 15). If these are not empty (line 16), we call the designated target, with the
context. If both the filter parameters and properties are empty, we throw an
exception. We could have implemented filter Advice in listing [6.11} using filter
parameters, the result would look like:

1 ‘adv : Advice(target:tracer, selector:"dotrace") = { shouldTrace => [*.x] }

Listing 6.12: Alternative example of filter Advice

The result is equivalent to the implementation in listing

Filter Call redirects the message to the current target and selector. This filter is
similar to filter Dispatch, except now we always return to the filter set. Filter
Call is similar to filter Advice, except that the advice methods are called with
different arguments. Methods called using filter Advice expect a JoinPointContext
object as a parameter, whereas methods that are called using filter Call, get the
current arguments as parameters. We now show an example of a Call filter:

1 | call : Call = { [*.*]delegator.delegate }

Filter call of type Call ensures that all messages are redirected to method delegate
of external delegator. As with filter Advice, we can override the specified target
and selector using the filter parameters. The previous Call filter can be rewritten
to the following equivalent form:

1

call : Call(target: delegator, selector:"delegate") = { [*.*] }

We now map the previously described filters to the resource model, as shown in
tables and

Filters SetTarget and SetSelector are shorthand forms for
SetProperty(property:target,propertyl:SubstitutionTarget) and
SetProperty(property:selector, propertyl:SubstitutionSelector), respectively. Impli-
citly querying the target and selector using the matching expressions in filter
expressions is still possible. As previously mentioned, matching on either target
or selector results in a read operation on the target or selector.

We have not included filter SetVariable in tables [6.4] and [6.5] Variables are not
resources in our model, since the scope of variables is limited to a filtermodule.

200 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

Tabel 6.4: Effect of the proposed filters - Part 1

[ Filter [[ Sender | Server [ Target | Selector
SetProperty(..., property:sender) read
SetProperty (property:sender, ...) write
SetProperty(..., property:server) read
SetProperty (property:server, ...) write
SetProperty(..., property:target) read
SetProperty (property:target, ...) write
SetTarget write
SetProperty(..., property:selector) read
SetProperty (property:selector, ...) write
SetSelector write

Tabel 6.5: Effect of the proposed filters - Part 2

Filter Arguments
Value Flow

Return ‘ Control ‘

SetProperty(..., property:args) read
SetProperty(property:args, ...) write
SetProperty(..., property:retval) read
SetProperty (property:retval, ...) write
Return
Exit

Advice
Call

return
exit

P.E.A. Diirr 201



Section 6.2 Atomic Filters

Since the design choice has been made to assume that the implementation of a
filtermodule itself is correct, there is no need to reason about variables, hence to
model variables as properties.

Tables [6.4) and [6.5] show that each filter can be specified by a single operation.
Filters Call and Advice neither affect the properties of the message, nor the
control flow, as all properties can only be manipulated or queried using the
appropriate filters. Section [6.2.4.2] discussion the motivation behind this.

6.2.4 Discussion
6.2.4.1 Filter Action versus Filter
Until now, we only presented atomic filters. Filters can be mapped to filter

actions. For completeness, we show all filters with their corresponding accept
and reject actions, in table [6.6]

Tabel 6.6: The new filters

[ Filter “ Accept Filter Action [ Reject Filter Action
SetProperty SetPropertyAction NopAction
SetVariable SetVariableAction NopAction
SetTarget SetTargetAction NopAction
SetSelector SetSelectorAction NopAction
Return ReturnAction NopAction
Exit ExitAction NopAction
Advice AdviceAction NopAction
Call CallAction NopAction

All filters use filter action NopAction, in case of rejection. This action executes
nothing, and the result is that the next filter is evaluated, if any. This provides
consistent behavior, as opposed to the current filters. Where, for example, filter
Error throws an exception if it rejects.

6.2.4.2 Prescriptive Filters

In order to improve reasoning about filters, we want to guarantee that all
operations on the properties of messages are written explicitly in the filter
expressions. To achieve this, we have to ensure that the filters not only execute
the specified behavior but we also have to prevent manipulations of the properties
in alternative ways. We can only automatically reason about filters in the filter

202 P.E.A. Diirr



NGEUN R

Extending Composition Filters for improved Reasoning Chapter 6

language. We do not analyze the source code of advice and call filters, however
these can be annotated with a semantic annotation that specifies the behavior.
Only filter Advice could potential change the properties of the message in a
non declarative manner. For this filter we have to ensure that all queries on
and changes to the properties of the message are known. This is ensured by
the design and usage of variables and properties. Only variables are directly
accessible in an advice method. To change a property of a message, one first
has to use filter SetVariable. Next one must use filter Advice that manipulates
a variable, variables are accessible through the context object. Finally, filter
SetProperty is used to set the property to the changed variable. Setting read-only
properties properties within the filters will yield an error.

6.2.4.3 Expressiveness
We have created atomic filters and filter actions. To proof that this is indeed

correct we now implement the current filters using the new atomic filters.

Dispatch Filter
Filter Dispatch can be created using filter Call followed by filter Return.

Consider the following example:

disp : Dispatch = { [*.foo] delegator.newfoo }

This can be translated in the following atomic filters:

f1 : Call = { [*.foo] delegator.newfoo };
£2 : Return = { [*.foo] delegator.newfoo }

Send Filter
Filter Send can be created using two SetProperty filters and filter Call followed
by filter Return.

This can be translated to the following atomic filters:

f1 : SetProperty (property:sender, propertyl:server) = { [*.foo] delegator.newfoo };
£2 : SetProperty (property:server, propertyl:target) = { [*.foo] delegator.newfoo };
£3 : Call() = { [*.foo] delegator.newfoo };

f4 : Return() = { [*.foo] delegator.newfoo }

Error Filter

Filter Error can be created using filter Advice and filter Exit. Filter Advice is
responsible for throwing the required exception. Filter Exit is not really needed,
as it is never reached at run time, since the exception prevents this. However,

P.E.A. Diirr 203




Section 6.2 Atomic Filters

from a reasoning perspective it is desired to explicitly mention that the filter set
is no longer evaluated.

Consider the following example:

1 |err : Error = { !isContractValid => [*.*] }

This can be translated to the following atomic filters:

1 |f1 : Advice = { isContractValid => [*.*] };
2 |1£f2 : Exit = { isContractValid => [*.x] }

Substitution Filter
Filter substitution can be created using filters SetTarget, SetSelector.

Let us consider the following example:

1 | subs : Substitution = { [*.fool main.bar }

This can be translated to the following atomic filters:

1 |£f1 : SetTarget = { [*.foo] main.bar };
£f2 : SetSelector = { [*.foo] main.bar }

Meta Filter

The functionality of filter Meta has mostly been superseded by filters Before and
After. As such most meta filters can be rewritten to a combination of Advice and
control flow manipulation filters. Meta filters can also introduce concurrency
in the filter set, for example executing the advice in parallel with the filter set
evaluation. As previously mentioned, we do not consider concurrency here. This
functionality can be added by creating an appropriate filter type that introduces
this concurrency.

Before Filter
Filter Before is equivalent to an Advice filter that is located in either InputFilters
or OutputFilters, see section

Consider the following example:

1 | inputfilters
2 bef : Before = { [*.*] checker.checkArguments }

This can be translated in the following atomic filter:

inputfilters
2 f1 : Advice = { [*.*] checker.checkArguments }

) =

204 P.E.A. Diirr



[\V]

W N =

"

Extending Composition Filters for improved Reasoning Chapter 6

After Filter
Filter After is equivalent to an Advice filter that is located in either InputReturn-
Filters or OutputReturnFilters, see section

Consider the following example:

inputfilters
aft : After = { [*.*] checker.checkReturnValue }

This can be translated in the following atomic filter:

inputreturnfilters
£1 : Advice = { [*.*] checker.checkReturnValue }

TracingIn Filter

We show how one can rewrite filter Tracingln using four atomic filters. These
filters are: three SetVariable filters and a single Advice filter. The first three
filters ensure that the target, selector and arguments are accessible in the advice
method of the fourth filter.

Consider the following example:

inputfilters
tracingIn : TracingIn = { shouldTrace => [*.x] tracer.traceln }

This can be translated in the following atomic filters:

inputfilters
f1 : SetVariable(variable:!thetarget, property:target) = { shouldTrace => [*.*] };
£2 : SetVariable(variable:!theselector, property:selector) = { shouldTrace => [*.*] };
£3 : SetVariable(variable: !theargs, property:arguments) = { shouldTrace => [*.*] };
f4 : Advice(target:tracer, selector:"traceln", tracetarget:!thetarget,
traceselector:!theselector, args:!theargs) = { shouldTrace => [*.x] }

Listing 6.13: Tracingln Filter using atomic filters

The four filters in listing all use the same condition, matching and substitu-
tion pattern, in this case: shouldTrace => [+.*]. This redundancy is addressed in
section

TracingOut Filter

We now show how to implement filter TracingOut using five atomic filters. These
filters are: four SetVariable filters and a single Advice filter. The first four filters
ensure that the target, selector, arguments and return value are accessible in the
advice method of the fifth filter.

Consider the following example:

inputfilters
tracingOut : TracingOut = { shouldTrace => [*.*] tracer.traceOut }

P.E.A. Diirr 205




U W =

~

[

w N

Y U

Section 6.2 Atomic Filters

This can be translated in the following atomic filters:

inputreturnfilters
f1 : SetVariable(variable:!thetarget, property:target) = { shouldTrace => [*.*] };
£2 : SetVariable(variable:!theselector, property:selector) = { shouldTrace => [*.*] };
£3 : SetVariable(variable: !theargs, property:arguments) = { shouldTrace => [*.*] };
f4 : SetVariable(variable:!retval, property:returnvalue) = { shouldTrace => [*.*] };
f5 : Advice(target:tracer, selector:"traceOut", tracetarget:!thetarget,
traceselector: !theselector, args:!theargs, retval:!retval) = { shouldTrace => [*.*] }

Listing 6.14: TracingOut Filter using atomic filters

Alternatively, we can use the substitution pattern to define which advice method
to executed. In such a case we remove the specific target and selector from the
filter parameter list of filter f5, the result is as follows:

inputreturnfilters
f1 : SetVariable(variable:!thetarget, property:target) = { shouldTrace => [x.*] };
£2 : SetVariable(variable:!theselector, property:selector) = { shouldTrace => [*.*] };
£3 : SetVariable(variable:!theargs, property:arguments) = { shouldTrace => [*.x] };
f4 : SetVariable(variable:!retval, property:returnvalue) = { shouldTrace => [*.x] };
5 : Advice(tracetarget:!thetarget, traceselector:!theselector, args:!theargs, retval:!
retval) = { shouldTrace => [*.x] tracer.traceOut}

In recent years many other filters have been proposed. For example Wait,
Realtime, Atomic Dispatch and Multiple Dispatch. We have not included these
filters since they impact the filter processing dramatically or require virtual
machine support, and are not supported by any of the current implementations.

6.2.4.4 Substitution Behavior of Filters

In the original filters the substitution behavior differed from filter to filter. For
example, a substitution expression in a Dispatch filter, ensures that if the filter
matches, we dispatch the message to the specified target and selector. However,
the substitution expression in filters Before and After only indicate which method
should be executed. Once the control flow is returned to the filter set, we still
have the original target and selector. In the new design, one has to explicitly
substitute the target and selector, using filters SetTarget and SetSelector or the
equivalent SetProperty filters. By default, the original target and selector is used,
after executing the filter action.

6.2.4.5 Replicated filter expressions

As illustrated by the translation of filters Tracingln and TracingOut, the newly
introduced atomic filter result in replicated filter expressions. We have to specify

206 P.E.A. Diirr




Extending Composition Filters for improved Reasoning Chapter 6

the same matching pattern in every filter which we translate to. To address this
issue we propose a new extension to the Composition Filters language called
Filter Composition. This enables declarative composition of filters and filter
actions. Section elaborates on this.

6.2.4.6 Key Characteristics

We summarize the key characteristics:

e Atomic filters that accommodates all common operations on the properties
of a message.

e Atomic filters that encapsulates all common operations on the control flow.

e The introduction of variables as a way to enforce the prescriptive behavior
of the filters, and a lightweight mechanism for sharing information between
filters.

e Substitution expressions are not executed by default, only using filters
SetTarget and SetSelector or the equivalent SetProperty filters.

e Variables are scoped within a filter module. The scope of properties depend
on the specific kind of properties, but most properties are scoped with a
thread.

6.2.4.7 Generality of the approach

The proposed atomic filters are Composition Filters specific. However, the func-
tionality that most of these filters implement is not. Almost all aspect-oriented
programming languages offer a means to query and manipulate properties of
the message, or allow changing the control flow. Creating atomic advices for
aspect-oriented programming languages not only enables easier constructing of
more complex advices from these atomic advices, but also improves reasoning of
an aspect-oriented programming language. Atomic advices can then be combi-
ned into an aspect library, for everyone to use and compose. The atomic filters
presented in this chapter serve as a step towards reusable advice libraries. The
next section details how one can construct filters from these advice libraries,
using a declarative language.

P.E.A. Diirr 207



W N =

[S1R

Section 6.3 Filter Composition Language

6.3 Filter Composition Language

The previous section presented a set of atomic filters and showed how we can
construct more complex filters from this set. Currently, Composition Filters does
not offer a declarative way to compose these complex filters, only through the
use of filter sets in filter modules. Also, section [6.2.4.5] discussed that the usage
of the new atomic filters resulted in replicated filter expressions. In this section
we introduce a new language extension to Composition Filters that enables the
declarative composition of filters. First, consider the following example from the
previous section:

tracingOut : TracingOut = { shouldTrace => [*.*] tracer.traceOut }

Listing 6.15: TracingOut Filter

We translated this into the following sequence of canonical filters:

f1 : SetVariable(variable:!thetarget, property:target) = { shouldTrace => [x.*] };

f2 : SetVariable(variable:!theselector, property:selector) = { shouldTrace => [*.*] };

£3 : SetVariable(variable:!theargs, property:arguments) = { shouldTrace => [*.x] };

f4 : SetVariable(variable:!retval, property:returnvalue) = { shouldTrace => [*.*] };

5 : Advice(target:tracer, selector:"traceQut", thetarget:!thetarget, theselector:!
theselector, args:!theargs, retval:!retval) = { shouldTrace => [*.x] }

Listing 6.16: TracingOut Filter using Atomic Filters

This expresses a complex filter in five atomic filters. However, this introduces
the problem that the same matching pattern, in this case shouldrrace => [+.#]1, has
to be repeated five times. We would like to specify this pattern only once. This
replication is inherent to using a set of (smaller) atomic filters.

To prevent repetitive filter expression specifications, we propose a filter com-
position language. This language enables declarative composition of composite
filters using a sequence of other filters or using accept and reject filter actions.

We use the composite pattern [GHIV95] to illustrate the filter composition
language. Figure [6.5] shows the instantiated composite pattern for our language.

Figure defines one abstract super class, called Filter. This class has two
properties, a name and a list of FilterExpressions, with the appropriate get and
set methods. This class is sub classed to either class CompositeFilter or class
LeafFilter. Class CompositeFilter has a list of filters that it is composed of. There
has to be at least one filter in this list. Class LeafFilter has two actions associated
with it, either an accept action or a reject action. Each leaf filter has to have
these two actions.

208 P.E.A. Diirr




[V

N

Extending Composition Filters for improved Reasoning Chapter 6

<abstract> Filter FilterExpression
filters g | name : String 0 0..* | ConditionPattern
getName(): String filter MatchingPattern
setName(String_) : void expressions SubstitutionPattern
1.%
CompositeFilter [ LeafFilter ]
H getFilters(): List<Filter>
addFilter(Filter) : void acceptAction rejectAction
FilterAction

name : String
getName(): String

setName(String-) : void

Figuur 6.5: Class diagram of new filter structure

6.3.1 Semantics

There are two ways to create a filter, either as a sequential composition of other
filters or as a composition of two filter actions.

6.3.1.1 Leaf Filters

We can construct a filter through the composition of two filter actions. For
example, consider the construction of filter SetProperty from filter actions Set-
PropertyAction and NopAction:

compositions
{
compose SetProperty of acceptaction SetPropertyAction and rejectaction NopAction;

}

This creates a new filter called SetProperty using two filter actions. If this filter
accepts, filter action SetPropertyAction is executed. If this filter rejects, filter
action NopAction is executed.

P.E.A. Diirr 209




B W N =

~

[\

Section 6.3 Filter Composition Language

6.3.1.2 Composite Filters

We can expand an occurrence of the composite filter to the specified sequence of
filters. All filter parameters that are specified in the super filter are passed to
all filters in the sequence. Also, all filters inherit the condition, matching and
substitution patterns from the super filter.

Consider the following definition of filter TracingOut:

compositions
{
compose TracingOut of filters: SetVariable(variable:!thetarget, property:target),
SetVariable(variable: !theselector, property:selector),
SetVariable(variable: !theargs, property:arguments),
SetVariable(variable: !retval, property:returnvalue),
Advice(target:"tracer", selector:"traceQut", tracetarget:!thetarget, traceselector:!
theselector, args:!theargs, retval:!retval);

Section [6.2.4.3] discussed the details of filter TracingOut. Once we have defined
filter TracingOut we can use this filter in either InputReturnFilter or OutputReturn-
Filter sets. The following specification states that all messages should be traced
if condition shouldTrace is true:

inputreturnfilters
tracingOut : TracingOut (tracefile:"trace.log") = { shouldTrace => [*.*] tracer.trace }

This filter will be translated into the following sequence of filters:

inputreturnfilters

f1 : SetVariable(tracefile:"trace.log", variable:!thetarget, property:target) = {
shouldTrace => [*.*] tracer.trace };

f2 : SetVariable(tracefile:"trace.log", variable:!theselector, property:selector) = {
shouldTrace => [*.*] tracer.trace };

£3 : SetVariable(tracefile:"trace.log", variable:!theargs, property:arguments) = {
shouldTrace => [*.*] tracer.trace };

f4 : SetVariable(tracefile:"trace.log", variable:!retval, property:returnvalue) = {
shouldTrace => [*.*] tracer.trace };

5 : Advice(tracefile:"trace.log", tracetarget:!thetarget, traceselector:!theselector,
args:!theargs, retval:!retval) = { shouldTrace => [*.x] tracer.trace }

All of the filters have the same condition, matching and substitution pattern.
Also, all filters have an filter parameter, called tracefile, in the parameter list.
Filter parameters that are specified in the composite filter are propagated to all
sub filters.

210 P.E.A. Diirr




1

Extending Composition Filters for improved Reasoning Chapter 6

6.3.2 Constraints

We now explain the requirements of each CompositionSpecifier. We can create
two types of filters, either a composite filter or a leaf filter. In case of a leaf filter,
a sentence in the grammar would look like:

compose FILTER_NAME of acceptaction ACCEPTING_FILTER_ACTION and rejectaction
REJECTING_FILTER_ACTION;

The elements in this sentence are:

FILTER NAME : the name of the filter we are defining.

ACCEPTING _FILTER_ACTION : the name of the filter action that is
executed if this filter accepts.

REJECTING FILTER _ACTION : the name of the filter action that is
executed if this filter rejects.

There are some constraints on these elements:

FILTER NAME : this must be a unique name and not a keyword in the
language.

ACCEPTING FILTER ACTION : this must be the fully qualified name
of a subclass of class FilterAction. This must be an existing class.

REJECTING FILTER ACTION : similar to the accepting action, this
must be the fully qualified name of a subclass of class FilterAction. This
must be an existing class.

The compiler can enforce all these constraints. Only if all the constraints are
met, can we use this filter.

In case of a composite filter, a sentence in the grammar would look like:

compose FILTER_NAME of filters FILTER_1, FILTER_2, ... ,FILTER_N ;

The elements in this sentence are:

FILTER _NAME : the name of the filter we are defining.
FILTER 1...FILTER N : the name of the filter that is part of this filter
definition.

Again, there are some constraints on these elements:

FILTER NAME : this must be a unique name and not be a keyword in the
language.

Filter * : this filter must be present in the system after inspecting all sources,
including Compose* concerns.

P.E.A. Diirr 211




29
30
31

Section 6.3 Filter Composition Language

The compiler can enforce all these constraints. A filter can only be used if all the
constraints are met. We have chosen here to only use a sequential composition
operator: ‘,‘. One can imagine other composition operator, e.g. a parallel

operation: ‘.

We now present an example that uses the new language to create two new filters.

6.3.3 An example

Consider the four, respectively five filters, in listings [6.13] and [6.14] we can now
create a single Tracingln and TracingOut filter using these four, respectively five
filters.

concern TracingConcern

{
filtermodule TracingModule
{
externals
tracer : TracingLib.Tracer = TracingLib.Tracer.Instance;
conditions
shouldTrace : tracer.shouldTrace;
inputfilters
tracingIn : TracingIn = { shouldTrace => [*.*] tracer.traceln }
inputreturnfilters
tracingOut : TracingOut = { shouldTrace => [*.*] tracer.traceOut }
}
compositions
{
compose TracingIn of filters:
SetVariable(variable: !thetarget, property:target),
SetVariable(variable: !theselector, property:selector),
SetVariable(variable: !theargs, property:arguments),
Advice(target:"tracer", selector:"traceOut", tracetarget:!thetarget,
traceselector: !theselector, args:!theargs);
compose TracingOut of filters:
SetVariable(variable: !thetarget, property:target),
SetVariable(variable: !theselector, property:selector),
SetVariable(variable: !theargs, property:arguments),
SetVariable(variable: !retval, property:returnvalue),
Advice(target:"tracer", selector:"traceQut", tracetarget:!thetarget,
traceselector: !theselector, args:!theargs, retval:!retval);
}
¥

Listing 6.17: TracingOut Filter using Canonical Set

Section presents an example of the filter composition language using filter
actions.

212 P.E.A. Diirr




CUR W N R

~

Extending Composition Filters for improved Reasoning Chapter 6

6.3.4 Discussion
6.3.4.1 Bootstrapping Filters

We can now define filters as a composition of either a sequence of other filters or
of two filter actions. As such we can create the atomic filters in the Composition
Filters language itself. We can define concern AtomicFilters as shown in listing
0. [ &)

concern CanonicalFilters
{
compositions
{
compose SetProperty of acceptaction SetPropertyAction and rejectaction NopAction;
compose SetVariable of acceptaction SetVariableAction and rejectaction NopAction;
compose SetTarget of acceptaction SetTargetAction and rejectaction NopAction;
compose SetSelector of acceptaction SetSelectorAction and rejectaction NopAction;
compose Return of acceptaction ReturnAction and rejectaction NopAction;
compose Exit of acceptaction ExitAction and rejectaction NopAction;
compose Advice of acceptaction AdviceAction and rejectaction NopAction;
compose Call of acceptaction CallAction and rejectaction NopAction;

Listing 6.18: Concern CanonicalFilters

In addition, we can create the predefined filters, as discussed in section [6.2.4.3

concern OriginalFilters
{
compositions
{
compose Dispatch of filters Call, Return;
compose Send of filters SetProperty (property:sender, propertyl:server),
SetProperty (property:server, propertyl:target), Call Return;
compose Error of filters Advice, Exit;
compose Substitution of filters SetTarget, SetSelector;
compose Before of filters Advice;
compose After of filters Advice;

Listing 6.19: Concern OriginalFilters

6.3.4.2 Propagation of Filter Expressions

The filter developer has to be aware while creating such composite filters that
the condition, matching and substitution patterns are propagated to the filters
in the composite filters. For the condition and matching pattern this is not a
real problem, as in most case, the developer wants to execute all filters under

P.E.A. Diirr 213




10

Section 6.3 Filter Composition Language

the same conditions and for the same set of messages. However, the substitution
expression can pose a problem. Imagine the case where a filter substitutes the
target or selector halfway in the filter set. In such a case, the developer might
only execute the filters before this substitute filter, since filters after this filter
might not match the modified message anymore. Also, in case the developer
uses two Call filters to call two different methods, he or she can no longer use
the substitution expression. In this case he or she has to use filter parameters to
achieve this.

For example, consider composed filter TracingOut: tracingOut : TracingOut = {
shouldTrace => [*.*] tracer.traceOut }. We see that the decomposition of this filter is:

f1 : SetVariable(variable:!thetarget, property:target) =
{ shouldTrace => [*.*] tracer.tracer.traceOut };
£2 : SetVariable(variable:!theselector, property:selector) =
{ shouldTrace => [*.*] tracer.tracer.traceQut };
£3 : SetVariable(variable:!theargs, property:arguments) =
{ shouldTrace => [*.*] tracer.tracer.traceOut };
f4 : SetVariable(variable:!retval, property:returnvalue) =
{ shouldTrace => [*.x] tracer.tracer.traceQut };
£5 : Advice(tracetarget:!thetarget, traceselector:!theselector, args:!theargs,
retval:!retval) = { shouldTrace => [*.*] tracer.traceOut }

Listing 6.20: Decomposed Filter TracingOut

Here each filter has the same filter expression: shouldTrace => [*.*] tracer.tracelut.
In this case this is not a problem as the substitution expression is ignored by all
filters except filter Advice and there is no explicit substitute filter. This may not
always be the case, one has to be aware of this when defining composed filters.

Also, the example is not entirely the same as the original single filter implemen-
tation. We now check condition shouldTrace for each filter. If this condition
changes during the evaluation of these filters, some part of the filters may accept
while other reject. This might have unintended effects. One way to solve this is
to use the original assumption of Composition Filters. This assumption states
that the conditions are not changed during the evaluation of the filter set. A
snapshot of all conditions is taken at the start of each of the four filter sets.
This prevents this issue, however the condition is still checked multiple times, as
opposed to a single filter implementation.

6.3.4.3 Related Work

There are some aspect-oriented programming languages that offer features that
enable the building of aspects libraries. One example is to use an abstract
aspects and pointcut. The user of the aspect, instantiates the aspect and fills in

214 P.E.A. Diirr




Extending Composition Filters for improved Reasoning Chapter 6

the pointcut. However, this construct does not enable composition of advices
from other advices. This construct is convenient for building aspect libraries.
An example of an aspect library is the Spring framework [Fra] that contains an
aspect library which contains aspects like Caching, Exception Handling, Logging
and Transactions.

The hyperspaces approach developed by IBM Watson Research Center [TOHS05],
also provides a composition language. The hyperspaces approach has evolved
to Concern Manipulation Environment [IBM|. Hyperspaces assume a fully
symmetric model for composition. One defines hyperslices that are a set of
conventional modules, written in any formalism. Hyperslices are intended to
encapsulate concerns in dimensions other than the dominant dimension. One
can then define hypermodules that are a set of hyperslices, together with a
composition rule that specifies how the hyperslices must be composed to form a
single, new hyperslice that combines the hyperslices. This is similar to the way
one can compose filters from other filters. However in our composition language,
the composition rules are limited to sequential composition of other filters or of
two filter actions.

6.3.4.4 Generality

The extension we proposed here is unique for Composition Filters and other
AOP languages. To our knowledge, there is no other AOP language which offers
a declarative way of creating complex filters from other filters and filter actions,
or complex advices from other advices. In languages like AspectJ, one can
only compose advices using shared join points or using standard object-oriented
techniques like method calls. However, this is by no means declarative and does
not provide a reusable entity. Composition Filters offers a set of atomic filters,
this set in combination with the proposed filter composition language, enables
building reusable aspect libraries.

6.4 Conclusions

This chapter proposed three contributions to the Composition Filters model.
For each of these contributions, we explained the problem in detail, proposed a
solution and discussed the limitations of the proposal.

Filter Sets: We proposed the separation of what behavior is to be executed
and when that behavior is to be executed. This separation was not fully existent
in Composition Filters. We showed how the current filters can be mapped to

P.E.A. Diirr 215



Section 6.4 Conclusions

the new model, as well as the requirements and impact on other parts of the
Composition Filters language. Especially parametrization of filter modules and
an extension of the filter module ordering language, are required to implement
this extension.

We proposed the introduction of two additional filter sets, called inputreturnfilter
and outputreturnfilters, that filter on the return of messages. These are similar to
filter sets inputfilters and outputfilters, that filter on the incoming and outgoing
messages. Effectively, separating what behavior is to be executed and when that
behavior is to be executed. We unified the matching model for the four filter
sets. All condition, matching and substitution expressions in returning filters are
evaluated on the return of messages. Finally, we proposed an extension to the
filter module ordering language, to enable the declaration of different orderings
of filter modules for incoming and returning message.

Atomic Filters: We also proposed atomic filters. Atomic filters can be used to
build complex filters or advices. These filters specify in a declarative and explicit
manner the precise actions of filters, such that they are easier to understand and
to reason (automatically) about and have well defined semantics. The atomic
filters were derived from the analysis of the behavior of filters conducted in
chapter 5] We also proofed that we could decompose the current filters into a
sequence of atomic filters.

We introduced one filter SetProperty(...) that is able to manipulate the pro-
perties of a message. Next we introduce the notion of variables and filter
SetVariable(. .. ), as a lightweight mechanism for sharing state between the filters
in the filter set and advice methods. These advice methods can be called using
either Call or Advice filters. We also introduced two filters that explicitly affect
the control flow within the filter set, i.e. filter Return and Ezit. We verified
that these filters were indeed atomic, using the resource-operation model and by
expressing the original filters as a sequence of atomic filters. The introduction of
these atomic filters aids in a better understanding of the filters, and can pave
the way to create truly reusable and composable filter or advice libraries.

Filter Composition Language: To enable the declarative composition of
filters and to address the replication filter expressions, we introduced a novel
filter composition language. This language enables the declarative composition
of complex filters from either a sequence of filters or from two filter actions. We
showed that one could compose the current and new atomic filters using the
language.

The contributions of this chapter are:

e A separation between what behavior is executed from when this behavior

216 P.E.A. Diirr



Extending Composition Filters for improved Reasoning Chapter 6

is executed. This is currently encapsulated in the filter definitions, and
thus hinders reasoning.

e Atomic filters for querying and manipulating properties of a message or
control flow. These filters can be used to create other (more complex)
filters. This also increases reasoning, since the semantics of filters are no
longer hidden inside the filter type.

e A declarative language for composing filters from filter actions or a sequence
of other filters, in order to create complex filter and advice libraries.

All three contributions together create a more explicit and declarative model
that supports much more (automated) reasoning about the behavior of aspects
and contribute to the formal semantics of Composition Filters.

The extensions to the Composition Filters model proposed in this chapter have
not been implemented. We consider this as a topic for future work.

P.E.A. Diirr 217



Section 6.4 Conclusions

218 P.E.A. Diirr



Conclusions and
Contributions

In chapter [I} we presented a table that provides an overview of the structure of

thesis. We now use the same table to summarize the solutions presented in this
thesis (see table [7.1]).

Tabel 7.1: Structure of this thesis

[ Language

Problem Solution [ Chap. ]
Object-Oriented Crosscutting Concerns Aspect-Oriented E]
and Imperative Programming
Aspect-Oriented How to introduce Experiences in introducing E]
AOP in Industry? AOP at ASML
Aspect-Oriented Does AOP reduce the An Assessment of an Aspect-
Software Development Effort? based Approach to Tracing
Aspect-Oriented Behavioral Conflicts Behavioral Conflict 4] &
among Aspects Detection Tools 5
Composition Filters Limitations of Automated Improved Composition 6
Reasoning Filters Design

P.E.A. Diirr

219



Section 7.2 Experiences in introducing AOP at ASML

7.1 Experiences in introducing AOP at ASML

In the Ideals project, we conducted two case studies for transferring an aspect-
oriented solution to ASML. These case studies were concerned with two distinct
systems, which had widely different development methods. Chapter [2| reports on
our experience introducing AOP at ASML. That chapter also presents a process
that consists of several steps that aim at providing a solution fitting into the
context of the company. This context consists of the programming language,
design methods, software development process, etc. Understanding this context
is in our view imperative for a successful adoption of AOP. Knowing the context
also helps in better expressing the benefits and drawbacks of the solution. Finally,
we have to elicit and address key worries, before an aspect-oriented solution can
be transferred.

The proposed process does not guarantee the acceptance of an aspect-oriented
solution, as one casestudy demonstrated. However, it provides guidelines to
create the optimal conditions for technology transfer. One of the described
casestudies resulted in transferring the proposed technology and prototype to
the company. Parts of the chapter have been published in [DGBT06].

7.2 A Controlled Experiment for the Assessment
of Aspects

The goal of chapter [3]is to assess whether aspect-oriented programming reduces
the development effort of programs that include of crosscutting concerns. Chapter
presents a controlled experiment for the assessment of an aspect-base approach
to tracing. Tracing is sometimes dismissed as a trivial aspect. However, section
shows that this is certainly not the case in the actual realization of tracing at
ASML. Additionally, this “simple” aspect can serve as an excellent driver to adopt
AOP, as also suggested by Colyer et. al. [CC04]. Aspects can be used to address
a wide range of crosscutting concerns, but the benefits of adopting AOP are
not as obvious for heterogeneous or more complex concerns, in comparison with
homogeneous concerns like tracing and profiling. These more “straightforward”
aspects should not be overlooked, but rather be embraced as effective examples
for introducing AOP in industry.

This thesis provides the design of a controlled experiment that can be used to
quantify the benefits of AOP in other organizations. The design can easily be
adopted for other aspects, other base code, and other scenarios.

220 P.E.A. Diirr



Conclusions and Contributions Chapter 7

We conducted the experiment with 20 ASML developers. The developers had to
execute five simple tracing-related change scenarios twice. First, the developers
had to implement the scenarios manually. After wards the subjects had to
implement the scenarios in a different program using an aspect-oriented approach
to tracing (using an AOP language called WeaveC'). Section offers a detailed
discussion of validity threats and how we have tried to reduce validity threats
through careful design of the experiment.

The results from this experiment show that, overall, the subjects were able
to execute the scenarios 6% faster using the AOP solution. More important
however, was the reduction in severity of errors when using the AOP solution
by 77%. Concluding, in the experiment, a substantial reduction of errors was
achieved when using AOP, with even slightly less effort.

Section [3.5] shows the results of a survey which was conducted amongst 26 users
of WeaveC. The results from this survey confirm that the users “experience” the
benefits of AOP.

The contributions of this chapter are:

e A detailed discussion of a real-world aspect, namely Tracing. Although
this is usually considered trivial, we show that this aspect is complex. In
addition, aspect tracing can serve as a key driver for introducing AOP,
because it provides a lot of advantages typically in many places.

e A design of a controlled experiment that can be used to quantify the
benefits of using an aspect-based approach to tracing in an industrial
setting.

e The results of a controlled experiment with 20 professional software de-
velopers, using an aspect-based approach to tracing. The results show
that overall, the subjects were able to execute the scenario 6% faster and
introduced 77% less (severe) errors.

The design and results of the experiment are in principle specific to tracing,
WeaveC and ASML: it is not scientifically justifiable to generalize the results.
However, as we discuss in section there are many indications that this
experiment would yield similar results for other concerns, base and aspect
languages and organizations.

In conclusion, we believe that the results are a clear indication that AOP can
help to reduce the development costs of software, both in terms of effort and
error reduction.

P.E.A. Diirr 221



Section 7.4 Behavioral Conflict Detection Tools

7.3 Behavioral Conflict Detection Tools

In chapters [4] and [5], we present the problem of behavioral conflicts among
aspects. We explain the problem of behavioral conflicts using an example that
we encountered at ASML, this illustrates the relevance of the problem. We
scoped our work using a discussion about composition conflicts. Our scope is to
detect both specific and generic behavioral conflicts between aspects at shared
join points.

The contributions of these chapters are:

e A novel approach for detecting behavioral conflicts, based on an abstraction
mechanism of advice behavior in terms of resources and operations. This
mechanism has several advantages:

— It allows for expressing behavior (and conflicts) without involving
(needless) implementation-level details.

— It allows to express not only generic, or universal, conflicts, but also
domain- and application-specific conflicts.

— It reduces the computational complexity of the conflict detection
analysis.

e A concrete and detailed application of the approach for detecting behavioral
conflicts in Composition Filters.

e An analysis of possible behavioral conflicts among filters in Composition
Filters. This analysis can also be reused for detecting behavioral conflicts
in other AOP approaches.

e An novel technique for detecting behavioral conflicts at runtime, adopting
our resource-based approach.

We have demonstrated that behavioral conflicts are important to address, as
illustrated by an example from ASML and other work in this area. The imple-
mentation of our approach in Compose* demonstrates that behavioral conflict
detection in practice is feasible. The implementation also demonstrates that a
carefully designed language with declarative features, increases the ability to
automated reasoning about the (composition of) behavior of aspects.

The current and earlier versions of the conflict detection approach have been
published in [DSBA05|, [DBA06]| and [DBAQ7a]. The proposed runtime extension
has been published in [DBAOTD].

222 P.E.A. Diirr



Conclusions and Contributions Chapter 7

7.4 Improved Composition Filters Design

Chapter [6] proposes three contributions to the Composition Filters model. These
three contributions address limitations on the ability to automatically reason
about filters. For each of these contributions, we explained the problem in detail,
proposed a solution and discussed the limitations of the proposal.

We proposed the separation of what behavior is to be executed and when that
behavior is to be executed. This separation did not fully exist in Composition
Filters. We have shown how the current filters can be mapped to the new model,
as well as the requirements and impact on other parts of the Composition Filters
language. Especially parametrization of filter modules and an extension of the
filter module ordering language are required to implement this extension.

We also proposed atomic filters. Atomic filters can be used to build more
complex filters or advices. These filters specify in a declarative and explicit
manner the precise actions of filters, such that these actions and filters are easier
to understand and to reason (automatically) about. The atomic filters was
derived from the analysis of the behavior of filters conducted in chapter 5| The
introduction of atomic filters contributes to a better understanding of the filters
and to the formal semantics of Composition Filters. The filters can be used for
creating reusable and composable filter or advice libraries. We also showed that
we can decompose the current filters into a sequence of atomic filters.

Finally, we presented a new filter composition language. This language enables
the declarative composition of complex filters from the atomic filters. One cannot
only compose filters using filter actions, but also compose filters from (a sequence
of) other filters. The current filters can be defined as a composition of the new
atomic filters.

The contributions of this chapter are:

e An improvement of the Composition Filters model, which separates what
behavior is executed from when this behavior is executed, thus improving
the ability to reason.

e A proposal for atomic filters which can be used for querying and manipu-
lating properties of a message or control flow. These filters can be used to
create other (more complex) filters. This also improves reasoning, since a
part of the semantics is made explicit.

e A newly proposed declarative language for composing filters from filter
actions or a sequence of other filters, to create complex filters and advice
libraries.

P.E.A. Diirr 223



Section 7.4 Improved Composition Filters Design

All three contributions together create a more explicit and declarative model
that supports (automated) reasoning about the behavior of aspects. Using the
proposed extensions we can build complex and reusable aspect libraries.

224 P.E.A. Diirr



Samenvatting

Aspect-georiénteerde software ontwikkeling is geintroduceerd als een oplossing
om de modulariteit van software te verbeteren, wanneer deze crosscutting functio-
naliteit bevat. In tegenstelling tot object-georiénteerde of procedurele technieken,
is aspect-georiénteerd programeren (AOP) nog niet op grote schaal toegepast in
de praktijk. In deze dissertatie onderzoeken we de toepasbaarheid van AOP in
de praktijk en stellen een nieuwe aanpak voor om conflicten in het gedrag tussen
aspecten te detecteren.

We beschrijven onze ervaring met het overdragen van een aspect-georiénteerde
oplossing naar een bedrijf genaamd ASML (Advanced Semi-conductor Material
Lithography). We onderzoeken de criteria om zo’n oplossing te accepteren. Dit
doen we gebaseerd op twee case-studies die we bij ASML hebben uitgevoerd.
We laten een proces zien dat onder andere de voordelen van AOP laat zien en
eventuele zorgen van de industriéle partners expliciet maakt en aanpakt.

We hebben een gecontroleerd experiment uitgevoerd om te bepalen wat de
voor en nadelen zijn van een aspect-gedrienteerde implementatie van tracing.
Twintig ontwikkelaars van ASML hebben deelgenomen aan het experiment,
deze twintig ontwikkelaars moesten 5 simpele onderhoudsactiviteiten uitvoeren.
De resultaten van het experiment laten zien dat, vergeleken met de originele
procedurele implementatie, bij de aspect georiénteerde oplossing de ontwikkeltijd
met gemiddeld 6% is gereduceerd en het effect van fouten met gemiddeld 77% is
gereduceerd. Voor een deel van de ontwikkel scenario’s hebben we een statistisch

P.E.A. Diirr 225



Samenvatting

significant resultaat op een betrouwbaarheidsinterval van 95% gehaald.

Het zogenaamde aspect interferentie probleem kan gezien worden als een van de
belangrijkste belemmeringen om AOP te accepteren in de industrie. Aspecten
kunnen onafhankelijk van elkaar ontwikkeld worden en zich afzonderlijk correct
gedragen. Echter, door verwachte of onverwachte compositie van aspecten
kan ongewenst gedrag naar voren komen. In deze dissertatie behandelen we
het probleem van gedrag conflicten tussen aspecten op het zelfde punt in het
programma. We illustreren dit soort conflicten aan de hand van een voorbeeld
gebaseerd op aspecten bij ASML. We tonen een aanpak om conflicten in het
gedrag tussen aspecten te detecteren. Deze aanpak is gebaseerd op een nieuwe
abstractie van het gedrag van aspecten in termen van (gedeelde) entiteiten en
acties op deze entiteiten. Deze abstractie stelt ons in staat om het complexe
gedrag van aspecten op een simpele manier uit te drukken, die bruikbaar is voor
automatische conflict detectie. De aanpak behelst conflict-detectie regels die niet
alleen generieke conflicten kunnen detecteren maar ook gebruikt kunnen worden
om meer specifieke conflicten te detecteren.

Onze aanpak voor de detectie van conflicten in het gedrag is generiek voor
AOP talen, in deze dissertatie laten we de toepasbaarheid van onze aanpak zien
voor een specifiecke AOP taal, genaamd Composition Filters. De toepassing
op Composition Filters laat zien dat het gebruik van een declaratieve taal kan
worden benut voor automatische conflict detectie. We geven een gedetailleerd
overzicht van het analyseproces en geven aan welke informatie er nodig is van
de aspect ontwikkelaar om de analyse te kunnen uitvoeren. We bespreken ook
wanneer statische analyse niet voldoende is en hoe we dynamische conflict detectie
kunnen uitvoeren. Deze dynamische conflict detectie gebruikt de resultaten van
de statische analyse om op een efficiénte manier dynamische conflict detectie
mogelijk te maken.

Tot slot stellen we drie verbeteringen van Composition Filters voor om nog
beter automatisch en manueel te kunnen redeneren over de filters. De eerste
verbetering scheidt welk gedrag wordt uitgevoerd van wanneer dit gedrag wordt
uitgevoerd. Ten tweede introduceren we filters die gebruikt kunnen worden om
meer complexe filters te bouwen. De semantiek van deze filters is eenduidig gedefi-
nieerd. De introductie van deze filters heeft duidelijke voordelen om automatisch
te kunnen redeneren, echter resulteert dit wel in het herhaaldelijk specificeren
van meerdere filters. Om dit op te lossen, introduceren we een derde verbetering
die ontwikkelaars in staat stelt om op een declaratieve manier (complexe) filters
te maken van andere filters, door middel van een filter compositie taal.

226 P.E.A. Durr



Bibliography

[ABV92]

[ASM]
[Asp]

[ATSS]

[BAOS]

[BCOO]

[BCMO5)

M. Aksit, L. Bergmans, and S. Vural. An Object-Oriented
Language-Database Integration Model: The Composition-Filters
Approach. In O. Lehrmann Madsen, editor, Proc. 7th European
Conf. Object-Oriented Programming, pages 372-395. Springer-
Verlag Lecture Notes in Computer Science, 1992. [0]

ASML. ASML. http://www.asml.com.

Aspect] project.
http://www.eclipse.org/aspectj/.

M. Aksit and A. Tripathi. Data Abstraction Mechanisms in
SINA /st. In Proceedings of the conference Object-Oriented Systems,
Languages and Applications, volume 23 of ACM Sigplan Notices,
pages 267-275, 1988. [J]

L. Bergmans and M. Aksit. Principles and Design Rationale of
Composition Filters. In Filman et al. [FECA05|, pages 63-95. E[,
33

C. Y. Baldwin and K. B. Clark. Design Rules - The Power of
Modularity, volume 1. MIT Press, March 2000. [74]

D. Balzarotti, A. Castaldo, and M. Monga. Slicing AspectJ Woven
Code. In FOAL ’05: The 4th Workshop on Foundations of Aspect-
Oriented Languages, Chicago, USA, March, 14 2005.

P.E.A. Diirr

227



Bibliography

[BCMS03]

[Ber66]

[BFOG|

[BvDDT07]

[BvDTO6]

[BvDVETO05]

[cCT9]

[cCo4]

[CGPYY|

[CKLMOS]

[CLO2]

R. Bodkin, A. Colyer, J. Memmert, and A. Schmidmeier, edi-
tors. AOSD Workshop on Commercialization of AOSD Technology,

March 2003. A4 [73]

A. J. Bernstein. Program Analysis for Parallel Processing. IEEE
Trans. on Electronic Computers, EC-15:757-762, 1966.

R. Bodkin and J. Furlong. Gathering Feedback on User Behaviour
using AspectJ. In Proceedings of the Industrial Track of the fifth In-
ternational Conference on Aspect-Oriented Software Development,

2006. [ [73]

M. Bruntink, A. van Deursen, M. D’Hondt, and T. Tourwé. Simple
Crosscutting Concerns Are Not So Simple — Analysing Variability
in Large-scale Idioms-based Implementations. In Proceedings of
the Sixzth International Conference on Aspect-Oriented Software
Development (AOSD’07), pages 199-211. ACM Press, March 2007.

28 [

M. Bruntink, A. van Deursen, and T. Tourwé. Discovering Faults
in Idiom-Based Exception Handling. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE’06), pages
242-251. ACM Press, 2006. [ [19]

M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. On
the Use of Clone Detection for Identifying Cross Cutting Concern
Code. IEEE Transactions on Software Engineering, 31(10):804-818,
2005.

T. D. Cook and D. T. Campbell. Quasi-Experimentation: Design
and Analysis Issues for Field Settings. Houghton Mifflin Company,
1979.

A. Colyer and A. Clement. Large-scale AOSD for middleware. In
Lieberherr [Lie04], pages 56-65.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
MIT Press: Cambridge, 1999. [153]

C. Clifton, S. Katz, G. T. Leavens, and M. Mezini, editors. FOAL:
Foundations Of Aspect-Oriented Languages, March 2008. [232]

C. Clifton and G. T. Leavens. Observers and Assistants: A Proposal
for Modular Aspect-Oriented Reasoning. In Ron Cytron and

228

P.E.A. Durr



Bibliography

[CLLOG|

[CSF+06]

[Daw91]

[DBAOS5]

[DBAOG]|

[DBAO7a]

[DBAO7b]

[DBTOS]

[DFS02]

Gary T. Leavens, editors, FOAL 2002: Foundations of Aspect-
Oriented Languages (AOSD-2002), pages 33—44, March 2002.

C. Clifton, R. Lammel, and G. Leavens, editors. FOAL: Founda-
tions Of Aspect-Oriented Languages, March 2006.

N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, T. Batista,
and C. Lucena. Composing Design Patterns: A Scalability Study
of Aspect-Oriented Programming. In AOSD ’06: Proceedings
of the 5th international conference on Aspect-oriented software
development, pages 109-121, New York, NY, USA, 2006. ACM. [74]
(ol

J. Dawes. The VDM-SL reference guide. Pitmann, 1991.

P. Durr, L. Bergmans, and M. Aksit. A Formal Model for SECRET.
Technical report, University of Twente, 2005. [[33]

P. Durr, L. Bergmans, and M. Aksit. Reasoning about Semantic
Conflicts between Aspects. In R.Chitchyan, J. Fabry, L. Bergmans,
A. Nedos, and A. Rensink, editors, Proceedings of ADI’06 Aspect,
Dependencies, and Interactions Workshop, pages 10-18. Lancaster

University, Lancaster University, Jul 2006.

P. Durr, L. Bergmans, and M. Aksit. Detecting Behavioral Conflicts
among Crosscutting Concerns. In van Engelen and Voeten [vEV07].

71 222

P. Durr, L. Bergmans, and M. Aksit. Static and Dynamic De-
tection of Behavioral Conflicts between Aspects. In O. Sokolsky
and S Tasiran, editors, Proceedings of the 7th Workshop on Run-
time Verification, number 4839 in LNCS, pages 38-50, Vancouver,
Canada, March 2007. Springer Verlag.

P. Durr, L. Bergmans, and B. Tekinerdogan. Semantics of Archi-
tectural Aspects. Milestone Document M6.17, AOSD Network of

Excellence, February 2008.

R. Douence, P. Fradet, and M. Siidholt. A Framework for the
Detection and Resolution of Aspect Interactions. In Generative
Programming and Component Engineering: ACM SIGPLAN/SIG-
SOFT Conference, GPCFE 2002, Lecture Notes in Computer Sci-
ence, Pittsburgh, US, October,6 2002. Springer-Verglag. [92]

P.E.A. Durr

229



Bibliography

[DFS04]

[DFS05

[DGB*06]

[Dij82]

[Doo06]

[dRO7]

[DSBAO5]

[EMK*06]

[Eval

[FECA05]

[FGRO7]

R. Douence, P. Fradet, and M. Siidholt. Composition, Reuse and
Interaction Analysis of Stateful Aspects. In Lieberherr [Lie04],

pages 141-150. [I69]

R. Douence, P. Fradet, and M. Siidholt. Trace-Based Aspects. In
Filman et al. [FECAOQ5], pages 201-217. [166]

P. Durr, G. Gulesir, L. Bergmans, M. Aksit, and R. van Engelen.
Applying AOP in an Industrial Context. In Workshop on Best
Practices in Applying Aspect-Oriented Software Development, Mar

2006. [45}, A7) 220

E. Dijkstra. On the Role of Scientific Thought. In Selected writings
on Computing: A Personal Perspective, pages 60—66. Springer-
Verlag, 1982. [7]

D. Doornenbal. Analysis and Redesign of the Compose* Language.
Master’s thesis, University of Twente, November 2006. [I8]]

A. de Roo. Towards More Robust Advice: Message Flow Analy-
sis for Composition Filters and its Application. Master’s thesis,

University of Twente, March 2007. [I38] [141] [I55} [I57]

P. Durr, T. Staijen, L. Bergmans, and M. Aksit. Reasoning about
Semantic Conflicts between Aspects. In EIWAS ’05: The 2nd
FEuropean Interactive Workshop on Aspects in Software, Brussel,

Belgium, September, 1-2 2005. [T10] [I71] 222]

M. Eichberg, M. Mezini, S. Kloppenburg, K. Ostermann, and
B. Rank. Integrating and Scheduling an Open Set of Static Analy-
ses. In Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE Computer
Science, 2006.

J. Evain. CECIL. http://www.mono-project.com/Cecil.

R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, editors. Aspect-
Oriented Software Development. Addison-Wesley, Boston, 2005.

227, 230] 239

F. Filho, A. Garcia, and C. Rubira. Extracting Error Handling
to Aspects: A Cookbook. In Proceedings of the 23rd IEEE Inter-
national Conference on Software Maintenance. IEEE, Oct 2007.
B4

230

P.E.A. Durr



Bibliography

[Fral

[GBF*07]

[GHIV95]

|GI04]

[GKO6]

[GKO7]

[Gra)

[GSE+07]

[GSF+05]

[Hav05]

Spring Framework. Spring framework.
http://www.springframework.org/.

P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Garcia,
N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, and
A. Rashid. On the Impact of Aspectual Decompositions on Design
Stability: An Empirical Study. In Erik Ernst, editor, Proceedings
of the 21st European Conference on Object-Oriented Programming,
volume 4609 of Lecture Notes in Computer Science, pages 176-200.
Springer, 2007. [36]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
elements of reusable object-oriented software. Addison Wesley, 1995.

74 208

The Open Group and IEEE. Regular expressions. The Open Group
Base Specifications, IEEE Std 1003.1, 1(6), 2004.

M. Goldman and S. Katz. Modular Generic Verification of LTL
Properties for Aspects. In Clifton et al. [CLLO6|, pages 11-19.

M. Goldman and S. Katz. MAVEN: Modular Aspect Verification.
In O. Grumberg and M. Huth, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 4424 /2007 of
LNCS, pages 308-322. Springer Berlin / Heidelberg, 2007.

GrammaTech. CodeSurfer. http://www.grammatech.com/.
1109

A. Garcia, S. Soares, M. Eaddy, M. Bartsch, and M. Aksit. Informal
Workshop Report on Assessment of Aspect-Oriented Technologies.
Technical report, AOSD, 2007. [44]

A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena,
and A. Modularizing Design Patterns with Aspects: a Quantita-
tive Study. In AOSD ’05: Proceedings of the 4th international
conference on Aspect-oriented software development, pages 3—14,
New York, NY, USA, 2005. ACM.

W. Havinga. Designating Join Points in Composestar - a predicate-
based superimposition language for Compose*. Master’s thesis,
University of Twente, May 2005.

P.E.A. Durr

231



Bibliography

[HDO1]

[IBM]

[IDE]

[IM97]

[Jon90]

[Jon92]

[Kat93]

[Kat06]

[KFGO4|

[KG99]

[KKOS]

[KMS0]

J. Hatcliff and M. Dwyer. Using the Bandera Tool Set to Model-
Check Properties of Concurrent Java Software. In CONCUR '01:
Proceedings of the 12th International Conference on Concurrency

Theory, pages 39-58, London, UK, 2001. Springer-Verlag. [166] [I6§|

IBM Research. Concern Manipulation Environment.
http://www.research.ibm.com/cme/index.html.

IDEALS. IDEALS project page.
http://www.esi.nl/site/projects/ideals/ .

J. Jazequel and B. Meyer. Design by contract: the lessons of ariane.
The Computer Journal, 30(1):129-130, January 1997.

C. Jones. Systematic Software Development using VDM, Second
Edition. Prentice Hall, 1990.

C. Jones. VDM Specification Language. ISO publications,
1992. Document N-246(1-9), BSI IST/5/-/19 and ISO/IEC
JTC1/5C22/WG19, December 1992.

S. Katz. A Superimposition Control Construct for Distributed
Systems. ACM Trans. Program. Lang. Syst., 15(2):337-356, 1993.
90

S. Katz. Aspect Categories and Classes of Temporal Properties.
In Transactions on Aspect-Oriented Software Development, 3880,
pages 106-134. LNCS, 2006.

S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying Aspect
Advice Modularly. In SIGSOFT ’04/FSE-12: Proceedings of the
12th ACM SIGSOFT twelfth international symposium on Founda-
tions of software engineering, pages 137-146, New York, NY, USA,
2004. ACM Press.

S. Katz and J. Gil. Aspects and Superimpositions. In Proceedings
of the Workshop on Object-Oriented Technology, pages 308-309,
London, UK, 1999. Springer-Verlag. [90]

E. Katz and S. Katz. Incremental Analysis of Interference Among

Aspects. In Clifton et al. [CKLMOS§|, pages 28-38.

D. Kapur and S. Mandayam. Expressiveness of the Operation Set
of a Data Abstraction. In POPL ’80: Proceedings of the 7th ACM

232

P.E.A. Durr



Bibliography

SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 139-153, New York, NY, USA, 1980. ACM Press.

[KPPT02| B. Kitchenham, S. Pfleeger, M. Pickard, P. Jones, and D. Hoaglin
J. Emam J. Rosenberg. Preliminairy Guidelines for Empirical
Research in Software Engineering. IEEE Transactions on Software
Engineering, 28(8):721-734, March 2002.

[Lad06] R. Laddad. AOP@Work: Myths about AOP, 2006. http://www-
128.ibm.com/developerworks/java/library /j-aopwork15.

[LB05| C. Lopes and S. Bajracharya. An Analysis of Modularity in Aspect-
Oriented Design. In AOSD ’05: Proceedings of the 4th international

conference on Aspect-oriented software development, pages 15-26,
New York, NY, USA, 2005. ACM. [36] [74]

[Lie04] K. Lieberherr, editor. Proc. 3rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2004). ACM Press, March 2004.

228, 2301

[LMWEF93] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transac-
tions : In Concurrent and Distributed Systems. Morgan Kaufmann,

1993. 05}, [T70]

[Lop97] C. Lopes. D: A Language Framework for Distributed Programming.
PhD thesis, College of Computer Science, Northeastern University,
1997.

[McC76] T. McCabe. A Complexity Measure. IEEE Transactions on
Software Engineering, 2(2):308-320, 1976.

[Mica|] Microsoft. C# LANGUAGE. http://msdn2.microsoft.com/en-
us,/vesharp/aa336809.aspx.

[Micb] Microsoft. MICROSOFT .NET FRAMEWORK.
http://www.microsoft.com/net/.

[Micc] Microsoft. MICROSOFT VISUAL STuDIO.
http://msdn.microsoft.com/en-us/vstudio/default.aspx.

[Micd] Microsoft. MSDN - THE MSBUILD REFERENCE.
http://msdn2.microsoft.com/en-us/library/Ok6kkbsd.aspx.
37

P.E.A. Durr 233



Bibliography

[MKL97] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A Case-Study
for Aspect-Oriented Programming. Technical Report SPL-97-009,
Palo Alto Research Center, 1997. [45] [74]

[MWB99] G. Murphy, R. Walker, and E. Baniassad. Evaluating Emerging
Software Development Technologies: Lessons Learned from Assess-
ing Aspect-oriented Programming. IEEE Transactions on Software
Engineering, 25(4):438-455, 1999.

[Nag05] I. Nagy. On the Design of Aspect-Oriented Composition Models
for Software Evolution. PhD thesis, University of Twente, 2005.

127, [185]

[NBAO5] 1. Nagy, L. Bergmans, and M. Aksit. Composing Aspects at
Shared Join Points. In Proceedings of International Conference
NetObjectDays, NODe2005, Lecture Notes in Computer Science,
Erfurt, Gergmany, 2005. Springer-Verglag. [02] [127]

[NvEvdPO07] I. Nagy, R. van Engelen, and D. van der Ploeg. An overview of
Mirjam and WeaveC. In van Engelen and Voeten [vEVQT].

[0C| University of California. ~ASPECTBROWSER.  http://www-

cse.ucsd.edu/users/wgg/Software/AB/.

[PDS05] R. Pawlak, L. Duchien, and L. Seinturier. CompAr: Ensuring Safe
Around Advice Composition. In Proceedings of Formal Methods
for Open Object-Based Distributed Systems, Athens, Greece, June
2005. I701

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In Proceedings of
the 18th IEEE Symposium Foundations of Computer Sience, pages

46-57, 1977. P8} [153]

[Ren] A. Rensink. GRaphs for Object-Oriented VErification (Groove).
http://groove.sourceforge.net.

[RSB04] M. Rinard, A. Salcianu, and S. Bugrara. A Classification System
and Analysis for Interactions in Aspect-Oriented Programs. In
Foundations of Software Engineering (FOSE). ACM, October 2004.
1]

[S. 04] S. McConnell. Code Complete - 2nd edition. Microsoft Press, 2004.
v

234 P.E.A. Diirr



Bibliography

[SDMEF+06]

[SHH*05

[SPS]

[SRO6]

[Sud97]

[TOHS05]

[Unia)

[Unib]

[VEV07]

[vO06]

[WBM99]

[WBMO5]

M. Segura-Devillechaise, J. Menaud, T. Fritz, N. Loriant,
R. Douence, and M. Sudholt. An Expressive Aspect Language
for System Applications with Arachne. Transactions on Aspect-
Oriented Software Development, 1(1):174-213, March 2006.

D. Sjoberg, J. Hanney, O. Hansen, V. By Kampenes, A. Kara-
hasanovic, N. Liborg, and A. Rekdal. A Survey of Controlled
Experiments in Software Engineering. IEEE Transactions on Soft-
ware Engineering, 31(9):733-753, September 2005.

SPSS. SPSS VERSION 13. FOR WINDOWS.
http://www.spss.com/spss/.

T. Staijen and A. Rensink. A Graph-Transformation-Based Se-
mantics for Analysing Aspect Interference. In Workshop on Graph
Computation Models, Natal, Brazil, 2006. [I166}

T. Sudkamp. Languages and Machines - An Introduction to the
Theory of Computer Science, 2nd edition. Addison-Wesley, 1997.
99

P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N Degrees of
Separation: Multi-Dimensional Separation of Concerns. In Filman
et al. [FECAOQ3S], pages 37-61.

University of Twente. COMPOSE*.

http://composestar.sourceforge.net. |§|,
University of Twente. WEAVEC. http://weavec.sourceforge.net.

R. van Engelen and J. Voeten, editors. IDEALS: Evolvability
of Software-Intensive High-Tech Systems. Embedded Systems
Institute, Eindhoven, 2007. 229] 234]

M. van Oudheusen. Automatic Derivation of Semantic Properties
in .NET. Master’s thesis, University of Twente, August 2006.

R. Walker, E. Baniassad, and G. Murphy. An Initial Assessment of
Aspect-Oriented Programming. In Proc. 21st Int’l Conf. Software
Engineering (ICSE ’99), pages 120-130, 1999.

R. Walker, E. Baniassad, and G. Murphy. An Initial Assessment of
Aspect-Oriented Programming. In Filman et al. [FECAQ5], pages
531-556.

P.E.A. Durr

235



Bibliography

[WHMO7] D. Wiese, U. Hohenstein, and R. Meunier. How to Convince
Industry of AOP. In Proceedings of Industry Track of the 6th Conf.
on Aspect-Oriented Software Development, 2007. [10} [44] [73]

[WRHT00] C. Wohlin, P. Runeson, M. Hérst, M. Ohlsson, B. Regnell, and
A. Wesslen. Ezxperimentation In Software Engineering . Kluwer
Academic Publishers, 2000. [51]

[Xer] Xerox Corporation. The AspectJ Programming Guide.
http://www.eclipse.org/aspectj/doc/released /progguide/index.html.

236 P.E.A. Durr



Appendix A - Join Point
Context API

The interface of class JoinPointContext is:

String : getMatchingTarget() : returns the textual representation of the
target in the matching expression.

String : getMatchingSelector() : returns the textual representation of the
selector in the matching expression.

String : getSubstitutionTarget() : returns the textual representation of the
target in the substitution expression.

String : getSubstitutionSelector() : returns the textual representation of
the selector in the substitution expression.

Object : getFilterParameter(String) : returns the object corresponding
to a key in the map of filter module parameters. This can be used for
retrieving the target, server or sender of a message.

String : getFilterParameter(String) : returns the string corresponding to a
key in the map of filter module parameters. This can be used for retrieving
the selector of a message.

List< Object > : getFilterParameter(String) : returns a list of objects cor-
responding to a key in the map of filter module parameters. This is used
for retrieving the arguments of a message.

P.E.A. Diirr 237



Appendices

void : setFilterParameter(String, Object) : sets an object corresponding
to a key in the map of filter module parameters. This can be used for
setting the target, server or sender of a message.

void : setFilterParameter(String, String) : sets a string corresponding to
a key in the map of filter module parameters. This can be used for setting
the selector of a message.

void : setFilterParameter(String, List< Object >) : sets a list of objects
corresponding to a key in the map of filter module parameters. This can
be used for setting the arguments of a message.

Map< String, Object > : getInternals() : returns a map with tuples repre-
senting the name of an internal and the instantiation of the internal.
Object : getInternal(String) : returns a specific instantiation of an internal,

given the name of that internal.
Map< String, Object > : getExternals() : returns a map with tuples repre-
senting the name of an external and the instantiation of the external.
Object : getExternal(String) : returns a specific instantiation of an external,
given the name of that external.

All entries in the interface are straightforward to understand, except for the
last four entries which provide access to the internals and externals. Note that
properties of the message are only available or can be set, if the appropriate
atomic filters are used, see chapter [6]

238 P.E.A. Durr



18

Appendix B -
Implementation of the
Tracing filter

Listing [1) presents the implementation of filter type TracingFilter.

using Composestar.StarLight.ContextInfo;
using Composestar.StarLight.Filters.FilterTypes;

namespace TracingLib
{
[FilterTypeAttribute("TracingFilter", "TracingInAction", FilterAction.ContinueAction, "
TracingOutAction", FilterAction.ContinueAction)]
public class TracingFilterType : FilterType { }

[FilterActionAttribute("TracingInAction", FilterActionAttribute.FilterFlowBehavior.
Continue, FilterActionAttribute.MessageSubstitutionBehavior.Original)]
public class TracingInAction : FilterAction

{
public override void Execute(JoinPointContext context)
{
// Create the start trace
}
}

[FilterActionAttribute ("TracingOutAction", FilterActionAttribute.FilterFlowBehavior.
Continue, FilterActionAttribute.MessageSubstitutionBehavior.Original)]
public class TracingOutAction : FilterAction

P.E.A. Diirr

239




NN NN NN

DU W N

Appendices

{
public override void Execute(JoinPointContext context)
{
// Create the end trace
}
}

()

Listing 1: Implementation of filter type TracingFilter in C+#

Listing [1] defines three classes:

TracingFilterType (lines 6 to 7): is an empty class that is used by the
Compose™ compiler to determine the available filter types. The compiler
searches for classes which are a subclass of class FilterType. To class
TracingFilterType an annotation, of type FilterTypeAttribute, is attached that
provides the necessary meta information to the compiler. The annotation
has several arguments:

“TracingFilter” : the name of the filter, an aspect developer uses this
name to instantiate the filter type.

“TracingInAction” : reference to the class name of the filter action that
is executed before the join point is executed, if this filter accepts a
message. In this case this refers to class TracinglnAction that is defined
below.

Filter Action.ContinueAction : reference to the class name of the filter
action that is executed before the join point is executed, if this filter
rejects a message. In this case this refers to an class that simply
passes the message to the next filter. If there is no next filter, the
join point is executed.

“TracingOutAction” : reference to the class name of the filter action
that is executed after the join point is executed, if this filter accepts
a message. In this case this refers to class TracingOutAction that is
defined below.

Filter Action.ContinueAction : reference to the class name of the filter
action that is executed after the join point is executed, if this filter
rejects. In this case this refers to an class that simple passes the
message to the next filter. If there is not next filter, the message is
returned to the caller.

TracingInAction (lines 9 to 16): is a class which has to override method
Execute from superclass FilterAction. A call to this method is inserted
at the start of every method in the application. This method has only
a single argument: JoinPointContext. This object provides access to the
properties of the message, e.g. the arguments. Class TracinglnAction has
an annotation attached that provides meta information to the compiler.

240 P.E.A. Diirr



Appendices

The arguments of this annotation are:

“TracingInAction” : the name of this filter action.

FilterActionAttribute.FilterFlowBehavior.Continue : this states
that this action does not alter the control flow through the filter set.

Filter ActionAttribute.MessageSubstitutionBehavior.Original :
this states that this action does not change the target and selector of
the message.

TracingOutAction (lines 18 to 25): similar to the previous action, class Tracin-
gOutAction has an annotation attached that provides meta information to
the compiler. The arguments of this annotation are equal to the previous
filter action, except for the name of the filter action.

P.E.A. Durr 241



Appendices

242 P.E.A. Diirr



Appendix C - Updated

Compose™ Grammar

We extend the grammar of Compose*, to accept the proposed filter composition
language extension, see chapter[f] First we add a non-terminal called Composition
to a concern definition.

(Concern) ::= ‘concern’ (ConcernName)
[ C(FormalConcernParameter-SEQ)*)’|
[‘in’ (PackageReference)| ‘{’
((FulterModule))* [(Superimposition)]
[(Composition)| [(Implementation)] ‘¥’

We introduced non-terminal Composition before non-terminal section Implemen-
tation.

Next we state that there must be at least one non-terminal CompositionSpecifier
inside section Composition.

(Composition) ::= ‘compositions’ ‘{’ ({CompositionSpecifier))+ ‘¥’
This non-terminal starts with the string literal: compositions.

Subsequently, we define non-terminal CompositionSpecifier as follows:

P.E.A. Diirr 243



Appendices

(CompositionSpecifier) ::= ‘compose’ (Name) ‘of’
(‘filters’ (FilterList)) | (‘acceptaction’ (Name) ‘and rejectaction’ (Name))

A CompositionSpecifier must start with the string literal compose followed by
a Name and the string literal of. Next, we either expect string literal filters
followed by non-terminal FilterList. Or, we expect string literal actions followed
by a Name, string literal and and another Name.

Finally, we declare non-terminal FilterList to be a comma separated list of Names.

(FilterList) ::= (Name) ( ‘C (FilterParameterList) ‘)’ )?
(“,” (Name) ( ‘C (FilterParameterList) )’ )? )*

244 P.E.A. Diirr



Titles in the TPA

Dissertation Series since

2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: theoret-
ical and experimental aspects. Faculty
of Mathematics and Natural Sciences,

UL. 2002-01

V. Bos and J.J.T. Kleijn. Formal
Specification and Analysis of Indus-
trial Systems. Faculty of Mathematics
and Computer Science and Faculty of
Mechanical Engineering, TU /e. 2002-
02

T. Kuipers. Techniques for Un-
derstanding Legacy Software Systems.
Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA.

2002-03

S.P. Luttik. Choice Quantification
in Process Algebra. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2002-04

R.J. Willemen. School Timetable
Construction: Algorithms and Com-
plexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-time
and Parametric Systems. Faculty of

Science, Mathematics and Computer
Science, KUN. 2002-06

P.E.A. Diirr

245



IPA Dissertation Series since 2002

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics
and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Sys-
tems. Faculty of Science, Mathematics
and Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information
Filtering: Concepts and Algorithms.
Faculty of Mathematics and Natural
Sciences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Fx-
tensions of Semantical Models. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2002-12

L. Moonen. Ezploring Software Sys-
tems. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2002-13

J.I. van Hemert. Applying FEvo-
lutionary Computation to Constraint
Satisfaction and Data Mining. Faculty
of Mathematics and Natural Sciences,
UL. 2002-14

S. Andova. Probabilistic Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization in
uwCRL. Faculty of Mathematics and
Computer Science, TU /e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2003-01

M. de Jonge. To Reuse or To Be
Reused: Techniques for component
composition and construction. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Representa-
tions. Faculty of Natural Sciences,

Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Net-
works. Faculty of Mathematics and
Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras with
Data and Timing. Faculty of Mathe-
matics and Computer Science, TU /e.
2003-05

S.V. Nedea. Analysis and Simula-
tions of Catalytic Reactions. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2003-06

M.E.M. Lijding. Real-time Schedul-
ing of Tertiary Storage. Faculty of

246

P.E.A. Durr



IPA Dissertation Series since 2002

Electrical Engineering, Mathematics
& Computer Science, UT. 2003-07

H.P. Benz. Casual Multimedia Pro-
cess Annotation — CoMPAs. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata —
A Formal Approach to the Modeling of
Collaboration Between System Com-

ponents. Faculty of Mathematics and
Natural Sciences, UL. 2003-10

D.J.P. Leijen. The A Abroad — A
Functional Approach to Software Com-
ponents. Faculty of Mathematics and
Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance
Ratios for the Differencing Method.
Faculty of Mathematics and Computer
Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive
Theorem Proving. Faculty of Mathe-
matics and Computer Science, TU/e.
2004-02

P. Frisco. Theory of Molecular Com-
puting — Splicing and Membrane sys-
tems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Trans-
lation. Faculty of Mathematics and
Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home FEnvironments.
Faculty of Mathematics and Computer
Science and Faculty of Industrial De-
sign, TU/e. 2004-05

F. Bartels. On Generalised Coin-
duction and Probabilistic Specification
Formats. Faculty of Sciences, Divi-

sion of Mathematics and Computer
Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formal-
ization and Applications. Faculty of
Science, Mathematics and Computer
Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents
in Bargaining Games: An Evolution-
ary Investigation of Fundamentals,
Strategies, and Business Applications.
Faculty of Technology Management,
TU/e. 2004-08

N. Goga. Control and Selection
Techniques for the Automated Test-
ing of Reactive Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms
and Proofs. Faculty of Science, Math-
ematics and Computer Science, RU.
2004-10

P.E.A. Durr

247



IPA Dissertation Series since 2002

A. Loh. Ezxploring Generic Haskell.
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Plan-
ning Algorithms for Car Navigation.
Faculty of Mathematics and Computer
Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed Budgets. Faculty of Math-
ematics and Computer Science, TU/e.
2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Technol-
ogy Management, TU /e. 2004-15

E.O. Dijk. Indoor Ultrasonic Posi-
tion Estimation Using a Single Base
Station. Faculty of Mathematics and
Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifi-
cation and Verified Distribution. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2004-17

M.M. Schrage. Proxima - A
Presentation-oriented — Editor  for
Structured Documents. Faculty of

Mathematics and Computer Science,
UU. 2004-18

E. Eskenazi and A. Fyukov.
Quantitative Prediction of Quality At-
tributes for Component-Based Soft-
ware Architectures. Faculty of Mathe-

matics and Computer Science, TU /e.
2004-19

P.J.L. Cuijpers. Hybrid Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar.
Supervisory Machine Control by
Predictive-Reactive Scheduling. Fac-
ulty of Mechanical Engineering, TU /e.
2004-21

E. Abraham. An  Assertional
Proof System for Multithreaded Java
-Theory and Tool Support- . Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU /e. 2005-
02

C.N. Chong. Ezxperiments in Rights
Control - FExpression and FEnforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applications.

248

P.E.A. Durr



IPA Dissertation Series since 2002

Faculty of Mathematics and Computer
Science, TU /e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach
to Developing Future-Proof System Ar-
chitectures. Faculty of Mathematics
and Computing Sciences, TU /e. 2005-
06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-
10

A.M.L. Liekens. Fwvolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty of
Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifi-
cation of Hybrid Systems using Sim-
ulation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics
and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of

Mathematics and Computer Science,
VUA. 2005-20

P.E.A. Durr

249



IPA Dissertation Series since 2002

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU. 2005-
21

Y. W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Systems.
Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Mathe-
matics and Computer Science and Fac-
ulty of Mechanical Engineering, TU/e.
2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and Ap-
plications. Faculty of Science, Math-
ematics and Computer Science, RU.
2006-06

J. Ketema. Bdéhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics
in tool-assisted wverification of JML
programs. Faculty of Science, Math-
ematics and Computer Science, RU.
2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU /e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nonde-
terministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Eztensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Computer
Science, TU/e. 2006-14

250

P.E.A. Durr



IPA Dissertation Series since 2002

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. FEzpressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Pro-
tocols. Faculty of Mathematics and
Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile
Channels for FEzogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composition.
Faculty of Mathematics and Natural
Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for stream-
ing DSP applications. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Algebra.
Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UVA.
2007-04

L. Brandan Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trcéka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical En-

P.E.A. Durr

251



IPA Dissertation Series since 2002

gineering, Mathematics & Computer
Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Im-
proving the Quality of Modeling: A
Series of Empirical Studies about the
UML. Faculty of Mathematics and
Computer Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
tomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Fac-

252

P.E.A. Durr



IPA Dissertation Series since 2002

ulty of Mechanical Engineering, TU /e.
2008-05

M. Bravenboer. FExercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science, UU.
2008-06

M. Torabi Dashti. Keeping Fuair-
ness Alive: Design and Formal Veri-
fication of Optimistic Fair Exchange
Protocols. Faculty of Sciences, Divi-

sion of Mathematics and Computer
Science, VUA. 2008-07

I.S.M. de Jong. Integration and
Test Strategies for Compler Manufac-
turing Machines. Faculty of Mechani-
cal Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU /e. 2008-10

1.S. Zapreev. Model Checking
Markov Chains: Techniques and Tools.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2008-12

G. Gulesir. FEvolvable Behavior
Specifications Using Context-Sensitive
Wildcards. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of

Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Diirr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

P.E.A. Durr

253



	Introduction
	Crosscutting Concerns
	How to introduce AOP in Industry?
	Does AOP reduce the Software Development Effort?
	Behavioral Conflicts among Aspects
	Limitations of Automated Reasoning

	Experiences in introducing Aspect-Oriented Programming at ASML
	Approach
	Initial Benefits
	Context
	Aspects
	Worries
	Tooling
	Quantified Benefits
	Acceptance

	Aspects in C
	Initial Benefits
	Context
	Aspects
	Worries
	Tooling
	Quantified Benefits
	Acceptance

	Aspects in .NET
	Initial Benefits
	Context
	Aspects
	Worries
	Tooling
	Quantified Benefits
	Acceptance

	Related Work
	Conclusions

	An Assessment of an Aspect-based Approach to Tracing
	Tracing
	Concern Tracing
	Aspect Tracing in WeaveC

	Experiment Setup
	Subjects
	Environment and Tooling
	Treatments
	Objects
	Variables
	Hypotheses

	Experiment Results
	Subjects
	Initial processing
	Development Effort
	Errors
	Verification of the Hypotheses

	Validation
	Survey
	Related Work
	Generalizability of the experiment
	Other concerns
	Other aspect languages
	Other base languages
	Other organizations

	Conclusions

	Behavioral Conflicts among Aspects
	Motivation
	Parameter Checking
	Error Propagation
	An aspect-based design

	Problem Statement
	Other examples of Behavioral Conflicts
	Background and Related Work
	Composition type
	Type of Superimposition
	Type of interaction
	Type of Join Point
	Ordering
	Generality
	Advice specification form

	Approach
	Composition Phase
	Advice Behavior Abstraction Phase
	Conflict Detection Phase

	Application to the ASML example
	Composition Phase
	Advice Behavior Abstraction Phase
	Conflict Detection Phase

	Application to other examples
	Discussion
	Can all behavior be modeled as a sequence of operations?
	Is it applicable to any paradigm or approach?
	Can all behavior be specified?
	Can all conflicting patterns be detected?
	Which types of conflicts can be modeled?
	What is required for and what is the effect of detecting different categories of conflicts?

	Conclusions

	Behavioral Conflict Reasoning applied to Composition Filters
	Motivation
	Composition Filters
	Application of Behavioral Conflict Detection to Composition Filters
	Composition Phase
	Inputs
	Transformation
	Output

	Advice Behavior Abstraction Phase
	Inputs
	Transformation
	Output

	Conflict Detection Phase
	Inputs
	Transformation
	Output

	Discussion
	Generality of the approach and implementation
	Complex behavioral specifications
	Alternative conflict rule specifications
	False positives and false negatives
	Computational complexity
	Output and returning filters
	Conflicts within filter modules

	Runtime conflict detection
	An example conflict: Security vs. Logging
	Limitations of static checking in AOP
	Conflict detection at runtime

	Related Work
	Conclusions

	Extending Composition Filters for improved Reasoning
	Splitting Filter sets
	Initial Tracing Implementation
	An Alternative Tracing Implementation
	Proposal: Distinct Filter Sets
	Discussion

	Atomic Filters
	Delegation Example
	Filter Parametrization
	Proposal: Atomic Filters
	Discussion

	Filter Composition Language
	Semantics
	Constraints
	An example
	Discussion

	Conclusions

	Conclusions and Contributions
	Experiences in introducing AOP at ASML
	A Controlled Experiment for the Assessment of Aspects
	Behavioral Conflict Detection Tools
	Improved Composition Filters Design

	Samenvatting
	Bibliography
	Appendices

