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Abstract 

This thesis presents our work in the area of monitoring distributed software 
applications (DSAs). We produce three main results: (1) a design approach 
for building monitoring systems, (2) a design of a system for MOnitoring 
Distributed Object and Component Communication (MODOCC) behavior 
in middleware-based applications, and (3) a proof-of-concept 
implementation of this system. 

Monitoring execution aspects of DSAs plays an essential role in 
improving their quality in terms of user expectations, performance, and 
reliability. For example, monitoring communication between DSA parts 
produces information used for discovery of errors and their sources, fault 
and performance analysis, and also for balancing the work done by system 
components. 

Designers and programmers often build utility monitoring systems to 
support the testing, and operation and maintenance phases of the lifecycle 
of a DSA product. For this, a monitoring system needs to employ models 
and mechanisms for maintaining a consistent view on DSA execution, and 
when necessary to deliver information about application execution during 
runtime. 

This thesis focuses on monitoring of DSAs built with object and 
component technologies, and in particular on the aspects of object and 
component execution, such as inter-object and inter-component 
interaction. 

The manuscript has the following structure: 
Chapter 1 introduces the area of research, describes in further detail 

our motives for this work, and establishes our goals. 
Chapters 2 and 3 introduce terminology and concepts needed 

throughout the manuscript. 
Chapter 2 presents the basic terminology and fundamental concepts in 

the area of monitoring distributed software applications. 
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Chapter 3 presents an overview of object and component middleware 
technologies. 

Chapter 4 presents and evaluates most relevant existing monitoring 
systems, focusing on systems supporting object and component 
middleware. As a result of this evaluation, we define a set of requirements 
for our monitoring system. 

Chapter 5 describes a design approach for monitoring systems. The 
design approach consists of four stages: Generic Monitoring System (GMS) 
design, GMS specialization, instrumentation design, and monitor design. 

Chapters 6, 7, and 8 follow our design approach in order to produce a 
system for monitoring middleware-based applications. 

Chapter 6 proposes an architecture of a GMS. The GMS addresses only 
generic requirements for monitoring. This chapter also reports on the 
prototype of a GMS that we have built. 

Chapter 7 presents the design of a MODOCC system. The design 
includes a monitoring model for monitoring object and component 
communication, and a design of a middleware instrumentation. This 
chapter also presents the prototype implementation of the instrumentation. 

Chapter 8 presents the design and implementation of a basic monitor 
for visualizing object and component communication. This chapter also 
presents the use of the MODOCC system and the monitor in three 
different monitoring applications. 

Chapter 9 presents a summary of our contributions and discusses 
possible directions for further research. 
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Chapter 1 

1. Introduction 

This thesis addresses the area of monitoring the communication in 
distributed software built using object and component middleware 
technologies. This chapter presents the background and the motivation for 
this work, discusses the problems in the area, defines the scope and the 
objectives, and presents the approach that we follow. The chapter 
concludes with an overview of the thesis structure. 

1.1 Background 

Nowadays, we routinely use computer systems in our environment. 
Personal computers running various software applications assist us in 
repetitive, error-prone and time-consuming tasks, such as personal time 
management, financial bookkeeping and word processing.  

Advances in communication technologies enable computers to interact 
over great distances and thus to common tasks. This led to the development 
of distributed systems consisting of distributed software, computing devices, 
communication devices and underlying communication networks.  

A distributed software application (DSA) represents software that runs 
on a distributed system. DSAs enable the interaction among (potentially 
many) geographically distant users, they allow the utilization and sharing of 
physically remote resources, such as content and services, and (if designed 
properly) they can provide higher availability, performance, and reliability 
compared to centralized systems. Examples of DSAs include file sharing, 
instant messaging, multi-user online gaming, electronic banking, e-mail, 
and the World Wide Web. 

As users become increasingly dependent on DSAs, the quality of these 
DSAs becomes an important issue. For example, failure in a DSA that 
automates some business process involving different organizations, may lead 
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to unfulfilled contractual obligations, loss of money, and in some cases, 
threat to human health and life.  

Industry and the academia have spent a great deal of effort to develop a 
general software manufacturing process, such as the Rational Unified 
Process [JBR99], aimed at optimizing the production of DSAs within strict 
budget and time constraints, and at the same time increasing the degree of 
customer satisfaction. As a result, most contemporary approaches for 
software development follow several general phases: requirements analysis, 
specification, design, implementation, testing and validation, and operation 
and maintenance [Royce87].  

Monitoring the execution of DSAs can play an important role in two of 
these phases: testing and validation, and operation and maintenance. 

During the testing and validation phase, testers execute a DSA in order 
to make conclusions about its runtime behavior [KraWis98]. In this phase, 
monitoring serves as the enabling mechanism for several categories of 
activities [Ward01]:  
– Event inspection – Developers require some useful information about the 

DSA execution, at the moment of the occurrence of some event in the 
behavior of the DSA. For example, in the event of sending a message 
from one DSA part to another, the developer may require inspection of 
the individual parameters of the message; 

– Conformance testing – Developers may require checking whether the 
design of a DSA allows certain selected scenarios of use of a DSA 
prototype. Furthermore, developers may need to discover whether 
certain patterns appear in the behavior of a DSA implementation. For 
example, the implementation may allow transmitting certain types of 
messages in a particular order that the design does not allow; 

– Computation replay – Developers require the re-execution of a previously 
monitored and recorded execution of a DSA in order to reproduce and 
closely examine certain effects of its behavior, e.g., a difficult to 
reproduce fault or a race condition;  

– Distributed breakpoints – A distributed breakpoint has similarity with a 
breakpoint from sequential debugging, however the condition for 
reaching a distributed breakpoint now may require monitoring the 
progress of several concurrent activities within the DSA behavior;  

– Differentiation – Developers may need to compare executions of a DSA, 
for example, to determine how different environment conditions affect 
the DSA execution, or to determine whether fixing a bug has actually 
made any difference (successful fixing); 

– Visual presentation – Visualizing the execution of the DSA deals with 
representing the DSA visually in a way that meets the requirements of 
the testers. Visualization often has to deal with the constraints of human 
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comprehension, such as, number of objects on the canvas, frequency of 
updates, etc. 

The operation and maintenance phase includes various management 
activities on DSAs, which require monitoring of the state, the errors, and 
the performance [SloMo89]. The management of a DSA comprises 
supervising and controlling the system so that it fulfils the requirements of 
both its owners and its users [Slo95]. According to the ISO/OSI 
management standards, management activities include fault management, 
configuration management, accounting management, performance management and 
security management [ISO90][ISO92], each of which depends on information 
collected through monitoring. 

1.2 Software monitoring 

The Merriam-Webster Online Dictionary defines to monitor as “to watch, 
keep track of, or check, usually for a special purpose” [M-W]. Further in 
this text we use the terms “to observe” and “to monitor” interchangeably. 
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We call software monitoring the process of observing various aspects of the 
execution of some monitored application (Figure 1-1). The communication 
between remote application parts constitutes an example of an execution 
aspect that one can monitor in a distributed environment.  

Software designers may not have designed an application with 
monitoring in mind. In order to prepare such an application for 
monitoring, designers instrument the application, e.g., add or change 
something in it or in its execution environment. 

We call the party interested in monitoring the monitoring application. A 
monitoring application involves computer software and may involve human 
operators. A monitoring application requires information about the 
execution of the monitored application for the purpose, for example, of 
testing or management.  

A monitoring system supports the monitoring. In a typical scenario, a 
monitoring system performs measurements on the monitored application, 
packages the results into monitoring data, and presents the monitoring data 
to the monitoring application. 

Figure 1-1 Parties 
involved in 
monitoring 
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1.3 Middleware-based systems 

Designers of different DSAs often have to solve similar tasks, such as how to 
make application parts discover each other in order to communicate, how 
to make their applications work in a heterogeneous environment, or how to 
deal with partial failure. This observation became one of the reasons for the 
appearance of the middleware concept. 

Middleware comprises system software that provides a set of reusable 
common services and network programming mechanisms. Middleware 
resides between the applications and the underlying operating systems, 
network protocol stacks, and hardware [SSRB00]. The middleware 
coordinates the interactions among application parts by providing 
functionality that bridges the gap between software applications and the 
low-level hardware and software [SchSch01].  

Middleware helps developers to increase their productivity by shielding 
them from (potentially) error-prone low-level details of the runtime 
environment. Middleware simplifies the development of DSAs by offering 
high-level programming abstractions conceptually closer to application 
requirements than the low-level programming methods. For example, 
middleware can offer distribution transparency by hiding low level network 
programming into a reusable object-oriented framework for remote 
operation invocations. 

 

DDiissttrriibbuutteedd  ssyysstteemm  rreessoouurrcceess  llaayyeerr  

MMiiddddlleewwaarree  llaayyeerr  

DDiissttrriibbuutteedd ssooffttwwaarree aapppplliiccaattiioonn llaayyeerr 

PPaarrtt  11  PPaarrtt  22  PPaarrtt  nn  ……

 

In a commonly used model of a middleware-based system, we can find one 
or more middleware layers (Figure 1-2) between the DSA layer and the 
layer of distributed system resources [SchSch01]. For simplicity we 
consider only one middleware layer. The middleware layer provides to the 
DSA layer high-level distributed programming interfaces, e.g., for invoking 
operations on remote objects, or for accessing common domain-
independent services, such as directory, transaction, and security services. 
The middleware layer takes care of any details on behalf of the DSA about 
the allocation, scheduling and coordination of resources in the distributed 

Figure 1-2 
Middleware-based 
system 
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resources layer, in order to hide the peculiarities of individual operating 
systems, and help eliminate many tedious, error-prone and non-portable 
aspects of low-level OS programming. 

Over the past decade, various middleware technologies have addressed 
the complexities associated with the development of DSAs. We consider 
two of these technologies: object middleware and component middleware.  

Object middleware 

Professionals have widely applied the Object-Oriented (OO) approach to 
handle complexity in software design. The OO design emphasizes on 
abstraction, encapsulation, modularity and inheritance. These principles 
provide reusability of system behavior, support for incremental software 
development and systematic system decomposition. We can perceive an 
object-oriented computer program as a collection of objects, which 
communicate with each other to achieve a common goal [Booch91]. 

The application of the OO approach to distributed environments 
resulted in the advent of object middleware. In a distributed environment, 
inter-object communication may cross the boundaries of a single computer. 
The middleware takes care of communication-related issues, such as the 
synchronization between communicating parties, reliability of 
communication, heterogeneity issues of different hardware and software 
involved in the communication, and interoperability between different 
vendor products. CORBA [CORBA] and DCOM [DCOM] constitute two 
examples of object middleware technology. 

Component middleware 

The industrialization of the software production process led to the 
evolution of general software development into component-based software 
development. Component middleware integrates the middleware concept with 
the concept of component-based software development. We can compare 
components to object types, except that components represent coarse-
grained prefabricated building blocks, which we can use to assemble our 
software applications in a manner similar to electronic circuits and 
mechanical parts [Szy98]. In the recent years, several component 
middleware technologies emerged, such as, COM+[COM+][.NET], EJB 
[EJB] and CORBA Components [CCM][CORBA3]. The companies 
developing these technologies aim to support rapid software development 
from reusable and composable off-the-shelf software components. 
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Further in the text we often use the term “middleware” to refer both to 
object and component middleware technologies. A DSA built using 
middleware technologies we call a middleware-based application. 

1.4 Monitoring of middleware-based applications 

In general, monitoring requires instrumenting the application and/or its 
execution environment. Instrumenting the application allows one to 
monitor the application execution directly. Instrumenting the execution 
environment allows one to monitor application execution indirectly, based 
on the services that the application uses from its environment. The 
middleware and the distributed resources layer comprise the execution 
environment of a middleware-based application. The monitoring system 
can observe execution aspects at each layer of the middleware-based 
system. Figure 1-3 shows a general scenario for monitoring middleware-
based applications. This scenario represents a middleware-based system 
with instrumented layers.  

 MMoonniittoorreedd  
AApppplliiccaattiioonn  

MMoonniittoorriinngg  
SSyysstteemm  

MMoonniittoorriinngg  
AApppplliiccaattiioonn  

MMiiddddlleewwaarree 

DDiissttrriibbuutteedd  
RReessoouurrcceess  

 

The monitoring system communicates with the instrumented components 
in each layer, in order to collect monitoring data and deliver it to the 
monitoring application. Note that we consider any instrumentation code 
necessary for enabling observation of the monitored application as part of 
the monitoring system. 

The instrumentation in the monitored application layer allows 
monitoring of the execution aspects of specific application logic. 
Developers typically build application level instrumentation per application, 
which makes development costs proportional to the number of monitored 
applications. The instrumentation in the middleware layer allows 
monitoring of application execution aspects that rely on services of the 
middleware. Object and component lifecycle, and remote operation 
invocations, constitute two examples of such execution aspects. The 
instrumentation in the distributed resources layer allows monitoring of 
application execution aspects in terms of utilization of low-level resources, 

Figure 1-3 
Monitoring of a 
middleware-based 
application  
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such as, OS processes, network bandwidth, CPU load, etc. Instrumenting 
the middleware or the distributed resources layers makes the 
instrumentation generic to applications built with this middleware, because 
the middleware shields the instrumentation from the applications.  

In a distributed environment, the monitoring application and the 
monitoring system themselves require communication between their 
physically remote parts. Hence, designers of monitoring applications and 
monitoring systems may choose to benefit from the advantages of 
middleware. Figure 1-4 shows a middleware-based refinement of the 
general scenario for monitoring of middleware-based applications 
(presented in Figure 1-3). 
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We categorize the interactions between the different system parts involved 
in monitoring into seven types:  

Figure 1-4 
Middleware-based 
monitoring of 
middleware-based 
applications 

– (A) The parts of the monitoring application interact with each other; 
– (B) The monitoring application interacts with the monitoring system; 
– (C) The parts of the monitoring system interact with each other; 
– (D) The monitoring system interacts with its application level 

instrumentation; 
– (E) The parts of the monitored application interact with each other; 
– (F) The monitoring system interacts with its middleware 

instrumentation; 
– (G) The monitoring system interacts with its distributed resources 

instrumentation. 

This categorization illustrates that using the middleware to build 
monitoring systems combines well with monitoring of middleware-based 
applications. In general, the communication mechanisms in the middleware 
handle interaction types A, B, C, D, E. Interaction types F and G represent 
local interactions, namely between a local agent of the monitoring system 
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and the instrumentation. The monitoring system uses interactions of type C 
for transferring information to remote locations.  

Monitoring communication behavior 

Communication behavior constitutes an essential part of the overall 
behavior of a middleware-based application. The middleware offers a set of 
basic building blocks, such as remote operation invocations, which 
designers use to build the communication behavior of their applications. 
During runtime, the middleware mediates each individual invocation. 
Hence, instrumenting the middleware can make information about 
individual invocations available to the monitoring system and subsequently 
to monitoring applications, such as testing suites and management systems. 
Instrumenting the middleware however, cannot provide information about 
any application-specific relation between individual invocations. Designers 
can obtain this information by instrumenting the application, given they 
have access to its design and/or its implementation source code. 

1.5 Problem statement 

In this section we identify several problems in the area of monitoring. We 
focus on three groups: problems related to monitoring in a distributed 
environment, problems related to monitoring at the middleware layer, and 
problems related to the design of monitoring systems in general. 

1.5.1 Monitoring in distributed systems 

Several basic characteristics of distributed systems give rise to monitoring 
problems: concurrency, hardware clocks, common resources, and 
scalability. 

A typical distributed system allows for physically parallel execution of 
concurrent activities. Monitoring the combined progress of such activities 
may prove difficult because of, for example, the lack of a global hardware 
clock in low cost distributed systems. 

A distributed system may include different operating systems. To reduce 
the cost of a distributed system, organizations often use low cost operating 
systems that do not provide strict mechanisms for scheduling of the 
distributed system resources. DSAs running on such distributed systems 
may compete for a common resource. Since one may consider a monitoring 
system that monitors a DSA as a DSA itself, the sharing of common 
resources in distributed system may cause various performance problems. 
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Distributed systems may change their size dynamically, depending on 
how many different locations participate in the system at any moment. This 
gives rise to scalability issues in monitoring systems that operate on large and 
dynamic distributed systems. 

Below we formulate the following five problems related to monitoring 
of a DSA: 
– Inability to accurately establish temporal relations between observed events. 

Testers require to establish the temporal order among the (occurrence 
of) events representing executed application activities for the purpose 
of, e.g., locating errors in a DSA prototype. The traditional perception 
of absolute global time seems insufficient to reflect the relativistic 
aspects of asynchronous physically distributed systems that suffer from 
noticeable communication delays [Pratt86]. Absolute global time cannot 
support the analysis of temporal relations in low cost distributed systems 
for two main reasons [SchMa94]: (1) the lack of a global hardware 
clock, and (2) the negative architectural impact of centralized 
mechanisms for measuring time – a centralized time server presents a 
single point of failure and a bottleneck for system performance; 

i 

– Inability to establish causal relations between observed events. Reasoning about 
the causal relations among observed events has applications in analysis 
of DSAs, e.g. detecting global conditions necessary for distributed 
breakpoints [CoMa91]. In general, without access to the design of the 
monitored application we cannot make inferences about causality from 
post-execution information. Although the limited causal semantics of 
the “happened-before” relation [Lamp78] seems to provide the basis 
for expressing causal relations between events, the complexity and 
inefficiency of the logical clock mechanisms used to implement this 
relation, discourage the use of logical clocks by designers of monitoring 
systems; 

ii 

– Inconsistent view on application behavior. The measurements performed 
during application runtime, may lead to additional delay (also called 
overhead) in the execution of the monitored application. As a result, the 
monitoring system cannot measure correctly the original application 
behavior because the act of measuring changes the application behavior 
– an effect similar to the “uncertainty principle” from the quantum 
theory [Heis27]. A monitoring system that produces such delay may 
change the behavior of the monitored application so much, that the 
monitoring data obtained from the system does not represent 
consistently the behavior of the original unmonitored application to the 
users of the monitoring system [HeBr89]. By consistency we mean, for 
example, order among observed event occurrences, number of events, 
etc.; 

iii 
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– Undesirable monitored application behavior. The overhead of the monitoring 
system, may lead to undesirable monitored application behavior, such as 
slow application response time. Furthermore, a monitoring system often 
shares the resources of the distributed environment, such as 
communication infrastructure, storage and processing power, with the 
monitored application. In operating systems that do not provide strict 
resources scheduling mechanisms, the monitoring system may deprive 
the monitored application from a limited resource [Shaer98], which as a 
result may produce undesirable behavior. For example, parts of the 
monitored application may fail to communicate with other parts 
(communication timeout), due to the excessive use of communication 
bandwidth by the monitoring system for communicating monitoring 
data among its remote parts; 

iv 

– Scalability. In a large distributed system, the monitored application may 
consist of many application parts that produce monitoring data. 
Furthermore, the monitoring application may have many individual 
consumers of monitoring data (e.g., several instances of some analysis 
software. Transferring (possibly frequently) large amounts of monitoring 
data from many producers to many consumers may lead to performance 
problems in the monitoring system and undesirable application behavior 
in the monitored application [Sam95].  

v 

Observe that problems (iii) and (iv) also apply to the monitoring of software 
applications running on standalone systems. 

1.5.2 Monitoring at the middleware layer 

Monitoring at the middleware layer requires instrumentation of the 
middleware product used to build the monitored application. A middleware 
product may comprise various technologies. Designers who need to create a 
middleware instrumentation may find that this task requires extensive 
knowledge about the middleware’s internal mechanisms, in order to avoid 
exposing to the monitoring application incomplete information about the 
internal state of the middleware.  

A middleware can provide standardized monitoring interfaces to help 
designers develop the instrumentation. In reflective middleware, for example, 
application developers can access some of the middleware internal 
mechanisms through such interfaces, in order to make the middleware 
more configurable to fit different application requirements, and more 
adaptable to meet changing environment or user requirements [Weg03]. 
Current middleware products however, either do not support reflection at 
all, or provide very limited support for it [Blair98i]. 
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We identify the following two problems related to monitoring at the 
middleware layer: 
– Limited support for monitoring of remote interactions at the middleware layer. 

Existing middleware [CORBA][DCOM][EJB] products provide limited 
standardized access to their communication mechanisms. As a 
consequence, monitoring systems [Rack01][KR+00][Logean00] often 
resort to using proprietary interfaces and ad-hoc middleware 
instrumentation to supply the necessary information about the 
distributed interactions of middleware-based applications. Besides the 
risk of exposing incomplete information about the internal middleware 
state, this approach also reduces the flexibility and reusability of a 
monitoring system with different middleware products; 

vi 

– High-costs for middleware instrumentation. Manual instrumentation of the 
middleware can make the software development process expensive and 
error prone. For example, the CORBA middleware uses the Proxy 
pattern [BuMe+96] to provide distribution transparency by generating 
proxy objects for every individual application object type. Instrumenting 
the proxy objects [SMST] allows one to monitor the communication 
between remote application parts. Many application object types (as in a 
large middleware-based DSA) lead to proportionally many proxy objects 
that need instrumentation. Development of tools for automatic 
instrumentation has the potential to reduce instrumentation cost. 

vii 

1.5.3 Design of monitoring systems 

In this section we identify two problems relating to the design of 
monitoring systems in general: 
– High costs for designing monitoring systems. Several design steps seem to 

reappear in the design of existing monitoring systems in one or another 
form, such as: definition of a model of the monitored application 
[Bates85][KQS92][Hof+94][Rack99][BeAb02], design of an 
instrumentation of the monitored application 
[KQS92][LWSB97][LDKK98], and design of monitoring tools 
(applications) [JLSU87][KBTB97][RaLe97][Rait00][Rack01]. 
Reinventing those apparently useful steps can raise the costs for 
development of monitoring systems. Therefore, designers may benefit 
from a design approach that integrates and unifies the important steps 
during the design of monitoring systems. Such methodological support 
would allow designers to reduce development costs and increase the 
quality of their monitoring systems; 

viii 

– Lack of standardized monitoring service and implementation architecture. 
Monitoring systems perform many common monitoring activities 

ix 



24 CHAPTER 1 INTRODUCTION 

[Sam95], such as generation, processing and dissemination of 
monitoring data. Nevertheless, designers often structure their 
monitoring system in a specific way (e.g., [OLT03]), integrating 
common monitoring functions in such a way, that it becomes very 
difficult and expensive to reuse the resulting monitoring system with 
different monitoring and monitored applications. As a consequence, 
designers reinvent the support for common monitoring activities in 
every monitoring system they  design. 

1.6 Scope and objectives 

We set ourselves the overall goal to contribute to the area of monitoring 
DSAs. Below we further limit the scope of our work and define a list of 
concrete objectives that address the problems we identified earlier. 

We limit our work to the monitoring of middleware-based DSAs. We 
consider only object and component middleware. Furthermore, we focus 
on monitoring the aspects of communication behavior of middleware-based 
applications, such as the remote operation invocations among objects or 
among component instances. We aim to support the testing and validation 
phase of DSAs with the results of our work. In this, we limit ourselves to 
providing partial order relations among events observed in the application 
behavior, for the purpose of conformance testing, debugging, and visual 
presentation. We believe that one can use most of our results to support 
application management during the operation and maintenance phase of 
DSAs, although we do not explicitly consider management in this thesis.  

We address the problems identified in section 1.5 with four concrete 
objectives: 
– Develop a design approach for monitoring systems. This approach defines 

important stages in the design of monitoring systems. By following this 
approach, designers reduce the development costs and increase the 
quality of their monitoring systems. This objective addresses problem 
(viii); 

– Propose an architecture for a generic monitoring system. This architecture 
includes the definition of the service of a generic monitoring system and 
a generic software architecture that implements the service. With the 
proposed architecture we aim to increase the reusability, flexibility, and 
scalability of monitoring systems. This objective addresses problems (v) 
and (ix); 

– Define a monitoring model for object and component communication. The model 
uses events to represent operation invocations in middleware-based 
DSAs. The model allows one to analyze temporal and causal relations 
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among the events. The model allows a monitor to provide to the 
monitoring application a consistent view on monitored application 
behavior. This objective addresses problems (i), (ii), and (iii); 

– Develop a middleware instrumentation and an instrumentation approach for 
monitoring object and component communication. The middleware 
instrumentation provides the information necessary to analyze 
communication behavior of a running middleware-based DSA, in the 
terms of the monitoring model for object and component 
communication. The instrumentation alleviates undesirable monitored 
application behavior compared to existing approaches. The 
instrumentation approach includes the design of instrumentation tools 
that automate the process of instrumenting application objects and 
component. This objective addresses problems (iv), (vi), and (vii). 

The first two objectives address problems general to the monitoring of 
DSAs and the design of monitoring systems. The second two objectives 
address problems specific to the monitoring of communication aspects in 
middleware-based DSAs, as well as some of the more general problems. 

Although we have identified the problem of undesirable application 
behavior due to possible competition over common resources in low cost 
operating systems, we shall not address this problem explicitly. A solution 
to this problem requires the investigation of (optimal) deployments of the 
monitoring system, which falls out of the scope of this work. Furthermore, 
we limit our work to monitoring at the level of software (thus we do not 
consider hardware monitoring). Hence, further in the text we use the terms 
“monitoring” and “software monitoring” interchangeably. 

1.7 Approach 

In this section we describe our research approach. We start by presenting a 
fictitious example. We use this example to explain our approach. 

1.7.1 Example: tree monitoring 

Consider the following example:  

Example:  
Managing tree 
growth 

The municipality in town X needs to maintain the power lines above ground 
free from growing vegetation (namely trees). At the same time, the 
municipality does not want to cut vegetation unnecessarily, because the folks 
of town X like their green environment very much. 
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The example describes a typical management task. The municipal worker 
Mr. T1 has the responsibility to solve the management task of maintaining 
tree growth (Figure 1-5). Mr. T knows something about management. He 
decomposes the management task into several management activities: 
gathering information (monitoring) about the managed system, analysis of 
the information, and then controlling the system so that it fulfils its 
purpose. In this case, the managed system consists of the trees in town X. 
To solve the management task, Mr. T has to design a management system 
that performs each of the management activities. We shall concentrate on 
the approach Mr. T follows in the design of the monitoring sub-system. 

 

MMaannaaggeedd  
SSyysstteemm  

MMoonniittoorriinngg  

AAnnaallyyzzee  

CCoonnttrrooll 

 

Mr. T goes to the municipal archive to investigate whether other municipal 
projects have done monitoring. He finds out that although the municipality 
has done projects on monitoring, he cannot reuse most of the results, 
because designers have followed unclear ad hoc approaches specific to every 
particular application. As a consequence, Mr. T has difficulties extracting 
any common issues about monitoring from previous projects. Based on the 
information collected during the visit to the municipal archives, Mr. T 
identifies the requirement that he needs to define his approach as clearly 
and as explicitly as possible, if he wants to allow his colleagues to use his 
results in possible subsequent projects. 

Mr. T decides to define a design approach based on a generalization of his 
observations on how previous projects designed monitoring systems for 
their management tasks. He noticed that designers spent most of their time 
explaining what to monitor, how to interpret measurements, etc. 
Therefore, Mr. T decided that his approach will consist of two steps: (1) 
define a monitoring model that captures and explains all necessary aspects 
of the managed system, and (2) implement that model by identifying 
activities for measuring the model aspects, allocating activities to roles (that 
Mr. T can assign to field workers), and designing the documents required 

Figure 1-5 The 
management 
system for tree 
maintenance 

                                                       
1 Mr.T represents a fictional male character. No offence intended to the female municipal 
workers around the world. 
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for the system to work, e.g. brochures explaining the model, and forms in 
which workers fill in measurements. Mr.T follows his design approach to 
make a monitoring system for tree maintenance.  

Using the project requirements (trim trees when necessary, but not too 
much) and his knowledge about trees Mr. T defines a monitoring model of a 
tree that only takes into account the aspects of a tree that have a relation to 
the task of maintaining its size (Figure 1-6).  

 
CD

H 

Legend

CD – crown diameter

H – height from tree 
base to crown top  

 

The model defines the outline of a tree as a cylinder with only two 
parameters that someone can easily measure using the right instruments – 
crown diameter and tree height.  

Mr. T uses the monitoring model to complete the design of the 
monitoring system: he defines a schedule for measuring trees once a 
month, allocates several municipal field workers to the role of measuring, 
and designs the necessary brochures and forms.  

Below we summarize the important decisions made by Mr. T: 

Figure 1-6 The 
monitoring model of 
a tree developed by 
Mr. T 

– Design approach: Mr.T decided to define a design approach, which 
although simple, allowed Mr. T to structure his approach to designing a 
monitoring system; 

– Monitoring model: Mr. T identified that the definition of a monitoring 
model presents an important step in the design of a monitoring system. 
The model allowed Mr.T to make sure that everybody involved in the 
tree management task understand the tree aspects important to the 
completion of the task. 

1.7.2 Approach to software monitoring 

We consider software monitoring similar to the situation described in the 
example from section 1.7.1. In software monitoring, a design approach 
would enhance the general software design process with concrete steps for 
the design of monitoring systems. A monitoring model defines the aspects 
of application behavior required by the monitoring application.  

Therefore, our approach addresses the goals of our research in the 
following steps: 
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1. Present the concepts and terminology in monitoring, make an overview 
of object and component middleware technologies, and evaluate the 
most relevant existing systems for monitoring object and component 
communication; 

2. Based on the evaluation in the previous step, identify certain problems 
in the area, and use these problems to define requirements for a system 
for monitoring object and component communication. We distinguish 
two groups of requirements: generic – requirements relating to 
problems of monitoring DSAs in general, and specific – requirements 
that relate to problems specific to monitoring middleware-based DSAs; 

3. Propose an approach for the design of monitoring systems. The 
approach consists of four stages. Stage one deals with the design of a 
Generic Monitoring System (GMS). The design of a GMS considers 
generic monitoring functionality, independent from a particular 
monitored or monitoring application. Stage two deals with the 
specialization of a GMS for a particular monitored/monitoring 
application. This step includes the development of a monitoring model. 
Stage three deals with the design of an instrumentation for a particular 
monitored application. Stage four deals with the design of a monitor for 
a particular monitoring application; 

4. Follow stage one of the design approach to build an architecture for a 
GMS. The GMS architecture addresses the generic requirements for 
monitoring identified in step 2; 

5. Follow stages two, three, and four to create a system for monitoring 
object and component communication. In this step we address the 
specific requirements identified in step 2. We define a monitoring 
model for object and component communication, design a middleware 
instrumentation for that model, and design a basic monitor for 
visualization of object and component communication; 

6. To prove our concept, we provide prototype implementations of the 
GMS and the instrumentation for object and component middleware. 
These two constitute the prototype of the Monitoring of Distributed 
Object and Component Communication (MODOCC) system. We also 
implement a prototype of a basic monitor for the MODOCC system; 

7. To validate the usability of our approach, we apply the MODOCC 
system and the basic monitor to three monitoring applications: (a) 
model-based conformance testing of object and component designs, (b) 
monitoring for testing and debugging of component communication for 
DSAs built with the Distributed Software Components (DSC) [BaBa98] 
component middleware, (c) the validation of the Open Service Access 
API implementation of a UMTS Application Platform. 
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1.8 Thesis structure 

We structure the thesis in chapters with dependencies between the 
chapters, as shown on Figure 1-7. 

 

Terminology and 
concepts 

An architecture for a 
generic monitoring 

system 

A system for monitoring 
distributed object and 

component 
communication 

A monitor and 
monitoring 
applications 

Conclusions 

Chapter 2 

A design approach 
for generic 

monitoring systems

Chapter 5 

Chapter 6 
Chapter 7 

Chapter 8 

Chapter 9 

Evaluation of 
monitoring 

systems 

Chapter 4 

Overview of object 
and component 

middleware 

Chapter 3 

Introduction 

Chapter 1 

 

Chapter 2 presents the basic terminology and fundamental concepts in 
monitoring of distributed software. 

Chapter 3 presents an overview of object and component middleware 
technologies. 

In Chapter 4 we present and evaluate several existing monitoring 
systems, focusing on the support for object and component communication 
in a distributed environment. 

Figure 1-7 Thesis 
roadmap 
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Chapter 5 describes a design approach for monitoring systems. The 
approach consists of four stages: GMS design, GMS specialization, 
instrumentation design, and monitor design. 

Chapter 6 proposes an architecture of a GMS. The GMS addresses only 
generic requirements for monitoring. This chapter also reports on our GMS 
prototype. 

Chapter 7 describes the design of an instrumentation for monitoring 
distributed object and component communication for middleware-based 
applications. In this chapter we present a monitoring model, and a design 
of a middleware instrumentation. This chapter also presents the prototype 
implementation of the instrumentation. Together, the prototypes of the 
GMS and the instrumentation form the MODOCC system. 

Chapter 8 presents the design and implementation of a basic monitor 
for visualizing object and component communication. This chapter also 
presents the use of the MODOCC system and the monitor prototype in 
three monitoring applications. 

In Chapter 9 we present our conclusions, list the contributions of our 
work and discuss possible directions for further research. 



 

Chapter 2 

2. Terminology and concepts 

This chapter presents the basic terminology and fundamental concepts in 
monitoring distributed software. The presented material will help designers 
to understand software monitoring and the important characteristics of 
monitoring systems. 

2.1 General discussion 

In Chapter 1 we introduced the notion of monitoring system and its 
supporting role in monitoring. We assume that in general the monitoring 
application and the monitored application may belong to different domains, 
and therefore their designers may use different technologies to build them 
for different platforms. Moreover, the designers of the monitored 
application may develop it without (future) monitoring in mind. Vice versa, 
the designers of the monitoring application may build it independently of a 
particular monitored application. Consequently, the monitoring system 
should bridge any conceptual and technological gaps between the two 
domains in order to allow monitoring. Hence, we deal with two separate 
design concerns: the concern of a particular monitored application domain, and 
the concern of a particular monitoring application domain. 

Furthermore, we notice that a monitoring system often performs 
common functions independent of any specific monitored application and 
monitoring application. Hence, we deal with a third design concern: the 
concern of domain-independent monitoring activities.  

2.1.1 Basic terminology 

We consider separation of concerns a basic principle in software design for 
managing complexity. Using this principle, we decompose the monitoring 
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system into three vertical layers, also called tiers, to deal with the three 
concerns identified above (Figure 2-1). 

 

MMoonniittoorriinngg  
SSuuppppoorrtt  
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MMoonniittoorriinngg  
AApppplliiccaattiioonn  

MMoonniittoorr  
ttiieerr  

IInnssttrruummeennttaattiioonn
ttiieerr  

ttiieerr  ooff  tthhee  
MMSSSS   

The monitor tier represents the monitoring application in the monitoring 
system. The monitor tier contains monitors. For simplicity, we consider 
only one monitor in Figure 2-1. A monitor concentrates the knowledge the 
monitoring system has about a monitoring application. A monitor requests 
and receives monitoring data from the monitored application on behalf of 
the monitoring application. A monitor extracts information from the 
monitoring data, and presents this information to a monitoring application: 
some software application or a human operator. In principle, a monitor may 
observe the execution of multiple monitored applications and a monitored 
application may have multiple monitors.  

The instrumentation tier represents the monitored application in the 
monitoring system. The instrumentation tier contains instrumentations. For 
simplicity, we consider only one instrumentation in Figure 2-1. An 
instrumentation includes all software components added to or modified in 
a monitored application and/or its execution environment, in order to 
prepare that application for monitoring. As such, the instrumentation 
concentrates all conceptual and technological knowledge necessary to 
capture aspects of the monitored application execution required by the 
monitoring application.  

The tier of the monitoring support system (MSS) performs monitoring 
activities independent from both the specific monitoring application 
domain and the monitored application domain. An example of such 
activities constitutes the dissemination of monitoring data in a distributed 
environment, in which the MSS collects monitoring data from the 
instrumentation and delivers it to the monitor. 

Figure 2-1 
Decomposition of 
the monitoring 
system 
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2.1.2 Aspects of a monitoring system 

We structure the rest of the chapter using the following three aspects of a 
monitoring system: 
– Information aspect: We discuss the way designers model the monitored 

application in order to capture requirements for information about 
application execution. We focus on a monitoring model and its role in the 
design of monitoring systems; 

– Functional aspect: We discuss the various monitoring activities performed by 
the components of the monitoring system; 

– Performance aspect: We discuss the overhead of the monitoring system and 
how overhead affects the quality of the information presented to the 
monitoring application by the monitoring system. 

2.2 A monitoring model 

In general, we consider it impractical (and even impossible) for a 
monitoring system to observe and present to its users every aspect of the 
execution of a monitored application. Therefore, the monitoring 
application requires from the monitoring system an abstract model of the 
monitored application. This model may include both structural and 
behavioral aspects. 

A Monitoring Model (MM) of the monitored application represents 
aspects of application execution that the monitoring application finds 
interesting to observe [Hof+94]. Designers use an MM to model individual 
application executions (also called runs). An MM differs from a design 
model in that designers use a design model to model the complete 
application behavior, i.e., all possible executions of an application. The 
resulting application model designers often use as a starting point for 
implementing that application. 

In the scope of our research, we seek to define an MM suitable for 
describing behavioral aspects of the execution of middleware-based 
applications such as object and component communication. In the next 
section we discuss the basic modeling concepts that we use to construct 
such a model. 

2.2.1 Modeling concepts 

An MM models a software application in terms of entities and the behavior of 
these entities. 
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Entities 

The entity concept represents some physical or logical “thing” associated 
with the monitored application. For example, an entity may represent a 
process, an object, or a component. Entities may participate in relations to 
form the structure of the monitored application, e.g., the “association” 
relation between objects, and the “containment” relation between a 
compound component and one of its sub-components.  

Entity behavior 

The behavior of an entity represents the dynamic characteristics of the 
entity during application execution. We consider as dynamic characteristics 
the activities that an entity performs (such as sending a message to another 
entity) and possible relations among those activities (such as the order in 
which an entity performs two activities). 

We distinguish two ways of modeling entity behavior for monitoring: 
status-based and event-based. 

Status-based modeling 

Status-based modeling abstracts from the activities that an entity performs 
and focuses on the information that the entity maintains at discrete 
moments of time. We call this information the status of the entity. Status-
based modeling models activities in a system indirectly, since any changes in 
the status of an entity result from performing activities.   

A status vector represents the status of an entity [FelEr89].  A status 
vector consists of status variables. A status variable represents an individual 
part of the information maintained by an entity. For example, if the entity 
represents an object, a status variable may correspond to an object 
attribute. To monitor a status, the monitoring system generates an instance 
of the status vector by recording the values of the status variables at the 
required moment of time. We call this instance a status report. 

Event-based modeling 

Event-based modeling directly models the activities that an entity performs. 
The event concept represents the successful completion of some activity 
performed by an entity of the monitored application. An event either 
happens, in which case we consider the corresponding activity to have 
completed, or does not happen, in which case we cannot say anything 
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definite about the activity progress except that it did not complete. We call 
this property of an event atomicity. 

An event has three types of attributes: time, address, and information. A 
time attribute (also referred to as “time of occurrence”) represents in some 
way the moment at which the result of the associated activity becomes 
available for use. For example, the value of the computer clock at the 
moment of the event occurrence describes the time of occurrence 
according to this particular clock. An address attribute (also referred to as 
“event source”) represents the place where the result of the activity has 
become available. For example, the IP address of the computer host at 
which the event occurred, can serve as a value of an address attribute for 
that event. An information attribute (also referred to as the “effect” of the 
event) represents the result of the activity. For example, the text of an e-
mail message received by someone can serve as a value for the information 
attribute of the event that represents the successful receiving of that e-mail 
message by its recipient. When an event occurs, the monitoring system 
generates an event report that contains values for each event attribute. The 
monitoring system then sends the event report to interested monitors.  

We introduce the general term monitoring report to denote a status report 
or an event report. 

Relations among events 

Analysis of complex activities, such as a synchronous operation invocation, 
requires the decomposition of each activity into a collection of simpler 
related activities. For such purposes, a monitoring model may model the 
relations among events. 

Relating events allows for reasoning about the distributed computation 
that produced these events [RST91]. Relating events finds application in, 
for example, distributed breakpoints, detection of race conditions, and 
management functions. In load balancing and fault tolerance, for example, 
analyzing the relation among certain events may reveal poorly performing 
software components that a management component needs to migrate to 
another hardware platform in order to reduce system load. 

We categorize relations among events in a monitoring model into 
temporal and causal relations [HSV99].  

Temporal relations 

We usually perceive time as an absolute measure of the progress of everyday 
activities. Temporal relations represent the ability to order events on a 
linear scale according to their time of occurrence. For example, if we use a 
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clock (assuming we have one) having a certain resolution2 to measure the 
time of completion of two activities, we can say one of the following about 
events e1 and e2 that represent these activities: e1 occurred earlier than e2, e2 
occurred earlier than e1, or e1 and e2 (seem to) have occurred at the same time. 
This means that using such a clock we can establish a temporal order among 
all events that we observe. Clocks usually also allow us to measure the 
distance between event occurrences. 

Let E represent the set of all events in an application execution. Let C 
represent some clock in the every day meaning. For simplicity, we assume 
that the accuracy of C suffices to measure correctly the time of occurrence 
of every event in E.  

We define the “temporal precedence” relation EC
ETR ⊂ ×E as = { (eC

ETR 1, 
e2): e1 occurred earlier than e2 according to clock C}. 

Observe that  has irreflexive, asymmetric, and transitive properties, 
hence it defines a strict partial order on E. 

C
ETR

Definition 2-1 
Temporal 
precedence 

Causal relations 

The Merriam-Webster’s online dictionary defines causality as “the relation 
between a cause and its effect or between regularly correlated events or 
phenomena”. Hence, a causal relation defines for an event how its 
occurrence depends on the occurrences of other events.  

In an every-day interpretation, the fact that e1 causes e2, implicates that 
e1 temporally precedes e2. The classical mechanics of the physical world also 
considers this intuitive notion of causality, where the cause precedes its 
effect. This motivates us to make the following definition of a basic 
property of causality: 

A causal relation implies a temporal precedence between the cause and the effect, 
such that the cause occurs earlier than its effect. 

Observe that the opposite does not always hold: the mere fact that events 
occurred in some temporal order, does not imply that these events relate 
causally. We illustrate this by the fallacy “Post hoc, ergo propter hoc”, which we 
traditionally interpret as “after this, therefore because of this” [Giere98]. 
The causality property also gives us the following interesting causal property 
of temporal precedence:  

Definition 2-2 Basic 
property of 
causality 

                                                       
2 We define the resolution of a clock as the smallest unit with which the clock updates its 
value when it advances one step.  
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If e1 does not temporally precede e2 (i.e., according to some clock e2 occurs earlier 
than or at the same time as e1) then e1 could not have caused e2. 

Note that for this property to hold we need to say something about the 
accuracy of the clock used to determine the temporal relation: for e1 that 
have caused e2, the clock accuracy should suffice to determine that e1 
temporally precedes e2. We call such a clock infinitely accurate.  

Given an infinitely accurate clock, the causal property of temporal 
precedence allows us to use temporal precedence to reason about possible 
causal relationship between events (in a single application execution) by 
ruling out the cases in which we consider causal relationship impossible 
because the effect cannot occur earlier than (or at the same time with) its 
cause.  

We define two types of binary causal relationships: realized causality and 
potential causality.  

We consider a relation R⊂ E×E “realized causality” iff for ∀ (e1, e2) ∈R, e1 
definitely causes e2, i.e., e2 could not have occurred if e1 hadn’t occurred. 

Note that according to the basic property of causality and given an infinitely 
accurate clock C, a realized causality relation R ⊆ .  C

ETR
In general, reasoning about causality with the certitude of realized 

causality requires knowledge about the rules by which the application 
operates – i.e., the design of its intended behavior [HSV99]. We provide a 
second definition with a more loose causality condition, because in general, 
the monitoring application may not have access to the design of the 
monitored application. 

We consider a relation R⊂ E×E “potential causality” iff ∀ (e1, e2) ∈R, e1 
may have caused e2. 

Note that we want potential causality to preserve the basic property of 
causality. Therefore, according to the causal property of temporal 
precedence and given an infinitely accurate clock C, a potential causality 

relation R ⊆ . Therefore, we consider  as the biggest possible 
potential causality relation for an application execution (i.e., any pairs 
outside of cannot participate in a potential causality relation according 
to the causal property of temporal precedence). Figure 2-2 illustrates the 
relation between potential causality and temporal precedence. 
Furthermore, a realized causality relation implies a potential causality, 

C
ETR C

ETR

C
ETR

Definition 2-3 
Causal property of 
temporal 
precedence 

Definition 2-4 
Realized causality 

Definition 2-5 
Potential causality 

 

Potential causality 

Temporal precedence 

 

Figure 2-2 The 
relation between 
potential causality 
and temporal 
precedence 
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because the definite cause (realized causality) of some event also represents 
one of all possible candidates for a cause (potential causality) of that event. 

2.2.2 Status-based vs. event-based modeling 

A status-based model of application execution represents the information 
associated with entities by abstracting from any particular activities that 
entities performed to produce that information. In contrast, event-based 
modeling focuses on representing the actual activities performed by entities, 
(possibly) abstracting from some of the information aspects produced by 
activities. Hence, the choice of a modeling technique depends on the 
aspects of application behavior, on which designers of monitoring systems 
want to focus.  

Monitoring distributed object and component communication 
constitutes one of the goals of this thesis. During monitoring we require 
explicit knowledge about the communication-related activities performed 
by objects and components of the monitored application, such as 
establishing of a connection between physically remote hosts, marshalling, 
transmitting and un-marshalling of parameters, and processing of (possible) 
intermediate error conditions. Therefore we use event-based modeling.  

In the next section we introduce an event-based monitoring model of 
distributed application execution. In Chapter 7, we use this model as a 
basis for the definition of a monitoring model for object and component 
communication. 

2.2.3 An event-based monitoring model 

In this section we present a monitoring model [SchMa94][RaSi96]. In this 
model, a distributed application consists of entities called processes (also 
called threads, fibres, or light-weight processes) that can communicate with 
each other. Each process sequentially performs activities. At this point we 
make no other assumptions about any relations between the activities 
performed by a process. We model the successful completion of an activity 
using the event concept defined earlier. 

We denote all events in an execution of a DSA as  
E = E1∪ E2∪… E∪ M, 

where M represents the total number of processes participating in this 
execution and 

Ei = {ei,1, ei,2, ei,3,...} 
represents the set of events corresponding to activities performed by 

process pi. Since in each process activities occur sequentially, their times of 
occurrence (according to an infinitely accurate clock) allow total and strict 
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ordering of the corresponding events. Let the binary relation Ei→ ⊂ i×Ei 
represent the temporal precedence relation among the events of process pi. 
The temporal precedence relation on the set Ei corresponds to the largest 
potential causality relation on the set Ei. 

Processes communicate with each other by using point-to-point 
messages. The communication of a message takes unpredictable finite time 
to complete. At this point, we make no other assumptions about availability 
of shared resources, FIFO order of messages, communication 
infrastructure, or synchronization mechanisms such as CSP-guards 
[Hoare78]. We define the binary relation Emsg→ ⊂ ×E such that for every 

message m sent from process pi to process pj there exist events  ek ∈  Ei 
corresponding to a send activity, and el ∈  Ej corresponding to a receive 
activity, for which the following holds:  

ek emsg→ l

Observe that relation corresponds to a realized causality relation, 

because a send event represents the definite cause of a receive event, 
following the initial assumption that processes communicate via point-to-
point messages only. 

msg→

We define the “causal precedence” binary relation [RaSi96] as the 
union of the temporal precedence relations among the events of every 
process and the realized causality relation among events representing 
message exchanges between processes: 

→  =  )()(
1

msg

M

i
i →∪→

=
U

The causal precedence relation defines a strict partial order on E (it has 
the irreflexive, asymmetric, and transitive properties). Defined this way, the 
causal precedence relation corresponds to the “happened before” relation 
[Lamp78]. Note that we consider the causal precedence relation defines a 
potential causality relation on the set E.  

Using the causal precedence relation we define a distributed execution 
(also referred to as distributed computation) as the structure DC = (E, 

). →
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Figure 2-3 shows an example of a distributed execution. The arrows 
between events represent the causal precedence relation. 

Using relation  we define the “concurrency” relation  →
║∈  E×E, 

where 
e1║e2 if and only if ¬ (e1→ e2) and ¬ (e2→ e1).  

If one can say that two events belong to the concurrency relation we 
consider these events causally independent. 

Figure 2-3 A 
distributed 
execution 

2.2.4 Using the monitoring model 

A monitoring model defines the aspects of application execution about 
which monitors require information. Designers of the instrumentation use 
the monitoring model to implement the code for monitoring these aspects. 
We call this model-driven instrumentation [Hof+94]. During monitoring, the 
instrumentation performs measurements on the monitored application and 
as a result generates status and event reports. When the monitor receives 
these monitoring reports, it analyzes them in order to create an instance of 
the monitoring model that characterizes one application execution.  

In everyday life, we regularly order and plan our activities. We do this 
using a clock, i.e. by taking a timestamp. Hence, we feel used to the notion of 
accurate global time at our disposal. In distributed systems however, we 
usually do not have access to a global clock that has sufficient accuracy for 
the purpose of timestamping. The inaccuracy of the clocks embedded in 
most widely used affordable computer architectures, may significantly affect 
our ability to restore the temporal precedence relation among events. To 
circumvent this problem, we use a special mechanism called logical time in 
order to reason about order among event in terms of potential causality 
without the need of an infinitely accurate global clock. 
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Logical time 

We define logical time as a mechanism that allows ordering among the 
events of a distributed computation [RaSi96]. We use a system of logical 
clocks to measure the pace of logical time. We confine the discussion on 
logical clocks to the monitoring model introduced in the previous section. 
The system of logical clocks generates timestamps, which we assign to 
events. A timestamp represents a concrete (as opposed to abstract) data 
structure with values, which a program can process, e.g., serialize and 
transmit over a communication infrastructure.  

We define the relation that assigns timestamps to events as  
LC:E T,  a

where T represents the logical time domain. LC maps a timestamp LC(e) 
 T to every event e∈E.  ∈
We define the partial order relation < in T, such that  

e1→ e2 LC(e⇒ 1) < LC(e2). 
In other words, the relation LC preserves the basic property of causality, 

i.e., the potential cause occurs earlier than its effect. We call this the clock 
consistency condition.  

The following property 
e1→ e2 ⇔ LC(e1) < LC(e2), 

makes a logical clock system strongly consistent. Strong consistency 
effectively means that an external observer, who uses a logical clock to 
assign to events timestamps in the time domain T, can restore the causal 
precedence between events just by analyzing their corresponding 
timestamps. We consider strong consistency of the logical clock system 
crucial to the goals of this thesis, because (provided we have a system of 
logical clocks) it allows monitors to determine the order of events in an 
application execution from event reports. 

A system of logical clocks has two major properties: topology and 
metrication [Smith80]. The topology represents the structural framework 
that timestamps impose on events. For example, we can use a directed a-
cyclic graph to represent a partial order topology. In this graph, nodes 
represent events and an arrow between two nodes represents a causal 
precedence relation between the events corresponding to these two nodes.  

The metrication represents the mechanisms used to measure the value 
of a logical clock. The definition of the metrication for a system of logical 
clocks requires two steps: (a) determining the data structure of the logical 
clock, e.g., the data structure of a timestamp, and (b) defining a set of rules 
for generating timestamps and updating the data structures within the 
system of logical clocks to ensure the strong consistency condition. 
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We use the following general data structure for the system of logical 
clocks: each process pi maintains a local logical clock lci, which we use to 
record the progress of logical time only within process pi, and a global 
logical clock gci, which records the local view of pi on the progress of logical 
time in the whole system [RaSi96]. We use the values of lci and gci to 
generate timestamps for events occurring in process pi. 

A system of logical clocks uses the following two update rules: 
– R1 governs how a process updates its local logical clock; 
– R2 governs how a process updates its global logical clock. 

Existing logical clock systems 

Based on metrication characteristics we classify existing logical clock 
systems into three types: scalar, vector and matrix.  

Lamport developed the scalar clock system [Lamp78]. This system uses 
timestamps in the domain of non-negative integers. A total order represents 
the topology imposed on the timestamps generated from this clock system. 
In this system, each process pi maintains a single counter that represents 
both lci and gci. The rule R1 increments the counter each time a new event 
occurs in the process. The rule R2 updates the counter with information 
about the counter of some process pj each time a message arrives from that 
process. This system does not satisfy the strong consistency condition, thus 
we cannot use it to achieve our goals.  

Schwarz  and Mattern [SchMa94] have developed a system of vector 
clocks. This system uses timestamps in the domain of M-dimensional 
vectors of non-negative integers, where M represents the number of 
processes in the application execution. A partial order represents the 
topology imposed on the timestamps generated by this clock system. In this 
system, each process pi maintains a vector gci that keeps information about 
the local progress of the other processes, including its own progress at the i-
th position: gci[i] = lci. Rule R1 increments lci each time a new event occurs 
in the process. Rule R2 updates gci with the information from the gcj of 
some process pj each time a message arrives from that process. Vector 
clocks satisfy the strong consistency property. 

Fischer and Michael [FiMi82] have proposed a system of matrix clocks. 
This system uses timestamps in the domain of MxM matrices of non-
negative integers. A partial order represents the topology imposed on the 
timestamps generated by this clock system. In this system, each process pi 
maintains a matrix gci that keeps information about what all other processes 
know about each other’s progresses (hence the matrix), including its own 
progress at the i-th column of the matrix, which is the lci. Matrix clocks 
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update their value according to rules similar to the vector clocks and they 
satisfy the strong consistency property.  

We chose vector clocks to provide logical time for our monitoring 
system, because a system of vector clocks provides strong consistency. We 
disregard matrix clocks, because although they satisfy the strong consistency 
condition too, we do not need the additional information matrix clocks 
provide.  

2.2.5 The vector clock system 

In this section we introduce the metrication of a vector clock system, which 
consists of a data structure and updating rules.  

We define the global logical clock gci as a vector of non-negative integers 
with i∈[1,…, M] where M represents the number of processes. For a gci, 
gci[i] represents the progress of process pi (hence gci[i] represents the local 
logical clock lci), and gci[j], j∀ ≠ i represents the knowledge of pi about the 
local progress of pj. The vector gci constitutes the view of pi on logical time 
in the system. 

The vector clock system uses the following R1 and R2 rules: 
– R1. When an event occurs in process pi, the process updates its local 

logical time in the following way:  
gci[i] := gci[i]+1 

Note that initially gci[j] = 0, for j∈[1,…, M] 
– R2. For each message m that process pi sends to another process, pi 

attaches (called piggybacking) to the message as a context the value of its 
own global logical clock at the moment of sending. Upon receiving of a 
message m with a message context gc, pi performs the following steps: 
a) pi updates its global logical time in the following way: 

gci[j] := max(gci[j], gc[j]), where j∈[1,…, M] 
b) pi performs R1; 
c) the receiving process handles the message m. 

For an every event, we define a timestamp of the vector clock system as the 
value of the global logical clock gc of the process in which an event occurs, 
taken at the moment of the event occurrence. Therefore, a timestamp of a 
vector clock system corresponds to a vector, hence we call it a vector 
timestamp. 

In order to reason about order among events, we need to compare their 
corresponding vector timestamps. We define the following three binary 
relations to establish order among vector timestamps: 

v1 ≤  v2 ⇔ ∀ x: v1[x]≤ v2[x] 
v1 < v2  v⇔ 1 ≤  v2 and ∃ x: v1[x]<v2[x] 
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v1 ║v2 ⇔ ¬ ( v1 < v2 ) and ¬ ( v2 < v1) 
Given these relations among vector timestamps and the rules for 

advancing the vector clock system, the following property holds [RaSi96]:  
if two events e1 and e2 have timestamps v1 and v2 respectively, then 

e1 → e2 ⇔  v1 < v2

e1 ║ e2 ⇔  v1 ║ v2

Thus, an isomorphism exists between the set of partially ordered events 
of a distributed execution and their timestamps. This also means that the 
vector clock system satisfies the strong consistency condition. 

2.2.6 Implementation issues of vector clocks 

The rules for advancing vector clocks require certain functionality from the 
programming environment used for implementing an instrumentation. 
These requirements may influence the choice of the monitoring system 
designer for an implementation technology. We distinguish the following 
requirements: 
– Vector clocks require from the programming environment a means to 

associate data structures (context) to processes (or threads) in the 
monitored application. This would make sure that designers can 
properly implement rule R1 for every process in the system; 

– Vector clocks require from the programming environment a means to 
associate context with messages between processes. This would make 
sure that designers can properly implement rule R2 by means of 
piggybacking necessary clock information in messages exchanged 
between processes. 

The size of the vector clock has impact on memory usage its maintenance, 
and to the size of the structure piggybacked with each message. The size of 
the piggybacked structure depends on the number of processes in the 
distributed system. In the case the monitored application uses a large 
number of processes, this dependence may lead to an unbounded growth in 
size of information piggybacked with each message. 

The search for an efficient implementation of the vector clock system 
produced several results, such as the differential technique [SiKs92], direct 
dependency technique [FoZw90], adaptive technique [JaJou94], and 
others. All these techniques consider the full number of processes in the 
distributed computation. They achieve a reduction of the size of the vector 
clock structures at the cost of additional processing. Existing work on this 
topic indicates that when we want to consider all processes in the system, it 
seems we cannot have a strongly consistent logical clock representation 
more compact than vector time [SchMa94]. Others approached the 
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efficiency problem of the clock data structure by reducing the number of 
processes considered in a vector clock system (and hence the size of the 
vector) using clustering of the processes in the distributed application into 
domains [Sum92] [Ward01]. This means that these approaches disregard 
some of the causal relationships among events belonging to different 
clusters. We consider this assumption too severe, because it will not allow 
us to reason about distributed communication among objects from 
different clusters, and therefore we do not consider these approaches. 

Furthermore, we consider improving the efficiency of the vector clock 
implementation out of the scope of this thesis. In Chapter 7 we shall 
provide a basic implementation derived directly from the definition of a 
vector clock system in this chapter. Designers can replace the 
implementation with a more efficient strongly consistent implementation 
provided that it considers all processes in the system (no clustering). 

2.3 Monitoring activities 

We discuss common monitoring activities using a functional model for 
monitoring (Figure 2-4).  
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This model consists of four basic groups of monitoring activities [Sam95]:  

Figure 2-4 
Functional model 
for monitoring 

– Generation. An instrumentation measures and packages monitoring data 
to make it available for the MSS; 

– Dissemination. The MSS collects monitoring data from an 
instrumentation and delivers it to interested monitors; 

– Processing. The MSS analyzes monitoring data coming from the 
instrumentation in order to convert it to a format and level of detail 
appropriate for monitors. A monitor analyzes monitoring data to extract 
information for the monitoring application; 

– Presentation. A monitor offers a view on monitoring data from the MSS 
appropriate for the monitoring application. 
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If we consider how the monitoring system handles a single monitoring 
report, the monitoring system typically performs monitoring activities in 
certain order. Generation comes first because it provides the monitoring 
data. Then the MSS disseminates monitoring data to a monitor. During 
dissemination, the MSS may process monitoring data before delivering it to 
a monitor. In the end, the monitor presents monitoring data to a 
monitoring application. During presentation, the monitor may also need to 
analyze and process the monitoring data in order to extract information 
necessary for the presentation activities. Note designers may prefer other 
scenarios in which a monitoring system may realize only a limited selection 
of the listed monitoring activities. For example, the MSS may store 
monitoring data in some place for future reference right after generation. 
Monitors can later use this monitoring data without any additional 
processing from the MSS.  

In general the monitoring application may have requirements on the 
timely delivery of monitoring data. Based on these requirements, we 
distinguish two types of monitoring: online and offline. Online monitoring 
allows observation and potentially control of applications at runtime 
[Rack01]. In case of online monitoring, a monitoring application poses 
real-time constraints on the overall time it takes to generate, process, 
disseminate and present monitoring data. In case of offline monitoring, a 
monitoring application poses no such time constraints. Hence, the 
monitoring application may obtain monitoring data at an arbitrary time 
after its generation by the instrumentation. 

In the next four sections we discuss in detail each of the groups of 
monitoring activities. 

2.4 Generation activities 

The instrumentation generates monitoring data by measuring certain aspects 
of the monitored application and packaging the resulting values into 
monitoring data.  

Measuring may require access to the internal mechanisms of the 
monitored application. For software monitoring, instrumentation designers 
enable this access by installing special programs called software sensors (also 
called probes) in the application or its environment [Rackl01]. Packaging 
involves the formatting of measured values into monitoring data. 

We distinguish between the generation of the following types of 
monitoring data: status reports, event reports, and monitoring traces. 
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2.4.1 Status report generation 

Status report generation consists of measuring variables in a status vector 
and packaging these values into a status report.  

The instrumentation generates a status report in three ways: event-driven, 
time-driven, and on-demand [Sam95][Shaer98]. In case of event-driven 
generation, the instrumentation measures a status vector because some 
event occurs in the monitored application. In case of time-driven 
generation, the instrumentation measures the status vector periodically. In 
case of on-demand generation, the instrumentation measures the status 
vector upon a request from the MSS. 

2.4.2 Event report generation 

Event report generation consists of the detection of an event, measuring the 
values of event attributes, and packaging these values into an event report. 

The instrumentation detects events as a result of the execution of some 
software sensors. We define event detection time, as the moment the 
instrumentation learns about the occurrence of an event. We define 
detection delay, as the distance between the time of event detection and the 
actual time of event occurrence. In software monitoring, the execution of 
the monitoring software always introduces some detection delay resulting 
from, e.g., executing sensor code.  

Detection delay may vary between individual events, e.g., due to the 
varying system load that may influence the speed at which sensor code 
executes in a distributed environment, or the use of incorrect computer 
clocks for measuring the time of event occurrence. Varying detection delays 
give rise to the following type of problems (Figure 2-5). 
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The four primitive events, e1, e2, e3, and e4 occur on the absolute time scale 
in a certain order. According to the corresponding detection times (∆∆11, ∆∆22, ∆∆33, 
∆∆44 ) however, events may appear to have occurred in a different order, as 
shown on the lower scale of time.  

We consider the problem described above as one of the reasons to use 
logical clocks for event timestamping instead of computer clocks. Logical 
clocks allow for measuring the relative order (compared to the absolute 

Figure 2-5 
Inaccurate order of 
events due to 
variable delay 



48 CHAPTER 2 TERMINOLOGY AND CONCEPTS 

order) between events, without the need to measure distances between 
absolute moments in time. Hence, by using logical clocks we can ignore 
detection delay.  

2.4.3 Monitoring trace generation 

A monitoring trace (or simply “trace”) represents a collection of monitoring 
reports generated over some period of time [Sam95]. Trace generation 
includes the caching of monitoring reports at the instrumentation, and 
packaging monitoring reports into a trace.  

We distinguish the following two applications of traces: to reduce the 
size of monitoring data, and to minimize the use of the communication 
infrastructure for monitoring related traffic. The instrumentation achieves 
size reduction by removing information common to all reports in the trace 
and providing this information only once per trace.  

A monitoring trace may suggest order among the individual reports in 
the trace. This order may represent, for example, the order in which the 
instrumentation generates the reports. 

We distinguish two types of monitoring traces: complete and segmented. A 
complete trace contains all monitoring reports from one uninterrupted use 
of the monitoring system, which we call a monitoring session. A segmented 
trace contains only the monitoring reports generated during a time period 
in a monitoring session.  

In a distributed deployment of the monitored application, the 
instrumentation may consist of physically distributed parts. As a 
consequence, each instrumentation part can only provide segmented traces 
to the MSS. Therefore, in a distributed environment, the MSS collects 
several segmented traces rather than one complete trace. 

2.5 Processing activities 

The MSS processes monitoring data generated by the instrumentation to 
make sure that monitors receive monitoring data they require. We 
distinguish the following types of processing activities: event correlation, 
filtering, validation, and trace manipulation. 

2.5.1 Event correlation 

We discussed in section 2.2.1 that event relations provides means for 
analysis of the behavior of distributed applications. We define event 
correlation as the process of determining the relation among two or more 
events from the monitored application behavior. We consider two basic 
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forms of event correlation in the MSS: ordering of events, and detection of 
composite events. 

Ordering of events 

The MSS may order event reports according to the time of occurrence of 
the corresponding events. In this way monitors do not need to perform the 
ordering themselves. This (potentially) reduces the monitor’s 
computational effort for analyzing monitoring data by shifting ordering 
responsibility to the MSS, and the size of monitoring data by discarding 
additional ordering information (such as the information required to 
maintain vector clocks consistent) before sending monitoring data to the 
monitor. 

Detection of composite events 

We define a composite event as the composition (also called combination) of 
several events (including other composite events). With each composite 
event we associate a detection condition, which determines when the 
composite event occurs. For example, one may specify a composite event ce 
= (e1 ∧ e2) ∨ e3, using the logical conjunction and disjunction operators. 
The detection condition for ce states that ce occurs when both events e1 and 
e2 occur or when e3 occurs.  

Monitors can use these composite events to coordinate various tasks that 
depend on the completion of more than one activity in the monitored 
application. 

Some monitoring systems [Hold89][Sam95][Shaer98] use descriptive 
languages to allow users to define a specification of an arbitrary composite 
event during runtime. The monitoring system processes event specifications 
in order to detect composite events. 

2.5.2 Filtering 

The MSS performs filtering to determine the relevancy of monitoring data. A 
filter specifies the monitoring data required by a monitor. We assume that 
monitors may change their requirements during runtime. During filtering, 
the MSS processes monitoring data in such a way that a monitor receives 
only monitoring data that satisfies the requirements in its filter.  

Filtering may result in: 
– Discarding of monitoring reports. The MSS may discard generated 

monitoring reports that does not match any monitor’s requirements; 
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– Reduction of content. The MSS may strip monitoring reports from 
some of their attributes, when monitors do not require all the 
information contained in generated monitoring reports.  

Filtering helps to alleviate monitoring overhead. For example, the 
processing of a filter by the MSS may result in the reconfiguration of the 
instrumentation, so that it does not generate unnecessary monitoring data 
in the first place. Hence filtering (potentially) reduces the overhead of the 
instrumentation in terms of CPU and memory, and reduction of the 
overhead of the MSS in terms of communication bandwidth. 

2.5.3 Validation 

The MSS performs validation to ensure validity of the monitoring data 
delivered to monitors. We define validity as the correspondence of the 
generated monitoring data with the monitoring data received by monitors. 
The MSS may encounter validity problems such as, wrong order of 
monitoring data (due to, e.g., communication delays), corruption in 
monitoring data (due to, e.g., transmission errors, faulty hardware, or a 
security breach), missing or duplicated monitoring data (due to, e.g., use of 
unreliable communication infrastructure, or partial failures in the 
distributed system).  

Validation activities deal with detection of validity, restoring validity, and 
security. 

Detection of validity 

The MSS detects validity of monitoring data according to some criteria. For 
example, using an SHA-1 [SHA95] checksum on a monitoring report 
allows the MSS to detect at various stages of the dissemination of the report 
whether the current report differs in some way from the originally 
generated one. Calculating a new SHA-1 checksum and comparing it with 
the checksum of the original would show any corruption of the monitoring 
data (or of the checksum itself). 

Restoring validity 

When the MSS detects invalid or missing monitoring data, it can discard 
the data, (if possible) may request the data again from the instrumentation, 
or may try to restore the validity of the data. For example, an MSS may 
have the validity requirement that the order of generating monitoring 
reports from the instrumentation corresponds to the order of deliverying 
the reports at monitors. When the MSS detects reports in the wrong order 
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(e.g., due to communication delays), the MSS reorders the monitoring 
reports before sending them to monitors. 

Security issues 

Validation may also have a security aspect. In some cases, the MSS may have 
to determine authenticity of origin and integrity of transmitted monitoring 
data. To do this, the MSS can use techniques, such as digital signatures 
[GeRo97], to sign monitoring data. 

2.5.4 Trace manipulation 

Trace manipulation consists of merging and splitting monitoring traces. 

Merging 

The MSS merges segmented traces to construct a new trace. The merged 
trace represents a broader collection of events in the monitored application 
than each of the original segmented traces. The MSS can build a complete 
trace of application behavior during one monitoring session by merging all 
segmented traces. When monitoring traces imply a certain order among the 
reports, an important issue during merging becomes the preservation of 
that order in the resulting trace. 

Splitting 

The MSS splits a trace into two or more segmented traces to reduce the 
amount of reports in one trace. Each of the resulting traces contains a 
subset of the reports from the original trace. The MSS may perform trace 
splitting in combination with filtering to produce different segmented 
traces to satisfy several different filters.  

2.6 Dissemination activities 

The MSS performs dissemination activities to make sure that the required 
monitoring data reaches monitors on time. We distinguish two types of 
dissemination activities: collecting monitoring data from the 
instrumentation, and delivery of monitoring data to monitors. 

We discuss each of the activities for the cases of online and offline 
monitoring (section 2.3.)  



52 CHAPTER 2 TERMINOLOGY AND CONCEPTS 

2.6.1 Collecting monitoring data 

The MSS collects monitoring data generated by the instrumentation, in order 
to process it (we discussed processing in section 2.5) and deliver it to 
monitors. We consider two major issues regarding collection: storage and 
generation configuration. 

Storage 

In case of online monitoring, the instrumentation may generate monitoring 
data at rates and with size, which monitors cannot deal with. In such cases, 
the MSS can either store the data or discard it. Providing an intermediate 
storage for monitoring data, allows monitors to receive monitoring data at 
the rate and size they can deal with. 

In case of offline monitoring, the MSS provides persistent storage for 
monitoring data, such as a database. Monitors may access the monitored 
data at any time, even after the monitored application has completed its 
execution. 

Generation configuration 

Ideally, during online monitoring, the instrumentation should not generate 
monitoring data that monitors do not require. Nevertheless, monitor’s may 
change their monitoring data requirements during runtime, and as a result 
the instrumentation may end up sending to the MSS monitoring data that 
no monitor requires. The MSS may discard this data to free allocated 
resources, however, collecting the data from the instrumentation already 
occupies resources in the MSS. To deal with this, the MSS can dynamically 
configure the instrumentation, so it only generates requested monitoring 
data. The MSS may perform such (re-)configuration during runtime by 
switching sensors in the instrumentation on and off.  

2.6.2 Delivery of monitoring data 

The MSS delivers monitoring data to monitors. In order to receive 
monitoring data, a monitor needs to register its presence to the MSS. We 
choose not to discuss any registration details, such as authentication, 
establishing of trusted connections, etc. Instead, in this section we 
concentrate on the methods for delivery of monitoring data. We distinguish 
two main delivery methods: subscription-based and request/response-
based.  
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Subscription-based delivery 

Subscription-based delivery starts when a monitor submits to the MSS a 
specification of interest. A specification of interest contains the monitor’s 
requirements for monitoring data. Compared to the monitoring model, 
which defines all application aspects that a monitor may observe, the 
specification of interest defines additional constraints on the monitoring 
data. This allows the MSS to filter out any irrelevant monitoring data, and 
to pass to the monitor only relevant monitoring data. The specification of 
interest may represent a filter (discussed in section 2.5.2), or a specification 
of one or more composite events (discussed in section 2.5.1). 

After a monitor subscribes for monitoring data, the MSS starts to notify 
it about new (and relevant) monitoring data. The MSS has the initiative for 
sending monitoring data and thus has the control over the timeliness of the 
delivery. This makes notifications suitable for online monitoring, because 
the MSS can notify monitors about monitoring data as soon as it becomes 
available.  

Request/response-based delivery 

In request/response-based delivery, a monitor submits a request for 
monitoring data to the MSS, and waits for a response from the MSS within 
certain real-time constraints. Along with the request, the monitor may 
submit a selection criteria. The request instructs the MSS to deliver as a 
response to this request, monitoring data with features described in the 
selection criteria. The selection criteria may represent a concrete 
instruction for measurement that the MSS has to delegate to the 
instrumentation. 

In case of online monitoring, the MSS processes a request in the 
following way: if the instrumentation has already generated the requested 
monitored data, the MSS immediately sends the data to the monitor as a 
response to that request; otherwise, the MSS forwards the request to the 
instrumentation so that it generates a status report with the requested 
information. 

In case of offline monitoring, the MSS stores the generated monitoring 
data for future use. At a certain moment, the monitor passes a selection 
criteria that the MSS uses to select some monitoring data. Based on the 
nature of the selection criteria, we distinguish two types of 
request/response-based delivery for offline monitoring: data retrieval or 
information retrieval. We consider the following main differences between the 
two types of retrieval [Weide01]: 
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– Information representation. Data retrieval works with the well-defined 
logical structure of the monitoring data. In contrast, information 
retrieval works on unstructured monitoring data; 

– Method of selection. Data retrieval uses a direct method of selection 
based on facts about the values organized by the structure of the 
monitoring data. In contrast, information retrieval uses a method of 
selection that satisfies the needs of the monitor with “a degree of 
success”. 

We choose to consider only monitoring systems that use a well-defined 
logical structure of their monitoring data based on a detailed monitoring 
model. The MSS uses data retrieval in which the designer of the system 
determines the rules for matching selection criteria to monitoring data 
during the design of the monitoring system. A typical example for data 
retrieval constitutes the use of database management systems for persistent 
storage of monitoring data in the MSS. In such cases, the monitor uses, e.g., 
Structured Query Language (SQL) [SQL99], to define the selection criteria 
and issue a request to the MSS. The result of the request yields monitoring 
data with structure and values precisely matching the selection criteria. 

2.7 Presentation activities 

A monitor performs presentation activities in order to convey information 
about the monitored application behavior to the monitoring application. 
The monitor may present this information to a software program or to a 
human user. The monitor presents information to a software program by 
selecting the proper data formats and encoding. In this section we 
concentrate on the ways a monitor presents information to a human user.  

Presentation to a human user represents the process of making 
information accessible through the human senses. Human comprehension 
has certain limitations: the maximum number of chunks of information an 
individual can simultaneously comprehend, roughly equals seven, plus 
minus two [Miller56]. Hence we can formulate the fundamental dilemma 
of presentation: how can designers build monitors that efficiently present 
information to their human users?  

Contemporary computers mainly generate sounds and graphics to 
convey information to their users.  
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Graphical information 

Humans respond well to graphical information [Tufte83]. We find graphics 
captivating and appealing, if well designed. A visual representation in the 
form of graphics, can communicate information in a rapid and efficient 
way. Therefore, visualization represents an interface between two powerful 
information processing systems, the human mind and the modern 
computer [GEC98]. Static 2D/3D computer graphics have the following 
representational qualities [Bertin99]: 
– Presence. Characterizes when the observer can recognize the presence 

or the absence of something on the display; 
– Quantity. Reflects the observers opinion on the size of an object, or the 

number of objects; 
– Distinction. Relates to the observer’s ability to discover differences 

between individual things; 
– Order. Reflects the observer’s opinion on the order of things.  

Sound information 

Sound, and in particular musical sound, has its own representational 
qualities: 
– Intensity. Characterizes the loudness of the sound. Louder sounds can 

relate to presence and distinction; 
– Pitch. Characterizes the frequency of the vibrating body producing the 

sound. For example, the ear distinguishes well high pitch sounds from 
low pitch sounds, which relates to distinction; 

– Timbre. We determine the timbre of a tone by the number of the 
subsidiary overtones we hear and their relative intensity. For example, 
we can use timbre to represent quantity, as well as presence. 

The Network Auralizer PeeP [GiCo00] gives an example of the experiments 
for representing monitored information to human users using sound. This 
system allows a network administrator to associate certain events with 
certain sounds. These sounds can represent, for example, background 
alerts. Chirps of a cricket may represent a normally loaded network, while a 
chorus of an increasing number of crickets and other animals can represent 
a highly loaded network. Still, at the current state of computer technology, 
sound does not convey information in a manner as versatile and as 
expressive as graphical representation. We consider this one of the reasons 
why graphical presentation dominates presentation of monitoring data.  
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We limit this discussion to the following graphical presentation 
activities: scaling time, animation and replay, multiple views, and interactive 
display. 

2.7.2 Scaling time 

We often consider time the most important dimension in a diagram, 
because it suggests temporal order among its elements. A diagram can 
demonstrate temporal order between two objects in an absolute or a 
relative manner. Relative order focuses on the order as a precedence of one 
time value to another, while absolute order includes information about the 
position of a moment according to an absolute time scale. For example, a 
UML Message Sequence Diagram [UML1.4] shows relative order of 
message passing between objects, while performance diagrams in general, 
provide discrete units of time, which on a global scale allow for measuring 
distance between two particular measurements.  

The scale of time presents an important issue in absolute time order. 
When working with large periods of time in a diagram, users can adjust the 
time unit for convenient viewing.  

2.7.3 Animation and replay 

Monitors use animation and replay presentation activities to visualize the 
behavior of the monitored application. 

Animation 

The monitor may use animation to convey information about changes in the 
state of displayed objects. Moving, adding, removing, and coloring of 
graphical objects on the display presents the behavior of the monitored 
application. For example, adding and removing graphical objects to and 
from a diagram respectively can represent the creation or destruction of 
application objects. In a similar way, the appearance of an arrow between 
two graphical objects on a diagram for a short time can represent message 
passing between application components. 

An important issue during animation constitutes the time left to viewers 
to comprehend the information, because it takes about five seconds for a 
human to accept a new chunk of information [Simon82].  

Replay 

Replay stands for a special animation technique in which the user can 
control the animation [Bates85], e.g., rewind, suspend/resume playing, as 
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many times as necessary. For example, during debugging, the monitor may 
introduce events from the execution of a distributed application on the 
display in a particular order, using a time scale convenient for the user, or 
using an interactive step-by-step replay allowing the user to determine 
when to proceed with processing a new portion of monitoring data. 

2.7.4 Multiple views 

We consider abstraction a powerful technique for dealing with complexity. 
We choose to ignore inessential details of a complex object, dealing instead 
with a generalized, idealized model  of that object [Shaw81].  

A view represents an abstraction visually. The monitor can use an 
abstraction to deal with high volume of information in a diagram. When a 
diagram shows too many objects, a selection of fewer abstract objects can 
represent a large groups of objects with common characteristics. 

Monitors can present various views of the same monitoring data. Users 
can use these views to compare or study monitoring data from different 
angles.  

2.7.5 Interactive display 

A monitor may offer to its users interactive features. We consider two 
major categories of user interaction: navigation and control. 

Navigation 

The graphical user interface presents a basic form of navigation, as for 
example in window-based systems: opening, closing, moving and scrolling 
of windows. Furthermore, monitors that use multiple views can provide to 
their users possibilities to navigate among different views. 

We consider the navigation of the time dimension another important 
navigation aspect for monitors that present animation and replay to their 
users. This kind of monitors should allow fine control to the time 
dimension such as positioning and choice of time scale (zooming the 
resolution in or out). 

Control 

Some monitors allow manipulation of the monitored application based on 
the monitoring data. Application steering presents an example [RaLe97], in 
which the user views and steers system execution by sending commands 
through the graphical user interface. Users may also want to control the 
monitoring software in terms of online configuration, as for example, 



58 CHAPTER 2 TERMINOLOGY AND CONCEPTS 

changing the granularity of monitoring data, or enabling and disabling 
various sensors within the application instrumentation.  

2.8 Performance of monitoring systems 

We distinguish two main performance issues in a monitoring system: 
monitoring overhead and information consistency. 

2.8.1 Monitoring overhead 

With overhead we refer to the impact of the monitoring system on the 
execution of the monitored application. High overhead may compromise 
the satisfaction of users of the monitored application, which also 
(indirectly) influences the satisfaction of the users of the monitoring 
application.  

A monitoring system produces overhead as a result of two factors: 
intrusion and resource sharing.  

Intrusion 

We consider intrusion the additional delay that sensor execution introduces 
in the original application behavior. Intrusion may lead to differences 
between the monitored application behavior and the behavior of the 
original uninstrumented application.  

Resource sharing 

With resource sharing we refer to the effect of the combined execution of 
the monitored application and the components of the monitoring system, 
on the resource allocations in a distributed environment. Without a strict 
mechanism for scheduling the resources of the distributed environment, the 
monitoring system and the monitored application may compete for limited 
resources. For example, a non-real-time system, such as the Windows 
operating system, cannot provide guarantees that the monitoring system 
would not “steal” extra CPU time for its data processing purposes that the 
monitored application may need to execute its application logic correctly. 

Undesirable effects of overhead 

We distinguish two undesirable effects of overhead on the monitored 
application: change in behavior and unacceptable response time.  
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In the first case, the delay introduced by the execution of sensors may 
become so great that some application service may not complete on time. 
As a result, the application behavior of the instrumented monitored 
application may become logically different than its original behavior in such 
a way that the application cannot fulfill its purpose anymore, failing the 
expectations of its users.  

In the second case, the user response of the monitored application 
becomes so slow (due to intrusion or resource sharing or both) that users 
may find the application practically unusable. 

2.8.2 Information consistency 

Information consistency relates to how true monitoring data represents the 
behavior of the monitored application to the observer. For example, an 
implementation of the instrumentation that uses the internal computer 
clock to timestamp events cannot guarantee a consistent view on application 
behavior in a distributed system, because different computer clocks may 
cause events to appear to the observer in a different order than their actual 
order of occurrence. 

2.8.3 A method for performance assessment 

In this section we present a method for assessing the performance of the 
monitoring system with respect to monitoring overhead and information 
consistency. Helmbold and Bryan [HeBr89] originally proposed this 
method, and Logean [Logean00] extended it to the form we present here. 
This method uses a model of distributed applications identical to the one 
presented in section 2.2.3. We use this method in Chapter 8 to evaluate the 
performance of our monitoring system. 

We view the behavior of a monitored application from three 
perspectives: the behavior of the unmodified and unmonitored original 
application, the behavior of the instrumented and monitored application, 
and the observed behavior presented by a monitor (Figure 2-6). Note that 
as a consequence of monitoring overhead, these three behaviors may differ 
from each other. We shall not discuss the behavior of an unmonitored 
instrumented application, although inactive (turned off) instrumentation 
may still have some impact on the monitored application behavior. 
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We denote with C a particular distributed computation of the original 
application, with M a particular distributed computation of the 
instrumented application, and with OM an observation of the distributed 
computation M. We define C, M and OM in the following way: 

C = (EC, RC) 
M = (EM, RM) 

OM = (E , R ), 
MO MO

where EC, EM, E represent the sets of events in the corresponding 

computations, and R
MO

C, RM, R represent the causal precedence order 

relations on the corresponding sets of events.  
MO

We distinguish two sets of events in EM: EM,M represents the events 
produced by the monitored process itself (i.e., they do not have 
corresponding events in EC), while EM,C represents the events in M that 
correspond to events in the original behavior C. We define:  

EM = EM,C  E∪ M,M and EM,C ∩  EM,M = ∅ . 
Furthermore, we define RM,C ={(e1, e2) : (e1, e2) ∈  RM ∧  e1, e2 ∈  EM,C }, 

as the partial order relation on EM,C. 
Based on the three different perspectives on application behavior, we 

define three properties of a monitoring system: non-interference, accuracy, and 
correctness: 

Figure 2-6 Three 
types of behavior 

– Non-interference characterizes the similarity between a distributed 
computation of the original application and a distributed computation 
of the monitored application. A non-interfering monitoring system 
allows the monitored application to do the same things as the original 
(uninstrumented) application; 

– Accuracy characterizes the similarity between a distributed computation 
of the monitored application and an observed distributed computation. 
An accurate monitoring system presents to its users a precise view on 
the monitored behavior; 

– Correctness characterizes the similarity between a distributed 
computation of the original application and an observed distributed 
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computation. A correct monitoring system produces a view that can 
reflect each of the computations possible in the original application.  
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Figure 2-7 [Logean00] illustrates the properties of a monitoring system. 
We define three degrees of each property: total, strong and minimal, in the 
following way:  
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Total non-interference of a monitoring system means that the monitored 
distributed computation preserves both the events from the original 
distributed computation and their order. Strong non-interference means 
that the monitored computation preserves the events and the order, but 
that it contains some additional relations as a result of the overhead and 
additional synchronization imposed on the monitored application by the 
monitoring system. Minimal non-interference preserves only the events. In 
this category we also put a monitoring system that preserves only some 
relations among the events of the original distributed computation. 

Total accuracy of a monitoring system means that the observed 
distributed computation preserves the events of the monitored distributed 
computation as well as their order. Strong accuracy means that the 
observed distributed computation preserves the events and their order but 
that it contains some additional relations among events introduced during 
monitoring. Minimal accuracy preserves only the events. 

Figure 2-7 Three 
properties 
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Total correctness states that the observed computation completely 
represents the original computation. Strong correctness implies that the 
observed computation preserves all events and their order, but that it 
contains some additional relations among events introduced during 
monitoring. Minimal correctness preserves only the events. 

Note that one can easily see that strong non-interference and strong 
accuracy imply strong correctness, and total non-interference and total 
accuracy imply total correctness. 

In general, we consider monitoring systems that do not fulfill all 
minimal properties [Logean00][HeBr89] as useless. Monitoring systems that 
employ vector clocks provide causal precedence relation among the events 
in a distributed computation. The strong consistency of causal precedence 
relation allows for the accurate restoring of the relation among events at the 
observer from their timestamps. Such monitoring systems automatically 
have total accuracy. 



 

Chapter 3 

3. Overview of object and component 
middleware 

This chapter provides an overview of object and component middleware. In 
this chapter we discuss middleware terminology and the related concepts 
that we use throughout this thesis. 

We start by introducing object orientation. We discuss communication 
middleware and object oriented technologies, and how they converged to 
object middleware. We discuss component-based middleware and its 
relation to object middleware. At the end we discuss monitoring capabilities 
in object and component middleware. We close the chapter with 
conclusions. 

3.1 Object orientation 

Designers model a complex software system by decomposing it into smaller 
interrelated parts, each of which they further refine independently from the 
other parts. In such a system decomposition, designers need then 
comprehend fewer system parts at once, this way operating within the 
capacity of human cognition [Parnas85]. An Object-Oriented (OO) 
decomposition defines a view of a software system as a set of objects. An 
object represents a tangible software entity that exhibits some well-defined 
autonomous behavior [Booch91]. Objects collaborate together to perform 
the higher level behavior of the software system. 

3.1.1 The object concept 

An object has state, identity and behavior [Booch91]. The state of an object 
consists of the object’s properties. For example, an object that represents a 
dog may have a property “color”. Object identity represents a special object 
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property that distinguishes it from all other objects [KhoCo86]. The 
behavior of an object consists of the activities an object can perform. 
Referring to the same example, the dog object may “bark”, “sit”, etc. 
Furthermore, an object can send and receive messages to and from other 
objects respectively, in order to collaborate with these objects.  

3.1.2 The class concept 

According to the Merriam-Webster Online Dictionary, a class represents “a 
group, set, or kind sharing common attributes” [M-W]. In object 
orientation, the class concept represents a group of objects with common 
characteristics. These characteristics may include common properties 
(state) and common activities (behavior). Classes and objects differ 
substantially. While an object represents a concrete entity that exists in 
space and time, a class represents only the abstract essence of an object. In 
other words, a single object represents one class instance. 

Classes suggest a class structure in an object-oriented design, in which 
the designer reuses functionality, i.e., the designer groups system parts 
(objects) with similar functionality by classifying these parts into groups of 
related abstractions (classes) [Gold84]. By realizing the abstraction (the 
class), a designer can build as many instances (objects) of these abstractions, 
without the need to realize all aspects of the state and behavior of each 
instance independently. 

A class has an interface and an implementation. The interface of a class 
defines a common view on the state and behavior of all objects of that class. 
An interface emphasizes on the abstraction a class maintains to characterize 
its objects, while hiding the details on how the class realizes the behavior of 
the objects of that class. In contrast, the implementation of a class deals 
with the details of the realization of the behavior of the objects of that class.  

Classes can relate among each other. Examples of commonly used 
relations constitute the generalization (also called inheritance) - a “kind of” 
relation, aggregation – a “part of” relation, and association - denotes that 
objects of a class “knows” about objects of other classes (e.g., knows how to 
send messages to them). 

In modern programming languages, such as C++, Java, and Smalltalk, 
the interface of a class consists of the declaration of object attributes and 
object method signatures (sometimes also called operation signatures). Object 
attributes constitute the state of an object of that class, while method 
signatures define the different types of activities that objects of this class can 
perform. We sometimes also refer to the interfaces of an object as its service, 
where a service of a software entity represents its externally visible 
functionality [ViPi+00] (as opposed to functionality confined to the inside 
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of the entity, assuming some encapsulation capabilities from that entity). 
The implementation of a class in a programming language consists of the 
declaration of the implementations of all class methods with signatures 
defined in the class interface. A method implementation consists of (a 
sequence of, in imperative programming languages such as C++) 
statements defining what this method actually does in terms of the basic 
functionality offered by the particular programming language. An object 
reference uniquely represents the object identity. Attributes may have as 
values object references representing the knowledge of an object about 
other objects [Lieb86].  

The following lines written in the Java programming language illustrate 
the declaration of both the interface and the implementation of a simple 
class called Friend: 

class Friend 
{ 

/* attributes */ 
private String name = null; 
/* methods */ 
public String getName() { return name; } 
public void setName(String n) { name = n; } 

} 
All objects of the class Friend have a name attribute that determines their 
state and two methods that allow other objects to access the value of the 
name attribute – one for setting and one for getting its value. 

An object model defines the principles according to which we can build 
object-oriented designs using classes and objects. The classical object model 
[Booch91] includes the principles of abstraction, encapsulation, 
modularity, hierarchy, typing, concurrency, and persistence. While we 
consider these principles important, we discuss discus only these principles 
that relate directly to monitoring issues (e.g., concurrency) in more detail. 

3.1.3 Object lifecycle 

During runtime, we create objects of some class to use their functionality, 
and destroy existing objects when we do not need them anymore. The lifecycle 
of an object extends from the time of its creation, when the execution 
environment allocates resources for this object, to the moment of its 
destruction, when the environment reclaims back object resources. Some 
OO systems allow persistence of object state. Object persistence represents 
the property of an object through which its state transcends the object 
lifecycle or execution environment (i.e. the object’s location moves from 
one environment to another environment) [Booch91]. In order to achieve 
persistence an object needs to have the ability to serialize its state into bytes 
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that we can record on a storage device or we can transmit over a 
communication medium.  

3.1.4 Objects and concurrency 

Modern operating systems often involve concurrent execution of sequential 
activities. We commonly use the concept of processes (also called fibers and 
threads) to represent sequential activities executing on multiple hardware 
processors, or achieving the illusion of concurrency on a single processor by 
means of some time-sharing mechanism that governs how much time each 
process gets executed by the single processor. Programming concurrent 
systems requires dealing with problems such as deadlocks, starvation and 
race conditions. Object-oriented programming alleviates the concurrency 
problems by hiding concurrency inside reusable abstractions [LiJo89], such 
as active and passive objects. An active object represents a separate process. 
An active object can initiate activities on its own. An object not associated 
explicitly with a process and thus only offering functionality through its 
interface to other objects, we call a passive (also reactive) object. 

3.1.5 Object communication 

We mentioned earlier that objects collaborate by passing messages to each 
other. In modern programming languages, objects communicate through a 
mechanism called a method call. During a method call, one object (the 
caller) calls a method on another object (the called) by sending to the called 
object a request message comprising some parameters. The called object 
accepts the call by performing the activity corresponding to the called 
method from its implementation, using the information from the request 
message parameters. When the execution of the method completes, the 
called object prepares a response message containing the result of the activity. 
The calling object may (synchronous method call) or may not (asynchronous 
method call) wait for the completion (and possible results) of the execution 
of the method. 

In Figure 3-1, we illustrate how a typical non-distributed object-
oriented runtime environment handles method calls. In this figure, object A 
calls method method1() on object B.  
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Object A Object B

method1( )

method1( )

P  
request 

response 

The direction of the execution 
of the sequential process P  

Some process P handles a method call in the following way: when P reaches 
the statement of the method call in the implementation of A, it starts 
executing the method in the implementation of B. We consider this act of 
process P as the sending of a request message. P uses the parameter values 
from the method call to execute sequentially the statements of the method 
body. After process P completes the last statement of the method body, it 
returns to execute the statement following the method call in the 
implementation of A. We consider this act of process P as the sending of the 
response message (if any). The results of the method call represented by the 
parameters of the response message, become available in the 
implementation of A. 

Figure 3-1 A 
method call 

3.2 Object middleware 

We consider communication middleware the software that (1) allows 
communication between the (potentially distributed) parts of software 
programs and (2) provides to developers transparencies from the specifics 
of the underlying communication infrastructure. We start this section by 
briefly introducing several communication middleware technologies with 
historical significance to the development of object middleware. Then we 
introduce object middleware in detail. 

3.2.1 Inter process communication 

Inter-process communication (IPC) represents a mechanism allowing two 
processes on the same host computer to communicate with each other. We 
can find IPC in every major multi-tasking OS. IPC specifies communication 
at the level of bits and bytes.  
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Typically, IPC consists of three techniques for process communication: 
– shared computer memory – processes communicate through regulated 

access to shared memory blocks on the same computer; 
– synchronized execution – an example of this technique constitutes the 

“semaphore”, which provides mutual exclusion of simultaneous 
execution of fragments of code within different processes; 

– message passing – processes communicate by exchanging messages. 
Compared to shared memory, message passing requires less 
synchronization between the communicating processes. 

System V IPC [Bach86] constitutes an example of an IPC implementation 
that has influenced IPC mechanisms in many operating systems.  

We consider the main disadvantage of IPC that designers have to deal 
with details of the representation of more complex data structures in terms 
of bytes and bits. Combined with the diversification of cheap computer 
hardware, this leads to problems with program portability stemming, for 
example, from machine word byte order. The increased availability of 
networks stimulated the developments of technologies that allow 
communication between processes on different machines using a higher 
level of data abstraction than the one supported by IPC. 

3.2.2 Remote procedure call 

Remote Procedure Call (RPC) represents a technology allowing one process 
to call (initiate execution of) a procedure from another (possibly remote) 
process’s address space, in the same way as if this procedure belonged to 
the address space of the caller process. By procedure we mean a named 
block of behavior that may take an input in order to produce an output. By 
address space of a process we mean the data (memory) and instructions 
(code statements) one process can potentially manipulate and perform, 
respectively. 

RPC follows tightly the client / server model. This model defines two 
roles: a server that offers some functionality and a client who makes use of 
this functionality by submitting requests to the server and receiving back 
responses to these requests. RPC requires the definition of server 
functionality using a formal Interface Definition Language (IDL). 
Programmers use tools to process the IDL and generate automatically all 
necessary code for interacting with the underlying communication 
infrastructure. Furthermore, these tools also generate the programming 
language specific representations that deal with the bits and bytes of 
complex data structures used as parameters to the procedures. For 
example, the generated code performs automated marshalling and un-
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marshaling of the data structures used in programming languages. This 
resolved the portability problem of IPC we mentioned earlier, because IDL 
tools for a particular platform hide from programmers the low-level (bits 
and bytes) representation of data for that platform.  

The Open Group promotes DCE RPC [DCE] as a true OS independent 
RPC standard. Various OS vendors offer their own implementations of 
RPC. To our understanding however, DCE RPC does not guarantee 
interoperability between different RPC implementations because each 
implementation may use its own protocol for serialization of complex 
structures over a communication infrastructure. 

3.2.3 Object middleware 

Object middleware came as an answer to the need for a common object 
oriented infrastructure and a common set of object services on which to 
build various distributed applications. Object middleware combines object 
orientation, the client-server approach, and RPC style distributed 
communication. 

Using object middleware, application designers still develop their 
applications as collections of collaborating objects, however, these objects 
can now make remote method calls (with a semantic similar to the RPC 
procedure calls) across the boundaries of a single execution environment.  

Object middleware separates the interface from the implementation of a 
class of objects. Object middleware requires the definition of the interface 
of an object class using an IDL language independent from any 
programming language. For simplicity, we consider that an object may have 
only one interface. Similarly to the interface of classical objects, an interface 
defined in the IDL language consists of attributes and method signatures 
called operations. The attributes present the object’s state to other remote 
objects. Operations define methods that other remote objects may access. 
The IDL language also allows the definition of complex data types to use for 
the definition of operation parameters, results, exceptions, etc. To promote 
reuse in object-oriented style, interfaces may extend other interfaces in a 
way similar to the generalization relation among classes. 

Designers define the class implementation in a particular programming 
language. For the users of an object however, the details of its 
implementation lay hidden behind the class interface written in IDL.  

In object middleware, the object reference represents a persistent data 
structure describing among other things, the location of the remote object 
implementation. Hence, programmers can use an object reference to access 
the functionality of a remote object regardless of both the programmer’s 
and the object’s actual locations.  
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Object lifecycle revisited 

The lifecycle of middleware objects comprises two additional activities as 
compared to classical objects: activation and deactivation. Below we list the 
four activities of the object lifecycle: 
– Creation - during creation, the middleware creates an unique reference 

for the object. Nevertheless, in contrast to classical object orientation, 
the object cannot yet serve requests. At this stage the middleware may 
have reserved resources for the object execution or may have deferred 
allocation of these resources to a subsequent object activation; 

– Activation – object activation explicitly enables the object to serve 
requests on its interface. The middleware must have finished all 
allocations necessary for the normal operation of the object; 

– Deactivation – deactivated objects cannot serve requests until a 
subsequent activation. The middleware may release allocated resources; 

– Destruction – the middleware destroys the object and releases all 
resources required for the object execution. 

We separate the lifecycle of an object into these four activities because 
some applications require availability of server objects over a long period of 
time, despite possible intermediate shutdowns due to imminent hardware 
failure or maintenance. In case of such events, the applications may 
deactivate their server objects, store their state somewhere, fix the 
problems, load the object states, and activate the objects at a later moment. 
After activation, clients use the same original object references. 

Object communication revisited 

We denote with operation invocation the remote method call mechanism of 
the middleware. For the moment, we shall consider only a synchronous 
operation invocation, i.e., one in which the caller waits for the completion 
and (possible) results of the operation invocation. 

The operation invocation uses the Proxy design pattern [BuMe+96] to 
provide to developers transparency from physical distribution. Figure 3-2 
shows the UML class diagram of an abstract operation invocation. 

 

ClientProxy
operation()

RealSubject
operation()

ServerProxy
operation()

+delegates +delegates

Subject
operat ion()

Client +calls

 

Figure 3-2 The 
Proxy pattern as 
applied in object 
middleware 
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A Subject object represents the interface of a remote object called 
RealSubject. A ClientProxy and a ServerProxy object mediate the 
invocations on the RealSubject by offering an interface identical  to the 
RealSubject’s interface. The Client interacts locally only with the 
ClientProxy, which hides from the client any distribution aspects of the 
invocation. The RealSubject interacts locally only with the Server proxy, 
which also hides the distributed aspects of the invocation but on the server 
side. 

The middleware uses the Broker pattern [BuMe+96] to handle the 
interactions among both proxies. Figure 3-3 shows the UML collaboration 
diagram of an actual operation invocation.  
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A broker in object middleware has the responsibility for managing the 
lifecycle of objects and the communication among objects. In the diagram, 
the Broker object represents a distributed entity that interacts locally both 
with the ClientProxy and ServerProxy to handle the operation invocation.  

Figure 3-4 shows the UML message sequence diagram of an actual 
synchronous operation invocation together with an indication about the 
processes involved in the communication, and in addition the diagram 
shows the distribution of the Broker (BrokerC on the client side and 
BrokerS on the server side).  

Figure 3-3 The 
Broker design 
pattern 
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In the context of some process, a Client object initiates an operation 
invocation using the object reference of the remote Subject object. The 
ClientProxy object takes control of the operation invocation transparently 
to the Client object. The ClientProxy object delegates the operation 
invocation to the Broker object at the client side. The client process then 
waits until the processing of the invocation at the server side completes. 
The Broker object at the client side communicates the data associated with 
the invocation to the Broker object on the server side, using the underlying 
communication infrastructure and taking care of any details such as time 
outs and minor communication errors. The Broker then assigns some 
process at the server side to handle the operation invocation and delegates 
the invocation to the ServerProxy. The ServerProxy calls the Subject server 
object to process the operation invocation. In analogy to the classical object 
method call, the chain of interactions on the forward direction of the 
operation invocation represents the sending of a request message. After 
completion, the server sends any results back to the client in the reverse 
order of operation interaction. The return direction of an operation 
invocation represents the sending of a response message. After the 
completion of the operation invocation, the client process resumes its 
execution. Observe that only the two broker objects communicate over the 
network. This way both the client and the server objects involved in a 
synchronous operation invocation make only local (i.e., within the same 
single execution environment) interactions.  

Some object middleware technologies, such as CORBA [CORBA], allow 
asynchronous remote invocations. In contrast to a synchronous invocation, 

Figure 3-4 
Message sequence 
diagram of an 
operation 
invocation 
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an asynchronous invocation does not require the calling process to block 
and wait for a result. At a later moment, the calling process can check for 
the completion of an asynchronous invocation and eventually acquire the 
result. We do not discuss the asynchronous invocation in detail. Suffice to 
say, different vendors often have their own different interpretations about 
the realization of the asynchronous operation invocation. 

Developing object middleware-based applications 

Developers must follow particular steps in order to build applications with 
object middleware. Figure 3-5 presents what we consider a basic 
programming model for object middleware. In our opinion, one can find 
the elements of this model more or less in every contemporary object 
middleware product. 
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The IDL compiler processes an IDL specification to generate programming 
language specific mappings for the complex data types in that specification. 
In addition, for every interface in the specification, the IDL compiler 
generates proxy files for the client and for the server respectively. 
Developers use the client proxies to perform calls on server objects, and 
server objects use the server proxies to accept calls on operations of their 
server objects. Developers then use a specific programming platform to 
develop the client and the server parts of their object middleware-based 
applications. 

In addition to the basic communication service of object middleware, 
developers can also use common object services. An object service consists 
of a collection of specific remote objects that provide functionality covering 
a particular aspect of working with remote objects in an application domain 
independent way (hence “common” services). Examples of object services 
constitute: directory services allowing discovery and management of object 
references, transaction services allowing the use of transaction contexts in 
DSA, and security services allowing the enforcement of various security 
policies on remote objects. 

Figure 3-5 A 
programming 
model for object 
middleware 
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3.3 Component middleware 

The market for software products demands increasingly more complex 
distributed software. To meet these demands, the software industry turned 
its attention to component technology – a new paradigm for software 
manufacturing that promises to improve cost efficiency while preserving or 
improving flexibility, nimbleness and competitive edge of a software 
product. We consider, among others, the following benefits of component 
technology: short time-to-market in terms of reduced complexity, 
improved application productivity in terms of increased reuse of existing 
code, and programming by assembly rather than engineering. 

We call component middleware, a middleware that allows one to build 
software applications using software components.  

3.3.1 Software components 

A software component represents a self-contained and reusable binary unit that 
provides a unique service, which developers can use either individually or in 
composition with the services provided by other software components 
[Szy98]. In this text, we use the term “component” as a shorthand notation 
for “software component”. 

A component can participate in a composition together with other 
components. Components participate in compositions by using each other’s 
services. To our understanding, components represent reusable assets in the 
design and implementation of new component-based software.  

A component specification represents the description of a software 
component. A component specification consists of two main elements: a 
description of the component service and a description of the component 
dependencies on the services of other components. We describe the service 
of a component in the form of one or more interfaces. An interface 
represents a contract established between a party providing the specific 
service and all parties that potentially use that service. Component 
dependencies represent “uses” relationships with interfaces of other 
components. Furthermore, a component specification may describe various 
additional component characteristics, such as requirements on the 
deployment environment for a component, resources necessary for 
execution of the component, and a description of the binary package of the 
component. 

A component encompasses a certain amount of application 
functionality. System designers have the task to determine the actual 
granularity of their components. Too large components can reduce 
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reusability and flexibility of future designs. Too small and too many 
components may reduce efficiency of software development.  

Generally, a component represents a part in some functional 
decomposition of a complex software system. To allow further 
decomposition, designers use the notion of compound components. A 
composition of several somewhat simpler components, realizes a compound 
component. We consider the relation between a compound component 
and the components that participate in it, similar to the “aggregation” 
relation between object classes.  

Components run in special environments called component containers. A 
component relates to its component container in a similar way as a 
computer program relates to its operating system. During runtime, the 
container uses a component as a prototype for creating component instances. 
A component instance represents the real world entity whose behaviour 
contributes to the behaviour of the particular component software. 

A component model defines the rules by which we implement, deploy and 
instantiate a component.  

3.3.2 Comparison between objects and components  

In order to understand the difference between objects and components we 
need to compare their basic features. Let us note that objects relate to 
classes, in a similar way as component instances relate to components. Thus 
we compare classes to components, and objects to component instances. 

Classes vs. components 

The interface of a class has similarities with the specification of a 
component. Both the class interface and the component specification 
provide common views on the instances of classes and components, 
respectively, by abstracting from the unimportant (during high-level design) 
implementation details. Components however, have a more elaborate 
specification than class interfaces, because components represent self-
contained and deployable binary units. When compared to components, 
classes appear underspecified, because classes often have tight relations with 
other classes, and we can see these relations only from the class 
implementation (e.g., inside the source code). This makes classes less self 
contained then components. In contrast, the component model deliberately 
makes dependencies among components explicit by employing a well-
specified “uses” type of relationship with other components.  

A component specification may consist of additional (compared to the 
class interface) information, such as component dependencies, resources 
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(e.g., video, images, etc), and any sub-components in case of compound 
components. Furthermore, some component middleware supports 
component specifications independent from a particular programming 
language. An example constitutes the CORBA Component Model [CCM], 
where the component specification consists of XML-based component 
descriptors. In contrast, we usually define the class interface in the same 
language as the class implementation. We consider the limited portability 
and interoperability of class specifications as a reason for the advent of the 
component concept. 

We use classes to categorize conceptual objects of arbitrary (often low) 
granularity. Compared to classes, components represent coarser building 
blocks. For that reason, designers often cannot sell their classes 
independently but instead package them into class libraries. In contrast, the 
idea of selling components as common-off-the-shelf building blocks plays a 
central role in component middleware.  

Designers often use the OO technology to implement the internal 
mechanisms of a component. For example, designers may implement the 
internal structure of a component as a collection of middleware objects, 
each implementing one component interface. Furthermore, vendors often 
present component middleware products as superstructures on their object 
middleware products. Examples of this constitute most of the existing 
commercial component middleware products, such as COM+, products 
compatible with the EJB or with the CCM specifications.  

In this thesis we assume that designers use OO technology to build 
components, and that a component middleware relies on object 
middleware. 

Objects vs. component instances 

Running a component means that the component container creates one or 
more instances of that component. A component container provides 
component instances with basic common services, such as transactions, 
security, persistence, and event service. To run in a particular component 
container, the component model requires from a component only a 
minimum common functionality. This allows the component instance to 
use a variety of complex services of its environment (the container), without 
having to implement them itself. In comparison with objects, the object-
oriented runtime library of some OO platform corresponds to the 
component container. The object-oriented runtime library that runs 
object-oriented programs however, does not offer that wide variety of 
services to objects as containers do to component instances. 
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In the context of an OO programming language, users can uniquely 
identify both objects and component instances by means of their 
references. Component instances however, may offer more than one 
interface to their users, where users can access each interface through a 
separate reference. Thus, the same component instance may in fact have 
several identities or views, each representing the functionality accessible 
through a reference to a different interface of that component instance. 

Generally, both objects and component instances have similar lifecycles 
– creation, activation, deactivation and destruction. Depending on the 
component model however, components may offer several additional 
features related to their lifecycle, such as alternative persistence 
mechanisms and various session management possibilities, as in Enterprise 
Java Beans [EJB]. 

Over the past ten years, object middleware underwent an evolution 
marked by the definition and standardization of a number of object 
services, and the appearance of several major vendor technologies, such as 
CORBA, DCOM, and Java RMI. In order to use these achievements, many 
component models incorporated an existing object middleware and 
delegated to it the task for dealing with distributed communication.  

Component instances communicate using two basic styles: 
– Object-style operation invocations on interfaces provided by the 

component instances (and implemented internally by middleware 
objects). This style of communication comes with the use of object 
middleware in component middleware; 

– Event-based communication. This style uses mechanisms similar to the 
event service in object middleware. A component event represents a 
message without a definite receiver. In contrast, an operation invocation 
always has a well-defined (by a reference) receiver. In some component 
models, such as the CCM, the component specification allows designers 
to specify the type of events their components produce and consume. 

3.3.3 Developing component-based applications 

In this section we present a very high level model for developing 
component-based applications (Figure 3-6). In our opinion, one can find 
the elements of this model more or less in every component-based 
development methodology. 
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During component-based application design, designers identify the future 
behavior of the application using some common approach, such as 
requirement analysis. In the next step designers decompose the identified 
behavior into groups of similar functionality suitable for encapsulation in 
reusable components. At this point designers may search for existing 
components matching the required functionality. Typically, some company 
implemented the (identified) existing components and made them available 
on the market. 

The result of the application design phase constitutes a list of existing 
application components, a list of non-existing application components that 
designers need to implement, and any additional application design that 
governs how application components interact with each other to form the 
application functionality as a whole. Component developers design and 
implement non-existing components during the component development 
phase. The application engineers integrate all (existing and implemented) 
components together into a prototype of the final application, during the 
application implementation. We do not discuss iterative development, but 
designers may use it as they see fit. 

Figure 3-7 illustrates the details of the “component development” 
phase. 

Figure 3-6 A model 
of component-
based application 
development 
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Specification compilers take the component specification as an input and 
generate the shell of the component. A shell may consist of, among other 
things, programming language mappings for complex data structures, and 
code templates such as proxy files for the client and server roles during 
operation invocation. From the generated shell and the source code 
supplied by component developers, programming tools generate the 
component implementation. The packaging and assembly tools combine 
the resulting component implementation, component specification and any 
resources (such as graphics for the visual interface of the components, if 
any) into a deployable component package that represents the component 
prototype. 

Figure 3-7 
Component 
development 

3.3.4 Discussion of existing component models 

There exist a number of component models each integrated in different 
vendor products. We consider the Enterprise JavaBeans (EJB) [EJB], the 
component model of .NET technology [.NET], and the CORBA 
Component Model (CCM) [CCM], as the most significant ones from the 
perspective of strong commercial support for their standardization and 
development into mature products.  

The Microsoft Corporation offers the .NET component model as a 
result of the evolution of their software technology since the early Windows 
operating system till the present. The SUN corporation introduced the EJB 
component model to mark the advances in the evolution of SUN’s early 
Java technology. The OMG consortium developed the CCM, as part of the 
latest CORBA 3.0 standard. The huge commercial participation in the 
OMG (800+ companies) resulted in a quite broad component model 
standard that encompasses many issues not considered by other component 
models. We consider this one of the reasons why no mature middleware 
product of a large software vendor supports the full CCM specification yet3. 

                                                       
3 Here we mean that we did not know about such product before we finished the work on 
this text. 
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Nevertheless, in this section we choose to discuss the basic features of the 
CCM to illustrate the essential properties of a component model. 

The CCM features several major advances to the (object middleware) 
CORBA standard: an abstract component model, a component 
implementation framework, a component container model, and packaging 
and deployment facilities. CCM represents the industry’s first component 
standard taking into account multiple programming languages. We take a 
closer look at the abstract component model. 

CCM Abstract component model 

The abstract component model allows component designers to capture how 
designers view a CORBA component. This includes what services a 
component offers, which services of other components it requires, what 
mechanisms components can use to interact with each other, what 
configurable properties a component may have, and the details of the 
component lifecycle. 

A CORBA component can inherit features from one prototypical 
component and can support multiple interfaces. A CORBA component has 
features called ports, to some of which (depends on the port type, see 
below) designers can connect the ports of other components. According to 
the abstract component model, a component may have ports of five 
different types (Figure 3-8): 
– Attributes. Similarly to object attributes, a component attribute 

represents an element of the component state. An attribute has a name 
and a value. Other components can read and set the values of a 
component;  

– Facets. A facet offers functionality. A facet has a name and corresponds 
to one interface with a separate reference (object reference to the 
middleware object implementing this interface). Each facet represents 
the component by embodying a view that corresponds to a role in which 
a client may act on the component; 

– Receptacles. A receptacle represents the dependency of a component on 
some functionality provided by another component. A receptacle 
represents a named holder of a reference to facets of other components. 
A receptacle can store multiple references and developers can configure 
the references in it both during design-time (component assembly) and 
runtime. Third parties can configure a receptacle from outside of its 
corresponding component; 

– Event sources. An event source represents a named connection point 
that acts as a producer of component events. Multiple consumers may 
connect to an event source; 
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– Event sinks. An event sink represents a named connection point that 
acts as a consumer of events of other components. Multiple event 
sources may connect to an event sink. 
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A component reference identifies a component instance. The abstract 
component model defines mechanisms for navigation among the ports and 
introspection of a component using its reference. 

The CCM allows two modes of component communication: 
synchronous via a CORBA-style operation invocation and asynchronous via 
event notification, where the event notification may occur in two forms: 
direct subscription to an event source and mediated via the CORBA event 
service. 

Figure 3-8 A 
CORBA component 

3.4 Monitoring capabilities in object and component 
middleware 

Having had a closer look at object and component middleware we can now 
see why monitoring does not present a major functional requirement in an 
object or component middleware product. Object and component 
technologies emerged to enhance the production of software by reducing 
development costs, time to market, and in general make software a 
commodity that companies can sell off-the-shelf. Monitoring capabilities in 
the middleware do not enhance software production in general. These 
capabilities would enhance software production for a class of applications 
that benefit from these capabilities – monitoring systems for middleware-
based applications.  

For the reasons above, monitoring of the execution of the internal 
middleware mechanisms often requires the instrumentation of that 
middleware. Designers who need to create a middleware instrumentation 
may find that this task requires extensive knowledge about the middleware’s 
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internal mechanisms, in order to avoid exposing partial or unsafe 
information to the monitoring application. Furthermore, an ad hoc 
instrumentation of some middleware product may render the monitoring 
system difficult to maintain (e.g., in case the vendor releases a new version 
of the middleware, designers may have to re-develop the instrumentation). 
Some middleware products however, allow for installing middleware “add-
ons”, which permit instrumentation in a more generic way than others. We 
generally refer to such products as reflective middleware. 

3.4.1 Reflective middleware 

We define reflection as a technique that allows a software system to support a 
self-representation in the form of a meta-model. A meta-model represents 
certain aspects of the software system and its behavior as a collection of 
meta-objects. Reflection allows one to inspect and/or manipulate the 
system during runtime [Blair98ii]. Reflection serves the purpose to enhance 
openness and flexibility in software systems [Yas92]. Reflection differs from 
ad-hoc system hacks that designers sometimes use to provide reflective 
capabilities, because reflection pays special attention to providing a 
consistent meta-model that preserves system integrity.  

Reflective middleware constitutes an example of the application of the 
reflection principle to the middleware concept. In reflective middleware, 
designers can access some of the middleware internal mechanisms through 
reflection, in order to configure that middleware to fit different application 
requirements, or to adapt it to meet changing environment or user 
requirements [Weg03].  

For the purpose of monitoring, we find reflective middleware 
interesting because it can provide inspection of the behavior of objects and 
component instances in a generic, application-independent way. Current 
middleware technologies however, either do not support reflection at all, or 
provide very limited support for it [Blair98i]. 

We further focus our interest in reflective middleware to aspects 
matching the goals of this thesis. Thus, we consider lifecycle reflection and 
message reflection (of the middleware communication mechanism).  

Lifecycle reflection 

Lifecycle reflection represents a meta-model mechanism in the middleware 
that allows inspection and manipulation of the lifecycle of objects and 
components independently from the lifecycle patterns prescribed by the 
application design. 
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In the CORBA [CORBA] object middleware, the Portable Object 
Adapter (POA) specification defines a standard mechanism for installing 
custom POAs. Developers can use this mechanism to introduce a special 
monitoring POA with minimum changes for the CORBA-based distributed 
application. The monitoring POA can provide consistent and safe 
information about object creation, activation, deactivation and destruction. 

Other middleware technologies, such as COM+ and EJB, provide 
lifecycle reflection support in their debugging framework. Monitoring of 
applications using their debugging mode execution, however, may produce 
a significant monitoring overhead that application users cannot tolerate. 

In Chapter 7, we shall use the POA mechanism in CORBA to 
implement instrumentation capable of monitoring lifecycle information 
about application objects for CORBA-based software. 

Message reflection 

Message reflection represents a mechanism in the middleware that allows 
inspection and possibly manipulation of messages exchanged between 
application parts independently from the communication patterns 
prescribed by the application design.  

In the CORBA object middleware, the Portable Interceptors (PI) 
specification defines a mechanism for installing custom components called 
interceptors, on the path of remote operation invocations.  
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The PI specification defines the access to the meta-object that reifies an 
invocation at four moments of its execution (Figure 3-9): directly before 
sending the request at the client, after receiving the request at the server, 
before sending a response, and after receiving a response. At the four 
points, the PI specification determines the invocation information designers 
can use for monitoring purposes, e.g., operation parameter values or 
results. The PI specification also defines a method of transparent 

Figure 3-9 Portable 
Interceptors � 
points of 
interception 
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installation of custom-made interceptors for the CORBA programming 
language mappings for C++ and Java. 

Other middleware products, such as the COM+ middleware [Kath00], 
also provide message reflection similar to the CORBA portable interceptor 
mechanism. 

3.4.2 Requirements on reflection mechanisms for middleware 
monitoring 

Based on our initial intention to use a middleware-based approach we can 
define several requirements on the reflection mechanisms that we want to 
use for monitoring: 
– Transparent use. The reflection mechanisms should conform to the 

middleware principle, by providing transparency to the application 
layer; 

– Information consistency. The reflection mechanism should provide 
consistent information, meaning that under any circumstances it should 
not expose to the monitoring system partial or unsafe information about 
the middleware activities. 

3.4.3 Adding message reflection to middleware 

When the middleware supports limited message reflection or does not 
support it at all, instrumentation designers have to add it to the 
middleware. For the purpose of monitoring, we may need to add inspection 
capabilities to the communication mechanism of the middleware. We need 
to select proper mechanisms to do that.  

Wegdam [Weg03] makes a survey of various mechanisms for adding 
message reflection to the middleware. Among others, these include sniffing 
the wire protocol, middleware interceptors, modification of stubs and 
skeletons, wrapping, debugging interfaces and composition filters.  

We consider middleware interceptors the best choice as they represent 
a transparent solution, which we can use to monitor during the normal 
operation of the monitored application. Furthermore, the PI specification 
for the CORBA middleware has undergone many iterations of refinement 
of its safety issues, and we consider it very mature to use for monitoring. 
Middleware interceptors have the disadvantage that they provide only 
predefined and (intentionally) limited (for integrity purposes) access to the 
invocation mechanism. For example, according to the CORBA 
specification, the middleware executes custom portable interceptors in a 
thread context separate from the application context, which means that the 
custom interceptors do not have direct access to the thread context of the 
calling/called objects, which may pose problem when implementing the 
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rules of a logical clock system. Because of this limitation of PI, we consider 
using PIs in combination with another technique that does not have this 
limitation. 

We consider the modification of the middleware client and server 
proxies as another promising technique for adding monitoring functionality 
to the communication mechanism of the middleware. In object 
middleware, the proxies offer access to the caller/called objects’ thread 
context of the operation invocation before and after the object request 
broker processes the invocation. In general, we consider modification of the 
proxies more unsafe than interceptors, because the designer has full control 
(as compared to the safeguard restrictions in the interceptors) over the 
operation invocation, which may easily lead to errors. Furthermore, we find 
proxy modification more intrusive to the monitored application than 
interceptors, because it often requires recompilation of the monitored 
application after instrumentation. Nevertheless, proxy modification for 
object middleware still represents a relatively transparent solution as the 
IDL compiler (that we consider a part of the middleware) generates them 
automatically, and hence designers do not participate in the process. In 
CORBA, a stub and a skeleton represent the proxies for use in the client 
and the server, respectively. 

In Chapter 7 we shall use both CORBA Portable Interceptors and 
modification of the stubs and skeletons to provide monitoring of remote 
operation invocations for the CORBA object middleware.  

3.5 Conclusion 

We can conclude that object middleware has emerged as an evolution of 
the object oriented approach towards distributed environments. 
Furthermore, vendors often promote component middleware as a 
superstructure on object middleware technology. As a result, designers of 
middleware-based applications rely on the object middleware to handle the 
distributed communication among component instances, and on object 
oriented languages to build their components. 

We can use lifecycle and message reflection to monitor object and 
component communication at the middleware layer. This reduces the 
impact of monitoring on the application. Nevertheless, we rarely find 
sufficient reflection capabilities in existing middleware. Therefore, in order 
to allow monitoring at the middleware layer we need to provide some 
additional instrumentation. We consider as promising instrumentation 
techniques (1) message reflection through interceptors and (2) proxy 
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modification for monitoring of communication information, and (3) 
custom POAs in CORBA for monitoring lifecycle information.  



 

Chapter 4 

4. Evaluation of monitoring systems 

In this chapter we present and evaluate several existing monitoring systems. 
With this evaluation we intend to show how well existing monitoring 
systems support monitoring of object and component communication in a 
distributed environment.  

We start with the definition of evaluation criteria. The evaluation 
criteria represent the reference point from which we evaluate each system. 
We then present four monitoring systems: OLT, HiFi, MOTEL, and 
MIMO. In each presentation we focus on issues relevant to the evaluation 
criteria. We then summarize our findings (relative to the criteria) into 
advantages and disadvantages of the presented systems. We conclude the 
chapter with a list of requirements that our monitoring system should 
satisfy. We categorize the requirements in generic requirements relating to 
monitoring of distributed applications in general, and specific requirements 
that relate to monitoring of object and component middleware-based 
applications. 

4.1 Evaluation criteria 

We establish our evaluation criteria using the outstanding problems 
identified in Chapter 1: 
– Architecture. A good architecture of a monitoring system establishes the 

basis for an effective monitoring system. We consider the following 
qualities of the architecture of a monitoring system: flexibility, 
extensibility, reusability, and scalability;  

– Middleware instrumentation for monitoring of communication behavior. 
Middleware instrumentation allows transparent monitoring of 
middleware-based applications. Monitoring of communication behavior 
requires access to the internal middleware communication mechanisms. 
We consider (1) whether a monitoring system supports middleware 
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instrumentation for monitoring of communication behavior, (2) what 
middleware instrumentation mechanisms designers use, (3) the  
transparency of these mechanisms for monitored application developers 
including tool support for automatic generation, and the reusability of 
the instrumentation, (4) the applicability of the instrumentation design 
to other types of middleware, and (5) the applicability of the 
instrumentation implementation to different products of the same 
middleware technology;  

– Support for analysis of concurrent activities. Establishing temporal order and 
causal relationships among events in the monitored application may 
prove difficult. We consider (1) how a monitoring system orders events 
and (2) what type of causal information (if any) it provides about 
relationships between events; 

– Dealing with overhead. Software monitoring inevitably introduces some 
overhead in the monitored application. Overhead may influence both 
the users of the monitored application and the users of the monitoring 
application. To the users of the monitored application overhead may 
translate into undesirable application behavior. To the users of the 
monitoring application overhead may translate into inconsistent views 
on the monitored application behavior. We consider how a monitoring 
system deals with overhead, i.e., (1) the accuracy and usefulness of the 
information it provides, and (2) how much the monitoring system 
interferes (intrusion delay and resource sharing) with the monitored 
application.  

We structure the evaluation of each system using the criteria in the order as 
defined above.  

Comments on the selection of monitoring systems 

In the course of our research we have examined several monitoring systems. 
These monitoring systems roughly fall into the following several main 
categories of monitoring systems:  
– Application and network management: MIMO [RLRS00], AppCenter 

[APPC], TIVOLI [TIVOLI], SILK [SILK], SNMP [SNMP]; 
– Reliable messaging: ISIS [BiJo97], Horus and Ensemble [Bi+00], JORAM 

[JORAM];  
– High performance and parallel computing: ZM4/SIMPLE [Hof+94], Coral 

[Zor00], Falcon [Gu+95]; 
– Distributed debuggers: GDB [SPS02], MAD environment, EMU and 

ATTEMPT tools [Kranz97], POET [KBTB97], OLT [OLT03]; 
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– Distributed computing in general: OMIS [LWSB97], GEM [Sam95], HiFi 
[Shaer97];  

– Object middleware: 2K Monitoring Services [Mao99], SmartStubs [SMST], 
DYNO [Rait00], CorbaTrace [CTRACE], OrWell [WeiKu98], MOTEL 
[LDKK98];  

– Enterprise monitoring: BMC Patrol [BMC00], ARM [ARM98]. 

We have decided to present and evaluate in detail only four monitoring 
systems because these systems (when compared to all the rest we know 
about) treat most closely the problems addressed in our evaluation criteria. 
We start with the Object Level Trace (OLT) – a commercially available 
system for testing and debugging of distributed software, part of the IBM’s 
Distributed Debugger platform. We select OLT because it represents to 
date the only4 commercial product for monitoring that exerts features of 
interest to us. The other three approaches result from academic research 
projects with some industrial participation. These systems comprise HiFi, 
MOTEL and MIMO. The HiFi system deals with various issues regarding 
scalability of monitoring systems in large distributed environments. The 
MOTEL system demonstrates the application of formal techniques to the 
analysis of middleware-based applications. The MIMO system demonstrates 
a systematic approach for monitoring and management of middleware-
based systems. 

4.2 OLT 

Object Level Trace (OLT) constitutes an extension to the IBM Distributed 
Debugger that enables developers to trace and debug multilingual, 
distributed applications. Object Level Trace (OLT) allows developers to 
monitor the flow of control in a distributed application, and to seamlessly 
debug client and server code from a single workstation [OLT03].  

According to academic sources [Ward01], OLT resulted from 
collaboration of the IBM Corporation with the research group that 
developed the POET debugger [KBTB97] at the University of Waterloo, 
Canada. IBM chooses not to provide any documents on the design 
approach followed in the development of the OLT monitoring system. We 
establish our evaluation on the information from user guides for 
administrators and developers on the IBM official site. 

                                                       
4 We considered all systems we knew about by the time we finished working on this 
manuscript. 
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OLT models distributed applications at three levels: hosts, 
processes/threads, and objects. The host represents an execution 
environment, e.g., the Java Virtual Machine running an instance of the 
WebSphere Application Server (WAS). A process/thread represents 
sequential execution in the common sense of the term. An object in OLT 
represents a programming language level object. For OLT, a distributed 
computation consists of events and relations among events, where events 
represent completed activities of the communication behavior and lifecycles 
of hosts, objects and processes (threads).  

OLT supports tracing and debugging of distributed applications built 
with Java and C++ for the WAS and the Component Broker of IBM. OLT 
tightly integrates with IBM’s remote debugger. For Java, OLT records Java 
method calls from a client application to distributed business objects, 
servlets, JSP, or EJBs residing on WebSphere Application Servers. OLT 
supports in a similar way C++ programs on several computing platforms 
from IBM. 

4.2.1 Architecture 

Figure 4-1 illustrates the architecture of OLT. For brevity we shall examine 
in detail only the architecture of the Java version of the OLT. The 
documentation claims that OLT implementations for other platforms 
comply to this architecture. 
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In order to use OLT, developers have to install the OLT runtime and the 
IBM debugger engine on each host running WAS. An OLT controller 
configures the OLT runtime so that it knows how to contact the OLT 
Server and how to configure the debugger engine. The OLT runtime has 
several responsibilities: (1) to collect notifications from WAS instances, 
process them and send the resulting monitoring data to the OLT Server, 
and (2) to start up the debug engine and configure it properly so it knows 

Figure 4-1 The OLT 
architecture 
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how to attach to the WAS instances and to the debugger daemon. The OLT 
Server collects the monitoring data from all OLT runtimes connected to it. 
The OLT server sends the data to the OLT viewer that shows it to the 
operator. The debugger engine allows debugging of the WAS instance on a 
particular application host. Debugger engines connect to a debugger 
daemon. A debugger daemon can manage several debugging engines. A 
debugger GUI connects to the debugger daemon. Developers can deploy 
the components of the OLT and the distributed debugger in several ways. 
In a most typical scenario, an operator places the debugger GUI and the 
OLT Viewer on one host so that he (or she) can debug and trace the 
distributed application form a central place. Developers may deploy the 
OLT Server and the OLT debugger daemon on separate hosts to minimize 
the overhead from sharing processing resources with the application hosts.  

The designers of OLT specifically created its architecture for integration 
with remote debugging, which developers usually perform from a central 
console. Thus OLT uses a centralized architecture in which the OLT Server 
represents the focal point of all communication. This makes OLT more 
appropriate for handling debugging tasks in a small testing environment 
than in a large distributed environment. OLT does not address any 
scalability requirements beyond the ones present in traditional remote 
debugging, and any heterogeneity issues beyond the ones present in IBM 
products involved in the monitoring process.  

4.2.2 Middleware instrumentation for monitoring communication 
behavior 

OLT supports monitoring of Java RMI remote objects, but it does not 
provide explicit support for object middleware such as CORBA, although 
since JDK 1.3 SE Sun has bundled an implementation of the CORBA 
standard with the standard Java technology. Nevertheless, testers still can 
monitor and debug CORBA applications with the OLT indirectly at the 
level of the proxy objects that CORBA uses – stubs and skeletons.  

OLT automatically performs the necessary instrumentation, so that 
developers can concentrate on debugging. For Java applications, OLT uses 
the debugging mode of the Java virtual machine to intercept the application 
execution and perform various measurements. 

OLT offers to developers the OLT Viewer and OLT Controller tools 
that allow viewing and controlling OLT-enabled debugging sessions, 
respectively. The OLT Viewer presents monitoring information on a 
diagram that shows the communication between entities (hosts, processes 
and objects) ordered on a time scale. The OLT Viewer does not provide 
explicit information about distributed objects or components. The operator 
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has to “know” what the object method call means – a Java remote method 
invocation, a HTTP request/response, or a CORBA invocation. The OLT 
Viewer can save diagrams to a file, however it uses a proprietary format 
which limits the application of external analysis tools, e.g., third-party 
performance analyzers. In our opinion, OLT monitoring system lacks 
openness5, i.e. it does not offer any interfaces for development of custom 
monitoring tools.  

4.2.3 Support for analysis of concurrent activities 

The strength of OLT comes from the way it deals with concurrent 
execution in a distributed environment. OLT employs a vector clock system 
to impose a partial order among the observed events in a distributed 
computation. The implementation of the logical clock uses Fidge/Mattern 
style of vector timestamps for each event in the system [Ward01]6. The 
OLT Viewer visualizes communication events in the system matching them 
appropriately into method calls and remote invocations. The viewer shows 
order between events in two modes: relative for partial order and total 
using scalar timestamps from the physical computer clocks. In the latter 
case, OLT tries to synchronize the clocks on the hosts to maintain a low 
drift between the clocks on the different hosts. 

The partial order relation that OLT uses coincides with the causal 
precedence relation we defined in Chapter 2, because of the use of vector 
clocks. Thus, OLT provides information about potential causality between 
observed events. 

4.2.4 Dealing with overhead 

A Java machine in debug mode has a considerably lower performance than 
in normal mode. Developers perform monitoring with OLT in a controlled 
test environment as opposed to a normal operational deployment. During 
testing, developers can tolerate a certain level of intrusive overhead (delay) 
because their primary task consists of removing errors as opposed to using 
the monitored application for some business logic.  

According to the available documentation, OLT allows one to monitor 
communication aspects of the instrumented (Java in debug mode) 
monitored application. The OLT Viewer restores both the observed events 

                                                       
5 The IBM web site does not offer any additional information on the OLT architecture, 
except administrator and usage guides. Hence, we made this conclusion based on the lack of 
any APIs for extending OLT with other monitors and analysis tools, such as the OLT 
Viewer. 
6 We establish this statement on the comments of Paul S. Ward, who has participated in the 
development of OLT. For more information consult [Ward01]. 
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and the causal precedence relation between them (using vector clocks). 
This makes the OLT a totally accurate monitoring system (see Chapter 2, 
section 2.8.3). Furthermore, we suspect that OLT meets the minimal non-
interference property in most cases of monitoring, because it uses the Java 
debugging platform for making the instrumentation, which typically 
preserves the original set of events in an application behavior (otherwise we 
wouldn’t manage to debug applications at all). 

4.3 HiFi 

The Hierarchical Filtering (HiFi) monitoring system described in [Shaer98] 
represents an effort to produce a scalable, high-performance, dynamic, 
flexible and non-intrusive monitoring architecture for large scale 
distributed systems.  

HiFi models the behavior of distributed applications using an abstract 
event-based model. Designers can use HiFi events to represent both the 
completion of some activity and the status of entities in the monitored 
application. The HiFi architecture does not define a concrete monitoring 
model. HiFi leaves this to the designers of a particular instrumentation. The 
HiFi system views a distributed application as a collection of (potentially 
distributed) event producers representing instrumented application parts. 
The monitoring system collects events and disseminates them to event 
consumers (monitors). HiFi models monitor requirements for information 
using the metaphor of a filter. HiFi offers a descriptive language for the 
definition of filter specifications. The filter specification contains a 
description of event characteristics that the system uses to determine the 
relevancy of an event to a monitor.  

HiFi allows the description of complex events using another declarative 
language. This language allows the definition of correlations between events 
using logical “and”, “or” and “not” operators.  

The HiFi system clearly separates the role of a producer of monitoring 
data from the role of a consumer. Nevertheless, HiFi does not consider 
explicitly the development process of consumer applications (monitors). 
HiFi considers control actions performed by the consumers on producers, 
which makes it suitable for management purposes. We address only 
monitoring (not control) in this thesis. 

4.3.1 Architecture 

The generic architecture proposed by HiFi proposes solutions to a number 
of problems identified in large scale applications of monitoring, such as 
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dealing with large amounts of monitoring data, and large amounts of 
producers and consumers of monitoring data. HiFi proposes solutions for 
these problems based on hierarchical filtering of information, flexible 
management of monitor demand for information, and dynamically re-
configurable deployment of the monitoring system. Figure 4-2 shows the 
architecture of the HiFi system.  
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In the HiFi architecture, software entities called monitoring agents (MAs) 
perform monitoring activities. MAs and their interactions, based on 
message passing, constitute the HiFi monitoring system.  

HiFi requires the organization of the deployment of a distributed 
application into several domains. Each host has a Local Monitoring Agent 
(LMA) that belongs to a domain. LMAs collect monitoring data from the 
event producers. Each domain has one Domain Monitoring Agent (DMA) 
which collects the monitoring data from the LMAs of that domain. The 
DMAs participate in a peer network using a reliable group communication 
infrastructure to exchange monitoring data. The HiFi architecture defines 
communication and management protocols for the HiFi agents. HiFi 
supports a dynamic monitoring agent hierarchy, allowing new agents to 
appear and leave, based on the current needs for information and the 
system’s utilization level.  

The HiFi system supports adaptable monitoring agents to alleviate the 
load of the system. HiFi allows load adaptation during instrumentation and 

Figure 4-2 The 
hierarchical 
architecture of HiFi 
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deployment, and dynamic reconfiguration of the agent hierarchy during 
runtime. The HiFi system maintains the state of its current configuration 
using a special environment specification language. 

A monitoring agent offers its functionality through four services: 
subscription, instrumentation, event filtering and control. The subscription 
service provides the following functionality: processes the consumer 
demands, receives and processes monitoring results, and controls the agent 
activities. The instrumentation service deals with all aspects of the 
instrumentation process in HiFi. It offers a number of interfaces and tools 
that assist the developer in making the instrumentation. The event filtering 
service handles event processing tasks and filters out events matching the 
currently installed filters. The control service holds the responsibility for the 
actual dissemination of monitoring information and for the handling of 
control actions on the monitored application coming from consumers. 

We consider the HiFi architecture highly versatile. Nevertheless, the 
HiFi architecture and system implementation may prove too complex for 
cases when we require monitoring of smaller systems in which scalability 
issues do not present a real problem. In our opinion, a generic architecture 
for monitoring should facilitate the handling of simpler monitoring 
scenarios as well.  

4.3.2 Middleware instrumentation for monitoring of communication 
behavior 

The HiFi designers acknowledge the need to present automated 
instrumentation support to application developers, so that they can easily 
adapt their applications to the HiFi monitoring system. HiFi designers 
suggest an application independent Code Instrumentation Process (CIP) 
suitable for instrumenting the monitored application (e.g., its C++ source 
code). The CIP uses Event Reporting Criteria derived from the subscription 
information of monitors to create instrumentation for the generation of the 
necessary events. These criteria strongly couple the instrumentation with 
the particular monitored application. HiFi does not explicitly consider 
techniques such as instrumentation at the middleware level. The 
instrumentation of HiFi stays at the lower abstraction (than middleware) 
level concepts of the UNIX environment.  

4.3.3 Support for analysis of concurrent activities 

We consider the major disadvantage of HiFi, the missing support for 
monitoring the causal precedence of events from the distributed 
computation of the monitored application, which excludes any analysis 
based on causal order. Instead HiFi provides total order among events by 
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using timestamps generated from physical computer clocks synchronized 
using the NTP protocol. This reduces the area of application of the HiFi 
system to ones that can tolerate a certain amount of errors (from NTP) in 
the ordering relation. 

4.3.4 Dealing with overhead 

The HiFi prototype does not include an instrumentation for object or 
component middleware. The HiFi implementation attempts to alleviate 
overhead from resource sharing by distributing the processing of 
monitoring data, e.g., the hierarchical filtering, over the monitoring agents 
of the system. Furthermore, HiFi provides basic load distribution 
functionality in the MAs. Based on its current load, an MA may decide to 
change the size of its internal event queues. Furthermore, under certain 
conditions a DMA may decide to create new monitoring agents on less 
loaded hosts on which to delegate some of its event processing. Since we do 
not consider resource sharing in this thesis we do not discuss load 
distribution in HiFi in detail. From the report [Shaer98], we can conclude 
that HiFi covers the minimal non-interference feature in most cases of 
distributed execution of the monitored application, i.e., HiFi can monitor 
all events that the observed application can produce when unmonitored. 

HiFi can provide temporal order among events as accurate as the NTP 
implementation it uses. Hence, HiFi does not guarantee order among 
events. Thus we consider HiFi minimally accurate, i.e., it can provide accurate 
information about all detected events, but it reports some of the relations 
wrong. 

4.4 MOTEL 

The Monitoring and Testing Tool (MOTEL) described in [Logean00], 
presents an approach for monitoring and testing communication services 
built on top of object middleware, such as CORBA. 

The method of the MOTEL approach includes expressing application 
properties at the level of system design using linear time temporal logic 
[Diet00], and checking for the violation of these properties during the 
execution of the system prototype. MOTEL consists of a system for 
monitoring events in middleware-based applications, and of a testing system 
that uses the information collected by the monitoring system to check for 
violation of predefined properties. The design of the MOTEL system 
addresses a broad spectrum of monitoring problems. The MOTEL 
designers have applied the system to industrial applications for testing and 
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verification of telecommunication services. We consider the major strength 
of the MOTEL approach the integration of formal methods for verification 
of software applications with the testing phase of the software development 
process.  

MOTEL defines an event model for monitoring lifecycle and 
communication behavior of object middleware-based applications. The 
model uses an event concept similar to our definition from Chapter 2. The 
model considers events at four different levels: object, thread, process and 
system level. The object level includes events related to performing 
communication between objects, such as incoming and outgoing calls. To 
the process level belong events related to the lifecycle of objects and 
threads. To the thread level belong events related to message exchange 
between threads. System level events relate to system wide object 
availability (the whole distributed system) and to the process lifecycle. 
MOTEL does not consider component middleware. 

MOTEL defines an event as a tuple consisting of an identifier and 
attributes. 

4.4.1 Architecture 

Figure 4-3 presents the architecture of the MOTEL system. 
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The Observation Manager holds the responsibility to configure the 
instrumented middleware on each host for generating notifications about 
“interesting” events occurring on that host. The Observation Manager 
receives notifications and sends the corresponding events to the 
Observation Handler, which has the responsibility for keeping the event 
order consistent. Developers may choose to store events for offline analysis 
or send the events to the Monitoring GUI for online visual presentation. 
Furthermore, the Observation Handler sends the events to the Properties 
Manager, which dispatches these in an appropriate form to the Properties 

Figure 4-3 The 
MOTEL 
architecture 
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Engine, which can detect violation of system properties in the current 
distributed computation. The Properties Engine contains a number of 
components such as an automata optimizer, a property translator, an 
automation handler and an error handler, which we shall not discuss in 
further detail. Using the Testing GUI, the user can specify additional 
properties for testing using the MOTEL system. 

Let us note that although dedicated to testing, as a consequence of the 
modular architecture of MOTEL, designers can use the Monitoring 
Manager module for generic monitoring with little extra effort (as the 
authors of MOTEL claim). Furthermore, designers can easily (again a claim 
of the authors that seems reasonable to us) replace the components of the 
Monitoring Manager with different implementations to meet new 
monitoring requirements. Nevertheless, we consider the main disadvantage 
of the MOTEL system its centralized architecture. In an attempt to solve 
this problem, MOTEL authors suggest deployment of a separate Observer 
instance (called a Partial Observer Agent) on each host, that can 
automatically monitor and test properties local to that host. The 
deployment still needs a central Observer instance in order to analyze 
properties that span several hosts. The MOTEL architecture does not 
further elaborate on distribution or scalability aspects. 

The instrumentation and the Observation Manager comprise the 
“specific” part of the system that depends on the application domain of the 
monitored application. The other components treat monitoring data (the 
events) in a general way. The MOTEL system however, does not identify 
further general services and generic activities, such as a dissemination 
component, subscription components, etc. 

4.4.2 Middleware instrumentation for monitoring of communication 
behavior 

MOTEL performs instrumentation automatically at the middleware layer. 
MOTEL provides a concrete instrumentation method for the CORBA 
object middleware. Designers do not need to change anything in their 
software applications in order to monitor the events identified in the event 
model. This way designers can concentrate on expressing the behavioral 
constraints and properties for testing, and devise adequate testing scenarios 
covering various aspects of the functionality of the monitored application. 
The MOTEL middleware instrumentation however, uses a specific 
mechanism (called Message Filters) provided by (an old version of) IONA’s 
Orbix CORBA product [ORBIX]. The more recent and more generic 
Portable Interceptors [CORBA] mechanism can support the same 



 MIMO 99 

middleware instrumentation in a vendor independent way. This standard 
has matured recently, after the completion of the MOTEL work.  

4.4.3 Support for analysis of concurrent activities 

MOTEL acknowledges the importance of relating event by their order of 
occurrence. MOTEL employs a system of vector clocks to obtain vector 
timestamps. These vector timestamps allow the MOTEL system to restore 
the Lamport’s “happened before” relation (causal precedence, Chapter 2, 
section 2.2.3) between events.  

4.4.4 Dealing with overhead 

The designers of the MOTEL system intend its use in a testing 
environment. Hence, the testers using MOTEL may tolerate some intrusive 
overhead (delay) in the monitored application behavior, because testers 
want to locate and remove errors rather than use the monitored 
application’s functionality. 

The MOTEL system comes with an evaluation with respect to the 
consistency of monitoring information. This evaluation gives the users of 
the MOTEL system a precise description of the differences between an un-
instrumented unmonitored application execution and the view that the 
MOTEL system provides on a monitored execution. According to this 
evaluation the MOTEL system satisfies the minimal non-interference property 
in most cases of application execution, and total accuracy. Total accuracy 
follows from the use of the vector clock system for event timestamping. For 
details on the evaluation consult [Logean00]. 

4.5 MIMO 

The Middleware Monitoring (MIMO) approach [Rack01] represents a 
development in the direction of provisioning on-line tool support in 
heterogeneous middleware environments.  

The MIMO approach consists of three major parts: a monitoring 
infrastructure, the Multi-Layer Monitoring (MLM) information model, and 
a framework for development of online tools.  

The MIMO monitoring infrastructure consists of a design and an 
implementation of a generic monitoring system, suitable for application to 
various middleware technologies including object middleware.  

MIMO models the monitored application using an entity-relationship 
model, where entities represent the identifiable things that the monitoring 
system can observe. Based on analysis of several applications of common 



100 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS 

types of middleware, MIMO defines the MLM model as shown in Figure 
4-4. 
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The MLM information model presents a method for classification of 
observable entities in a layered architecture, such as the one used in 
common middleware platforms. A monitoring system based on MLM 
allows gathering of information at all layers of the model. The MLM allows 
only one type of general relation among entities. This way MLM makes only 
weak assertions about relations among entities. Furthermore, entities can 
participate in relations only between adjacent layers, thus forming a layered 
relational structure. For example, a concrete implementation of MLM may 
relate a set of interfaces to an application, a distributed object may offer an 
interface, programming language objects may implement distributed objects, 
and processes execute those objects on a particular hardware platform. 
Monitors can use the MLM to provide presentations of the structure of the 
monitored application during runtime, based on the entities and their 
relations. Note that the MLM reflects only application structure and not 
application behavior.  

MIMO contains a framework for the development of online tools 
(monitors) called MIVIS. The MIVIS tools framework consists of a generic 
monitor that developers of monitoring applications can extend with 
additional visual components. Each visual component represents a view on 
the monitoring data coming from the monitoring system. The MIVIS 
framework supports the development of portable and extendible monitors, 
using Java and JavaBeans components as implementation technologies. 

Figure 4-4 The 
MLM model 

4.5.1 Architecture 

Figure 4-5 presents the conceptual architecture of the MIMO monitoring 
system. 
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The MIMO architecture uses terminology slightly differing from ours. A 
monitoring system consists of the following types of components: a tool, a 
MIMO monitor, an instrumentation and an observed application 
component. Tools (or monitors, in our terminology) represent the users of 
monitoring data. The MIMO monitor (the MSS, in our terminology) 
represents the core component of the monitoring system. Tools 
communicate with the MIMO monitor in order to receive monitoring data. 
Several MIMO monitor instances may cooperate among each other 
exchanging monitoring data in a large distributed environment. The MIMO 
monitor associates with one or more instrumentation instances. The 
instrumentation supplies the data it observes from components (parts) of 
the monitored application. Note that the MIMO architecture keeps the 
structure of the monitoring system independent to the MLM model or any 
other model of the monitored application, by separating generic monitoring 
functionality from domain-specific functionality with the help of clearly-
defined interfaces between the instrumentation and the MIMO monitor. 
Furthermore, the interface between the MIMO monitor and the tools 
completes the separation of concerns, as tools often belong to a specific 
domain (of the monitoring application) as well. 

We consider the main advantage of the MIMO architecture the 
separation of concerns provided by the interfaces MIMO defines between 
instrumentation, the monitoring core, and the tool. We however, consider 
these interfaces limited. We make the general observation that the MIMO 
architecture focuses on defining the service of the MIMO monitor, while 
the service of the instrumentation and the tools defines only basic 
functionality. 

Furthermore, MIMO identifies an interface between the 
instrumentation and the monitored application. In general, we consider this 
interface application specific and thus irrelevant for a generic approach to 

Figure 4-5 The 
MIMO architecture 
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monitoring. We would leave the definition of this interface for 
instrumentation developers. 

MIMO deals with scalability issues using a general interface for monitor-
to-monitor communication. The MIMO approach suggests a scheme for 
assignment of monitor instances to various nodes of the distributed 
environment so that one MIMO monitor always observes the entities of the 
monitored application on each node. MIMO monitors exchange the data 
among them using some proprietary protocol. The filtering mechanism that 
MIMO uses may present problems in large scale systems, because the 
MIMO monitor typically determines the relevancy (i.e., to discard or not) 
of monitoring data too close to the tools. In a large distributed 
environment, this leads to the use of resources for transporting irrelevant 
monitoring data. An alternative approach similar to the hierarchical 
organization of HiFi would allow finer control over unnecessary trafficking 
of monitoring data by using hierarchical filtering techniques.  

4.5.2 Middleware instrumentation for monitoring of communication 
behavior 

MIMO defines an MLM specialization to model object middleware-based 
applications. MIMO designers haven’t considered monitoring of distributed 
component-based applications.  
MIMO designers developed an instrumentation that uses the MLM 
specialization for object middleware to structure the monitoring data it 
sends to the MIMO monitor. As we showed earlier, the MLM only treats 
the structure of the monitored application, but not its behavior. MIMO 
defines only a basic event model (consumer / producer), that delegates to 
instrumentation developers the responsibility for defining any specific 
events that represent application behavior. 

MIMO suggest two modes of instrumentation: by using intruders and by 
using adapters. Intruders represent middleware instrumentation that 
transparently integrates into the monitored application. In contrast, 
adapters represent application level instrumentation that developers have to 
create in order to prepare their applications for monitoring with MIMO. 
Since we focus on middleware instrumentation, we further discuss only 
MIMO intruders.  

MIMO provides middleware intruders for CORBA and DCOM. The 
CORBA Intruder represents the MIMO instrumentation for ORBACUS for 
C++ - based applications. The CORBA Intruder allows for monitoring of 
events representing object lifecycle activities and the communication 
between CORBA objects. The CORBA intruder wraps some of the ORB 
interfaces in order to provide the necessary observation points. Mainly 
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because of the immaturity of the Portable Interceptors specification by that 
time, MIMO hasn’t used interceptors for providing ORB independent 
instrumentation.  

The DCOM intruder represents the MIMO instrumentation for the 
distributed object technology of Microsoft. The DCOM Intruder allows 
monitoring of the same set of events as the CORBA Intruder, but for 
DCOM. The DCOM intruder contains an universal wrapper of COM 
objects that uses a special DCOM feature to delegate all interactions to the 
intruder before the object implementation.  

4.5.3 Support for analysis of concurrent activities 

MIMO does not define an explicit monitoring model of the monitored 
application behavior. We consider this a serious disadvantage because, for 
example, dealing with concurrent activities may prove too difficult for users 
extending the monitoring system with their own instrumentation.  

MIMO provides a temporal order among events as accurate as its 
timestamping mechanisms. For object middleware instrumentation, MIMO 
uses NTP to generate events. MIMO designers also consider the CORBA 
Time service as an alternative, but do not provide an implementation. 

MIMO does not provide information about causal relationships between 
events.  

4.5.4 Dealing with overhead 

The MIMO object middleware instrumentation allows for monitoring 
middleware-based applications during their normal operation (as opposed 
to monitoring in a test environment only). MIMO designers provide 
performance figures for the intrusive effects of their object middleware 
instrumentation. Using MIMO yields 60-90% monitoring delay per remote 
operation invocation. Although high, we consider this overhead acceptable 
for many applications.  

We consider MIMO minimally non-interfering, because its middleware 
instrumentation preserves the events in the monitored application behavior. 

As discussed in the previous section, MIMO only provides temporal 
order with the accuracy of the NTP implementation used. Hence, MIMO 
does not guarantee that monitoring tools can restore correctly the order of 
events according to the order of event occurrence. Therefore, we consider 
MIMO, minimally accurate, i.e., monitoring tools can monitor all events 
MIMO detects, but some of the relations among these events may not be 
reported or reported wrongly. 
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4.6 Summary  

In this section we present a summary of the main advantages and 
disadvantages of each presented monitoring system.  

4.6.1 OLT 

Advantages 
– Automatic and transparent instrumentation (Java debug mode), 

applicable to different monitored applications; 
– Monitoring of object communication at the level of the OO 

programming language used to build the monitored application (Java, 
C++). 

– Causal precedence (“happened before”, potential causality) of observed 
events; 

– Total accuracy as a consequence of having causal ordering implemented 
using a vector clock system; 

Disadvantages  
– Supports debugging applications only, which makes the development of 

more general applications of OLT very difficult;  
– Architecture does not scale for large distributed environments. 
– Architecture does not provide open interfaces for building monitoring 

extensions or adding monitors;  
– May produce high intrusive overhead in the application, because it uses 

the debugging mode of the execution environment. OLT cannot operate 
in normal mode; 

– Does not support the monitoring of operation invocation for object 
middleware such as CORBA;  

– IBM provides very limited information about the OLT mechanisms and 
architecture, which does not encourage the evolution of this system by 
other parties.  

4.6.2 HiFi 

Advantages 
– Hierarchical filtering. Allows better management of the flow of 

monitoring data to interested consumers in a large distributed 
environment; 

– Hierarchical organization of peer monitoring agents. Allows for flexible 
and scalable deployments; 
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– Declarative approach to defining events. Allows flexible event 
correlation and filtering; 

– HiFi architecture defines generic monitoring services within the 
monitoring system; 

– HiFi architecture separates instrumentation from the generic 
monitoring functionality. This increases reusability of the monitoring 
system; 

– Considers instrumentation tools important for the integration of 
monitoring systems in the software development process. 

Disadvantages 
– Does not provide support for monitoring causal order among events; 
– Satisfies only minimal accuracy, which may prove insufficient for 

applications that require accurate analysis of application execution; 
– Does not provide a specialization of the instrumentation process for 

object or component middleware. 

4.6.3 MOTEL 

Advantages 
– Strong formal apparatus behind the definition and evaluation of 

properties for distributed computations. This increases confidence in 
the correctness of the results produced by the system; 

– Separates the generic monitoring functionality from the domain specific 
instrumentation functionality; 

– Support for causal precedence (“happened before”, potential causality). 
Demonstrated the usefulness of the “happened before” relation for 
verification of the behavior of middleware-based applications; 

– Fine control over event generation in the instrumentation; 
– System satisfies the total accuracy property.  The formal evaluation of its 

overhead gives users confidence about the information they get from the 
monitoring system. 

Disadvantages 
– Centralized architecture. The MOTEL designers target to support 

monitoring in testing environments, and as a consequence, the MOTEL 
architecture does not scale for use in large distributed environments; 

– Does not support component middleware; 
– Provides middleware instrumentation only for one particular 

middleware product; 
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– Uses vendor-specific instrumentation of the object middleware for 
inspection of object behavior; 

– Although modular, the MOTEL system does not explicitly define 
general monitoring services and interfaces. This makes it difficult for 
designers to use its generic parts for different monitoring applications. 

4.6.4 MIMO 

Advantages 
– The MLM model of middleware-based applications. Allows for 

classification of system entities suitable for presenting abstractions of the 
structure of monitored applications; 

– MIMO separates the concerns about specific and generic monitoring 
activities using clearly defined interfaces between instrumentation, 
MIMO monitor and tools; 

– Supports monitoring of communication in object middleware (CORBA, 
DCOM); 

– MIMO addresses some scalability issues, by defining a basic architecture 
for distribution of the logic of the monitoring system among several 
MIMO monitors.  

Disadvantages 
– No support for monitoring of causal relationships among events; 
– MIMO system satisfies only minimal accuracy, because it uses physical 

computer clocks to order events; 
– MIMO does not support component middleware; 
– MIMO system may experience scalability problems. The centralized 

monitoring component can experience scalability problems in large 
distributed environments, where the volume of unnecessarily trafficked 
monitoring data may become significant. 

4.7 Conclusions 

We can conclude that none of the evaluated systems address sufficiently all 
of the problems related to our evaluation criteria. In particular, these 
systems fail to combine (1) a mechanism for monitoring of object and 
component middleware with (2) a scalable and flexible architecture and (3) 
an explicit monitoring model suitable for analysis of temporal and causal 
relationships. Based on the advantages and disadvantages that we 
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summarized above, we define two groups of requirements for our 
monitoring system:  
– Generic – Requirements relating to monitoring in distributed 

environments in general; 
– Specific – Requirements relating to monitoring of communication 

behavior in object and component middleware.  

Furthermore, we distinguish two types of users of a monitoring system: 
– Monitoring user – or simply user, who uses the information he obtains 

from the monitoring system for some purpose. Monitoring users show 
interest mainly in the properties of the monitored application; 

– Monitoring designer – or simply designer, who wants to apply the 
monitoring system to one or more applications in order to prepare 
them for monitoring. Monitoring designers show interest mainly in the 
properties of the monitoring system that potentially reduce the cost for 
monitoring.  

In the next sections we define generic and specific requirements from the 
perspectives of both types of users of a monitoring system. We shall also 
indicate for each requirement the general qualities of a monitoring system it 
relates to, such as performance, usability, scalability, maintainability, 
reusability, configurability, and portability.  

4.7.1 Generic requirements 

From the perspective of the user we define the following requirements: 
– Causal precedence. Monitoring data should contain the necessary 

information that allows reasoning about causal precedence (see Chapter 
2, section 2.2.3) among events from application runs. Note that causal 
precedence also automatically provides partial temporal order among 
events in the system. This requirement improves usability for 
monitoring applications that require temporal and causal order; 

– Online monitoring. The monitoring system should provide the possibility 
for timely delivery of monitoring data to monitors, for the purpose of 
controlling the monitored application based on some analysis from a 
decision making component in the monitoring application, such as 
debugging and application management. This requirements addresses 
performance; 

– Monitoring model. The monitoring system should provide an explicit 
monitoring model that defines all aspects of application structure and 
behavior contained in the monitoring data. This requirement improves 
usability in general. 
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From the perspective of the designer we define the following requirements: 
– Large number of producers. The monitoring system should support a large 

number of remote application parts producing monitoring data at 
various rates. This requirement improves scalability; 

– Large number of consumers. The monitoring system should support a large 
number of monitors with different requirements for monitoring data. 
This also implies that the monitoring system should adapt to the 
requirements from monitors during runtime. This requirement 
improves scalability; 

– Overhead from intrusion. The monitoring system should minimize the 
overhead from injected delay in application behavior by providing a 
configurable instrumentation that generates only monitoring data 
relevant to monitors. This requirement improves performance; 

– Separation of generic from specific functionality. The monitoring system 
should clearly separate the instrumentation (which we typically consider 
specific to the domain of the monitored application) from application 
domain independent monitoring functionality. Furthermore, the 
monitoring system should clearly separate the tools (monitors) that 
perform analysis (which we typically consider specific to the domain of 
the monitoring application) from the application domain independent 
monitoring functionality. This requirement increases reusability, 
maintainability and flexibility of the monitoring system. 

4.7.2 Specific requirements 

From the perspective of the user we define the following specific 
requirements: 
– Communication and lifecycle. The monitoring system should provide 

information about the communication and lifecycle behavior of 
application objects and/or component instances in middleware-based 
applications. Communication behavior includes operation invocations 
and remote method calls (e.g., synchronous and asynchronous), and 
lifecycle behavior includes creation, activation, deactivation and 
destruction of objects and component instances. This requirement 
addresses usability for middleware. 

From the perspective of the designer we define the following specific 
requirements: 
– Transparent middleware instrumentation. The monitoring system should 

provide instrumentation of the middleware that conforms as much as 
possible to the transparency principles of the middleware. This 
requirement improves the reusability; 
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– Middleware tool support. The monitoring system should minimize manual 
work by, e.g., entirely automating the instrumentation process. This 
reduces time for enabling monitoring and increases the quality of the 
instrumentation. This requirement improves usability, efficiency, and 
maintainability. 





 

Chapter 5 

5. A design approach for generic 
monitoring systems 

This chapter presents a design approach for monitoring systems. With this 
design approach we intend to reduce design time and development costs by 
capturing the important issues in designing monitoring systems and 
organizing them into appropriate guidelines.  

We start with a general discussion in which we identify basic design 
questions. Based on these questions we decompose the design process into 
four separate stages. We then elaborate on the steps of each stage in 
separate sections. 

5.1 General discussion 

In Chapter 2 we decomposed the monitoring system using the separation of 
concerns principle. We applied this principle twice, first to separate 
functionality that deals with the domain of the monitored application from 
functionality that deals with the monitoring application, and then to 
separate domain-independent monitoring activities from domain-specific 
activities. This resulted in the decomposition of the monitoring system into 
three tiers: an instrumentation tier, a monitor tier and the tier of the MSS. 
We use this decomposition as a starting point to define a design approach 
that allows designers to build a monitoring system in a systematic way. 

We choose to analyze the design process from the perspective of the 
monitoring application, because it represents the motivation for 
monitoring. The monitoring application requires certain monitoring 
information about the monitored application. For this the monitoring 
application requires certain functionality from the monitoring system. 
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We call service of a system, the externally observable functionality of that 
system [ViPi+00]. In general, to define a service we need to describe the 
interactions of the systems with its environment (i.e., users), any relations 
between these interactions, and the information exchanged with these 
interactions. The service of a monitoring system offers to the monitoring 
application means to obtain the required monitoring information. We 
shape our design approach by emphasizing the importance of the 
information required by the monitoring application, the monitoring data 
that represents the information, and the measurements performed on the 
monitored application necessary for acquiring the monitoring data. 

5.1.1 Design questions 

We want to design a monitoring system modeled as shown on Figure 5-1 
(see also Chapter 2, section 2.1.1). In relation to any monitoring system we 
can phrase a set of five generic design questions (Q1 to Q5) that help 
formulating and structuring the required monitoring information. A 
dashed-line round-cornered rectangle shows the scope to which a design 
question applies. 
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By answering these questions, designers prepare for the actual design of a 
concrete monitoring system.  

Figure 5-1 
Decomposition of 
the monitoring 
system 

– Q1: For what purpose do we want to monitor? 
– Q2: What information do we need to fulfill the monitoring purpose? 
– Q3: What monitoring data does the monitor require from the MSS? 
– Q4: What monitoring data does the MSS require from the 

instrumentation? 
– Q5: What measurements does the instrumentation have to perform? 

To properly introduce the design questions lets consider the following 
example: 

Example 1 
Debugging of 
application faults 

A developer needs to locate and remove errors from the prototype of a 
distributed application. When an error condition occurs, he wants to edit the 
erroneous source code from the Integrated Development Environment (IDE). 
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Q1: Why does the developer want to monitor a prototype of a distributed application? 
The answer to this question determines the purpose for monitoring. This 
question helps designers to identify the domain of the monitoring 
application. 

In Example 1, the statement “to locate and remove errors from the 
program’s prototype” represents the monitoring application domain. In this 
case, monitoring plays a role in locating errors during the debugging and 
testing stage of the software development process. 
Q2: What information does the developer need in order to locate and remove errors? 
To answer this question, designers need to define a high level description of 
the information delivered by the monitoring system. In the monitoring 
system, the monitor has the responsibility for presenting this information to 
the monitoring application. 

In Example 1, when an error occurs that the monitoring system can 
detect, the developer requires the IDE to open and show the appropriate 
source code file, highlight the statement that may have caused the problem, 
and provide a human-readable explanation of the error. In this case, the 
highlighted statement in the source code and the error explanation 
represent the needed monitoring information. 
Q3: What monitoring data does the monitor require from the MSS? 
The monitor concentrates the knowledge that the monitoring system has 
about the monitoring application. A monitor requires monitoring data in 
order to extract and present information to the monitoring application. 
This question focuses the designer’s attention on execution aspects of the 
monitored application (as a whole), about which the monitor requires 
information. 

In Example 1, the monitor requires from the MSS monitoring data 
containing information about the file names, line numbers of the 
statements producing errors, and error codes for all errors that occur in the 
monitored application. The monitor requires that monitoring data in the 
order of the occurrence of the errors in the monitored application. Using 
this information, the monitor can access the source files, and can retrieve 
human readable error descriptions from some database with error code 
descriptions. 
Q4: What monitoring data does the MSS require from the instrumentation?  
The MSS concentrates domain independent functionality responsible for 
the collection, aggregation and dissemination (and possibly processing) of 
monitoring data. To answer this question, designers need to focus on the 
monitoring data that the instrumentation (instrumented application parts) 
provides to the MSS.  

In Example 1, when the instrumentation detects an error in a particular 
application part, it generates monitoring data that comprises the line 
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number of the statement that produced the error, the name of the source 
file where the statement resides, and the error code. Note that because 
monitors require delivery of monitoring data in the occurrence order, the 
instrumentation has to provide to the MSS extra information that allows it 
to reorder monitoring data, e.g., a timestamp reflecting the moment of 
error occurrence. This implies that the MSS collects the monitoring data 
from the instrumentation at the distributed monitored application parts, 
performs reordering according to the time of occurrence of the errors, and 
delivers the monitoring data to monitors in the proper order. Note that the 
MSS does not need to pass timestamps to the monitor, as it already 
guarantees ordered delivery. 
Q5: What measurements does the instrumentation perform? 
The instrumentation concentrates the knowledge of the monitoring system 
about the monitored application. The instrumentation performs 
measurements in order to generate monitoring data containing information 
about the execution aspects of the monitored application, which the 
monitoring application considers interesting. The answer to this question 
determines the type of measurements and indirectly the mechanisms, which 
the instrumentation uses to perform the measurements. 

In Example 1, the instrumentation uses the debug interface of the Java 
virtual machine running in debug mode, to detect (catch) un-handled 
system exceptions. The instrumentation analyzes the exception information 
in order to extract the file name, the line number, and the type of the error 
that an exception represents. Furthermore, the instrumentation uses the 
host’s computer clock to generate timestamps describing the time of the 
exception occurrence. 

By answering these questions designers collect requirements on the 
monitoring system, starting from high-level information presented by 
monitors, and ending at the concrete measurements performed by the 
instrumentation. We call these requirements monitoring requirements. 

5.1.2 Building a monitoring system in stages 

In order to reduce the complexity of the design process, we suggest 
designers to address monitoring requirements in a particular order, and 
possibly in groups based on some common characteristics. In this section, 
we define design stages for monitoring systems consisting of three tiers: a 
monitor, an MSS and an instrumentation. Each design stage addresses a 
subset of the monitoring requirements.  
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We propose the following decomposition of the design process into four 
stages (Figure 5-2): 

Figure 5-2 
Decomposition of 
the design process 

I. GMS design; 
II. GMS specialization; 

III. Instrumentation design; 
IV. Monitor design. 

The first stage deals with the design of a Generic Monitoring System 
(GMS). We base the motivation for this design stage on our prior 
observation from Chapter 2 that the monitoring system performs common 
monitoring activities, some of which (e.g., dissemination) we consider 
independent from the domains of the monitored and the monitoring 
applications. In this stage, designers generalize the monitoring requirements 
collected with the help of Q3 and Q4 in order to develop a GMS that works 
with monitoring data in a domain independent manner. The GMS 
represents a generalization of an MSS. The GMS architecture provides, 
among others, the following benefits to designers of monitoring systems: 
– Explicit definition of the service of the MSS to facilitate development of 

new monitors and instrumentations; 
– Increased reusability and maintainability of core monitoring 

functionality in a distributed environment; 
– Increased technological independence from the monitored and 

monitoring domains; 
– Improved scalability for facilitating monitoring of large distributed 

systems. 
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The second stage deals with the specialization of the GMS from the 
previous stage into an MSS suitable for monitoring of a particular 
monitored application for a particular purpose. In this stage, designers 
consider monitoring requirements collected with the help of Q2 and Q3 in 
order to define a monitoring model of the monitored application. 
Designers also define a monitoring data structure for the monitoring 
model. The monitoring data structure defines how one represents instances 
of the concepts from the monitoring model using concrete data types, such 
as strings and numbers. Furthermore, in this stage designers consider 
monitoring requirements from Q4 to identify any functionality of the MSS 
that requires processing of the monitoring data coming from the 
instrumentation. 

The third stage deals with the instrumentation design for a monitored 
application according to the monitoring model defined in the previous 
stage. In this stage, instrumentation designers consider monitoring 
requirements from Q4 and Q5 in order to design proper measurement 
mechanisms that can provide the required monitoring data. 

The fourth stage deals with the design of monitors that can analyze 
monitoring data using the monitoring model identified in stage two. In this 
stage, monitor designers consider monitoring requirements from Q1, Q2, 
and Q3 to produce a monitor that can provide the required information to 
the monitoring application. 

Figure 5-3 illustrates the relations among the different stages. These 
relations define a design trajectory that leads designers through the process 
of designing monitoring systems. 

 11..  GGMMSS  ddeessiiggnn

22..  GGMMSS  
ssppeecciiaalliizzaattiioonn

44..  MMoonniittoorr  
ddeessiiggnn    

33..  IInnssttrruummeennttaattiioonn
ddeessiiggnn    

 

Note that as a result of the definition of a monitoring model and a data 
structure in stage two, designers can perform the Monitor and 

Figure 5-3 
Relations among 
the stages 
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Instrumentation design stages independently. The independent design of 
the monitor and the instrumentation provides several benefits: 
– The possibility for development of a monitor and an instrumentation by 

separate teams; 
– Makes it easier to support many different monitoring applications that 

require similar monitoring data from an instrumentation; 
– Makes it easier to support instrumentations of many different 

monitored applications that produce similar monitoring data required 
by a monitor; 

Although the proposed design approach divides the development of a 
monitoring system into four separate stages, designers can skip a stage, 
should they find existing software that meets the monitoring requirements. 
For example, designers can skip the first stage if there already exists a 
generic monitoring system with the necessary capabilities. In the second 
stage designers could then only create an MSS as a specialization (a 
monitoring model and additional processing components) of that 
monitoring system so that they can build instrumentations and monitors.  

In the next sections we describe in more detail the steps in each of the 
stages. In presenting the stages of our design approach we limit the 
discussion to design guidelines only. At this point, we do not offer concrete 
designs nor do we address any implementation issues. 

5.2 GMS design 

We propose the following three steps during GMS design (Figure 5-4):  

 
11..  IIddeennttiiffiiccaattiioonn  ooff  

ggeenneerriicc  uusseerr  
rreeqquuiirreemmeennttss 

22..  DDeeffiinniittiioonn  ooff  aa  
GGMMSS  sseerrvviiccee 

33..  DDeeffiinniittiioonn  ooff  aa  
ssooffttwwaarree  aarrcchhiitteeccttuurree

 

Figure 5-4 Steps in 
GMS design 
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5.2.1 Identification of generic user requirements 

In this step, designers start with a view on the GMS from the perspective of 
its users: the monitor and the instrumentation (Figure 5-5). We consider 
the GMS a black box characterized by its external behavior – the GMS 
service. In this context, user requirements represent the requirements of 
the monitor and the instrumentation on the service of the GMS. These 
requirements encompass both functional requirements and monitoring 
requirements (i.e., requirements on monitoring data).  
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The GMS represents a generalization of an MSS that deals only with domain 
independent monitoring activities. These activities include dissemination 
activities and generic processing activities on monitoring data. 
Dissemination activities include collecting and delivering monitoring data. 
Generic processing activities do not require interpretation of domain 
specific information about the monitored application by the GMS. 
Designers can define requirements on the dissemination and processing 
activities performed by the GMS. 

The monitoring requirements resulting from Q3 and Q4 concern the 
monitoring data accessible through the MMS service. In this step, designers 
generalize these requirements to define requirements on the monitoring 
data that the GMS provides to its users in a generic way. 

Figure 5-5 The 
service of the GMS 

5.2.2 Definition of a GMS service 

Based on the identified user requirements, designers can proceed with the 
GMS service definition. We define a service as a collection of service 
primitives, parameters for each primitive, and the relations between the 
primitives [ViPi+00]. A service primitive represents one type of interaction 
between the system and its users. Designers can organize service primitives 
into groups called service elements, based on some common characteristics. 
The relations among service primitives also imply relations among their 
corresponding service elements. 

In order to design the service for the GMS, designers need a starting 
point. In Figure 5-6 we present one possible GMS monitoring model that 
defines a general designer’s view on a monitoring system. The monitored 
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application generates some monitoring reports that correspond to events 
occurring in the parts of the monitored application (producers). Each event 
has two attributes, event (source_id, t), where source_id represents some 
unique identifier of the producer that generated the event, t represents a 
timestamp of the moment of the event detection by the monitoring system 
(and the instrumentation in particular). The level of generality and domain 
independence of the GMS monitoring model, determines the applicability 
of the GMS to different monitoring and monitored applications. 
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The monitoring application comprises several consumers (monitor 
instances), which require information about the behaviour of the monitored 
application. A consumer expresses its requirements for monitoring 
information to the GMS in some form. The GMS has the responsibility to 
supply consumers with monitoring reports according to their requirements. 

The monitored application comprises several producers (instrumented 
application parts) that can generate monitoring reports. The GMS does not 
make any further assumptions about the behaviour of the producers or 
about any relations among different producers. Based on the consumer 
requirements, the GMS can instruct producers to generate monitoring 
reports containing the required data. The GMS then collects generated 
monitoring reports from the producers and delivers them to the 
appropriate consumers.  

Monitoring data constitutes a flow of individual monitoring reports 
from the monitored application to the monitoring application. Designers 
need to define a generic monitoring data structure for the GMS monitoring 
model. Consider again Example 1, we define that a monitoring report has 
one field for every attribute in an event of the generic monitoring model we 
discussed above. The source_id attribute accepts string values generated 
using the GUID algorithm [RPC], the t attribute accepts 64-bit long integer 
values representing a timestamp in milliseconds since midnight, January 1, 

Figure 5-6 A 
possible GMS 
model  
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1970 UTC. The generic data structure allows the GMS to process 
monitoring data independently of the monitored and the monitoring 
domains, for example, to make sure that the proper monitoring data goes 
to the correct consumers.  

5.2.3 Definition of a software architecture 

In the next step, designers open the black box in order to determine how 
internal GMS components realize the GMS service. The GMS performs two 
types of activities: generic processing and dissemination (e.g., collecting, 
delivery) of monitoring data. We propose two views on the internal 
structure of the GMS: a logical decomposition that defines the functional 
blocks that perform processing activities, and a physical decomposition that 
determines the GMS structure according to the distribution aspects of 
dissemination activities. 

Logical decomposition 

In a top down approach, a logical decomposition of a software system 
defines the internal components that implement the system’s service. Each 
component implements some part of the service and collaborates with the 
other components to achieve the behavior of the system as a whole. We 
consider a logical decomposition similar to the computational viewpoint of 
RM-ODP [Put01]. As such, the logical decomposition does not consider 
any distribution issues. 

The logical decomposition of the GMS defines the generic processing 
and the dissemination components of the GMS. The processing and 
dissemination activities described in Chapter 2, may give a hint to GMS 
designers how to structure the GMS functionality. Based on the separate 
activities, designers can identify components that deal, for example, with 
subscription, filtering and delivery of monitoring data, and the relations 
among these components. 

Physical decomposition 

In order to operate in a distributed environment, a monitoring system may 
have to satisfy certain distribution and scalability requirements. The physical 
decomposition of the GMS takes such requirements into account. We 
consider physical decomposition similar to the engineering viewpoint of 
RM-ODP.  

Monitoring of a distributed application requires the use of a distributed 
monitoring system. A distributed monitoring system should employ an 
architecture that does not limit its use together with the monitored 
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application. For example, in an environment of wide physical distribution, 
monitoring of application parts may require dealing with communication 
delays (due to use of various types of network), partial failure and 
temporary network unavailability, in order to deliver collected monitoring 
reports to interested monitors. 

Monitoring of very large and dynamic (in terms of growth) applications 
require the monitoring system to deal with scalability issues. Large (and 
growing) amounts of monitoring data may result in exhausting 
communication and computation resources within the monitoring system. 
A GMS should employ an architecture that allows one to extend its capacity 
dynamically in terms of volumes of monitoring data, large amounts of 
producers producing data, and large amount of consumers requesting data. 
For example, designers can address scalability issues by allowing flexible 
deployment of GMS components. The scalable architecture proposed in 
[Shaer98] presents an example of a solution how to deal with scalability 
issues, in which designers can deploy the monitoring system using a 
hierarchical infrastructure of interconnected monitoring agents.  

As part of the physical decomposition, designers should also consider 
how to map the logical structure defined in the previous step, onto the 
components of the physical decomposition. For example, to improve 
efficiency, designers may consider distributing a logical filtering component 
onto several interconnected monitoring agents each responsible for the 
delivery of monitoring reports to a subset of consumers. 

5.3 GMS specialization 

We propose the following three steps for the specialization of the GMS 
(Figure 5-7): 
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5.3.1 Definition of a monitoring model  

In Chapter 2, we introduced the role of a monitoring model (MM). We 
encourage designers to define monitoring models for their monitoring 
systems, because an MM explicitly and systematically identifies and defines 
the monitoring aspects of application execution 
[Bates85][KQS92][Hof+94][Rack99][BeAb02]. Instrumentation 
designers can use an MM to build an instrumentation for the modelled 
monitored application. This instrumentation allows one to monitor that 
application in the terminology of the monitoring model. Monitor designers 
can use the MM to build monitors that analyse the behaviour of the 
application. Using the same MM for the instrumentation and the monitor 
makes sure that they both share the same modelling concepts that allow 
them to work together. 

In stage one, designers define a general model of the monitored 
application as part of the model of the monitoring system. In section 5.2.2, 
we represented the monitored application as a collection of producers of 
monitoring data. In this stage, designers define an MM that specializes that 
general model. 

To develop an MM, designers need two kinds of information: (1) 
monitoring requirements from Q2 and Q3, and (2) detailed knowledge 
about the monitored application. A designer uses this information during 
MM development, to identify interesting entities, and their behavior, in the 
monitored application. Designers can use status-based or event-based 
modeling to express entity behavior (Chapter 2, section 2.2.1).  

Consider again Example 1, in which the monitoring system should 
deliver to its users information about errors in running applications. The 
MM for this example can represent the monitored application as a 
collection of application part instances, each running on a separate host. 
Errors relate to the consequences of abnormal system activities (e.g., a 
sudden and unpredicted hardware failure). The model identifies that system 
exceptions represents such activities and defines an event called Error to 
represent an exception. An Error event has the following information 
attributes: error (source_id, t, ln, fname, ecode), where source_id and t we 
explained in the generic monitoring model, ln represents the line number 
which generated the error, fname represents the source filename, and ecode 
represents the error code of the error. 

We have to emphasize that an MM differs from a design model. 
Designers use a design model to model software applications, hence an 
application model constitutes an instance of the design model. In contrast, 
designers use a monitoring model to model individual runs of an 
application, including all aspects of these runs that monitors may potentially 
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consider interesting. Hence, a single run model constitutes an instance of 
the monitoring model. 

5.3.2 Definition of a data structure 

An MM constitutes abstract modeling concepts. In order to allow one to 
generate monitoring data that the monitoring system can transmit to 
monitors, the instrumentation designers need to define a data structure for 
the MM. The data structure defines how the instrumentation describes the 
concepts of the MM using concrete data values, such as numbers and strings 
found in modern programming languages. Using the monitoring data 
structure, the instrumentation builds an instance of the MM that represents 
the execution of the monitored application, by generating and sending to 
the MSS properly structured monitoring reports. Using the same 
monitoring data structure, monitors can actually process the monitoring 
reports coming from the MSS, rebuild the instance of the MM, and using it 
analyze the application execution that the instrumentation has observed.  

Figure 5-8 illustrates the relation between the monitoring models and 
corresponding data structures for a GMS and an MSS. 
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In this step, designers specialize the generic data structure of the GMS to 
make a data structure for the MSS. This would allow the GMS to work with 
the generic structure of monitoring reports (e.g., during generic processing 
and dissemination) in a domain independent way, while at the same time 
the instrumentation uses the specialized structure of the monitoring reports 
to communicate domain specific information to the monitor. 

Consider again Example 1. We have identified the entities and 
represented their erroneous behavior using events. In this example, a 
monitoring report could represent a single error event type. For this simple 
example we can use some generic event distribution system as a GMS. We 
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can represent the data structure of a monitoring report in Example 1 using 
a class as shown on Figure 5-9. The Error class has as attributes the 
attributes of the error event, however these attributes now can have 
concrete values. The source_id attribute and the t attribute we explained 
earlier, the ln attribute accepts 32-bit integers, the fname attribute accepts 
null-terminated strings, and the attribute ecode accepts 8-bit integers. 
Objects of the error class correspond to individual monitoring reports. 

5.3.3 Addition of processing components 

In some cases of monitoring, designers require the MSS to process 
monitoring data by interpreting the monitoring data generated by the 
instrumentation. Since the GMS deals with monitoring data in a generic 
way only, designers need to add in these cases processing components to 
produce an MSS that meets their requirements. Back to Example 1, the 
monitoring system needs to reorder monitoring reports before delivering 
them to the user. For this purpose, designers define a processing 
component that reorders the data according to the timestamp attribute t of 
a monitoring report.  

When adding processing functionality, to use the benefit of having a 
generic monitoring system to a full extent, designers should avoid changing 
the GMS. Figure 5-10 shows how designers can add a processing 
component (e.g., for reordering) without changing the service of the GMS. 
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Monitors use the interaction point a to interact with the GMS. The 
instrumentation uses interaction point b to interact with the GMS. The 
processing component requires monitoring data in a similar way as the 
monitor and produces processed monitoring data in a similar way as the 
instrumentation. The processing component can use the same type of 
interaction points (and hence the same service primitives involved in the 
corresponding interactions) as the monitor and the instrumentation. Two 
new components, C1 and C2, and the processing component implement 
the service of the MSS (GMS plus the processing functionality). The MSS 

Figure 5-10 
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offers its service through two new interaction points a1 and b1 for the 
monitor and the instrumentation respectively.  

5.4 Instrumentation design 

We consider instrumentation design explicitly in a separate step in our 
design approach, because the quality of the instrumentation may determine 
the performance of the whole monitoring system [KQS92] [LWSB97] 
[LDKK98]. The instrumentation design defines the concrete measurement 
mechanisms that the monitoring system uses to collect the required data.  

We model the instrumentation as a collection of one or more sensors. In 
general, a sensor represents “a device that responds to a physical stimulus 
(as heat, light, sound, pressure, magnetism, or a particular motion) and 
transmits a resulting impulse (as for measurement or operating a control)” 
[M-W]. In our case, a software sensor represents a small computer program 
that generates some data output when the environment in which it operates 
meets some condition defined in the sensor program. When a software 
sensor produces an output we say that the sensor triggers the 
instrumentation to generate a monitoring report from its output. Further in 
this text we use the terms “sensor” and “software sensor” interchangeably.  

We consider four steps during instrumentation design (Figure 5-11): 
sensor design, sensor placement, design of instrumentation tools, and 
definition of an instrumentation architecture. 
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5.4.1 Sensor design 

During sensor design, designers use the MM to identify individual sensors, 
what aspect of the monitored application these sensors measure exactly, 
when they trigger, and what output they produce. Designers may want a 
sensor to detect an event or to measure a status. For example, if a designer 
embeds a sensor in the source code of an application, right after the last 
statement of some complex activity, the triggering of the sensor may 
represent the completion of the execution of that activity (i.e., its last 
statement has completed) and hence represent an event. The sensor 
program may also read the current value of the system clock to generate a 
timestamp as parts of its output. This timestamp can represent the time 
attribute of the event. Alternatively, the monitoring system may execute a 
sensor embedded in the monitored application, in order to perform some 
measurements of status variable and to generate as output their values. 

In this step, designers also use the data structure of the MM to design 
how the outputs of sensors relate to attributes in monitoring reports. 

5.4.2 Sensor placement 

During sensor placement, designers determine where and how to position 
sensors with respect to the monitored application. For example, to detect 
an event designers may position a sensor after some statement in the 
application’s code. We distinguish several general sensor placement 
techniques that designers can use to implement their instrumentation in a 
structured way. These techniques vary by the level of dependence on a 
particular technology (e.g., programming language or operating system), the 
amount and type of work required from developers to produce the 
instrumentation, and the impact of change of the sensor placement on the 
monitored application:  
– Using available APIs. Some applications or execution environments may 

provide Application Programming Interfaces (APIs) suitable for 
monitoring. Examples of such APIs constitute operating system level 
notification mechanisms, and middleware mechanisms such as CORBA 
interceptors [CORBA]. Using APIs potentially has the lowest impact of 
change and requires less instrumentation work compared to other 
techniques. This mechanism however, limits the type of things that one 
can monitor to those predefined in the APIs; 

– Source code modification. Designers may modify source code to install 
sensors in it. Source code modification provides maximum opportunity 
for access to internal application information. This technique however 
may yield high impact of change. Furthermore, designers need to 
compile, re-package, and re-deploy the modified application; 
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– Binary code modification. Designers may modify binary code to install 
sensors in it. Binary modification enables monitoring in cases when 
designers cannot use source code modification, e.g. because they do not 
have access to the source code or the legal rights to modify the source 
code. In contrast to source code modification, binary code modification 
does not require recompilation of the monitored application. In general, 
we consider this instrumentation technique difficult to use, because it 
requires special knowledge about the binary machine code for a 
particular computer architecture, and in general makes the monitored 
application and its instrumentation harder to maintain; 

– Wrapping. In case of wrapping, designers replace an application part by a 
new component that matches the service provided by the original part. 
When invoked, the new component may trigger any sensors that 
designers have embedded in it, and then delegates execution to the 
original component it replaces, in order to retain the original 
functionality of the monitored application part. To perform wrapping, 
designers may use software design patterns, such as Proxy [BuMe+96] 
or variations of Wrapper Façade [SSRB00]. Designers may use wrapping 
instead of source code modification to reduce the impact of change, but 
they still need to re-deploy the new (wrapper) components; 

– Hardware. A hardware sensor for digital computing devices represents a 
digital device that designers use to measure information about the 
application execution in a non-intrusive way. For example, in [SLC99] 
designers evaluate the performance of a particular CORBA ORB 
implementation using hardware sensor capabilities of a VMEbus 
compliant single-board computer running a real-time operating system. 
Another example constitutes network sniffing using an Ethernet card to 
read all traffic on the network. 

Various circumstances can influence the designer’s choice for an 
instrumentation technique. We consider the best choice the use of APIs, as 
they save development time. Nevertheless, a predefined API may lack 
richness of the information it can offer to monitors. Source code 
modification gives greatest control over the monitored application – 
instrumentation designers can manipulate its source to measure anything 
they need. When designers cannot modify the source code for some reason, 
designers can resort to binary code modification. Because computers use 
binary code for efficient execution and not for human comprehension, 
binary code modification may turn out difficult to perform by the 
instrumentation designer. We consider wrapping useful if for some reason 
(e.g., legal issues) designers do not want to make source or binary 
modifications to the original application. Wrapping however cannot provide 
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information about the internal structure and mechanisms of a monolithic 
application component. When monitoring based on software sensors 
produces too much overhead, designers may use dedicated monitoring 
hardware to provide information about certain execution aspects while 
maintaining low overhead. In this thesis we do not consider hardware 
sensors.  

In a heterogeneous distributed environment, designers may use 
combinations of different sensor placement techniques to prepare an 
application for monitoring. 

5.4.3 Development of instrumentation tools 

In order to facilitate the development process for instrumentation that 
requires the placement of a large number of sensors, designers often use 
instrumentation tools to automate sensor placement. Typically, such tools 
process the application, either at API, source, or binary level, and insert, 
install or deploy software sensors, and subsequently (if necessary) compile, 
build, package and deploy the modified application. We advise designers to 
consider the additional effort of designing instrumentation tools because 
they help reduce the error-prone aspects of manual instrumentation. We 
distinguish two types of instrumentation tools: 
– Design-time. A design-time instrumentation tool installs sensors during 

the instrumentation design. For example, a design-time instrumentation 
tool can automatically process the source code of the monitored 
application, identify the correct places for sensor embedding, embed 
sensors, and then compile the instrumented source code; 

– Runtime. A runtime instrumentation tool installs sensors during the 
execution of the monitored application. For example, a custom 
ClassLoader [CLSLDR] can modify the byte code of classes of a 
monitored Java application during their initial loading in the Java virtual 
machine.  

Designers can use design-time tools for sensor embedding using APIs, 
source code, and binary modification of the monitored application. In 
contrast, runtime tools provide in-memory and on-demand binary7 
instrumentation, leaving the original monitored application unchanged. We 
consider as a major drawback of runtime instrumentation tools the possible 

                                                       
7 Runtime tools typically have access to the binary code that computers execute. An 
exception represents an application written in an interpreted scripting language, for which a 
runtime tool actually embeds code in the source code (since the application source code 
gets interpreted during runtime by the generic binary code of an interpreter). 
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difficulties for their development (as compared to design-time tools), 
because they rely heavily on binary modification.  

We consider a principal drawback of all instrumentation tools the 
additional software development cycle necessary for their creation. In this 
context, designers of application instrumentation have to consider the 
usefulness of a tool to justify the effort for its development. 

5.4.4 Instrumentation architecture 

In this step, designers define the internal architecture of the 
instrumentation. This architecture defines functional blocks that manage all 
sensors, collect the data sensors generate and provide this data to the MSS 
using the GMS service. 

In Chapter 7 we provide such an architecture for object and component 
middleware. 

5.4.5 Discussion on instrumentation performance 

In Chapter 2 we defined intrusion as the delay a sensor execution may 
introduce to the application behavior. This delay results from the 
computing power and memory it takes for a sensor to complete its 
measurements and generate its output. In general, the more time a sensor 
spends processing measurements, the more it deprives the monitored 
application of computing resources.  

Designers should constantly keep in mind the intrusive aspect of 
sensors. A systematic way to assess the intrusion on the monitored 
application consists of comparing performance times of the monitored 
application with and without the presence and the operation of sensors. 
Users of the monitored application may tolerate a certain delay during its 
operation. As a method for assessing the intrusiveness from the perspective 
of the users of the monitored application, designers may repeat the 
acceptance tests8 of the monitored application in the presence of a running 
instrumentation.  

In Chapter 2 we also presented a method for quantification of the 
information consistency of a monitoring system, which we consider 
important for its users. Applying such a method would allow designers to 
assess the quality of their instrumentation from the perspective of the users 
of the monitoring system. 

During instrumentation design, designers should consider ways of 
reducing intrusion. For example, the monitoring system can avoid 

                                                       
8 The ISO9000 series of standards defines acceptance test as the test that determines 
whether the final product meets user expectations [ISO9000]. 
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unnecessary sensor execution by switching sensors on and off during 
runtime, depending on the current demand for monitoring data. The 
monitoring system can even install or completely remove sensors on-
demand during runtime with the help of runtime instrumentation tools. 
Other examples for reducing intrusion constitute efficient sensor 
implementation by experienced programmers, using automated code 
optimizations, and use of profiler tools to discover bottlenecks in sensor 
execution and replace them with more efficient implementations. 

5.5 Monitor design 

In this section we discuss monitor design. In many cases, designers need to 
develop several monitors (or monitoring tools) for several monitoring 
applications. 

We propose a two-step monitor development process (Figure 5-12). 
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Figure 5-12 Steps 
in monitor design 

5.5.1 Definition of monitor functionality 

In the first step, designers take into account monitoring requirements 
derived from the answers to Q1 and Q2 (see section 5.1.1). In this step, we 
keep the definition of the monitor coarse. For example, designers identify 
whether the monitor can take decisions and perform actions automatically, 
whether the monitor can interact with an operator, the type of analysis it 
performs, and the type of presentation to operators. We discussed issues 
about the presentation to human operators in Chapter 2. 

When determining the aspects of the analysis performed by the 
monitor, designers use the MM developed in stage 2. Note that the type of 
(formal) analysis of monitoring data that designers can use in a monitor 
directly depends on the expressive power of the monitoring model 
developed for this monitoring system in stage two of our design approach. 
For example, verification of application execution such as presented in 
[Logean00] requires a monitoring model of distributed computation that 
allows verification of prototype behavior against predefined properties.  
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5.5.2 Monitor implementation 

In this step designers implement the software of the monitor. The actual 
architecture of a monitor may depend on the functionality of the 
monitoring application as a whole. For example, designers typically 
implement a monitor that requires interaction with a human operator as a 
centralized component operating on a single host with some graphical user 
interface that presents to the operator information about the monitored 
application. In contrast, a monitor that represents an automated 
management system may consist of automated agents deployed throughout 
the distributed environment, performing some analysis on monitoring data. 

Different monitors in a monitoring application may share functionality. 
In such cases, designers may consider to provide a monitor development 
framework that offers standard functional blocks to use in monitor 
development. For example, [Rack01] reports the MIVIS framework for 
Java-based online monitors. Provisioning of a monitor development 
framework (potentially) reduces the time for the production of monitors.  

Designers may find an iterative and incremental approach to the 
development of complex monitors more manageable and realistic than a 
single development cycle. In an incremental development, designers 
gradually add new functionality to the monitor.  

Various monitors may have to work cooperatively to achieve a common 
goal in a monitoring application. For example, in performance analysis a 
number of monitoring tools may have to analyze various aspects of the same 
monitoring data. For this reason, designers may consider to use a standard 
format for exchanging information among analysis tools. For example, in 
[CTRACE] designers use the XML Meta-data Interchange (XMI) format to 
represent monitoring information about the communication patterns 
among distributed objects. 

5.6 Conclusions 

In this chapter we presented a design approach for monitoring systems. 
This design approach focuses on the separation of domain-dependent from 
domain-independent functionality in a monitoring system.  

Stage I deals with domain-independent functionality. In this stage, 
designers design a GMS that provides generic monitoring functionality to 
monitors and instrumentation. 

Stage II deals with the specialization of a GMS into a concrete MSS. In 
this step designers develop a common monitoring model and a data 
structure, which allow the instrumentation to communicate monitoring 
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data to a monitor. In this step designers also develop processing 
components for the MSS. 

Stage III deals with the development of an instrumentation for a 
particular monitored application. This instrumentation effectively prepares 
the application for monitoring. 

Stage IV deals with the development of a monitor. In this stage, 
designers develop a monitor that can provide the monitoring application 
with the required information. 

In the subsequent Chapters 6, 7, and 8, we follow the stages of this 
design approach to provide solutions to problems associated with the 
monitoring of object and component communication in middleware-based 
distributed applications. We start each of these chapters by providing 
answers to the preparatory design questions (section 5.1.1) relevant to the 
design stage under discussion.  



 

Chapter 6 

6. An architecture for a generic 
monitoring system 

This chapter presents an architecture for a Generic Monitoring System 
(GMS). This architecture provides a basis for the development of 
monitoring systems for various monitoring and monitored applications. We 
define the architecture following stage one of the design approach 
presented in Chapter 5.  

We start with the identification of user requirements. User 
requirements represent the requirements of the monitor and the 
instrumentation on the service of the GMS. Based on these requirements 
we define the GMS service. The GMS service defines the externally 
observable (from an user perspective) functionality of the GMS. We then 
define a software architecture for the GMS. The GMS software architecture 
presents a decomposition of the GMS functionality into components, which 
cooperatively implement the GMS service. At the end we provide a report 
about a prototype implementation of the presented architecture. 

6.1 Identification of generic user requirements 

We choose as a starting point the following high-level model of a GMS 
(Figure 6-1). 
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model 
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A GMS has two types of users: monitor instances and instrumentation 
instances. The GMS interacts with one or more monitor instances, which 
require information about a monitored application. The GMS also interacts 
with one or more instrumentation instances, which can provide monitoring 
data containing information about the monitored application. The 
information about the monitored application consists of statuses measured 
in an instrumentation instance and events representing activities happening 
in an instrumentation instance. The GMS model does not define concrete 
statuses and events. The monitoring data consists of individual monitoring 
reports (status reports representing statuses and event reports representing 
events) that an instrumentation instance generates, sends to the GMS, and 
the GMS delivers to the monitor instances. 

We continue with the design of the GMS by focusing on the kind of 
functionality a monitor and an instrumentation require from the GMS. We 
capture user requirements with the help of the use case scenario 
“Performing online monitoring”. Figure 6-2 shows an UML use case 
diagram of the scenario. This scenario takes into account six cases of use of 
the GMS during online monitoring.  

We focus on online monitoring, because in general, offline monitoring 
poses less restrictive constraints on the functionality of the GMS (see 
Chapter 2) than online monitoring. For example, in online monitoring 
users typically have requirements on the time it takes to deliver monitoring 
data, while in offline monitoring such a requirement does not exist. 
Therefore, designers can adapt a GMS service design that supports online 
monitoring requirements, to a design that support offline monitoring, by 
removing some of its functionality. For example, an offline monitoring 
system (one that collects monitoring data first, and then at an arbitrary time 
later makes it available to analysis tools) does not require subscription 
functionality that allows delivery of monitoring data to monitors as soon as 
the instrumentation generates it. 
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Figure 6-2 
�Performing online 
monitoring� use 
case diagram 
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The diagram contains six use cases: Browse Availability, Request Data, 
Receive Data, Announce Availability, Configure Generation, and Send Data. 
The first three illustrate how the monitor interacts with (uses) the GMS, 
and the following three illustrate how the instrumentation interacts with 
(uses) the GMS. The use cases “depend” on each other in the sense that the 
execution of one use case enables the execution of another. In the following 
sections we describe each use case and the dependencies among the use 
cases. 

6.1.1 Browse Availability 

A (generic for the GMS) monitoring model determines all possible types of 
monitoring data available to monitors. Nevertheless, at some moment 
during runtime, the monitored application may not produce all possible 
types of monitoring data. For example, to monitor a certain type of 
monitoring data may depend on the instantiation of a specific part of the 
monitored application that produces this monitoring data. In this use case, 
a monitor finds about the available types of monitoring data during 
runtime. The GMS presents availability information to the monitor in the 
form of a specification of availability. Note that the specification of availability 
provided to monitors may change over time. 

6.1.2 Request Data 

In this use case a monitor requests monitoring data from the GMS. For 
example, a monitor may request monitoring data in two ways: subscription-
based and interrogation-based. In case of a subscription-based request, the 
monitor announces to the GMS its presence and submits a specification of 
interest. At later moments, the GMS notifies the monitor about new 
monitoring data that matches the criteria from the monitor’s specification 
of interest.  

In case of an interrogation-based request, the monitor requests 
monitoring data from the GMS in a request/response style. It does this by 
sending a selection criteria along with the request and requires within some 
time limits, a response from the GMS with monitoring data that matches 
the selection criteria. 

6.1.3 Receive Data 

In this use case the monitor receives new monitoring data from the GMS. 
The method of requesting monitoring data determines the way the GMS 
delivers new monitoring data: one or more notifications in case of a 
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subscription or a single response in case of an interrogation (see previous 
section). 

6.1.4 Announce Availability 

In this use case, an instrumentation announces (to the GMS) what kind of 
data it offers for monitoring. For this purpose, the instrumentation submits 
to the GMS a specification of availability. The specification of availability may 
change over time, for example, the instrumentation can withdraw its 
specification when an instrumented application part it monitors goes offline 
(i.e., terminates). 

6.1.5 Configure Generation 

In this use case the instrumentation receives configuration information 
from the GMS in order to generate monitoring data. For example, as a 
result of configuration, the instrumentation switches some of its sensors on 
or off, so that it only generates monitoring data relevant to monitors. 

We consider this use case similar to the “request data” use case, in 
which the monitor “configures” the GMS to deliver (generate) monitoring 
data using the monitor’s subscription or request information. We use this 
observation later to identify dependencies among service primitives used by 
the monitor and the instrumentation.  

6.1.6 Send Data 

In this use case, the instrumentation sends monitoring data to the GMS. 
We consider this use case similar to the “receive data” use case, in which 
the GMS sends monitoring data to the monitor. We also use this 
observation later to identify dependencies among service primitives used by 
the monitor and the instrumentation. 

6.1.7 Use case dependencies 

“Browse availability” depends on “announce availability” because the 
instrumentation has to send availability information to the GMS before the 
GMS can send it to monitors. For example, the instrumented components 
of a distributed monitored application may individually announce 
availability information as they become online (i.e., get instantiated by the 
environment), and withdraw availability information as they go offline (i.e., 
get terminated by the environment). This way the GMS can maintain a view 
on what monitoring data it can provide at any moment. 

“Request data” depends on “browse availability” because, for example, 
using the specification of availability a monitor can compose a specification 
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of interest that precisely defines the monitor’s requirements according to 
the current availability of monitoring data. 

“Receive data” depends on “request data”, because monitors receive 
notifications about new monitoring data as a consequence of establishing a 
subscription with the GMS, and receive a response as a consequence of an 
interrogation-based request.  

“Receive data” also depends on “send data” because monitors cannot 
receive monitoring data that the instrumentation hasn’t sent to the GMS. 

“Send data” depends on “configure generation”. For example, only 
sensors that the GMS has switched on can generate monitoring data. 

“Configure generation” depends on “request data” because, for 
example, based on the monitor’s subscription, the GMS configures the 
instrumentation so that it generates only data needed by monitors.  

“Configure generation” also depends on “announce availability” because 
the GMS configures the generation only for data that the instrumentation 
can generate. 

Alternatively, we can view a use case as a phase in the interaction of a 
GMS user with the GMS system and hence the relations between them as 
precedence in performing of each phase. 

6.2 Definition of the GMS service 

The GMS service defines the externally observable (by users) functionality 
of the GMS system. Among other things, the GMS service shields the 
monitor and the instrumentation from the details about dissemination and 
processing of monitoring data in a distributed environment. 

6.2.1 Basic concepts 

Before we proceed with the service definition we need to introduce some 
terminology.  

We use the terms service user and service provider as defined in the OSI 
Service Conventions Technical Report [ISO87]. The GMS system 
represents the service provider for the GMS service. We call a GMS user the 
service user of the GMS service. A monitor represents a GMS user that 
requires monitoring data about the execution of a monitored application. 
An instrumentation represents a GMS user that provides monitoring data 
about the execution of a monitored application.  

A service access point (SAP) represents an interaction point between a 
service provider and a service user. A service primitive (SP) represents an 
interaction that can occur at a SAP, where each interaction takes certain 
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service parameters. For the GMS service, we distinguish two types of SAPs, 
one between a monitor and the GMS (M-SAP) and one between an 
instrumentation and the GMS (I-SAP).  

The GMS service consists of service primitives, service parameters and 
relations between service primitives. A service element may group service 
primitives by some common function of the GMS service provider, 
effectively structuring the GMS service. Service elements can relate among 
each other based on the relations among participating service primitives. 

Figure 6-3 shows a sequence diagram illustrating how we describe 
service primitives and the possible relations among them with respect to 
SAPs. We use a notation based on time sequence diagrams of ISO/OSI 
service conventions [ISO87] with some minor adjustments. The axis of a 
SAP represents time, an arrow represents a service primitive, the direction 
of an arrow indicates who has the initiative for the interaction, and an 
arrow higher than others on the axis means the corresponding service 
primitive occurs prior to the ones below. We also allow depicting two 
independent time sequence diagram if they share the same SAP(s) by 
connecting the SAP axis with a “spring”-like line. With a dashed straight or 
arc line we express a causal relationship (with the semantics of realized 
causality) between two service primitives at different or the same SAP. We 
express explicitly that service primitives belonging to two distinct SAPs can 
occur in any time order (hence we consider them causally independent) by 
the absence of a dashed line between them and using arrows at 
approximately the same vertical position on the time axes. A fully qualified 
name of a service primitive consists of the name of its service element in 
“bold” script (S1 to S4 on the diagram) concatenated with one “space” and 
with the short name of the service primitive in “normal” script. 
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We use four basic types of service primitives : “req”, “ind”, “rsp”, and 
“cnf”. A service user initiates req and rsp primitives on the service provider, 
where req represents a request and rsp represents a response to a previous 
request. The service provider initiates ind and cnf primitives, where ind 
represents an indication of a request at another SAP and cnf represents a 
confirmation of a response at another SAP. In the diagram, we show three 
cases. The first case shows an RPC style method invocation as a sequence of 
req, ind, rsp, and cnf primitives. The second case shows that a service user 
can make a request without expecting a result, for example, to notify the 
service provider (and another user) about some change in its state. The 
third case shows that interaction does not necessarily involve several users. 
In this case, the provider initiates by himself a response to the user’s 
request. During service design, we use the service primitive types to define 
the concrete service primitives for the GMS system. We indicate the type of 
a service primitive by concatenating its name with the type name. 

In the following sections, we derive service elements from the use cases 
we identified earlier, and then we refine the service elements into 
constituent service primitives, their parameters and the relations among the 
service primitives.  

Figure 6-3 Example 
service primitives 
and relations 
among them. 

6.2.2 GMS service elements 

We define the GMS service elements using the user requirements that we 
have captured with the use case scenario presented in section 6.1.  
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At an M-SAP, we define the following three service elements (Figure 6-4): 

Figure 6-4 
Elements of the 
GMS service  

– Browse – service primitives that monitors use to browse the monitoring 
data types available for monitoring; 

– Request Data – service primitives that the monitor uses to request 
monitoring data from the GMS; 

– Receive Data – service primitives that the monitor uses to receive 
monitoring data.  

At an I-SAP, we define the following three service elements: 
– Announce – service primitives that the instrumentation uses to 

announce the monitoring data types available for monitoring; 
– Configure – service primitives that the instrumentation uses to receive 

configuration information from the GMS; 
– Send Data – service primitives that the instrumentation uses to send 

monitoring data to the GMS. 

Note that each use case represents a block of functionality that GMS users 
need to use. Since a service element represents a group of common 
functions, we choose to represent the functionality in each use case with a 
corresponding service element that groups the service primitives that 
provide that functionality. 

6.2.3 Relations between GMS service elements 

We associate each service element with a specific case of use of the GMS 
service. A service element relates to other service elements by enabling the 
(interaction) phases that correspond to the use cases associated with the 
other service elements. Figure 6-5 shows an example of these enabling 
relations for a single monitoring report. 

 
Announce Request 

Data
Receive 

Data Configure Send 
Data Browse 

 

In a typical scenario, an instrumentation announces that it can produce 
certain types of monitoring reports. This allows a monitor to browse 

Figure 6-5 Enabling 
relations between 
the six service 
elements 
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through the availability information and make a selection. Based on the 
selection, a monitor can compose a specification of interest and use it to 
request monitoring reports. As a result of the request, the GMS configures 
the instrumentation to generate relevant monitoring reports. The 
instrumentation then sends to the GMS monitoring reports that it 
generates, e.g., when interesting events occur, or when the time comes to 
perform a measurement. The monitor can receive the new monitoring 
reports from the GMS. 

We refine this informal description of dependencies among service 
elements later when we describe the relations among their corresponding 
service primitives. 

6.2.4 Service primitives 

Table 6-1 lists the primitives of the GMS service and their parameters. 
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User SAP Element Primitive name Parameters 

interrogate req  search criteria 
interrogate cnf specification of availability 
subscribe req monitor id, types notification 

reference
subscribe cnf types subscription status
unsubscribe req monitor id

Browse 
 

update ind update status
subscribe req monitor id, specification of 

interest, data notification 
reference

subscribe cnf data subscription status
unsubscribe req monitor id

Request 
Data 

interrogate req data selection criteria, 
response notification 
reference

notify ind monitoring data

Monitor 

Receive 
Data interrogate cnf monitoring data

register req instrumentation id, 
specification of availability 

register cnf registration statusAnnounce 

unregister req instrumentation id
configure ind configuration specification 

Configure 
configure rsp configuration status
notify req monitoring data
interrogate ind data selection criteria

Instrumen-
tation 

Send Data 
interrogate rsp monitoring data

Table 6-1 GMS 
service primitives 

In the following sections we describe each service primitive grouped by 
service elements. We discuss the relations between service primitives 
belonging to the same service element, and we discuss the roles of the 
parameters of the service primitives. In section 6.2.5 we discuss the 
relations between service primitives belonging to different service elements. 
In section 6.2.6 we discuss the service primitive parameters. 

Browse 

A monitor issues an “interrogate req” to request information about the 
availability of monitoring data. This information has to match the search 
criteria parameter.  
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The GMS issues an “interrogate cnf” to send a specification of availability 
parameter to a monitor. This parameter contains a description of the 
monitoring data types matching the search criteria passed in a previous 
“interrogate req” from the monitor (Figure 6-6).  

A monitor issues a “subscribe req” to initiate a subscription for updates 
on changes in the availability of monitoring data. The monitor id parameter 
contains an unique identifier of the monitor. The GMS uses this identifier 
to distinguish among different monitors. The types notification reference 
parameter contains the monitor address that the GMS uses to send change 
notifications.  

The GMS issues a “subscribe cnf” to report the result of a previous 
“subscribe req” (Figure 6-6). The types subscription status parameter indicates 
a successful subscription or an error. 

A monitor issues an “unsubscribe req” to notify the GMS that it 
withdraws from a subscription for type change notifications. The monitor 
sends its monitor id to identify the subscription that the GMS has to 
terminate. 

The GMS issues an “update ind” to notify a subscribed monitor about 
changes in the availability of information. The update status indicates the 
kind of update: removing, adding or changing the information about data 
types. 
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Browse 
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subscribe 

cnf 

Monitor GMS 

 

Figure 6-6 Browse 
service primitive 
relations 

Request Data 

A monitor issues a “subscribe req” to subscribe with the GMS for new 
monitoring data. The monitor id parameter contains an unique identifier of 
the monitor. The GMS uses this identifier to distinguish the subscription of 
this monitor from subscriptions of other monitors. The specification of interest 
parameter contains the runtime requirements of the monitor for 
monitoring data. Runtime requirements represent some criteria according 
to which the GMS can decide whether any new monitoring data matches 
the interest of a monitor. The data notification reference parameter contains 
the monitor’s address that the GMS will use to send relevant monitoring 
data to the monitor. We assume that a monitor can have only one 
subscription. If a monitor requires additional monitoring data, it can always 
unsubscribe first, and subscribe again by specifying a new specification of 
interest reflecting its new requirements for monitoring data. 

The GMS issues a “subscribe cnf” to report the result of a previous 
“subscribe req”. This relation however involves interactions at the I-SAP 
too and we discuss it in section 6.2.5. The data subscription status parameter 
indicates a successful subscription or an error. 
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A monitor issues an “unsubscribe req” to notify the GMS that it 
withdraws from a subscription. The monitor sends its monitor id to identify 
the subscription that the GMS has to terminate. 

A monitor issues an “interrogate req” to instruct the GMS to make a 
measurement and return the resulting monitoring data. This also means 
that effectively the monitor obtains monitoring data in a request/response 
style. The data selection criteria parameter contains the monitor’s runtime 
requirements for monitoring data. The runtime requirements here describe 
instructions for performing measurements and returning a response. The 
response notification reference parameter contains the address that the GMS will 
use to send the response of a request. 

Receive Data 

The GMS issues a “notify ind” when it has obtained new monitoring data 
that matches the specification of interest of a subscribed monitor. The 
monitoring data parameter contains the data matching the specification of 
interest. 

The GMS issues a “interrogate cnf” to deliver a response to a previous 
monitor “interrogate req”. This relation however involves interactions at 
the I-SAP too and we discuss it in section 6.2.5. The monitoring data 
parameter contains the data matching the monitor requirements. 

Announce 

The instrumentation issues a “register req” to register with the GMS the 
types of monitoring data it can provide. The instrumentation id parameter 
contains the unique identifier of the instrumentation. The specification of 
availability parameter contains a description of the data types this 
instrumentation can provide.  

The GMS issues a “register cnf” to report the result of a “register req” 
(Figure 6-7). The registration status parameter indicates a successful 
registration or an error. 

The instrumentation issues an “unregister req” to un-register with the 
GMS all monitoring data types this instrumentation has previously 
registered. The instrumentation sends along its instrumentation id to identify 
the registration that the GMS has to terminate.  
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Announce 
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Figure 6-7 
Announce service 
primitive relations 

Configure 

The GMS issues a “configure ind” to configure an instrumentation for 
generation of monitoring data as a result of a subscription request (see 
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section 6.2.5 for the relations among SAPs). The configuration specification 
parameter contains the configuration information.  

The instrumentation issues a “configure rsp” to report the result of a 
previous “configure ind” (Figure 6-8). The configuration status parameter 
indicates a successful configuration or an error. 
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Figure 6-8 
Configure service 
primitive relations 

Send Data 

The instrumentation issues a “notify req” to notify the GMS about new 
monitoring data. Note that notifications allow (potentially) low delivery 
times for event reports (or status reports generated in an event-driven 
manner), because the instrumentation can notify the GMS as soon as it 
detects an event and packages an event report. The monitoring data 
parameter contains the new event report. 

The GMS issues an “interrogate ind” to instruct the instrumentation to 
take measurements on behalf of some monitor. This request effectively 
means that the instrumentation generates monitoring data in an on-demand 
or time-driven way. The data selection criteria parameter contains the runtime 
requirements from some monitor for monitoring data.  

The instrumentation issues a “interrogate rsp” in response to a previous 
“interrogate ind” (Figure 6-9). The monitoring data parameter contains the 
data matching a selection criteria previously specified by some monitor. 

 
I-SAP 

Send Data 
interrogare 

ind 

Send Data 
interrogate 

rsp 

GMS Instrumen
tation 

 

Figure 6-9 Send 
Data service 
primitive relations  

6.2.5 Relations among service primitives 

Relations among service primitives fall into two main categories: local and 
remote. Local (to a service user) relations define possible sequence of 
service primitives performed by a single service user. The service primitives 
and their local relations define the service behavior at a single SAP. Remote 
relations define possible sequence of service primitives performed at 
different SAPs. The service primitives and their remote relations define the 
complete service behavior. In the next sections, we discuss relations in the 
following order: local relations for the monitor (M-SAP), local relations for 
the instrumentation (I-SAP), and remote relations. 

Relations local to the monitor 

Figure 6-10 describes all possible sequences of service primitives at the M-
SAP using an UML state-chart diagram.  
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To reduce the number of states, we introduce the “has-browse-
subscription” and “has-data-subscription” global state variables, which 
indicate whether a monitor has established a browsing subscription and a 
subscription for monitoring data respectively. Note that we permit only one 
browsing subscription and one data subscription per monitor.  

From the “Idle” state, a monitor can go to four other states and back to 
“Idle”: subscribe for availability information (“Browsing with subscription” 
state), interrogate for availability information in a request/response style 
(“Browsing with request” state), subscribe for monitoring data (Subscribing 
for data” state), and request monitoring data in a request/response style 
(“Receiving data with interrogation” state).  

Figure 6-10 M-SAP 
state chart diagram  

Relations local to the instrumentation 

Figure 6-11 shows all possible sequences between service primitives at the 
I-SAP using an UML state-chart diagram. 
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An instrumentation starts in the “Idle” state, in which it cannot generate 
monitoring data and the GMS does not “know” about this instrumentation 
yet. From the “Idle” state the instrumentation can move to the 
“Announcing” state, in order to register with the GMS and provide 
availability information about the monitoring data it can produce. From the 
“Announcing” state the instrumentation can move to the “Generating” 
state in which it can actually generate monitoring data in two ways: by 
measuring values and packaging monitoring data upon an request from the 
GMS (“Measure time-driven/on-demand” state), or by configuring its 
sensors to detect particular events in the monitored application (“Configure 
event-driven”). In the case of configured sensors, the instrumentation can 
make a transition to the same state “Generating” by sending data using 
notification. From the “Generating” state an instrumentation can move to 
“Idle” again by unregistering from the GMS. 

Figure 6-11 I-SAP 
state chart diagram 

Remote relations 

In this section we define the remote relations in the service behavior of the 
GMS. The behavior of the GMS concerns relations among primitives both 
of the M-SAP and the I-SAP. We use time sequence diagrams to model the 
remote relations. We prefer using time sequence diagrams instead of a state 
because, this way we avoid dealing with too many states. The following 
Figure 6-12 shows all possible sequences among primitives. 
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Diagram a) states that a monitor can interrogate the GMS for availability 
information only after the instrumentation has registered with the GMS. 
This allows a monitor to request availability information whenever 
necessary. In contrast, in diagram b) we define that subscribing for 
availability notifications may occur independently to any registering of 
availability information. This allows monitors to receive timely notifications 
about the registration of new availability information (diagram c) or about 
the un-registration of availability information (diagram d) by the 
instrumentation. Diagram e) shows that a monitor can subscribe for 
monitoring data and that a successful subscription results in configuring the 
instrumentation so that it generates only information that the monitor 
requires. Similarly, when a monitor unsubscribes, the GMS reconfigures the 
instrumentation so that it does not generate unnecessary monitoring data 
(diagram f). When the instrumentation (previously configured) sends data 

Figure 6-12 Time 
sequence diagrams  
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to the GMS, the GMS notifies the monitor (diagram g). Diagram h) 
describes that a monitor can interrogate the GMS for monitoring data 
whenever necessary. An interrogation results in the instrumentation making 
measurements, packaging and returning monitoring data, which the GMS 
sends to the monitor. Diagram i) shows that interrogation and notification 
occur independently, so that monitors can both interrogate for monitoring 
data and subscribe for notifications. 

6.2.6 Service primitive parameters 

In the previous section we have discussed only the role of service primitive 
parameters. Nevertheless, some of these parameters require a more 
detailed definition of their structure. In this section we discuss the structure 
of the following parameters: monitoring data, specification of availability, search 
criteria, specification of interest, data selection criteria, configuration specification. 

Monitoring data 

The GMS model we defined in section 6.1 represents the monitored 
application as a collection of instrumentation instances, each producing 
monitoring data as a sequence of individual monitoring reports. The 
“monitoring data” parameter of GMS service primitives contains as a value 
a list of monitoring reports. Figure 6-13 shows the structure of a 
monitoring report using an UML class diagram. 

 

EventReport StatusReport

Attribute
name
value

MonitoringReport
address : String
time : DateTime
s_attributes : Attribute[]

1..*1..*

 

The MonitoringReport has three attributes: time, address and s_attributes. The 
address attribute uniquely identifies the instrumentation instance that 
produced the monitoring report. For example, in a particular GMS 
implementation, the address attribute may contain the IP address of the 
network host on which the instrumentation generated the monitoring 
report. The time attribute represents the time of generation of a 
monitoring report. For example, the time attribute may contain a 

Figure 6-13 
MonitoringReport 
class 
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timestamp representing the moment of generation, measured using the host 
computer clock. The time and address attributes allow the GMS to filter 
out monitoring reports for delivery to monitors. We discuss filtering later 
when we define the specification of availability and search criteria parameters. 
The s_attributes attribute contains a list of one or more specific attributes. 
Subclasses of the MonitoringReport class may define different sets of 
specific attributes. The GMS models a specific attribute in a generic way 
using the Attribute class. An attribute has a name and a value. 

A MonitoringReport has two subclasses: EventReport and StatusReport. 
The EventReport class represents event reports and the StatusReport class 
represent status reports. We explained the differences between event and 
status reports in Chapter 2. The GMS uses the MonitoringReport and its 
two subclasses EventReport and StatusReport to disseminate monitoring 
data to monitors in a generic way.  

In order to build specializations of the GMS for particular monitoring 
and monitored applications (stage two of the methodology) designers would 
have to subclass EventReport or StatusReport to define event and status 
reports for the particular specialization. These new event and status classes 
share the time and address attributes, but define their own specific 
attributes. 

Specification of availability 

The “specification of availability” parameter contains as a value a list of 
monitoring report types. Figure 6-14 shows a UML class diagram for a 
monitoring report type. 

 MonitoringReportType
name : String
type : String
outputs : NamedOutput[]

NamedOutput
name : String
type : String

1..*1..*

 

The instrumentation uses one MonitoringReportType object to describe 
one particular MonitoringReport class that it can generate. The 
MonitoringReportType class has three attributes: name, type and outputs. The 
name attribute represents the name of the MonitoringReport subclass that 
the instrumentation wants to describe. The type attribute holds as a value 
either the string “event” for an EventReport subclass or the string “status” 
for a StatusReport subclass. The outputs attribute contains a list of 
NamedOutputs. A NamedOutput models in a generic way the output of a 
sensor in the instrumentation. A NamedOutput has a name and type 
attribute, where type represents the data type of the output value. For each 

Figure 6-14 
MonitoringReport-
Type class 
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NamedOutput we establish a one-to-one correspondence with a specific 
Attribute of the MonitoringReport subclass, that the instrumentation can 
generate.  

At the I-SAP, the instrumentation uses instances of the 
MonitoringReportType class to compose a “specification of availability” list 
describing the concrete event and/or status types it can generate. 

At the M-SAP, the GMS composes a “specification of availability” list of 
MonitoringReportType objects previously registered with the GMS to 
satisfy “search criteria” requested by monitors. 

Search criteria 

The “search criteria” parameter contains a search expression composed by 
a monitor that interrogates the GMS about availability information. The 
GMS uses this search expression to select MonitoringReportType objects 
that represent event and status types relevant to the interrogating monitor. 
In Figure 6-15 we define a Simple Type Search Language (STSL) using the 
Extended Backus-Naur Form (EBNF) [Marc86]. Monitors use the STSL to 
compose search expressions. Note that we enclose one-symbol terminals 
between “”, and we depict other terminals in bold font. Each statement 
ends with “;”. 

search_criteria_expression ::= selecttype select_expression [ where attribute_predicate ]; 
select_expression ::= event | status | �*� ; 
attribute_predicate ::= [ unary_predicate_op ] attribute_expression { binary_predicate_op 
attribute_expression }; 
unary_predicate_op ::= not ; 
binary_predicate_op ::= and | or ; 
attribute_expression ::= attribute match pattern_value ; 
pattern_value ::= string | regular_expression ; 
attribute ::= name | output “.” name | output “.” output_name “.” type ; 
output_name ::= string;  

The STSL distinguishes between events, statuses, or any reports (using the 
“*” to indicate “any”). The attribute_predicate consists of attribute 
expressions using the logical AND, OR and NOT operators. An 
attribute_expression consists of an attribute and a pattern_value that this 
attribute needs to match. An attribute can refer to three different things: the 
name of the MonitoringReportType, a NamedOutput name or a 
NamedOutput type. The pattern_value can represent a string value or, for 
example, an UNIX style regular expression. The system selects a 
MonitoringReportType object when its attributes match the pattern. In the 
following lines we present two examples of a search expression:  

selecttype event where name match �ObjectCommunicationEvent� 
selecttype status where output.�CPU load�.type match �integer� 

Figure 6-15 EBNF 
for the STSL 
language 
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The first example selects the MonitoringReportType object that represents 
an event type with name “ObjectCommunicationEvent”. The second 
example selects all MonitoringReportType objects that represent statuses 
and have a specific attribute called “CPU load” of type “integer”. We 
consider the definition of a more complex search criteria language out of 
the scope of this thesis. 

Specification of interest 

The “specification of interest” parameter contains a description of a 
monitor’s runtime requirements for monitoring data. Since subscriptions 
allow timely delivery through notifications when the instrumentation 
generates new event reports, we define that monitors can use this 
specification only to receive event reports. We allow monitors to request 
status reports by explicit interrogation using a “data selection criteria” (see 
next section). In Figure 6-16 we define a Simple Specification of Interest 
Language (SSIL) using EBNF. Monitors compose specifications of interest 
using the SSIL. 

specification_of_interest ::= subscribe event_expression { �;� event_expression } ; 
event_expression ::= name [ filter filter_expression ] ; 
name ::= string | pattern ; 
filter_expression ::= [ unary_predicate_op ] attribute_expression {  binary_predicate_op 
attribute_expression } ; 
attribute_expression ::= time_expression | address_expression | 
specific_attribute_expression ; 
binary_predicate_op ::= and | or ; 
unary_predicate_op ::= not ; 
time_expression ::= time time_op time_value ; 
time_op ::= before | after | exactly ; 
address_expression ::= address match ( string | pattern ) ; 
specific_attribute_expression ::= specific_attribute { relation_op ( specific_attribute | 
value ) } ; 
specific_attribute ::= s_attribute �.� specific_attribute_name ; 
relation_op ::= �>� | �<� | �=� | match; 
specific_attribute_name ::= string ;  

A specification in SSIL contains a list of event expressions. An event 
expression may contain a filter part, which defines constraints on the values 
of the event’s time, address, and specific attributes. Monitors can combine 
different constraint expressions in a filter using the logical AND, OR and 
NOT operators. We leave the actual date format represented with the 
time_value non-terminal, deliberately undefined by this service definition. 
We leave to designers to determine the date format (and hence the “<”, 
“>”, “=”, and match operators on dates) at implementation time. Using 
expressions on specific attributes, monitors can define constraints on the 

Figure 6-16 EBNF 
for the SSIL 
language 
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instances of concrete event types in a generic way. In the following 
paragraph we present an example specification of interest: 

subscribe �CommunicationEvent� filter time after �20:00PM 20-05-2003� 
and time before �05:00AM 21-05-2003� and address match �130.89.*� and 
s_attribute.�CPU load� < 50 

In this example a monitor instructs the GMS to subscribe that monitor to 
events of type “CommunicationEvent”, occurring between 20:00PM on 
date 20-05-2003 and 5:00AM on the following day, originating from a 
subnet starting with “130.89.”, with a specific attribute “CPU load” having 
value less that 50. One can find examples of more complex languages for 
specifying monitor interests in [Samani95] and [Shaer98]. 

Data selection criteria 

We use this parameter in two primitives, at the M-SAP and at the I-SAP. 
At the M-SAP, the monitor uses the data selection criteria to instruct 

the GMS to perform measurements, which result in status reports. The 
“data selection criteria” parameter contains a list of names of StatusReport 
subclasses that the GMS can currently generate. The monitor can obtain 
these names from the availability information in the GMS. The GMS takes 
the list of StatusReport names and forwards it to the instrumentations, 
which can generate instances of these StatusReport types. A monitor can 
include in the data selection criteria any name of a StatusReport subclass 
available for measurement with the GMS (i.e., StatusReports described in 
the specification of availability). Hence, a monitor can request a 
measurement from any instrumentation instance registered with the GMS. 

The monitor can also use the data selection criteria to select matching 
monitoring data (including both events and statuses) accumulated so far in 
the GMS. We consider languages such as SQL [SQL99] suitable for 
selecting large amounts of data from a storage within the GMS. Although 
our design does not prohibit this use of the “data selection criteria” 
parameter, in this service definition we do not use it. 

At the I-SAP, the GMS uses the data selection criteria to instruct 
measurement from the instrumentation. The parameter has the same 
structure as when used at the M-SAP. In contrast to the M-SAP, the data 
selection criteria at the I-SAP can contain only names of StatusReport 
subclasses that the particular instrumentation can generate. 
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Configuration specification 

The “configuration specification” parameter contains a list of names of 
EventReport subclasses. These names represent event reports that a 
monitor has previously subscribed for and has included their names in its 
specification of interest. The GMS uses this parameter to tell the 
instrumentation to start producing the particular type of events (in the 
implementation, this may involve switching of certain sensors in the 
instrumentation on or off). 

6.3 Definition of the GMS software architecture 

This section presents a software architecture for a GMS that implements 
the service defined in the previous section. The architecture consists of a 
logical decomposition and a physical decomposition.  

6.3.1 Logical decomposition 

We decompose the GMS in four steps. In the first step we refine the GMS 
service definition into service-level interfaces that the GMS, the monitor 
and the instrumentation can offer to each other. We use this refinement in 
the subsequent steps to define which logical components of the GMS 
provide which interfaces. In the second step we decompose the 
functionality of the GMS into three components: Repository, Dissemination 
and Filtering. In the third step we further decompose the Dissemination 
component into four subcomponents. In the last step we specify the 
cooperative behavior of the logical components of the GMS using UML 
message sequence diagrams. 

Service-level interface refinement 

The service-level refinement consists of defining interfaces using the OMG 
Interface Definition Language (IDL) as a specification language. Each 
interface defines a number of operation signatures that correspond to one 
or more service primitives. IDL allows the use of two types of operations: 
synchronous and oneway. Invocation of a synchronous operation has the 
semantic of an RPC call, which consists of a request part (the caller 
requests some service) and a response part (the callee returns a result of 
that service). In contrast, an invocation on an oneway operation only has a 
request part and does not require any response. In order to define 
interfaces from the GMS service, we need to determine how service 
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primitives map to operation invocations. We map causally related req and 
cnf service primitives to a single synchronous operation. We also map 
causally related ind and rsp service primitives to a single synchronous 
operation invocation. We map a single req or a single ind service primitive to 
a single oneway operation.  

We use the following criteria to group operations into interfaces. Firstly, 
we reuse the structure of service elements introduced in the GMS service. 
Hence, an interface contains operations that map to service primitives from 
the same service element (with one exception – see below). Secondly, we 
group primitives based on the initiative for their provisioning. A single 
interface contains operations provided only by a single entity, such as the 
GMS, the instrumentation or the monitor. Figure 6-17 shows the interface 
refinement. 

 
Monitor 

i_Browsei_Subscribe i_BrowseUpdate i_Announce i_Configure

Instru-
mentation 

i_DataNotify i_Interrogate i_SendNotify i_SendInterrogate 

GMS 

 

For the “Browse” service element we define two interfaces: i_Browse and 
i_BrowseUpdate. The i_Browse interface defines the operations that a 
monitor calls on the GMS. The i_BrowseUpdate interface defines the 
operations that the GMS uses to notify a monitor about changes in the 
availability information. For the “Request Data” service element we define 
two interfaces: i_Subscribe and i_Interrogate. The i_Subscribe interface 
defines the operations that a monitor uses to subscribe for monitoring data. 
The i_Interrogate interface defines the operations that a monitor can use to 
interrogate the GMS for monitoring data. This interface contains the 
interrogate operation, which maps to two service primitives: the “Request 
Data interrogate req” represented by the invocation of the interrogate 
operation and the “Receive Data interrogate cnf” represented by the 
response of the interrogation operation. Although these two service 
primitives belong to different service elements we map them to one 

Figure 6-17 
Interface 
refinement for the 
GMS service 
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operation because we find this a convenient way to implement a 
request/response style of interaction. For the “Receive Data” service 
element we define the i_DataNotify interface. The i_DataNotify interface 
defines operations that the GMS uses to notify a monitor about new 
monitoring data. For the “Announce” service element we define 
i_Announce interface, therefore the i_Announce interface defines operations 
that the instrumentation uses to announce the available types of monitoring 
data. For the “Configure” service element we define the i_Configure 
interface. The i_Configure interface defines operations that the GMS uses to 
configure the instrumentation. For the “Send Data” service element we 
define two interfaces: i_SendInterrogate and i_SendNotify. The 
i_SendInterrogate interface defines operations that allow the GMS to 
interrogate an instrumentation for monitoring data. The i_SendNotify 
interface allows the instrumentation to notify the GMS about newly 
generated monitoring data. 

In Appendix A, we present the detailed IDL specifications of these 
interfaces, along with comments explaining which service primitives 
correspond to which operations. 

Functional decomposition of the GMS 

We observe that the GMS service defines two basic types of GMS 
functionality: functionality related to the management of availability 
information, and functionality related to the dissemination of the actual 
monitoring data. Management of availability information includes on one 
hand the registering (and unregistering) of availability information by the 
instrumentation (the “Announce” service element) and on the other hand 
browsing of availability information by monitors (the “Browse” service 
element). Based on this observation we identify a Repository component 
that manages availability information in the GMS. The Repository 
component has the responsibility for storing and managing the access to the 
availability information in the GMS. The Repository component 
implements the i_Browse and i_Announce service-level interfaces and an 
internal (not part of the GMS service) interface ii_Repository (see Appendix 
A for the detailed specification of this interface). 

From Chapter 2 we know that dissemination activities comprise the 
collection and delivery of monitoring data. Based on this we identify a 
Dissemination component. The Dissemination component has the 
responsibility to disseminate monitoring data. The Dissemination 
component uses the ii_Repository interface to validate specifications of 
interest and data selection criteria with the current availability information. 
The Dissemination component implements the i_Subscribe and 
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i_Interrogate service-level interfaces and an internal interface 
ii_DeliverEvent. 

Processing activities involve among others filtering activities. Since the 
GMS allows a monitor to subscribe for monitoring data based on a 
specification of interest, the GMS needs to perform filtering of the 
monitoring data to make sure that monitors receive the requested 
monitoring data. Based on this we identify a Filtering component, which 
filters monitoring data. Note that filtering in the GMS represents a generic 
processing activity; by using the SSIL language the GMS does not need to 
interpret any (application domain) specific information in order to filter 
out monitoring data. The Filtering component has the responsibility to 
determine the relevancy of new event reports that the instrumentation 
sends to the GMS. The Filtering component uses the ii_DeliverEvent to pass 
relevant filtered monitoring data to the Dissemination component. The 
Filtering component implements the i_SendNotify service-level interface 
and the internal ii_ConfigureFiltering interface. The Dissemination 
component uses the latter interface to configure the filtering mechanisms 
when monitors make or remove subscriptions. 

Figure 6-18 depicts the relations between the GMS interfaces and the 
three components we introduced. 
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Figure 6-18 
Functional 
decomposition of 
the GMS 

Functional decomposition of the Dissemination component 

The Dissemination component still provides relatively complex 
functionality, which it exposes through two service-level interfaces and one 
internal interface. Figure 6-19 shows how we further decompose the 
Dissemination component.  
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The Dissemination component consists of four sub-components: 
Subscription, Configuration, Delivery and Interrogation. The Subscription 
component handles all monitor subscriptions. The Configuration 
component has the responsibility for configuring the event report 
generation in the instrumentation. The Delivery component holds the 
responsibility for the delivery of (filtered) event reports to the appropriate 
monitors. The Interrogation component holds the responsibility for 
handling monitor interrogations for status reports. In Appendix A, we 
present the internal interfaces that specify the operations offered by the 
different sub-components of the Dissemination component.  

Figure 6-19 
Structure of the 
dissemination 
component 

Cooperative behavior of the GMS logical components 

We define the cooperative behavior of the GMS logical components using 
four scenarios of use: “monitor subscription”, “monitor un-subscription”, 
“notification about new monitoring data” and “interrogation for 
monitoring data”.  For each scenario we provide a UML sequence diagram 
that defines the sequences of operation invocations among components 
interacting in this scenario. For simplicity we do not discuss error-handling 
scenarios. We also do not consider scenarios regarding registering and 
browsing of availability information, because they do not require interaction 
among the GMS components. 

Figure 6-20 shows the sequence of operation invocations among GMS 
components and the instrumentation that occur when a monitor issues a 
subscription request. 
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1.4.1. get_ids_for_events()

Monitor Subscript ion Repository ConfigurationFiltering Delivery Instrumentation

1. subscribe()
1.1. get_event_description1()

1.2. add_filter()

1.3. add_monitor()

1.4. switch_on()

1.4.2. configure()

 

 
When a monitor subscribes for monitoring data, it submits a specification 
of interest written in SSIL to the Subscription component. The 
Subscription component processes the specification and contacts the 
Repository component to extract the event report type availability 
information indicated in the specification. Then the Subscription 
component passes the filter expressions from the specification to the 
Filtering component. The Filtering component adds the filter expression to 
its filtering mechanism. Then the Subscription component contacts the 
Delivery component to add the subscribed monitor to the event delivery 
mechanism. The Subscription component then instructs the Configuration 
component to switch on the production of relevant events in all 
instrumentation instances that support the event report types indicated in 
the monitor’s specification of interest. The Configuration component 
contacts the Repository component to obtain the identifiers (e.g. object 
references) of instrumentations that support the required events. The 
Configuration component uses these identifiers to configure the 
instrumentation to emit events of the desired types.  

Figure 6-21 shows that GMS handles un-subscribing in a similar to 
subscribing way. 

Figure 6-20 Monitor 
subscription 
scenario 
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 Monitor Subscript ion Repository ConfigurationFiltering Delivery Instrumentation

1. unsubscribe()
1.1. get_event_description1()

1.4. switch_off()

1.4.1. get_ids_for_events()

1.2. remove_filter()

1.3. remove_monitor()

1.4.2. configure()

 

Figure 6-22 shows the sequence of operation invocations among GMS 
components and monitors when a notification about new event report(s) 
comes from the instrumentation. 

 Instrumentation Filtering Delivery Monitor

1. notify() 1.1. deliver_events()
1.1.1. not ify

 

The instrumentation sends an event report to the Filtering component. The 
Filtering component determines the relevancy of the event to any monitor 
by evaluating the accumulated filter expressions for this event report type. 
The Filtering component also determines which monitors have interest in 
this event report. In the case the Filtering component finds the event report 
relevant, it sends the event to the Delivery component, which notifies 
appropriate monitors about the event.  

Figure 6-23 shows the sequence of operation invocations among the 
GMS components and the instrumentation when a monitor interrogates the 
GMS for measuring statuses. 

Figure 6-21 Monitor 
un-subscription 
scenario 

Figure 6-22 
Notification about 
new monitoring 
data 
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 Monitor Interrogation Repository Instrumentation

1: request_data()
2: get_status_description()

3: get_ids_for_statuses()

4: request_data()

5: notify()

 

A monitor makes a request to the Interrogation component by supplying a 
list of status report type names. The Interrogation component first contacts 
the Repository component to validate the names. Then the Interrogation 
component gets from the Repository component the identifiers (e.g. object 
references) of all instrumentation instances that support the requested 
status report types. It then makes requests for measurements to the 
instrumentation, composes a list of results and sends it to the requesting 
monitor. 

Figure 6-23 
Interrogation for 
monitoring data 

6.3.2 Physical decomposition 

The GMS logical decomposition does not explicitly take into account 
distribution aspects. The way the GMS handles distribution aspects 
however, can have a great impact on the system scalability, performance and 
overhead. The GMS should efficiently utilize the communication and 
computing resources needed for collecting, filtering and delivering 
monitoring data to monitors. 

In [Shaer98], Al Shaer argues that a hierarchical architecture allows the 
users to configure the monitoring system optimally with respect to 
unwanted communication overhead. Furthermore, designers can deploy a 
monitoring system with a hierarchical architecture consistently with the 
hierarchically organized administrative policies that we often find in large 
distributed environments. These policies define how a distributed system 
should deal with issues such as available resources (e.g. bandwidth), 
heterogeneity, interoperability, security and failure. For these reasons we 
choose a hierarchical architecture as a basis for the physical decomposition 
of the GMS. 

We develop the physical decomposition in three steps. In the first step 
we define a hierarchical distribution model that we use to structure the 
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distribution aspects of a distributed environment, in which we want to 
deploy the components of a monitoring system. In the second step we use 
the hierarchical distribution model to define a hierarchical agent-based 
architecture for the GMS. In the third step we map the agent-based 
architecture onto the logical decomposition of the GMS. 

Hierarchical distribution model 

The hierarchical distribution model (Figure 6-24) models a distributed 
environment using three types of regions: co-location regions, locality regions, 
and administrative domain regions.  

 

Administrative 
Region

0..*0..*

Co-location 
Region

Locality 
Region

0..*0..*0..*0..*
 

A co-location region represents a single operating system process in the 
execution environment. We define the co-location region as the minimal 
set of concerns with respect to complexity of distribution aspects. A co-
location region may contain one or more components of a monitoring 
system; we call these components co-located. Co-located components share 
the same operating system process, and hence the same execution 
environment and the same host. Co-located components may also share the 
same development technology, including runtime libraries, versions of APIs 
that the components use, etc. We assume that a physical component 
belongs to precisely one co-location region at any moment in time. In 
general the communication infrastructure between co-located components 
has a high degree of reliability (e.g. in-memory communication), security 
(the same host, the same process, the same access rights), performance 
(e.g., the internal architecture of the OS and the hardware platform 
determines the communication speed), and has low economical cost (as 
compared to, e.g., the cost for bandwidth usage in networks). 

A locality region represents a single physical host. A locality region 
contains (aggregation relation) one or more co-location regions. Hence, 
non co-located components may still share the same locality region if they 
reside on the same host. Local components that share the same host. Non 
co-located but local components do not necessarily share the same 
development technology, including runtime libraries, versions of APIs that 
the components use, etc. For this reason, communication between local 
non co-located components may experience synchronization, 
interoperability, performance and security issues. Consider as an example, 

Figure 6-24 The 
hierarchical 
distribution model 
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the communication between different processes running with different 
access rights to host’s resources. 

An administrative domain region represents a collection of hosts and a 
network that connects them within a single organization. An administrative 
domain region contains (aggregation relation) one or more locality regions 
corresponding to the hosts in the organization. Hence, non local 
components may still share the same administrative domain region if they 
reside on hosts in that region. An administrative domain region may also 
contain (aggregation relation) other administrative domain regions. Within 
an administrative domain region, management policies regulate the type of 
hardware, software, communication devices, security and fault issues. Non 
local components within the same administrative domain region run under 
the same policy but still may have to deal with issues such as 
communication delay and partial communication failures between the hosts 
they reside on. Components belonging to different administrative domain 
regions however do not share common administrative policies.  

The so defined hierarchical distribution model allows us to categorize 
the communication in a particular deployment among the physical 
components of a monitoring system from the perspectives of reliability, 
security, and performance requirements. For example, we generally 
consider communication between co-located components secure, reliable 
and efficient, whereas communication between components belonging to 
different administrative domains may require the additional use of 
encryption, reliable communication protocols, and special bandwidth 
reservation protocols to guarantee communication performance. We define 
a hierarchical agent-based architecture that reflects this categorization in 
the way it handles communication within and across the different regions. 

Hierarchical agent-based architecture 

In the hierarchical agent-based architecture the GMS consists of monitoring 
agents that can communicate among each other. A monitoring agent 
represents a non-distributed (hence monolithic) physical component of the 
GMS. We use the hierarchical distribution model to define three types of 
monitoring agents: Co-located Monitoring Agent (CMA), Local Monitoring 
Agent (LMA), and Domain Monitoring Agent (DMA). Figure 6-25 shows 
the relationships between these types of agents. 
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A CMA represents a region of co-location. The CMA co-locates with a 
monolithic (i.e. non-distributed) part of the monitored application. During 
monitoring, the CMA interacts with the monitored application part in an 
efficient, but possibly technologically proprietary and domain dependent 
manner. We consider the CMA the part of the instrumentation that 
communicates with the GMS. As such, the CMA has the responsibility to 
implement the GMS service-level interfaces of the instrumentation 
i_SendInterrogate and i_Configure. We consider the internal structure of the 
CMA outside the scope of the GMS physical decomposition.  

An LMA represents a region of locality. An LMA manages all CMAs on 
the same host. The LMA implements the service-level interfaces of the 
GMS involved in the interaction with the instrumentation: i_Announce and 
i_SendNotify. The interactions between CMAs and a LMA cross the 
boundaries of regions of co-location but do not leave the region of locality 
(the host). An LMA interacts with one DMA.  

A DMA represents an administrative domain region. A DMA manages 
all LMAs in its region. The interactions between a DMA and its LMAs cross 
the boundaries of regions of locality but do not leave the administrative 
domain region. A DMA also interacts with DMAs of other administrative 
domain regions. The relations between DMAs cross the boundaries of 
administrative domain regions. Furthermore, the DMA implements the 
service-level interfaces of the GMS involved in the GMS interactions with 
monitors: i_Browse, i_Subscribe and i_Interrogate. Effectively, a DMA 
represents the GMS to all monitors deployed in the same administrative 
domain region. 

Figure 6-26 illustrates an example deployment of a monitoring system 
according to the hierarchical agent-based architecture. In this example, the 
GMS comprises a collection of LMA and DMA instances, and the 
instrumentation comprises a collection of CMA instances. 

 

Figure 6-25 
Relations among 
monitoring agents 
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We consider an important aspect of the physical decomposition, how 
monitoring agents interact with each other and the environment to fulfill 
the functionality of the GMS. We have defined the CMA-LMA and the 
DMA-Monitor interactions as part of the GMS service definition. We 
mapped these interactions using synchronous and oneway operation 
invocations on the corresponding interfaces. LMAs communicate 
asynchronously with their DMA. DMAs also communicate asynchronously 
with other DMAs. We realize asynchronous communication using message 
exchange via communication channels. For example, the CORBA 
Notification Service [CNS] represents a technology that provides such 
channels. We choose channel-based communication because it promotes 
loose dependencies between communicating parties, and allows us to move 
the responsibilities for reliable and secure communication to the logic of 
the channel. Furthermore, channel-based communication supports 
multiple senders and multiple receivers of messages, where the channel 
administrators can take care of scalability issues of a growing monitoring 
system by reconfiguring the channels properly. In the GMS architecture, we 
consider two types of channels: LMA-DMA and DMA-DMA. An LMA-
DMA channel connects the LMAs and the DMA within one administrative 
domain region and therefore does not need to deal with cross-domain 
administrative issues, such as security. A DMA-DMA channel connects the 
DMAs of different administrative domain regions and therefore may require 
additional capabilities, such as encryption.  

Figure 6-26 
Physical 
decomposition of a 
monitoring system. 
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Mapping functional components onto monitoring agents 

In this section we map the GMS logical decomposition onto monitoring 
agents. Considering the structure of the logical decomposition, we further 
decompose the logical components into non-distributed physical 
components and we assign these components to the DMA and LMA 
monitoring agents (Figure 6-27). This effectively means that we define the 
internal structure of the monitoring agents by specifying their constituent 
components. At the level of the GMS hierarchical architecture we consider 
the CMA as a black box, because the CMA co-locates with the 
instrumentation and its internal structure typically reflects the structure of 
the instrumentation. Considering the behavior of the logical decomposition, 
with UML sequence diagrams we specify the interactions among its 
subcomponents. These sequence diagrams together with the sequence 
diagrams of the logical decomposition (see section 6.3.1) define the 
behavior of the GMS at the level of the physical decomposition. 

 DDMMAA  LLMMAA  

DDMMAA--
FFiilltteerriinngg  

LLMMAA--
FFiilltteerriinngg  

DDeelliivveerryy  

DDMMAA--
RReeppoossiittoorryy  

LLMMAA--
RReeppoossiittoorryy  

SSuubbsscc--
rriippttiioonn  

RReeppoossiittoorryy  

FFiilltteerriinngg  

DDiisssseemmiinnaattiioonn  

**  
**  

**  

**  

DDMMAA--IInntteerrrrooggaattiioonn
LLMMAA--

IInntteerrrrooggaattiioonn

RReeqquueessttiinngg  

**  

**  

DDMMAA--
CCoonnffiigguurraattiioonn  

LLMMAA--
CCoonnffiigguurraattiioonn

CCoonnffiigguurraattiioonn  

**  

**  

 

We assign an instance of the Subscription and an instance of the Delivery 
logical component to each instance of a DMA. Hence a DMA can subscribe 
monitors and can deliver to them monitoring data. We decompose the 
Repository component into two types of non-distributed subcomponents: 
DMA-Repositories and LMA-Repositories. We assign to each DMA 
instance one instance of a DMA-Repository component, and to each LMA 
one instance of an LMA-Repository. A DMA can communicate with many 
LMAs, therefore a DMA’s DMA-Repository component instance can 

Figure 6-27 
Structural mapping 
of logical to 
physical 
components 
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communicate with all LMA-Repository component instances of the LMA’s 
managed by this DMA. Furthermore, a DMA can also communicate with 
other DMAs, therefore a DMA’s DMA-Repository can communicate with 
the DMA-Repositories of the other DMAs. We make the decomposition for 
the Configuration, Filtering and Requesting logical components in a similar 
way. This effectively means that we distribute the logic of the Repository, 
Configuration, Filtering and Interrogation components among instances of 
monitoring agents.  

In the next sections we describe the internal behaviour of each of the 
logical components in terms of the external behaviour of its sub-
components and the interactions among these sub-components. 

The Repository component 

The Repository component manages availability information in the GMS. 
Its function consists of allowing instrumentation instances to 
register/unregister availability information with the GMS, and monitors to 
browse and search the availability information. The following three use 
scenarios define the internal behavior of the Repository component: a CMA 
(representing an instrumentation instance) registers with the GMS, a CMA 
unregisters with the GMS, and a monitor browses the availability 
information. 

In the first scenario (Figure 6-28), a CMA registers with its LMA by 
passing to it a specification of availability. 

  CMA LMA-Repository LMA-DMA 
channel

DMA-Repository1 DMA-DMA 
channel

DMA-Repository2 Monitor1 Monitor2

1: register() 2: new_data

6: new_data

3: new_data
4: new_data

5: update()

7: update()

 

An LMA has the responsibility for passing this specification to its DMA. The 
LMA-Repository in a LMA keeps a view of the availability information of all 
CMAs on the same host. The DMA-Repository sends new availability 
information to all other DMAs so they can update their DMA-Repositories. 
Every DMA-Repository receives information from other DMAs, this way 
maintaining a global picture of the monitoring data available in the whole 
system. Each DMA sends notifications to subscribed monitors (types 
subscriptions) about changes in the availability information.  

Figure 6-28 A CMA 
registers with the 
GMS  
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The GMS processes the unregistration of a CMA and the removal of the 
associated availability information in a similar manner as registration 
(Figure 6-29). 

 

  CMA LMA-Repository LMA-DMA 
channel

DMA-Repository1 DMA-DMA 
channel

DMA-Repository2 Monitor1 Monitor2

1: unregister() 2: old_data

3: old_data
4: old_data

6: old_data

5: update()

7: update()

 

In the second scenario, a monitor contacts a DMA in order to browse the 
availability information. The corresponding DMA-Repository component 
handles the browsing request locally and returns a result according to its 
current global view on availability information, hence it does not need to 
interact with other components in this case.  

Figure 6-29 A CMA 
unregisters with the 
GMS  

The Configuration component 

The Configuration component has the responsibility to configure event 
report generation in the instrumentation as a result of 
subscription/unsubscription of monitors with the GMS. The following two 
scenarios define the internal behavior fo the Configuration component: the 
GMS handles a subscription, and the GMS handles an unsubscription.  

In Figure 6-30, the Subscription component contacts the DMA-
Configuration component with a “switch on” request as a result (we do not 
depict this part) of a subscription initiated by a monitor with the GMS. 

 
 

 Subscript ion DMA-DMA 
channel

DMA-Configuration DMA-LMA 
channel

LMA-Configuration CMALMA-Repository

1. switch_on()
1.1.  switch_on

2. switch_on

2.2.  configure()

1.2. switch_on

2.1. get_ids_for_events()

 

 
 

Figure 6-30 The 
GMS handles a 
subscription  
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The DMA forwards the “switch on” request to its LMAs by sending a 
message to its DMA-LMA channel, and to the DMA-Configuration 
components of other DMAs by sending a message to the DMA-DMA 
channel. A LMA processes the request by contacting the LMA-Repository 
to determine the relevant CMAs and then configures each CMA for event 
generation. A DMA-configuration component handles configuration 
messages from other DMAs in a similar way.  

The system handles “switch off” requests similarly to “switch on” 
requests (Figure 6-31).  

 Subscript ion DMA-DMA 
channel

DMA-Configuration DMA-LMA 
channel

LMA-Configuration CMALMA-Repository

1. switch_off()

1.2. switch_off

1.1. switch_off

2. switch_off

2.2.  configure()

2.1. get_ids_for_events()

 

Figure 6-31 The 
GMS handles an 
un-subscription  

The Interrogation component 

The Interrogation component allows monitors to interrogate the GMS for 
status reports. An interrogation results in the measurement of values by the 
instrumentation and the generation of status reports. The following 
scenario defines the internal behavior of the Interrogation component: the 
GMS handles a request for status reports. 

In Figure 6-32 a monitor makes a request for status reports. 

 Monitor DMA-Interrogation DMA-Repository DMA-DMA 
channel

DMA-LMA 
channel

LMA-Interrogation LMA-Repository CMALMA-DMA 
channel

1: request_data()
2: get_status_description()

5: request_data
6: get_ids_for_statuses()

7: request_data()

3: request_data

4: request_data

11: response_notify
12: notify()

8: response_notify

9: response_notify10: notify()

 

The DMA-Interrogation component first calls the DMA-Repository to 
validate the request and then forwards it to other DMAs and to its LMAs by 

Figure 6-32 The 
GMS handles a 
request for status 
reports 
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sending a “request data” message to the corresponding channels. When an 
LMA receives a “request data” message, it contacts its LMA-repository to 
get the ids for those CMAs registered with this LMA that can produce the 
status reports requested in that message, and then the LMA requests these 
status reports from CMAs that can provide them. When a CMA receives a 
request for a status report it performs the necessary measurements and 
returns the resulting status report to the LMA. The LMA sends the 
combined response containing the statuses to its DMA via the LMA-DMA 
channel. When a response comes from the LMA-DMA channel, the DMA 
checks whether this response corresponds to a request from any of the 
monitors subscribed to it. If the response does correspond, the DMA sends 
the response to the corresponding monitor. If the response does not 
correspond, the DMA sends the response to the DMA-DMA channel. 
When a response comes from the DMA-DMA channel, a DMA-
Interrogation component determines whether it matches any pending 
request from its subscribed monitors, if yes, it sends the response back to 
the requesting monitor, if no, it ignores the response message. When a 
DMA receives a “request data” message from the DMA-channel, it 
processes it in a way similar to a request coming from a monitor subscribed 
with this DMA, but when a response comes back, the DMA sends the 
response directly to the DMA-DMA channel. 

The Filtering component 

The Filtering component has the responsibility to filter event reports 
coming from the CMAs. The following three scenarios define the internal 
behavior of the Filtering component: the GMS adds a filter (new 
subscription), the GMS removes a filter (un-subscribing), and the GMS 
processes an event report.  

In Figure 6-33, the Subscription component contacts the DMA-
Filtering component to add a new filter as a result of a new subscription. 

 LMA-RepositorySubscription DMA-Filtering DMA-DMA 
channel

DMA-LMA 
channel

LMA-Filtering

1. add_filter()
1.1. add_filter

2. add_filter1.2. add_filter 2.1. get_event_description1()

 

The Subscription component passes new filter to the DMA-Filtering 
component. The DMA-Filtering component maintains a view on all filters 
for monitors subscribed with this DMA. When it receives a new filter, the 

Figure 6-33 The 
GMS adds a filter 
(new subscription) 
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DMA-Filtering component adds it to that view and sends it to the DMA-
LMA and the DMA-DMA channels. When an LMA receives a new filter, its 
LMA-Filtering component processes the filter in order to extract from it 
those parts that this LMA can satisfy (i.e., it can produce events matching 
that filter). It does this by contacting the LMA-repository to obtain 
information about event types supported by the CMAs currently registered 
with the LMA. The LMA-Filtering component then saves the processed 
filter in order to maintain a local (to that host) view of monitor demands. 
The DMA-Filtering component handles “add filter” messages from other 
DMAs in a way similar to the way it handles “add filter” messages from a 
Subscription component, except that the DMA-Filtering maintains a 
separate view (separate of the view of all filters coming from monitors 
directly subscribed to the DMA) of all filters that have arrived to this DMA-
Filtering component via the DMA-DMA channel). This separation allows 
for efficient processing of new event reports arriving at a DMA-Filtering 
component, depending on where it comes from: the LMAs or other DMAs.  

The DMA-Filtering component handles “remove_filter” requests from 
the Subscription component in a way similar to the previous case (Figure 6-
34). 

 LMA-RepositorySubscription DMA-Filtering DMA-DMA 
channel

DMA-LMA 
channel

LMA-Filtering

1. remove_filter()

1.2. remove_filter

1.1. remove_filter

2. remove_filter
2.1. get_event_description1()

 

In Figure 6-35, the DMA-Filtering component processes a new event 
report. The CMA sends an event report to the LMA-Filtering component. 

 CMA LMA-Filtering LMA-DMA 
channel

DMA-Filtering DMA-DMA 
channel

Delivery Monitor

1: notify()
2: event

3: event
4: event

5: deliver_events()
6: notify()

 

The LMA-Filtering determines the relevancy of an event report to any 
monitor in the system according to its local filter view. In case relevant, it 

Figure 6-34 The 
GMS removes a 
filter (un-
subscribing) 

Figure 6-35 The 
GMS processes an 
event 
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then sends the event report to its DMA-Filtering component via the LMA-
DMA channel. The DMA-Filtering component determines the relevancy of 
the new event report to any of its subscribed monitors using its current 
view on their filters and sends the event report to the Delivery component 
which delivers the event report to those monitors. The DMA-Filtering 
component also determines the relevancy of an event report to any of the 
monitors subscribed to other DMAs in the system using its view on the rest 
of the system’s filters, and sends a relevant event report to the DMA-DMA 
channel. When a new event comes to a DMA-Filtering component from the 
DMA-DMA channel, it determines its relevancy according to its view on its 
subscribed monitors and sends a relevant event to the Delivery component, 
which delivers it to its monitors. It does not have to check whether to send 
the even to the DMA-DMA channel since it got the event from that channel 
(and hence the other DMAs got it too).  

6.3.3 Quality of service 

We define the Quality of Service (QoS) of a system as a set of qualities 
regarding the cooperative behavior of system components that realize the 
service of the system [ISO98]. In order to satisfy its users, a system has to 
meet some QoS requirements.  

In order to meet the QoS requirements of its users, an application may 
require certain guarantees on the resources it needs from its environment. 
In the case of a distributed environment, we distinguish two types of 
resources: computational and communication. Computational resources 
include processing power, memory, OS handles and any other resources 
that relate to the execution of monolithic (non-distributed) application 
parts. Communication resources include communication bandwidth and 
communication delay. 

In terms of computational resources, an application may require 
guarantees on available processing time. In terms of communication 
resources, an application may require guarantees on available bandwidth for 
communication among its components. 

In Chapter 1, we have identified a class of problems related to the 
monitoring system overhead, resulting from resource sharing in low-cost 
distributed environments. One possible solution to these problems requires 
adding QoS mechanisms to the distributed environment, where we 
consider a QoS mechanism, one that gives users guarantees for meeting 
their QoS requirements. For middleware-based systems, the middleware 
handles most (or all) resource allocations in the layers below the 
middleware layer. Hence, in middleware-based systems, the middleware 
can provide to the application the benefits of QoS mechanisms 
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transparently (i.e., hidden by the middleware). We call these mechanisms, 
middleware QoS mechanisms. The work described in [Weg03] constitutes 
an example of middleware QoS mechanisms for computational resources. 
This work presents middleware-based solutions for load balancing. The 
work described in [Halt03] and carried out in [AMIDST] constitutes an 
example of middleware QoS mechanisms for communication resources. 
This work presents the Quality Provisioning Service (QPS) developed for 
CORBA middleware. The QPS allows designers that use the CORBA 
middleware as a distributed processing environment for their applications 
to provide QoS guarantees on the response time of remote operation 
invocations. 

In the GMS we do not deal with QoS requirements. Since we use 
middleware technology to develop the GMS, designers who want to use our 
GMS have the possibility to add middleware QoS capabilities if they need 
them. 

6.4 Implementation report 

In this section we describe the effort we have made to implement a 
middleware-based proof-of-concept GMS prototype. This report discusses 
supported functionality, technological decisions, security, and reliability 
issues. In Appendix B we describe how to compile, configure, deploy and 
use the prototype. 

6.4.1 Supported functionality 

Within the FRIENDS and the AMIDST research projects [FRIENDS, 
AMIDST], we have created a prototype implementation of a GMS. We 
incrementally introduced the functionality described by the GMS 
architecture, in order to meet the resource limitations of the projects that 
supported our work. As a result of these limitations, the recent prototype of 
the GMS still does not support some of the functionality: 
– The GMS prototype has support for event reports only. It does not 

support service primitives that relate to status reports. This limits the 
use of the GMS prototype to applications with an event-based 
monitoring model; 

– The GMS prototype does not support the filter expressions in a 
specification of interest. This removes the ability of the GMS prototype 
to filter relevant monitoring data; instead it delivers to all monitors all 
event reports that the system generates; 
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– The GMS prototype uses communication channels only for the DMA-
DMA communication. We do not use channels for the LMA-DMA and 
the DMA-LMA communication. Instead, we use CORBA synchronous 
and oneway operation invocations to implement the message exchange 
between LMAs and DMAs. 

6.4.2 Technological decisions 

In order to build a GMS prototype we have made the following decisions 
regarding implementation technologies: 
– The Java technology as a programming platform. Java provides 

unprecedented portability among software and hardware platforms. At 
present, the Java platform supports a wide variety of server, desktop and 
embedded operating systems, and the standardization process within the 
Java community allows third party vendors to provide Java support for 
new operating systems and hardware platforms. Furthermore, the 
current state-of-the-art in compiler technologies has reduced the 
performance gap between Java-based solutions and other solutions based 
on compilation to native machine language; 

– The CORBA object middleware as a distributed object computing 
environment. Some components of the GMS prototype may have to 
operate on systems where we do not have a JVM implementation or we 
cannot use Java for performance reasons. Re-implementing these 
components in a native environment may pose the problem of 
integrating this new implementation with the already existing Java-based 
components of the GMS. CORBA solves this because it allows 
portability across programming languages by providing to designers the 
platform-independent Interface Definition Language (IDL). 

We implemented the GMS prototype with the Java 2 Development Kit 
version 1.3.x and above. We have used the JacORB [JACORB] 
implementation of the CORBA standard for Java. We chose JacORB, 
because its authors have made it available free for non-commercial use, and 
they consistently update it to conform to the latest CORBA specification 
updates. Note that because the CORBA standard supports interoperability 
among ORB implementations using the IIOP wire protocol, we can in 
principle, implement the various components of the GMS using any other 
ORB product, e.g., a C++ or a C ORB implementation to gain additional 
performance from natively compiled (i.e., optimized for a particular 
computer architecture) programs or an ORB implementation with real-
time features. 
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CORBA standardizes several object services. Object services represent 
facilities that automate some of the most commonly performed tasks in a 
distributed environment. We use two of them: the naming and notification 
services. The Naming Service provides means for obtaining access (an 
object reference) to remote objects using explicit platform independent 
naming conventions. We resolve all explicit dependencies among remote 
objects of the GMS monitoring agents using the JacORB Naming Service 
implementation to obtain the necessary object references. The Notification 
Service allows for exchange of structured and unstructured data in a 
generic, asynchronous and scalable manner. We use the ORBacus 
[ORBacus] Notification Service to setup DMA-DMA channels.  

The computer science research community has recognized open source 
and free software as a powerful tool for supporting scientific research. Open 
source software (with flexible licensing) encourages the research and 
development by allowing access to source code. Free software encourages 
the development of various applications (of that software) based on sharing 
and reuse of its source code. We built the GMS using various free (for non-
commercial use) open source technologies. We believe that a basic enabling 
technology such as a GMS, should support the free and open source 
movement in order to promote the process of its refinement and evolution 
by letting the community contribute to its development. For this reason, we 
have released the prototype of the GMS under the LGPL license agreement 
[LGPL]. 

6.4.3 Security 

The GMS prototype does not provide functionality explicitly related to 
security, such as built-in authentication or encryption. Using the GMS in a 
(secure) testing environment to monitor for locating and removing errors, 
does not require security features in the GMS. Therefore, it makes sense to 
consider security aspects only for uses of the GMS during the normal 
operation phase of the monitored application.  

In general, we consider communication within administrative domain 
regions secure, and thus delegate this responsibility to domain 
administrators. We however consider communication between domains 
insecure in the general case. For DMA-DMA communication between 
DMAs belonging to different domains, designers need to consider providing 
additional security, e.g., encryption of communication to prevent 
eavesdropping. 
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6.4.4 Reliability 

We consider the following reliability issues in the GMS monitoring system: 
reliable communication, tolerance to partial failure, and potential problems 
with the ordering of monitoring reports.  

Reliable communication 

The technologies used in the GMS prototype provide reliable 
communication among the physical components of the GMS – CORBA 
uses the reliable transport protocol of the Internet. This means that the 
GMS components eventually detect any failure in the communication. The 
GMS uses a fail-fast strategy: when one interaction between GMS 
components fails, the GMS assumes the network has become unavailable 
and terminates the components. Designers who need more elaborate 
behavior may extend our implementation appropriately. 

Partial failure  

A partial failure in the GMS we consider when a monitoring agent becomes 
inaccessible for the rest of the system, e.g., it either terminated abnormally 
or the communication network became unavailable.  

We consider failure in a CMA equivalent to a failure of the 
instrumented application part, which results in loosing subsequent 
monitoring data from this part.  

Failure in an LMA would result in subsequent loosing of monitoring 
data from a whole host, however the rest of the monitoring system 
continues to function.  

Failure in a DMA would result in loosing monitoring data about a whole 
administrative domain region. The other domains (if any) however, would 
continue to provide monitoring data to their monitors. Designers can try to 
prevent loosing a whole domain because of a failed DMA, for example, by 
upgrading LMAs with domain consciousness, i.e., allow them to create new 
DMA instances that in turn will seek out connection to the other DMAs of 
the GMS.  

Order of monitoring reports 

Some monitoring applications may consider the delivery order of 
monitoring reports important. The Inter-ORB protocol that CORBA uses, 
takes care of the correct byte order during the communicating of operation 
invocations. CORBA however, does not guarantee that two separate 
monitoring reports sent with two separate operation invocations would 
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always end up at a monitor in the same order (of sending). This problem 
results from a combination of various issues such as non-synchronized 
(and/or imprecise) computer clocks, communication delays, loaded 
networks, partial communication failures, and so on.  

The GMS prototype does not provide any guarantees about the ordering 
of monitoring reports. By definition, the GMS service requires a timestamp 
from a physical clock present in each report, to use for filtering based on 
time constraints. Nevertheless, this physical clock has accuracy as good as 
the accuracy allowed by the protocol used for synchronizing computer 
clocks (e.g., NTP [NTP]). We choose to leave reordering functionality out 
of the GMS because of its processing cost in terms of overhead. Designers 
may choose to extend the GMS prototype with a logical clock system. We 
add a logical clocks system to the monitoring system during the 
specialization of the GMS for monitoring object and component 
communication. 





 

Chapter 7 

7. A system for monitoring distributed 
object and component 
communication 

This chapter presents the design of a system for MOnitoring Distributed 
Object and Component Communication (MODOCC). The MODOCC 
system establishes the basis for building monitoring applications that 
analyze object and component communication behavior in CORBA-based 
Java applications. We design the MODOCC system following the design 
approach presented in Chapter 5.  

The MODOCC systems consists of two parts: (a) GMS specialization for 
monitoring of object and component communication behavior and (b) 
instrumentation that allows monitoring of Java objects, CORBA objects, 
and the instances of components built with the Distributed Software 
Components (DSC) framework.   

First, we prepare for the design by further refining the requirements 
that we have identified in Chapter 4. We use the design questions that we 
formulated in Chapter 5 to structure the refinement. 

We specialize the GMS presented in Chapter 6 by following stage two of 
our design approach. The GMS specialization consists of two steps: (a) 
definition of a MODOCC Monitoring Model (MM) that helps us to specify 
explicitly what aspects of object and component communication we want to 
monitor, and (b) definition of a MODOCC data structure for the 
MODOCC MM. The MODOCC MM specializes the generic monitoring 
model of the GMS (Chapter 6, section 6.1.1) by defining types of events 
and their specific attributes. The MODOCC data structure specializes the 
GMS data structure by defining how a MODOCC monitoring report 
represents the event types and their specific attributes defined in the 
MODOCC MM.  
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We design the MODOCC instrumentation by following stage three of 
our design approach. The MODOCC instrumentation design for 
monitoring object and component communication consists of four steps: 
(a) design of sensors for Java objects, CORBA objects, and DSC component 
instances, (b) sensor placement, (c) design of instrumentation tools for 
Java, CORBA and DSC, and (d) a  CMA (instrumentation) architecture. 

In the end we discuss the performance of the MODOCC system 
prototype that we have built. 

7.1 Requirement refinement 

In this section, we refine and structure the requirements from Chapter 4 
relevant to GMS specialization, by answering the design questions from 
Chapter 5. 

Q1: Why do we want to monitor object and component communication? 

In Chapter 3, we introduced object and component middleware. Object 
and component communication plays a central role in defining the behavior 
of a middleware-based application that consists of cooperating objects 
and/or component instances. We require monitoring of object and 
component communication for two reasons. Firstly, to allow the 
application designer to visually examine an execution in order to determine 
whether an application prototype faithfully implements its intended behavior 
specified at the level of communicating object and component instances. 
Secondly, to allow the application designer to locate and possibly remove 
implementation errors. We restrict the communication that we want to 
monitor to method calls and operation invocations. 

For example, a monitoring system can visualize application behavior 
using a message sequence diagram showing the sequence of operation 
invocations among application objects during one particular execution of 
the monitored application. Using this diagram, a tester can better 
understand how the monitored application operates, can locate an error by 
associating it with a particular invocation, can detect undesirable sequences 
of invocations, and in general check the conformance of the monitored 
application behavior to its object-oriented design. 

Q2: What information do we need from a visualization of object and component 
communication? 
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The monitoring system should uniquely identify individual invocations, 
provide information about the order among invocations, should uniquely 
identify the objects or component instances that participate in an invocation, 
and should allow inspection of invocation parameters. The visualization should 
inform about order in the terms of causal precedence among operation 
invocations (we introduced these terms in Chapter 2).  

Furthermore, the monitoring system should have the capabilities to 
provide information online, so that designers can (potentially) observe 
operation invocations while the monitored application executes. Based on 
this online information, for example, designers can steer the monitored 
application in order to better expose some particular erroneous behavior. 
Note that we do not require application steering capabilities from the 
monitoring system. 

Q3: What monitoring data does a monitor require from the MSS? 

Visualization represents a presentation activity performed at a monitor (see 
the discussion on monitoring activities in Chapter 2). A monitor analyzes 
and visualizes the monitoring data coming from the MSS. Hence, the MSS 
should provide sufficient monitoring data to support visualization as 
discussed in the previous two questions. 

An operation invocation represents a complex (potentially) distributed 
activity. We can view an operation invocation as a sequence of several non-
distributed activities. This way of modeling an operation invocation allows 
us to deal with distribution, by measuring the progress of related non-
distributed activities involved in an operation invocation. We consider the 
following non-distributed activities: initiation of an invocation at the 
location of the caller (object/component instance), receiving of an 
invocation at the location of the called, returning of a result at the location 
of the called, and the receiving of the result at the location of the caller (see 
Chapter 3 for details on the middleware mechanism that handles operation 
invocations). The successful completion of each one of these activities 
represents an event (see the modeling concepts defined in Chapter 2). The 
monitor requires to receive from the MSS event reports that represent these 
events. 

The monitor needs timestamps associated with each event report so that 
it can restore the order (of occurrence) among the events belonging to a 
single invocation. This way the monitor can determine whether an 
invocation has completed (successful invocation) or not (which can mean 
an error or some special condition that designers have overlooked). A 
vector logical clock system allows keeping track of the progress of sequential 
processes in the monitored application by generating vector timestamps 
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(described in Chapter 2). Vector timestamps allow restoring of the causal 
precedence relation among events. Timestamps generated with the help of 
an imprecise computer physical clock allow restoring of the temporal order 
among the events. 

For the proper visualization of object and component instances and 
their involvement in communication, the monitor not only requires unique 
identifiers (to distinguish among them) but also requires information about 
their lifecycle and in particular their lifecycle activities. We consider two 
types of lifecycle activities - creation and destruction of an object or 
component instance. The monitor requires from the MSS event reports 
representing the events of successful completion of lifecycle activities. For 
example, a monitor can use the knowledge that objects can only 
communicate after creation and before destruction to detect attempts for 
communication with objects that the runtime environment has destroyed 
(which developers typically consider as an error). 

Q4: What monitoring data does the MSS require from the instrumentation?  

We do not require the MSS to perform any specific processing activities on 
monitoring data and therefore the MSS requires from the instrumentation 
the same monitoring data we discussed in the answer to the previous 
question. The MSS simply collects event reports from the instrumented 
application parts (the instrumentation) and delivers them to the monitors 
subscribed with it. 

Q5: What measurements does the instrumentation need to perform? 

In order to obtain the required monitoring data, the instrumentation needs 
to detect the events corresponding to activities happening during an 
operation invocation. We discussed event detection in Chapter 2, section 
2.4.2. To detect the events necessary for monitoring an operation 
invocation, the instrumentation needs to install proper sensors. In Chapter 
3, section 3.4.1, we discussed mechanisms for message reflection. For 
example, for the CORBA middleware, the interception points provided by 
the Portable Interceptors specification and the POA allow for detecting the 
completion of the activities we identified in the answer of question Q3.  

The instrumentation needs to associate a timestamp with each event so 
that monitors can reason about their order (of occurrence). To provide 
causal precedence among events, the instrumentation needs to implement 
and maintain a vector clock system. When the instrumentation detects an 
event, it measures the current progress of its vector clock to generate a 
vector timestamp. Since vector timestamps provide partial order among 
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events, the instrumentation also measures the physical computer clock to 
provide an absolute timestamp that allows absolute (though inaccurate) 
ordering of the events in the system. 

When the instrumentation detects an event, it needs to identify uniquely 
the object(s), component instance(s) and the process (for the vector clock) 
concerning this event, so that the instrumentation can generate an event 
report that properly characterizes the event. For this the instrumentation 
measures the internal representations (e.g., names, pointers or hash codes) 
of objects, component instances, and processes, and uses these 
measurements to generate (if necessary) globally (for the whole distributed 
system) unique identifiers that allow monitors to distinguish among 
different objects, component instances and processes. 

The instrumentation also needs to measure the values of parameters 
(input parameters and results) of an invocation at the moment of event 
detection. 

In Chapter 8, we further elaborate on Q1, Q2 and Q3 in order to 
define a generic monitor for the MODOCC system. In this chapter we 
concentrate on Q4 (which coincides with Q3) and Q5, in order to build 
the MODOCC system. 

7.2 GMS specialization 

In this section we describe the specialization of the GMS into an MSS for 
monitoring object and component communication. Stage two of our design 
methodology suggests that a designer should follow three steps in the 
specialization of a GMS: definition of a monitoring model, definition of a 
data structure, and adding of processing components. We follow steps one 
and two, however we do not follow step three, since we do not require any 
additional processing of monitoring data in the MODOCC system. 

We structure the discussion in the following manner. First we define a 
MODOCC MM that consists of an entity model and a behavior model. The 
entity model describes the abstract structure of a monitored application in 
terms of objects, component instances, processes and the relations among 
them. The behavior model describes the behavior (within a single 
application run) of entities (from the entity model) in terms of events, 
where an event represents the successful completion (see Chapter 2) of a 
non-distributed communication or lifecycle activity. The behavior model 
also defines ordering relations (causal precedence and limited realized 
causality) among events so that using them monitors can reason about 
operation invocations (including relations among them) in the behavior of 
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the monitored application. Then we discuss a data structure of the 
monitoring reports for the MODOCC system. 

7.2.1 Entity model 

Figure 7-1 shows a UML class diagram of the entity model of a 
middleware-based application. 
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Figure 7-1 Entity 
model 

Entities 

We distinguish three types of entities in a middleware-based application: 
component instances, objects and processes. We defined the object and 
component instance concepts in Chapter 3. We assume that a component 
can offer its functionality through multiple interfaces, while an object can 
offer its functionality through a single interface. We defined the process 
concept in Chapter 2.  

Entity relations  

In Chapter 3 we made the observation that component technology often 
evolves as a superstructure on object middleware. In this model we use this 
observation to define that one or more objects realize the behavior of a 
component instance within a single application run. In turn, one or more 
processes realize the behavior of an object by sequentially performing 
activities during application runtime. Some of these activities result in 
entities communicating among each other. Component instances and 
objects communicate via operation invocations and processes via message 
exchange. In the behavior model we further discuss concrete activities that 
entities of the entity model can perform. 

7.2.2 Behavior model 

We start by expressing component instance communication using object 
communication, then object communication using activities that processes 
perform. We also discuss lifecycle activities for components and objects. 
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Having identified the necessary activities, we define event types and event 
attributes for each event type. We then discuss relations among events. 

Mapping component communication to object communication 

In Figure 7-2, component instance A invokes an operation on an interface 
provided by component instance B. 

 

IInnssttaannccee  ooff  
CCoommppoonneenntt  AA  

IInnssttaannccee  ooff  
CCoommppoonneenntt  BB  

OObbjjeecctt  LL  OObbjjeecctt  MM  
iinnvvooccaattiioonn  

IInnssttaannccee  ooff  
CCoommppoonneenntt  AA  

IInnssttaannccee  ooff  
CCoommppoonneenntt  BB  

iinnvvooccaattiioonn  

 

Since we assume that objects realize the behavior of components, there 
exist two objects L and M that realize this particular operation invocation at 
A and B respectively. 

Figure 7-2 Mapping 
of component 
communication to 
object 
communication 

Mapping object communication to process communication 

We model an operation invocation between two objects as a sequence of 
activities. We distinguish three types of operation invocations (Figure 7-3): 
(a) method call, (b) synchronous operation invocation, and (c) 
asynchronous (oneway) operation invocation. P1 and P2 represent processes 
involved in performing communication activities. O1 and O2 represent the 
caller and called objects respectively. Circles represent activities that we 
consider significant. Arrows represent the order in which processes execute 
activities. The object middleware used to build the monitored application 
prescribes this order.  
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In (a), both O1 and O2 represent local objects. We consider (a), because 
most OO programming languages handle method calls in this way. We 
model a method call using four activities: send represents the calling of the 
method at O1, receive represents the beginning of the execution of the 
method body at O2, send response represents the completion of the execution 
of the method body at O2, and receive response represents the return of results 
at O1. Hence we model the execution of a method call with the consecutive 
execution of the activities send, receive, send response and receive response, by a 
single process P1. 

In (b), O1 and O2 represent objects possibly situated at remote physical 
locations (or different execution environments at the same location). We 
consider (b), because most contemporary object middleware products 
handle synchronous operation invocations in this way (similarly to an RPC 
call). We model a synchronous operation invocation using four activities: 
send and receive response associated with object O1, and receive and send response 
associated with remote object O2. During a synchronous operation 
invocation, a process P1 executes send, to send a message m1 to process P2, 
which performs receive to receive the message. Message m1 constitutes the 
forward direction of an operation invocation. After sending the message, P1 
waits for a response message. When the computation of the operation 
implementation completes, process P2 performs send response to send 
message m2 to process P2 containing the results (if any) from the operation 
computation. Process P1 performs receive response to accept the message.  

In (c), O1 and O2 again represent objects possibly situated at remote 
physical locations (or different execution environments at the same 
location). We consider (c), because the CORBA middleware handles 
asynchronous (oneway) communication in this way. An asynchronous 
operation invocation differs from a synchronous operation invocation in 
that it does not require a response message. 

Figure 7-3 Mapping 
of object 
communication to 
process 
communication 
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Lifecycle activities 

Regarding the lifecycle of component instances we consider two activities: 
create and release, where create results in a new component instance and 
release results in the releasing of any system resources associated with an 
existing component instance. Regarding the lifecycle of an object we again 
consider two activities: create and release, with similar meaning as defined 
above, but applied to objects. 

Event types 

In the previous sections we have identified communication and lifecycle 
activities that we find interesting to a monitor. In this section, we associate 
with each activity an event type. Each time a process successfully performs 
an activity that we want to monitor, we require the MODOCC monitoring 
system to detect this condition as an event of the event type associated with 
that activity. In Table 7-1 we define the required communication event 
types. 
Communication 
events 

Description 

m_snd This event occurs when send has completed during a 
method call. 

m_rcv This event occurs when receive has completed during a 
method call. 

m_snd_resp This event occurs when send response has completed 
during a method call.  

m_rcv_resp This event occurs when receive response has completed 
during a method call.  

i_snd This event occurs when send has completed during a 
synchronous operation invocation. 

i_rcv This event occurs when receive has completed during a 
synchronous operation invocation. 

i_snd_resp This event occurs when send response has completed 
during a synchronous operation invocation. 

i_rcv_resp This event occurs when receive response has completed 
during a synchronous operation invocation. 

o_snd This event occurs when send has completed during an 
asynchronous operation invocation. 

o_rcv This event occurs when receive has completed during an 
asynchronous operation invocation. 

Table 7-1 
Communication 
events 

With Typescomm we denote the set of all communication event types. 
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In Table 7-2 we summarize how the defined event types relate to 
operation invocations. 
Invocation type Corresponding tuple of events 
Method call (m_snd, m_rcv, m_snd_resp, m_rcv_resp) 
Synchronous operation 
invocation 

(i_snd, i_rcv, I_snd_resp, i_rcv_resp) 

Oneway operation 
invocation 

(o_snd, o_rcv) 

Table 7-2 
Invocations 

In Table 7-3 we define lifecycle event types. 
Lifecycle events Description 
ob_create This event occurs when create has completed during 

class instantiation. 
ob_release This event occurs when release has completed during 

class instantiation. 
ci_create This event occurs when create has completed during 

component instantiation. 
ci_release This event occurs when release has completed during 

class instantiation. 

Table 7-3 Lifecycle 
events 

With Typeslife we denote the set of all lifecycle event types. 
We define function Type: E  (Typesa comm  Types∪ life), such that Type(e) 

for an event e∈E gives the type of the event, where E represents the set of 
all events in some application run.  

Event attributes 

In Chapter 2 we define that an event has three types of attributes: time, 
address, and information. The time attribute describes the moment of event 
occurrence. The address attribute describes the place at which the event 
occurred. The information attribute describes the effect or result of the 
event. In this section we define concrete attributes for the communication 
and lifecycle events (Table 7-4). 
Event type Time attribute Address attributes Information attributes 
m_snd lt ocaller, p ocalled, op, params 
m_rcv lt ocalled, p ocaller, op, params 
m_snd_resp lt ocalled, p ocaller, op, params 
m_rcv_resp lt ocaller, p ocalled, op, params 
i_snd lt ocaller, p ocalled, op, params 
i_rcv lt ocalled, p ocaller, op, params, pcaller

i_snd_resp lt ocalled, p ocaller, op, params 
i_rcv_resp lt ocaller, p ocalled, op, params, pcalled

Table 7-4 Event 
attributes 
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o_snd lt ocaller, p ocalled, op, params 
o_rcv lt ocalled, p ocaller, op, params, pcaller

ob_create lt c, p id 
ob_release lt c, p id 
ci_create lt p id 
ci_release lt p id 

Every event type from the MODOCC MM has one time attribute lt. The lt 
attribute accepts as a value a timestamp that determines the moment of 
event occurrence. The MODOCC system uses timestamps issued with the 
help of a vector logical clock.  

Every event type has an address attribute p that represents the process 
that performed this event. Communication events have as an additional 
address attribute the identifier of the object at which this event occurred 
(ocaller or ocalled, depending on the event type). Object lifecycle events have as 
an additional address attribute the identifier of the component this object 
realizes. 

All communication events have three information attributes: ocaller or ocalled 
(depending on the event type) representing the identifier of the other 
object that participates in the operation invocation, op representing the 
signature of the operation invocation, and params representing the 
parameters and/or result values of the operation invocation at the moment 
of the occurrence of the communication event. Furthermore, i_rcv and o_rcv 
have an additional pcaller information attribute, and i_rcv_resp has an 
additional pcalled information attribute. These additional attributes contain 
the identifier of the process that has sent (performed a send or send response 
activity) a message to another process as part of performing an operation 
invocation. Monitors that analyze communication events detected by the 
MODOCC system use these event attributes in combination with the 
timestamp to order and match individual events as part of an operation 
invocation. Lifecycle events have as an information attribute the identifier of 
the entity (object or component) whose lifecycle they relate to. 

With Attribname we define the set of all attribute names. With Attribvalue we 
define the set of all possible values for an attribute of an event. We define 
an (infix) accessor operator “.” : E×  Attribname a  Attribvalue, such that for an 
event e, e.“attribute name” produces the value of the corresponding 
attribute of this event. For example, for a communication event e∈E, e.op 
gives the name of the operation invocation that this event corresponds to. 
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Example: The “Hello!” application 

To illustrate how the model applies to a concrete application, we consider a 
simple system consisting of two components: a client and a server. The server 
component offers an interface, defined in CORBA IDL as follows: 

//Hello IDL 
interface Server 
{ 
 string hello(in string msg);  
}; 

The client component C1 contains object O1, and the server component C2 
contains object O2 (Figure 7-4). In the example we consider the following 
scenario: “C1 invokes the hello operation on C2”. For this scenario, we 
assume that process P1 performs activities within C1 and process P2 
performs activities within C2. 

 CC11  CC22

OO11  OO22

 

Table 7-5 contains a list of possible events that a monitor receives from the 
MODOCC system for the selected scenario. We represent each event by its 
type name followed by a list (between brackets) of its attribute values in the 
order presented earlier. For simplicity, we disregard the timestamp 
attribute by using a “_” on the corresponding position. 

 

Figure 7-4 The 
model of the �Hello� 
application 

Nr. Event 
1 ci_create(_, P1, C1) 

2 ci_create(_, P2, C2) 

3 ob_create(_, C1, P1, O1) 

4 ob_create(_, C2, P2, O2) 

5 i_snd(_, O1, P1, O2, �hello�, �Hello, client here!�) 

6 i_rcv(_, O2, P2, O1, �hello�, �Hello, client here!�, P1) 

7 i_snd_resp(_, O2, P2, O1, �hello�, �Welcome, client! Server here!�) 

8 i_rcv_resp(_, O1, P1, O2, �hello�, �Welcome, client! Server here!�, P2) 

9 ob_release(_, C2, P2, O2) 

10 ob_release(_, C1, P1, O1) 

Table 7-5 List of 
events for the 
�Hello!� application  
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11 ci_release(_, P2, C2) 

12 ci_release(_, P1, C1) 

First, the application creates two components C1 and C2 at the client and 
the server hosts, respectively (events 1, 2). The application creates O1 
within the context of C1 (event 3), and O2 within the context of C2 (event 
4). The process P1 starts executing the functionality of O1, which leads to 
performing of “hello” invocation on O2 (event 5). O2 receives the invocation 
(event 6) in the context of process P2. After executing the operation 
functionality, O2 sends the result (event 7). The result arrives at O1 in the 
context of P1 (event 8). Then the application releases objects and 
component instances (events 9, 10, 11, 12). Figure 7-5 shows the events 
altogether and relative to the middleware that handles the distribution 
details.  
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Events 5,6,7, and 8 represent successfully completed local interactions 
(between the objects and the middleware) that altogether (in this order) 
represent a synchronous operation invocation. 

Figure 7-5 Events 
for the �Hello� 
application 

Relations among the events 

Monitors require from the MODOCC system information about the order 
of communication events, so that they can restore correctly individual 
invocations, and further to order invocations relative to each other within a 
single application run. The lack of global time in low-cost distributed 
system motivates the use of logical time to order the events in an 
application run monitored with the MODOCC system.  

In Chapter 2 we distinguished two types of causality relations: potential 
and realized. In the following sections we describe how the MODOCC MM 
uses potential and realized causality. 
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Monitoring potential causality with the MODOCC system 

We associate with every event in an application run a logical timestamp 
attribute. As discussed in Chapter 2, we can define a partial order relation, 
denoted as “<”, on the timestamps issued by a logical clock system. With a 
strongly consistent logical clock system, the “<” relation among 
timestamps allows monitors to restore the causal precedence relation 
(denoted by “ ”) among events they observe. We shall discuss a 
particular design for a vector clock in the instrumentation design presented 
later in this chapter. The causal precedence relation provides potential 
causality among the events of an application run.  

→

The partial order that causal precedence gives, by itself only means that 
events occurred in some order in that particular application run. If a 
designer has some additional knowledge about the model (e.g., original 
design specification) of the monitored application, he/she may attempt to 
determine whether the model allows a behavior that produces the observed 
application run. If the model allows a trace however, the designer cannot 
say anything about the correctness of the implementation, because a single 
run does not determine all possible ways to execute the application. The 
designer may have to check this way a lot of different runs in order to raise 
his confidence in the implementation. If the model does not allow a run, 
then we have two possible conclusions: the monitored application 
implementation does not faithfully implement its model or, it does 
implement its model faithfully, but it produces a disallowed run because of 
a factor not considered in the model (e.g., a communication failure caused 
by cutting a wire). The designer needs to reexamine its implementation in 
order to distinguish the two cases. To narrow down the work during this 
reexamination, a designer may want to analyze the causal relationships 
among events, for example to find the reason for an event he considers as 
error.  

When the designer does not have access to the model of the monitored 
application, he may try to determine the possible causes of a particular 
event using the potential causality provided by the causal precedence 
relation for an application run. Nevertheless, another application run may 
produce the same event but in different order with the other events in the 
application run, because the potential causality does not provide the 
certainty of realized causality. Hence, potential causality only narrows down 
the choice for a cause to a list of possible causes. 

Middleware-based applications have something common in their 
behavior – the middleware. By definition, the middleware represents a 
collection of reusable blocks of functionality to provide to the application 
layer certain transparency from low-level programming details. As a 
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consequence, all middleware-based applications sharing a particular 
middleware, also share its behavior. For example, a CORBA-based 
application would use the behavioral patterns of the CORBA middleware 
for communication among its (potentially) distributed application objects. 
Hence, all communication would follow the same model – the design of the 
intended behavior of the CORBA object middleware. All this implies that, 
since we have the goal to monitor middleware-based applications, our 
MODOCC system has access to an important asset – the model of the 
middleware. This model does not change over time and it prescribes all 
possible types of communication behavior (earlier we limited the discussion 
to three) between middleware objects. Furthermore, we assume that the 
middleware implementation used during monitoring correctly implements 
its model. In the next section, we discuss how the additional information 
from the middleware model allows us to reason about realized causality 
relation among events of an application run. 

Monitoring realized causality with the MODOCC system 

We have already used the model of the middleware when we defined the 
event types and how events represent a method call, a synchronous 
operation invocation, and an oneway operation invocation. According to 
this model, in the scope of a single invocation certain event types precede 
other event types in terms of realized causality. We define the binary 
relation Causalitytypes  ((Types⊂ comm×Typescomm )∪ (Typeslife×  Typeslife)), as the 
causal relation between event types. Table 7-6 shows all event type pairs 
that this relation contains.  

Event type 
cause 

Event type 
effect 

m_snd  m_rcv 
m_rcv  m_snd_resp 
m_snd_resp m_rcv_resp 
i_snd  i_rcv 
i_rcv  i_snd_resp 
i_snd_resp  i_rcv_resp 
o_snd  o_rcv 
ob_create  ob_release 
ci_create  ci_release 

Table 7-6 Causal 
relations between 
event types 
according to the 
middleware model 

We provide the following example application run (Figure 7-6) to illustrate 
realized causality between events. 
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The application run consists of three nested synchronous operation 
invocations. Horizontal lines represent the passing of time at an object oi, 
i∈{1,2,3}. Each object oi has a process pi associated with it. Each process 
performs the activities of the corresponding object. Objects perform three 
synchronous operation invocations that we denote with inv1, inv2 and inv3. 
The quadruples (e1, e2, e11, e12), (e3, e4, e5, e6) and (e7, e8, e9, e10) represent 
inv1, inv2 and inv3 respectively. According to their timestamps, these events 
relate with causal precedence in the order provided by the arrows in the 
diagram. According to the middleware model, the events within each 
quadruple relate among each other with realized causality, for inv3, e1 
represents the definite cause of e2, e2 represents the definite cause for e11, 
e11 represents the definite cause of e12, and so on for the other two 
invocations.  

For an application run we define the Limited Realized Causality (LRC) 
relation as a binary realized causality relation between the events of every 
invocation in that application run. We call it limited, because it only involves 
events resulting from middleware activities that we want to observe: 
communication and lifecycle.  

Let DC = (E, → ) represent an application run. Let C( ) represent 
the transitive closure of the causal precedence relation , and R( ) 
represent its transitive reduction. 

→
→ →

LRC E E, LRC = {(e⊂ × 1, e2): (Type(e1), Type(e2)) ∈Causalitytypes and 
(((Type(e1) ∈Typescomm and Type(e2)∈Typescomm) and ((e1, e2)∈R( ))) or 
((Type(e

→
1) ∈Typeslife and Type(e2)∈Typeslife) and ((e1, e2)∈C( )) and 

(e
→

1.id = e2.id)))}. 

Informally, for two events e1, e2 to participate in the LRC, their types need 
to relate causally in one of the ways defined earlier in Table 7-6. 
Furthermore, for communication events, the two events should participate 
in the transitive reduction of the causal precedence relation, i.e., e1 should 
directly precede e2. For lifecycle events, both events should regard the same 
object or component instance, and the events should participate in the 
transitive closure of the causal precedence relation, i.e., e1 should 

Figure 7-6 Three 
nested 
synchronous 
operation 
invocations 

Definition 7-6 
Limited Realized 
Causality 
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transitively precede e2. Note that LRC defines a strict partial order on E, 
and LRC⊂  C( ), . →

The main application of the LRC comprises various analysis techniques 
regarding invocations that need the certainty of realized causality. For 
example, if a monitor receives only the first two events of an invocation 
quadruple, this would imply an application hasn’t finished preparing the 
result of the operation invocation (if any). If the last two events of the 
quadruple never appear at the monitor (provided the monitoring system 
operates correctly) this would imply an error in a particular application 
component which the monitor can recognize automatically, without 
intervention of a human operator. If only the first and the last events appear 
at a monitor, this would imply an error in the operation of the monitoring 
system itself, since according to the middleware model this kind of behavior 
cannot happen. With this additional information, a human operator can 
concentrate on dealing with the error, instead of spending a lot of time 
searching for its location.  

When a monitor receives information about an event (in the form of an 
event report), it uses the information from the logical timestamp attribute 
of the event to restore the causal precedence relation. Then, based on the 
type of the event (and other event attributes in case of lifecycle event), the 
monitor can restore the limited realized causality relation.  

7.2.3 Data structure 

Each time the MODOCC system detects a communication or a lifecycle 
event we require the information about this event to become available to 
monitors. The MODOCC system makes an event available to monitors by 
generating an event report. An event report represents a special kind of 
monitoring report that describes an event in terms of its type and specific 
attributes.  

In this section we define a data structure for the MODOCC MM. This 
data structure defines (the structure of) the MODOCC event reports (i.e., 
reports that the MODOCC system can generate). Figure 7-7 shows the 
structure of MODOCC event reports.  
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In Chapter 6 we defined a structure for monitoring reports that allows the 
GMS to work with monitoring data in a generic way. Because we build the 
MODOCC system on top of the GMS, we derive the definition of 
MODOCC reports from the EventReport class, where the MEvent class 
represents a MODOCC event report. We define two additional classes of 
event reports derived from MEvent: MCommEvent and MLFEvent, 
representing communication events and lifecycle events respectively. The 
MEvent, McommEvent, and MLFEvent define specific attributes for every 
event report corresponding to the event attributes from the MODOCC MM 
(except for the event_type attribute – see below). 

The MEvent class defines specific attributes common to both 
communication and lifecycle events, and an additional attribute event_type to 
distinguish among individual event types (that we defined in the MODOCC 
MM). The MCommEvent defines attributes specific to communication 
related events and the MLFEvent defines attributes specific to lifecycle 
events. The GMS can access all specific attributes in a generic way by 
enumerating them in the s_attributes list attribute of the MonitoringReport 
base class (see Chapter 6 for the details). 

The values of the event_type attribute enumerate the event types we 
defined in the MODOCC MM. The values of all other attributes except lt, 
represent unique identifiers for entities from the MODOCC entity model. 
The lt attribute contains as a value an instance of the PTimestamp class 
(Figure 7-8). 

Figure 7-7 The 
structure of 
MODOCC event 
reports 
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The MODOCC system uses a vector clock system to generate vector logical 
timestamps. We discussed the details of the vector clock system in Chapter 
2. The value of the lt attribute represents a vector of pairs, where every pair 
has an attribute p representing the id of a process, and an attribute c 
representing the progress of the process in p, according to the vector clock 
system. In the next section we further show how we implemented the rules 
of the vector clock system. 

Figure 7-8 The 
logical timestamp 

7.3 Instrumentation design 

In this section we describe the instrumentation design for the MODOCC 
system. We consider three types of instrumentation: instrumentation of an 
object oriented programming runtime (Java) to monitor objects (i.e., 
objects local to a single execution environment), instrumentation of an 
object middleware (CORBA) to monitor middleware objects (i.e., objects 
that allow distributed communication), and instrumentation of a 
component middleware (DSC) to monitor component instances. 

The MODOCC MM defines several event types. For each event type, we 
need to build software sensors that can detect the completion of the 
activities represented by the event. We also need to determine where to 
place these sensors with respect to the monitored application and the 
middleware. 

Middleware technologies provide to application developers tools that 
facilitate the application development process. During the instrumentation 
design we also need to provide tools that automate the instrumentation 
process, so that developers can easily adapt for the purpose of monitoring 
large numbers of different application objects and components. 

The instrumentation should communicate with the GMS to send 
monitoring data. For this purpose we design an architecture of a CMA that 
encapsulates all sensors, their management, the packaging of the results of 
measurements into event reports, and the sending of these event reports to 
the GMS according to its service definition. 
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7.3.1 Sensor design and placement 

In order to detect the occurrence of an activity corresponding to an event 
type from the MODOCC MM, we want to put a sensor on the execution 
path of the process performing the activity, so that the sensor would 
execute right after the activity has completed its execution. We call this 
method of detecting events interception. We associate with each event type 
from the MODOCC MM, a sensor that gets executed right after the 
moment of the completion of the activity. A sensor measures all the various 
values that constitute the attributes of the event that this sensor detects. 
The instrumentation has the responsibility to package these values in an 
event report and to send the report to the GMS. 

For communication events, we embed sensors on the communication 
path between objects in order to detect the completions of local 
interactions between the middleware and the objects participating in the 
communication. For lifecycle events, we embed sensors in the middleware 
object management facilities in order to detect the creation and destruction 
of objects.  

Sensors for Java 

The Java platform offers two interfaces that can support installation of 
sensors for communication and lifecycle events: the Java Virtual Machine 
Profiler Interface (JVMPI) [JVMPI], and the Java Platform Debugger 
Architecture (JPDA) [JPDA].  

The JVMPI allows for establishing hooks on the path of the JVM class 
loading mechanism during application runtime. Using JVMPI, designers can 
monitor various object activities, such as method calling, creation of new 
objects, synchronization between threads, etc. The JVMPI mainly finds use 
in application benchmarking and performance testing, as done in JPMT 
[HQGM02].  

The JPDA debugging interface allows for monitoring (and manipulation 
in terms of stopping, resuming, and step-by-step execution) of a JVM 
started in debug mode (this includes everything that JVMPI can do). The 
Java development kit offers the Java Debugging Interface (JDI) as a default 
Java-based debugger front-end implementation of JPDA. We use the JDI to 
place sensors that can detect “method call” and lifecycle events for Java 
objects. We prefer to use the JDI because it presents the cheapest (with 
respect to development resources) way to implement generic 
instrumentation for Java. The work described in [BrM02] uses the same 
approach for formal verification of the behavior of Java programs.  
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Figure 7-9 presents the sensor architecture using the JPDA / JDI approach. 
The instrumentation attaches JDI sensors to the JVM running a monitored 
application. JDI provides several standard notifications from which we use 
two: MethodEntryEvent and MethodExitEvent. The JDI sends a 
MethodEntryEvent notification when an object has just called a method call 
(but before the method started executing). The JDI sends the 
MethodExitEvent notification when an object has just completed the 
execution of a method call.  

When a notification occurs, the JDI calls a handler (in this case the JDI 
sensor we provide) in which we perform the measurements necessary for 
generating communication events. At the moment of a notification the JDI 
offers two options for progressing the monitored JVM: suspending all 
threads in it, or suspending only the thread that carries out the activity that 
resulted in the notification (the method call). We use the second option as 
it does not enforce as much intervention in the application execution as the 
first one – the process (i.e. thread in Java) execute the sensor and then 
continues with its normal application execution. In contrast, suspending the 
whole JVM diminishes the concurrency in the monitored application, by 
making all notifications sequential. After performing the necessary 
measurements, the notification handler (our sensor) resumes the suspended 
thread so it can continue with its normal execution.  

The MethodEntryEvent and MethodExitEvent notifications allow for 
monitoring both arbitrary method calls and the creation of objects – the 
JVM processes object constructors (calls to the “new” operator) and 
destructors (i.e., calls on finalize() from the Java garbage collecting 
mechanism) similarly to any other method. Note that since Java has 
automated (implicit) garbage collection (which may occur upon demand for 
more memory), we cannot monitor explicit object destruction.  

The JDI provides a straightforward way to measure the values of the 
name, parameters and results (including possible exceptions) of a method.  
The monitoring system cannot use the standard object reference (the one 
provided by the programming language runtime) to identify local objects 
outside the JVM. For this reason, the instrumentation generates globally 
unique identifiers using a mechanism that guarantees uniqueness. The 
UUID/GUID [RPC] represents a generic method (that we do not use 

Figure 7-9 JPDA / 
JDI instrumentation 
for monitoring of 
Java object method 
calls 
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because Java does not support it) for generation of globally unique 
identifiers. In the MODOCC monitoring system we use proprietary 
identifiers based on information about the host, the JVM and the object 
reference within the JVM. We use a similar mechanism for the identifiers of 
the processes (threads) involved in object communication. We discuss the 
measuring of the time event attribute in the next section. 

Sensors for the CORBA object middleware 

CORBA objects can communicate among each other across the boundary of 
a single execution environment, by using synchronous operation invocations 
and oneway operation invocations. We model both types of invocations in 
the MODOCC MM and therefore we want to monitor both. Furthermore, 
we want to monitor the lifecycle of CORBA objects too.  

CORBA offers two generic interfaces that allow one to monitor 
(middleware) object lifecycle and communication activities: the Portable 
Object Adapter (POA) and the Portable Interceptors (PI). We discussed 
both interfaces in Chapter 3.  

For monitoring of lifecycle activities we provide two alternative 
approaches: using the POA and modifying the JacORB CORBA 
implementation. Every CORBA-based application uses a reference to a 
POA to create its CORBA objects. The ORB provides a default POA called 
“RootPOA”, which we use to create a special MonitoringPOA. We than 
replace the uses of the “RootPOA” in the monitored application, with our 
MonitoringPOA, i.e., we modify the original monitored application code. 
The MonitoringPOA contains sensors, which detect object creation or 
destruction. The second approach does not require modification of the 
application source code. In this approach, we embedded the sensors 
directly in the JacORB implementation of the CORBA standard. This 
method however, makes the instrumentation specific to the JacORB 
product. We use the modified JacORB implementation as the default 
approach in the MODOCC prototype. Designers of monitoring systems, 
who do not prefer modifications of the ORB or use other ORB 
implementations, can resort to the POA approach. 

For monitoring communication activities we use modified 
stubs/skeletons and the PI interface, to detect communication evens (Figure 
7-10).  
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A stub in CORBA represents the client object proxy and a skeleton 
represents the server object proxy (see Chapter 3 for more details on the 
proxies in object middleware). We embed sensors on the path of a CORBA 
invocation in the stub at the client object side and in the skeleton at the 
server object side. The client sensors detect the communication events that 
represent local communication interactions between the client object and 
the middleware – sending an operation invocation and receiving the result. 
The server sensors detect the communication events that represent local 
communication interactions between the server object and the middleware 
– receiving an operation invocation and sending results. The CORBA 
middleware processes an operation invocation in three separate contexts: 
the context of the client object, the context of the ORB and the context of 
the server object. The client sensors have access to the current process 
context of the client object. In Chapter 2 we discussed that the metrication 
rules for the vector clock system require access to the current process 
context in order to store there information about the progress of the clock 
system. Analogously, server sensors get executed in the context of the server 
object. The metrication rules of the vector clock system also requires that 
the client and the server exchange information between the contexts of 
their corresponding processes. We use the Portable Interceptors interface 
to install special monitoring interceptors that copy the necessary 
information between the contexts of the client and the server. This works in 
the following way. Every time a client object invokes an operation, the 
monitoring interceptor at the client side copies the current value of the 
vector clock of the current process from the client object context to the 
client ORB context. The ORB then transmits this value to the server ORB 
context together with the request object representing the operation. The 
server monitoring interceptor copies the value of the clock that arrives with 
the operation request, into the context of the server object, and merges it 
with the clock value of the process of the server object that will process the 
operation (according to the rules of the vector clock system). The whole 
scheme repeats on the way back with the response of the operation 

Figure 7-10 
CORBA sensors 
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invocation, except for oneway operations (which do not produce a 
response). 

CORBA caller identity problem 

The CORBA technology follows closely the client-server paradigm, which 
leads to one significant problem during monitoring: the target object has a 
well-defined identity represented by its unique object reference, however, 
the caller (client) does not have a clearly defined identity (such as an unique 
reference). This makes it difficult for an external observer (such as a 
monitor using the MODOCC system) to uniquely determine the identity of 
the caller object of an invocation. The work reported in [HaSte97] 
identifies this identity problem of the sender (also called asymmetry 
between send and receive) in the more generic context of communication 
among processes. A sender process typically knows about the receiver 
process, while the receiver process may receive a message without 
information about the sender, because the communication system puts the 
focus explicitly on the message content and message handling by the called 
object.  

Caller identity does not present a problem for the operation of the 
CORBA platform itself. The ORB can perform its task without this 
knowledge, because for the purpose of receiving invocation results back at 
the caller the ORB internally maintains proprietary information. We cannot 
use this information outside of the ORB. We need a generic method of 
caller identification.  

In the solution we propose, objects alternatively switch between the 
client and the server roles, to cooperate among each other using remote 
invocations. When a server object receives an invocation, it executes the 
invocation according to its implementation. If, as a consequence of this 
execution, the same object needs to make an operation invocation on 
another remote object, the server object first assumes a client role, and 
then performs the operation invocation. We can determine the identity of a 
caller object (one that performs an invocation on another one) as the 
identity of the last server object within the current process (of the caller) 
that received an invocation request (Figure 7-11).  
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According to this solution, object A becomes the caller of request2 on 
object B, because object A last served request in the context of the same 
process. Nevertheless, this solution has one exception – active objects. An 
active object performs an initiating remote call (without any other objects 
calling it). For example, such active object may represent a human user that 
interacts with the monitored application. We use two basic default 
identities in this exceptional case: a GUI and a MAIN. We use GUI as an 
identity of the caller when an object invocation results directly from the 
interaction of a human user with the graphical user interface of the 
monitored application. We use MAIN as the identity of the caller in all 
other cases, including the start of the application. 

Figure 7-11 The 
client identity 
becomes the 
identity of the 
object which last 
had the server role. 

Sensors for the DSC component framework 

The Distributed Software Components (DSC) [BaBa98] component 
framework belongs to the family of component middleware. The DSC 
framework represents a generalization and an implementation of the TINA 
[HaSte97][Ste97][Kri97] computational object model. In this section we 
describe the instrumentation of the DSC runtime library that allows for the 
monitoring of component lifecycle and communication events. In Chapter 
8 we describe a monitor developed as part of the DSC framework’s testing 
suite. 

The DSC framework defines the rules and constraints that allow 
component instances to collaborate. DSC uses CORBA as a distributed 
processing environment. DSC designers use the Java programming platform 
as an implementation technology. 

A DSC component instance has one control interface and zero or more 
operational interfaces defined in CORBA IDL. The control interface 
provides common functionality related to various CORBA services, such as 
persistence and transaction support. The operational interfaces define the 
specific service that a component offers to its users. DSC component 
instances communicate with each other in a client/server fashion by using 



204 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION 

CORBA remote invocations. In addition to that, DSC components can 
communicate using component events in a publish/subscribe fashion.  

Within the FRIENDS project [FRIENDS] we have developed an 
instrumentation that allows for the monitoring of lifecycle and 
communication events of DSC components. We integrated this 
instrumentation with the DSC runtime library to allow component 
developers to observe the behavior of their prototype applications for 
debugging and presentation purposes (presentation of results to the project 
management body and to the scientific community).  

The DSC framework explicitly supports creation and destruction of 
component instances. We embedded sensors in the routines for creation 
and destruction in order to detect component lifecycle events. 

The MODOCC system supports monitoring of component 
communication only for CORBA-based invocations among DSC 
components. We do not consider the event-based component 
communication. In DSC, a single CORBA object realizes each operational 
interface of a component. Therefore, to detect communication events we 
reuse the instrumentation for the monitoring of CORBA invocations 
between objects presented in the previous section.  

In DSC the caller component always has a unique reference associated 
with it, hence we do not face the caller identity problem.  

7.3.2 Design of instrumentation tools 

In this section we discuss the instrumentation tools that we have developed 
to provide developers with an automated instrumentation process. The JDI 
interface does not require additional tool support to install the 
instrumentation of the MODOCC system with any Java monitored 
application. For the CORBA and the DSC instrumentation however, we 
have developed design-time (see Chapter 5) instrumentation tools. 

Modified IDL compiler for CORBA 

As we have discussed in Chapter 3, the development of software using 
CORBA requires the specification of object interfaces in IDL. The CORBA 
standard provides mappings of an IDL specification to all major 
programming languages. In Chapter 3 we made an overview of the software 
development process for object middleware. In CORBA, designers process 
the IDL specification with an IDL compiler for a specific programming 
language or platform. The IDL compiler generates a set of source code 
templates that allow a programmer to use a CORBA object in the role of a 
server and in the role of a client. Among these templates we find the two 
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types of proxies corresponding to the stub (client) and a skeleton (server), 
in which we embed the sensors necessary for detecting communication 
events. The manual modification of the proxies would require from 
instrumentation developers a lot of effort dedicated solely to 
instrumentation. We have automated the proxy modification process by 
providing a tool based on the IDL-to-Java compiler of JacORB.  
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Figure 7-12 shows the architecture of the IDL compiler and the 
modifications we have made to provide the sensors. The JacORB IDL 
compiler uses three classes: Interface, InterfaceBody, and OpDecl. The 
Interface class has the responsibility to generate the proxy declarative parts 
and the InterfaceBody class has the responsibility to generate the body of 
the proxies. The OpDecl has the responsibility to generate the code for each 
individual operation in an interface. We modify these three classes by 
embedding in them statements that generate sensor code necessary for 
detecting communication events. We place the code generation routines in 
a single class called MODOCCIDL. 

During the compilation of an IDL specification the modified IDL 
compiler automatically embeds all the necessary sensors on their 
appropriate places. Although based on the JacORB product, the tool 
generates Java stubs and skeletons that comply to the CORBA Portable 
Stubs and Skeletons specification, which means that designers can in 
principle use other ORB products than JacORB together with our tool. 

Figure 7-12 The 
modified IDL 
compiler 

Modified component generation facilities 

The DSC framework provides to component developers a tool called 
DscGen. The DscGen tool has the responsibility to process a component 
specification and to generate the templates of a component described by 
this specification. Figure 7-13 shows the steps in the process of 
specification compilation performed by the DscGen tool. 
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Designers use the CEIDL language to create a specification of a DSC 
component. In this specification, designers define the component interface 
names, dependencies of the component on the interfaces of other 
components, all events it generates and events that it can consume. In the 
first step, The Equivalent IDL Gen compiles a CEIDL specification to a 
standard CORBA IDL specification called Equivalent IDL. The 
PreProcessor combines the Equivalent IDL with the IDL files describing 
the individual operational interfaces of the component. The IDL Parser 
parses the result and feeds the parse three to the IDL Compiler. The IDL 
Compiler generates the necessary templates, stubs and skeletons. 

Internally, the DscGen tool also uses the JacORB IDL compiler to 
generate the stubs and skeletons necessary for components to 
communicate. Therefore, by providing the modified JacORB IDL compiler 
to the DscGen tool we allow detecting of component communication 
events. 

Figure 7-13 
Compilation of 
component 
specifications with 
the DscGen tool 

7.4 CMA design 

The Co-located Monitoring Agent (CMA) has the responsibility to 
encapsulate all instrumentation specific mechanisms and implement the 
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generic interfaces for interaction with the GMS (see Chapter 6 for more 
details). In this section we present the architecture of the CMA for the 
MODOCC system. 

In the MODOCC system we design a CMA for monitoring of object and 
component communication. Figure 7-14 shows the CMA architecture in 
relation to the GMS.  
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In Chapter 6 we refined the GMS service into several interfaces that the 
components of the GMS can implement. According to the GMS software 
architecture, the instrumentation implements two interfaces i_Configure 
and i_SendInterrogate. The CMA of the MODOCC system only implements 
the i_Configure interface. Since the MODOCC system produces only event 
reports and since we require online monitoring, we consider event-driven 
report delivery using notifications on the i_SendNotify interface sufficient 
for providing timely delivery of event reports to monitors. Therefore, the 
CMA does not implement the i_SendInterrogate interface.  

The CMA has five main component types: Sensors, a SensorManager, a 
Collector, a Packager and a Transmitter. A Sensor represents a software 
sensor that can detect one particular event type. The SensorManager has 
the responsibility to manage and configure different sensors. For example, 
the Sensor manager can turn some sensors on and off based on the 
monitors’ runtime requirements for monitoring data. A Collector has the 
responsibility to collect the information generated by sensors. The Packager 
has the responsibility to package information coming from sensors into 
proper event reports. The Transmitter has the responsibility to send event 
reports to the GMS. 

In Figure 7-15 we show how the CMA components interact during 
monitoring. When a Sensor executes, it sends measured information to the 
Collector with a notify() operation. The Collector sends the information 
from the Sensor to the Packager with a package() operation. The Packager 
packages an event report and returns the result to the Collector. The 
Collector then calls the Transmitter with an externalize() operation, in 
order to prepare the event report for sending to the GMS.  

Figure 7-14 A CMA 
architecture for the 
MODOCC 
instrumentation 



208 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION 

 
 : Sensor  : Collector  : Packager  : Transmitter

1. notify( )
1.1. package( )

1.2. externalize()

 

Internally, the Transmitter provides two basic strategies for sending 
monitoring data to an LMA (of a GMS): immediate forwarding and low-priority 
forwarding. The Transmitter performs immediate forwarding in the same 
process context in which the sensor executed. We consider the major 
benefit of this strategy the immediate sending of new monitoring data to 
LMAs. This strategy has the drawback that the application process that 
executes the sensor blocks until the sending of monitoring data to the LMA 
completes.  

The Transmitter performs the low-priority forwarding strategy in a 
separate thread that has the responsibility to send monitoring data to the 
LMA at a processing priority lower than the priorities of monitored 
application processes. In this strategy, the externalize() operation returns 
immediately, while a low-priority thread starts sending (in the background) 
the new monitoring data to the LMA. We consider the major benefit of this 
strategy the lower computational overhead on the application process 
resulting from a shorter duration for sensor execution as compared to the 
immediate forwarding strategy. We consider a drawback of low-priority 
forwarding the additional delay that monitors may experience before 
receiving the monitoring data (due to the low priority of the sending 
thread). 

Figure 7-15 
Sequence diagram 
of event generation 

Implementing the vector clock rules 

The Packager uses the data structure of event reports that we defined 
earlier to produce event reports containing all necessary attributes values. 
Generating the value of the timestamp attribute lt however, requires some 
additional steps. To generate a timestamp for an event, the Packager uses 
the LogicalTime utility class (see Figure 7-16). The LogicalTime class has 
the responsibility to consistently perform the rules for updating the vector 
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clock system (we discussed the rules for a vector clock system in Chapter 
2). Rule R1 requires access to the process context, in order to maintain a 
local logical clock for each process. Rule R2 requires access to the context 
of messages exchanged between processes, i.e., the context of operation 
invocations used in the CORBA middleware (since we use CORBA for the 
MODOCC system). 

 

FlowContextMODOCCThreadContext 11

ThreadContextLocal

1..*1..*

LogicalTime
11

InheritableThreadLocal

 

The LogicalTime class allows access to the MODOCCThreadContext that 
represents the current thread context for a Java program, and the 
FlowContext that represents the current invocation context for a CORBA-
based application. We associate one MODOCCThreadContext object with 
every thread in a Java program using a special ThreadContextLocal utility 
class, which extends InheritableThreadLocal. The Java platform offers the 
InheritableThreadLocal to allow any subclasses of this class to store and 
retrieve information to and from the context of the current thread. In the 
MODOCCThreadContext object associated with a thread, we keep the 
logical clock for that thread. When the Packager requires a timestamp value 
for an event report, it first retrieves the MODOCCThreadContext for the 
current thread and then uses rule R1 to advance the clock from the 
previous clock value. Then the Packager records the new clock value as the 
timestamp for the current event report. The InheritableThreadLocal also 
allows for automatic copying of thread context each time a process creates a 
new (child) process. We use this to assign to a new process its own version 
of a vector clock derived from its parent’s clock.  

We associate every MODOCCThreadContext object with one 
FlowContext object. We send the FlowContext along with every operation 
invocation so that we can implement the R2 rule of the vector clock 
consistently.  

Figure 7-16 
Structure of the 
process context 
used in the CMA 
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Figure 7-17 shows how we use the CORBA Portable Interceptor API to 
install custom interceptors, which have the responsibility to copy the 
FlowContext among the three different execution contexts. The ORB 
executes the custom interceptors in its own ORB context. The client side 
interceptor has the responsibility to copy the FlowContext object from the 
client thread context to the ORB invocation context (on the request 
direction of the invocation), and from the ORB invocation context to the 
client thread context (on the response direction of the invocation). The 
server side interceptor has the responsibility to copy the FlowContext 
object from the ORB invocation context to the server thread context (on 
the request direction of the invocation), and from the server thread context 
to the ORB invocation context (on the response direction of the 
invocation). Furthermore, the interceptors use the ServiceContext field of 
the CORBA request object to transport the FlowContext information 
between the two interceptors (because these two may operate at remote 
hosts). 

For more details on the implementation of the mechanism consult the 
source code of the MODOCC monitoring system available at [MODOCC]. 

Figure 7-17 
Copying 
FlowContext along 
the invocation path 

7.5 Performance measurements of the MODOCC 
prototype 

In Chapter 2 we identified two main performance issues during 
monitoring: monitoring overhead and information consistency. Monitoring 
overhead concerns the impact of the monitoring system on the behavior of 
the monitored application. Information consistency reflects how faithfully the 
monitoring system presents information to the monitoring application. In 
this section we discuss the performance of the prototype of the MODOCC 
monitoring system with respect to the monitoring overhead it introduces to 
monitored applications. In Chapter 8, we discuss information consistency 
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of the MODOCC system in combination with the MSD Monitor that we 
present in that chapter. 

We provide the results of our performance tests for the CORBA 
middleware instrumentation. We do not provide performance data for the 
Java object instrumentation, because it uses the debug mode of the JVM to 
detect events in the monitored application. The MODOCC monitoring 
system using the Java object instrumentation has significant overhead, 
comparable to the overhead of any Java debugger, because the debug mode 
of the JVM executes the monitored application considerably slower than the 
normal mode. As a consequence, we consider the Java object 
instrumentation unusable outside a testing environment. A 
reimplementation of the Java object instrumentation sensors using the 
JVMPI has the potential to provide better performance results and make 
the Java object instrumentation usable during the normal operation of the 
monitored application [HQGM02]. 

Furthermore, we do not provide performance data for the DSC 
component instrumentation either, because it relies entirely on the CORBA 
middleware instrumentation for monitoring communication events, and 
thus does not introduce any significant additional overhead. 

We measured the performance of the prototype implementation of the 
MODOCC system with the CORBA middleware instrumentation from two 
perspectives: (a) computational overhead and (b) communication overhead. 
Computational overhead characterizes the additional processing that 
monitoring requires. Communication overhead characterizes the additional 
communication resources (such as network bandwidth) that monitoring 
requires. In the next sections we describe the technological decisions we 
make, the setup for the measurements, the measuring of computational 
overhead, and the measuring of communication overhead. 

7.5.1 Technological decisions 

We use Java 2 (v1.3 and above) as the implementation technology for the 
MODOCC system. 

We use the JacORB implementation of the CORBA standard. For 
building, configuring and deploying the MODOCC system we use the same 
approach as for the GMS (see Chapter 6), because we build the MODOCC 
system using the GMS as a basis. In Appendix C we discuss how developers 
can configure, deploy, and start the MODOCC system. 
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7.5.2 Setup 

The setup consists of a test site including specific hardware and software, 
and of a measurement scenario, which we run in the test site with several 
different configurations of the MODOCC system. 

Test site 

We used two PCs: PC (A) with a Pentium III running at 550 MHz and 256 
MB of physical memory, and a PC (B) with a Pentium IV at 1.7 GHz and 
512 MB of physical memory.  

Both PCs had MS Windows 2000 Professional installed with SUN Java 
Virtual Machine version 1.4. We also installed Ethereal 0.9 [Eth03] to 
monitor network traffic. 

Measurement scenario 

For a monitored application we use the “room booking example” 
application [VoDu98]. We distribute an implementation of this example 
together with the MODOCC source code at [MODOCC].  

 

Room server: 
Kitchen 

Room server: 
Living room 

Meeting 
factory 

Reservation 
client 

DMA

LMA
Monitor 

The monitoring system The monitored application 

CMA

 

The room booking example application allows for making reservations of 
rooms for conducting meetings (for whatever purpose). A separate room 
server represents each room. A special meeting factory server has the 
responsibility to create and cancel meetings. The reservation client application 
shows to the user an interface that allows him/her to choose a room and a 
time slot and to create a meeting, or to browse and cancel existing 
meetings. 

On the side of the monitored application, our deployment of the 
example has two rooms, “Kitchen” and “Living room”, which the user can 
reserve for meetings. We deploy the two room servers and the meeting 
factory server on PC (B) and the client application on PC (A). On the side 
of the monitoring system, our deployment has one LMA per execution 

Figure 7-18 Demo 
setup 
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environment, one LMA per host, one DMA on PC(A), and one monitor on 
PC(B). 

We define a test scenario in which the client “Books” and subsequently 
“Cancels” meeting on all time slots of all rooms, and repeats this 100 
times. 

We ran the same scenario with six different configurations of the room 
booking example and the MODOCC monitoring system (see Table 7-7). 
Name Description 
unmonitored original The original application 
unmonitored instrumented The instrumented original, but 

MODOCC inactive 
monitored light deferred MODOCC active, timestamps 

generated using physical clock, using 
caching  

monitored light direct MODOCC active, timestamps 
generated using physical clock, sending 
data directly 

monitored heavy deferred MODOCC active, timestamps 
generated using logical clock, using 
caching 

monitored heavy direct MODOCC active, timestamps 
generated using logical clock, sending 
data directly 

Table 7-7 Six 
configurations 

The first configuration represents the original application that we want to 
monitor. This configuration gives us a reference point for estimating the 
performance of the monitored application when monitoring with the 
MODOCC system. 

The “unmonitored instrumented” configuration represents the 
instrumented monitored application however, with an inactive monitoring 
system. This configuration allows for measuring the overhead of an inactive 
instrumentation on the monitored application.  

The next four configurations represent an active monitoring system. 
The “monitored light deferred” configuration represents the 

instrumented monitored application, in which we generate timestamp 
values using the physical computer clock, and we use the low-priority 
forwarding policy (see section 7.4) for delivering monitoring data to the 
GMS. 

The “monitored light direct” configuration represents the instrumented 
monitored application, in which we generate timestamp values using the 
physical computer clock, and we use the immediate forwarding policy for 
delivering monitoring data to the GMS. 
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The “monitored heavy deferred” configuration represents the 
instrumented monitored application, in which we generate timestamp 
values using the logical vector clock system, and we use the low-priority 
forwarding policy for delivering monitoring data to the GMS. 

The “monitored heavy direct” configuration represents the 
instrumented monitored application, in which we generate timestamp 
values using the logical vector clock system, and we use the immediate 
forwarding policy for delivering monitoring data to the GMS. 

The “light” and “heavy” configurations allow for assessing the difference 
in overhead between using the inaccurate computer clocks and the logical 
vector clock for generating timestamps. 

The “deferred” and “direct” configurations allow for assessing the 
difference in overhead between using the two different forwarding policies 
for sending monitoring data to the GMS. 

7.5.3 Computational overhead 

We estimated the computational overhead of each configuration by 
measuring the response times for each “Book” operation at the client (the 
“Cancel” operation shows similar results). Figure 7-19 shows a summary of 
these measurements. 
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We observe that an inactive MODOCC system has a minimal overhead. 
When monitoring using timestamps generated from the physical clock 
however, the MODOCC system starts adding some overhead. Caching the 
event reports before sending them reduces the overhead a bit (the 
“deferred” configurations). When the MODOCC system starts using the 
logical clock however, we can see a significant increase of overhead per 

Figure 7-19 
Computational 
performance 
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operation. This results mainly from the computational complexity of the 
metrication rules of the vector clock system. Remember that each “book” 
operation invocation results in four event reports, each of which contains a 
logical timestamp generated using our vector clock implementation. 
Nevertheless, we measure a relatively low deviation from the average 
response time, which means that although we have high overhead, we can at 
least predict how much this overhead changes within certain boundaries. 

7.5.4 Communication overhead 

Using the Ethereal network analyzer we measured the size of the data 
exchanged over the network by the components of the monitored 
application under the different configurations. We define three cases for 
measuring communication size. The “unmonitored” case represents the 
first two configurations. We consider these two configurations together 
because they do not generate any additional traffic – we do not activate the 
monitoring system for these configurations. The “light” case represents the 
second two configurations. We consider these two configurations together 
because they generate the same traffic – the low-priority and immediate 
forwarding policies only concern when the instrumentation sends 
monitoring data to the GMS but do not change the size of monitoring data. 
The same applies for the “heavy” case. Figure 7-20 and Figure 7-21 show 
the results of these measurements. 

 Comparison chart: communicated data size
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As we can see, executing the same scenario in the three cases generates 
different amounts of monitoring data. In terms of kilobytes, the traffic of 
the MODOCC system in the “light” case equals roughly three times the 
traffic of the unmonitored case. This difference in traffic size comes from 
the additional invocations that the monitoring system performs during the 
dissemination of the event reports. 

Figure 7-20 Total 
size of 
communicated data 



216 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION 

The “heavy” case generates roughly 2.5 times the traffic of the “light” 
case. The number of event reports stays precisely the same however, in the 
“heavy” case the size of the logical vector timestamp of each event report 
changes proportionally with the number of new processes in the monitored 
application.  
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In this setup of the testing environment, each invocation performed by the 
monitored application (for its behaviour) or the monitoring system (for 
disseminating event reports), roughly fits into a single GIOP packet, almost 
without the need for GIOP fragmentation (one invocation to span over two 
packets). This diagram shows that the number of GIOP packets (and hence 
operation invocations) does not change between the “light” and the “heavy” 
cases. The small difference of 21 GIOP packets comes from connection 
reestablishments with the naming server resulting from some connection 
timeouts. We disregard these as having insignificant effect on the 
measurements. 

Figure 7-21 Size of 
CORBA 
communication 
(GIOP packets) 

7.5.5 Concluding remarks 

The current prototype of the MODOCC system produces high overhead in 
our “toy” test application. This requires careful consideration about how to 
use our monitoring system with a larger and more complex “real life” 
application.  

Monitoring of “real” applications 

A “real” application may have a large number of remote objects that 
frequently perform operation invocations on each other.  

Monitoring using the physical computer clock produces (relatively) 
constant computational overhead per event report, because generating the 
event report’s timestamp from the physical computer clock takes constant 
time. The communication overhead per event report also stays relatively 
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constant because the average size of an event report does not change over 
time (for simplicity we assume that a communication event report does not 
encapsulate the parameters of an operation). Therefore, the overall 
overhead of the monitoring system stays proportional to the number of 
invocations (communication event reports) and new objects (lifecycle event 
reports). Therefore, we expect that the performance of a large monitored 
application will deteriorate proportionally to its growth in terms of new 
remote objects and an increasing average of the number of invocations per 
second in the application. 

Monitoring using the logical clocks adds additional computational 
overhead to the previous case of using physical clocks. In this case, the 
monitoring system requires additional processing that leads to a significant 
increase of computational overhead per event report, because of the 
algorithms required for maintaining a logical clock system. In contrast to 
the previous case however, the communication overhead per event report 
does not stay constant but grows with the number of processes in the 
system – every new process (typically at least one per remote object) 
increases the dimension of the vector clock system by one. Furthermore, 
the logical clock system requires sending of system clock information along 
with every operation (piggybacking). Therefore, we expect that the 
performance of a large monitored application will deteriorate at an rate, 
proportional to the number of processes in the system. 

To help reason about how one can alleviate monitoring overhead we 
look at the lifecycle of monitored applications.  

Monitoring during testing 

We observe that in a testing environment, testers can tolerate certain delay 
resulting from the computational overhead of the MODOCC system, as 
opposed to the normal environment in which users have stricter 
requirements on application response time. Therefore, testers can afford to 
use the accurate logical timestamps to provide partial order and causal 
information among event reports occurring in the monitored application. 

Monitoring during usage 

Monitoring during the normal operation of the monitored application may 
become impossible because of the potentially drastic performance 
deterioration resulting from the monitoring overhead introduced by the 
monitoring system. 
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We consider several ways to alleviate monitoring overhead during 
normal application usage: periodical monitoring, partial monitoring, offline 
monitoring, and push-filtering. 

In periodical monitoring, an administrator (or a tester) activates the 
monitoring system only for a limited period of time, e.g., based on the 
current load of the monitored application, habitual intervals of its users 
during which they do not use the monitored application that much (meals, 
evenings, weekends), etc. Periodical monitoring allows monitoring of the 
monitored application at times when the overhead would not lead to 
breaking any service contracts with application users. The MODOCC 
monitoring system can dynamically turn on and off generation of 
monitoring data. 

In partial monitoring, the monitoring system only observes a part of the 
monitored application. For this, an administrator activates the 
instrumentation in some interesting parts of the application. The selection 
of which part to monitor may depend again on the current load of that part, 
but also on some high-level knowledge about, for example, the potential 
source of an error. Partial monitoring allows monitoring of suspected 
application parts, so that monitoring overhead does not affect the whole 
application. The MODODCC prototype supports flexible configuration of 
its instrumentation so that only parts of the application produce monitoring 
data. 

We discussed offline monitoring in Chapter 2. In offline monitoring, 
the monitoring system does not immediately transport event reports to 
monitors. Instead, after generating an event report, the monitoring system 
saves it locally. Later, at a convenient moment (e.g., during the night or 
during times of low load) the monitoring system transports the 
accumulated data to the monitors. This removes (or delays) the 
communication overhead resulting from sending event reports around, but 
in the case of using logical clocks, the logical clock system still requires 
piggybacking of system information with every invocation so that newly 
generated event reports get correct logical timestamps. Note that the 
MODOCC system prototype can support offline monitoring through re-
configuring the way the instrumentation sends the monitoring data to the 
GMS. 

In push-filtering, the monitoring system allows monitors to express 
their interest in certain events in the monitored application, using a filtering 
language. The monitoring system then treats a specification of monitor 
interest as configuration information, which it pushes to the 
instrumentation. The instrumentation then activates only the sensors that 
produce relevant notifications. Note that although the GMS that we use 
takes into account specification of interest, the current prototype of the 
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MODOCC system does not support it. We plan to introduce this 
functionality in the future. Push-filtering reduces monitoring overhead by 
making sure that the monitoring system produces only necessary 
information. 

Note that one can combine the mechanisms for alleviating monitoring 
overhead we discussed so far in order to reduce overhead further when 
compared to using only one mechanism. For example, combining offline 
monitoring, with partial and periodical monitoring has the potential to yield 
low overhead, which makes the monitoring system useful during the normal 
operation of a monitored application.  

Furthermore, we have not optimized the current prototype for 
performance. We believe that a re-implementation of the vector clock 
system for performance may give some reduction of the computational 
overhead of the monitoring system.  

In Chapter 2 we pointed out several approaches for reducing the size of 
logical timestamps. While these approaches provide some reduction of the 
communication overhead, they do not solve the major problem that the size 
of the timestamps stays roughly proportional to the number of processes in 
the monitored application. 





 

Chapter 8 

8. A monitor and monitoring 
applications 

This chapter presents the design and the implementation of the Message 
Sequence Diagram (MSD) monitor for the MODOCC monitoring system. 
The MSD monitor provides a basis for the development of variety of 
monitoring applications. We design the MSD monitor following the design 
approach presented in Chapter 5. 

We evaluate the information consistency provided by the MSD monitor 
and the MODOCC system from the perspective of monitor users using the 
method presented in Chapter 2, section 2.8. In order to validate our 
approach to monitoring, we present three applications of this monitor and 
the MODOCC monitoring system. We close the chapter with some 
concluding remarks. 

8.1 MSD monitor 

This section presents the design and the implementation of the Message 
Sequence Diagram (MSD) monitor for the MODOCC monitoring system. 

8.1.1 Functional requirements 

In Chapter 7 we defined a MODOCC monitoring model that describes 
single application runs in terms of objects, component instances, processes 
and the communication and lifecycle activities they perform. The 
MODOCC MM defines a set of event types that the MODOCC monitoring 
system can detect and offer to monitors. We would like to develop a 
generic MSD monitor that uses events of these types to allow application 
developers analyze the communication among object and among 
component instances during application runtime, for the purpose of testing 
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and debugging application behavior. Based on requirements identified in 
Chapter 4 and on the MODOCC MM defined in Chapter 7, we phrase the 
following functional requirements for the MSD monitor: 
1. The MSD monitor should allow online monitoring, i.e., it should depict 

new information as soon as it becomes available to the monitor; 
2. The MSD monitor should support offline monitoring in the following 

way: it should provide a persistent storage for accumulated monitoring 
data, so that users can analyze monitoring data at a later moment; 

3. The MSD monitor should provide interoperability with other 
communication analysis tools at the level of the data format used for 
persistent storage, such as based on the ITU-T Z.120 [Z.120] or XMI 
[XMI]; 

4. The MSD monitor presents information coming from the MODOCC 
system in the following way: it offers a diagram similar to the UML 
message sequence diagram and the ITU-T Z.120 Message Sequence 
Chart. The diagram depicts the entities and their communication as the 
monitoring application executes; 

5. The MSD monitor should provide means for inspection of all 
parameters of the event reports coming from the MODOCC system; 

6. The MSD monitor should properly restore the partial order of the 
causal precedence relation (Chapter 2, section 2.2.3) from the 
timestamps attribute of the event reports. The MSD monitor should use 
this partial order to position events and the invocations in which they 
participate, in a message sequence diagram. The MSD monitor orders 
unrelated events using the physical timestamp (the one generated using 
the computer clock) of the monitoring report, to approximate the 
(possibly inaccurate) relative position of the events in the diagram; 

7. The MSD monitor should properly correlate the events constituting an 
individual invocation using the LRC relation (Chapter 7, section 7.2.2), 
and should properly visualize the dynamics of an invocation’s during 
runtime: its initiation, its execution and the returning of a result; 

8. The monitor should allow one to query the partial order topology 
imposed on the events in an application run by using the causal 
precedence relation. Possible queries include the generation of the set 
of possible causes of an event and the set of possible effects of an event. 
The monitor can depict these sets using alternative coloring for the 
event in the set. 

8.1.2 Monitor implementation 

Figure 8-1 shows the architecture of the MSD Monitor. 
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The MSD Monitor subscribes for monitoring data with the MODOCC 
system through its Subscriber component. The Subscriber component uses 
the i_Subscribe interface offered by a DMA of the MODOCC system (see 
Chapter 6, section 6.3.2). To establish a successful subscription, the 
Subscriber registers with the MODOCC system an i_DataNotify interface 
offered by the Receiver component. The MODOCC system then uses this 
interface to send event reports to the Receiver component.  

We structure the rest of the monitor using the Model-View-Controller 
(MVC) design pattern [BuMe+96], where the Receiver component 
represents the Controller responsible for the input (new event reports from 
the MODOCC system), the Diagram Data Model component represents 
the Model responsible for processing and storing all monitoring data in the 
MSD monitor, and the Diagram GUI component represents the View that 
presents monitoring data to monitor users. When the Receiver component 
receives new event reports, it passes them to the Diagram Data Model 
component for processing. The Diagram Data Model component performs 
all necessary processing activities and updates the Diagram GUI component 
to show any new information on screen. In the next section we discuss each 
of the components. 

Figure 8-1 The 
architecture of the 
MSD Monitor 

The Receiver component  

The Receiver component uses an algorithm developed in [RST91] to 
deliver event reports to the Diagram Data Model component according to 
their causal precedence order. Basically, this algorithm delays the delivery 
of an event report until the Receiver component has delivered all causally 
preceding event reports. This makes sure that the Diagram Data Model 
component maintains a consistent view of the monitored system at any 
moment. An example of a similar approach constitutes the work described 
in [Logean00] where the monitor performs event report reordering as part 
of testing the prototypes of telecommunication services. 
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The Diagram Data Model component 

The Diagram Data Model component (DDM) maintains an ordered 
collection of event reports, which represents an (partial) execution of the 
monitored application. Since the use of a linear array suggests an absolute 
order, but the vector timestamp that the MODOCC system uses provides 
only partial order, we use the physical clock timestamp that every event 
report also has (because event reports derive from monitoring reports of 
the GMS – consult Chapters 6 and 7) to determine the order among 
causally unrelated events. 

The DDM maintains a list of the objects and a list of the components in 
the current application execution. 

The DDM also maintains a list of the messages exchanged between the 
entities of the model. The DDM uses two types of messages, a request 
message represents the successful receiving of an invocation (synchronous 
or oneway) at the server side, and a response message represents the 
successful receiving of a response (synchronous invocation) at the client 
side. According to the MODOCC MM, a synchronous invocation 
corresponds to a pair of request and response messages and an oneway 
invocation corresponds to a single request message. To match events into 
messages, the DDM restores the LRC relation (see Chapter 7 for the 
definition).  

The DDM updates the Diagram GUI component in the following cases: 
it has received a new communication or lifecycle event, and it has matched 
two communication events in a new message. 

The Diagram GUI component 

The Diagram GUI component offers a diagram (a graphical representation) 
of the information maintained in the DDM. The diagram has an 
organization similar to an UML message sequence diagram and the ITU-T 
Z.120 Message Sequence Chart (Figure 8-2).  
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The horizontal axis of the diagram represents the entities in the current 
application execution. For CORBA-based applications, the diagram shows 
CORBA objects. For DSC-based applications the diagram shows 
component instances. The vertical axis of the diagram represents time. Each 
entity has a vertical line representing its lifecycle. The diagram represents an 
event with a circle on the lifecycle line of the entity where this event has 
occurred. A white circle represents communication events participating in a 
synchronous invocation. A red (in the figure – dark grey) circle represents a 
communication event of an invocation response with exception. A green (in 
the figure – grey) circle represents an event participating in an oneway 
invocation. A solid arrow represents a request message. A dashed arrow 
represents a response message. We depict the name of the invocation 
operation in the middle of a message arrow. 

The user of the MSD Monitor can interact with the diagram. Besides 
scrolling to view portions of a large diagram, the user can click the right 
mouse button on an event to open a popup menu that offers three options: 
“color chain after event”, “color chain before event” and “browse event” 
(Figure 8-3). By selecting the “color chain after event” the user highlights 
the set of events representing possible effects of the selected event. By 
selecting “color chain before event” the user highlights the set of events that 
represent the possible causes of the selected event. The line color of 
highlighted events the arrows between them (if any), changes to purple to 
illustrate the chain of cause or effect starting from the selected event. By 
selecting “browse event”, a new window opens showing a table of all event 
attributes. With this option, developers can inspect the parameters, result 
or exceptions (if any) at any monitored moment of the execution of an 
invocation.  

Figure 8-2 The 
diagram 
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Furthermore, the user can zoom the diagram to fit more information onto 
one screen, clear the diagram from old events and messages, print the 
diagram in a pane format to allow assembly of large diagrams, save the 
diagram for later, and open a saved diagram to finish postponed work. 

The MSD Monitor can export the diagram to a file in the ITU-T Z.120 
standard for message sequence charts. This feature allows for analysis of a 
monitoring trace into other tools compatible with this standard. In section 
8.2.2 we shall present an application that uses this feature of the monitor. 

Figure 8-3 Event 
inspection 

Technology decisions 

We implemented the MSD Monitor in Java. The MSD Monitor uses the 
JacORB CORBA product to interact with the MODOCC system. 

8.1.3 Information consistency 

In Chapter 7 we evaluated the performance of the MODODCC monitoring 
system from the point of view of the users of the monitored application. In 
this section we quantify the information consistency of the MODOCC 
monitoring system from the point of view of the users of the monitor – we 
call these users observers. We use the evaluation method presented in 
Chapter 2, section 2.8. 

Minimal correctness 

The MODOCC monitoring system detects all events that we have identified 
in the MODOCC monitoring model and reports them to the MSD Monitor 
accordingly. Hence EC = EM,C = E , where E

MO C represents the set of events 
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in the original unmonitored and un-instrumented distributed computation, 
EM,C represents the set of events in the monitored instrumented distributed 
computation, and E represents the set of events in the distributed 

computation that the MSD monitor presents to the observer. Therefore, 
our monitoring system fulfils the minimal non-interference and minimal accuracy 
and hence minimal correctness properties.  

MO

Total accuracy 

Our monitoring system uses a strongly consistent vector clock system for event 
timestamping, which allows for restoring the causal precedence relation 
among events monitored in the instrumented application. This makes our 
monitoring system totally accurate. 

Better than minimal correctness 

In Chapter 7 we defined the LRC relation for some object middleware 
model that governs how objects and component instances communicate. 
Since the selected evaluation method works with communication events 
only, we consider from the LRC relation only the relations among 
communication events – we define LRCcomm = LRC \ {(e1, e2) : Type(e1) 

Types∈

R R

life and Type(e2)∈Typeslife}. From the definition of the LRC relation we 
have that R(LRCcomm)  R⊂ C, where R(LRCcomm) represents the transitive 
reduction of the LRCcomm relation. We designed the MODOCC system to 
preserve the LRC relation. This means that the relations among events 
participating in an invocation do not change because of monitoring. 
Therefore R(LRCcomm)  R⊂ M,C, and from the total accuracy property (RM,C 
= ) we have that the R(LRC

MO comm) ⊂  . This effectively means that 

the MODOCC monitoring system preserves some part of the relations in 
the original application behavior (the ones between events from the 
middleware), all the way to the observer. Therefore, we can say the 
MODOCC monitoring system provides better than minimal non-interference 
(but not strong non-interference), and from the total accuracy property follows 
that the MODOCC system provides better than minimal correctness (but not 
strong correctness).  

MO

Discussion on strong and total correctness 

Strong non-interference and strong accuracy imply strong correctness, and 
total non-interference and total accuracy imply total correctness. We 
demonstrated that a monitoring system can offer total accuracy by employing 
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a strongly consistent system of vector clocks to describe the order the 
events in the monitored application execution. 

In order to provide strong non-interference, the monitoring system 
needs to provide realized causality among events that belong to different 
individual invocations. This means that the monitoring system must have 
access to an accurate and detailed model of the monitored application 
behavior, so that it can enforce the correct order among events in the 
monitored computation.  

In order to provide total non-interference, the monitoring framework 
should not introduce any detectable monitoring overhead, in addition to 
the requirements for strong non-interference. One can achieve zero 
monitoring overhead only if designers use specialized hardware to detect 
the necessary events without introducing any additional delay to the 
monitored application. We consider this approach achievable, although 
developing hardware instrumentation generally involves higher costs than 
software instrumentation. Furthermore, hardware instrumentation falls out 
of our scope. 

8.2 Concrete monitoring applications 

In this section we present the use of the MODOCC monitoring system and 
of the MSD Monitor in three different monitoring applications. 

8.2.1 Monitoring for testing and debugging of middleware-based 
applications 

Component developers and system integrators used the MODOCC system 
and the MSD monitor within the FRIENDS project [FRIENDS] to improve 
the quality of application prototypes. 

Overview of the FRIENDS project 

The FRIENDS project has as a goal to develop a flexible and extensible 
software platform that provides an integrated solution to deployment, 
creation, and usage of services and applications for next-generation 
networks [FRIENDS]. 

The FRIENDS service platform architecture represents a component-
oriented implementation of the Telecommunications Information 
Networking Architecture (TINA) [Kri97]. The FRIENDS service platform 
architecture consists of various layers of components, ranging from service 
session control components, to network control components. The 
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FRIENDS project builds on the results of the Multimedia services on the 
Electronic Super Highway (MESH) project [MESH].  

Monitoring DSC 

The Distributed Software Component (DSC) framework provides the 
building blocks for the FRIENDS services platform. The DSC framework, 
together with its development environment supports the development of 
component-oriented services [VBM00]. Within the DSC framework, we 
used the MODOCC system to build a testing environment that allows 
service integrators to analyze service behavior in terms of how different 
service components interact with each other [DiBa+00][DSQ00]. 

The testing environment uses the DSC component instrumentation 
(introduced in Chapter 7) and the MSD monitor (introduced earlier in this 
chapter). For FRIENDS services, the MSD diagram shows component 
instances as entities on its horizontal axis. 

In addition to the MSD diagram, for monitoring of FRIENDS services, 
the MSD monitor provides an additional diagram – the Dynamic Service 
Deployment (DSD) diagram (Figure 8-4). The DSD diagram uses the 
additional information from the TINA-based FRIENDS service 
architecture, in order to show how TINA-specific component instances 
interact during runtime.  

 

 

The DSD diagram shows TINA service component types as rectangles with 
text inside, and their communication dependencies as arrows connecting 
the rectangles. The diagram’s horizontal axis groups component types 
according to (a) their role in the TINA architecture: consumer or provider, 
while the diagram’s vertical axis groups the components according to (b) 
their participation in TINA service access and usage sessions. When a 
component instance of a certain type communicates with a component 

Figure 8-4 Dynamic 
service deployment 
diagram 
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instance of another type, an arrow appears on the diagram and the 
rectangles representing the communicating component types become 
white. The diagram shows live animation: an arrow between component 
types, the instances of which have not interacted for some time, fades to a 
dashed line arrow, and the rectangle of a component type that hasn’t 
communicated with any other component type for a while changes its color 
from white to gray. When the DDM matches two events in a message, it 
notifies the DSD diagram the same way it notifies the MSD diagram. Hence 
the DSD diagram presents to the observer a different view on the same 
application execution. 

FRIENDS service developers used the DSD diagram to visually 
represent the dynamics of their prototypes in terms of interacting TINA 
components. We used the DSD diagram for presentation purposes only. 

Component developers and service integrators in FRIENDS used the 
MSD diagram to achieve detailed visualization of the interactions among 
various component instances.  

The diagrams produced by the MSD monitor helped developers 
discover errors in the implementation of the service platform and the 
services build for this platform: (1) by finding an operation invocation that 
did occur, but under the circumstances shouldn’t have occurred, (2) 
finding that wrong order of calling operations results in the use of variables 
with incorrect values, and (3) designers could trace (by using the coloring 
causality chain option) operation invocations that caused an erroneous 
invocation in order to examine the parameters of these operation 
invocations and determine the reasons for the error.  

Furthermore, the diagrams produced by the MSD monitor helped 
service integrators to check whether the components of the different service 
prototypes behaved according to the sequence of interactions defined in the 
TINA architecture.  

8.2.2 Semi-automatic conformance testing 

Researchers within the FRIENDS project have also developed a model-
based approach to service creation [TeQua01]. This approach allows one to 
check the conformance of a service prototype to its formal model.  

Introduction to service creation in FRIENDS  

The FRIENDS services platform provides integrated support for service 
creation in a so-called service creation environment. The service creation 
environment enables a service developer to design and implement the 
requested service in an efficient and cost-effective way. The service creation 
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environment promotes a model-based approach, which allows modeling of 
the complete external behavior of each of the components that contribute 
to a service, defining both the operations of its interfaces and the operations 
invoked by this component on interfaces of other components, as well as 
the relationships between these operations and their parameters 
[TeQua01].  

Using the model-based approach, the FRIENDS service creation 
platform supports design time and runtime analyses of service properties.  The 
Testbed Studio [FraJa98] constitutes an essential tool in the service creation 
platform, which supports various design time analyses. Testbed Studio 
supports the editing of service specifications in the formal specification 
language AMBER [EJ+99], including syntax and semantics checking, and 
adds a number of analysis tools, such as step-wise simulation, quantitative 
analysis, integrated use of the model checker SPIN [Holz97], and several 
kinds of generated views on a model of a service. The tools for runtime 
analysis of service properties in the FRIENDS service creation platform 
allow for testing the conformance of a service prototype behavior to its 
behavior model.  

Using monitoring for testing service behavior 

Figure 8-5 depicts how FRIENDS testers perform conformance testing. 
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Figure 8-5 A 
method for 
conformance 
testing 

1. Developers use an AMBER model to implement a prototype; 
2. Testers perform a particular scenario of service use on the resulting 

prototype in the FRIENDS testing environment. This results in a real 
trace. The MSD monitor saves the real trace in the ITU-T Z.120 file 
format, in order to allow an independent (from the monitoring system) 
analysis tool to further analyze the trace. The real trace contains the 
request and response messages exchanged among component instances; 

3. An analysis tool transforms the real trace into an abstract trace that 
designers can check against the AMBER model. The transformation 
involves rising the level of abstraction from the implementation level to 
the model level, e.g. by removing interactions that appear too detailed 
for the model level. Furthermore, the transformation clears any naming 
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inconsistencies, so that names of trace entities uniquely correspond to 
names of the model entities; 

4. Using the simulator of the Testbed Studio, designers check whether the 
AMBER model allows each message from the abstract trace in a step-
wise manner. We say that the abstract trace conforms to its model, if 
the AMBER model allows all messages in the order indicated by the 
abstract trace. 

Tools support the activities in the whole process. The mapping of a real 
trace to an abstract trace may require an amount of manual work, 
depending on the additional refinement during the development of the 
AMBER model into a software implementation of the service prototype.  

By testing the conformance of multiple traces produced by various use 
scenarios, testers can increase their confidence in the correctness of a 
service prototype. 

8.2.3 Validation of the UMTS Application Platform 

Lucent Technologies Bell Labs carried out the UMTS Application Platform 
project. This project produced a software platform that uses monitoring of 
interactions among CORBA objects for testing and presentation purposes 
[WPU01]. 

Overview of the UMTS Application Platform 

The UMTS Application Platform project has as a goal the design and 
implementation of a testbed for the development and deployment of end-
user applications for the third generation of mobile communication systems 
– UMTS.  

The UMTS application platform has to provide support for the 
standardized interfaces required to enable interoperability and portability of 
end-user applications within the telecommunication’s business domain. 
The project considers as important standards in this respect the Open 
Services Access standard [3GOSA] and the Presence and Availability 
Management standard [PAM]. 
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Figure 8-6 shows the architecture of the UMTS application platform. The 
OSA/PAM Gateway constitutes the main component of the UMTS 
application platform architecture. The OSA/PAM Gateway offers 
abstraction from the UMTS network layer by implementing the OSA 
standard and the PAM standard as well as several other telecom standards. 
The UMTS application platform designers implemented the OSA/PAM 
Gateway using Java and CORBA. 

Monitoring the UMTS platform 

The Java-based CORBA instrumentation provided by the MODOCC system 
allowed seamless integration with the UMTS platform prototype. The 
automated tool for generation of the object instrumentation minimized the 
effort from platform developers to prepare the platform prototype for 
monitoring. 

The designers of the UMTS application platform used the MODOCC 
system to enhance the testing process during the platform development. 
The UMTS application platform project uses telecommunication standards 
that the standardization bodies have specified using, among other 
descriptive techniques, UML message sequence diagrams. The testers 
compared the message sequence diagrams generated by the MSD monitor 
with the UML message sequence diagrams from the standard, in order to 
determine whether their prototype correctly implements the standards.  

In the occasion testers discovered discrepancies between the standard 
and the implementation, they further looked in the detailed information 
generated by the MODOCC monitoring system to find out about concrete 
errors, this way cutting down the time for delivery of a working prototype 
compliant to international telecom standards. 
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8.3 Summary and conclusions 

In this chapter we have presented the MSD monitor for the MODOCC 
system. Furthermore, we have described three applications of the MSD 
monitor. The first application integrated monitoring into a component 
development platform to enhance the testing phase of component-based 
software development. The second application illustrated how designers can 
use monitoring at the level of application components for semi-automated 
conformance testing of prototype behavior against models of their intended 
behavior. The third application showed the usefulness of monitoring for 
increasing the quality of critical and large business applications, such as an 
UMTS application platform that has to conform to international 
telecommunication standards. 

With these applications we have shown that designers can use the 
MODOCC systems for monitoring of different middleware-based 
applications without additional development effort, investment in 
monitoring software, and research in the area of monitoring. The MSD 
monitor allows developers to examine the behavior of a prototype in order 
to locate and remove implementation errors, check conformance with a 
model, analyze causal relationships, and animate object and component 
communication on screen for presentation purposes. 



 

Chapter 9 

9. Conclusions 

In this thesis we presented an approach for monitoring the communication 
behavior of distributed applications built with object and component 
middleware. In this chapter we present conclusions about the work done 
and the results achieved. First we summarize the major research 
contributions of this thesis. Then we identify some remaining problems and 
directions for future work in the area. 

9.1 Contributions 

This work makes the following contributions to the area of monitoring 
distributed applications. 

9.1.1 Design approach 

We propose a design approach for building monitoring systems (Chapter 
5). Compared to existing approaches, our design approach offers the 
following unique combination of features: 
– Separation of concerns about generic monitoring functionality from 

concerns about functionality specific to the domain of the monitoring or 
the domain of the monitored application; 

– Separation of concerns about the monitoring application from the 
concerns about the monitored application; 

– Explicit modeling of the monitoring aspects of the monitored 
application execution, required by the monitoring application; 

– Stepwise development of a complete monitoring system.   

Following this approach, designers increase the “openness” of their 
monitoring system architecture, reduce development costs and possibly 
achieve a more efficient monitoring system. 
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9.1.2 MODOCC monitoring model  

We define a model for monitoring communication in applications built 
with object and component middleware (Chapter 7). Our model has the 
following unique combination of features, compared to existing models: 
– Support for monitoring of the communication behavior of objects, 

component instances and processes; 
– An event-based model of communication behavior; 
– Support for reasoning about causal relations among events in terms of 

both causal precedence and limited realized causality. 

This model allows the application of existing formal methods to the analysis 
of concurrent execution at the level of object and component 
communication, such as conformance testing and verification. 

9.1.3 A monitoring system for arbitrary middleware-based 
applications 

We propose the MODOCC monitoring system for applications built with 
object and component technology (Chapter 7). The MODOCC monitoring 
system has the following unique combination of features compared to 
existing monitoring techniques: 
– Independence of middleware software vendors and particular object-

oriented programming languages; 
– A flexible and open-ended architecture for generic monitoring systems 

with a clearly defined system service (see also Chapter 6); 
– An instrumentation and a set of automatic instrumentation tools for 

Java, CORBA, and the DSC framework. 

Using the MODOCC system designers can concentrate on analysis, instead 
of spending too much time to prepare their applications for monitoring. 

9.1.4 Limited Realized Causality (LRC) relation 

We define a new type of causal relation – LRC (Chapter 7, section 7.2.2). 
The LRC has the following unique features compared to other (partial) 
order relations and potential causality relations: 
– The LRC relation allows reasoning about application behavior from 

post-execution traces with the certainty of realized causality; 
– The MODOCC monitoring system allows for restoring the LRC 

relation. We demonstrate that the LRC relation allows the MODOCC 
monitoring system to satisfy the stronger than minimal non-interference 
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property and thus stronger than minimal correctness (Chapter 8, 
section 8.1.3). 

Although limited to events in the middleware, the LRC relation constitutes 
a powerful tool for analysis of application behavior. 

9.1.5 A Message Sequence Diagram (MSD) monitor 

We have designed and implemented the MSD monitor (Chapter 8). The 
MSD monitor has the following unique combination of features, compared 
to existing monitors: 
– Visually represents the distributed execution of a middleware-based 

application as a collection of communicating objects or component 
instances; 

– Uses a new visual notation, based on the UML Message Sequence 
Diagram and the ITU-T Z.120 Message Sequence Chart, but extended 
with additional dynamic features for online animation of object and 
component communication; 

– Orders events in the system according to the causal precedence relation 
(partial order); 

– Can match two corresponding communication events to a request or 
response message and corresponding request and respond messages to 
invocations using the LRC relation; 

– Uses alternative coloring to visualize the chains of possible causes or 
effects for a selected event in a distributed execution. 

Software developers have successfully used the MSD monitor to produce 
more reliable applications within the following research projects: MESH 
[MESH], FRIENDS [FRIENDS], and UMTS Application Platform 
[WPU01].  

9.2 Future work 

We identify the following directions into which the presented work can 
further expand: 

9.2.1 Design approach 

We believe that designers of monitoring systems can benefit from our 
design approach. Nevertheless, in its current state our design approach 
provides guidelines but not enough generic building blocks (such as 
architectural patterns) that designers can use to assemble a monitoring 
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system – something necessary for a design methodology. Defining a design 
methodology for building monitoring systems based on our design approach 
constitutes an important original work in the area of monitoring distributed 
applications. This work should also provide sufficient evidence that the 
methodology provides the promised benefits, by applying it to the 
development of several different monitoring systems.  

9.2.2 Monitoring model 

We assume that the middleware used by the monitoring system faithfully 
implements its middleware model (i.e., “no debugging of the debugger”). 
Since the middleware model dictates which event definitely causes which 
other event, a correct implementation of the model allows us to restore the 
LRC relation among events representing communication activities in the 
middleware. We consider as a possibility for future research the extension 
of the LRC relation beyond the middleware layer and into the application 
layer. For this to work we have two requirements: 
– Formal modeling of at least a part of the application behavior using a 

suitable design language. In Chapter 8, section 8.2.2, we demonstrated 
that a complete application model allows one to perform conformance 
testing in order to improve a prototype implementation of the model; 

– A faithful implementation of that model (achieved by some means, e.g., 
conformance testing). This assumption allows the designer to distinguish 
the two possible sources of an observed erroneous behavior: (1) 
problems in the model (e.g., some issue not considered in the model, or 
a wrong model), (2) an implementation that does not conform to the 
model because of implementation error. 

Using such an extended LRC relation, a monitor can analyze the causes of 
an event in the application model with the certainty of realized causality. 
This gives designers a powerful tool for understanding and improving their 
models. 

9.2.3 The logical clock system 

In Chapter 2 we point out the drawbacks of using vector clocks. 
Furthermore, in Chapter 7 we give evidence about the large overhead 
produced by the algorithms of the logical system. Possible future work 
constitutes the reduction of this overhead, by implementing a more 
efficient logical clock system than the vector clock.  

In line of this work, one can also experiment with existing logical clocks 
systems that promise lower overhead, such as in clustering [Ward01]. Such 
approach however, needs to reevaluate the usefulness of the causal 
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precedence relation for monitoring purposes, since the monitoring system 
can reconstruct causal precedence only for events belonging to the same 
cluster but not to different clusters. 

9.2.4 The instrumentation implementation 

We also consider an original future research the making of our 
instrumentation implementation more efficient. For the Java execution 
environment, an instrumentation based on the JVMPI interface will 
probably produce better results than an instrumentation based on the JDI 
interface, since the JVMPI does not require running the Java virtual 
machine in debug mode in order to install the proper monitoring sensors. 

An implementation of the CORBA instrumentation in a programming 
language, such as C++, that compiles to native binary code may reduce 
the overhead for middleware objects. 

9.2.5 Experiment with source code modification 

In Chapter 5 we discuss that source code modification provides the 
ultimate means for monitoring any aspect in the behavior of a monitored 
application. Instrumenting the source code by a third party designer 
however, may require a lot of knowledge about the monitored application. 
For this reason we consider as original future work the use of 
instrumentation tools for fast and correct source code instrumentation. In 
this respect, embedding sensors in the source code using an aspect-oriented 
approach, such as composition filters [Berg01], seems to us a promising 
direction for building instrumentation tools for source code 
instrumentation. 





 

Appendix A 

10. IDL interfaces of the GMS 

File: modocc_types.idl 
 
#ifndef modocc_types_idl 
#define modocc_types_idl 
 
module modocc 
{ 
    //structures of the monitoring data 
    struct _Attribute 
    { 
        string name; 
        any value; 
    }; 
    typedef sequence<_Attribute> AttributeList; 
 
    struct _Time 
    { 
        string physical_timestamp; 
    }; 
    struct _Address 
    { 
        string host_name; 
        string host_ip_address; 
    }; 
    struct _System 
    { 
        long detail_level; 
    }; 
 
    valuetype MonitoringReport 
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    { 
        public _Time time; 
        public _Address address; 
        public _System system; 
        public AttributeList s_attributes; 
    }; 
    typedef sequence<MonitoringReport> MonitoringReportList; 
     
    valuetype Event : MonitoringReport 
    { 
        public string name; 
         
        factory create(); 
    }; 
    valuetype Status : MonitoringReport 
    { 
        public string name; 
 
        factory create(); 
    }; 
    //structures of the availability information 
    enum ReportTypes { report_event, report_status }; 
    enum TypesUpdateStatus { data_added, data_removed, data_changed }; 
     
    struct NamedOutput 
    { 
        string name; 
        string type; 
    };     
    typedef sequence<NamedOutput> NamedOutputList; 
     
    struct MonitoringReportType 
    { 
        string name; 
        ReportTypes type; 
        NamedOutputList attributes; 
    }; 
    typedef sequence<MonitoringReportType> MonitoringReportTypeList; 
     
    typedef sequence<string> StringList; 
    typedef sequence<StringList> StringListList; 
}; 
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#endif 
 

File: msap.idl 
 
#ifndef msap_idl 
#define msap_idl 
 
#include <modocc_types.idl> 
 
module modocc 
{ 
    module msap 
    { 
        //forward declarations 
        interface i_BrowseUpdate; 
        interface i_DataNotify; 
         
        //GMS interfaces 
        interface i_Browse 
        { 
            /**  
             * The request of the following synchronous operation represents  
             * the "Browse interrogate req" service primitive.  
             * The response of the following synchronous operation represents 
             * the "Browse interrogate cnf" service primitive.  
             */ 
            modocc::MonitoringReportTypeList interrogate( 
                in string search_criteria); 
 
            /**  
             * The request of the following synchronous operation represents  
             * the "Browse subscribe req" service primitive.  
             * The response of the following synchronous operation represents 
             * the "Browse subscribe cnf" service primitive.  
             */ 
            boolean subscribe(in string monitor_id,  
                in i_BrowseUpdate types_notification_reference); 
                 
            /**  
             * The following oneway operation represents the  
             * "Browse unsubscribe req" service primitive.  
             */ 
            oneway void unsubscribe(in string monitor_id); 
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        }; 
        interface i_Subscribe 
        { 
            /**  
             * The request of the following synchronous operation represents  
             * the "Request Data subscribe req" service primitive.  
             * The response of the following synchronous operation represents 
             * the "Request Data subscribe cnf" service primitive.  
             */ 
            boolean subscribe(in string monitor_id,  
                in string specification_of_interest, 
                in i_DataNotify data_notification_reference); 
             
            /**  
             * The following oneway operation represents the  
             * "Request Data unsubscribe req" service primitive.  
             */ 
            oneway void unsubscribe(in string monitor_id); 
        }; 
        interface i_Interrogate 
        { 
            /**  
             * The request of the following synchronous operation represents  
             * the "Request Data interrogate req" service primitive.  
             * The response of the following synchronous operation represents 
             * the "Receive Data interrogate cnf" service primitive.  
             */ 
           void interrogate(in StringList data_selection_criteria, 
                in i_DataNotify data_notification_reference); 
        }; 
 
        //Monitor interfaces 
        interface i_BrowseUpdate 
        { 
            /**  
             * The following oneway operation represents the  
             * "Browse update ind" service primitive.  
             */ 
            oneway void update( 
                in modocc::TypesUpdateStatus update_status);  
        }; 
        interface i_DataNotify 
        { 
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            /**  
             * The following oneway operation represents the  
             * "Receive Data notify ind" service primitive.  
             */ 
            oneway void notify( 
                in modocc::MonitoringReportList monitoring_data);  
        }; 
    }; 
};  
#endif 
 
File: isap.idl 
 
#ifndef isap_idl 
#define isap_idl 
 
#include <modocc_types.idl> 
 
module modocc 
{ 
    module isap 
    { 
        //GMS interfaces  
        interface i_Announce 
        { 
            /**  
             * The request of the following synchronous operation represents  
             * the "Announce register req" service primitive.  
             * The response of the following synchronous operation represents 
             * the "Announce register cnf" service primitive.  
             */ 
             boolean register(in string instrumentation_id,  
                in string specification_of_availability); 
             
            /**  
             * The following oneway operation represents the  
             * "Announce unregister req" service primitive.  
             */ 
             oneway void unregister(in string instrumentation_id); 
        }; 
        interface i_SendNotify 
        { 
            /**  
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             * The following oneway operation represents the  
             * "Send Data notify req" service primitive.  
             */ 
            oneway void notify( 
                in modocc::MonitoringReportList monitoring_data);  
        }; 
 
        //CMA interfaces 
        interface i_Configure 
        { 
            /**  
             * The request of the following synchronous operation represents  
             * the "Configure configure ind" service primitive.  
             * The response of the following synchronous operation represents 
             * the "Configure configure rsp" service primitive.  
             */ 
             boolean configure(in StringList configuration_specification); 
        }; 
        interface i_SendInterrogate 
        { 
            /**  
             * The request of the following synchronous operation represents  
             * the "Send Data interrogate ind" service primitive.  
             * The response of the following synchronous operation represents 
             * the "Send Data interrogate rsp" service primitive.  
             */ 
            modocc::MonitoringReportList  
            interrogate(in StringList data_selection_criteria); 
        }; 
    }; 
};  
#endif 
 
File: gms_internal.idl 
 
#ifndef gms_internal_idl 
#define gms_internal_idl 
 
#include <modocc_types.idl> 
#include <msap.idl> 
 
module modocc 
{ 
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 module repository 
 { 
  interface ii_Repository 
  { 
   /**  
    * Given a list of event report names, this operation 
    * returns a list of their descriptions. 
    */ 
   boolean get_event_description1(in StringList event_list, 
    out MonitoringReportTypeList descriptions); 
 
   /**  
    * Given a event report name pattern, this operation 
    * returns a list of descriptions of events 
    * matching the pattern. 
    */ 
   boolean get_event_description2(in string event_pattern, 
    out modocc::MonitoringReportTypeList descriptions); 
     
   /**  
    * Given a list of status report names this operation 
    * returns a list of their descriptions. 
    */ 
   boolean get_status_description(in StringList status_names, 
    out MonitoringReportTypeList descriptions); 
     
   /** 
    * Given a list of event report names, this operation returns 
    * a structure containing the unique identifies of the  
    * instrumentation instances that can generate these  
    * events. 
    */ 
   void get_ids_for_events(in StringList event_names, 
    out StringListList instrumentations);   
 
   /** 
    * Given a list of status report names, this operation returns 
    * a structure containing the unique identifies of the  
    * instrumentation instances which allow measuring of  
    * these statuses. 
    */ 
   void get_ids_for_statuses(in StringList event_names, 
    out StringListList instrumentations);   
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  }; 
 }; 
 module dissemination 
 { 
  interface ii_ConfigureInstrumentation 
  { 
   /**  
    * Given a list of event report names, this operation 
    * configures the instrumentation to start 
    * producing events of the required types. 
    */ 
   boolean switch_on(in string monitor_id,  
    in StringList event_names); 
 
   /**  
    * Given a list of event report names, this operation 
    * configures the instrumentation to stop 
    * producing events of the required types. 
    */ 
   boolean switch_off(in string monitor_id); 
  }; 
  interface ii_ConfigureDelivery 
  { 
   /**  
    * This operation adds a monitor to the event delivery  
    * mechanism  
    */ 
   void add_monitor(in string monitor_id,  
    in modocc::msap::i_DataNotify data_notification_reference); 
 
   /**  
    * This operation removes a monitor from the event delivery  
    * mechanism  
    */ 
   void remove_monitor(in string monitor_id); 
  }; 
  interface ii_DeliverEvent 
  { 
   /**  
    * This operation delivers a list of events to a list of  
    * interested monitors 
    */ 
   oneway void deliver_events(in modocc::StringList monitor_ids,  
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    in modocc::MonitoringReportList event_list); 
  }; 
 }; 
 module filtering 
 { 
  interface ii_ConfigureFiltering 
  { 
   /**  
    * This operation adds to the filtering engine a  
    * filter corresponding to a monitor 
    */ 
   void add_filter(in string monitor_id, in any filter_tree); 
    
   /**  
    * This operation removes from the filtering engine a  
    * filter corresponding to a monitor 
    */ 
   void remove_filter(in string monitor_id); 
  }; 
 }; 
}; 
#endif 





 

Appendix B 

11. How to use the GMS prototype 

In this appendix we present several tasks important for the proper usage of 
the GMS prototype: building, configuration and deployment, and startup. 

Building the prototype 

Although no international standardization organization has published any 
formal standards for setting up of an open source project, the open source 
community has come with informal recommendations, such as a publicly 
available source tree, binary distributions, list of dependent technologies, 
and a minimal documentation that allows developers to build and run an 
open source project. We consider SourceForge [SF] a good source with 
information on starting such projects. We use SourceForge to host the 
development of the GMS prototype as a part of the MODOCC system (see 
Chapter 7). 

For providing the building process we have chosen the Ant technology 
[ANT]. Ant stands for an extensible build tool entirely written in Java. It 
has the portability and platform independence of Java. Furthermore, Ant 
uses an XML-based specification for describing builds. This specification 
does not depend on the features of a particular software execution platform 
(except Java). Hence it does not rely on command shell scripting or other 
OS features. The Ant allows for building of the GMS on any platform with 
available Java 2 virtual machine.  

We have made available to the general public the whole project source 
code and documentation as part of the MODOCC project [MODOCC]. 
Executing of the ANT XML specification automatically takes care of the 
proper order of compilation, building and packaging of system 
components. Designers can easily adapt the XML script to their needs if 
they want to modify or reuse parts of the GMS in other projects. 
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Configuration and deployment 

Designers can perform the system configuration of the MODOCC system 
using a special configuration specification that describes the deployment of 
GMS monitoring agents. This specification reflects the hierarchical 
distribution model presented earlier. The specification itself represents an 
XML document validated by this XML Schema. The following XML 
Schema defines the structure of an configuration specification XML 
document: 

conf_spec.xsd 
 
<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 
elementFormDefault="qualified" attributeFormDefault="unqualified"> 
 <xs:element name="conf_spec"> 
  <xs:annotation> 
   <xs:documentation>Comment describing your root 
element</xs:documentation> 
  </xs:annotation> 
  <xs:complexType> 
   <xs:sequence maxOccurs="unbounded"> 
    <xs:element ref="realm"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="realm"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="prop" type="property" minOccurs="0" 
maxOccurs="unbounded"/> 
    <xs:element ref="domain" maxOccurs="unbounded"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="domain"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="prop" type="property" minOccurs="0" 
maxOccurs="unbounded"/> 
    <xs:element ref="host" maxOccurs="unbounded"/> 
   </xs:sequence> 
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   <xs:attribute name="id" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="host"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="prop" type="property" minOccurs="0" 
maxOccurs="unbounded"/> 
    <xs:element ref="unit" maxOccurs="unbounded"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="unit"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="prop" type="property" minOccurs="0" 
maxOccurs="unbounded"/> 
   </xs:sequence> 
   <xs:attribute name="id" type="xs:string" use="required"/> 
  </xs:complexType> 
 </xs:element> 
 <xs:complexType name="property"> 
  <xs:attribute name="name" type="xs:string" use="required"/> 
  <xs:attribute name="value" type="xs:string" use="required"/> 
 </xs:complexType> 
</xs:schema> 
 
An example of a valid configuration specification XML document we 
provide in Appendix C. 

During runtime, a software component called ConfSpecMgr processes 
the configuration specification and provides monitoring agent with 
configuration information. Suffice to say, the ConfSpecMgr provides access 
to a logically centralized repository for configuration information within the 
GMS. The configuration information organizes properties (name/value 
pairs) into a hierarchy of domains (corresponding to the domains from the 
hierarchical distribution model) containing hosts (corresponding to locality 
regions), which contain units (corresponding to co-location regions). 
Physical components of the monitoring system running in an unit can use 
the properties defined at the level of the unit, and the properties defined at 
the level of the host that executes the unit, and the properties defined at the 
level of the domain to which that host belongs. Designers can override 
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property values. For example, a property defined in a domain, can have its 
value overridden by a property with the same name defined in a host, 
contained in this domain. Analogously, a property defined in a host, can 
have its value overridden by a property with the same name defined in a 
unit on that host. This allows for a convenient organization of the 
properties needed by many components belonging to the same region, but 
allows the definition of regions of exceptions within the containing region. 

Startup 

Designers cannot execute a GMS by itself because they first need to build 
an application of it for a particular monitored application. We present an 
application process for our GMS prototype in the next chapter. After having 
created a specialization of the GMS, the developers define a configuration 
specification, and then run the monitored application together with the 
monitoring system.  

Designers perform the startup process using the hierarchical order of 
the configuration: first they need to instantiate the CORBA naming service, 
the DMAs and the DMA-DMA channels (CORBA notification service), than 
the LMA on each application host, then the instrumented parts (with the 
co-located CMAs inside) of the monitored application. In the future 
versions of the GMS prototypes, we plan to provide a deployment tool that 
uses the configuration specification to install and startup the application 
automatically. 

Discovery of running agents presents an important issue in a distributed 
environment. The Naming Service represents a central repository for 
storing references of remote CORBA object. Each monitoring agent of the 
GMS contains several remote objects each implementing one interface of 
the agent. The Naming service manages the references to these objects so 
that other agents can access them. We consider this centralized approach 
for discovery of running instances of the system inappropriate for use in 
large distributed environments, where a centralized Naming Service may 
become a bottleneck and a single point-of-failure. Designers who desire a 
more flexible solution may combine an elaborated approach for the 
communication of the DMA, e.g. by using the JXTA [Wil02] peer-to-peer 
infrastructure, to perform dynamic and distributed discovery of other 
DMAs using the peer discovery protocol part of the JXTA. Designers can do 
the same for the discovery of LMA instances, however, we consider this 
unnecessary in most cases, because designers can organize LMAs in 
relatively small administrative domain regions each using its own instance of 
the Naming Service. For small domains the peer-to-peer protocols do not 
provide a significant benefit. 
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12. How to use the MODOCC 
prototype 

Configuration and deployment 

In Chapter 6 we discussed the GMS configuration specification. We defined 
the specification in XML and its structure using the XML Schema standard. 
Using this definition, the MODOCC system further defines several 
concrete properties, which designers can use to configure the MODOCC 
monitoring system (in addition to the basic configuration for the GMS). 
Bellow we list an example configuration file that describes a (static) 
deployment of a simple CORBA application prepared for monitoring with 
the MODOCC system. In the listing we highlight the important MODOCC 
specific properties. 

roombooking.xml 
 
<?xml version="1.0" encoding="UTF-8"?> 
<conf_spec xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="./conf_spec.xsd"> 
 <realm id="modocc_testbed"> 
  <domain id="room_booking_session"> 
   <prop name="modocc.active" value="yes"/> 
   <prop name="modocc.forwarding.policy" value="deferred"/> 
   <prop name="modocc.externalization.policy" value="SendToLMA"/> 
   <prop name="modocc.mode" value="heavy"/> 
   <prop name="modocc.ntp" value="enabled"/> 
   <prop name="modocc.ntp.server" value="timehost.cs.utwente.nl"/> 
   <prop name="modocc.ntp.offset.refresh.time" value="3600000"/> 
   <host id="10.10.1.3"> 
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    <prop name="modocc.externalization.resource" 
value="LMA_ref"/> 

   <prop name="modocc.oa.port" value="5555"/> 
    <unit id="meeting_factory"/> 
    <unit id="room_server_1"/> 
    <unit id="room_server_2"/> 
    <unit id="room_booking_lma"> 

   <prop name="modocc.lma.service" value="DMA"/> 
    </unit> 
    <unit id="room_booking_dma"> 

  <prop name="modocc.oa.port" value="5554"/> 
    </unit> 
   </host> 
   <host id="10.10.2.2"> 
    <prop name="modocc.externalization.resource" value="LMA_ref"/> 

  <prop name="modocc.oa.port" value="5555"/> 
    <unit id="room_client"/> 
    <unit id="room_booking_lma"> 

   <prop name="modocc.lma.service" value="DMA"/> 
    </unit> 
   </host> 
  </domain> 
 </realm> 
</conf_spec> 

The following Table 12-1 describes each property. Some of these 
properties have implications on the performance of the MODOCC system 
and we will use them in section 7.6. 
Property name Description 
modocc.active Possible values: {yes, no*9}. Indicates 

whether the MODOCC system should 
monitor or not 

modocc.forwarding.policy Possible values: {deferred*, direct}. 
Indicates whether the CMA caches the 
monitoring data it needs to send to the 
LMA (deferred) in order to return the 
control to the monitored application as 
soon as possible or, sends the data 
immediately (direct) and waits for a 
response indicating successful 
receiving 

Table 12-1   
MODOCC 
configuration 
properties 

                                                       
9 A * after a value indicates that the MODOCC system uses this value as a default in the case 
a configuration specification does not define the property for some reason. 
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modocc.externalization.policy Possible values: {SaveToFile, 
SendToLMA*}. Indicates whether the 
CMA saves monitoring data locally to a 
file or sends it to the LMA 

modocc.externalization.resource In case the previous property indicates 
saving to a file, this property indicates 
the name of that file 

modocc.mode Possible values: {light*, heavy}. 
Indicates how the MODOCC system 
generates event timestamps: from the 
physical computer clock (light) or using 
the MODOCC vector clock 
implementation (heavy) 

modocc.ntp Possible values: {enabled, disabled*}. 
Indicates the use of the NTP protocol 
for synchronization of the physical 
computer clocks in the distributed 
system monitored with MODOCC 

modocc.ntp.server In case the previous property allows 
use of NTP, this property holds an URL 
to the NTP server (e.g., a LAN time 
server, or a server somewhere on the 
Internet hooked to an atomic clock) 

modocc.ntp.offset.refresh.time This property indicates the time 
between two subsequent 
synchronizations using NTP. Normally, 
computer clocks do not drift away from 
each other too fast so MODOCC uses a 
default value of one hour  

modocc.oa.port This property indicates the CORBA port 
for MODOCC internal CORBA objects. 
Default value may differ between ORB 
vendors 

For the correct deployment of the MODOCC system designers need to 
provide a command line parameter “-Dmodocc.config.file” to the Java 
interpreter running every instrumented application part that indicated the 
file or URL where every CMA instance can load the configuration 
specification. Furthermore, designers have to make sure they have 
configured the ORB to install the CMAORBInitializer as an orb initializer 
so that it can install the necessary monitoring interceptors, using the ORB’s 
Portable Interceptors API.  

Starting the MODOCC system 

To start the MODOCC system, designers first need to start the monitoring 
agents of the GMS in the sequence indicated in Appendix B. Then they can 
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start the parts of the monitored application. This will automatically 
instantiate a CMA at each location. Then, the MODOCC system becomes 
operational and users can start a monitor to perform some analysis and 
presentation on information coming from the MODOCC system. 
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Samenvatting 

Dit proefschrift presenteert ons werk op het gebied van het observeren van 
gedistribueerde software applicaties (DSAs voor Distributed Software 
Applications). We leveren drie hoofdresultaten op: (1) een 
ontwerpbenadering voor het bouwen van “observatie” systemen, (2) een 
systeemontwerp voor MOnitoring Distributed Object and Component 
Communication (MODOCC) in applicaties die op middleware gebaseerd zijn 
en (3) een “proof-of-concept” implementatie van dit ontwerp. 

Het observeren van de uitvoering van DSAs speelt een essentiële rol in 
het verbeteren van de kwaliteit ervan in termen van 
gebruikersverwachtingen, performance en betrouwbaarheid. Bijvoorbeeld: 
het observeren van de communicatie tussen onderdelen van een DSA levert 
informatie op die gebruikt kan worden voor het ontdekken van fouten en 
hun oorzaken, voor storing- en prestatieanalyses en voor het balanceren van 
de systeembelasting over de DSA onderdelen.  

Ontwerpers en programmeurs bouwen vaak observatie-hulpsystemen 
om de test-, operatie- en onderhoudsfases van de levenscyclus van een DSA 
te ondersteunen. Een observatie systeem moet daarvoor modellen en 
mechanismen gebruiken die een consistente weergave van de DSA 
uitvoering behouden, en die waar nodig informatie verschaffen over de 
executie van de applicatie. 

Dit proefschrift richt zich op het observeren van DSAs die gebouwd zijn 
met object- en componenttechnologieën, en vooral op de executie aspecten 
van objecten en componenten, zoals inter-object en inter-component 
interactie.  

Het manuscript heeft de volgende structuur: 
Hoofdstuk 1 introduceert het onderzoeksgebied en geeft een 

gedetailleerde uitleg over onze motivatie voor dit werk en stelt onze doelen 
vast. 

Hoofdstukken 2 en 3 introduceren terminologie en concepten, die door 
het hele proefschrift gebruikt worden. 
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Hoofdstuk 2 presenteert de basisterminologie en fundamentele 
concepten op het gebied van het observeren van gedistribueerde software. 

Hoofdstuk 3 geeft een overzicht van object- en component middleware 
technologiëen. 

Hoofdstuk 4 beschrijft en evalueert enkele bestaande observatie 
systemen, en met name observatie systemen die geschikt zijn voor object en 
component middleware ondersteunen. Als resultaat van deze evaluatie 
definiëren we een aantal eisen voor ons observatie systeem. 

Hoofstuk 5 beschrijft een ontwerpbenadering voor observatie systemen. 
Deze ontwerpbenadering bestaat uit vier fases: Algemeen Observatie 
Systeem (GMS voor Generic Monitoring System) ontwerp, GMS 
specialisatie, instrumentatie ontwerp en observatie ontwerp. 

Hoofdstukken 6, 7 en 8 volgen onze ontwerpbenadering met als doel 
een systeem te bouwen voor het observeren van op middleware gebaseerde 
applicaties. 

Hoofdstuk 6 stelt een architectuur van een GMS voor. Het GMS bevat 
alleen algemene eisen voor observatie. Dit hoofdstuk bevat tevens een 
rapportage over een prototype GMS dat we hebben gebouwd. 

Hoofdsuk 7 presenteert het ontwerp van een MODOCC systeem. Het 
ontwerp omvat een model voor het observeren van de communicatie tussen 
objecten en componenten en de aanpassingen aan de middleware die nodig 
zijn het observatie proces. Tevens wordt hier de implementatie van het 
prototype van deze aanpassingen beschreven.  

Hoofstuk 8 beschrijft het ontwerp en de implementatie van een basale 
monitor die de communicatie tussen objecten en componenten visualiseert. 
Verder bespreken we het gebruik van het MODOCC systeem voor drie 
verschillende observeringsapplicaties. 

Hoofdstuk 9 bevat een samenvatting van dit proefschrift en 
bedisscussieerd mogelijke richtingen voor vervolgonderzoek. 



 

Предговор 

Тази дисертация третира проблеми, свързани с наблюдаването на 

разпределен софтуер. Основните резултати са три: (1) 

методология за проектиране на системи за наблюдение, (2) 

дизайн на система за наблюдаване на комуникацията в обектно-

ориентиран и компонентно-ориентиран разпределен софтуер, и 

(3) реализация на тази система за наблюдение.  

Наблюдаването на поведението на разпределен софтуер по 

време на неговото изпълнение играе съществена роля при 

подобряването на софтуерното качество от гледна точка на 

потребителски очаквания, бързодействие, и надеждност. 

Например, наблюдаването на комуникацията между физически 

разпределени софтуерни части предоставя информация, която 

може да се използва за откриване на грешки и за локализиране 

на техните източници, за анализ на повреди, за анализ на 

системно бързодействие, а също така и за балансиране на 

натоварването на отделни системни компоненти. 

Дизайнери и програмисти често използват ситеми за 

наблюдение при тестване, употреба и поддръжка на разпределен 

софтуер. Те се нуждаят от системи, които предоставят 

консистентен модел на изпълнението на разпределения софтуер 

и, когато е необходимо, могат да показват тази информация по 

време на самото изпълнение на наблюдавания софтуер. 

Тази дисертация фокусира върху наблюдаването на обектно- и 

компонентно-ориентиран разпределен софтуер и по-конкретно, 

върху наблюдаването на взаимодействия между обекти и 

взаимодействия между компоненти. 

Дисертацията има следната структура: 

Глава 1 въвежда читателя в изследователската област, 

посочва нашата мотивация и дефинира в детайл нашите 

изследователски цели. 
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Глави 2 и 3 въвеждат терминологията, която използваме в 

тази дисертация.  

Глава 2 въвежда в областта на наблюдаване на разпределен 

софтуер.  

Глава 3 запознава читателя с обектно-ориентираните и 

компонентните технологии. 

В Глава 4 изследваме няколко от съществуващите системи за 

наблюдение. В резултат на това изследване дефинираме 

изисквания към нашата система за наблюдение. 

Глава 5 описва нашата методология за построяване на 

системи за наблюдение. Тя се състои от четири фази: дизайн на 

системи с широко приложение, специализация на системи с 

широко приложение към определена област, дизайн на 

инструменти за измерване и дизайн на софтуерни монитори. 

Глави 6, 7 и 8 следват фазите на нашата методология. 

Глава 6 описва архитектура на система за наблюдение с 

широко приложение. Тази система задоволява единствено тези от 

нашите изисквания, които позволяват широко приложение. Тази 

глава също докладва реализацията на прототип на система за 

наблюдение с широко приложение. 

Глава 7 представя дизайн на система за наблюдение на 

обектна и компонентна комуникацията в разпределен софтуер, 

базиран на обектно-ориентирани и компонентни технологии и 

дизайн и реализация на инструментите за измерване тази 

комуникация. 

Глава 8 описва дизайн и реализация на софтуерен монитор, 

служещ за визуализиране на обектна и компонентна 

комуникацията. Тази глава представя също прилагането на 

нашата система за наблюдение и на софтуерния монитор към три 

различни проекта. 

Глава 9 обобщава научния принос на тази дисертация и 

дискутира възможностите за продължаване на тази 

изследователска работа. 



 

За Корицата 

Изображението на корицата представлява стереограма: гледането 

на стереограма по специален начин разкрива тримерна сцена. 

Принципът, използван в стереогамите е формулиран за пръв път 

от физика Сър Чарлз Уетстоун през 1833. Според този принцип, 

когато човек гледа някаква сцена в околната среда, всяко око 

вижда отделно изображение на същата сцена. Човешкият мозък 

сглобява тези две изображение в нещо, което ние възприемаме 

като тримерно изображение. Стереограмите използват този 

принцип, за да скрият тримерна сцена в двумерно изображение. 

Изображението на корицата съдържа следната тримерна сцена: 

 

Следващите инструкции съставляват техника за гледане на 

стереограми: 

1. Приближете стереограмата много близо до лицето си; 

2. Отпуснете очите си и гледайте през стереограмата с очи, 

фокусирани зад равнината на стереограмата; 
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3. Бавно отдалечавайте стереограмата, като се стараете да не 

местите погледа си и да не променяте фокуса му. 

Може да отнеме известно време, за да видите тримерната сцена. 

Също така отбележете, че само 85-90% от хората са в състояние 

да виждат тримерната сцена на една стереограма. 

Поставих тази стереограма на корицата на дисертацията си, 

за да подчертая ролята на системите за наблюдение при 

производството на софтуер. Софтуерът сам по себе си не 

�съществува� в същия смисъл както една лъжица съществува 

физически. При това отбележете, че разпечатана програма 

�съществува� по-същия начин както и думата �лъжица� написана 

на лист хартия. Най-реалното нещо от един софтуер са 

електрическите заряди, намиращи се в компютърната памет или в 

компютърния харддиск. Изпълнението на една софтуерна програма 

може да се оприличи на вихрушка от електрически сигнали, 

които се разкарват из частите на компютъра. �Реалният� 

резултат от една програма в повечето случаи представлява 

фотони излъчени от монитор към очите на потребителя. При 

производството на софтуер, дизайнерите често използват 

абстрактни концепции като обекти, компоненти и процеси. В 

ролята на наблюдатели, ако искаме да наблюдаваме софтуерно 

изпълнение в термините на същите абстрактни концепции, както 

и при неговия дизайн, ние имаме нужда от система за 

наблюдение. Такава система за наблюдение би ни разкрила 

великолепния свят на взаимодействащи обекти, процеси и 

компоненти, и как те довеждат програма до желан (или нежелан) 

край. 

За генерирането на стереограмата от корицата използвах 

програмата Surface 3D Release 2 [S3DR204]. 



 

About the Cover Page 

The image on the cover has certain special properties: when viewing it in a 
special way one can see a tri-dimensional scene emerge out of it. We call 
this type of images steregorams. The principle behind stereograms dates back 
to 1833, when the physicist Sir Charles Wheatstone recognized that when 
humans look at an object each eye sees a separate picture of that object. 
The brain takes these two pictures and creates what we perceive as a three-
dimensional image. A stereogram exploits this feature of the brain to hide a 
tri-dimensional scene in a two-dimensional image. 

On the cover I have put an image, containing the following scene: 

 

The following technique helps the viewer to see the hidden scene in a 
stereogram:  
1. Put your face close to the stereogram; 
2. Allow your eyes to relax, and stare right through the stereogram as if 

your eyes were focused at a point behind the surface of the stereogram; 
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3. Slowly move away from the stereogram without changing the position of 
your eyes. 

You won’t see the emerging tri-dimensional scene immediately, but keep 
trying. Please note that only 85-90 percent of people can see stereographic 
pictures in a three-dimensional way. 

I have created this particular stereogram to illustrate the role of a 
monitoring system in software development. Software does not exist in the 
same meaning of the word “exist” when applied to things such as potatoes. 
Note that a print out of some program source code becomes as real as the 
word “potato” written on a piece of paper. The electrical charges captured 
within the computer memory or on the plates of the computer hard drive 
represent the closest to “real” that software gets. When executing software, 
its “real” execution constitutes a whirlwind of electrical impulses moving 
around within the computer parts. The photons that user’s eyes detect 
coming from the computer screen represent the closest to “real” output of 
a computer program execution. We model software and what they do using 
abstract (ones that do not “really” exist in the physical world) concepts 
such as objects, processes, components and events, and if we want to “see” 
what actually happens in this same terms during the “storm” of electrical 
charges constituting a program’s execution, we need to use a monitoring 
system. The monitoring system would reveal to us a fascinating world of 
interacting objects, processes and components, which seem to govern how 
the computer produces desired (or undesired) output. 

To create the stereogram I used the free tool Surface 3D Release 2 
[S3DR204]. 



 

Acronyms and Abbreviations 

Short form Expanded form 
API Application Programming Interface 
CCM CORBA Component Model 
CMA Co-located Monitoring Agent 
COM Common Object Model 
CORBA Common Object Request Broker Architecture 
CPU Central Processing Unit 
DCE Distributed Computing Environment 
DCOM Distributed Common Object Model 
DDM Diagram Data Model 
DMA Domain Monitoring Agent 
DSA Distributed Software Application 
DSC Distributed Software Components 
DSD Dynamic Service Deployment 
EBNF Extended Backus-Naur Form 
EJB Enterprise Java Beans 
FIFO First In First Out 
GMS Generic Monitoring System 
GUI Graphical User Interface 
HTTP Hypertext Transfer Protocol 
IDE Integrated Development Environment 
IDL Interface Definition Language 
IPC Inter-Process Communication 
JDI Java Debugging Interface 
JDK Java Development Kit 
JMS Java Messaging Service 
JMX Java Management eXtensions 
JNI Java Native Interface 
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JPDA Java Platform Debugger Interface 
JSP Java Server Pages 
JVM Java Virtual Machine 
JVMPI Java Virtual Machine Profiler Interface 
JXTA Juxtapose, the project 
LMA Local Monitoring Agent 
LRC Limited Realized Causality 
MA Monitoring Agent 
MLM Multi-Layer Monitoring 
MM Monitoring Model 
MODOCC MOnitoring Distributed Object and Component 

Communication 
MSD Message Sequence Diagram 
MSS Monitoring Support System 
NTP Network Time Protocol 
OMG Object Management Group 
OO Object-Oriented 
ORB Object Request Broker 
OS Operating System 
OSA Open Services Access 
PAM Presence and Availability Management 
PI Portable Interceptors 
POA Portable Object Adapter 
RMI Remote Method Invocation 
RPC Remote Procedure Call 
SAP Service Access Point 
SHA Secure Hash Algorithm 
SNMP Simplified Network Management Protocol 
SNTP Simple Network Time Protocol 
SQL Structured Query Language 
SSIL Simple Specification of Interest Language 
STSL Simple Type Search Language 
TINA Telecommunication Information Networking 

Architecture 
UML Unified Modeling Language 
WAS WebSphere Application Server 
WWW World Wide Web 
XMI XML Metadata Interchange 
XML eXtensible Markup Language 
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