
MOnitoring Distributed Object
and Component Communication

Nikolay K. Diakov

Enschede, The Netherlands, 2004

CTIT PhD.-thesis series number 04-63
Telematica Instituut Fundamental Research Series, No. 012 (TI/FRS/012)

Cover Design: Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Cover Image: Nikolay Diakov
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, The Netherlands

Graduation committee:
Chairman, secretary: prof. dr. W.H.M. Zijm (Universiteit Twente)
Promotor: prof. dr. ir. C.A. Vissers (Universiteit Twente)
External expert: dr. Xavier Logean (Cap Gemini Ernst & Young)
Members: dr. ir. M. van Sinderen (Universiteit Twente)

prof. dr. ir. L.J.M. Nieuwenhuis (Universiteit Twente)
prof. dr. ir. E. Backer (Delft University of Technology)
prof. dr. Thomas Plagemann (University of Oslo)

CTIT Ph.D.-thesis series, No. 04-63
ISSN 1381-3617; No. 04-63
Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Telematica Instituut Fundamental Research Series, No. 012
ISSN 1388-1795; No. 012
Telematica Instituut
P.O. Box 589, 7500 AN Enschede, The Netherlands

Telematica Instituut Fundamental Research Series (see http://www.telin.nl/publicaties/frs.htm)

ISBN 90-75176-38-4

Copyright © 2004, N.K. Diakov, The Netherlands

All rights reserved. Subject to exceptions provided for by law, no part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of the copyright owner. No part of this publication
may be adapted in whole or in part without the prior written permission of the author.

http://www.telin.nl/publicaties/frs.htm

MONITORING DISTRIBUTED OBJECT AND
COMPONENT COMMUNICATION

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op woensdag 16 juni 2004 om 15.00 uur

door

Nikolay Kirilov Diakov
geboren op 20 November 1973

te Yambol, Bulgarije

Dit proefschrift is goedgekeurd door:
prof. dr. ir. C.A. Vissers (promotor)

Abstract

This thesis presents our work in the area of monitoring distributed software
applications (DSAs). We produce three main results: (1) a design approach
for building monitoring systems, (2) a design of a system for MOnitoring
Distributed Object and Component Communication (MODOCC) behavior
in middleware-based applications, and (3) a proof-of-concept
implementation of this system.

Monitoring execution aspects of DSAs plays an essential role in
improving their quality in terms of user expectations, performance, and
reliability. For example, monitoring communication between DSA parts
produces information used for discovery of errors and their sources, fault
and performance analysis, and also for balancing the work done by system
components.

Designers and programmers often build utility monitoring systems to
support the testing, and operation and maintenance phases of the lifecycle
of a DSA product. For this, a monitoring system needs to employ models
and mechanisms for maintaining a consistent view on DSA execution, and
when necessary to deliver information about application execution during
runtime.

This thesis focuses on monitoring of DSAs built with object and
component technologies, and in particular on the aspects of object and
component execution, such as inter-object and inter-component
interaction.

The manuscript has the following structure:
Chapter 1 introduces the area of research, describes in further detail

our motives for this work, and establishes our goals.
Chapters 2 and 3 introduce terminology and concepts needed

throughout the manuscript.
Chapter 2 presents the basic terminology and fundamental concepts in

the area of monitoring distributed software applications.

VI ABSTRACT

Chapter 3 presents an overview of object and component middleware
technologies.

Chapter 4 presents and evaluates most relevant existing monitoring
systems, focusing on systems supporting object and component
middleware. As a result of this evaluation, we define a set of requirements
for our monitoring system.

Chapter 5 describes a design approach for monitoring systems. The
design approach consists of four stages: Generic Monitoring System (GMS)
design, GMS specialization, instrumentation design, and monitor design.

Chapters 6, 7, and 8 follow our design approach in order to produce a
system for monitoring middleware-based applications.

Chapter 6 proposes an architecture of a GMS. The GMS addresses only
generic requirements for monitoring. This chapter also reports on the
prototype of a GMS that we have built.

Chapter 7 presents the design of a MODOCC system. The design
includes a monitoring model for monitoring object and component
communication, and a design of a middleware instrumentation. This
chapter also presents the prototype implementation of the instrumentation.

Chapter 8 presents the design and implementation of a basic monitor
for visualizing object and component communication. This chapter also
presents the use of the MODOCC system and the monitor in three
different monitoring applications.

Chapter 9 presents a summary of our contributions and discusses
possible directions for further research.

Acknowledgements

Many people have contributed to this work in one way or another. Below I
present my words of gratitude and acknowledgement.

I thank Chris Vissers for giving me the opportunity to work on my PhD
research. I deeply respect his commitment to his students. Marten van
Sinderen I thank for his support from the very beginning. He helped me to
focus my PhD research. I admire him for his inextinguishable energy and
passion in pursuing the strategic, research, and financing matters of the
Architecture group at Twente University. Dick Quartel has greatly
contributed to my PhD research, especially in the writing phase. He has
read and reviewed more draft manuscript versions than anyone else. I thank
him for his patience and dedication.

Many thanks to present and past colleagues at the Architecture group
for their productive discussions and friendship: Kris, Giancarlo, Joao-Paulo,
Maarten, Patricia, Renata, Helen, Remco van de Meent, Remco Dijkman,
Clever, Ciro, Alex, Valerie, Robert, Szabi, Diego, Jose, Marcel, Luis, Aart,
Marlous, Aiko, Wilma, and Bert. I thank Maarten for reviewing the Dutch
translation of the Abstract. I would also like to thank the colleagues at the
Telematica Institute and Lucent Technology with whom I had productive
collaboration within the FRIENDS project: Hans Zandbelt, Marten
Wibbels, and Harold Batteram.

I would like to extend my gratitude to all my friends who made pleasant
my stay in Enschede: Goran, Tony, Stanislav, Ina, Vania, Nikolay Kavaldjiev,
Nikolay Dokovski, George, Lilith, Gloria, Pedro, Dessi, Samuil, Zlatko,
Ivayla, Ulrich, Val, Lora, Boriana, Ivan, Dano, Marcos, Kelen, Christiaen
Slot, Carla, Nynke, Manon, Jasper, Herman, Koen, and Wietze. I hope I
did not forget anyone.

I would like to thank my family and relatives for their support from afar:
Irina, Kiril, Nelly, Zdravko, Margarita, and Todor. My partner Galina has
supported me through all the difficult times during my PhD research. I
thank her for her patience.

VIII ACKNOWLEDGEMENTS

I would like to thank Farhad Arbab and Jan Rutten for giving me the
opportunity to continue my scientific career at the SEN3 group, CWI, and
complete the final manuscript of my PhD thesis. I also thank Tomas from
the SEN4 group, CWI, for reviewing the Dutch translation of the abstract.

Last but not least, I would like to thank David Bourland and the other
members of the International Society of General Semantics, who have
contributed to the development and popularization of E-Prime [Bour91]. I
wrote this thesis not in English, but in E-Prime.

Nikolay Kirilov Diakov
Amsterdam, May 2004

Contents

CHAPTER 1 Introduction 13
1.1 Background 13
1.2 Software monitoring 15
1.3 Middleware-based systems 16
1.4 Monitoring of middleware-based applications 18
1.5 Problem statement 20
1.6 Scope and objectives 24
1.7 Approach 25
1.8 Thesis structure 29

CHAPTER 2 Terminology and concepts 31
2.1 General discussion 31
2.2 A monitoring model 33
2.3 Monitoring activities 45
2.4 Generation activities 46
2.5 Processing activities 48
2.6 Dissemination activities 51
2.7 Presentation activities 54
2.8 Performance of monitoring systems 58

CHAPTER 3 Overview of object and component middleware 63
3.1 Object orientation 63
3.2 Object middleware 67
3.3 Component middleware 74
3.4 Monitoring capabilities in object and component middleware 81
3.5 Conclusion 85

X CONTENTS

CHAPTER 4 Evaluation of monitoring systems 87
4.1 Evaluation criteria 87
4.2 OLT 89
4.3 HiFi 93
4.4 MOTEL 96
4.5 MIMO 99
4.6 Summary 104
4.7 Conclusions 106

CHAPTER 5 A design approach for generic monitoring systems 111
5.1 General discussion 111
5.2 GMS design 117
5.3 GMS specialization 121
5.4 Instrumentation design 125
5.5 Monitor design 130
5.6 Conclusions 131

CHAPTER 6 An architecture for a generic monitoring system 133
6.1 Identification of generic user requirements 133
6.2 Definition of the GMS service 137
6.3 Definition of the GMS software architecture 154
6.4 Implementation report 173

CHAPTER 7 A system for monitoring distributed object and component
communication 179
7.1 Requirement refinement 180
7.2 GMS specialization 183
7.3 Instrumentation design 197
7.4 CMA design 206
7.5 Performance measurements of the MODOCC prototype 210

CHAPTER 8 A monitor and monitoring applications 221
8.1 MSD monitor 221
8.2 Concrete monitoring applications 228
8.3 Summary and conclusions 234

CHAPTER 9 Conclusions 235
9.1 Contributions 235
9.2 Future work 237

APPENDIX A IDL interfaces of the GMS 241

 CONTENTS XI

APPENDIX B How to use the GMS prototype 251

APPENDIX C How to use the MODOCC prototype 255

REFERENCES 259

TABLE OF FIGURES 271

INDEX 275

SAMENVATTING 279

ПРЕДГОВОР 281

ЗА КОРИЦАТА 283

ABOUT THE COVER PAGE 285

ACRONYMS AND ABBREVIATIONS 287

Chapter 1

1. Introduction

This thesis addresses the area of monitoring the communication in
distributed software built using object and component middleware
technologies. This chapter presents the background and the motivation for
this work, discusses the problems in the area, defines the scope and the
objectives, and presents the approach that we follow. The chapter
concludes with an overview of the thesis structure.

1.1 Background

Nowadays, we routinely use computer systems in our environment.
Personal computers running various software applications assist us in
repetitive, error-prone and time-consuming tasks, such as personal time
management, financial bookkeeping and word processing.

Advances in communication technologies enable computers to interact
over great distances and thus to common tasks. This led to the development
of distributed systems consisting of distributed software, computing devices,
communication devices and underlying communication networks.

A distributed software application (DSA) represents software that runs
on a distributed system. DSAs enable the interaction among (potentially
many) geographically distant users, they allow the utilization and sharing of
physically remote resources, such as content and services, and (if designed
properly) they can provide higher availability, performance, and reliability
compared to centralized systems. Examples of DSAs include file sharing,
instant messaging, multi-user online gaming, electronic banking, e-mail,
and the World Wide Web.

As users become increasingly dependent on DSAs, the quality of these
DSAs becomes an important issue. For example, failure in a DSA that
automates some business process involving different organizations, may lead

14 CHAPTER 1 INTRODUCTION

to unfulfilled contractual obligations, loss of money, and in some cases,
threat to human health and life.

Industry and the academia have spent a great deal of effort to develop a
general software manufacturing process, such as the Rational Unified
Process [JBR99], aimed at optimizing the production of DSAs within strict
budget and time constraints, and at the same time increasing the degree of
customer satisfaction. As a result, most contemporary approaches for
software development follow several general phases: requirements analysis,
specification, design, implementation, testing and validation, and operation
and maintenance [Royce87].

Monitoring the execution of DSAs can play an important role in two of
these phases: testing and validation, and operation and maintenance.

During the testing and validation phase, testers execute a DSA in order
to make conclusions about its runtime behavior [KraWis98]. In this phase,
monitoring serves as the enabling mechanism for several categories of
activities [Ward01]:
– Event inspection – Developers require some useful information about the

DSA execution, at the moment of the occurrence of some event in the
behavior of the DSA. For example, in the event of sending a message
from one DSA part to another, the developer may require inspection of
the individual parameters of the message;

– Conformance testing – Developers may require checking whether the
design of a DSA allows certain selected scenarios of use of a DSA
prototype. Furthermore, developers may need to discover whether
certain patterns appear in the behavior of a DSA implementation. For
example, the implementation may allow transmitting certain types of
messages in a particular order that the design does not allow;

– Computation replay – Developers require the re-execution of a previously
monitored and recorded execution of a DSA in order to reproduce and
closely examine certain effects of its behavior, e.g., a difficult to
reproduce fault or a race condition;

– Distributed breakpoints – A distributed breakpoint has similarity with a
breakpoint from sequential debugging, however the condition for
reaching a distributed breakpoint now may require monitoring the
progress of several concurrent activities within the DSA behavior;

– Differentiation – Developers may need to compare executions of a DSA,
for example, to determine how different environment conditions affect
the DSA execution, or to determine whether fixing a bug has actually
made any difference (successful fixing);

– Visual presentation – Visualizing the execution of the DSA deals with
representing the DSA visually in a way that meets the requirements of
the testers. Visualization often has to deal with the constraints of human

 SOFTWARE MONITORING 15

comprehension, such as, number of objects on the canvas, frequency of
updates, etc.

The operation and maintenance phase includes various management
activities on DSAs, which require monitoring of the state, the errors, and
the performance [SloMo89]. The management of a DSA comprises
supervising and controlling the system so that it fulfils the requirements of
both its owners and its users [Slo95]. According to the ISO/OSI
management standards, management activities include fault management,
configuration management, accounting management, performance management and
security management [ISO90][ISO92], each of which depends on information
collected through monitoring.

1.2 Software monitoring

The Merriam-Webster Online Dictionary defines to monitor as “to watch,
keep track of, or check, usually for a special purpose” [M-W]. Further in
this text we use the terms “to observe” and “to monitor” interchangeably.

MMoonniittoorreedd

AApppplliiccaattiioonn
MMoonniittoorriinngg

SSyysstteemm

MMoonniittoorriinngg
AApppplliiccaattiioonn

We call software monitoring the process of observing various aspects of the
execution of some monitored application (Figure 1-1). The communication
between remote application parts constitutes an example of an execution
aspect that one can monitor in a distributed environment.

Software designers may not have designed an application with
monitoring in mind. In order to prepare such an application for
monitoring, designers instrument the application, e.g., add or change
something in it or in its execution environment.

We call the party interested in monitoring the monitoring application. A
monitoring application involves computer software and may involve human
operators. A monitoring application requires information about the
execution of the monitored application for the purpose, for example, of
testing or management.

A monitoring system supports the monitoring. In a typical scenario, a
monitoring system performs measurements on the monitored application,
packages the results into monitoring data, and presents the monitoring data
to the monitoring application.

Figure 1-1 Parties
involved in
monitoring

16 CHAPTER 1 INTRODUCTION

1.3 Middleware-based systems

Designers of different DSAs often have to solve similar tasks, such as how to
make application parts discover each other in order to communicate, how
to make their applications work in a heterogeneous environment, or how to
deal with partial failure. This observation became one of the reasons for the
appearance of the middleware concept.

Middleware comprises system software that provides a set of reusable
common services and network programming mechanisms. Middleware
resides between the applications and the underlying operating systems,
network protocol stacks, and hardware [SSRB00]. The middleware
coordinates the interactions among application parts by providing
functionality that bridges the gap between software applications and the
low-level hardware and software [SchSch01].

Middleware helps developers to increase their productivity by shielding
them from (potentially) error-prone low-level details of the runtime
environment. Middleware simplifies the development of DSAs by offering
high-level programming abstractions conceptually closer to application
requirements than the low-level programming methods. For example,
middleware can offer distribution transparency by hiding low level network
programming into a reusable object-oriented framework for remote
operation invocations.

DDiissttrriibbuutteedd ssyysstteemm rreessoouurrcceess llaayyeerr

MMiiddddlleewwaarree llaayyeerr

DDiissttrriibbuutteedd ssooffttwwaarree aapppplliiccaattiioonn llaayyeerr

PPaarrtt 11 PPaarrtt 22 PPaarrtt nn ……

In a commonly used model of a middleware-based system, we can find one
or more middleware layers (Figure 1-2) between the DSA layer and the
layer of distributed system resources [SchSch01]. For simplicity we
consider only one middleware layer. The middleware layer provides to the
DSA layer high-level distributed programming interfaces, e.g., for invoking
operations on remote objects, or for accessing common domain-
independent services, such as directory, transaction, and security services.
The middleware layer takes care of any details on behalf of the DSA about
the allocation, scheduling and coordination of resources in the distributed

Figure 1-2
Middleware-based
system

 MIDDLEWARE-BASED SYSTEMS 17

resources layer, in order to hide the peculiarities of individual operating
systems, and help eliminate many tedious, error-prone and non-portable
aspects of low-level OS programming.

Over the past decade, various middleware technologies have addressed
the complexities associated with the development of DSAs. We consider
two of these technologies: object middleware and component middleware.

Object middleware

Professionals have widely applied the Object-Oriented (OO) approach to
handle complexity in software design. The OO design emphasizes on
abstraction, encapsulation, modularity and inheritance. These principles
provide reusability of system behavior, support for incremental software
development and systematic system decomposition. We can perceive an
object-oriented computer program as a collection of objects, which
communicate with each other to achieve a common goal [Booch91].

The application of the OO approach to distributed environments
resulted in the advent of object middleware. In a distributed environment,
inter-object communication may cross the boundaries of a single computer.
The middleware takes care of communication-related issues, such as the
synchronization between communicating parties, reliability of
communication, heterogeneity issues of different hardware and software
involved in the communication, and interoperability between different
vendor products. CORBA [CORBA] and DCOM [DCOM] constitute two
examples of object middleware technology.

Component middleware

The industrialization of the software production process led to the
evolution of general software development into component-based software
development. Component middleware integrates the middleware concept with
the concept of component-based software development. We can compare
components to object types, except that components represent coarse-
grained prefabricated building blocks, which we can use to assemble our
software applications in a manner similar to electronic circuits and
mechanical parts [Szy98]. In the recent years, several component
middleware technologies emerged, such as, COM+[COM+][.NET], EJB
[EJB] and CORBA Components [CCM][CORBA3]. The companies
developing these technologies aim to support rapid software development
from reusable and composable off-the-shelf software components.

18 CHAPTER 1 INTRODUCTION

Further in the text we often use the term “middleware” to refer both to
object and component middleware technologies. A DSA built using
middleware technologies we call a middleware-based application.

1.4 Monitoring of middleware-based applications

In general, monitoring requires instrumenting the application and/or its
execution environment. Instrumenting the application allows one to
monitor the application execution directly. Instrumenting the execution
environment allows one to monitor application execution indirectly, based
on the services that the application uses from its environment. The
middleware and the distributed resources layer comprise the execution
environment of a middleware-based application. The monitoring system
can observe execution aspects at each layer of the middleware-based
system. Figure 1-3 shows a general scenario for monitoring middleware-
based applications. This scenario represents a middleware-based system
with instrumented layers.

 MMoonniittoorreedd
AApppplliiccaattiioonn

MMoonniittoorriinngg
SSyysstteemm

MMoonniittoorriinngg
AApppplliiccaattiioonn

MMiiddddlleewwaarree

DDiissttrriibbuutteedd
RReessoouurrcceess

The monitoring system communicates with the instrumented components
in each layer, in order to collect monitoring data and deliver it to the
monitoring application. Note that we consider any instrumentation code
necessary for enabling observation of the monitored application as part of
the monitoring system.

The instrumentation in the monitored application layer allows
monitoring of the execution aspects of specific application logic.
Developers typically build application level instrumentation per application,
which makes development costs proportional to the number of monitored
applications. The instrumentation in the middleware layer allows
monitoring of application execution aspects that rely on services of the
middleware. Object and component lifecycle, and remote operation
invocations, constitute two examples of such execution aspects. The
instrumentation in the distributed resources layer allows monitoring of
application execution aspects in terms of utilization of low-level resources,

Figure 1-3
Monitoring of a
middleware-based
application

 MONITORING OF MIDDLEWARE-BASED APPLICATIONS 19

such as, OS processes, network bandwidth, CPU load, etc. Instrumenting
the middleware or the distributed resources layers makes the
instrumentation generic to applications built with this middleware, because
the middleware shields the instrumentation from the applications.

In a distributed environment, the monitoring application and the
monitoring system themselves require communication between their
physically remote parts. Hence, designers of monitoring applications and
monitoring systems may choose to benefit from the advantages of
middleware. Figure 1-4 shows a middleware-based refinement of the
general scenario for monitoring of middleware-based applications
(presented in Figure 1-3).

MMoonniittoorreedd

AApppplliiccaattiioonn
MMoonniittoorriinngg

SSyysstteemm
MMoonniittoorriinngg
AApppplliiccaattiioonn

MMiiddddlleewwaarree

AA

BB

DDiissttrriibbuutteedd RReessoouurrcceess

CC

DD

EE

FF

GG

We categorize the interactions between the different system parts involved
in monitoring into seven types:

Figure 1-4
Middleware-based
monitoring of
middleware-based
applications

– (A) The parts of the monitoring application interact with each other;
– (B) The monitoring application interacts with the monitoring system;
– (C) The parts of the monitoring system interact with each other;
– (D) The monitoring system interacts with its application level

instrumentation;
– (E) The parts of the monitored application interact with each other;
– (F) The monitoring system interacts with its middleware

instrumentation;
– (G) The monitoring system interacts with its distributed resources

instrumentation.

This categorization illustrates that using the middleware to build
monitoring systems combines well with monitoring of middleware-based
applications. In general, the communication mechanisms in the middleware
handle interaction types A, B, C, D, E. Interaction types F and G represent
local interactions, namely between a local agent of the monitoring system

20 CHAPTER 1 INTRODUCTION

and the instrumentation. The monitoring system uses interactions of type C
for transferring information to remote locations.

Monitoring communication behavior

Communication behavior constitutes an essential part of the overall
behavior of a middleware-based application. The middleware offers a set of
basic building blocks, such as remote operation invocations, which
designers use to build the communication behavior of their applications.
During runtime, the middleware mediates each individual invocation.
Hence, instrumenting the middleware can make information about
individual invocations available to the monitoring system and subsequently
to monitoring applications, such as testing suites and management systems.
Instrumenting the middleware however, cannot provide information about
any application-specific relation between individual invocations. Designers
can obtain this information by instrumenting the application, given they
have access to its design and/or its implementation source code.

1.5 Problem statement

In this section we identify several problems in the area of monitoring. We
focus on three groups: problems related to monitoring in a distributed
environment, problems related to monitoring at the middleware layer, and
problems related to the design of monitoring systems in general.

1.5.1 Monitoring in distributed systems

Several basic characteristics of distributed systems give rise to monitoring
problems: concurrency, hardware clocks, common resources, and
scalability.

A typical distributed system allows for physically parallel execution of
concurrent activities. Monitoring the combined progress of such activities
may prove difficult because of, for example, the lack of a global hardware
clock in low cost distributed systems.

A distributed system may include different operating systems. To reduce
the cost of a distributed system, organizations often use low cost operating
systems that do not provide strict mechanisms for scheduling of the
distributed system resources. DSAs running on such distributed systems
may compete for a common resource. Since one may consider a monitoring
system that monitors a DSA as a DSA itself, the sharing of common
resources in distributed system may cause various performance problems.

 PROBLEM STATEMENT 21

Distributed systems may change their size dynamically, depending on
how many different locations participate in the system at any moment. This
gives rise to scalability issues in monitoring systems that operate on large and
dynamic distributed systems.

Below we formulate the following five problems related to monitoring
of a DSA:
– Inability to accurately establish temporal relations between observed events.

Testers require to establish the temporal order among the (occurrence
of) events representing executed application activities for the purpose
of, e.g., locating errors in a DSA prototype. The traditional perception
of absolute global time seems insufficient to reflect the relativistic
aspects of asynchronous physically distributed systems that suffer from
noticeable communication delays [Pratt86]. Absolute global time cannot
support the analysis of temporal relations in low cost distributed systems
for two main reasons [SchMa94]: (1) the lack of a global hardware
clock, and (2) the negative architectural impact of centralized
mechanisms for measuring time – a centralized time server presents a
single point of failure and a bottleneck for system performance;

i

– Inability to establish causal relations between observed events. Reasoning about
the causal relations among observed events has applications in analysis
of DSAs, e.g. detecting global conditions necessary for distributed
breakpoints [CoMa91]. In general, without access to the design of the
monitored application we cannot make inferences about causality from
post-execution information. Although the limited causal semantics of
the “happened-before” relation [Lamp78] seems to provide the basis
for expressing causal relations between events, the complexity and
inefficiency of the logical clock mechanisms used to implement this
relation, discourage the use of logical clocks by designers of monitoring
systems;

ii

– Inconsistent view on application behavior. The measurements performed
during application runtime, may lead to additional delay (also called
overhead) in the execution of the monitored application. As a result, the
monitoring system cannot measure correctly the original application
behavior because the act of measuring changes the application behavior
– an effect similar to the “uncertainty principle” from the quantum
theory [Heis27]. A monitoring system that produces such delay may
change the behavior of the monitored application so much, that the
monitoring data obtained from the system does not represent
consistently the behavior of the original unmonitored application to the
users of the monitoring system [HeBr89]. By consistency we mean, for
example, order among observed event occurrences, number of events,
etc.;

iii

22 CHAPTER 1 INTRODUCTION

– Undesirable monitored application behavior. The overhead of the monitoring
system, may lead to undesirable monitored application behavior, such as
slow application response time. Furthermore, a monitoring system often
shares the resources of the distributed environment, such as
communication infrastructure, storage and processing power, with the
monitored application. In operating systems that do not provide strict
resources scheduling mechanisms, the monitoring system may deprive
the monitored application from a limited resource [Shaer98], which as a
result may produce undesirable behavior. For example, parts of the
monitored application may fail to communicate with other parts
(communication timeout), due to the excessive use of communication
bandwidth by the monitoring system for communicating monitoring
data among its remote parts;

iv

– Scalability. In a large distributed system, the monitored application may
consist of many application parts that produce monitoring data.
Furthermore, the monitoring application may have many individual
consumers of monitoring data (e.g., several instances of some analysis
software. Transferring (possibly frequently) large amounts of monitoring
data from many producers to many consumers may lead to performance
problems in the monitoring system and undesirable application behavior
in the monitored application [Sam95].

v

Observe that problems (iii) and (iv) also apply to the monitoring of software
applications running on standalone systems.

1.5.2 Monitoring at the middleware layer

Monitoring at the middleware layer requires instrumentation of the
middleware product used to build the monitored application. A middleware
product may comprise various technologies. Designers who need to create a
middleware instrumentation may find that this task requires extensive
knowledge about the middleware’s internal mechanisms, in order to avoid
exposing to the monitoring application incomplete information about the
internal state of the middleware.

A middleware can provide standardized monitoring interfaces to help
designers develop the instrumentation. In reflective middleware, for example,
application developers can access some of the middleware internal
mechanisms through such interfaces, in order to make the middleware
more configurable to fit different application requirements, and more
adaptable to meet changing environment or user requirements [Weg03].
Current middleware products however, either do not support reflection at
all, or provide very limited support for it [Blair98i].

 PROBLEM STATEMENT 23

We identify the following two problems related to monitoring at the
middleware layer:
– Limited support for monitoring of remote interactions at the middleware layer.

Existing middleware [CORBA][DCOM][EJB] products provide limited
standardized access to their communication mechanisms. As a
consequence, monitoring systems [Rack01][KR+00][Logean00] often
resort to using proprietary interfaces and ad-hoc middleware
instrumentation to supply the necessary information about the
distributed interactions of middleware-based applications. Besides the
risk of exposing incomplete information about the internal middleware
state, this approach also reduces the flexibility and reusability of a
monitoring system with different middleware products;

vi

– High-costs for middleware instrumentation. Manual instrumentation of the
middleware can make the software development process expensive and
error prone. For example, the CORBA middleware uses the Proxy
pattern [BuMe+96] to provide distribution transparency by generating
proxy objects for every individual application object type. Instrumenting
the proxy objects [SMST] allows one to monitor the communication
between remote application parts. Many application object types (as in a
large middleware-based DSA) lead to proportionally many proxy objects
that need instrumentation. Development of tools for automatic
instrumentation has the potential to reduce instrumentation cost.

vii

1.5.3 Design of monitoring systems

In this section we identify two problems relating to the design of
monitoring systems in general:
– High costs for designing monitoring systems. Several design steps seem to

reappear in the design of existing monitoring systems in one or another
form, such as: definition of a model of the monitored application
[Bates85][KQS92][Hof+94][Rack99][BeAb02], design of an
instrumentation of the monitored application
[KQS92][LWSB97][LDKK98], and design of monitoring tools
(applications) [JLSU87][KBTB97][RaLe97][Rait00][Rack01].
Reinventing those apparently useful steps can raise the costs for
development of monitoring systems. Therefore, designers may benefit
from a design approach that integrates and unifies the important steps
during the design of monitoring systems. Such methodological support
would allow designers to reduce development costs and increase the
quality of their monitoring systems;

viii

– Lack of standardized monitoring service and implementation architecture.
Monitoring systems perform many common monitoring activities

ix

24 CHAPTER 1 INTRODUCTION

[Sam95], such as generation, processing and dissemination of
monitoring data. Nevertheless, designers often structure their
monitoring system in a specific way (e.g., [OLT03]), integrating
common monitoring functions in such a way, that it becomes very
difficult and expensive to reuse the resulting monitoring system with
different monitoring and monitored applications. As a consequence,
designers reinvent the support for common monitoring activities in
every monitoring system they design.

1.6 Scope and objectives

We set ourselves the overall goal to contribute to the area of monitoring
DSAs. Below we further limit the scope of our work and define a list of
concrete objectives that address the problems we identified earlier.

We limit our work to the monitoring of middleware-based DSAs. We
consider only object and component middleware. Furthermore, we focus
on monitoring the aspects of communication behavior of middleware-based
applications, such as the remote operation invocations among objects or
among component instances. We aim to support the testing and validation
phase of DSAs with the results of our work. In this, we limit ourselves to
providing partial order relations among events observed in the application
behavior, for the purpose of conformance testing, debugging, and visual
presentation. We believe that one can use most of our results to support
application management during the operation and maintenance phase of
DSAs, although we do not explicitly consider management in this thesis.

We address the problems identified in section 1.5 with four concrete
objectives:
– Develop a design approach for monitoring systems. This approach defines

important stages in the design of monitoring systems. By following this
approach, designers reduce the development costs and increase the
quality of their monitoring systems. This objective addresses problem
(viii);

– Propose an architecture for a generic monitoring system. This architecture
includes the definition of the service of a generic monitoring system and
a generic software architecture that implements the service. With the
proposed architecture we aim to increase the reusability, flexibility, and
scalability of monitoring systems. This objective addresses problems (v)
and (ix);

– Define a monitoring model for object and component communication. The model
uses events to represent operation invocations in middleware-based
DSAs. The model allows one to analyze temporal and causal relations

 APPROACH 25

among the events. The model allows a monitor to provide to the
monitoring application a consistent view on monitored application
behavior. This objective addresses problems (i), (ii), and (iii);

– Develop a middleware instrumentation and an instrumentation approach for
monitoring object and component communication. The middleware
instrumentation provides the information necessary to analyze
communication behavior of a running middleware-based DSA, in the
terms of the monitoring model for object and component
communication. The instrumentation alleviates undesirable monitored
application behavior compared to existing approaches. The
instrumentation approach includes the design of instrumentation tools
that automate the process of instrumenting application objects and
component. This objective addresses problems (iv), (vi), and (vii).

The first two objectives address problems general to the monitoring of
DSAs and the design of monitoring systems. The second two objectives
address problems specific to the monitoring of communication aspects in
middleware-based DSAs, as well as some of the more general problems.

Although we have identified the problem of undesirable application
behavior due to possible competition over common resources in low cost
operating systems, we shall not address this problem explicitly. A solution
to this problem requires the investigation of (optimal) deployments of the
monitoring system, which falls out of the scope of this work. Furthermore,
we limit our work to monitoring at the level of software (thus we do not
consider hardware monitoring). Hence, further in the text we use the terms
“monitoring” and “software monitoring” interchangeably.

1.7 Approach

In this section we describe our research approach. We start by presenting a
fictitious example. We use this example to explain our approach.

1.7.1 Example: tree monitoring

Consider the following example:

Example:
Managing tree
growth

The municipality in town X needs to maintain the power lines above ground
free from growing vegetation (namely trees). At the same time, the
municipality does not want to cut vegetation unnecessarily, because the folks
of town X like their green environment very much.

26 CHAPTER 1 INTRODUCTION

The example describes a typical management task. The municipal worker
Mr. T1 has the responsibility to solve the management task of maintaining
tree growth (Figure 1-5). Mr. T knows something about management. He
decomposes the management task into several management activities:
gathering information (monitoring) about the managed system, analysis of
the information, and then controlling the system so that it fulfils its
purpose. In this case, the managed system consists of the trees in town X.
To solve the management task, Mr. T has to design a management system
that performs each of the management activities. We shall concentrate on
the approach Mr. T follows in the design of the monitoring sub-system.

MMaannaaggeedd
SSyysstteemm

MMoonniittoorriinngg

AAnnaallyyzzee

CCoonnttrrooll

Mr. T goes to the municipal archive to investigate whether other municipal
projects have done monitoring. He finds out that although the municipality
has done projects on monitoring, he cannot reuse most of the results,
because designers have followed unclear ad hoc approaches specific to every
particular application. As a consequence, Mr. T has difficulties extracting
any common issues about monitoring from previous projects. Based on the
information collected during the visit to the municipal archives, Mr. T
identifies the requirement that he needs to define his approach as clearly
and as explicitly as possible, if he wants to allow his colleagues to use his
results in possible subsequent projects.

Mr. T decides to define a design approach based on a generalization of his
observations on how previous projects designed monitoring systems for
their management tasks. He noticed that designers spent most of their time
explaining what to monitor, how to interpret measurements, etc.
Therefore, Mr. T decided that his approach will consist of two steps: (1)
define a monitoring model that captures and explains all necessary aspects
of the managed system, and (2) implement that model by identifying
activities for measuring the model aspects, allocating activities to roles (that
Mr. T can assign to field workers), and designing the documents required

Figure 1-5 The
management
system for tree
maintenance

1 Mr.T represents a fictional male character. No offence intended to the female municipal
workers around the world.

 APPROACH 27

for the system to work, e.g. brochures explaining the model, and forms in
which workers fill in measurements. Mr.T follows his design approach to
make a monitoring system for tree maintenance.

Using the project requirements (trim trees when necessary, but not too
much) and his knowledge about trees Mr. T defines a monitoring model of a
tree that only takes into account the aspects of a tree that have a relation to
the task of maintaining its size (Figure 1-6).

CD

H

Legend

CD – crown diameter

H – height from tree
base to crown top

The model defines the outline of a tree as a cylinder with only two
parameters that someone can easily measure using the right instruments –
crown diameter and tree height.

Mr. T uses the monitoring model to complete the design of the
monitoring system: he defines a schedule for measuring trees once a
month, allocates several municipal field workers to the role of measuring,
and designs the necessary brochures and forms.

Below we summarize the important decisions made by Mr. T:

Figure 1-6 The
monitoring model of
a tree developed by
Mr. T

– Design approach: Mr.T decided to define a design approach, which
although simple, allowed Mr. T to structure his approach to designing a
monitoring system;

– Monitoring model: Mr. T identified that the definition of a monitoring
model presents an important step in the design of a monitoring system.
The model allowed Mr.T to make sure that everybody involved in the
tree management task understand the tree aspects important to the
completion of the task.

1.7.2 Approach to software monitoring

We consider software monitoring similar to the situation described in the
example from section 1.7.1. In software monitoring, a design approach
would enhance the general software design process with concrete steps for
the design of monitoring systems. A monitoring model defines the aspects
of application behavior required by the monitoring application.

Therefore, our approach addresses the goals of our research in the
following steps:

28 CHAPTER 1 INTRODUCTION

1. Present the concepts and terminology in monitoring, make an overview
of object and component middleware technologies, and evaluate the
most relevant existing systems for monitoring object and component
communication;

2. Based on the evaluation in the previous step, identify certain problems
in the area, and use these problems to define requirements for a system
for monitoring object and component communication. We distinguish
two groups of requirements: generic – requirements relating to
problems of monitoring DSAs in general, and specific – requirements
that relate to problems specific to monitoring middleware-based DSAs;

3. Propose an approach for the design of monitoring systems. The
approach consists of four stages. Stage one deals with the design of a
Generic Monitoring System (GMS). The design of a GMS considers
generic monitoring functionality, independent from a particular
monitored or monitoring application. Stage two deals with the
specialization of a GMS for a particular monitored/monitoring
application. This step includes the development of a monitoring model.
Stage three deals with the design of an instrumentation for a particular
monitored application. Stage four deals with the design of a monitor for
a particular monitoring application;

4. Follow stage one of the design approach to build an architecture for a
GMS. The GMS architecture addresses the generic requirements for
monitoring identified in step 2;

5. Follow stages two, three, and four to create a system for monitoring
object and component communication. In this step we address the
specific requirements identified in step 2. We define a monitoring
model for object and component communication, design a middleware
instrumentation for that model, and design a basic monitor for
visualization of object and component communication;

6. To prove our concept, we provide prototype implementations of the
GMS and the instrumentation for object and component middleware.
These two constitute the prototype of the Monitoring of Distributed
Object and Component Communication (MODOCC) system. We also
implement a prototype of a basic monitor for the MODOCC system;

7. To validate the usability of our approach, we apply the MODOCC
system and the basic monitor to three monitoring applications: (a)
model-based conformance testing of object and component designs, (b)
monitoring for testing and debugging of component communication for
DSAs built with the Distributed Software Components (DSC) [BaBa98]
component middleware, (c) the validation of the Open Service Access
API implementation of a UMTS Application Platform.

 THESIS STRUCTURE 29

1.8 Thesis structure

We structure the thesis in chapters with dependencies between the
chapters, as shown on Figure 1-7.

Terminology and
concepts

An architecture for a
generic monitoring

system

A system for monitoring
distributed object and

component
communication

A monitor and
monitoring
applications

Conclusions

Chapter 2

A design approach
for generic

monitoring systems

Chapter 5

Chapter 6
Chapter 7

Chapter 8

Chapter 9

Evaluation of
monitoring

systems

Chapter 4

Overview of object
and component

middleware

Chapter 3

Introduction

Chapter 1

Chapter 2 presents the basic terminology and fundamental concepts in
monitoring of distributed software.

Chapter 3 presents an overview of object and component middleware
technologies.

In Chapter 4 we present and evaluate several existing monitoring
systems, focusing on the support for object and component communication
in a distributed environment.

Figure 1-7 Thesis
roadmap

30 CHAPTER 1 INTRODUCTION

Chapter 5 describes a design approach for monitoring systems. The
approach consists of four stages: GMS design, GMS specialization,
instrumentation design, and monitor design.

Chapter 6 proposes an architecture of a GMS. The GMS addresses only
generic requirements for monitoring. This chapter also reports on our GMS
prototype.

Chapter 7 describes the design of an instrumentation for monitoring
distributed object and component communication for middleware-based
applications. In this chapter we present a monitoring model, and a design
of a middleware instrumentation. This chapter also presents the prototype
implementation of the instrumentation. Together, the prototypes of the
GMS and the instrumentation form the MODOCC system.

Chapter 8 presents the design and implementation of a basic monitor
for visualizing object and component communication. This chapter also
presents the use of the MODOCC system and the monitor prototype in
three monitoring applications.

In Chapter 9 we present our conclusions, list the contributions of our
work and discuss possible directions for further research.

Chapter 2

2. Terminology and concepts

This chapter presents the basic terminology and fundamental concepts in
monitoring distributed software. The presented material will help designers
to understand software monitoring and the important characteristics of
monitoring systems.

2.1 General discussion

In Chapter 1 we introduced the notion of monitoring system and its
supporting role in monitoring. We assume that in general the monitoring
application and the monitored application may belong to different domains,
and therefore their designers may use different technologies to build them
for different platforms. Moreover, the designers of the monitored
application may develop it without (future) monitoring in mind. Vice versa,
the designers of the monitoring application may build it independently of a
particular monitored application. Consequently, the monitoring system
should bridge any conceptual and technological gaps between the two
domains in order to allow monitoring. Hence, we deal with two separate
design concerns: the concern of a particular monitored application domain, and
the concern of a particular monitoring application domain.

Furthermore, we notice that a monitoring system often performs
common functions independent of any specific monitored application and
monitoring application. Hence, we deal with a third design concern: the
concern of domain-independent monitoring activities.

2.1.1 Basic terminology

We consider separation of concerns a basic principle in software design for
managing complexity. Using this principle, we decompose the monitoring

32 CHAPTER 2 TERMINOLOGY AND CONCEPTS

system into three vertical layers, also called tiers, to deal with the three
concerns identified above (Figure 2-1).

MMoonniittoorriinngg
SSuuppppoorrtt
SSyysstteemm

MMoonniittoorreedd
AApppplliiccaattiioonn

MMoonniittoorriinngg
SSyysstteemm

MMoonniittoorriinngg
AApppplliiccaattiioonn

MMoonniittoorr
ttiieerr

IInnssttrruummeennttaattiioonn
ttiieerr

ttiieerr ooff tthhee
MMSSSS

The monitor tier represents the monitoring application in the monitoring
system. The monitor tier contains monitors. For simplicity, we consider
only one monitor in Figure 2-1. A monitor concentrates the knowledge the
monitoring system has about a monitoring application. A monitor requests
and receives monitoring data from the monitored application on behalf of
the monitoring application. A monitor extracts information from the
monitoring data, and presents this information to a monitoring application:
some software application or a human operator. In principle, a monitor may
observe the execution of multiple monitored applications and a monitored
application may have multiple monitors.

The instrumentation tier represents the monitored application in the
monitoring system. The instrumentation tier contains instrumentations. For
simplicity, we consider only one instrumentation in Figure 2-1. An
instrumentation includes all software components added to or modified in
a monitored application and/or its execution environment, in order to
prepare that application for monitoring. As such, the instrumentation
concentrates all conceptual and technological knowledge necessary to
capture aspects of the monitored application execution required by the
monitoring application.

The tier of the monitoring support system (MSS) performs monitoring
activities independent from both the specific monitoring application
domain and the monitored application domain. An example of such
activities constitutes the dissemination of monitoring data in a distributed
environment, in which the MSS collects monitoring data from the
instrumentation and delivers it to the monitor.

Figure 2-1
Decomposition of
the monitoring
system

 A MONITORING MODEL 33

2.1.2 Aspects of a monitoring system

We structure the rest of the chapter using the following three aspects of a
monitoring system:
– Information aspect: We discuss the way designers model the monitored

application in order to capture requirements for information about
application execution. We focus on a monitoring model and its role in the
design of monitoring systems;

– Functional aspect: We discuss the various monitoring activities performed by
the components of the monitoring system;

– Performance aspect: We discuss the overhead of the monitoring system and
how overhead affects the quality of the information presented to the
monitoring application by the monitoring system.

2.2 A monitoring model

In general, we consider it impractical (and even impossible) for a
monitoring system to observe and present to its users every aspect of the
execution of a monitored application. Therefore, the monitoring
application requires from the monitoring system an abstract model of the
monitored application. This model may include both structural and
behavioral aspects.

A Monitoring Model (MM) of the monitored application represents
aspects of application execution that the monitoring application finds
interesting to observe [Hof+94]. Designers use an MM to model individual
application executions (also called runs). An MM differs from a design
model in that designers use a design model to model the complete
application behavior, i.e., all possible executions of an application. The
resulting application model designers often use as a starting point for
implementing that application.

In the scope of our research, we seek to define an MM suitable for
describing behavioral aspects of the execution of middleware-based
applications such as object and component communication. In the next
section we discuss the basic modeling concepts that we use to construct
such a model.

2.2.1 Modeling concepts

An MM models a software application in terms of entities and the behavior of
these entities.

34 CHAPTER 2 TERMINOLOGY AND CONCEPTS

Entities

The entity concept represents some physical or logical “thing” associated
with the monitored application. For example, an entity may represent a
process, an object, or a component. Entities may participate in relations to
form the structure of the monitored application, e.g., the “association”
relation between objects, and the “containment” relation between a
compound component and one of its sub-components.

Entity behavior

The behavior of an entity represents the dynamic characteristics of the
entity during application execution. We consider as dynamic characteristics
the activities that an entity performs (such as sending a message to another
entity) and possible relations among those activities (such as the order in
which an entity performs two activities).

We distinguish two ways of modeling entity behavior for monitoring:
status-based and event-based.

Status-based modeling

Status-based modeling abstracts from the activities that an entity performs
and focuses on the information that the entity maintains at discrete
moments of time. We call this information the status of the entity. Status-
based modeling models activities in a system indirectly, since any changes in
the status of an entity result from performing activities.

A status vector represents the status of an entity [FelEr89]. A status
vector consists of status variables. A status variable represents an individual
part of the information maintained by an entity. For example, if the entity
represents an object, a status variable may correspond to an object
attribute. To monitor a status, the monitoring system generates an instance
of the status vector by recording the values of the status variables at the
required moment of time. We call this instance a status report.

Event-based modeling

Event-based modeling directly models the activities that an entity performs.
The event concept represents the successful completion of some activity
performed by an entity of the monitored application. An event either
happens, in which case we consider the corresponding activity to have
completed, or does not happen, in which case we cannot say anything

 A MONITORING MODEL 35

definite about the activity progress except that it did not complete. We call
this property of an event atomicity.

An event has three types of attributes: time, address, and information. A
time attribute (also referred to as “time of occurrence”) represents in some
way the moment at which the result of the associated activity becomes
available for use. For example, the value of the computer clock at the
moment of the event occurrence describes the time of occurrence
according to this particular clock. An address attribute (also referred to as
“event source”) represents the place where the result of the activity has
become available. For example, the IP address of the computer host at
which the event occurred, can serve as a value of an address attribute for
that event. An information attribute (also referred to as the “effect” of the
event) represents the result of the activity. For example, the text of an e-
mail message received by someone can serve as a value for the information
attribute of the event that represents the successful receiving of that e-mail
message by its recipient. When an event occurs, the monitoring system
generates an event report that contains values for each event attribute. The
monitoring system then sends the event report to interested monitors.

We introduce the general term monitoring report to denote a status report
or an event report.

Relations among events

Analysis of complex activities, such as a synchronous operation invocation,
requires the decomposition of each activity into a collection of simpler
related activities. For such purposes, a monitoring model may model the
relations among events.

Relating events allows for reasoning about the distributed computation
that produced these events [RST91]. Relating events finds application in,
for example, distributed breakpoints, detection of race conditions, and
management functions. In load balancing and fault tolerance, for example,
analyzing the relation among certain events may reveal poorly performing
software components that a management component needs to migrate to
another hardware platform in order to reduce system load.

We categorize relations among events in a monitoring model into
temporal and causal relations [HSV99].

Temporal relations

We usually perceive time as an absolute measure of the progress of everyday
activities. Temporal relations represent the ability to order events on a
linear scale according to their time of occurrence. For example, if we use a

36 CHAPTER 2 TERMINOLOGY AND CONCEPTS

clock (assuming we have one) having a certain resolution2 to measure the
time of completion of two activities, we can say one of the following about
events e1 and e2 that represent these activities: e1 occurred earlier than e2, e2
occurred earlier than e1, or e1 and e2 (seem to) have occurred at the same time.
This means that using such a clock we can establish a temporal order among
all events that we observe. Clocks usually also allow us to measure the
distance between event occurrences.

Let E represent the set of all events in an application execution. Let C
represent some clock in the every day meaning. For simplicity, we assume
that the accuracy of C suffices to measure correctly the time of occurrence
of every event in E.

We define the “temporal precedence” relation EC
ETR ⊂ ×E as = { (eC

ETR 1,
e2): e1 occurred earlier than e2 according to clock C}.

Observe that has irreflexive, asymmetric, and transitive properties,
hence it defines a strict partial order on E.

C
ETR

Definition 2-1
Temporal
precedence

Causal relations

The Merriam-Webster’s online dictionary defines causality as “the relation
between a cause and its effect or between regularly correlated events or
phenomena”. Hence, a causal relation defines for an event how its
occurrence depends on the occurrences of other events.

In an every-day interpretation, the fact that e1 causes e2, implicates that
e1 temporally precedes e2. The classical mechanics of the physical world also
considers this intuitive notion of causality, where the cause precedes its
effect. This motivates us to make the following definition of a basic
property of causality:

A causal relation implies a temporal precedence between the cause and the effect,
such that the cause occurs earlier than its effect.

Observe that the opposite does not always hold: the mere fact that events
occurred in some temporal order, does not imply that these events relate
causally. We illustrate this by the fallacy “Post hoc, ergo propter hoc”, which we
traditionally interpret as “after this, therefore because of this” [Giere98].
The causality property also gives us the following interesting causal property
of temporal precedence:

Definition 2-2 Basic
property of
causality

2 We define the resolution of a clock as the smallest unit with which the clock updates its
value when it advances one step.

 A MONITORING MODEL 37

If e1 does not temporally precede e2 (i.e., according to some clock e2 occurs earlier
than or at the same time as e1) then e1 could not have caused e2.

Note that for this property to hold we need to say something about the
accuracy of the clock used to determine the temporal relation: for e1 that
have caused e2, the clock accuracy should suffice to determine that e1
temporally precedes e2. We call such a clock infinitely accurate.

Given an infinitely accurate clock, the causal property of temporal
precedence allows us to use temporal precedence to reason about possible
causal relationship between events (in a single application execution) by
ruling out the cases in which we consider causal relationship impossible
because the effect cannot occur earlier than (or at the same time with) its
cause.

We define two types of binary causal relationships: realized causality and
potential causality.

We consider a relation R⊂ E×E “realized causality” iff for ∀ (e1, e2) ∈R, e1
definitely causes e2, i.e., e2 could not have occurred if e1 hadn’t occurred.

Note that according to the basic property of causality and given an infinitely
accurate clock C, a realized causality relation R ⊆ . C

ETR
In general, reasoning about causality with the certitude of realized

causality requires knowledge about the rules by which the application
operates – i.e., the design of its intended behavior [HSV99]. We provide a
second definition with a more loose causality condition, because in general,
the monitoring application may not have access to the design of the
monitored application.

We consider a relation R⊂ E×E “potential causality” iff ∀ (e1, e2) ∈R, e1
may have caused e2.

Note that we want potential causality to preserve the basic property of
causality. Therefore, according to the causal property of temporal
precedence and given an infinitely accurate clock C, a potential causality

relation R ⊆ . Therefore, we consider as the biggest possible
potential causality relation for an application execution (i.e., any pairs
outside of cannot participate in a potential causality relation according
to the causal property of temporal precedence). Figure 2-2 illustrates the
relation between potential causality and temporal precedence.
Furthermore, a realized causality relation implies a potential causality,

C
ETR C

ETR

C
ETR

Definition 2-3
Causal property of
temporal
precedence

Definition 2-4
Realized causality

Definition 2-5
Potential causality

Potential causality

Temporal precedence

Figure 2-2 The
relation between
potential causality
and temporal
precedence

38 CHAPTER 2 TERMINOLOGY AND CONCEPTS

because the definite cause (realized causality) of some event also represents
one of all possible candidates for a cause (potential causality) of that event.

2.2.2 Status-based vs. event-based modeling

A status-based model of application execution represents the information
associated with entities by abstracting from any particular activities that
entities performed to produce that information. In contrast, event-based
modeling focuses on representing the actual activities performed by entities,
(possibly) abstracting from some of the information aspects produced by
activities. Hence, the choice of a modeling technique depends on the
aspects of application behavior, on which designers of monitoring systems
want to focus.

Monitoring distributed object and component communication
constitutes one of the goals of this thesis. During monitoring we require
explicit knowledge about the communication-related activities performed
by objects and components of the monitored application, such as
establishing of a connection between physically remote hosts, marshalling,
transmitting and un-marshalling of parameters, and processing of (possible)
intermediate error conditions. Therefore we use event-based modeling.

In the next section we introduce an event-based monitoring model of
distributed application execution. In Chapter 7, we use this model as a
basis for the definition of a monitoring model for object and component
communication.

2.2.3 An event-based monitoring model

In this section we present a monitoring model [SchMa94][RaSi96]. In this
model, a distributed application consists of entities called processes (also
called threads, fibres, or light-weight processes) that can communicate with
each other. Each process sequentially performs activities. At this point we
make no other assumptions about any relations between the activities
performed by a process. We model the successful completion of an activity
using the event concept defined earlier.

We denote all events in an execution of a DSA as
E = E1∪ E2∪… E∪ M,

where M represents the total number of processes participating in this
execution and

Ei = {ei,1, ei,2, ei,3,...}
represents the set of events corresponding to activities performed by

process pi. Since in each process activities occur sequentially, their times of
occurrence (according to an infinitely accurate clock) allow total and strict

 A MONITORING MODEL 39

ordering of the corresponding events. Let the binary relation Ei→ ⊂ i×Ei
represent the temporal precedence relation among the events of process pi.
The temporal precedence relation on the set Ei corresponds to the largest
potential causality relation on the set Ei.

Processes communicate with each other by using point-to-point
messages. The communication of a message takes unpredictable finite time
to complete. At this point, we make no other assumptions about availability
of shared resources, FIFO order of messages, communication
infrastructure, or synchronization mechanisms such as CSP-guards
[Hoare78]. We define the binary relation Emsg→ ⊂ ×E such that for every

message m sent from process pi to process pj there exist events ek ∈ Ei
corresponding to a send activity, and el ∈ Ej corresponding to a receive
activity, for which the following holds:

ek emsg→ l

Observe that relation corresponds to a realized causality relation,

because a send event represents the definite cause of a receive event,
following the initial assumption that processes communicate via point-to-
point messages only.

msg→

We define the “causal precedence” binary relation [RaSi96] as the
union of the temporal precedence relations among the events of every
process and the realized causality relation among events representing
message exchanges between processes:

→ =)()(
1

msg

M

i
i →∪→

=
U

The causal precedence relation defines a strict partial order on E (it has
the irreflexive, asymmetric, and transitive properties). Defined this way, the
causal precedence relation corresponds to the “happened before” relation
[Lamp78]. Note that we consider the causal precedence relation defines a
potential causality relation on the set E.

Using the causal precedence relation we define a distributed execution
(also referred to as distributed computation) as the structure DC = (E,

). →

40 CHAPTER 2 TERMINOLOGY AND CONCEPTS

ttiimmee

PP11

PP22

PP33

PP44

Legend
– an event

Pi – a process, i=1,2,3,4

Figure 2-3 shows an example of a distributed execution. The arrows
between events represent the causal precedence relation.

Using relation we define the “concurrency” relation →
║∈ E×E,

where
e1║e2 if and only if ¬ (e1→ e2) and ¬ (e2→ e1).

If one can say that two events belong to the concurrency relation we
consider these events causally independent.

Figure 2-3 A
distributed
execution

2.2.4 Using the monitoring model

A monitoring model defines the aspects of application execution about
which monitors require information. Designers of the instrumentation use
the monitoring model to implement the code for monitoring these aspects.
We call this model-driven instrumentation [Hof+94]. During monitoring, the
instrumentation performs measurements on the monitored application and
as a result generates status and event reports. When the monitor receives
these monitoring reports, it analyzes them in order to create an instance of
the monitoring model that characterizes one application execution.

In everyday life, we regularly order and plan our activities. We do this
using a clock, i.e. by taking a timestamp. Hence, we feel used to the notion of
accurate global time at our disposal. In distributed systems however, we
usually do not have access to a global clock that has sufficient accuracy for
the purpose of timestamping. The inaccuracy of the clocks embedded in
most widely used affordable computer architectures, may significantly affect
our ability to restore the temporal precedence relation among events. To
circumvent this problem, we use a special mechanism called logical time in
order to reason about order among event in terms of potential causality
without the need of an infinitely accurate global clock.

 A MONITORING MODEL 41

Logical time

We define logical time as a mechanism that allows ordering among the
events of a distributed computation [RaSi96]. We use a system of logical
clocks to measure the pace of logical time. We confine the discussion on
logical clocks to the monitoring model introduced in the previous section.
The system of logical clocks generates timestamps, which we assign to
events. A timestamp represents a concrete (as opposed to abstract) data
structure with values, which a program can process, e.g., serialize and
transmit over a communication infrastructure.

We define the relation that assigns timestamps to events as
LC:E T, a

where T represents the logical time domain. LC maps a timestamp LC(e)
 T to every event e∈E. ∈
We define the partial order relation < in T, such that

e1→ e2 LC(e⇒ 1) < LC(e2).
In other words, the relation LC preserves the basic property of causality,

i.e., the potential cause occurs earlier than its effect. We call this the clock
consistency condition.

The following property
e1→ e2 ⇔ LC(e1) < LC(e2),

makes a logical clock system strongly consistent. Strong consistency
effectively means that an external observer, who uses a logical clock to
assign to events timestamps in the time domain T, can restore the causal
precedence between events just by analyzing their corresponding
timestamps. We consider strong consistency of the logical clock system
crucial to the goals of this thesis, because (provided we have a system of
logical clocks) it allows monitors to determine the order of events in an
application execution from event reports.

A system of logical clocks has two major properties: topology and
metrication [Smith80]. The topology represents the structural framework
that timestamps impose on events. For example, we can use a directed a-
cyclic graph to represent a partial order topology. In this graph, nodes
represent events and an arrow between two nodes represents a causal
precedence relation between the events corresponding to these two nodes.

The metrication represents the mechanisms used to measure the value
of a logical clock. The definition of the metrication for a system of logical
clocks requires two steps: (a) determining the data structure of the logical
clock, e.g., the data structure of a timestamp, and (b) defining a set of rules
for generating timestamps and updating the data structures within the
system of logical clocks to ensure the strong consistency condition.

42 CHAPTER 2 TERMINOLOGY AND CONCEPTS

We use the following general data structure for the system of logical
clocks: each process pi maintains a local logical clock lci, which we use to
record the progress of logical time only within process pi, and a global
logical clock gci, which records the local view of pi on the progress of logical
time in the whole system [RaSi96]. We use the values of lci and gci to
generate timestamps for events occurring in process pi.

A system of logical clocks uses the following two update rules:
– R1 governs how a process updates its local logical clock;
– R2 governs how a process updates its global logical clock.

Existing logical clock systems

Based on metrication characteristics we classify existing logical clock
systems into three types: scalar, vector and matrix.

Lamport developed the scalar clock system [Lamp78]. This system uses
timestamps in the domain of non-negative integers. A total order represents
the topology imposed on the timestamps generated from this clock system.
In this system, each process pi maintains a single counter that represents
both lci and gci. The rule R1 increments the counter each time a new event
occurs in the process. The rule R2 updates the counter with information
about the counter of some process pj each time a message arrives from that
process. This system does not satisfy the strong consistency condition, thus
we cannot use it to achieve our goals.

Schwarz and Mattern [SchMa94] have developed a system of vector
clocks. This system uses timestamps in the domain of M-dimensional
vectors of non-negative integers, where M represents the number of
processes in the application execution. A partial order represents the
topology imposed on the timestamps generated by this clock system. In this
system, each process pi maintains a vector gci that keeps information about
the local progress of the other processes, including its own progress at the i-
th position: gci[i] = lci. Rule R1 increments lci each time a new event occurs
in the process. Rule R2 updates gci with the information from the gcj of
some process pj each time a message arrives from that process. Vector
clocks satisfy the strong consistency property.

Fischer and Michael [FiMi82] have proposed a system of matrix clocks.
This system uses timestamps in the domain of MxM matrices of non-
negative integers. A partial order represents the topology imposed on the
timestamps generated by this clock system. In this system, each process pi
maintains a matrix gci that keeps information about what all other processes
know about each other’s progresses (hence the matrix), including its own
progress at the i-th column of the matrix, which is the lci. Matrix clocks

 A MONITORING MODEL 43

update their value according to rules similar to the vector clocks and they
satisfy the strong consistency property.

We chose vector clocks to provide logical time for our monitoring
system, because a system of vector clocks provides strong consistency. We
disregard matrix clocks, because although they satisfy the strong consistency
condition too, we do not need the additional information matrix clocks
provide.

2.2.5 The vector clock system

In this section we introduce the metrication of a vector clock system, which
consists of a data structure and updating rules.

We define the global logical clock gci as a vector of non-negative integers
with i∈[1,…, M] where M represents the number of processes. For a gci,
gci[i] represents the progress of process pi (hence gci[i] represents the local
logical clock lci), and gci[j], j∀ ≠ i represents the knowledge of pi about the
local progress of pj. The vector gci constitutes the view of pi on logical time
in the system.

The vector clock system uses the following R1 and R2 rules:
– R1. When an event occurs in process pi, the process updates its local

logical time in the following way:
gci[i] := gci[i]+1

Note that initially gci[j] = 0, for j∈[1,…, M]
– R2. For each message m that process pi sends to another process, pi

attaches (called piggybacking) to the message as a context the value of its
own global logical clock at the moment of sending. Upon receiving of a
message m with a message context gc, pi performs the following steps:
a) pi updates its global logical time in the following way:

gci[j] := max(gci[j], gc[j]), where j∈[1,…, M]
b) pi performs R1;
c) the receiving process handles the message m.

For an every event, we define a timestamp of the vector clock system as the
value of the global logical clock gc of the process in which an event occurs,
taken at the moment of the event occurrence. Therefore, a timestamp of a
vector clock system corresponds to a vector, hence we call it a vector
timestamp.

In order to reason about order among events, we need to compare their
corresponding vector timestamps. We define the following three binary
relations to establish order among vector timestamps:

v1 ≤ v2 ⇔ ∀ x: v1[x]≤ v2[x]
v1 < v2 v⇔ 1 ≤ v2 and ∃ x: v1[x]<v2[x]

44 CHAPTER 2 TERMINOLOGY AND CONCEPTS

v1 ║v2 ⇔ ¬ (v1 < v2) and ¬ (v2 < v1)
Given these relations among vector timestamps and the rules for

advancing the vector clock system, the following property holds [RaSi96]:
if two events e1 and e2 have timestamps v1 and v2 respectively, then

e1 → e2 ⇔ v1 < v2

e1 ║ e2 ⇔ v1 ║ v2

Thus, an isomorphism exists between the set of partially ordered events
of a distributed execution and their timestamps. This also means that the
vector clock system satisfies the strong consistency condition.

2.2.6 Implementation issues of vector clocks

The rules for advancing vector clocks require certain functionality from the
programming environment used for implementing an instrumentation.
These requirements may influence the choice of the monitoring system
designer for an implementation technology. We distinguish the following
requirements:
– Vector clocks require from the programming environment a means to

associate data structures (context) to processes (or threads) in the
monitored application. This would make sure that designers can
properly implement rule R1 for every process in the system;

– Vector clocks require from the programming environment a means to
associate context with messages between processes. This would make
sure that designers can properly implement rule R2 by means of
piggybacking necessary clock information in messages exchanged
between processes.

The size of the vector clock has impact on memory usage its maintenance,
and to the size of the structure piggybacked with each message. The size of
the piggybacked structure depends on the number of processes in the
distributed system. In the case the monitored application uses a large
number of processes, this dependence may lead to an unbounded growth in
size of information piggybacked with each message.

The search for an efficient implementation of the vector clock system
produced several results, such as the differential technique [SiKs92], direct
dependency technique [FoZw90], adaptive technique [JaJou94], and
others. All these techniques consider the full number of processes in the
distributed computation. They achieve a reduction of the size of the vector
clock structures at the cost of additional processing. Existing work on this
topic indicates that when we want to consider all processes in the system, it
seems we cannot have a strongly consistent logical clock representation
more compact than vector time [SchMa94]. Others approached the

 MONITORING ACTIVITIES 45

efficiency problem of the clock data structure by reducing the number of
processes considered in a vector clock system (and hence the size of the
vector) using clustering of the processes in the distributed application into
domains [Sum92] [Ward01]. This means that these approaches disregard
some of the causal relationships among events belonging to different
clusters. We consider this assumption too severe, because it will not allow
us to reason about distributed communication among objects from
different clusters, and therefore we do not consider these approaches.

Furthermore, we consider improving the efficiency of the vector clock
implementation out of the scope of this thesis. In Chapter 7 we shall
provide a basic implementation derived directly from the definition of a
vector clock system in this chapter. Designers can replace the
implementation with a more efficient strongly consistent implementation
provided that it considers all processes in the system (no clustering).

2.3 Monitoring activities

We discuss common monitoring activities using a functional model for
monitoring (Figure 2-4).

GGeenneerraattiioonn

PPrroocceessssiinngg

DDiisssseemmiinnaattiioonn

PPrreesseennttaattiioonn by the Monitor

by the Instrumentation

by the MSS

This model consists of four basic groups of monitoring activities [Sam95]:

Figure 2-4
Functional model
for monitoring

– Generation. An instrumentation measures and packages monitoring data
to make it available for the MSS;

– Dissemination. The MSS collects monitoring data from an
instrumentation and delivers it to interested monitors;

– Processing. The MSS analyzes monitoring data coming from the
instrumentation in order to convert it to a format and level of detail
appropriate for monitors. A monitor analyzes monitoring data to extract
information for the monitoring application;

– Presentation. A monitor offers a view on monitoring data from the MSS
appropriate for the monitoring application.

46 CHAPTER 2 TERMINOLOGY AND CONCEPTS

If we consider how the monitoring system handles a single monitoring
report, the monitoring system typically performs monitoring activities in
certain order. Generation comes first because it provides the monitoring
data. Then the MSS disseminates monitoring data to a monitor. During
dissemination, the MSS may process monitoring data before delivering it to
a monitor. In the end, the monitor presents monitoring data to a
monitoring application. During presentation, the monitor may also need to
analyze and process the monitoring data in order to extract information
necessary for the presentation activities. Note designers may prefer other
scenarios in which a monitoring system may realize only a limited selection
of the listed monitoring activities. For example, the MSS may store
monitoring data in some place for future reference right after generation.
Monitors can later use this monitoring data without any additional
processing from the MSS.

In general the monitoring application may have requirements on the
timely delivery of monitoring data. Based on these requirements, we
distinguish two types of monitoring: online and offline. Online monitoring
allows observation and potentially control of applications at runtime
[Rack01]. In case of online monitoring, a monitoring application poses
real-time constraints on the overall time it takes to generate, process,
disseminate and present monitoring data. In case of offline monitoring, a
monitoring application poses no such time constraints. Hence, the
monitoring application may obtain monitoring data at an arbitrary time
after its generation by the instrumentation.

In the next four sections we discuss in detail each of the groups of
monitoring activities.

2.4 Generation activities

The instrumentation generates monitoring data by measuring certain aspects
of the monitored application and packaging the resulting values into
monitoring data.

Measuring may require access to the internal mechanisms of the
monitored application. For software monitoring, instrumentation designers
enable this access by installing special programs called software sensors (also
called probes) in the application or its environment [Rackl01]. Packaging
involves the formatting of measured values into monitoring data.

We distinguish between the generation of the following types of
monitoring data: status reports, event reports, and monitoring traces.

 GENERATION ACTIVITIES 47

2.4.1 Status report generation

Status report generation consists of measuring variables in a status vector
and packaging these values into a status report.

The instrumentation generates a status report in three ways: event-driven,
time-driven, and on-demand [Sam95][Shaer98]. In case of event-driven
generation, the instrumentation measures a status vector because some
event occurs in the monitored application. In case of time-driven
generation, the instrumentation measures the status vector periodically. In
case of on-demand generation, the instrumentation measures the status
vector upon a request from the MSS.

2.4.2 Event report generation

Event report generation consists of the detection of an event, measuring the
values of event attributes, and packaging these values into an event report.

The instrumentation detects events as a result of the execution of some
software sensors. We define event detection time, as the moment the
instrumentation learns about the occurrence of an event. We define
detection delay, as the distance between the time of event detection and the
actual time of event occurrence. In software monitoring, the execution of
the monitoring software always introduces some detection delay resulting
from, e.g., executing sensor code.

Detection delay may vary between individual events, e.g., due to the
varying system load that may influence the speed at which sensor code
executes in a distributed environment, or the use of incorrect computer
clocks for measuring the time of event occurrence. Varying detection delays
give rise to the following type of problems (Figure 2-5).

 ee11

aabbssoolluuttee ttiimmee ooff ooccccuurrrreennccee

ddeetteeccttiioonn ttiimmee

ee22 ee33 ee44

ee11´́ ee22´́ ee44´́ ee33´́

∆∆11

∆∆22

∆∆33

∆∆44

The four primitive events, e1, e2, e3, and e4 occur on the absolute time scale
in a certain order. According to the corresponding detection times (∆∆11, ∆∆22, ∆∆33,
∆∆44) however, events may appear to have occurred in a different order, as
shown on the lower scale of time.

We consider the problem described above as one of the reasons to use
logical clocks for event timestamping instead of computer clocks. Logical
clocks allow for measuring the relative order (compared to the absolute

Figure 2-5
Inaccurate order of
events due to
variable delay

48 CHAPTER 2 TERMINOLOGY AND CONCEPTS

order) between events, without the need to measure distances between
absolute moments in time. Hence, by using logical clocks we can ignore
detection delay.

2.4.3 Monitoring trace generation

A monitoring trace (or simply “trace”) represents a collection of monitoring
reports generated over some period of time [Sam95]. Trace generation
includes the caching of monitoring reports at the instrumentation, and
packaging monitoring reports into a trace.

We distinguish the following two applications of traces: to reduce the
size of monitoring data, and to minimize the use of the communication
infrastructure for monitoring related traffic. The instrumentation achieves
size reduction by removing information common to all reports in the trace
and providing this information only once per trace.

A monitoring trace may suggest order among the individual reports in
the trace. This order may represent, for example, the order in which the
instrumentation generates the reports.

We distinguish two types of monitoring traces: complete and segmented. A
complete trace contains all monitoring reports from one uninterrupted use
of the monitoring system, which we call a monitoring session. A segmented
trace contains only the monitoring reports generated during a time period
in a monitoring session.

In a distributed deployment of the monitored application, the
instrumentation may consist of physically distributed parts. As a
consequence, each instrumentation part can only provide segmented traces
to the MSS. Therefore, in a distributed environment, the MSS collects
several segmented traces rather than one complete trace.

2.5 Processing activities

The MSS processes monitoring data generated by the instrumentation to
make sure that monitors receive monitoring data they require. We
distinguish the following types of processing activities: event correlation,
filtering, validation, and trace manipulation.

2.5.1 Event correlation

We discussed in section 2.2.1 that event relations provides means for
analysis of the behavior of distributed applications. We define event
correlation as the process of determining the relation among two or more
events from the monitored application behavior. We consider two basic

 PROCESSING ACTIVITIES 49

forms of event correlation in the MSS: ordering of events, and detection of
composite events.

Ordering of events

The MSS may order event reports according to the time of occurrence of
the corresponding events. In this way monitors do not need to perform the
ordering themselves. This (potentially) reduces the monitor’s
computational effort for analyzing monitoring data by shifting ordering
responsibility to the MSS, and the size of monitoring data by discarding
additional ordering information (such as the information required to
maintain vector clocks consistent) before sending monitoring data to the
monitor.

Detection of composite events

We define a composite event as the composition (also called combination) of
several events (including other composite events). With each composite
event we associate a detection condition, which determines when the
composite event occurs. For example, one may specify a composite event ce
= (e1 ∧ e2) ∨ e3, using the logical conjunction and disjunction operators.
The detection condition for ce states that ce occurs when both events e1 and
e2 occur or when e3 occurs.

Monitors can use these composite events to coordinate various tasks that
depend on the completion of more than one activity in the monitored
application.

Some monitoring systems [Hold89][Sam95][Shaer98] use descriptive
languages to allow users to define a specification of an arbitrary composite
event during runtime. The monitoring system processes event specifications
in order to detect composite events.

2.5.2 Filtering

The MSS performs filtering to determine the relevancy of monitoring data. A
filter specifies the monitoring data required by a monitor. We assume that
monitors may change their requirements during runtime. During filtering,
the MSS processes monitoring data in such a way that a monitor receives
only monitoring data that satisfies the requirements in its filter.

Filtering may result in:
– Discarding of monitoring reports. The MSS may discard generated

monitoring reports that does not match any monitor’s requirements;

50 CHAPTER 2 TERMINOLOGY AND CONCEPTS

– Reduction of content. The MSS may strip monitoring reports from
some of their attributes, when monitors do not require all the
information contained in generated monitoring reports.

Filtering helps to alleviate monitoring overhead. For example, the
processing of a filter by the MSS may result in the reconfiguration of the
instrumentation, so that it does not generate unnecessary monitoring data
in the first place. Hence filtering (potentially) reduces the overhead of the
instrumentation in terms of CPU and memory, and reduction of the
overhead of the MSS in terms of communication bandwidth.

2.5.3 Validation

The MSS performs validation to ensure validity of the monitoring data
delivered to monitors. We define validity as the correspondence of the
generated monitoring data with the monitoring data received by monitors.
The MSS may encounter validity problems such as, wrong order of
monitoring data (due to, e.g., communication delays), corruption in
monitoring data (due to, e.g., transmission errors, faulty hardware, or a
security breach), missing or duplicated monitoring data (due to, e.g., use of
unreliable communication infrastructure, or partial failures in the
distributed system).

Validation activities deal with detection of validity, restoring validity, and
security.

Detection of validity

The MSS detects validity of monitoring data according to some criteria. For
example, using an SHA-1 [SHA95] checksum on a monitoring report
allows the MSS to detect at various stages of the dissemination of the report
whether the current report differs in some way from the originally
generated one. Calculating a new SHA-1 checksum and comparing it with
the checksum of the original would show any corruption of the monitoring
data (or of the checksum itself).

Restoring validity

When the MSS detects invalid or missing monitoring data, it can discard
the data, (if possible) may request the data again from the instrumentation,
or may try to restore the validity of the data. For example, an MSS may
have the validity requirement that the order of generating monitoring
reports from the instrumentation corresponds to the order of deliverying
the reports at monitors. When the MSS detects reports in the wrong order

 DISSEMINATION ACTIVITIES 51

(e.g., due to communication delays), the MSS reorders the monitoring
reports before sending them to monitors.

Security issues

Validation may also have a security aspect. In some cases, the MSS may have
to determine authenticity of origin and integrity of transmitted monitoring
data. To do this, the MSS can use techniques, such as digital signatures
[GeRo97], to sign monitoring data.

2.5.4 Trace manipulation

Trace manipulation consists of merging and splitting monitoring traces.

Merging

The MSS merges segmented traces to construct a new trace. The merged
trace represents a broader collection of events in the monitored application
than each of the original segmented traces. The MSS can build a complete
trace of application behavior during one monitoring session by merging all
segmented traces. When monitoring traces imply a certain order among the
reports, an important issue during merging becomes the preservation of
that order in the resulting trace.

Splitting

The MSS splits a trace into two or more segmented traces to reduce the
amount of reports in one trace. Each of the resulting traces contains a
subset of the reports from the original trace. The MSS may perform trace
splitting in combination with filtering to produce different segmented
traces to satisfy several different filters.

2.6 Dissemination activities

The MSS performs dissemination activities to make sure that the required
monitoring data reaches monitors on time. We distinguish two types of
dissemination activities: collecting monitoring data from the
instrumentation, and delivery of monitoring data to monitors.

We discuss each of the activities for the cases of online and offline
monitoring (section 2.3.)

52 CHAPTER 2 TERMINOLOGY AND CONCEPTS

2.6.1 Collecting monitoring data

The MSS collects monitoring data generated by the instrumentation, in order
to process it (we discussed processing in section 2.5) and deliver it to
monitors. We consider two major issues regarding collection: storage and
generation configuration.

Storage

In case of online monitoring, the instrumentation may generate monitoring
data at rates and with size, which monitors cannot deal with. In such cases,
the MSS can either store the data or discard it. Providing an intermediate
storage for monitoring data, allows monitors to receive monitoring data at
the rate and size they can deal with.

In case of offline monitoring, the MSS provides persistent storage for
monitoring data, such as a database. Monitors may access the monitored
data at any time, even after the monitored application has completed its
execution.

Generation configuration

Ideally, during online monitoring, the instrumentation should not generate
monitoring data that monitors do not require. Nevertheless, monitor’s may
change their monitoring data requirements during runtime, and as a result
the instrumentation may end up sending to the MSS monitoring data that
no monitor requires. The MSS may discard this data to free allocated
resources, however, collecting the data from the instrumentation already
occupies resources in the MSS. To deal with this, the MSS can dynamically
configure the instrumentation, so it only generates requested monitoring
data. The MSS may perform such (re-)configuration during runtime by
switching sensors in the instrumentation on and off.

2.6.2 Delivery of monitoring data

The MSS delivers monitoring data to monitors. In order to receive
monitoring data, a monitor needs to register its presence to the MSS. We
choose not to discuss any registration details, such as authentication,
establishing of trusted connections, etc. Instead, in this section we
concentrate on the methods for delivery of monitoring data. We distinguish
two main delivery methods: subscription-based and request/response-
based.

 DISSEMINATION ACTIVITIES 53

Subscription-based delivery

Subscription-based delivery starts when a monitor submits to the MSS a
specification of interest. A specification of interest contains the monitor’s
requirements for monitoring data. Compared to the monitoring model,
which defines all application aspects that a monitor may observe, the
specification of interest defines additional constraints on the monitoring
data. This allows the MSS to filter out any irrelevant monitoring data, and
to pass to the monitor only relevant monitoring data. The specification of
interest may represent a filter (discussed in section 2.5.2), or a specification
of one or more composite events (discussed in section 2.5.1).

After a monitor subscribes for monitoring data, the MSS starts to notify
it about new (and relevant) monitoring data. The MSS has the initiative for
sending monitoring data and thus has the control over the timeliness of the
delivery. This makes notifications suitable for online monitoring, because
the MSS can notify monitors about monitoring data as soon as it becomes
available.

Request/response-based delivery

In request/response-based delivery, a monitor submits a request for
monitoring data to the MSS, and waits for a response from the MSS within
certain real-time constraints. Along with the request, the monitor may
submit a selection criteria. The request instructs the MSS to deliver as a
response to this request, monitoring data with features described in the
selection criteria. The selection criteria may represent a concrete
instruction for measurement that the MSS has to delegate to the
instrumentation.

In case of online monitoring, the MSS processes a request in the
following way: if the instrumentation has already generated the requested
monitored data, the MSS immediately sends the data to the monitor as a
response to that request; otherwise, the MSS forwards the request to the
instrumentation so that it generates a status report with the requested
information.

In case of offline monitoring, the MSS stores the generated monitoring
data for future use. At a certain moment, the monitor passes a selection
criteria that the MSS uses to select some monitoring data. Based on the
nature of the selection criteria, we distinguish two types of
request/response-based delivery for offline monitoring: data retrieval or
information retrieval. We consider the following main differences between the
two types of retrieval [Weide01]:

54 CHAPTER 2 TERMINOLOGY AND CONCEPTS

– Information representation. Data retrieval works with the well-defined
logical structure of the monitoring data. In contrast, information
retrieval works on unstructured monitoring data;

– Method of selection. Data retrieval uses a direct method of selection
based on facts about the values organized by the structure of the
monitoring data. In contrast, information retrieval uses a method of
selection that satisfies the needs of the monitor with “a degree of
success”.

We choose to consider only monitoring systems that use a well-defined
logical structure of their monitoring data based on a detailed monitoring
model. The MSS uses data retrieval in which the designer of the system
determines the rules for matching selection criteria to monitoring data
during the design of the monitoring system. A typical example for data
retrieval constitutes the use of database management systems for persistent
storage of monitoring data in the MSS. In such cases, the monitor uses, e.g.,
Structured Query Language (SQL) [SQL99], to define the selection criteria
and issue a request to the MSS. The result of the request yields monitoring
data with structure and values precisely matching the selection criteria.

2.7 Presentation activities

A monitor performs presentation activities in order to convey information
about the monitored application behavior to the monitoring application.
The monitor may present this information to a software program or to a
human user. The monitor presents information to a software program by
selecting the proper data formats and encoding. In this section we
concentrate on the ways a monitor presents information to a human user.

Presentation to a human user represents the process of making
information accessible through the human senses. Human comprehension
has certain limitations: the maximum number of chunks of information an
individual can simultaneously comprehend, roughly equals seven, plus
minus two [Miller56]. Hence we can formulate the fundamental dilemma
of presentation: how can designers build monitors that efficiently present
information to their human users?

Contemporary computers mainly generate sounds and graphics to
convey information to their users.

 PRESENTATION ACTIVITIES 55

Graphical information

Humans respond well to graphical information [Tufte83]. We find graphics
captivating and appealing, if well designed. A visual representation in the
form of graphics, can communicate information in a rapid and efficient
way. Therefore, visualization represents an interface between two powerful
information processing systems, the human mind and the modern
computer [GEC98]. Static 2D/3D computer graphics have the following
representational qualities [Bertin99]:
– Presence. Characterizes when the observer can recognize the presence

or the absence of something on the display;
– Quantity. Reflects the observers opinion on the size of an object, or the

number of objects;
– Distinction. Relates to the observer’s ability to discover differences

between individual things;
– Order. Reflects the observer’s opinion on the order of things.

Sound information

Sound, and in particular musical sound, has its own representational
qualities:
– Intensity. Characterizes the loudness of the sound. Louder sounds can

relate to presence and distinction;
– Pitch. Characterizes the frequency of the vibrating body producing the

sound. For example, the ear distinguishes well high pitch sounds from
low pitch sounds, which relates to distinction;

– Timbre. We determine the timbre of a tone by the number of the
subsidiary overtones we hear and their relative intensity. For example,
we can use timbre to represent quantity, as well as presence.

The Network Auralizer PeeP [GiCo00] gives an example of the experiments
for representing monitored information to human users using sound. This
system allows a network administrator to associate certain events with
certain sounds. These sounds can represent, for example, background
alerts. Chirps of a cricket may represent a normally loaded network, while a
chorus of an increasing number of crickets and other animals can represent
a highly loaded network. Still, at the current state of computer technology,
sound does not convey information in a manner as versatile and as
expressive as graphical representation. We consider this one of the reasons
why graphical presentation dominates presentation of monitoring data.

56 CHAPTER 2 TERMINOLOGY AND CONCEPTS

We limit this discussion to the following graphical presentation
activities: scaling time, animation and replay, multiple views, and interactive
display.

2.7.2 Scaling time

We often consider time the most important dimension in a diagram,
because it suggests temporal order among its elements. A diagram can
demonstrate temporal order between two objects in an absolute or a
relative manner. Relative order focuses on the order as a precedence of one
time value to another, while absolute order includes information about the
position of a moment according to an absolute time scale. For example, a
UML Message Sequence Diagram [UML1.4] shows relative order of
message passing between objects, while performance diagrams in general,
provide discrete units of time, which on a global scale allow for measuring
distance between two particular measurements.

The scale of time presents an important issue in absolute time order.
When working with large periods of time in a diagram, users can adjust the
time unit for convenient viewing.

2.7.3 Animation and replay

Monitors use animation and replay presentation activities to visualize the
behavior of the monitored application.

Animation

The monitor may use animation to convey information about changes in the
state of displayed objects. Moving, adding, removing, and coloring of
graphical objects on the display presents the behavior of the monitored
application. For example, adding and removing graphical objects to and
from a diagram respectively can represent the creation or destruction of
application objects. In a similar way, the appearance of an arrow between
two graphical objects on a diagram for a short time can represent message
passing between application components.

An important issue during animation constitutes the time left to viewers
to comprehend the information, because it takes about five seconds for a
human to accept a new chunk of information [Simon82].

Replay

Replay stands for a special animation technique in which the user can
control the animation [Bates85], e.g., rewind, suspend/resume playing, as

 PRESENTATION ACTIVITIES 57

many times as necessary. For example, during debugging, the monitor may
introduce events from the execution of a distributed application on the
display in a particular order, using a time scale convenient for the user, or
using an interactive step-by-step replay allowing the user to determine
when to proceed with processing a new portion of monitoring data.

2.7.4 Multiple views

We consider abstraction a powerful technique for dealing with complexity.
We choose to ignore inessential details of a complex object, dealing instead
with a generalized, idealized model of that object [Shaw81].

A view represents an abstraction visually. The monitor can use an
abstraction to deal with high volume of information in a diagram. When a
diagram shows too many objects, a selection of fewer abstract objects can
represent a large groups of objects with common characteristics.

Monitors can present various views of the same monitoring data. Users
can use these views to compare or study monitoring data from different
angles.

2.7.5 Interactive display

A monitor may offer to its users interactive features. We consider two
major categories of user interaction: navigation and control.

Navigation

The graphical user interface presents a basic form of navigation, as for
example in window-based systems: opening, closing, moving and scrolling
of windows. Furthermore, monitors that use multiple views can provide to
their users possibilities to navigate among different views.

We consider the navigation of the time dimension another important
navigation aspect for monitors that present animation and replay to their
users. This kind of monitors should allow fine control to the time
dimension such as positioning and choice of time scale (zooming the
resolution in or out).

Control

Some monitors allow manipulation of the monitored application based on
the monitoring data. Application steering presents an example [RaLe97], in
which the user views and steers system execution by sending commands
through the graphical user interface. Users may also want to control the
monitoring software in terms of online configuration, as for example,

58 CHAPTER 2 TERMINOLOGY AND CONCEPTS

changing the granularity of monitoring data, or enabling and disabling
various sensors within the application instrumentation.

2.8 Performance of monitoring systems

We distinguish two main performance issues in a monitoring system:
monitoring overhead and information consistency.

2.8.1 Monitoring overhead

With overhead we refer to the impact of the monitoring system on the
execution of the monitored application. High overhead may compromise
the satisfaction of users of the monitored application, which also
(indirectly) influences the satisfaction of the users of the monitoring
application.

A monitoring system produces overhead as a result of two factors:
intrusion and resource sharing.

Intrusion

We consider intrusion the additional delay that sensor execution introduces
in the original application behavior. Intrusion may lead to differences
between the monitored application behavior and the behavior of the
original uninstrumented application.

Resource sharing

With resource sharing we refer to the effect of the combined execution of
the monitored application and the components of the monitoring system,
on the resource allocations in a distributed environment. Without a strict
mechanism for scheduling the resources of the distributed environment, the
monitoring system and the monitored application may compete for limited
resources. For example, a non-real-time system, such as the Windows
operating system, cannot provide guarantees that the monitoring system
would not “steal” extra CPU time for its data processing purposes that the
monitored application may need to execute its application logic correctly.

Undesirable effects of overhead

We distinguish two undesirable effects of overhead on the monitored
application: change in behavior and unacceptable response time.

 PERFORMANCE OF MONITORING SYSTEMS 59

In the first case, the delay introduced by the execution of sensors may
become so great that some application service may not complete on time.
As a result, the application behavior of the instrumented monitored
application may become logically different than its original behavior in such
a way that the application cannot fulfill its purpose anymore, failing the
expectations of its users.

In the second case, the user response of the monitored application
becomes so slow (due to intrusion or resource sharing or both) that users
may find the application practically unusable.

2.8.2 Information consistency

Information consistency relates to how true monitoring data represents the
behavior of the monitored application to the observer. For example, an
implementation of the instrumentation that uses the internal computer
clock to timestamp events cannot guarantee a consistent view on application
behavior in a distributed system, because different computer clocks may
cause events to appear to the observer in a different order than their actual
order of occurrence.

2.8.3 A method for performance assessment

In this section we present a method for assessing the performance of the
monitoring system with respect to monitoring overhead and information
consistency. Helmbold and Bryan [HeBr89] originally proposed this
method, and Logean [Logean00] extended it to the form we present here.
This method uses a model of distributed applications identical to the one
presented in section 2.2.3. We use this method in Chapter 8 to evaluate the
performance of our monitoring system.

We view the behavior of a monitored application from three
perspectives: the behavior of the unmodified and unmonitored original
application, the behavior of the instrumented and monitored application,
and the observed behavior presented by a monitor (Figure 2-6). Note that
as a consequence of monitoring overhead, these three behaviors may differ
from each other. We shall not discuss the behavior of an unmonitored
instrumented application, although inactive (turned off) instrumentation
may still have some impact on the monitored application behavior.

60 CHAPTER 2 TERMINOLOGY AND CONCEPTS

AA BB CC

CC MM OOMM

DDiissttrriibbuutteedd
ccoommppuuttaattiioonn ooff tthhee
oorriiggiinnaall aapppplliiccaattiioonn

DDiissttrriibbuutteedd
ccoommppuuttaattiioonn ooff tthhee

mmoonniittoorreedd aapppplliiccaattiioonn

OObbsseerrvveedd ddiissttrriibbuutteedd
ccoommppuuttaattiioonn

We denote with C a particular distributed computation of the original
application, with M a particular distributed computation of the
instrumented application, and with OM an observation of the distributed
computation M. We define C, M and OM in the following way:

C = (EC, RC)
M = (EM, RM)

OM = (E , R),
MO MO

where EC, EM, E represent the sets of events in the corresponding

computations, and R
MO

C, RM, R represent the causal precedence order

relations on the corresponding sets of events.
MO

We distinguish two sets of events in EM: EM,M represents the events
produced by the monitored process itself (i.e., they do not have
corresponding events in EC), while EM,C represents the events in M that
correspond to events in the original behavior C. We define:

EM = EM,C E∪ M,M and EM,C ∩ EM,M = ∅ .
Furthermore, we define RM,C ={(e1, e2) : (e1, e2) ∈ RM ∧ e1, e2 ∈ EM,C },

as the partial order relation on EM,C.
Based on the three different perspectives on application behavior, we

define three properties of a monitoring system: non-interference, accuracy, and
correctness:

Figure 2-6 Three
types of behavior

– Non-interference characterizes the similarity between a distributed
computation of the original application and a distributed computation
of the monitored application. A non-interfering monitoring system
allows the monitored application to do the same things as the original
(uninstrumented) application;

– Accuracy characterizes the similarity between a distributed computation
of the monitored application and an observed distributed computation.
An accurate monitoring system presents to its users a precise view on
the monitored behavior;

– Correctness characterizes the similarity between a distributed
computation of the original application and an observed distributed

 PERFORMANCE OF MONITORING SYSTEMS 61

computation. A correct monitoring system produces a view that can
reflect each of the computations possible in the original application.

NNoonn--iinntteerrffeerreennccee

AA BB CC

AAccccuurraaccyy

CCoorrrreeccttnneessss

Figure 2-7 [Logean00] illustrates the properties of a monitoring system.
We define three degrees of each property: total, strong and minimal, in the
following way:

⎪
⎩

⎪
⎨

⎧

=
⊂=
==

CMC

CMCCMC

CMCCMC

EE
RREE
RREE

,

,,

,,

minimal
 and strong
 and total

 ceinterferen-non

⎪
⎩

⎪
⎨

⎧

=
⊂=
==

CMO

OCMCMO

OCMCMO

EE
RREE
RREE

M

MM

MM

,

,,

,,

minimal
 and strong
 and total

accuracy

⎪
⎩

⎪
⎨

⎧

=
⊂=
==

CO

OCCO

OCCO

EE
RREE
RREE

M

MM

MM

minimal
 and strong
 and total

 scorrectnes

Total non-interference of a monitoring system means that the monitored
distributed computation preserves both the events from the original
distributed computation and their order. Strong non-interference means
that the monitored computation preserves the events and the order, but
that it contains some additional relations as a result of the overhead and
additional synchronization imposed on the monitored application by the
monitoring system. Minimal non-interference preserves only the events. In
this category we also put a monitoring system that preserves only some
relations among the events of the original distributed computation.

Total accuracy of a monitoring system means that the observed
distributed computation preserves the events of the monitored distributed
computation as well as their order. Strong accuracy means that the
observed distributed computation preserves the events and their order but
that it contains some additional relations among events introduced during
monitoring. Minimal accuracy preserves only the events.

Figure 2-7 Three
properties

62 CHAPTER 2 TERMINOLOGY AND CONCEPTS

Total correctness states that the observed computation completely
represents the original computation. Strong correctness implies that the
observed computation preserves all events and their order, but that it
contains some additional relations among events introduced during
monitoring. Minimal correctness preserves only the events.

Note that one can easily see that strong non-interference and strong
accuracy imply strong correctness, and total non-interference and total
accuracy imply total correctness.

In general, we consider monitoring systems that do not fulfill all
minimal properties [Logean00][HeBr89] as useless. Monitoring systems that
employ vector clocks provide causal precedence relation among the events
in a distributed computation. The strong consistency of causal precedence
relation allows for the accurate restoring of the relation among events at the
observer from their timestamps. Such monitoring systems automatically
have total accuracy.

Chapter 3

3. Overview of object and component
middleware

This chapter provides an overview of object and component middleware. In
this chapter we discuss middleware terminology and the related concepts
that we use throughout this thesis.

We start by introducing object orientation. We discuss communication
middleware and object oriented technologies, and how they converged to
object middleware. We discuss component-based middleware and its
relation to object middleware. At the end we discuss monitoring capabilities
in object and component middleware. We close the chapter with
conclusions.

3.1 Object orientation

Designers model a complex software system by decomposing it into smaller
interrelated parts, each of which they further refine independently from the
other parts. In such a system decomposition, designers need then
comprehend fewer system parts at once, this way operating within the
capacity of human cognition [Parnas85]. An Object-Oriented (OO)
decomposition defines a view of a software system as a set of objects. An
object represents a tangible software entity that exhibits some well-defined
autonomous behavior [Booch91]. Objects collaborate together to perform
the higher level behavior of the software system.

3.1.1 The object concept

An object has state, identity and behavior [Booch91]. The state of an object
consists of the object’s properties. For example, an object that represents a
dog may have a property “color”. Object identity represents a special object

64 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

property that distinguishes it from all other objects [KhoCo86]. The
behavior of an object consists of the activities an object can perform.
Referring to the same example, the dog object may “bark”, “sit”, etc.
Furthermore, an object can send and receive messages to and from other
objects respectively, in order to collaborate with these objects.

3.1.2 The class concept

According to the Merriam-Webster Online Dictionary, a class represents “a
group, set, or kind sharing common attributes” [M-W]. In object
orientation, the class concept represents a group of objects with common
characteristics. These characteristics may include common properties
(state) and common activities (behavior). Classes and objects differ
substantially. While an object represents a concrete entity that exists in
space and time, a class represents only the abstract essence of an object. In
other words, a single object represents one class instance.

Classes suggest a class structure in an object-oriented design, in which
the designer reuses functionality, i.e., the designer groups system parts
(objects) with similar functionality by classifying these parts into groups of
related abstractions (classes) [Gold84]. By realizing the abstraction (the
class), a designer can build as many instances (objects) of these abstractions,
without the need to realize all aspects of the state and behavior of each
instance independently.

A class has an interface and an implementation. The interface of a class
defines a common view on the state and behavior of all objects of that class.
An interface emphasizes on the abstraction a class maintains to characterize
its objects, while hiding the details on how the class realizes the behavior of
the objects of that class. In contrast, the implementation of a class deals
with the details of the realization of the behavior of the objects of that class.

Classes can relate among each other. Examples of commonly used
relations constitute the generalization (also called inheritance) - a “kind of”
relation, aggregation – a “part of” relation, and association - denotes that
objects of a class “knows” about objects of other classes (e.g., knows how to
send messages to them).

In modern programming languages, such as C++, Java, and Smalltalk,
the interface of a class consists of the declaration of object attributes and
object method signatures (sometimes also called operation signatures). Object
attributes constitute the state of an object of that class, while method
signatures define the different types of activities that objects of this class can
perform. We sometimes also refer to the interfaces of an object as its service,
where a service of a software entity represents its externally visible
functionality [ViPi+00] (as opposed to functionality confined to the inside

 OBJECT ORIENTATION 65

of the entity, assuming some encapsulation capabilities from that entity).
The implementation of a class in a programming language consists of the
declaration of the implementations of all class methods with signatures
defined in the class interface. A method implementation consists of (a
sequence of, in imperative programming languages such as C++)
statements defining what this method actually does in terms of the basic
functionality offered by the particular programming language. An object
reference uniquely represents the object identity. Attributes may have as
values object references representing the knowledge of an object about
other objects [Lieb86].

The following lines written in the Java programming language illustrate
the declaration of both the interface and the implementation of a simple
class called Friend:

class Friend
{

/* attributes */
private String name = null;
/* methods */
public String getName() { return name; }
public void setName(String n) { name = n; }

}
All objects of the class Friend have a name attribute that determines their
state and two methods that allow other objects to access the value of the
name attribute – one for setting and one for getting its value.

An object model defines the principles according to which we can build
object-oriented designs using classes and objects. The classical object model
[Booch91] includes the principles of abstraction, encapsulation,
modularity, hierarchy, typing, concurrency, and persistence. While we
consider these principles important, we discuss discus only these principles
that relate directly to monitoring issues (e.g., concurrency) in more detail.

3.1.3 Object lifecycle

During runtime, we create objects of some class to use their functionality,
and destroy existing objects when we do not need them anymore. The lifecycle
of an object extends from the time of its creation, when the execution
environment allocates resources for this object, to the moment of its
destruction, when the environment reclaims back object resources. Some
OO systems allow persistence of object state. Object persistence represents
the property of an object through which its state transcends the object
lifecycle or execution environment (i.e. the object’s location moves from
one environment to another environment) [Booch91]. In order to achieve
persistence an object needs to have the ability to serialize its state into bytes

66 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

that we can record on a storage device or we can transmit over a
communication medium.

3.1.4 Objects and concurrency

Modern operating systems often involve concurrent execution of sequential
activities. We commonly use the concept of processes (also called fibers and
threads) to represent sequential activities executing on multiple hardware
processors, or achieving the illusion of concurrency on a single processor by
means of some time-sharing mechanism that governs how much time each
process gets executed by the single processor. Programming concurrent
systems requires dealing with problems such as deadlocks, starvation and
race conditions. Object-oriented programming alleviates the concurrency
problems by hiding concurrency inside reusable abstractions [LiJo89], such
as active and passive objects. An active object represents a separate process.
An active object can initiate activities on its own. An object not associated
explicitly with a process and thus only offering functionality through its
interface to other objects, we call a passive (also reactive) object.

3.1.5 Object communication

We mentioned earlier that objects collaborate by passing messages to each
other. In modern programming languages, objects communicate through a
mechanism called a method call. During a method call, one object (the
caller) calls a method on another object (the called) by sending to the called
object a request message comprising some parameters. The called object
accepts the call by performing the activity corresponding to the called
method from its implementation, using the information from the request
message parameters. When the execution of the method completes, the
called object prepares a response message containing the result of the activity.
The calling object may (synchronous method call) or may not (asynchronous
method call) wait for the completion (and possible results) of the execution
of the method.

In Figure 3-1, we illustrate how a typical non-distributed object-
oriented runtime environment handles method calls. In this figure, object A
calls method method1() on object B.

 OBJECT MIDDLEWARE 67

Object A Object B

method1()

method1()

P
request

response

The direction of the execution
of the sequential process P

Some process P handles a method call in the following way: when P reaches
the statement of the method call in the implementation of A, it starts
executing the method in the implementation of B. We consider this act of
process P as the sending of a request message. P uses the parameter values
from the method call to execute sequentially the statements of the method
body. After process P completes the last statement of the method body, it
returns to execute the statement following the method call in the
implementation of A. We consider this act of process P as the sending of the
response message (if any). The results of the method call represented by the
parameters of the response message, become available in the
implementation of A.

Figure 3-1 A
method call

3.2 Object middleware

We consider communication middleware the software that (1) allows
communication between the (potentially distributed) parts of software
programs and (2) provides to developers transparencies from the specifics
of the underlying communication infrastructure. We start this section by
briefly introducing several communication middleware technologies with
historical significance to the development of object middleware. Then we
introduce object middleware in detail.

3.2.1 Inter process communication

Inter-process communication (IPC) represents a mechanism allowing two
processes on the same host computer to communicate with each other. We
can find IPC in every major multi-tasking OS. IPC specifies communication
at the level of bits and bytes.

68 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

Typically, IPC consists of three techniques for process communication:
– shared computer memory – processes communicate through regulated

access to shared memory blocks on the same computer;
– synchronized execution – an example of this technique constitutes the

“semaphore”, which provides mutual exclusion of simultaneous
execution of fragments of code within different processes;

– message passing – processes communicate by exchanging messages.
Compared to shared memory, message passing requires less
synchronization between the communicating processes.

System V IPC [Bach86] constitutes an example of an IPC implementation
that has influenced IPC mechanisms in many operating systems.

We consider the main disadvantage of IPC that designers have to deal
with details of the representation of more complex data structures in terms
of bytes and bits. Combined with the diversification of cheap computer
hardware, this leads to problems with program portability stemming, for
example, from machine word byte order. The increased availability of
networks stimulated the developments of technologies that allow
communication between processes on different machines using a higher
level of data abstraction than the one supported by IPC.

3.2.2 Remote procedure call

Remote Procedure Call (RPC) represents a technology allowing one process
to call (initiate execution of) a procedure from another (possibly remote)
process’s address space, in the same way as if this procedure belonged to
the address space of the caller process. By procedure we mean a named
block of behavior that may take an input in order to produce an output. By
address space of a process we mean the data (memory) and instructions
(code statements) one process can potentially manipulate and perform,
respectively.

RPC follows tightly the client / server model. This model defines two
roles: a server that offers some functionality and a client who makes use of
this functionality by submitting requests to the server and receiving back
responses to these requests. RPC requires the definition of server
functionality using a formal Interface Definition Language (IDL).
Programmers use tools to process the IDL and generate automatically all
necessary code for interacting with the underlying communication
infrastructure. Furthermore, these tools also generate the programming
language specific representations that deal with the bits and bytes of
complex data structures used as parameters to the procedures. For
example, the generated code performs automated marshalling and un-

 OBJECT MIDDLEWARE 69

marshaling of the data structures used in programming languages. This
resolved the portability problem of IPC we mentioned earlier, because IDL
tools for a particular platform hide from programmers the low-level (bits
and bytes) representation of data for that platform.

The Open Group promotes DCE RPC [DCE] as a true OS independent
RPC standard. Various OS vendors offer their own implementations of
RPC. To our understanding however, DCE RPC does not guarantee
interoperability between different RPC implementations because each
implementation may use its own protocol for serialization of complex
structures over a communication infrastructure.

3.2.3 Object middleware

Object middleware came as an answer to the need for a common object
oriented infrastructure and a common set of object services on which to
build various distributed applications. Object middleware combines object
orientation, the client-server approach, and RPC style distributed
communication.

Using object middleware, application designers still develop their
applications as collections of collaborating objects, however, these objects
can now make remote method calls (with a semantic similar to the RPC
procedure calls) across the boundaries of a single execution environment.

Object middleware separates the interface from the implementation of a
class of objects. Object middleware requires the definition of the interface
of an object class using an IDL language independent from any
programming language. For simplicity, we consider that an object may have
only one interface. Similarly to the interface of classical objects, an interface
defined in the IDL language consists of attributes and method signatures
called operations. The attributes present the object’s state to other remote
objects. Operations define methods that other remote objects may access.
The IDL language also allows the definition of complex data types to use for
the definition of operation parameters, results, exceptions, etc. To promote
reuse in object-oriented style, interfaces may extend other interfaces in a
way similar to the generalization relation among classes.

Designers define the class implementation in a particular programming
language. For the users of an object however, the details of its
implementation lay hidden behind the class interface written in IDL.

In object middleware, the object reference represents a persistent data
structure describing among other things, the location of the remote object
implementation. Hence, programmers can use an object reference to access
the functionality of a remote object regardless of both the programmer’s
and the object’s actual locations.

70 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

Object lifecycle revisited

The lifecycle of middleware objects comprises two additional activities as
compared to classical objects: activation and deactivation. Below we list the
four activities of the object lifecycle:
– Creation - during creation, the middleware creates an unique reference

for the object. Nevertheless, in contrast to classical object orientation,
the object cannot yet serve requests. At this stage the middleware may
have reserved resources for the object execution or may have deferred
allocation of these resources to a subsequent object activation;

– Activation – object activation explicitly enables the object to serve
requests on its interface. The middleware must have finished all
allocations necessary for the normal operation of the object;

– Deactivation – deactivated objects cannot serve requests until a
subsequent activation. The middleware may release allocated resources;

– Destruction – the middleware destroys the object and releases all
resources required for the object execution.

We separate the lifecycle of an object into these four activities because
some applications require availability of server objects over a long period of
time, despite possible intermediate shutdowns due to imminent hardware
failure or maintenance. In case of such events, the applications may
deactivate their server objects, store their state somewhere, fix the
problems, load the object states, and activate the objects at a later moment.
After activation, clients use the same original object references.

Object communication revisited

We denote with operation invocation the remote method call mechanism of
the middleware. For the moment, we shall consider only a synchronous
operation invocation, i.e., one in which the caller waits for the completion
and (possible) results of the operation invocation.

The operation invocation uses the Proxy design pattern [BuMe+96] to
provide to developers transparency from physical distribution. Figure 3-2
shows the UML class diagram of an abstract operation invocation.

ClientProxy
operation()

RealSubject
operation()

ServerProxy
operation()

+delegates +delegates

Subject
operat ion()

Client +calls

Figure 3-2 The
Proxy pattern as
applied in object
middleware

 OBJECT MIDDLEWARE 71

A Subject object represents the interface of a remote object called
RealSubject. A ClientProxy and a ServerProxy object mediate the
invocations on the RealSubject by offering an interface identical to the
RealSubject’s interface. The Client interacts locally only with the
ClientProxy, which hides from the client any distribution aspects of the
invocation. The RealSubject interacts locally only with the Server proxy,
which also hides the distributed aspects of the invocation but on the server
side.

The middleware uses the Broker pattern [BuMe+96] to handle the
interactions among both proxies. Figure 3-3 shows the UML collaboration
diagram of an actual operation invocation.

Broker

Client Server

Client Proxy Server Proxy

calls

*

calls

* transfers transfers

uses uses
* *

A broker in object middleware has the responsibility for managing the
lifecycle of objects and the communication among objects. In the diagram,
the Broker object represents a distributed entity that interacts locally both
with the ClientProxy and ServerProxy to handle the operation invocation.

Figure 3-4 shows the UML message sequence diagram of an actual
synchronous operation invocation together with an indication about the
processes involved in the communication, and in addition the diagram
shows the distribution of the Broker (BrokerC on the client side and
BrokerS on the server side).

Figure 3-3 The
Broker design
pattern

72 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

 Process at the
Client

block

continue

Process at the
Server Client side Server side

The direction of the execution
of the sequential process

Dashed line represents waiting
(or blocked) process

 : Client : ClientProxy BrokerC :
Broker

BrokerS :
Broker

 : ServerProxy : Subject

operat ion()
operation()

trasmit()
operation()

operation()

In the context of some process, a Client object initiates an operation
invocation using the object reference of the remote Subject object. The
ClientProxy object takes control of the operation invocation transparently
to the Client object. The ClientProxy object delegates the operation
invocation to the Broker object at the client side. The client process then
waits until the processing of the invocation at the server side completes.
The Broker object at the client side communicates the data associated with
the invocation to the Broker object on the server side, using the underlying
communication infrastructure and taking care of any details such as time
outs and minor communication errors. The Broker then assigns some
process at the server side to handle the operation invocation and delegates
the invocation to the ServerProxy. The ServerProxy calls the Subject server
object to process the operation invocation. In analogy to the classical object
method call, the chain of interactions on the forward direction of the
operation invocation represents the sending of a request message. After
completion, the server sends any results back to the client in the reverse
order of operation interaction. The return direction of an operation
invocation represents the sending of a response message. After the
completion of the operation invocation, the client process resumes its
execution. Observe that only the two broker objects communicate over the
network. This way both the client and the server objects involved in a
synchronous operation invocation make only local (i.e., within the same
single execution environment) interactions.

Some object middleware technologies, such as CORBA [CORBA], allow
asynchronous remote invocations. In contrast to a synchronous invocation,

Figure 3-4
Message sequence
diagram of an
operation
invocation

 OBJECT MIDDLEWARE 73

an asynchronous invocation does not require the calling process to block
and wait for a result. At a later moment, the calling process can check for
the completion of an asynchronous invocation and eventually acquire the
result. We do not discuss the asynchronous invocation in detail. Suffice to
say, different vendors often have their own different interpretations about
the realization of the asynchronous operation invocation.

Developing object middleware-based applications

Developers must follow particular steps in order to build applications with
object middleware. Figure 3-5 presents what we consider a basic
programming model for object middleware. In our opinion, one can find
the elements of this model more or less in every contemporary object
middleware product.

IDL specification

Client proxy files

Server proxy files

IDL compiler

Client

Server

Language dependent compiler

source code

The IDL compiler processes an IDL specification to generate programming
language specific mappings for the complex data types in that specification.
In addition, for every interface in the specification, the IDL compiler
generates proxy files for the client and for the server respectively.
Developers use the client proxies to perform calls on server objects, and
server objects use the server proxies to accept calls on operations of their
server objects. Developers then use a specific programming platform to
develop the client and the server parts of their object middleware-based
applications.

In addition to the basic communication service of object middleware,
developers can also use common object services. An object service consists
of a collection of specific remote objects that provide functionality covering
a particular aspect of working with remote objects in an application domain
independent way (hence “common” services). Examples of object services
constitute: directory services allowing discovery and management of object
references, transaction services allowing the use of transaction contexts in
DSA, and security services allowing the enforcement of various security
policies on remote objects.

Figure 3-5 A
programming
model for object
middleware

74 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

3.3 Component middleware

The market for software products demands increasingly more complex
distributed software. To meet these demands, the software industry turned
its attention to component technology – a new paradigm for software
manufacturing that promises to improve cost efficiency while preserving or
improving flexibility, nimbleness and competitive edge of a software
product. We consider, among others, the following benefits of component
technology: short time-to-market in terms of reduced complexity,
improved application productivity in terms of increased reuse of existing
code, and programming by assembly rather than engineering.

We call component middleware, a middleware that allows one to build
software applications using software components.

3.3.1 Software components

A software component represents a self-contained and reusable binary unit that
provides a unique service, which developers can use either individually or in
composition with the services provided by other software components
[Szy98]. In this text, we use the term “component” as a shorthand notation
for “software component”.

A component can participate in a composition together with other
components. Components participate in compositions by using each other’s
services. To our understanding, components represent reusable assets in the
design and implementation of new component-based software.

A component specification represents the description of a software
component. A component specification consists of two main elements: a
description of the component service and a description of the component
dependencies on the services of other components. We describe the service
of a component in the form of one or more interfaces. An interface
represents a contract established between a party providing the specific
service and all parties that potentially use that service. Component
dependencies represent “uses” relationships with interfaces of other
components. Furthermore, a component specification may describe various
additional component characteristics, such as requirements on the
deployment environment for a component, resources necessary for
execution of the component, and a description of the binary package of the
component.

A component encompasses a certain amount of application
functionality. System designers have the task to determine the actual
granularity of their components. Too large components can reduce

 COMPONENT MIDDLEWARE 75

reusability and flexibility of future designs. Too small and too many
components may reduce efficiency of software development.

Generally, a component represents a part in some functional
decomposition of a complex software system. To allow further
decomposition, designers use the notion of compound components. A
composition of several somewhat simpler components, realizes a compound
component. We consider the relation between a compound component
and the components that participate in it, similar to the “aggregation”
relation between object classes.

Components run in special environments called component containers. A
component relates to its component container in a similar way as a
computer program relates to its operating system. During runtime, the
container uses a component as a prototype for creating component instances.
A component instance represents the real world entity whose behaviour
contributes to the behaviour of the particular component software.

A component model defines the rules by which we implement, deploy and
instantiate a component.

3.3.2 Comparison between objects and components

In order to understand the difference between objects and components we
need to compare their basic features. Let us note that objects relate to
classes, in a similar way as component instances relate to components. Thus
we compare classes to components, and objects to component instances.

Classes vs. components

The interface of a class has similarities with the specification of a
component. Both the class interface and the component specification
provide common views on the instances of classes and components,
respectively, by abstracting from the unimportant (during high-level design)
implementation details. Components however, have a more elaborate
specification than class interfaces, because components represent self-
contained and deployable binary units. When compared to components,
classes appear underspecified, because classes often have tight relations with
other classes, and we can see these relations only from the class
implementation (e.g., inside the source code). This makes classes less self
contained then components. In contrast, the component model deliberately
makes dependencies among components explicit by employing a well-
specified “uses” type of relationship with other components.

A component specification may consist of additional (compared to the
class interface) information, such as component dependencies, resources

76 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

(e.g., video, images, etc), and any sub-components in case of compound
components. Furthermore, some component middleware supports
component specifications independent from a particular programming
language. An example constitutes the CORBA Component Model [CCM],
where the component specification consists of XML-based component
descriptors. In contrast, we usually define the class interface in the same
language as the class implementation. We consider the limited portability
and interoperability of class specifications as a reason for the advent of the
component concept.

We use classes to categorize conceptual objects of arbitrary (often low)
granularity. Compared to classes, components represent coarser building
blocks. For that reason, designers often cannot sell their classes
independently but instead package them into class libraries. In contrast, the
idea of selling components as common-off-the-shelf building blocks plays a
central role in component middleware.

Designers often use the OO technology to implement the internal
mechanisms of a component. For example, designers may implement the
internal structure of a component as a collection of middleware objects,
each implementing one component interface. Furthermore, vendors often
present component middleware products as superstructures on their object
middleware products. Examples of this constitute most of the existing
commercial component middleware products, such as COM+, products
compatible with the EJB or with the CCM specifications.

In this thesis we assume that designers use OO technology to build
components, and that a component middleware relies on object
middleware.

Objects vs. component instances

Running a component means that the component container creates one or
more instances of that component. A component container provides
component instances with basic common services, such as transactions,
security, persistence, and event service. To run in a particular component
container, the component model requires from a component only a
minimum common functionality. This allows the component instance to
use a variety of complex services of its environment (the container), without
having to implement them itself. In comparison with objects, the object-
oriented runtime library of some OO platform corresponds to the
component container. The object-oriented runtime library that runs
object-oriented programs however, does not offer that wide variety of
services to objects as containers do to component instances.

 COMPONENT MIDDLEWARE 77

In the context of an OO programming language, users can uniquely
identify both objects and component instances by means of their
references. Component instances however, may offer more than one
interface to their users, where users can access each interface through a
separate reference. Thus, the same component instance may in fact have
several identities or views, each representing the functionality accessible
through a reference to a different interface of that component instance.

Generally, both objects and component instances have similar lifecycles
– creation, activation, deactivation and destruction. Depending on the
component model however, components may offer several additional
features related to their lifecycle, such as alternative persistence
mechanisms and various session management possibilities, as in Enterprise
Java Beans [EJB].

Over the past ten years, object middleware underwent an evolution
marked by the definition and standardization of a number of object
services, and the appearance of several major vendor technologies, such as
CORBA, DCOM, and Java RMI. In order to use these achievements, many
component models incorporated an existing object middleware and
delegated to it the task for dealing with distributed communication.

Component instances communicate using two basic styles:
– Object-style operation invocations on interfaces provided by the

component instances (and implemented internally by middleware
objects). This style of communication comes with the use of object
middleware in component middleware;

– Event-based communication. This style uses mechanisms similar to the
event service in object middleware. A component event represents a
message without a definite receiver. In contrast, an operation invocation
always has a well-defined (by a reference) receiver. In some component
models, such as the CCM, the component specification allows designers
to specify the type of events their components produce and consume.

3.3.3 Developing component-based applications

In this section we present a very high level model for developing
component-based applications (Figure 3-6). In our opinion, one can find
the elements of this model more or less in every component-based
development methodology.

78 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

Decomposition
into components

Application
Design

Application
Implementation

Search for existing
components

Implementation of
non-existing
components

Component
Development

Component
Assembly and

Integration into
an application

Design of non-
existing

components

Identification of
functionality

During component-based application design, designers identify the future
behavior of the application using some common approach, such as
requirement analysis. In the next step designers decompose the identified
behavior into groups of similar functionality suitable for encapsulation in
reusable components. At this point designers may search for existing
components matching the required functionality. Typically, some company
implemented the (identified) existing components and made them available
on the market.

The result of the application design phase constitutes a list of existing
application components, a list of non-existing application components that
designers need to implement, and any additional application design that
governs how application components interact with each other to form the
application functionality as a whole. Component developers design and
implement non-existing components during the component development
phase. The application engineers integrate all (existing and implemented)
components together into a prototype of the final application, during the
application implementation. We do not discuss iterative development, but
designers may use it as they see fit.

Figure 3-7 illustrates the details of the “component development”
phase.

Figure 3-6 A model
of component-
based application
development

 COMPONENT MIDDLEWARE 79

Specification
compilers (e.g.
IDL compiler)

Component
specification

Generated code
templates (e.g.

proxies)

Source code

Programming
tools

Component
implementation

Packaging &
assembly tools

Component
prototype

Resources

Specification compilers take the component specification as an input and
generate the shell of the component. A shell may consist of, among other
things, programming language mappings for complex data structures, and
code templates such as proxy files for the client and server roles during
operation invocation. From the generated shell and the source code
supplied by component developers, programming tools generate the
component implementation. The packaging and assembly tools combine
the resulting component implementation, component specification and any
resources (such as graphics for the visual interface of the components, if
any) into a deployable component package that represents the component
prototype.

Figure 3-7
Component
development

3.3.4 Discussion of existing component models

There exist a number of component models each integrated in different
vendor products. We consider the Enterprise JavaBeans (EJB) [EJB], the
component model of .NET technology [.NET], and the CORBA
Component Model (CCM) [CCM], as the most significant ones from the
perspective of strong commercial support for their standardization and
development into mature products.

The Microsoft Corporation offers the .NET component model as a
result of the evolution of their software technology since the early Windows
operating system till the present. The SUN corporation introduced the EJB
component model to mark the advances in the evolution of SUN’s early
Java technology. The OMG consortium developed the CCM, as part of the
latest CORBA 3.0 standard. The huge commercial participation in the
OMG (800+ companies) resulted in a quite broad component model
standard that encompasses many issues not considered by other component
models. We consider this one of the reasons why no mature middleware
product of a large software vendor supports the full CCM specification yet3.

3 Here we mean that we did not know about such product before we finished the work on
this text.

80 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

Nevertheless, in this section we choose to discuss the basic features of the
CCM to illustrate the essential properties of a component model.

The CCM features several major advances to the (object middleware)
CORBA standard: an abstract component model, a component
implementation framework, a component container model, and packaging
and deployment facilities. CCM represents the industry’s first component
standard taking into account multiple programming languages. We take a
closer look at the abstract component model.

CCM Abstract component model

The abstract component model allows component designers to capture how
designers view a CORBA component. This includes what services a
component offers, which services of other components it requires, what
mechanisms components can use to interact with each other, what
configurable properties a component may have, and the details of the
component lifecycle.

A CORBA component can inherit features from one prototypical
component and can support multiple interfaces. A CORBA component has
features called ports, to some of which (depends on the port type, see
below) designers can connect the ports of other components. According to
the abstract component model, a component may have ports of five
different types (Figure 3-8):
– Attributes. Similarly to object attributes, a component attribute

represents an element of the component state. An attribute has a name
and a value. Other components can read and set the values of a
component;

– Facets. A facet offers functionality. A facet has a name and corresponds
to one interface with a separate reference (object reference to the
middleware object implementing this interface). Each facet represents
the component by embodying a view that corresponds to a role in which
a client may act on the component;

– Receptacles. A receptacle represents the dependency of a component on
some functionality provided by another component. A receptacle
represents a named holder of a reference to facets of other components.
A receptacle can store multiple references and developers can configure
the references in it both during design-time (component assembly) and
runtime. Third parties can configure a receptacle from outside of its
corresponding component;

– Event sources. An event source represents a named connection point
that acts as a producer of component events. Multiple consumers may
connect to an event source;

 MONITORING CAPABILITIES IN OBJECT AND COMPONENT MIDDLEWARE 81

– Event sinks. An event sink represents a named connection point that
acts as a consumer of events of other components. Multiple event
sources may connect to an event sink.

 Component

itf1

itf2

Event
Source

Event
Sink

Facets

Attributes

Receptacles

consumeproduce

offers
uses

A component reference identifies a component instance. The abstract
component model defines mechanisms for navigation among the ports and
introspection of a component using its reference.

The CCM allows two modes of component communication:
synchronous via a CORBA-style operation invocation and asynchronous via
event notification, where the event notification may occur in two forms:
direct subscription to an event source and mediated via the CORBA event
service.

Figure 3-8 A
CORBA component

3.4 Monitoring capabilities in object and component
middleware

Having had a closer look at object and component middleware we can now
see why monitoring does not present a major functional requirement in an
object or component middleware product. Object and component
technologies emerged to enhance the production of software by reducing
development costs, time to market, and in general make software a
commodity that companies can sell off-the-shelf. Monitoring capabilities in
the middleware do not enhance software production in general. These
capabilities would enhance software production for a class of applications
that benefit from these capabilities – monitoring systems for middleware-
based applications.

For the reasons above, monitoring of the execution of the internal
middleware mechanisms often requires the instrumentation of that
middleware. Designers who need to create a middleware instrumentation
may find that this task requires extensive knowledge about the middleware’s

82 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

internal mechanisms, in order to avoid exposing partial or unsafe
information to the monitoring application. Furthermore, an ad hoc
instrumentation of some middleware product may render the monitoring
system difficult to maintain (e.g., in case the vendor releases a new version
of the middleware, designers may have to re-develop the instrumentation).
Some middleware products however, allow for installing middleware “add-
ons”, which permit instrumentation in a more generic way than others. We
generally refer to such products as reflective middleware.

3.4.1 Reflective middleware

We define reflection as a technique that allows a software system to support a
self-representation in the form of a meta-model. A meta-model represents
certain aspects of the software system and its behavior as a collection of
meta-objects. Reflection allows one to inspect and/or manipulate the
system during runtime [Blair98ii]. Reflection serves the purpose to enhance
openness and flexibility in software systems [Yas92]. Reflection differs from
ad-hoc system hacks that designers sometimes use to provide reflective
capabilities, because reflection pays special attention to providing a
consistent meta-model that preserves system integrity.

Reflective middleware constitutes an example of the application of the
reflection principle to the middleware concept. In reflective middleware,
designers can access some of the middleware internal mechanisms through
reflection, in order to configure that middleware to fit different application
requirements, or to adapt it to meet changing environment or user
requirements [Weg03].

For the purpose of monitoring, we find reflective middleware
interesting because it can provide inspection of the behavior of objects and
component instances in a generic, application-independent way. Current
middleware technologies however, either do not support reflection at all, or
provide very limited support for it [Blair98i].

We further focus our interest in reflective middleware to aspects
matching the goals of this thesis. Thus, we consider lifecycle reflection and
message reflection (of the middleware communication mechanism).

Lifecycle reflection

Lifecycle reflection represents a meta-model mechanism in the middleware
that allows inspection and manipulation of the lifecycle of objects and
components independently from the lifecycle patterns prescribed by the
application design.

 MONITORING CAPABILITIES IN OBJECT AND COMPONENT MIDDLEWARE 83

In the CORBA [CORBA] object middleware, the Portable Object
Adapter (POA) specification defines a standard mechanism for installing
custom POAs. Developers can use this mechanism to introduce a special
monitoring POA with minimum changes for the CORBA-based distributed
application. The monitoring POA can provide consistent and safe
information about object creation, activation, deactivation and destruction.

Other middleware technologies, such as COM+ and EJB, provide
lifecycle reflection support in their debugging framework. Monitoring of
applications using their debugging mode execution, however, may produce
a significant monitoring overhead that application users cannot tolerate.

In Chapter 7, we shall use the POA mechanism in CORBA to
implement instrumentation capable of monitoring lifecycle information
about application objects for CORBA-based software.

Message reflection

Message reflection represents a mechanism in the middleware that allows
inspection and possibly manipulation of messages exchanged between
application parts independently from the communication patterns
prescribed by the application design.

In the CORBA object middleware, the Portable Interceptors (PI)
specification defines a mechanism for installing custom components called
interceptors, on the path of remote operation invocations.

OO11 OO22

MMiiddddlleewwaarree

rreecceeiivvee

rreeppllyy
sseenndd

rreeppllyy
rreecceeiivvee

rreeqquueesstt
sseenndd

rreeqquueesstt

aa ppooiinntt ooff

iinntteerrcceeppttiioonn

CClliieenntt SSeerrvveerr

The PI specification defines the access to the meta-object that reifies an
invocation at four moments of its execution (Figure 3-9): directly before
sending the request at the client, after receiving the request at the server,
before sending a response, and after receiving a response. At the four
points, the PI specification determines the invocation information designers
can use for monitoring purposes, e.g., operation parameter values or
results. The PI specification also defines a method of transparent

Figure 3-9 Portable
Interceptors �
points of
interception

84 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

installation of custom-made interceptors for the CORBA programming
language mappings for C++ and Java.

Other middleware products, such as the COM+ middleware [Kath00],
also provide message reflection similar to the CORBA portable interceptor
mechanism.

3.4.2 Requirements on reflection mechanisms for middleware
monitoring

Based on our initial intention to use a middleware-based approach we can
define several requirements on the reflection mechanisms that we want to
use for monitoring:
– Transparent use. The reflection mechanisms should conform to the

middleware principle, by providing transparency to the application
layer;

– Information consistency. The reflection mechanism should provide
consistent information, meaning that under any circumstances it should
not expose to the monitoring system partial or unsafe information about
the middleware activities.

3.4.3 Adding message reflection to middleware

When the middleware supports limited message reflection or does not
support it at all, instrumentation designers have to add it to the
middleware. For the purpose of monitoring, we may need to add inspection
capabilities to the communication mechanism of the middleware. We need
to select proper mechanisms to do that.

Wegdam [Weg03] makes a survey of various mechanisms for adding
message reflection to the middleware. Among others, these include sniffing
the wire protocol, middleware interceptors, modification of stubs and
skeletons, wrapping, debugging interfaces and composition filters.

We consider middleware interceptors the best choice as they represent
a transparent solution, which we can use to monitor during the normal
operation of the monitored application. Furthermore, the PI specification
for the CORBA middleware has undergone many iterations of refinement
of its safety issues, and we consider it very mature to use for monitoring.
Middleware interceptors have the disadvantage that they provide only
predefined and (intentionally) limited (for integrity purposes) access to the
invocation mechanism. For example, according to the CORBA
specification, the middleware executes custom portable interceptors in a
thread context separate from the application context, which means that the
custom interceptors do not have direct access to the thread context of the
calling/called objects, which may pose problem when implementing the

 CONCLUSION 85

rules of a logical clock system. Because of this limitation of PI, we consider
using PIs in combination with another technique that does not have this
limitation.

We consider the modification of the middleware client and server
proxies as another promising technique for adding monitoring functionality
to the communication mechanism of the middleware. In object
middleware, the proxies offer access to the caller/called objects’ thread
context of the operation invocation before and after the object request
broker processes the invocation. In general, we consider modification of the
proxies more unsafe than interceptors, because the designer has full control
(as compared to the safeguard restrictions in the interceptors) over the
operation invocation, which may easily lead to errors. Furthermore, we find
proxy modification more intrusive to the monitored application than
interceptors, because it often requires recompilation of the monitored
application after instrumentation. Nevertheless, proxy modification for
object middleware still represents a relatively transparent solution as the
IDL compiler (that we consider a part of the middleware) generates them
automatically, and hence designers do not participate in the process. In
CORBA, a stub and a skeleton represent the proxies for use in the client
and the server, respectively.

In Chapter 7 we shall use both CORBA Portable Interceptors and
modification of the stubs and skeletons to provide monitoring of remote
operation invocations for the CORBA object middleware.

3.5 Conclusion

We can conclude that object middleware has emerged as an evolution of
the object oriented approach towards distributed environments.
Furthermore, vendors often promote component middleware as a
superstructure on object middleware technology. As a result, designers of
middleware-based applications rely on the object middleware to handle the
distributed communication among component instances, and on object
oriented languages to build their components.

We can use lifecycle and message reflection to monitor object and
component communication at the middleware layer. This reduces the
impact of monitoring on the application. Nevertheless, we rarely find
sufficient reflection capabilities in existing middleware. Therefore, in order
to allow monitoring at the middleware layer we need to provide some
additional instrumentation. We consider as promising instrumentation
techniques (1) message reflection through interceptors and (2) proxy

86 CHAPTER 3 OVERVIEW OF OBJECT AND COMPONENT MIDDLEWARE

modification for monitoring of communication information, and (3)
custom POAs in CORBA for monitoring lifecycle information.

Chapter 4

4. Evaluation of monitoring systems

In this chapter we present and evaluate several existing monitoring systems.
With this evaluation we intend to show how well existing monitoring
systems support monitoring of object and component communication in a
distributed environment.

We start with the definition of evaluation criteria. The evaluation
criteria represent the reference point from which we evaluate each system.
We then present four monitoring systems: OLT, HiFi, MOTEL, and
MIMO. In each presentation we focus on issues relevant to the evaluation
criteria. We then summarize our findings (relative to the criteria) into
advantages and disadvantages of the presented systems. We conclude the
chapter with a list of requirements that our monitoring system should
satisfy. We categorize the requirements in generic requirements relating to
monitoring of distributed applications in general, and specific requirements
that relate to monitoring of object and component middleware-based
applications.

4.1 Evaluation criteria

We establish our evaluation criteria using the outstanding problems
identified in Chapter 1:
– Architecture. A good architecture of a monitoring system establishes the

basis for an effective monitoring system. We consider the following
qualities of the architecture of a monitoring system: flexibility,
extensibility, reusability, and scalability;

– Middleware instrumentation for monitoring of communication behavior.
Middleware instrumentation allows transparent monitoring of
middleware-based applications. Monitoring of communication behavior
requires access to the internal middleware communication mechanisms.
We consider (1) whether a monitoring system supports middleware

88 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

instrumentation for monitoring of communication behavior, (2) what
middleware instrumentation mechanisms designers use, (3) the
transparency of these mechanisms for monitored application developers
including tool support for automatic generation, and the reusability of
the instrumentation, (4) the applicability of the instrumentation design
to other types of middleware, and (5) the applicability of the
instrumentation implementation to different products of the same
middleware technology;

– Support for analysis of concurrent activities. Establishing temporal order and
causal relationships among events in the monitored application may
prove difficult. We consider (1) how a monitoring system orders events
and (2) what type of causal information (if any) it provides about
relationships between events;

– Dealing with overhead. Software monitoring inevitably introduces some
overhead in the monitored application. Overhead may influence both
the users of the monitored application and the users of the monitoring
application. To the users of the monitored application overhead may
translate into undesirable application behavior. To the users of the
monitoring application overhead may translate into inconsistent views
on the monitored application behavior. We consider how a monitoring
system deals with overhead, i.e., (1) the accuracy and usefulness of the
information it provides, and (2) how much the monitoring system
interferes (intrusion delay and resource sharing) with the monitored
application.

We structure the evaluation of each system using the criteria in the order as
defined above.

Comments on the selection of monitoring systems

In the course of our research we have examined several monitoring systems.
These monitoring systems roughly fall into the following several main
categories of monitoring systems:
– Application and network management: MIMO [RLRS00], AppCenter

[APPC], TIVOLI [TIVOLI], SILK [SILK], SNMP [SNMP];
– Reliable messaging: ISIS [BiJo97], Horus and Ensemble [Bi+00], JORAM

[JORAM];
– High performance and parallel computing: ZM4/SIMPLE [Hof+94], Coral

[Zor00], Falcon [Gu+95];
– Distributed debuggers: GDB [SPS02], MAD environment, EMU and

ATTEMPT tools [Kranz97], POET [KBTB97], OLT [OLT03];

 OLT 89

– Distributed computing in general: OMIS [LWSB97], GEM [Sam95], HiFi
[Shaer97];

– Object middleware: 2K Monitoring Services [Mao99], SmartStubs [SMST],
DYNO [Rait00], CorbaTrace [CTRACE], OrWell [WeiKu98], MOTEL
[LDKK98];

– Enterprise monitoring: BMC Patrol [BMC00], ARM [ARM98].

We have decided to present and evaluate in detail only four monitoring
systems because these systems (when compared to all the rest we know
about) treat most closely the problems addressed in our evaluation criteria.
We start with the Object Level Trace (OLT) – a commercially available
system for testing and debugging of distributed software, part of the IBM’s
Distributed Debugger platform. We select OLT because it represents to
date the only4 commercial product for monitoring that exerts features of
interest to us. The other three approaches result from academic research
projects with some industrial participation. These systems comprise HiFi,
MOTEL and MIMO. The HiFi system deals with various issues regarding
scalability of monitoring systems in large distributed environments. The
MOTEL system demonstrates the application of formal techniques to the
analysis of middleware-based applications. The MIMO system demonstrates
a systematic approach for monitoring and management of middleware-
based systems.

4.2 OLT

Object Level Trace (OLT) constitutes an extension to the IBM Distributed
Debugger that enables developers to trace and debug multilingual,
distributed applications. Object Level Trace (OLT) allows developers to
monitor the flow of control in a distributed application, and to seamlessly
debug client and server code from a single workstation [OLT03].

According to academic sources [Ward01], OLT resulted from
collaboration of the IBM Corporation with the research group that
developed the POET debugger [KBTB97] at the University of Waterloo,
Canada. IBM chooses not to provide any documents on the design
approach followed in the development of the OLT monitoring system. We
establish our evaluation on the information from user guides for
administrators and developers on the IBM official site.

4 We considered all systems we knew about by the time we finished working on this
manuscript.

90 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

OLT models distributed applications at three levels: hosts,
processes/threads, and objects. The host represents an execution
environment, e.g., the Java Virtual Machine running an instance of the
WebSphere Application Server (WAS). A process/thread represents
sequential execution in the common sense of the term. An object in OLT
represents a programming language level object. For OLT, a distributed
computation consists of events and relations among events, where events
represent completed activities of the communication behavior and lifecycles
of hosts, objects and processes (threads).

OLT supports tracing and debugging of distributed applications built
with Java and C++ for the WAS and the Component Broker of IBM. OLT
tightly integrates with IBM’s remote debugger. For Java, OLT records Java
method calls from a client application to distributed business objects,
servlets, JSP, or EJBs residing on WebSphere Application Servers. OLT
supports in a similar way C++ programs on several computing platforms
from IBM.

4.2.1 Architecture

Figure 4-1 illustrates the architecture of OLT. For brevity we shall examine
in detail only the architecture of the Java version of the OLT. The
documentation claims that OLT implementations for other platforms
comply to this architecture.

WWeebbSSpphheerree
AApppplliiccaattiioonn

SSeerrvveerr

OOLLTT
RRuunnttiimmee

HHoosstt

OOLLTT
SSeerrvveerr

OOLLTT
CCoonnttrroolllleerr

OOLLTT
VViieewweerr

OOLLTT
ddeebbuuggggeerr
ddaaeemmoonn

DDeebbuuggggeerr
EEnnggiinnee

aattttaacchheess
ddeebbuuggss

nnoottiiffiiccaattiioonnss

DDeebbuuggggeerr
GGUUII

ccoonnffiigguurreess

eevveennttss

ddrriivveess

ccoonnffiigguurreess

ddrriivveess

eevveennttss

**

**

In order to use OLT, developers have to install the OLT runtime and the
IBM debugger engine on each host running WAS. An OLT controller
configures the OLT runtime so that it knows how to contact the OLT
Server and how to configure the debugger engine. The OLT runtime has
several responsibilities: (1) to collect notifications from WAS instances,
process them and send the resulting monitoring data to the OLT Server,
and (2) to start up the debug engine and configure it properly so it knows

Figure 4-1 The OLT
architecture

 OLT 91

how to attach to the WAS instances and to the debugger daemon. The OLT
Server collects the monitoring data from all OLT runtimes connected to it.
The OLT server sends the data to the OLT viewer that shows it to the
operator. The debugger engine allows debugging of the WAS instance on a
particular application host. Debugger engines connect to a debugger
daemon. A debugger daemon can manage several debugging engines. A
debugger GUI connects to the debugger daemon. Developers can deploy
the components of the OLT and the distributed debugger in several ways.
In a most typical scenario, an operator places the debugger GUI and the
OLT Viewer on one host so that he (or she) can debug and trace the
distributed application form a central place. Developers may deploy the
OLT Server and the OLT debugger daemon on separate hosts to minimize
the overhead from sharing processing resources with the application hosts.

The designers of OLT specifically created its architecture for integration
with remote debugging, which developers usually perform from a central
console. Thus OLT uses a centralized architecture in which the OLT Server
represents the focal point of all communication. This makes OLT more
appropriate for handling debugging tasks in a small testing environment
than in a large distributed environment. OLT does not address any
scalability requirements beyond the ones present in traditional remote
debugging, and any heterogeneity issues beyond the ones present in IBM
products involved in the monitoring process.

4.2.2 Middleware instrumentation for monitoring communication
behavior

OLT supports monitoring of Java RMI remote objects, but it does not
provide explicit support for object middleware such as CORBA, although
since JDK 1.3 SE Sun has bundled an implementation of the CORBA
standard with the standard Java technology. Nevertheless, testers still can
monitor and debug CORBA applications with the OLT indirectly at the
level of the proxy objects that CORBA uses – stubs and skeletons.

OLT automatically performs the necessary instrumentation, so that
developers can concentrate on debugging. For Java applications, OLT uses
the debugging mode of the Java virtual machine to intercept the application
execution and perform various measurements.

OLT offers to developers the OLT Viewer and OLT Controller tools
that allow viewing and controlling OLT-enabled debugging sessions,
respectively. The OLT Viewer presents monitoring information on a
diagram that shows the communication between entities (hosts, processes
and objects) ordered on a time scale. The OLT Viewer does not provide
explicit information about distributed objects or components. The operator

92 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

has to “know” what the object method call means – a Java remote method
invocation, a HTTP request/response, or a CORBA invocation. The OLT
Viewer can save diagrams to a file, however it uses a proprietary format
which limits the application of external analysis tools, e.g., third-party
performance analyzers. In our opinion, OLT monitoring system lacks
openness5, i.e. it does not offer any interfaces for development of custom
monitoring tools.

4.2.3 Support for analysis of concurrent activities

The strength of OLT comes from the way it deals with concurrent
execution in a distributed environment. OLT employs a vector clock system
to impose a partial order among the observed events in a distributed
computation. The implementation of the logical clock uses Fidge/Mattern
style of vector timestamps for each event in the system [Ward01]6. The
OLT Viewer visualizes communication events in the system matching them
appropriately into method calls and remote invocations. The viewer shows
order between events in two modes: relative for partial order and total
using scalar timestamps from the physical computer clocks. In the latter
case, OLT tries to synchronize the clocks on the hosts to maintain a low
drift between the clocks on the different hosts.

The partial order relation that OLT uses coincides with the causal
precedence relation we defined in Chapter 2, because of the use of vector
clocks. Thus, OLT provides information about potential causality between
observed events.

4.2.4 Dealing with overhead

A Java machine in debug mode has a considerably lower performance than
in normal mode. Developers perform monitoring with OLT in a controlled
test environment as opposed to a normal operational deployment. During
testing, developers can tolerate a certain level of intrusive overhead (delay)
because their primary task consists of removing errors as opposed to using
the monitored application for some business logic.

According to the available documentation, OLT allows one to monitor
communication aspects of the instrumented (Java in debug mode)
monitored application. The OLT Viewer restores both the observed events

5 The IBM web site does not offer any additional information on the OLT architecture,
except administrator and usage guides. Hence, we made this conclusion based on the lack of
any APIs for extending OLT with other monitors and analysis tools, such as the OLT
Viewer.
6 We establish this statement on the comments of Paul S. Ward, who has participated in the
development of OLT. For more information consult [Ward01].

 HIFI 93

and the causal precedence relation between them (using vector clocks).
This makes the OLT a totally accurate monitoring system (see Chapter 2,
section 2.8.3). Furthermore, we suspect that OLT meets the minimal non-
interference property in most cases of monitoring, because it uses the Java
debugging platform for making the instrumentation, which typically
preserves the original set of events in an application behavior (otherwise we
wouldn’t manage to debug applications at all).

4.3 HiFi

The Hierarchical Filtering (HiFi) monitoring system described in [Shaer98]
represents an effort to produce a scalable, high-performance, dynamic,
flexible and non-intrusive monitoring architecture for large scale
distributed systems.

HiFi models the behavior of distributed applications using an abstract
event-based model. Designers can use HiFi events to represent both the
completion of some activity and the status of entities in the monitored
application. The HiFi architecture does not define a concrete monitoring
model. HiFi leaves this to the designers of a particular instrumentation. The
HiFi system views a distributed application as a collection of (potentially
distributed) event producers representing instrumented application parts.
The monitoring system collects events and disseminates them to event
consumers (monitors). HiFi models monitor requirements for information
using the metaphor of a filter. HiFi offers a descriptive language for the
definition of filter specifications. The filter specification contains a
description of event characteristics that the system uses to determine the
relevancy of an event to a monitor.

HiFi allows the description of complex events using another declarative
language. This language allows the definition of correlations between events
using logical “and”, “or” and “not” operators.

The HiFi system clearly separates the role of a producer of monitoring
data from the role of a consumer. Nevertheless, HiFi does not consider
explicitly the development process of consumer applications (monitors).
HiFi considers control actions performed by the consumers on producers,
which makes it suitable for management purposes. We address only
monitoring (not control) in this thesis.

4.3.1 Architecture

The generic architecture proposed by HiFi proposes solutions to a number
of problems identified in large scale applications of monitoring, such as

94 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

dealing with large amounts of monitoring data, and large amounts of
producers and consumers of monitoring data. HiFi proposes solutions for
these problems based on hierarchical filtering of information, flexible
management of monitor demand for information, and dynamically re-
configurable deployment of the monitoring system. Figure 4-2 shows the
architecture of the HiFi system.

…

DDoommaaiinn 11 DDoommaaiinn LL

HHoosstt 11

EEvveenntt pprroodduucceerrss

LLMMAA

HHoosstt NN

EEvveenntt pprroodduucceerrss

LLMMAA

…

DDMMAA

HHoosstt 11

EEvveenntt pprroodduucceerrss

LLMMAA

HHoosstt KK

EEvveenntt pprroodduucceerrss

LLMMAA

…

DDMMAA

DDMMAA

DDMMAA DDMMAA DDoommaaiinn XX DDoommaaiinn YY

…CCoonnssuummeerr 11 CCoonnssuummeerr 22 CCoonnssuummeerr RR

In the HiFi architecture, software entities called monitoring agents (MAs)
perform monitoring activities. MAs and their interactions, based on
message passing, constitute the HiFi monitoring system.

HiFi requires the organization of the deployment of a distributed
application into several domains. Each host has a Local Monitoring Agent
(LMA) that belongs to a domain. LMAs collect monitoring data from the
event producers. Each domain has one Domain Monitoring Agent (DMA)
which collects the monitoring data from the LMAs of that domain. The
DMAs participate in a peer network using a reliable group communication
infrastructure to exchange monitoring data. The HiFi architecture defines
communication and management protocols for the HiFi agents. HiFi
supports a dynamic monitoring agent hierarchy, allowing new agents to
appear and leave, based on the current needs for information and the
system’s utilization level.

The HiFi system supports adaptable monitoring agents to alleviate the
load of the system. HiFi allows load adaptation during instrumentation and

Figure 4-2 The
hierarchical
architecture of HiFi

 HIFI 95

deployment, and dynamic reconfiguration of the agent hierarchy during
runtime. The HiFi system maintains the state of its current configuration
using a special environment specification language.

A monitoring agent offers its functionality through four services:
subscription, instrumentation, event filtering and control. The subscription
service provides the following functionality: processes the consumer
demands, receives and processes monitoring results, and controls the agent
activities. The instrumentation service deals with all aspects of the
instrumentation process in HiFi. It offers a number of interfaces and tools
that assist the developer in making the instrumentation. The event filtering
service handles event processing tasks and filters out events matching the
currently installed filters. The control service holds the responsibility for the
actual dissemination of monitoring information and for the handling of
control actions on the monitored application coming from consumers.

We consider the HiFi architecture highly versatile. Nevertheless, the
HiFi architecture and system implementation may prove too complex for
cases when we require monitoring of smaller systems in which scalability
issues do not present a real problem. In our opinion, a generic architecture
for monitoring should facilitate the handling of simpler monitoring
scenarios as well.

4.3.2 Middleware instrumentation for monitoring of communication
behavior

The HiFi designers acknowledge the need to present automated
instrumentation support to application developers, so that they can easily
adapt their applications to the HiFi monitoring system. HiFi designers
suggest an application independent Code Instrumentation Process (CIP)
suitable for instrumenting the monitored application (e.g., its C++ source
code). The CIP uses Event Reporting Criteria derived from the subscription
information of monitors to create instrumentation for the generation of the
necessary events. These criteria strongly couple the instrumentation with
the particular monitored application. HiFi does not explicitly consider
techniques such as instrumentation at the middleware level. The
instrumentation of HiFi stays at the lower abstraction (than middleware)
level concepts of the UNIX environment.

4.3.3 Support for analysis of concurrent activities

We consider the major disadvantage of HiFi, the missing support for
monitoring the causal precedence of events from the distributed
computation of the monitored application, which excludes any analysis
based on causal order. Instead HiFi provides total order among events by

96 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

using timestamps generated from physical computer clocks synchronized
using the NTP protocol. This reduces the area of application of the HiFi
system to ones that can tolerate a certain amount of errors (from NTP) in
the ordering relation.

4.3.4 Dealing with overhead

The HiFi prototype does not include an instrumentation for object or
component middleware. The HiFi implementation attempts to alleviate
overhead from resource sharing by distributing the processing of
monitoring data, e.g., the hierarchical filtering, over the monitoring agents
of the system. Furthermore, HiFi provides basic load distribution
functionality in the MAs. Based on its current load, an MA may decide to
change the size of its internal event queues. Furthermore, under certain
conditions a DMA may decide to create new monitoring agents on less
loaded hosts on which to delegate some of its event processing. Since we do
not consider resource sharing in this thesis we do not discuss load
distribution in HiFi in detail. From the report [Shaer98], we can conclude
that HiFi covers the minimal non-interference feature in most cases of
distributed execution of the monitored application, i.e., HiFi can monitor
all events that the observed application can produce when unmonitored.

HiFi can provide temporal order among events as accurate as the NTP
implementation it uses. Hence, HiFi does not guarantee order among
events. Thus we consider HiFi minimally accurate, i.e., it can provide accurate
information about all detected events, but it reports some of the relations
wrong.

4.4 MOTEL

The Monitoring and Testing Tool (MOTEL) described in [Logean00],
presents an approach for monitoring and testing communication services
built on top of object middleware, such as CORBA.

The method of the MOTEL approach includes expressing application
properties at the level of system design using linear time temporal logic
[Diet00], and checking for the violation of these properties during the
execution of the system prototype. MOTEL consists of a system for
monitoring events in middleware-based applications, and of a testing system
that uses the information collected by the monitoring system to check for
violation of predefined properties. The design of the MOTEL system
addresses a broad spectrum of monitoring problems. The MOTEL
designers have applied the system to industrial applications for testing and

 MOTEL 97

verification of telecommunication services. We consider the major strength
of the MOTEL approach the integration of formal methods for verification
of software applications with the testing phase of the software development
process.

MOTEL defines an event model for monitoring lifecycle and
communication behavior of object middleware-based applications. The
model uses an event concept similar to our definition from Chapter 2. The
model considers events at four different levels: object, thread, process and
system level. The object level includes events related to performing
communication between objects, such as incoming and outgoing calls. To
the process level belong events related to the lifecycle of objects and
threads. To the thread level belong events related to message exchange
between threads. System level events relate to system wide object
availability (the whole distributed system) and to the process lifecycle.
MOTEL does not consider component middleware.

MOTEL defines an event as a tuple consisting of an identifier and
attributes.

4.4.1 Architecture

Figure 4-3 presents the architecture of the MOTEL system.

AApppplliiccaattiioonn

HHoosstt

MMoonniittoorriinngg
GGUUII

PPrrooppeerrttiieess
MMaannaaggeerr

OObbsseerrvvaattiioonn
MMaannaaggeerr

nnoottiiffiiccaattiioonnss

OObbsseerrvvaattiioonn
HHaannddlleerr

eevveennttss
** IInnssttrruummeennttaattiioonn

MMiiddddlleewwaarree

OObbsseerrvvaattiioonn
RReeccoorrddeerr

TTeessttiinngg GGUUII

PPrrooppeerrttiieess
EEnnggiinnee

OObbsseerrvveerr

MMoonniittoorriinngg MMaannaaggeerr TTeessttiinngg MMaannaaggeerr

ccoonnffiigguurree

ccoonnffiigguurreess
eevveennttss

eevveennttss

pprrooppeerrttiieess

The Observation Manager holds the responsibility to configure the
instrumented middleware on each host for generating notifications about
“interesting” events occurring on that host. The Observation Manager
receives notifications and sends the corresponding events to the
Observation Handler, which has the responsibility for keeping the event
order consistent. Developers may choose to store events for offline analysis
or send the events to the Monitoring GUI for online visual presentation.
Furthermore, the Observation Handler sends the events to the Properties
Manager, which dispatches these in an appropriate form to the Properties

Figure 4-3 The
MOTEL
architecture

98 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

Engine, which can detect violation of system properties in the current
distributed computation. The Properties Engine contains a number of
components such as an automata optimizer, a property translator, an
automation handler and an error handler, which we shall not discuss in
further detail. Using the Testing GUI, the user can specify additional
properties for testing using the MOTEL system.

Let us note that although dedicated to testing, as a consequence of the
modular architecture of MOTEL, designers can use the Monitoring
Manager module for generic monitoring with little extra effort (as the
authors of MOTEL claim). Furthermore, designers can easily (again a claim
of the authors that seems reasonable to us) replace the components of the
Monitoring Manager with different implementations to meet new
monitoring requirements. Nevertheless, we consider the main disadvantage
of the MOTEL system its centralized architecture. In an attempt to solve
this problem, MOTEL authors suggest deployment of a separate Observer
instance (called a Partial Observer Agent) on each host, that can
automatically monitor and test properties local to that host. The
deployment still needs a central Observer instance in order to analyze
properties that span several hosts. The MOTEL architecture does not
further elaborate on distribution or scalability aspects.

The instrumentation and the Observation Manager comprise the
“specific” part of the system that depends on the application domain of the
monitored application. The other components treat monitoring data (the
events) in a general way. The MOTEL system however, does not identify
further general services and generic activities, such as a dissemination
component, subscription components, etc.

4.4.2 Middleware instrumentation for monitoring of communication
behavior

MOTEL performs instrumentation automatically at the middleware layer.
MOTEL provides a concrete instrumentation method for the CORBA
object middleware. Designers do not need to change anything in their
software applications in order to monitor the events identified in the event
model. This way designers can concentrate on expressing the behavioral
constraints and properties for testing, and devise adequate testing scenarios
covering various aspects of the functionality of the monitored application.
The MOTEL middleware instrumentation however, uses a specific
mechanism (called Message Filters) provided by (an old version of) IONA’s
Orbix CORBA product [ORBIX]. The more recent and more generic
Portable Interceptors [CORBA] mechanism can support the same

 MIMO 99

middleware instrumentation in a vendor independent way. This standard
has matured recently, after the completion of the MOTEL work.

4.4.3 Support for analysis of concurrent activities

MOTEL acknowledges the importance of relating event by their order of
occurrence. MOTEL employs a system of vector clocks to obtain vector
timestamps. These vector timestamps allow the MOTEL system to restore
the Lamport’s “happened before” relation (causal precedence, Chapter 2,
section 2.2.3) between events.

4.4.4 Dealing with overhead

The designers of the MOTEL system intend its use in a testing
environment. Hence, the testers using MOTEL may tolerate some intrusive
overhead (delay) in the monitored application behavior, because testers
want to locate and remove errors rather than use the monitored
application’s functionality.

The MOTEL system comes with an evaluation with respect to the
consistency of monitoring information. This evaluation gives the users of
the MOTEL system a precise description of the differences between an un-
instrumented unmonitored application execution and the view that the
MOTEL system provides on a monitored execution. According to this
evaluation the MOTEL system satisfies the minimal non-interference property
in most cases of application execution, and total accuracy. Total accuracy
follows from the use of the vector clock system for event timestamping. For
details on the evaluation consult [Logean00].

4.5 MIMO

The Middleware Monitoring (MIMO) approach [Rack01] represents a
development in the direction of provisioning on-line tool support in
heterogeneous middleware environments.

The MIMO approach consists of three major parts: a monitoring
infrastructure, the Multi-Layer Monitoring (MLM) information model, and
a framework for development of online tools.

The MIMO monitoring infrastructure consists of a design and an
implementation of a generic monitoring system, suitable for application to
various middleware technologies including object middleware.

MIMO models the monitored application using an entity-relationship
model, where entities represent the identifiable things that the monitoring
system can observe. Based on analysis of several applications of common

100 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

types of middleware, MIMO defines the MLM model as shown in Figure
4-4.

AApppplliiccaattiioonnss

IInntteerrffaaccee LLaayyeerr

DDiissttrriibbuutteedd OObbjjeeccttss

IImmpplleemmeennttaattiioonn LLaayyeerr

RRuunnttiimmee EEnnvviirroonnmmeenntt

HHaarrddwwaarree LLaayyeerr

MMoonniittoorriinngg
SSyysstteemm

The MLM information model presents a method for classification of
observable entities in a layered architecture, such as the one used in
common middleware platforms. A monitoring system based on MLM
allows gathering of information at all layers of the model. The MLM allows
only one type of general relation among entities. This way MLM makes only
weak assertions about relations among entities. Furthermore, entities can
participate in relations only between adjacent layers, thus forming a layered
relational structure. For example, a concrete implementation of MLM may
relate a set of interfaces to an application, a distributed object may offer an
interface, programming language objects may implement distributed objects,
and processes execute those objects on a particular hardware platform.
Monitors can use the MLM to provide presentations of the structure of the
monitored application during runtime, based on the entities and their
relations. Note that the MLM reflects only application structure and not
application behavior.

MIMO contains a framework for the development of online tools
(monitors) called MIVIS. The MIVIS tools framework consists of a generic
monitor that developers of monitoring applications can extend with
additional visual components. Each visual component represents a view on
the monitoring data coming from the monitoring system. The MIVIS
framework supports the development of portable and extendible monitors,
using Java and JavaBeans components as implementation technologies.

Figure 4-4 The
MLM model

4.5.1 Architecture

Figure 4-5 presents the conceptual architecture of the MIMO monitoring
system.

 MIMO 101

TTooooll

MMIIMMOO
mmoonniittoorr

IInnssttrruummeennttaattiioonn

AApppplliiccaattiioonn
ccoommppoonneenntt

**

**

**

oobbsseerrvveess

iiss aassssiiggnneedd ttoo

iiss aassssiiggnneedd ttoo

ccooooppeerraatteess wwiitthh

The MIMO architecture uses terminology slightly differing from ours. A
monitoring system consists of the following types of components: a tool, a
MIMO monitor, an instrumentation and an observed application
component. Tools (or monitors, in our terminology) represent the users of
monitoring data. The MIMO monitor (the MSS, in our terminology)
represents the core component of the monitoring system. Tools
communicate with the MIMO monitor in order to receive monitoring data.
Several MIMO monitor instances may cooperate among each other
exchanging monitoring data in a large distributed environment. The MIMO
monitor associates with one or more instrumentation instances. The
instrumentation supplies the data it observes from components (parts) of
the monitored application. Note that the MIMO architecture keeps the
structure of the monitoring system independent to the MLM model or any
other model of the monitored application, by separating generic monitoring
functionality from domain-specific functionality with the help of clearly-
defined interfaces between the instrumentation and the MIMO monitor.
Furthermore, the interface between the MIMO monitor and the tools
completes the separation of concerns, as tools often belong to a specific
domain (of the monitoring application) as well.

We consider the main advantage of the MIMO architecture the
separation of concerns provided by the interfaces MIMO defines between
instrumentation, the monitoring core, and the tool. We however, consider
these interfaces limited. We make the general observation that the MIMO
architecture focuses on defining the service of the MIMO monitor, while
the service of the instrumentation and the tools defines only basic
functionality.

Furthermore, MIMO identifies an interface between the
instrumentation and the monitored application. In general, we consider this
interface application specific and thus irrelevant for a generic approach to

Figure 4-5 The
MIMO architecture

102 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

monitoring. We would leave the definition of this interface for
instrumentation developers.

MIMO deals with scalability issues using a general interface for monitor-
to-monitor communication. The MIMO approach suggests a scheme for
assignment of monitor instances to various nodes of the distributed
environment so that one MIMO monitor always observes the entities of the
monitored application on each node. MIMO monitors exchange the data
among them using some proprietary protocol. The filtering mechanism that
MIMO uses may present problems in large scale systems, because the
MIMO monitor typically determines the relevancy (i.e., to discard or not)
of monitoring data too close to the tools. In a large distributed
environment, this leads to the use of resources for transporting irrelevant
monitoring data. An alternative approach similar to the hierarchical
organization of HiFi would allow finer control over unnecessary trafficking
of monitoring data by using hierarchical filtering techniques.

4.5.2 Middleware instrumentation for monitoring of communication
behavior

MIMO defines an MLM specialization to model object middleware-based
applications. MIMO designers haven’t considered monitoring of distributed
component-based applications.
MIMO designers developed an instrumentation that uses the MLM
specialization for object middleware to structure the monitoring data it
sends to the MIMO monitor. As we showed earlier, the MLM only treats
the structure of the monitored application, but not its behavior. MIMO
defines only a basic event model (consumer / producer), that delegates to
instrumentation developers the responsibility for defining any specific
events that represent application behavior.

MIMO suggest two modes of instrumentation: by using intruders and by
using adapters. Intruders represent middleware instrumentation that
transparently integrates into the monitored application. In contrast,
adapters represent application level instrumentation that developers have to
create in order to prepare their applications for monitoring with MIMO.
Since we focus on middleware instrumentation, we further discuss only
MIMO intruders.

MIMO provides middleware intruders for CORBA and DCOM. The
CORBA Intruder represents the MIMO instrumentation for ORBACUS for
C++ - based applications. The CORBA Intruder allows for monitoring of
events representing object lifecycle activities and the communication
between CORBA objects. The CORBA intruder wraps some of the ORB
interfaces in order to provide the necessary observation points. Mainly

 MIMO 103

because of the immaturity of the Portable Interceptors specification by that
time, MIMO hasn’t used interceptors for providing ORB independent
instrumentation.

The DCOM intruder represents the MIMO instrumentation for the
distributed object technology of Microsoft. The DCOM Intruder allows
monitoring of the same set of events as the CORBA Intruder, but for
DCOM. The DCOM intruder contains an universal wrapper of COM
objects that uses a special DCOM feature to delegate all interactions to the
intruder before the object implementation.

4.5.3 Support for analysis of concurrent activities

MIMO does not define an explicit monitoring model of the monitored
application behavior. We consider this a serious disadvantage because, for
example, dealing with concurrent activities may prove too difficult for users
extending the monitoring system with their own instrumentation.

MIMO provides a temporal order among events as accurate as its
timestamping mechanisms. For object middleware instrumentation, MIMO
uses NTP to generate events. MIMO designers also consider the CORBA
Time service as an alternative, but do not provide an implementation.

MIMO does not provide information about causal relationships between
events.

4.5.4 Dealing with overhead

The MIMO object middleware instrumentation allows for monitoring
middleware-based applications during their normal operation (as opposed
to monitoring in a test environment only). MIMO designers provide
performance figures for the intrusive effects of their object middleware
instrumentation. Using MIMO yields 60-90% monitoring delay per remote
operation invocation. Although high, we consider this overhead acceptable
for many applications.

We consider MIMO minimally non-interfering, because its middleware
instrumentation preserves the events in the monitored application behavior.

As discussed in the previous section, MIMO only provides temporal
order with the accuracy of the NTP implementation used. Hence, MIMO
does not guarantee that monitoring tools can restore correctly the order of
events according to the order of event occurrence. Therefore, we consider
MIMO, minimally accurate, i.e., monitoring tools can monitor all events
MIMO detects, but some of the relations among these events may not be
reported or reported wrongly.

104 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

4.6 Summary

In this section we present a summary of the main advantages and
disadvantages of each presented monitoring system.

4.6.1 OLT

Advantages
– Automatic and transparent instrumentation (Java debug mode),

applicable to different monitored applications;
– Monitoring of object communication at the level of the OO

programming language used to build the monitored application (Java,
C++).

– Causal precedence (“happened before”, potential causality) of observed
events;

– Total accuracy as a consequence of having causal ordering implemented
using a vector clock system;

Disadvantages
– Supports debugging applications only, which makes the development of

more general applications of OLT very difficult;
– Architecture does not scale for large distributed environments.
– Architecture does not provide open interfaces for building monitoring

extensions or adding monitors;
– May produce high intrusive overhead in the application, because it uses

the debugging mode of the execution environment. OLT cannot operate
in normal mode;

– Does not support the monitoring of operation invocation for object
middleware such as CORBA;

– IBM provides very limited information about the OLT mechanisms and
architecture, which does not encourage the evolution of this system by
other parties.

4.6.2 HiFi

Advantages
– Hierarchical filtering. Allows better management of the flow of

monitoring data to interested consumers in a large distributed
environment;

– Hierarchical organization of peer monitoring agents. Allows for flexible
and scalable deployments;

 SUMMARY 105

– Declarative approach to defining events. Allows flexible event
correlation and filtering;

– HiFi architecture defines generic monitoring services within the
monitoring system;

– HiFi architecture separates instrumentation from the generic
monitoring functionality. This increases reusability of the monitoring
system;

– Considers instrumentation tools important for the integration of
monitoring systems in the software development process.

Disadvantages
– Does not provide support for monitoring causal order among events;
– Satisfies only minimal accuracy, which may prove insufficient for

applications that require accurate analysis of application execution;
– Does not provide a specialization of the instrumentation process for

object or component middleware.

4.6.3 MOTEL

Advantages
– Strong formal apparatus behind the definition and evaluation of

properties for distributed computations. This increases confidence in
the correctness of the results produced by the system;

– Separates the generic monitoring functionality from the domain specific
instrumentation functionality;

– Support for causal precedence (“happened before”, potential causality).
Demonstrated the usefulness of the “happened before” relation for
verification of the behavior of middleware-based applications;

– Fine control over event generation in the instrumentation;
– System satisfies the total accuracy property. The formal evaluation of its

overhead gives users confidence about the information they get from the
monitoring system.

Disadvantages
– Centralized architecture. The MOTEL designers target to support

monitoring in testing environments, and as a consequence, the MOTEL
architecture does not scale for use in large distributed environments;

– Does not support component middleware;
– Provides middleware instrumentation only for one particular

middleware product;

106 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

– Uses vendor-specific instrumentation of the object middleware for
inspection of object behavior;

– Although modular, the MOTEL system does not explicitly define
general monitoring services and interfaces. This makes it difficult for
designers to use its generic parts for different monitoring applications.

4.6.4 MIMO

Advantages
– The MLM model of middleware-based applications. Allows for

classification of system entities suitable for presenting abstractions of the
structure of monitored applications;

– MIMO separates the concerns about specific and generic monitoring
activities using clearly defined interfaces between instrumentation,
MIMO monitor and tools;

– Supports monitoring of communication in object middleware (CORBA,
DCOM);

– MIMO addresses some scalability issues, by defining a basic architecture
for distribution of the logic of the monitoring system among several
MIMO monitors.

Disadvantages
– No support for monitoring of causal relationships among events;
– MIMO system satisfies only minimal accuracy, because it uses physical

computer clocks to order events;
– MIMO does not support component middleware;
– MIMO system may experience scalability problems. The centralized

monitoring component can experience scalability problems in large
distributed environments, where the volume of unnecessarily trafficked
monitoring data may become significant.

4.7 Conclusions

We can conclude that none of the evaluated systems address sufficiently all
of the problems related to our evaluation criteria. In particular, these
systems fail to combine (1) a mechanism for monitoring of object and
component middleware with (2) a scalable and flexible architecture and (3)
an explicit monitoring model suitable for analysis of temporal and causal
relationships. Based on the advantages and disadvantages that we

 CONCLUSIONS 107

summarized above, we define two groups of requirements for our
monitoring system:
– Generic – Requirements relating to monitoring in distributed

environments in general;
– Specific – Requirements relating to monitoring of communication

behavior in object and component middleware.

Furthermore, we distinguish two types of users of a monitoring system:
– Monitoring user – or simply user, who uses the information he obtains

from the monitoring system for some purpose. Monitoring users show
interest mainly in the properties of the monitored application;

– Monitoring designer – or simply designer, who wants to apply the
monitoring system to one or more applications in order to prepare
them for monitoring. Monitoring designers show interest mainly in the
properties of the monitoring system that potentially reduce the cost for
monitoring.

In the next sections we define generic and specific requirements from the
perspectives of both types of users of a monitoring system. We shall also
indicate for each requirement the general qualities of a monitoring system it
relates to, such as performance, usability, scalability, maintainability,
reusability, configurability, and portability.

4.7.1 Generic requirements

From the perspective of the user we define the following requirements:
– Causal precedence. Monitoring data should contain the necessary

information that allows reasoning about causal precedence (see Chapter
2, section 2.2.3) among events from application runs. Note that causal
precedence also automatically provides partial temporal order among
events in the system. This requirement improves usability for
monitoring applications that require temporal and causal order;

– Online monitoring. The monitoring system should provide the possibility
for timely delivery of monitoring data to monitors, for the purpose of
controlling the monitored application based on some analysis from a
decision making component in the monitoring application, such as
debugging and application management. This requirements addresses
performance;

– Monitoring model. The monitoring system should provide an explicit
monitoring model that defines all aspects of application structure and
behavior contained in the monitoring data. This requirement improves
usability in general.

108 CHAPTER 4 EVALUATION OF MONITORING SYSTEMS

From the perspective of the designer we define the following requirements:
– Large number of producers. The monitoring system should support a large

number of remote application parts producing monitoring data at
various rates. This requirement improves scalability;

– Large number of consumers. The monitoring system should support a large
number of monitors with different requirements for monitoring data.
This also implies that the monitoring system should adapt to the
requirements from monitors during runtime. This requirement
improves scalability;

– Overhead from intrusion. The monitoring system should minimize the
overhead from injected delay in application behavior by providing a
configurable instrumentation that generates only monitoring data
relevant to monitors. This requirement improves performance;

– Separation of generic from specific functionality. The monitoring system
should clearly separate the instrumentation (which we typically consider
specific to the domain of the monitored application) from application
domain independent monitoring functionality. Furthermore, the
monitoring system should clearly separate the tools (monitors) that
perform analysis (which we typically consider specific to the domain of
the monitoring application) from the application domain independent
monitoring functionality. This requirement increases reusability,
maintainability and flexibility of the monitoring system.

4.7.2 Specific requirements

From the perspective of the user we define the following specific
requirements:
– Communication and lifecycle. The monitoring system should provide

information about the communication and lifecycle behavior of
application objects and/or component instances in middleware-based
applications. Communication behavior includes operation invocations
and remote method calls (e.g., synchronous and asynchronous), and
lifecycle behavior includes creation, activation, deactivation and
destruction of objects and component instances. This requirement
addresses usability for middleware.

From the perspective of the designer we define the following specific
requirements:
– Transparent middleware instrumentation. The monitoring system should

provide instrumentation of the middleware that conforms as much as
possible to the transparency principles of the middleware. This
requirement improves the reusability;

 CONCLUSIONS 109

– Middleware tool support. The monitoring system should minimize manual
work by, e.g., entirely automating the instrumentation process. This
reduces time for enabling monitoring and increases the quality of the
instrumentation. This requirement improves usability, efficiency, and
maintainability.

Chapter 5

5. A design approach for generic
monitoring systems

This chapter presents a design approach for monitoring systems. With this
design approach we intend to reduce design time and development costs by
capturing the important issues in designing monitoring systems and
organizing them into appropriate guidelines.

We start with a general discussion in which we identify basic design
questions. Based on these questions we decompose the design process into
four separate stages. We then elaborate on the steps of each stage in
separate sections.

5.1 General discussion

In Chapter 2 we decomposed the monitoring system using the separation of
concerns principle. We applied this principle twice, first to separate
functionality that deals with the domain of the monitored application from
functionality that deals with the monitoring application, and then to
separate domain-independent monitoring activities from domain-specific
activities. This resulted in the decomposition of the monitoring system into
three tiers: an instrumentation tier, a monitor tier and the tier of the MSS.
We use this decomposition as a starting point to define a design approach
that allows designers to build a monitoring system in a systematic way.

We choose to analyze the design process from the perspective of the
monitoring application, because it represents the motivation for
monitoring. The monitoring application requires certain monitoring
information about the monitored application. For this the monitoring
application requires certain functionality from the monitoring system.

112 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

We call service of a system, the externally observable functionality of that
system [ViPi+00]. In general, to define a service we need to describe the
interactions of the systems with its environment (i.e., users), any relations
between these interactions, and the information exchanged with these
interactions. The service of a monitoring system offers to the monitoring
application means to obtain the required monitoring information. We
shape our design approach by emphasizing the importance of the
information required by the monitoring application, the monitoring data
that represents the information, and the measurements performed on the
monitored application necessary for acquiring the monitoring data.

5.1.1 Design questions

We want to design a monitoring system modeled as shown on Figure 5-1
(see also Chapter 2, section 2.1.1). In relation to any monitoring system we
can phrase a set of five generic design questions (Q1 to Q5) that help
formulating and structuring the required monitoring information. A
dashed-line round-cornered rectangle shows the scope to which a design
question applies.

MMoonniittoorreedd
AApppplliiccaattiioonn

MMoonniittoorriinngg
AApppplliiccaattiioonn

Q1

MMoonniittoorriinngg
SSuuppppoorrtt
SSyysstteemm

Q3 Q4 Q5 Q2

By answering these questions, designers prepare for the actual design of a
concrete monitoring system.

Figure 5-1
Decomposition of
the monitoring
system

– Q1: For what purpose do we want to monitor?
– Q2: What information do we need to fulfill the monitoring purpose?
– Q3: What monitoring data does the monitor require from the MSS?
– Q4: What monitoring data does the MSS require from the

instrumentation?
– Q5: What measurements does the instrumentation have to perform?

To properly introduce the design questions lets consider the following
example:

Example 1
Debugging of
application faults

A developer needs to locate and remove errors from the prototype of a
distributed application. When an error condition occurs, he wants to edit the
erroneous source code from the Integrated Development Environment (IDE).

 GENERAL DISCUSSION 113

Q1: Why does the developer want to monitor a prototype of a distributed application?
The answer to this question determines the purpose for monitoring. This
question helps designers to identify the domain of the monitoring
application.

In Example 1, the statement “to locate and remove errors from the
program’s prototype” represents the monitoring application domain. In this
case, monitoring plays a role in locating errors during the debugging and
testing stage of the software development process.
Q2: What information does the developer need in order to locate and remove errors?
To answer this question, designers need to define a high level description of
the information delivered by the monitoring system. In the monitoring
system, the monitor has the responsibility for presenting this information to
the monitoring application.

In Example 1, when an error occurs that the monitoring system can
detect, the developer requires the IDE to open and show the appropriate
source code file, highlight the statement that may have caused the problem,
and provide a human-readable explanation of the error. In this case, the
highlighted statement in the source code and the error explanation
represent the needed monitoring information.
Q3: What monitoring data does the monitor require from the MSS?
The monitor concentrates the knowledge that the monitoring system has
about the monitoring application. A monitor requires monitoring data in
order to extract and present information to the monitoring application.
This question focuses the designer’s attention on execution aspects of the
monitored application (as a whole), about which the monitor requires
information.

In Example 1, the monitor requires from the MSS monitoring data
containing information about the file names, line numbers of the
statements producing errors, and error codes for all errors that occur in the
monitored application. The monitor requires that monitoring data in the
order of the occurrence of the errors in the monitored application. Using
this information, the monitor can access the source files, and can retrieve
human readable error descriptions from some database with error code
descriptions.
Q4: What monitoring data does the MSS require from the instrumentation?
The MSS concentrates domain independent functionality responsible for
the collection, aggregation and dissemination (and possibly processing) of
monitoring data. To answer this question, designers need to focus on the
monitoring data that the instrumentation (instrumented application parts)
provides to the MSS.

In Example 1, when the instrumentation detects an error in a particular
application part, it generates monitoring data that comprises the line

114 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

number of the statement that produced the error, the name of the source
file where the statement resides, and the error code. Note that because
monitors require delivery of monitoring data in the occurrence order, the
instrumentation has to provide to the MSS extra information that allows it
to reorder monitoring data, e.g., a timestamp reflecting the moment of
error occurrence. This implies that the MSS collects the monitoring data
from the instrumentation at the distributed monitored application parts,
performs reordering according to the time of occurrence of the errors, and
delivers the monitoring data to monitors in the proper order. Note that the
MSS does not need to pass timestamps to the monitor, as it already
guarantees ordered delivery.
Q5: What measurements does the instrumentation perform?
The instrumentation concentrates the knowledge of the monitoring system
about the monitored application. The instrumentation performs
measurements in order to generate monitoring data containing information
about the execution aspects of the monitored application, which the
monitoring application considers interesting. The answer to this question
determines the type of measurements and indirectly the mechanisms, which
the instrumentation uses to perform the measurements.

In Example 1, the instrumentation uses the debug interface of the Java
virtual machine running in debug mode, to detect (catch) un-handled
system exceptions. The instrumentation analyzes the exception information
in order to extract the file name, the line number, and the type of the error
that an exception represents. Furthermore, the instrumentation uses the
host’s computer clock to generate timestamps describing the time of the
exception occurrence.

By answering these questions designers collect requirements on the
monitoring system, starting from high-level information presented by
monitors, and ending at the concrete measurements performed by the
instrumentation. We call these requirements monitoring requirements.

5.1.2 Building a monitoring system in stages

In order to reduce the complexity of the design process, we suggest
designers to address monitoring requirements in a particular order, and
possibly in groups based on some common characteristics. In this section,
we define design stages for monitoring systems consisting of three tiers: a
monitor, an MSS and an instrumentation. Each design stage addresses a
subset of the monitoring requirements.

 GENERAL DISCUSSION 115

I

GGeenneerriicc
MMoonniittoorriinngg

SSyysstteemm

specializes into

II III

MMoonniittoorreedd
AApppplliiccaattiioonn

MMoonniittoorriinngg
AApppplliiccaattiioonn MMoonniittoorriinngg

SSuuppppoorrtt
SSyysstteemm

IV

We propose the following decomposition of the design process into four
stages (Figure 5-2):

Figure 5-2
Decomposition of
the design process

I. GMS design;
II. GMS specialization;

III. Instrumentation design;
IV. Monitor design.

The first stage deals with the design of a Generic Monitoring System
(GMS). We base the motivation for this design stage on our prior
observation from Chapter 2 that the monitoring system performs common
monitoring activities, some of which (e.g., dissemination) we consider
independent from the domains of the monitored and the monitoring
applications. In this stage, designers generalize the monitoring requirements
collected with the help of Q3 and Q4 in order to develop a GMS that works
with monitoring data in a domain independent manner. The GMS
represents a generalization of an MSS. The GMS architecture provides,
among others, the following benefits to designers of monitoring systems:
– Explicit definition of the service of the MSS to facilitate development of

new monitors and instrumentations;
– Increased reusability and maintainability of core monitoring

functionality in a distributed environment;
– Increased technological independence from the monitored and

monitoring domains;
– Improved scalability for facilitating monitoring of large distributed

systems.

116 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

The second stage deals with the specialization of the GMS from the
previous stage into an MSS suitable for monitoring of a particular
monitored application for a particular purpose. In this stage, designers
consider monitoring requirements collected with the help of Q2 and Q3 in
order to define a monitoring model of the monitored application.
Designers also define a monitoring data structure for the monitoring
model. The monitoring data structure defines how one represents instances
of the concepts from the monitoring model using concrete data types, such
as strings and numbers. Furthermore, in this stage designers consider
monitoring requirements from Q4 to identify any functionality of the MSS
that requires processing of the monitoring data coming from the
instrumentation.

The third stage deals with the instrumentation design for a monitored
application according to the monitoring model defined in the previous
stage. In this stage, instrumentation designers consider monitoring
requirements from Q4 and Q5 in order to design proper measurement
mechanisms that can provide the required monitoring data.

The fourth stage deals with the design of monitors that can analyze
monitoring data using the monitoring model identified in stage two. In this
stage, monitor designers consider monitoring requirements from Q1, Q2,
and Q3 to produce a monitor that can provide the required information to
the monitoring application.

Figure 5-3 illustrates the relations among the different stages. These
relations define a design trajectory that leads designers through the process
of designing monitoring systems.

 11.. GGMMSS ddeessiiggnn

22.. GGMMSS
ssppeecciiaalliizzaattiioonn

44.. MMoonniittoorr
ddeessiiggnn

33.. IInnssttrruummeennttaattiioonn
ddeessiiggnn

Note that as a result of the definition of a monitoring model and a data
structure in stage two, designers can perform the Monitor and

Figure 5-3
Relations among
the stages

 GMS DESIGN 117

Instrumentation design stages independently. The independent design of
the monitor and the instrumentation provides several benefits:
– The possibility for development of a monitor and an instrumentation by

separate teams;
– Makes it easier to support many different monitoring applications that

require similar monitoring data from an instrumentation;
– Makes it easier to support instrumentations of many different

monitored applications that produce similar monitoring data required
by a monitor;

Although the proposed design approach divides the development of a
monitoring system into four separate stages, designers can skip a stage,
should they find existing software that meets the monitoring requirements.
For example, designers can skip the first stage if there already exists a
generic monitoring system with the necessary capabilities. In the second
stage designers could then only create an MSS as a specialization (a
monitoring model and additional processing components) of that
monitoring system so that they can build instrumentations and monitors.

In the next sections we describe in more detail the steps in each of the
stages. In presenting the stages of our design approach we limit the
discussion to design guidelines only. At this point, we do not offer concrete
designs nor do we address any implementation issues.

5.2 GMS design

We propose the following three steps during GMS design (Figure 5-4):

11.. IIddeennttiiffiiccaattiioonn ooff

ggeenneerriicc uusseerr
rreeqquuiirreemmeennttss

22.. DDeeffiinniittiioonn ooff aa
GGMMSS sseerrvviiccee

33.. DDeeffiinniittiioonn ooff aa
ssooffttwwaarree aarrcchhiitteeccttuurree

Figure 5-4 Steps in
GMS design

118 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

5.2.1 Identification of generic user requirements

In this step, designers start with a view on the GMS from the perspective of
its users: the monitor and the instrumentation (Figure 5-5). We consider
the GMS a black box characterized by its external behavior – the GMS
service. In this context, user requirements represent the requirements of
the monitor and the instrumentation on the service of the GMS. These
requirements encompass both functional requirements and monitoring
requirements (i.e., requirements on monitoring data).

GGMMSS

GGMMSS SSeerrvviiccee

MMoonniittoorr IInnssttrruummeenn--
ttaattiioonn

The GMS represents a generalization of an MSS that deals only with domain
independent monitoring activities. These activities include dissemination
activities and generic processing activities on monitoring data.
Dissemination activities include collecting and delivering monitoring data.
Generic processing activities do not require interpretation of domain
specific information about the monitored application by the GMS.
Designers can define requirements on the dissemination and processing
activities performed by the GMS.

The monitoring requirements resulting from Q3 and Q4 concern the
monitoring data accessible through the MMS service. In this step, designers
generalize these requirements to define requirements on the monitoring
data that the GMS provides to its users in a generic way.

Figure 5-5 The
service of the GMS

5.2.2 Definition of a GMS service

Based on the identified user requirements, designers can proceed with the
GMS service definition. We define a service as a collection of service
primitives, parameters for each primitive, and the relations between the
primitives [ViPi+00]. A service primitive represents one type of interaction
between the system and its users. Designers can organize service primitives
into groups called service elements, based on some common characteristics.
The relations among service primitives also imply relations among their
corresponding service elements.

In order to design the service for the GMS, designers need a starting
point. In Figure 5-6 we present one possible GMS monitoring model that
defines a general designer’s view on a monitoring system. The monitored

 GMS DESIGN 119

application generates some monitoring reports that correspond to events
occurring in the parts of the monitored application (producers). Each event
has two attributes, event (source_id, t), where source_id represents some
unique identifier of the producer that generated the event, t represents a
timestamp of the moment of the event detection by the monitoring system
(and the instrumentation in particular). The level of generality and domain
independence of the GMS monitoring model, determines the applicability
of the GMS to different monitoring and monitored applications.

PPrroodduucceerr

PPrroodduucceerr

PPrroodduucceerr

PPrroodduucceerr

GGMMSS

CCoonnssuummeerr

CCoonnssuummeerr

CCoonnssuummeerr

CCoonnssuummeerr

LLeeggeenndd

AA mmoonniittoorriinngg
rreeppoorrtt

DDiirreeccttiioonn ooff
mmoonniittoorriinngg
rreeppoorrttss

DDiirreeccttiioonn ooff
rruunnttiimmee
rreeqquuiirreemmeennttss

MMoonniittoorriinngg
aapppplliiccaattiioonn ssiiddee

MMoonniittoorreedd
aapppplliiccaattiioonn ssiiddee

IInnssttrruummeenntteedd
aapppplliiccaattiioonn

ppaarrttss
MMoonniittoorrss

The monitoring application comprises several consumers (monitor
instances), which require information about the behaviour of the monitored
application. A consumer expresses its requirements for monitoring
information to the GMS in some form. The GMS has the responsibility to
supply consumers with monitoring reports according to their requirements.

The monitored application comprises several producers (instrumented
application parts) that can generate monitoring reports. The GMS does not
make any further assumptions about the behaviour of the producers or
about any relations among different producers. Based on the consumer
requirements, the GMS can instruct producers to generate monitoring
reports containing the required data. The GMS then collects generated
monitoring reports from the producers and delivers them to the
appropriate consumers.

Monitoring data constitutes a flow of individual monitoring reports
from the monitored application to the monitoring application. Designers
need to define a generic monitoring data structure for the GMS monitoring
model. Consider again Example 1, we define that a monitoring report has
one field for every attribute in an event of the generic monitoring model we
discussed above. The source_id attribute accepts string values generated
using the GUID algorithm [RPC], the t attribute accepts 64-bit long integer
values representing a timestamp in milliseconds since midnight, January 1,

Figure 5-6 A
possible GMS
model

120 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

1970 UTC. The generic data structure allows the GMS to process
monitoring data independently of the monitored and the monitoring
domains, for example, to make sure that the proper monitoring data goes
to the correct consumers.

5.2.3 Definition of a software architecture

In the next step, designers open the black box in order to determine how
internal GMS components realize the GMS service. The GMS performs two
types of activities: generic processing and dissemination (e.g., collecting,
delivery) of monitoring data. We propose two views on the internal
structure of the GMS: a logical decomposition that defines the functional
blocks that perform processing activities, and a physical decomposition that
determines the GMS structure according to the distribution aspects of
dissemination activities.

Logical decomposition

In a top down approach, a logical decomposition of a software system
defines the internal components that implement the system’s service. Each
component implements some part of the service and collaborates with the
other components to achieve the behavior of the system as a whole. We
consider a logical decomposition similar to the computational viewpoint of
RM-ODP [Put01]. As such, the logical decomposition does not consider
any distribution issues.

The logical decomposition of the GMS defines the generic processing
and the dissemination components of the GMS. The processing and
dissemination activities described in Chapter 2, may give a hint to GMS
designers how to structure the GMS functionality. Based on the separate
activities, designers can identify components that deal, for example, with
subscription, filtering and delivery of monitoring data, and the relations
among these components.

Physical decomposition

In order to operate in a distributed environment, a monitoring system may
have to satisfy certain distribution and scalability requirements. The physical
decomposition of the GMS takes such requirements into account. We
consider physical decomposition similar to the engineering viewpoint of
RM-ODP.

Monitoring of a distributed application requires the use of a distributed
monitoring system. A distributed monitoring system should employ an
architecture that does not limit its use together with the monitored

 GMS SPECIALIZATION 121

application. For example, in an environment of wide physical distribution,
monitoring of application parts may require dealing with communication
delays (due to use of various types of network), partial failure and
temporary network unavailability, in order to deliver collected monitoring
reports to interested monitors.

Monitoring of very large and dynamic (in terms of growth) applications
require the monitoring system to deal with scalability issues. Large (and
growing) amounts of monitoring data may result in exhausting
communication and computation resources within the monitoring system.
A GMS should employ an architecture that allows one to extend its capacity
dynamically in terms of volumes of monitoring data, large amounts of
producers producing data, and large amount of consumers requesting data.
For example, designers can address scalability issues by allowing flexible
deployment of GMS components. The scalable architecture proposed in
[Shaer98] presents an example of a solution how to deal with scalability
issues, in which designers can deploy the monitoring system using a
hierarchical infrastructure of interconnected monitoring agents.

As part of the physical decomposition, designers should also consider
how to map the logical structure defined in the previous step, onto the
components of the physical decomposition. For example, to improve
efficiency, designers may consider distributing a logical filtering component
onto several interconnected monitoring agents each responsible for the
delivery of monitoring reports to a subset of consumers.

5.3 GMS specialization

We propose the following three steps for the specialization of the GMS
(Figure 5-7):

11.. DDeeffiinniittiioonn ooff aa

mmoonniittoorriinngg mmooddeell ooff
aapppplliiccaattiioonn bbeehhaavviioorr

22.. DDeeffiinniittiioonn ooff aa
ddaattaa ssttrruuccttuurree

33.. AAddddiittiioonn ooff
pprroocceessssiinngg

ccoommppoonneennttss

Figure 5-7 Steps in
GMS specialization

122 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

5.3.1 Definition of a monitoring model

In Chapter 2, we introduced the role of a monitoring model (MM). We
encourage designers to define monitoring models for their monitoring
systems, because an MM explicitly and systematically identifies and defines
the monitoring aspects of application execution
[Bates85][KQS92][Hof+94][Rack99][BeAb02]. Instrumentation
designers can use an MM to build an instrumentation for the modelled
monitored application. This instrumentation allows one to monitor that
application in the terminology of the monitoring model. Monitor designers
can use the MM to build monitors that analyse the behaviour of the
application. Using the same MM for the instrumentation and the monitor
makes sure that they both share the same modelling concepts that allow
them to work together.

In stage one, designers define a general model of the monitored
application as part of the model of the monitoring system. In section 5.2.2,
we represented the monitored application as a collection of producers of
monitoring data. In this stage, designers define an MM that specializes that
general model.

To develop an MM, designers need two kinds of information: (1)
monitoring requirements from Q2 and Q3, and (2) detailed knowledge
about the monitored application. A designer uses this information during
MM development, to identify interesting entities, and their behavior, in the
monitored application. Designers can use status-based or event-based
modeling to express entity behavior (Chapter 2, section 2.2.1).

Consider again Example 1, in which the monitoring system should
deliver to its users information about errors in running applications. The
MM for this example can represent the monitored application as a
collection of application part instances, each running on a separate host.
Errors relate to the consequences of abnormal system activities (e.g., a
sudden and unpredicted hardware failure). The model identifies that system
exceptions represents such activities and defines an event called Error to
represent an exception. An Error event has the following information
attributes: error (source_id, t, ln, fname, ecode), where source_id and t we
explained in the generic monitoring model, ln represents the line number
which generated the error, fname represents the source filename, and ecode
represents the error code of the error.

We have to emphasize that an MM differs from a design model.
Designers use a design model to model software applications, hence an
application model constitutes an instance of the design model. In contrast,
designers use a monitoring model to model individual runs of an
application, including all aspects of these runs that monitors may potentially

 GMS SPECIALIZATION 123

consider interesting. Hence, a single run model constitutes an instance of
the monitoring model.

5.3.2 Definition of a data structure

An MM constitutes abstract modeling concepts. In order to allow one to
generate monitoring data that the monitoring system can transmit to
monitors, the instrumentation designers need to define a data structure for
the MM. The data structure defines how the instrumentation describes the
concepts of the MM using concrete data values, such as numbers and strings
found in modern programming languages. Using the monitoring data
structure, the instrumentation builds an instance of the MM that represents
the execution of the monitored application, by generating and sending to
the MSS properly structured monitoring reports. Using the same
monitoring data structure, monitors can actually process the monitoring
reports coming from the MSS, rebuild the instance of the MM, and using it
analyze the application execution that the instrumentation has observed.

Figure 5-8 illustrates the relation between the monitoring models and
corresponding data structures for a GMS and an MSS.

Stage one

(GMS)

Stage two
(MSS)

Generic data
structure

Generic monitoring
model

Specific data
structure

Specific monitoring
model

In this step, designers specialize the generic data structure of the GMS to
make a data structure for the MSS. This would allow the GMS to work with
the generic structure of monitoring reports (e.g., during generic processing
and dissemination) in a domain independent way, while at the same time
the instrumentation uses the specialized structure of the monitoring reports
to communicate domain specific information to the monitor.

Consider again Example 1. We have identified the entities and
represented their erroneous behavior using events. In this example, a
monitoring report could represent a single error event type. For this simple
example we can use some generic event distribution system as a GMS. We

Figure 5-8
Relations among
the generic and
specific data
structures

Error
ln
fname
ecode

Event
source_id
t

Figure 5-9 The
Error class

124 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

can represent the data structure of a monitoring report in Example 1 using
a class as shown on Figure 5-9. The Error class has as attributes the
attributes of the error event, however these attributes now can have
concrete values. The source_id attribute and the t attribute we explained
earlier, the ln attribute accepts 32-bit integers, the fname attribute accepts
null-terminated strings, and the attribute ecode accepts 8-bit integers.
Objects of the error class correspond to individual monitoring reports.

5.3.3 Addition of processing components

In some cases of monitoring, designers require the MSS to process
monitoring data by interpreting the monitoring data generated by the
instrumentation. Since the GMS deals with monitoring data in a generic
way only, designers need to add in these cases processing components to
produce an MSS that meets their requirements. Back to Example 1, the
monitoring system needs to reorder monitoring reports before delivering
them to the user. For this purpose, designers define a processing
component that reorders the data according to the timestamp attribute t of
a monitoring report.

When adding processing functionality, to use the benefit of having a
generic monitoring system to a full extent, designers should avoid changing
the GMS. Figure 5-10 shows how designers can add a processing
component (e.g., for reordering) without changing the service of the GMS.

GGMMSS

MMoonniittoorr IInnssttrruummeenn--
ttaattiioonn

PPrroocceessssiinngg

MMSSSS

aa11

aa aa

bb11

bb bb

CC11 CC22

Monitors use the interaction point a to interact with the GMS. The
instrumentation uses interaction point b to interact with the GMS. The
processing component requires monitoring data in a similar way as the
monitor and produces processed monitoring data in a similar way as the
instrumentation. The processing component can use the same type of
interaction points (and hence the same service primitives involved in the
corresponding interactions) as the monitor and the instrumentation. Two
new components, C1 and C2, and the processing component implement
the service of the MSS (GMS plus the processing functionality). The MSS

Figure 5-10
Specialization of
the GMS into a
concrete MSS

 INSTRUMENTATION DESIGN 125

offers its service through two new interaction points a1 and b1 for the
monitor and the instrumentation respectively.

5.4 Instrumentation design

We consider instrumentation design explicitly in a separate step in our
design approach, because the quality of the instrumentation may determine
the performance of the whole monitoring system [KQS92] [LWSB97]
[LDKK98]. The instrumentation design defines the concrete measurement
mechanisms that the monitoring system uses to collect the required data.

We model the instrumentation as a collection of one or more sensors. In
general, a sensor represents “a device that responds to a physical stimulus
(as heat, light, sound, pressure, magnetism, or a particular motion) and
transmits a resulting impulse (as for measurement or operating a control)”
[M-W]. In our case, a software sensor represents a small computer program
that generates some data output when the environment in which it operates
meets some condition defined in the sensor program. When a software
sensor produces an output we say that the sensor triggers the
instrumentation to generate a monitoring report from its output. Further in
this text we use the terms “sensor” and “software sensor” interchangeably.

We consider four steps during instrumentation design (Figure 5-11):
sensor design, sensor placement, design of instrumentation tools, and
definition of an instrumentation architecture.

11.. SSeennssoorr ddeessiiggnn

22.. SSeennssoorr
ppllaacceemmeenntt

33.. DDeessiiggnn ooff
iinnssttrruummeennttaattiioonn ttoooollss

44.. IInnssttrruummeennttaattiioonn
aarrcchhiitteeccttuurree

Figure 5-11 Steps
in instrumentation
design

126 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

5.4.1 Sensor design

During sensor design, designers use the MM to identify individual sensors,
what aspect of the monitored application these sensors measure exactly,
when they trigger, and what output they produce. Designers may want a
sensor to detect an event or to measure a status. For example, if a designer
embeds a sensor in the source code of an application, right after the last
statement of some complex activity, the triggering of the sensor may
represent the completion of the execution of that activity (i.e., its last
statement has completed) and hence represent an event. The sensor
program may also read the current value of the system clock to generate a
timestamp as parts of its output. This timestamp can represent the time
attribute of the event. Alternatively, the monitoring system may execute a
sensor embedded in the monitored application, in order to perform some
measurements of status variable and to generate as output their values.

In this step, designers also use the data structure of the MM to design
how the outputs of sensors relate to attributes in monitoring reports.

5.4.2 Sensor placement

During sensor placement, designers determine where and how to position
sensors with respect to the monitored application. For example, to detect
an event designers may position a sensor after some statement in the
application’s code. We distinguish several general sensor placement
techniques that designers can use to implement their instrumentation in a
structured way. These techniques vary by the level of dependence on a
particular technology (e.g., programming language or operating system), the
amount and type of work required from developers to produce the
instrumentation, and the impact of change of the sensor placement on the
monitored application:
– Using available APIs. Some applications or execution environments may

provide Application Programming Interfaces (APIs) suitable for
monitoring. Examples of such APIs constitute operating system level
notification mechanisms, and middleware mechanisms such as CORBA
interceptors [CORBA]. Using APIs potentially has the lowest impact of
change and requires less instrumentation work compared to other
techniques. This mechanism however, limits the type of things that one
can monitor to those predefined in the APIs;

– Source code modification. Designers may modify source code to install
sensors in it. Source code modification provides maximum opportunity
for access to internal application information. This technique however
may yield high impact of change. Furthermore, designers need to
compile, re-package, and re-deploy the modified application;

 INSTRUMENTATION DESIGN 127

– Binary code modification. Designers may modify binary code to install
sensors in it. Binary modification enables monitoring in cases when
designers cannot use source code modification, e.g. because they do not
have access to the source code or the legal rights to modify the source
code. In contrast to source code modification, binary code modification
does not require recompilation of the monitored application. In general,
we consider this instrumentation technique difficult to use, because it
requires special knowledge about the binary machine code for a
particular computer architecture, and in general makes the monitored
application and its instrumentation harder to maintain;

– Wrapping. In case of wrapping, designers replace an application part by a
new component that matches the service provided by the original part.
When invoked, the new component may trigger any sensors that
designers have embedded in it, and then delegates execution to the
original component it replaces, in order to retain the original
functionality of the monitored application part. To perform wrapping,
designers may use software design patterns, such as Proxy [BuMe+96]
or variations of Wrapper Façade [SSRB00]. Designers may use wrapping
instead of source code modification to reduce the impact of change, but
they still need to re-deploy the new (wrapper) components;

– Hardware. A hardware sensor for digital computing devices represents a
digital device that designers use to measure information about the
application execution in a non-intrusive way. For example, in [SLC99]
designers evaluate the performance of a particular CORBA ORB
implementation using hardware sensor capabilities of a VMEbus
compliant single-board computer running a real-time operating system.
Another example constitutes network sniffing using an Ethernet card to
read all traffic on the network.

Various circumstances can influence the designer’s choice for an
instrumentation technique. We consider the best choice the use of APIs, as
they save development time. Nevertheless, a predefined API may lack
richness of the information it can offer to monitors. Source code
modification gives greatest control over the monitored application –
instrumentation designers can manipulate its source to measure anything
they need. When designers cannot modify the source code for some reason,
designers can resort to binary code modification. Because computers use
binary code for efficient execution and not for human comprehension,
binary code modification may turn out difficult to perform by the
instrumentation designer. We consider wrapping useful if for some reason
(e.g., legal issues) designers do not want to make source or binary
modifications to the original application. Wrapping however cannot provide

128 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

information about the internal structure and mechanisms of a monolithic
application component. When monitoring based on software sensors
produces too much overhead, designers may use dedicated monitoring
hardware to provide information about certain execution aspects while
maintaining low overhead. In this thesis we do not consider hardware
sensors.

In a heterogeneous distributed environment, designers may use
combinations of different sensor placement techniques to prepare an
application for monitoring.

5.4.3 Development of instrumentation tools

In order to facilitate the development process for instrumentation that
requires the placement of a large number of sensors, designers often use
instrumentation tools to automate sensor placement. Typically, such tools
process the application, either at API, source, or binary level, and insert,
install or deploy software sensors, and subsequently (if necessary) compile,
build, package and deploy the modified application. We advise designers to
consider the additional effort of designing instrumentation tools because
they help reduce the error-prone aspects of manual instrumentation. We
distinguish two types of instrumentation tools:
– Design-time. A design-time instrumentation tool installs sensors during

the instrumentation design. For example, a design-time instrumentation
tool can automatically process the source code of the monitored
application, identify the correct places for sensor embedding, embed
sensors, and then compile the instrumented source code;

– Runtime. A runtime instrumentation tool installs sensors during the
execution of the monitored application. For example, a custom
ClassLoader [CLSLDR] can modify the byte code of classes of a
monitored Java application during their initial loading in the Java virtual
machine.

Designers can use design-time tools for sensor embedding using APIs,
source code, and binary modification of the monitored application. In
contrast, runtime tools provide in-memory and on-demand binary7
instrumentation, leaving the original monitored application unchanged. We
consider as a major drawback of runtime instrumentation tools the possible

7 Runtime tools typically have access to the binary code that computers execute. An
exception represents an application written in an interpreted scripting language, for which a
runtime tool actually embeds code in the source code (since the application source code
gets interpreted during runtime by the generic binary code of an interpreter).

 INSTRUMENTATION DESIGN 129

difficulties for their development (as compared to design-time tools),
because they rely heavily on binary modification.

We consider a principal drawback of all instrumentation tools the
additional software development cycle necessary for their creation. In this
context, designers of application instrumentation have to consider the
usefulness of a tool to justify the effort for its development.

5.4.4 Instrumentation architecture

In this step, designers define the internal architecture of the
instrumentation. This architecture defines functional blocks that manage all
sensors, collect the data sensors generate and provide this data to the MSS
using the GMS service.

In Chapter 7 we provide such an architecture for object and component
middleware.

5.4.5 Discussion on instrumentation performance

In Chapter 2 we defined intrusion as the delay a sensor execution may
introduce to the application behavior. This delay results from the
computing power and memory it takes for a sensor to complete its
measurements and generate its output. In general, the more time a sensor
spends processing measurements, the more it deprives the monitored
application of computing resources.

Designers should constantly keep in mind the intrusive aspect of
sensors. A systematic way to assess the intrusion on the monitored
application consists of comparing performance times of the monitored
application with and without the presence and the operation of sensors.
Users of the monitored application may tolerate a certain delay during its
operation. As a method for assessing the intrusiveness from the perspective
of the users of the monitored application, designers may repeat the
acceptance tests8 of the monitored application in the presence of a running
instrumentation.

In Chapter 2 we also presented a method for quantification of the
information consistency of a monitoring system, which we consider
important for its users. Applying such a method would allow designers to
assess the quality of their instrumentation from the perspective of the users
of the monitoring system.

During instrumentation design, designers should consider ways of
reducing intrusion. For example, the monitoring system can avoid

8 The ISO9000 series of standards defines acceptance test as the test that determines
whether the final product meets user expectations [ISO9000].

130 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

unnecessary sensor execution by switching sensors on and off during
runtime, depending on the current demand for monitoring data. The
monitoring system can even install or completely remove sensors on-
demand during runtime with the help of runtime instrumentation tools.
Other examples for reducing intrusion constitute efficient sensor
implementation by experienced programmers, using automated code
optimizations, and use of profiler tools to discover bottlenecks in sensor
execution and replace them with more efficient implementations.

5.5 Monitor design

In this section we discuss monitor design. In many cases, designers need to
develop several monitors (or monitoring tools) for several monitoring
applications.

We propose a two-step monitor development process (Figure 5-12).

 11..DDeeffiinniittiioonn ooff
mmoonniittoorr

ffuunnccttiioonnaalliittyy

22.. MMoonniittoorr
iimmpplleemmeennttaattiioonn

Figure 5-12 Steps
in monitor design

5.5.1 Definition of monitor functionality

In the first step, designers take into account monitoring requirements
derived from the answers to Q1 and Q2 (see section 5.1.1). In this step, we
keep the definition of the monitor coarse. For example, designers identify
whether the monitor can take decisions and perform actions automatically,
whether the monitor can interact with an operator, the type of analysis it
performs, and the type of presentation to operators. We discussed issues
about the presentation to human operators in Chapter 2.

When determining the aspects of the analysis performed by the
monitor, designers use the MM developed in stage 2. Note that the type of
(formal) analysis of monitoring data that designers can use in a monitor
directly depends on the expressive power of the monitoring model
developed for this monitoring system in stage two of our design approach.
For example, verification of application execution such as presented in
[Logean00] requires a monitoring model of distributed computation that
allows verification of prototype behavior against predefined properties.

 CONCLUSIONS 131

5.5.2 Monitor implementation

In this step designers implement the software of the monitor. The actual
architecture of a monitor may depend on the functionality of the
monitoring application as a whole. For example, designers typically
implement a monitor that requires interaction with a human operator as a
centralized component operating on a single host with some graphical user
interface that presents to the operator information about the monitored
application. In contrast, a monitor that represents an automated
management system may consist of automated agents deployed throughout
the distributed environment, performing some analysis on monitoring data.

Different monitors in a monitoring application may share functionality.
In such cases, designers may consider to provide a monitor development
framework that offers standard functional blocks to use in monitor
development. For example, [Rack01] reports the MIVIS framework for
Java-based online monitors. Provisioning of a monitor development
framework (potentially) reduces the time for the production of monitors.

Designers may find an iterative and incremental approach to the
development of complex monitors more manageable and realistic than a
single development cycle. In an incremental development, designers
gradually add new functionality to the monitor.

Various monitors may have to work cooperatively to achieve a common
goal in a monitoring application. For example, in performance analysis a
number of monitoring tools may have to analyze various aspects of the same
monitoring data. For this reason, designers may consider to use a standard
format for exchanging information among analysis tools. For example, in
[CTRACE] designers use the XML Meta-data Interchange (XMI) format to
represent monitoring information about the communication patterns
among distributed objects.

5.6 Conclusions

In this chapter we presented a design approach for monitoring systems.
This design approach focuses on the separation of domain-dependent from
domain-independent functionality in a monitoring system.

Stage I deals with domain-independent functionality. In this stage,
designers design a GMS that provides generic monitoring functionality to
monitors and instrumentation.

Stage II deals with the specialization of a GMS into a concrete MSS. In
this step designers develop a common monitoring model and a data
structure, which allow the instrumentation to communicate monitoring

132 CHAPTER 5 A DESIGN APPROACH FOR GENERIC MONITORING SYSTEMS

data to a monitor. In this step designers also develop processing
components for the MSS.

Stage III deals with the development of an instrumentation for a
particular monitored application. This instrumentation effectively prepares
the application for monitoring.

Stage IV deals with the development of a monitor. In this stage,
designers develop a monitor that can provide the monitoring application
with the required information.

In the subsequent Chapters 6, 7, and 8, we follow the stages of this
design approach to provide solutions to problems associated with the
monitoring of object and component communication in middleware-based
distributed applications. We start each of these chapters by providing
answers to the preparatory design questions (section 5.1.1) relevant to the
design stage under discussion.

Chapter 6

6. An architecture for a generic
monitoring system

This chapter presents an architecture for a Generic Monitoring System
(GMS). This architecture provides a basis for the development of
monitoring systems for various monitoring and monitored applications. We
define the architecture following stage one of the design approach
presented in Chapter 5.

We start with the identification of user requirements. User
requirements represent the requirements of the monitor and the
instrumentation on the service of the GMS. Based on these requirements
we define the GMS service. The GMS service defines the externally
observable (from an user perspective) functionality of the GMS. We then
define a software architecture for the GMS. The GMS software architecture
presents a decomposition of the GMS functionality into components, which
cooperatively implement the GMS service. At the end we provide a report
about a prototype implementation of the presented architecture.

6.1 Identification of generic user requirements

We choose as a starting point the following high-level model of a GMS
(Figure 6-1).

 MMoonniittoorr

MMoonniittoorr

MMoonniittoorr

GGMMSS

IInnssttrruummeennttaattiioonn

IInnssttrruummeennttaattiioonn

IInnssttrruummeennttaattiioonn

Figure 6-1 GMS
model

134 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

A GMS has two types of users: monitor instances and instrumentation
instances. The GMS interacts with one or more monitor instances, which
require information about a monitored application. The GMS also interacts
with one or more instrumentation instances, which can provide monitoring
data containing information about the monitored application. The
information about the monitored application consists of statuses measured
in an instrumentation instance and events representing activities happening
in an instrumentation instance. The GMS model does not define concrete
statuses and events. The monitoring data consists of individual monitoring
reports (status reports representing statuses and event reports representing
events) that an instrumentation instance generates, sends to the GMS, and
the GMS delivers to the monitor instances.

We continue with the design of the GMS by focusing on the kind of
functionality a monitor and an instrumentation require from the GMS. We
capture user requirements with the help of the use case scenario
“Performing online monitoring”. Figure 6-2 shows an UML use case
diagram of the scenario. This scenario takes into account six cases of use of
the GMS during online monitoring.

We focus on online monitoring, because in general, offline monitoring
poses less restrictive constraints on the functionality of the GMS (see
Chapter 2) than online monitoring. For example, in online monitoring
users typically have requirements on the time it takes to deliver monitoring
data, while in offline monitoring such a requirement does not exist.
Therefore, designers can adapt a GMS service design that supports online
monitoring requirements, to a design that support offline monitoring, by
removing some of its functionality. For example, an offline monitoring
system (one that collects monitoring data first, and then at an arbitrary time
later makes it available to analysis tools) does not require subscription
functionality that allows delivery of monitoring data to monitors as soon as
the instrumentation generates it.

Browse Availability

Request Data

Receive Data

Monitor

Announce Availability

Send Data

Configure Generation

Instrumentation

Figure 6-2
�Performing online
monitoring� use
case diagram

 IDENTIFICATION OF GENERIC USER REQUIREMENTS 135

The diagram contains six use cases: Browse Availability, Request Data,
Receive Data, Announce Availability, Configure Generation, and Send Data.
The first three illustrate how the monitor interacts with (uses) the GMS,
and the following three illustrate how the instrumentation interacts with
(uses) the GMS. The use cases “depend” on each other in the sense that the
execution of one use case enables the execution of another. In the following
sections we describe each use case and the dependencies among the use
cases.

6.1.1 Browse Availability

A (generic for the GMS) monitoring model determines all possible types of
monitoring data available to monitors. Nevertheless, at some moment
during runtime, the monitored application may not produce all possible
types of monitoring data. For example, to monitor a certain type of
monitoring data may depend on the instantiation of a specific part of the
monitored application that produces this monitoring data. In this use case,
a monitor finds about the available types of monitoring data during
runtime. The GMS presents availability information to the monitor in the
form of a specification of availability. Note that the specification of availability
provided to monitors may change over time.

6.1.2 Request Data

In this use case a monitor requests monitoring data from the GMS. For
example, a monitor may request monitoring data in two ways: subscription-
based and interrogation-based. In case of a subscription-based request, the
monitor announces to the GMS its presence and submits a specification of
interest. At later moments, the GMS notifies the monitor about new
monitoring data that matches the criteria from the monitor’s specification
of interest.

In case of an interrogation-based request, the monitor requests
monitoring data from the GMS in a request/response style. It does this by
sending a selection criteria along with the request and requires within some
time limits, a response from the GMS with monitoring data that matches
the selection criteria.

6.1.3 Receive Data

In this use case the monitor receives new monitoring data from the GMS.
The method of requesting monitoring data determines the way the GMS
delivers new monitoring data: one or more notifications in case of a

136 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

subscription or a single response in case of an interrogation (see previous
section).

6.1.4 Announce Availability

In this use case, an instrumentation announces (to the GMS) what kind of
data it offers for monitoring. For this purpose, the instrumentation submits
to the GMS a specification of availability. The specification of availability may
change over time, for example, the instrumentation can withdraw its
specification when an instrumented application part it monitors goes offline
(i.e., terminates).

6.1.5 Configure Generation

In this use case the instrumentation receives configuration information
from the GMS in order to generate monitoring data. For example, as a
result of configuration, the instrumentation switches some of its sensors on
or off, so that it only generates monitoring data relevant to monitors.

We consider this use case similar to the “request data” use case, in
which the monitor “configures” the GMS to deliver (generate) monitoring
data using the monitor’s subscription or request information. We use this
observation later to identify dependencies among service primitives used by
the monitor and the instrumentation.

6.1.6 Send Data

In this use case, the instrumentation sends monitoring data to the GMS.
We consider this use case similar to the “receive data” use case, in which
the GMS sends monitoring data to the monitor. We also use this
observation later to identify dependencies among service primitives used by
the monitor and the instrumentation.

6.1.7 Use case dependencies

“Browse availability” depends on “announce availability” because the
instrumentation has to send availability information to the GMS before the
GMS can send it to monitors. For example, the instrumented components
of a distributed monitored application may individually announce
availability information as they become online (i.e., get instantiated by the
environment), and withdraw availability information as they go offline (i.e.,
get terminated by the environment). This way the GMS can maintain a view
on what monitoring data it can provide at any moment.

“Request data” depends on “browse availability” because, for example,
using the specification of availability a monitor can compose a specification

 DEFINITION OF THE GMS SERVICE 137

of interest that precisely defines the monitor’s requirements according to
the current availability of monitoring data.

“Receive data” depends on “request data”, because monitors receive
notifications about new monitoring data as a consequence of establishing a
subscription with the GMS, and receive a response as a consequence of an
interrogation-based request.

“Receive data” also depends on “send data” because monitors cannot
receive monitoring data that the instrumentation hasn’t sent to the GMS.

“Send data” depends on “configure generation”. For example, only
sensors that the GMS has switched on can generate monitoring data.

“Configure generation” depends on “request data” because, for
example, based on the monitor’s subscription, the GMS configures the
instrumentation so that it generates only data needed by monitors.

“Configure generation” also depends on “announce availability” because
the GMS configures the generation only for data that the instrumentation
can generate.

Alternatively, we can view a use case as a phase in the interaction of a
GMS user with the GMS system and hence the relations between them as
precedence in performing of each phase.

6.2 Definition of the GMS service

The GMS service defines the externally observable (by users) functionality
of the GMS system. Among other things, the GMS service shields the
monitor and the instrumentation from the details about dissemination and
processing of monitoring data in a distributed environment.

6.2.1 Basic concepts

Before we proceed with the service definition we need to introduce some
terminology.

We use the terms service user and service provider as defined in the OSI
Service Conventions Technical Report [ISO87]. The GMS system
represents the service provider for the GMS service. We call a GMS user the
service user of the GMS service. A monitor represents a GMS user that
requires monitoring data about the execution of a monitored application.
An instrumentation represents a GMS user that provides monitoring data
about the execution of a monitored application.

A service access point (SAP) represents an interaction point between a
service provider and a service user. A service primitive (SP) represents an
interaction that can occur at a SAP, where each interaction takes certain

138 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

service parameters. For the GMS service, we distinguish two types of SAPs,
one between a monitor and the GMS (M-SAP) and one between an
instrumentation and the GMS (I-SAP).

The GMS service consists of service primitives, service parameters and
relations between service primitives. A service element may group service
primitives by some common function of the GMS service provider,
effectively structuring the GMS service. Service elements can relate among
each other based on the relations among participating service primitives.

Figure 6-3 shows a sequence diagram illustrating how we describe
service primitives and the possible relations among them with respect to
SAPs. We use a notation based on time sequence diagrams of ISO/OSI
service conventions [ISO87] with some minor adjustments. The axis of a
SAP represents time, an arrow represents a service primitive, the direction
of an arrow indicates who has the initiative for the interaction, and an
arrow higher than others on the axis means the corresponding service
primitive occurs prior to the ones below. We also allow depicting two
independent time sequence diagram if they share the same SAP(s) by
connecting the SAP axis with a “spring”-like line. With a dashed straight or
arc line we express a causal relationship (with the semantics of realized
causality) between two service primitives at different or the same SAP. We
express explicitly that service primitives belonging to two distinct SAPs can
occur in any time order (hence we consider them causally independent) by
the absence of a dashed line between them and using arrows at
approximately the same vertical position on the time axes. A fully qualified
name of a service primitive consists of the name of its service element in
“bold” script (S1 to S4 on the diagram) concatenated with one “space” and
with the short name of the service primitive in “normal” script.

 DEFINITION OF THE GMS SERVICE 139

SAP-BSAP-A

Provider

S1 req

t

User A User B

S1 ind

S1 rsp

S1 cnf

S2 req

S3 ind

S4 req

S4 cnf

I)

II)

III)

We use four basic types of service primitives : “req”, “ind”, “rsp”, and
“cnf”. A service user initiates req and rsp primitives on the service provider,
where req represents a request and rsp represents a response to a previous
request. The service provider initiates ind and cnf primitives, where ind
represents an indication of a request at another SAP and cnf represents a
confirmation of a response at another SAP. In the diagram, we show three
cases. The first case shows an RPC style method invocation as a sequence of
req, ind, rsp, and cnf primitives. The second case shows that a service user
can make a request without expecting a result, for example, to notify the
service provider (and another user) about some change in its state. The
third case shows that interaction does not necessarily involve several users.
In this case, the provider initiates by himself a response to the user’s
request. During service design, we use the service primitive types to define
the concrete service primitives for the GMS system. We indicate the type of
a service primitive by concatenating its name with the type name.

In the following sections, we derive service elements from the use cases
we identified earlier, and then we refine the service elements into
constituent service primitives, their parameters and the relations among the
service primitives.

Figure 6-3 Example
service primitives
and relations
among them.

6.2.2 GMS service elements

We define the GMS service elements using the user requirements that we
have captured with the use case scenario presented in section 6.1.

140 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

GGMMSS

Announce

Request
Data

Receive
Data

Configure

Send
Data

Browse

At an M-SAP, we define the following three service elements (Figure 6-4):

Figure 6-4
Elements of the
GMS service

– Browse – service primitives that monitors use to browse the monitoring
data types available for monitoring;

– Request Data – service primitives that the monitor uses to request
monitoring data from the GMS;

– Receive Data – service primitives that the monitor uses to receive
monitoring data.

At an I-SAP, we define the following three service elements:
– Announce – service primitives that the instrumentation uses to

announce the monitoring data types available for monitoring;
– Configure – service primitives that the instrumentation uses to receive

configuration information from the GMS;
– Send Data – service primitives that the instrumentation uses to send

monitoring data to the GMS.

Note that each use case represents a block of functionality that GMS users
need to use. Since a service element represents a group of common
functions, we choose to represent the functionality in each use case with a
corresponding service element that groups the service primitives that
provide that functionality.

6.2.3 Relations between GMS service elements

We associate each service element with a specific case of use of the GMS
service. A service element relates to other service elements by enabling the
(interaction) phases that correspond to the use cases associated with the
other service elements. Figure 6-5 shows an example of these enabling
relations for a single monitoring report.

Announce Request

Data
Receive

Data Configure Send
Data Browse

In a typical scenario, an instrumentation announces that it can produce
certain types of monitoring reports. This allows a monitor to browse

Figure 6-5 Enabling
relations between
the six service
elements

 DEFINITION OF THE GMS SERVICE 141

through the availability information and make a selection. Based on the
selection, a monitor can compose a specification of interest and use it to
request monitoring reports. As a result of the request, the GMS configures
the instrumentation to generate relevant monitoring reports. The
instrumentation then sends to the GMS monitoring reports that it
generates, e.g., when interesting events occur, or when the time comes to
perform a measurement. The monitor can receive the new monitoring
reports from the GMS.

We refine this informal description of dependencies among service
elements later when we describe the relations among their corresponding
service primitives.

6.2.4 Service primitives

Table 6-1 lists the primitives of the GMS service and their parameters.

142 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

User SAP Element Primitive name Parameters

interrogate req search criteria
interrogate cnf specification of availability
subscribe req monitor id, types notification

reference
subscribe cnf types subscription status
unsubscribe req monitor id

Browse

update ind update status
subscribe req monitor id, specification of

interest, data notification
reference

subscribe cnf data subscription status
unsubscribe req monitor id

Request
Data

interrogate req data selection criteria,
response notification
reference

notify ind monitoring data

Monitor

Receive
Data interrogate cnf monitoring data

register req instrumentation id,
specification of availability

register cnf registration statusAnnounce

unregister req instrumentation id
configure ind configuration specification

Configure
configure rsp configuration status
notify req monitoring data
interrogate ind data selection criteria

Instrumen-
tation

Send Data
interrogate rsp monitoring data

Table 6-1 GMS
service primitives

In the following sections we describe each service primitive grouped by
service elements. We discuss the relations between service primitives
belonging to the same service element, and we discuss the roles of the
parameters of the service primitives. In section 6.2.5 we discuss the
relations between service primitives belonging to different service elements.
In section 6.2.6 we discuss the service primitive parameters.

Browse

A monitor issues an “interrogate req” to request information about the
availability of monitoring data. This information has to match the search
criteria parameter.

 DEFINITION OF THE GMS SERVICE 143

The GMS issues an “interrogate cnf” to send a specification of availability
parameter to a monitor. This parameter contains a description of the
monitoring data types matching the search criteria passed in a previous
“interrogate req” from the monitor (Figure 6-6).

A monitor issues a “subscribe req” to initiate a subscription for updates
on changes in the availability of monitoring data. The monitor id parameter
contains an unique identifier of the monitor. The GMS uses this identifier
to distinguish among different monitors. The types notification reference
parameter contains the monitor address that the GMS uses to send change
notifications.

The GMS issues a “subscribe cnf” to report the result of a previous
“subscribe req” (Figure 6-6). The types subscription status parameter indicates
a successful subscription or an error.

A monitor issues an “unsubscribe req” to notify the GMS that it
withdraws from a subscription for type change notifications. The monitor
sends its monitor id to identify the subscription that the GMS has to
terminate.

The GMS issues an “update ind” to notify a subscribed monitor about
changes in the availability of information. The update status indicates the
kind of update: removing, adding or changing the information about data
types.

M-SAP

Browse
interrogate

req

Browse
interrogate

cnf

Browse
subscribe

req

Browse
subscribe

cnf

Monitor GMS

Figure 6-6 Browse
service primitive
relations

Request Data

A monitor issues a “subscribe req” to subscribe with the GMS for new
monitoring data. The monitor id parameter contains an unique identifier of
the monitor. The GMS uses this identifier to distinguish the subscription of
this monitor from subscriptions of other monitors. The specification of interest
parameter contains the runtime requirements of the monitor for
monitoring data. Runtime requirements represent some criteria according
to which the GMS can decide whether any new monitoring data matches
the interest of a monitor. The data notification reference parameter contains
the monitor’s address that the GMS will use to send relevant monitoring
data to the monitor. We assume that a monitor can have only one
subscription. If a monitor requires additional monitoring data, it can always
unsubscribe first, and subscribe again by specifying a new specification of
interest reflecting its new requirements for monitoring data.

The GMS issues a “subscribe cnf” to report the result of a previous
“subscribe req”. This relation however involves interactions at the I-SAP
too and we discuss it in section 6.2.5. The data subscription status parameter
indicates a successful subscription or an error.

144 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

A monitor issues an “unsubscribe req” to notify the GMS that it
withdraws from a subscription. The monitor sends its monitor id to identify
the subscription that the GMS has to terminate.

A monitor issues an “interrogate req” to instruct the GMS to make a
measurement and return the resulting monitoring data. This also means
that effectively the monitor obtains monitoring data in a request/response
style. The data selection criteria parameter contains the monitor’s runtime
requirements for monitoring data. The runtime requirements here describe
instructions for performing measurements and returning a response. The
response notification reference parameter contains the address that the GMS will
use to send the response of a request.

Receive Data

The GMS issues a “notify ind” when it has obtained new monitoring data
that matches the specification of interest of a subscribed monitor. The
monitoring data parameter contains the data matching the specification of
interest.

The GMS issues a “interrogate cnf” to deliver a response to a previous
monitor “interrogate req”. This relation however involves interactions at
the I-SAP too and we discuss it in section 6.2.5. The monitoring data
parameter contains the data matching the monitor requirements.

Announce

The instrumentation issues a “register req” to register with the GMS the
types of monitoring data it can provide. The instrumentation id parameter
contains the unique identifier of the instrumentation. The specification of
availability parameter contains a description of the data types this
instrumentation can provide.

The GMS issues a “register cnf” to report the result of a “register req”
(Figure 6-7). The registration status parameter indicates a successful
registration or an error.

The instrumentation issues an “unregister req” to un-register with the
GMS all monitoring data types this instrumentation has previously
registered. The instrumentation sends along its instrumentation id to identify
the registration that the GMS has to terminate.

I-SAP

Announce
register req

Announce
register cnf

GMS Instrumen
tation

Figure 6-7
Announce service
primitive relations

Configure

The GMS issues a “configure ind” to configure an instrumentation for
generation of monitoring data as a result of a subscription request (see

 DEFINITION OF THE GMS SERVICE 145

section 6.2.5 for the relations among SAPs). The configuration specification
parameter contains the configuration information.

The instrumentation issues a “configure rsp” to report the result of a
previous “configure ind” (Figure 6-8). The configuration status parameter
indicates a successful configuration or an error.

I-SAP

Configure
configure

ind

Configure
configure

rsp

GMS Instrumen
tation

Figure 6-8
Configure service
primitive relations

Send Data

The instrumentation issues a “notify req” to notify the GMS about new
monitoring data. Note that notifications allow (potentially) low delivery
times for event reports (or status reports generated in an event-driven
manner), because the instrumentation can notify the GMS as soon as it
detects an event and packages an event report. The monitoring data
parameter contains the new event report.

The GMS issues an “interrogate ind” to instruct the instrumentation to
take measurements on behalf of some monitor. This request effectively
means that the instrumentation generates monitoring data in an on-demand
or time-driven way. The data selection criteria parameter contains the runtime
requirements from some monitor for monitoring data.

The instrumentation issues a “interrogate rsp” in response to a previous
“interrogate ind” (Figure 6-9). The monitoring data parameter contains the
data matching a selection criteria previously specified by some monitor.

I-SAP

Send Data
interrogare

ind

Send Data
interrogate

rsp

GMS Instrumen
tation

Figure 6-9 Send
Data service
primitive relations

6.2.5 Relations among service primitives

Relations among service primitives fall into two main categories: local and
remote. Local (to a service user) relations define possible sequence of
service primitives performed by a single service user. The service primitives
and their local relations define the service behavior at a single SAP. Remote
relations define possible sequence of service primitives performed at
different SAPs. The service primitives and their remote relations define the
complete service behavior. In the next sections, we discuss relations in the
following order: local relations for the monitor (M-SAP), local relations for
the instrumentation (I-SAP), and remote relations.

Relations local to the monitor

Figure 6-10 describes all possible sequences of service primitives at the M-
SAP using an UML state-chart diagram.

146 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

Browsing with
subscription

Browsing
with request Receiving data with

interrogation

Idle

browse subscribe
cnf /

has-browse-subscri
ption := true

Subscribing
for data

browse
interrogate

cnf

receive data
interrogate cnf

request data
subscribe cnf /

has-data-subscript
ion := true

request data
subscribe
req[not

has-data-su
bscription]request data unsubscribe req[

has-data-subscription] /
has-data-subscription := false

request data
interrogate req

browse subscribe req[not
has-browse-subscription]

browse
interrogate

req

browse unsubscribe req[
has-browse-subscription] /
has-browse-subscription :=

false
browse

update ind[
has-browse
-subscriptio

n]

receive
data

notify ind[
has-data-
subscripti

on]

To reduce the number of states, we introduce the “has-browse-
subscription” and “has-data-subscription” global state variables, which
indicate whether a monitor has established a browsing subscription and a
subscription for monitoring data respectively. Note that we permit only one
browsing subscription and one data subscription per monitor.

From the “Idle” state, a monitor can go to four other states and back to
“Idle”: subscribe for availability information (“Browsing with subscription”
state), interrogate for availability information in a request/response style
(“Browsing with request” state), subscribe for monitoring data (Subscribing
for data” state), and request monitoring data in a request/response style
(“Receiving data with interrogation” state).

Figure 6-10 M-SAP
state chart diagram

Relations local to the instrumentation

Figure 6-11 shows all possible sequences between service primitives at the
I-SAP using an UML state-chart diagram.

 DEFINITION OF THE GMS SERVICE 147

configure
configure
response

Announcing

GeneratingMeasure time-driven /
on-demand

announce
register cnf

 Configuring
event-driven

send data
notify req

send data
interrogate

rsp

Idle

announce
register req

configure
configure

ind

send data
interrogate ind

announce
unregister

req

An instrumentation starts in the “Idle” state, in which it cannot generate
monitoring data and the GMS does not “know” about this instrumentation
yet. From the “Idle” state the instrumentation can move to the
“Announcing” state, in order to register with the GMS and provide
availability information about the monitoring data it can produce. From the
“Announcing” state the instrumentation can move to the “Generating”
state in which it can actually generate monitoring data in two ways: by
measuring values and packaging monitoring data upon an request from the
GMS (“Measure time-driven/on-demand” state), or by configuring its
sensors to detect particular events in the monitored application (“Configure
event-driven”). In the case of configured sensors, the instrumentation can
make a transition to the same state “Generating” by sending data using
notification. From the “Generating” state an instrumentation can move to
“Idle” again by unregistering from the GMS.

Figure 6-11 I-SAP
state chart diagram

Remote relations

In this section we define the remote relations in the service behavior of the
GMS. The behavior of the GMS concerns relations among primitives both
of the M-SAP and the I-SAP. We use time sequence diagrams to model the
remote relations. We prefer using time sequence diagrams instead of a state
because, this way we avoid dealing with too many states. The following
Figure 6-12 shows all possible sequences among primitives.

148 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

Request
Data

subscribe
req

Configure
configure

ind

Configure
configure

rsp

Request
Data

subscribe
cnf

I-SAP M-SAP
Announce

register
req

Browse
interrogate

req

Send
Data
notify
req

Receive
Data
notify
ind

a)

Browse
subscribe

req

Announce
register

req

b)

Browse
update

ind

Announce
register

req

c)

Request
Data

unsubscribe
req

Request
Data

interrogate
req

Send Data
interrogate

ind

Send Data
interrogate

rsp

Receive
Data

interrogate
cnf

Browse
update

ind

Announce
unregister

req

Send
Data
notify
req

Request
Data

interrogate
req

d) e) f)

g) h) i)

Configure
configure

ind

I-SAPM-SAP I-SAPM-SAP

I-SAP M-SAP I-SAPM-SAP I-SAPM-SAP

I-SAP M-SAP I-SAPM-SAP I-SAPM-SAP

Diagram a) states that a monitor can interrogate the GMS for availability
information only after the instrumentation has registered with the GMS.
This allows a monitor to request availability information whenever
necessary. In contrast, in diagram b) we define that subscribing for
availability notifications may occur independently to any registering of
availability information. This allows monitors to receive timely notifications
about the registration of new availability information (diagram c) or about
the un-registration of availability information (diagram d) by the
instrumentation. Diagram e) shows that a monitor can subscribe for
monitoring data and that a successful subscription results in configuring the
instrumentation so that it generates only information that the monitor
requires. Similarly, when a monitor unsubscribes, the GMS reconfigures the
instrumentation so that it does not generate unnecessary monitoring data
(diagram f). When the instrumentation (previously configured) sends data

Figure 6-12 Time
sequence diagrams

 DEFINITION OF THE GMS SERVICE 149

to the GMS, the GMS notifies the monitor (diagram g). Diagram h)
describes that a monitor can interrogate the GMS for monitoring data
whenever necessary. An interrogation results in the instrumentation making
measurements, packaging and returning monitoring data, which the GMS
sends to the monitor. Diagram i) shows that interrogation and notification
occur independently, so that monitors can both interrogate for monitoring
data and subscribe for notifications.

6.2.6 Service primitive parameters

In the previous section we have discussed only the role of service primitive
parameters. Nevertheless, some of these parameters require a more
detailed definition of their structure. In this section we discuss the structure
of the following parameters: monitoring data, specification of availability, search
criteria, specification of interest, data selection criteria, configuration specification.

Monitoring data

The GMS model we defined in section 6.1 represents the monitored
application as a collection of instrumentation instances, each producing
monitoring data as a sequence of individual monitoring reports. The
“monitoring data” parameter of GMS service primitives contains as a value
a list of monitoring reports. Figure 6-13 shows the structure of a
monitoring report using an UML class diagram.

EventReport StatusReport

Attribute
name
value

MonitoringReport
address : String
time : DateTime
s_attributes : Attribute[]

1..*1..*

The MonitoringReport has three attributes: time, address and s_attributes. The
address attribute uniquely identifies the instrumentation instance that
produced the monitoring report. For example, in a particular GMS
implementation, the address attribute may contain the IP address of the
network host on which the instrumentation generated the monitoring
report. The time attribute represents the time of generation of a
monitoring report. For example, the time attribute may contain a

Figure 6-13
MonitoringReport
class

150 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

timestamp representing the moment of generation, measured using the host
computer clock. The time and address attributes allow the GMS to filter
out monitoring reports for delivery to monitors. We discuss filtering later
when we define the specification of availability and search criteria parameters.
The s_attributes attribute contains a list of one or more specific attributes.
Subclasses of the MonitoringReport class may define different sets of
specific attributes. The GMS models a specific attribute in a generic way
using the Attribute class. An attribute has a name and a value.

A MonitoringReport has two subclasses: EventReport and StatusReport.
The EventReport class represents event reports and the StatusReport class
represent status reports. We explained the differences between event and
status reports in Chapter 2. The GMS uses the MonitoringReport and its
two subclasses EventReport and StatusReport to disseminate monitoring
data to monitors in a generic way.

In order to build specializations of the GMS for particular monitoring
and monitored applications (stage two of the methodology) designers would
have to subclass EventReport or StatusReport to define event and status
reports for the particular specialization. These new event and status classes
share the time and address attributes, but define their own specific
attributes.

Specification of availability

The “specification of availability” parameter contains as a value a list of
monitoring report types. Figure 6-14 shows a UML class diagram for a
monitoring report type.

 MonitoringReportType
name : String
type : String
outputs : NamedOutput[]

NamedOutput
name : String
type : String

1..*1..*

The instrumentation uses one MonitoringReportType object to describe
one particular MonitoringReport class that it can generate. The
MonitoringReportType class has three attributes: name, type and outputs. The
name attribute represents the name of the MonitoringReport subclass that
the instrumentation wants to describe. The type attribute holds as a value
either the string “event” for an EventReport subclass or the string “status”
for a StatusReport subclass. The outputs attribute contains a list of
NamedOutputs. A NamedOutput models in a generic way the output of a
sensor in the instrumentation. A NamedOutput has a name and type
attribute, where type represents the data type of the output value. For each

Figure 6-14
MonitoringReport-
Type class

 DEFINITION OF THE GMS SERVICE 151

NamedOutput we establish a one-to-one correspondence with a specific
Attribute of the MonitoringReport subclass, that the instrumentation can
generate.

At the I-SAP, the instrumentation uses instances of the
MonitoringReportType class to compose a “specification of availability” list
describing the concrete event and/or status types it can generate.

At the M-SAP, the GMS composes a “specification of availability” list of
MonitoringReportType objects previously registered with the GMS to
satisfy “search criteria” requested by monitors.

Search criteria

The “search criteria” parameter contains a search expression composed by
a monitor that interrogates the GMS about availability information. The
GMS uses this search expression to select MonitoringReportType objects
that represent event and status types relevant to the interrogating monitor.
In Figure 6-15 we define a Simple Type Search Language (STSL) using the
Extended Backus-Naur Form (EBNF) [Marc86]. Monitors use the STSL to
compose search expressions. Note that we enclose one-symbol terminals
between “”, and we depict other terminals in bold font. Each statement
ends with “;”.

search_criteria_expression ::= selecttype select_expression [where attribute_predicate];
select_expression ::= event | status | �*� ;
attribute_predicate ::= [unary_predicate_op] attribute_expression { binary_predicate_op
attribute_expression };
unary_predicate_op ::= not ;
binary_predicate_op ::= and | or ;
attribute_expression ::= attribute match pattern_value ;
pattern_value ::= string | regular_expression ;
attribute ::= name | output “.” name | output “.” output_name “.” type ;
output_name ::= string;

The STSL distinguishes between events, statuses, or any reports (using the
“*” to indicate “any”). The attribute_predicate consists of attribute
expressions using the logical AND, OR and NOT operators. An
attribute_expression consists of an attribute and a pattern_value that this
attribute needs to match. An attribute can refer to three different things: the
name of the MonitoringReportType, a NamedOutput name or a
NamedOutput type. The pattern_value can represent a string value or, for
example, an UNIX style regular expression. The system selects a
MonitoringReportType object when its attributes match the pattern. In the
following lines we present two examples of a search expression:

selecttype event where name match �ObjectCommunicationEvent�
selecttype status where output.�CPU load�.type match �integer�

Figure 6-15 EBNF
for the STSL
language

152 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

The first example selects the MonitoringReportType object that represents
an event type with name “ObjectCommunicationEvent”. The second
example selects all MonitoringReportType objects that represent statuses
and have a specific attribute called “CPU load” of type “integer”. We
consider the definition of a more complex search criteria language out of
the scope of this thesis.

Specification of interest

The “specification of interest” parameter contains a description of a
monitor’s runtime requirements for monitoring data. Since subscriptions
allow timely delivery through notifications when the instrumentation
generates new event reports, we define that monitors can use this
specification only to receive event reports. We allow monitors to request
status reports by explicit interrogation using a “data selection criteria” (see
next section). In Figure 6-16 we define a Simple Specification of Interest
Language (SSIL) using EBNF. Monitors compose specifications of interest
using the SSIL.

specification_of_interest ::= subscribe event_expression { �;� event_expression } ;
event_expression ::= name [filter filter_expression] ;
name ::= string | pattern ;
filter_expression ::= [unary_predicate_op] attribute_expression { binary_predicate_op
attribute_expression } ;
attribute_expression ::= time_expression | address_expression |
specific_attribute_expression ;
binary_predicate_op ::= and | or ;
unary_predicate_op ::= not ;
time_expression ::= time time_op time_value ;
time_op ::= before | after | exactly ;
address_expression ::= address match (string | pattern) ;
specific_attribute_expression ::= specific_attribute { relation_op (specific_attribute |
value) } ;
specific_attribute ::= s_attribute �.� specific_attribute_name ;
relation_op ::= �>� | �<� | �=� | match;
specific_attribute_name ::= string ;

A specification in SSIL contains a list of event expressions. An event
expression may contain a filter part, which defines constraints on the values
of the event’s time, address, and specific attributes. Monitors can combine
different constraint expressions in a filter using the logical AND, OR and
NOT operators. We leave the actual date format represented with the
time_value non-terminal, deliberately undefined by this service definition.
We leave to designers to determine the date format (and hence the “<”,
“>”, “=”, and match operators on dates) at implementation time. Using
expressions on specific attributes, monitors can define constraints on the

Figure 6-16 EBNF
for the SSIL
language

 DEFINITION OF THE GMS SERVICE 153

instances of concrete event types in a generic way. In the following
paragraph we present an example specification of interest:

subscribe �CommunicationEvent� filter time after �20:00PM 20-05-2003�
and time before �05:00AM 21-05-2003� and address match �130.89.*� and
s_attribute.�CPU load� < 50

In this example a monitor instructs the GMS to subscribe that monitor to
events of type “CommunicationEvent”, occurring between 20:00PM on
date 20-05-2003 and 5:00AM on the following day, originating from a
subnet starting with “130.89.”, with a specific attribute “CPU load” having
value less that 50. One can find examples of more complex languages for
specifying monitor interests in [Samani95] and [Shaer98].

Data selection criteria

We use this parameter in two primitives, at the M-SAP and at the I-SAP.
At the M-SAP, the monitor uses the data selection criteria to instruct

the GMS to perform measurements, which result in status reports. The
“data selection criteria” parameter contains a list of names of StatusReport
subclasses that the GMS can currently generate. The monitor can obtain
these names from the availability information in the GMS. The GMS takes
the list of StatusReport names and forwards it to the instrumentations,
which can generate instances of these StatusReport types. A monitor can
include in the data selection criteria any name of a StatusReport subclass
available for measurement with the GMS (i.e., StatusReports described in
the specification of availability). Hence, a monitor can request a
measurement from any instrumentation instance registered with the GMS.

The monitor can also use the data selection criteria to select matching
monitoring data (including both events and statuses) accumulated so far in
the GMS. We consider languages such as SQL [SQL99] suitable for
selecting large amounts of data from a storage within the GMS. Although
our design does not prohibit this use of the “data selection criteria”
parameter, in this service definition we do not use it.

At the I-SAP, the GMS uses the data selection criteria to instruct
measurement from the instrumentation. The parameter has the same
structure as when used at the M-SAP. In contrast to the M-SAP, the data
selection criteria at the I-SAP can contain only names of StatusReport
subclasses that the particular instrumentation can generate.

154 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

Configuration specification

The “configuration specification” parameter contains a list of names of
EventReport subclasses. These names represent event reports that a
monitor has previously subscribed for and has included their names in its
specification of interest. The GMS uses this parameter to tell the
instrumentation to start producing the particular type of events (in the
implementation, this may involve switching of certain sensors in the
instrumentation on or off).

6.3 Definition of the GMS software architecture

This section presents a software architecture for a GMS that implements
the service defined in the previous section. The architecture consists of a
logical decomposition and a physical decomposition.

6.3.1 Logical decomposition

We decompose the GMS in four steps. In the first step we refine the GMS
service definition into service-level interfaces that the GMS, the monitor
and the instrumentation can offer to each other. We use this refinement in
the subsequent steps to define which logical components of the GMS
provide which interfaces. In the second step we decompose the
functionality of the GMS into three components: Repository, Dissemination
and Filtering. In the third step we further decompose the Dissemination
component into four subcomponents. In the last step we specify the
cooperative behavior of the logical components of the GMS using UML
message sequence diagrams.

Service-level interface refinement

The service-level refinement consists of defining interfaces using the OMG
Interface Definition Language (IDL) as a specification language. Each
interface defines a number of operation signatures that correspond to one
or more service primitives. IDL allows the use of two types of operations:
synchronous and oneway. Invocation of a synchronous operation has the
semantic of an RPC call, which consists of a request part (the caller
requests some service) and a response part (the callee returns a result of
that service). In contrast, an invocation on an oneway operation only has a
request part and does not require any response. In order to define
interfaces from the GMS service, we need to determine how service

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 155

primitives map to operation invocations. We map causally related req and
cnf service primitives to a single synchronous operation. We also map
causally related ind and rsp service primitives to a single synchronous
operation invocation. We map a single req or a single ind service primitive to
a single oneway operation.

We use the following criteria to group operations into interfaces. Firstly,
we reuse the structure of service elements introduced in the GMS service.
Hence, an interface contains operations that map to service primitives from
the same service element (with one exception – see below). Secondly, we
group primitives based on the initiative for their provisioning. A single
interface contains operations provided only by a single entity, such as the
GMS, the instrumentation or the monitor. Figure 6-17 shows the interface
refinement.

Monitor

i_Browsei_Subscribe i_BrowseUpdate i_Announce i_Configure

Instru-
mentation

i_DataNotify i_Interrogate i_SendNotify i_SendInterrogate

GMS

For the “Browse” service element we define two interfaces: i_Browse and
i_BrowseUpdate. The i_Browse interface defines the operations that a
monitor calls on the GMS. The i_BrowseUpdate interface defines the
operations that the GMS uses to notify a monitor about changes in the
availability information. For the “Request Data” service element we define
two interfaces: i_Subscribe and i_Interrogate. The i_Subscribe interface
defines the operations that a monitor uses to subscribe for monitoring data.
The i_Interrogate interface defines the operations that a monitor can use to
interrogate the GMS for monitoring data. This interface contains the
interrogate operation, which maps to two service primitives: the “Request
Data interrogate req” represented by the invocation of the interrogate
operation and the “Receive Data interrogate cnf” represented by the
response of the interrogation operation. Although these two service
primitives belong to different service elements we map them to one

Figure 6-17
Interface
refinement for the
GMS service

156 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

operation because we find this a convenient way to implement a
request/response style of interaction. For the “Receive Data” service
element we define the i_DataNotify interface. The i_DataNotify interface
defines operations that the GMS uses to notify a monitor about new
monitoring data. For the “Announce” service element we define
i_Announce interface, therefore the i_Announce interface defines operations
that the instrumentation uses to announce the available types of monitoring
data. For the “Configure” service element we define the i_Configure
interface. The i_Configure interface defines operations that the GMS uses to
configure the instrumentation. For the “Send Data” service element we
define two interfaces: i_SendInterrogate and i_SendNotify. The
i_SendInterrogate interface defines operations that allow the GMS to
interrogate an instrumentation for monitoring data. The i_SendNotify
interface allows the instrumentation to notify the GMS about newly
generated monitoring data.

In Appendix A, we present the detailed IDL specifications of these
interfaces, along with comments explaining which service primitives
correspond to which operations.

Functional decomposition of the GMS

We observe that the GMS service defines two basic types of GMS
functionality: functionality related to the management of availability
information, and functionality related to the dissemination of the actual
monitoring data. Management of availability information includes on one
hand the registering (and unregistering) of availability information by the
instrumentation (the “Announce” service element) and on the other hand
browsing of availability information by monitors (the “Browse” service
element). Based on this observation we identify a Repository component
that manages availability information in the GMS. The Repository
component has the responsibility for storing and managing the access to the
availability information in the GMS. The Repository component
implements the i_Browse and i_Announce service-level interfaces and an
internal (not part of the GMS service) interface ii_Repository (see Appendix
A for the detailed specification of this interface).

From Chapter 2 we know that dissemination activities comprise the
collection and delivery of monitoring data. Based on this we identify a
Dissemination component. The Dissemination component has the
responsibility to disseminate monitoring data. The Dissemination
component uses the ii_Repository interface to validate specifications of
interest and data selection criteria with the current availability information.
The Dissemination component implements the i_Subscribe and

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 157

i_Interrogate service-level interfaces and an internal interface
ii_DeliverEvent.

Processing activities involve among others filtering activities. Since the
GMS allows a monitor to subscribe for monitoring data based on a
specification of interest, the GMS needs to perform filtering of the
monitoring data to make sure that monitors receive the requested
monitoring data. Based on this we identify a Filtering component, which
filters monitoring data. Note that filtering in the GMS represents a generic
processing activity; by using the SSIL language the GMS does not need to
interpret any (application domain) specific information in order to filter
out monitoring data. The Filtering component has the responsibility to
determine the relevancy of new event reports that the instrumentation
sends to the GMS. The Filtering component uses the ii_DeliverEvent to pass
relevant filtered monitoring data to the Dissemination component. The
Filtering component implements the i_SendNotify service-level interface
and the internal ii_ConfigureFiltering interface. The Dissemination
component uses the latter interface to configure the filtering mechanisms
when monitors make or remove subscriptions.

Figure 6-18 depicts the relations between the GMS interfaces and the
three components we introduced.

Repository Component

i_Browse

i_Subscribe

Dissemination
Component

i_Announce

i_Interrogate

i_SendNotify

GMS

ii_Repository
Filtering

Component

ii_Cofigure-
Filtering

ii_Deliver-
Event

Figure 6-18
Functional
decomposition of
the GMS

Functional decomposition of the Dissemination component

The Dissemination component still provides relatively complex
functionality, which it exposes through two service-level interfaces and one
internal interface. Figure 6-19 shows how we further decompose the
Dissemination component.

158 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

Repository Component

i_Subscribe

Dissemination
Component

i_Interrogate

i_SendNotify

ii_Repository

Filtering
Component

ii_Cofigure-
Filtering

ii_Deliver-
Event

SSuubbssccrriipp--
ttiioonn

IInntteerrrrooggaattiioonn

DDeelliivveerryy

CCoonnffiigguu--
rraattiioonn

ii_Configure-
Instrumentation

ii_Configure
Delivery

subscribe

notify notify

configure

interrogate interrogate

The Dissemination component consists of four sub-components:
Subscription, Configuration, Delivery and Interrogation. The Subscription
component handles all monitor subscriptions. The Configuration
component has the responsibility for configuring the event report
generation in the instrumentation. The Delivery component holds the
responsibility for the delivery of (filtered) event reports to the appropriate
monitors. The Interrogation component holds the responsibility for
handling monitor interrogations for status reports. In Appendix A, we
present the internal interfaces that specify the operations offered by the
different sub-components of the Dissemination component.

Figure 6-19
Structure of the
dissemination
component

Cooperative behavior of the GMS logical components

We define the cooperative behavior of the GMS logical components using
four scenarios of use: “monitor subscription”, “monitor un-subscription”,
“notification about new monitoring data” and “interrogation for
monitoring data”. For each scenario we provide a UML sequence diagram
that defines the sequences of operation invocations among components
interacting in this scenario. For simplicity we do not discuss error-handling
scenarios. We also do not consider scenarios regarding registering and
browsing of availability information, because they do not require interaction
among the GMS components.

Figure 6-20 shows the sequence of operation invocations among GMS
components and the instrumentation that occur when a monitor issues a
subscription request.

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 159

1.4.1. get_ids_for_events()

Monitor Subscript ion Repository ConfigurationFiltering Delivery Instrumentation

1. subscribe()
1.1. get_event_description1()

1.2. add_filter()

1.3. add_monitor()

1.4. switch_on()

1.4.2. configure()

When a monitor subscribes for monitoring data, it submits a specification
of interest written in SSIL to the Subscription component. The
Subscription component processes the specification and contacts the
Repository component to extract the event report type availability
information indicated in the specification. Then the Subscription
component passes the filter expressions from the specification to the
Filtering component. The Filtering component adds the filter expression to
its filtering mechanism. Then the Subscription component contacts the
Delivery component to add the subscribed monitor to the event delivery
mechanism. The Subscription component then instructs the Configuration
component to switch on the production of relevant events in all
instrumentation instances that support the event report types indicated in
the monitor’s specification of interest. The Configuration component
contacts the Repository component to obtain the identifiers (e.g. object
references) of instrumentations that support the required events. The
Configuration component uses these identifiers to configure the
instrumentation to emit events of the desired types.

Figure 6-21 shows that GMS handles un-subscribing in a similar to
subscribing way.

Figure 6-20 Monitor
subscription
scenario

160 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

 Monitor Subscript ion Repository ConfigurationFiltering Delivery Instrumentation

1. unsubscribe()
1.1. get_event_description1()

1.4. switch_off()

1.4.1. get_ids_for_events()

1.2. remove_filter()

1.3. remove_monitor()

1.4.2. configure()

Figure 6-22 shows the sequence of operation invocations among GMS
components and monitors when a notification about new event report(s)
comes from the instrumentation.

 Instrumentation Filtering Delivery Monitor

1. notify() 1.1. deliver_events()
1.1.1. not ify

The instrumentation sends an event report to the Filtering component. The
Filtering component determines the relevancy of the event to any monitor
by evaluating the accumulated filter expressions for this event report type.
The Filtering component also determines which monitors have interest in
this event report. In the case the Filtering component finds the event report
relevant, it sends the event to the Delivery component, which notifies
appropriate monitors about the event.

Figure 6-23 shows the sequence of operation invocations among the
GMS components and the instrumentation when a monitor interrogates the
GMS for measuring statuses.

Figure 6-21 Monitor
un-subscription
scenario

Figure 6-22
Notification about
new monitoring
data

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 161

 Monitor Interrogation Repository Instrumentation

1: request_data()
2: get_status_description()

3: get_ids_for_statuses()

4: request_data()

5: notify()

A monitor makes a request to the Interrogation component by supplying a
list of status report type names. The Interrogation component first contacts
the Repository component to validate the names. Then the Interrogation
component gets from the Repository component the identifiers (e.g. object
references) of all instrumentation instances that support the requested
status report types. It then makes requests for measurements to the
instrumentation, composes a list of results and sends it to the requesting
monitor.

Figure 6-23
Interrogation for
monitoring data

6.3.2 Physical decomposition

The GMS logical decomposition does not explicitly take into account
distribution aspects. The way the GMS handles distribution aspects
however, can have a great impact on the system scalability, performance and
overhead. The GMS should efficiently utilize the communication and
computing resources needed for collecting, filtering and delivering
monitoring data to monitors.

In [Shaer98], Al Shaer argues that a hierarchical architecture allows the
users to configure the monitoring system optimally with respect to
unwanted communication overhead. Furthermore, designers can deploy a
monitoring system with a hierarchical architecture consistently with the
hierarchically organized administrative policies that we often find in large
distributed environments. These policies define how a distributed system
should deal with issues such as available resources (e.g. bandwidth),
heterogeneity, interoperability, security and failure. For these reasons we
choose a hierarchical architecture as a basis for the physical decomposition
of the GMS.

We develop the physical decomposition in three steps. In the first step
we define a hierarchical distribution model that we use to structure the

162 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

distribution aspects of a distributed environment, in which we want to
deploy the components of a monitoring system. In the second step we use
the hierarchical distribution model to define a hierarchical agent-based
architecture for the GMS. In the third step we map the agent-based
architecture onto the logical decomposition of the GMS.

Hierarchical distribution model

The hierarchical distribution model (Figure 6-24) models a distributed
environment using three types of regions: co-location regions, locality regions,
and administrative domain regions.

Administrative
Region

0..*0..*

Co-location
Region

Locality
Region

0..*0..*0..*0..*

A co-location region represents a single operating system process in the
execution environment. We define the co-location region as the minimal
set of concerns with respect to complexity of distribution aspects. A co-
location region may contain one or more components of a monitoring
system; we call these components co-located. Co-located components share
the same operating system process, and hence the same execution
environment and the same host. Co-located components may also share the
same development technology, including runtime libraries, versions of APIs
that the components use, etc. We assume that a physical component
belongs to precisely one co-location region at any moment in time. In
general the communication infrastructure between co-located components
has a high degree of reliability (e.g. in-memory communication), security
(the same host, the same process, the same access rights), performance
(e.g., the internal architecture of the OS and the hardware platform
determines the communication speed), and has low economical cost (as
compared to, e.g., the cost for bandwidth usage in networks).

A locality region represents a single physical host. A locality region
contains (aggregation relation) one or more co-location regions. Hence,
non co-located components may still share the same locality region if they
reside on the same host. Local components that share the same host. Non
co-located but local components do not necessarily share the same
development technology, including runtime libraries, versions of APIs that
the components use, etc. For this reason, communication between local
non co-located components may experience synchronization,
interoperability, performance and security issues. Consider as an example,

Figure 6-24 The
hierarchical
distribution model

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 163

the communication between different processes running with different
access rights to host’s resources.

An administrative domain region represents a collection of hosts and a
network that connects them within a single organization. An administrative
domain region contains (aggregation relation) one or more locality regions
corresponding to the hosts in the organization. Hence, non local
components may still share the same administrative domain region if they
reside on hosts in that region. An administrative domain region may also
contain (aggregation relation) other administrative domain regions. Within
an administrative domain region, management policies regulate the type of
hardware, software, communication devices, security and fault issues. Non
local components within the same administrative domain region run under
the same policy but still may have to deal with issues such as
communication delay and partial communication failures between the hosts
they reside on. Components belonging to different administrative domain
regions however do not share common administrative policies.

The so defined hierarchical distribution model allows us to categorize
the communication in a particular deployment among the physical
components of a monitoring system from the perspectives of reliability,
security, and performance requirements. For example, we generally
consider communication between co-located components secure, reliable
and efficient, whereas communication between components belonging to
different administrative domains may require the additional use of
encryption, reliable communication protocols, and special bandwidth
reservation protocols to guarantee communication performance. We define
a hierarchical agent-based architecture that reflects this categorization in
the way it handles communication within and across the different regions.

Hierarchical agent-based architecture

In the hierarchical agent-based architecture the GMS consists of monitoring
agents that can communicate among each other. A monitoring agent
represents a non-distributed (hence monolithic) physical component of the
GMS. We use the hierarchical distribution model to define three types of
monitoring agents: Co-located Monitoring Agent (CMA), Local Monitoring
Agent (LMA), and Domain Monitoring Agent (DMA). Figure 6-25 shows
the relationships between these types of agents.

164 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

Instrumentation GMS

CMA LMA10..*0..* DMA10..*0..*
0..*

1

0..*
1 1

1

A CMA represents a region of co-location. The CMA co-locates with a
monolithic (i.e. non-distributed) part of the monitored application. During
monitoring, the CMA interacts with the monitored application part in an
efficient, but possibly technologically proprietary and domain dependent
manner. We consider the CMA the part of the instrumentation that
communicates with the GMS. As such, the CMA has the responsibility to
implement the GMS service-level interfaces of the instrumentation
i_SendInterrogate and i_Configure. We consider the internal structure of the
CMA outside the scope of the GMS physical decomposition.

An LMA represents a region of locality. An LMA manages all CMAs on
the same host. The LMA implements the service-level interfaces of the
GMS involved in the interaction with the instrumentation: i_Announce and
i_SendNotify. The interactions between CMAs and a LMA cross the
boundaries of regions of co-location but do not leave the region of locality
(the host). An LMA interacts with one DMA.

A DMA represents an administrative domain region. A DMA manages
all LMAs in its region. The interactions between a DMA and its LMAs cross
the boundaries of regions of locality but do not leave the administrative
domain region. A DMA also interacts with DMAs of other administrative
domain regions. The relations between DMAs cross the boundaries of
administrative domain regions. Furthermore, the DMA implements the
service-level interfaces of the GMS involved in the GMS interactions with
monitors: i_Browse, i_Subscribe and i_Interrogate. Effectively, a DMA
represents the GMS to all monitors deployed in the same administrative
domain region.

Figure 6-26 illustrates an example deployment of a monitoring system
according to the hierarchical agent-based architecture. In this example, the
GMS comprises a collection of LMA and DMA instances, and the
instrumentation comprises a collection of CMA instances.

Figure 6-25
Relations among
monitoring agents

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 165

CMA-LMA
interactions

CCMMAA
Instrumented
Application

Part

CCMMAA
Instrumented
Application

Part

CCMMAA
Instrumented
Application

Part
LLMMAA

Host

HostDDoommaaiinn 11

DDoommaaiinn NN

DDMMAA

DDMMAA

DDMMAA

MMoonniittoorr

MMoonniittoorr

DDMMAA

MMoonniittoorr

MMoonniittoorr

LMA-DMA
Channel

DMA-DMA
Channel

DMA-Monitor
interactions

DDoommaaiinn XX

DDoommaaiinn YY

We consider an important aspect of the physical decomposition, how
monitoring agents interact with each other and the environment to fulfill
the functionality of the GMS. We have defined the CMA-LMA and the
DMA-Monitor interactions as part of the GMS service definition. We
mapped these interactions using synchronous and oneway operation
invocations on the corresponding interfaces. LMAs communicate
asynchronously with their DMA. DMAs also communicate asynchronously
with other DMAs. We realize asynchronous communication using message
exchange via communication channels. For example, the CORBA
Notification Service [CNS] represents a technology that provides such
channels. We choose channel-based communication because it promotes
loose dependencies between communicating parties, and allows us to move
the responsibilities for reliable and secure communication to the logic of
the channel. Furthermore, channel-based communication supports
multiple senders and multiple receivers of messages, where the channel
administrators can take care of scalability issues of a growing monitoring
system by reconfiguring the channels properly. In the GMS architecture, we
consider two types of channels: LMA-DMA and DMA-DMA. An LMA-
DMA channel connects the LMAs and the DMA within one administrative
domain region and therefore does not need to deal with cross-domain
administrative issues, such as security. A DMA-DMA channel connects the
DMAs of different administrative domain regions and therefore may require
additional capabilities, such as encryption.

Figure 6-26
Physical
decomposition of a
monitoring system.

166 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

Mapping functional components onto monitoring agents

In this section we map the GMS logical decomposition onto monitoring
agents. Considering the structure of the logical decomposition, we further
decompose the logical components into non-distributed physical
components and we assign these components to the DMA and LMA
monitoring agents (Figure 6-27). This effectively means that we define the
internal structure of the monitoring agents by specifying their constituent
components. At the level of the GMS hierarchical architecture we consider
the CMA as a black box, because the CMA co-locates with the
instrumentation and its internal structure typically reflects the structure of
the instrumentation. Considering the behavior of the logical decomposition,
with UML sequence diagrams we specify the interactions among its
subcomponents. These sequence diagrams together with the sequence
diagrams of the logical decomposition (see section 6.3.1) define the
behavior of the GMS at the level of the physical decomposition.

 DDMMAA LLMMAA

DDMMAA--
FFiilltteerriinngg

LLMMAA--
FFiilltteerriinngg

DDeelliivveerryy

DDMMAA--
RReeppoossiittoorryy

LLMMAA--
RReeppoossiittoorryy

SSuubbsscc--
rriippttiioonn

RReeppoossiittoorryy

FFiilltteerriinngg

DDiisssseemmiinnaattiioonn

**
**

**

**

DDMMAA--IInntteerrrrooggaattiioonn
LLMMAA--

IInntteerrrrooggaattiioonn

RReeqquueessttiinngg

**

**

DDMMAA--
CCoonnffiigguurraattiioonn

LLMMAA--
CCoonnffiigguurraattiioonn

CCoonnffiigguurraattiioonn

**

**

We assign an instance of the Subscription and an instance of the Delivery
logical component to each instance of a DMA. Hence a DMA can subscribe
monitors and can deliver to them monitoring data. We decompose the
Repository component into two types of non-distributed subcomponents:
DMA-Repositories and LMA-Repositories. We assign to each DMA
instance one instance of a DMA-Repository component, and to each LMA
one instance of an LMA-Repository. A DMA can communicate with many
LMAs, therefore a DMA’s DMA-Repository component instance can

Figure 6-27
Structural mapping
of logical to
physical
components

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 167

communicate with all LMA-Repository component instances of the LMA’s
managed by this DMA. Furthermore, a DMA can also communicate with
other DMAs, therefore a DMA’s DMA-Repository can communicate with
the DMA-Repositories of the other DMAs. We make the decomposition for
the Configuration, Filtering and Requesting logical components in a similar
way. This effectively means that we distribute the logic of the Repository,
Configuration, Filtering and Interrogation components among instances of
monitoring agents.

In the next sections we describe the internal behaviour of each of the
logical components in terms of the external behaviour of its sub-
components and the interactions among these sub-components.

The Repository component

The Repository component manages availability information in the GMS.
Its function consists of allowing instrumentation instances to
register/unregister availability information with the GMS, and monitors to
browse and search the availability information. The following three use
scenarios define the internal behavior of the Repository component: a CMA
(representing an instrumentation instance) registers with the GMS, a CMA
unregisters with the GMS, and a monitor browses the availability
information.

In the first scenario (Figure 6-28), a CMA registers with its LMA by
passing to it a specification of availability.

 CMA LMA-Repository LMA-DMA
channel

DMA-Repository1 DMA-DMA
channel

DMA-Repository2 Monitor1 Monitor2

1: register() 2: new_data

6: new_data

3: new_data
4: new_data

5: update()

7: update()

An LMA has the responsibility for passing this specification to its DMA. The
LMA-Repository in a LMA keeps a view of the availability information of all
CMAs on the same host. The DMA-Repository sends new availability
information to all other DMAs so they can update their DMA-Repositories.
Every DMA-Repository receives information from other DMAs, this way
maintaining a global picture of the monitoring data available in the whole
system. Each DMA sends notifications to subscribed monitors (types
subscriptions) about changes in the availability information.

Figure 6-28 A CMA
registers with the
GMS

168 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

The GMS processes the unregistration of a CMA and the removal of the
associated availability information in a similar manner as registration
(Figure 6-29).

 CMA LMA-Repository LMA-DMA
channel

DMA-Repository1 DMA-DMA
channel

DMA-Repository2 Monitor1 Monitor2

1: unregister() 2: old_data

3: old_data
4: old_data

6: old_data

5: update()

7: update()

In the second scenario, a monitor contacts a DMA in order to browse the
availability information. The corresponding DMA-Repository component
handles the browsing request locally and returns a result according to its
current global view on availability information, hence it does not need to
interact with other components in this case.

Figure 6-29 A CMA
unregisters with the
GMS

The Configuration component

The Configuration component has the responsibility to configure event
report generation in the instrumentation as a result of
subscription/unsubscription of monitors with the GMS. The following two
scenarios define the internal behavior fo the Configuration component: the
GMS handles a subscription, and the GMS handles an unsubscription.

In Figure 6-30, the Subscription component contacts the DMA-
Configuration component with a “switch on” request as a result (we do not
depict this part) of a subscription initiated by a monitor with the GMS.

 Subscript ion DMA-DMA
channel

DMA-Configuration DMA-LMA
channel

LMA-Configuration CMALMA-Repository

1. switch_on()
1.1. switch_on

2. switch_on

2.2. configure()

1.2. switch_on

2.1. get_ids_for_events()

Figure 6-30 The
GMS handles a
subscription

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 169

The DMA forwards the “switch on” request to its LMAs by sending a
message to its DMA-LMA channel, and to the DMA-Configuration
components of other DMAs by sending a message to the DMA-DMA
channel. A LMA processes the request by contacting the LMA-Repository
to determine the relevant CMAs and then configures each CMA for event
generation. A DMA-configuration component handles configuration
messages from other DMAs in a similar way.

The system handles “switch off” requests similarly to “switch on”
requests (Figure 6-31).

 Subscript ion DMA-DMA
channel

DMA-Configuration DMA-LMA
channel

LMA-Configuration CMALMA-Repository

1. switch_off()

1.2. switch_off

1.1. switch_off

2. switch_off

2.2. configure()

2.1. get_ids_for_events()

Figure 6-31 The
GMS handles an
un-subscription

The Interrogation component

The Interrogation component allows monitors to interrogate the GMS for
status reports. An interrogation results in the measurement of values by the
instrumentation and the generation of status reports. The following
scenario defines the internal behavior of the Interrogation component: the
GMS handles a request for status reports.

In Figure 6-32 a monitor makes a request for status reports.

 Monitor DMA-Interrogation DMA-Repository DMA-DMA
channel

DMA-LMA
channel

LMA-Interrogation LMA-Repository CMALMA-DMA
channel

1: request_data()
2: get_status_description()

5: request_data
6: get_ids_for_statuses()

7: request_data()

3: request_data

4: request_data

11: response_notify
12: notify()

8: response_notify

9: response_notify10: notify()

The DMA-Interrogation component first calls the DMA-Repository to
validate the request and then forwards it to other DMAs and to its LMAs by

Figure 6-32 The
GMS handles a
request for status
reports

170 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

sending a “request data” message to the corresponding channels. When an
LMA receives a “request data” message, it contacts its LMA-repository to
get the ids for those CMAs registered with this LMA that can produce the
status reports requested in that message, and then the LMA requests these
status reports from CMAs that can provide them. When a CMA receives a
request for a status report it performs the necessary measurements and
returns the resulting status report to the LMA. The LMA sends the
combined response containing the statuses to its DMA via the LMA-DMA
channel. When a response comes from the LMA-DMA channel, the DMA
checks whether this response corresponds to a request from any of the
monitors subscribed to it. If the response does correspond, the DMA sends
the response to the corresponding monitor. If the response does not
correspond, the DMA sends the response to the DMA-DMA channel.
When a response comes from the DMA-DMA channel, a DMA-
Interrogation component determines whether it matches any pending
request from its subscribed monitors, if yes, it sends the response back to
the requesting monitor, if no, it ignores the response message. When a
DMA receives a “request data” message from the DMA-channel, it
processes it in a way similar to a request coming from a monitor subscribed
with this DMA, but when a response comes back, the DMA sends the
response directly to the DMA-DMA channel.

The Filtering component

The Filtering component has the responsibility to filter event reports
coming from the CMAs. The following three scenarios define the internal
behavior of the Filtering component: the GMS adds a filter (new
subscription), the GMS removes a filter (un-subscribing), and the GMS
processes an event report.

In Figure 6-33, the Subscription component contacts the DMA-
Filtering component to add a new filter as a result of a new subscription.

 LMA-RepositorySubscription DMA-Filtering DMA-DMA
channel

DMA-LMA
channel

LMA-Filtering

1. add_filter()
1.1. add_filter

2. add_filter1.2. add_filter 2.1. get_event_description1()

The Subscription component passes new filter to the DMA-Filtering
component. The DMA-Filtering component maintains a view on all filters
for monitors subscribed with this DMA. When it receives a new filter, the

Figure 6-33 The
GMS adds a filter
(new subscription)

 DEFINITION OF THE GMS SOFTWARE ARCHITECTURE 171

DMA-Filtering component adds it to that view and sends it to the DMA-
LMA and the DMA-DMA channels. When an LMA receives a new filter, its
LMA-Filtering component processes the filter in order to extract from it
those parts that this LMA can satisfy (i.e., it can produce events matching
that filter). It does this by contacting the LMA-repository to obtain
information about event types supported by the CMAs currently registered
with the LMA. The LMA-Filtering component then saves the processed
filter in order to maintain a local (to that host) view of monitor demands.
The DMA-Filtering component handles “add filter” messages from other
DMAs in a way similar to the way it handles “add filter” messages from a
Subscription component, except that the DMA-Filtering maintains a
separate view (separate of the view of all filters coming from monitors
directly subscribed to the DMA) of all filters that have arrived to this DMA-
Filtering component via the DMA-DMA channel). This separation allows
for efficient processing of new event reports arriving at a DMA-Filtering
component, depending on where it comes from: the LMAs or other DMAs.

The DMA-Filtering component handles “remove_filter” requests from
the Subscription component in a way similar to the previous case (Figure 6-
34).

 LMA-RepositorySubscription DMA-Filtering DMA-DMA
channel

DMA-LMA
channel

LMA-Filtering

1. remove_filter()

1.2. remove_filter

1.1. remove_filter

2. remove_filter
2.1. get_event_description1()

In Figure 6-35, the DMA-Filtering component processes a new event
report. The CMA sends an event report to the LMA-Filtering component.

 CMA LMA-Filtering LMA-DMA
channel

DMA-Filtering DMA-DMA
channel

Delivery Monitor

1: notify()
2: event

3: event
4: event

5: deliver_events()
6: notify()

The LMA-Filtering determines the relevancy of an event report to any
monitor in the system according to its local filter view. In case relevant, it

Figure 6-34 The
GMS removes a
filter (un-
subscribing)

Figure 6-35 The
GMS processes an
event

172 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

then sends the event report to its DMA-Filtering component via the LMA-
DMA channel. The DMA-Filtering component determines the relevancy of
the new event report to any of its subscribed monitors using its current
view on their filters and sends the event report to the Delivery component
which delivers the event report to those monitors. The DMA-Filtering
component also determines the relevancy of an event report to any of the
monitors subscribed to other DMAs in the system using its view on the rest
of the system’s filters, and sends a relevant event report to the DMA-DMA
channel. When a new event comes to a DMA-Filtering component from the
DMA-DMA channel, it determines its relevancy according to its view on its
subscribed monitors and sends a relevant event to the Delivery component,
which delivers it to its monitors. It does not have to check whether to send
the even to the DMA-DMA channel since it got the event from that channel
(and hence the other DMAs got it too).

6.3.3 Quality of service

We define the Quality of Service (QoS) of a system as a set of qualities
regarding the cooperative behavior of system components that realize the
service of the system [ISO98]. In order to satisfy its users, a system has to
meet some QoS requirements.

In order to meet the QoS requirements of its users, an application may
require certain guarantees on the resources it needs from its environment.
In the case of a distributed environment, we distinguish two types of
resources: computational and communication. Computational resources
include processing power, memory, OS handles and any other resources
that relate to the execution of monolithic (non-distributed) application
parts. Communication resources include communication bandwidth and
communication delay.

In terms of computational resources, an application may require
guarantees on available processing time. In terms of communication
resources, an application may require guarantees on available bandwidth for
communication among its components.

In Chapter 1, we have identified a class of problems related to the
monitoring system overhead, resulting from resource sharing in low-cost
distributed environments. One possible solution to these problems requires
adding QoS mechanisms to the distributed environment, where we
consider a QoS mechanism, one that gives users guarantees for meeting
their QoS requirements. For middleware-based systems, the middleware
handles most (or all) resource allocations in the layers below the
middleware layer. Hence, in middleware-based systems, the middleware
can provide to the application the benefits of QoS mechanisms

 IMPLEMENTATION REPORT 173

transparently (i.e., hidden by the middleware). We call these mechanisms,
middleware QoS mechanisms. The work described in [Weg03] constitutes
an example of middleware QoS mechanisms for computational resources.
This work presents middleware-based solutions for load balancing. The
work described in [Halt03] and carried out in [AMIDST] constitutes an
example of middleware QoS mechanisms for communication resources.
This work presents the Quality Provisioning Service (QPS) developed for
CORBA middleware. The QPS allows designers that use the CORBA
middleware as a distributed processing environment for their applications
to provide QoS guarantees on the response time of remote operation
invocations.

In the GMS we do not deal with QoS requirements. Since we use
middleware technology to develop the GMS, designers who want to use our
GMS have the possibility to add middleware QoS capabilities if they need
them.

6.4 Implementation report

In this section we describe the effort we have made to implement a
middleware-based proof-of-concept GMS prototype. This report discusses
supported functionality, technological decisions, security, and reliability
issues. In Appendix B we describe how to compile, configure, deploy and
use the prototype.

6.4.1 Supported functionality

Within the FRIENDS and the AMIDST research projects [FRIENDS,
AMIDST], we have created a prototype implementation of a GMS. We
incrementally introduced the functionality described by the GMS
architecture, in order to meet the resource limitations of the projects that
supported our work. As a result of these limitations, the recent prototype of
the GMS still does not support some of the functionality:
– The GMS prototype has support for event reports only. It does not

support service primitives that relate to status reports. This limits the
use of the GMS prototype to applications with an event-based
monitoring model;

– The GMS prototype does not support the filter expressions in a
specification of interest. This removes the ability of the GMS prototype
to filter relevant monitoring data; instead it delivers to all monitors all
event reports that the system generates;

174 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

– The GMS prototype uses communication channels only for the DMA-
DMA communication. We do not use channels for the LMA-DMA and
the DMA-LMA communication. Instead, we use CORBA synchronous
and oneway operation invocations to implement the message exchange
between LMAs and DMAs.

6.4.2 Technological decisions

In order to build a GMS prototype we have made the following decisions
regarding implementation technologies:
– The Java technology as a programming platform. Java provides

unprecedented portability among software and hardware platforms. At
present, the Java platform supports a wide variety of server, desktop and
embedded operating systems, and the standardization process within the
Java community allows third party vendors to provide Java support for
new operating systems and hardware platforms. Furthermore, the
current state-of-the-art in compiler technologies has reduced the
performance gap between Java-based solutions and other solutions based
on compilation to native machine language;

– The CORBA object middleware as a distributed object computing
environment. Some components of the GMS prototype may have to
operate on systems where we do not have a JVM implementation or we
cannot use Java for performance reasons. Re-implementing these
components in a native environment may pose the problem of
integrating this new implementation with the already existing Java-based
components of the GMS. CORBA solves this because it allows
portability across programming languages by providing to designers the
platform-independent Interface Definition Language (IDL).

We implemented the GMS prototype with the Java 2 Development Kit
version 1.3.x and above. We have used the JacORB [JACORB]
implementation of the CORBA standard for Java. We chose JacORB,
because its authors have made it available free for non-commercial use, and
they consistently update it to conform to the latest CORBA specification
updates. Note that because the CORBA standard supports interoperability
among ORB implementations using the IIOP wire protocol, we can in
principle, implement the various components of the GMS using any other
ORB product, e.g., a C++ or a C ORB implementation to gain additional
performance from natively compiled (i.e., optimized for a particular
computer architecture) programs or an ORB implementation with real-
time features.

 IMPLEMENTATION REPORT 175

CORBA standardizes several object services. Object services represent
facilities that automate some of the most commonly performed tasks in a
distributed environment. We use two of them: the naming and notification
services. The Naming Service provides means for obtaining access (an
object reference) to remote objects using explicit platform independent
naming conventions. We resolve all explicit dependencies among remote
objects of the GMS monitoring agents using the JacORB Naming Service
implementation to obtain the necessary object references. The Notification
Service allows for exchange of structured and unstructured data in a
generic, asynchronous and scalable manner. We use the ORBacus
[ORBacus] Notification Service to setup DMA-DMA channels.

The computer science research community has recognized open source
and free software as a powerful tool for supporting scientific research. Open
source software (with flexible licensing) encourages the research and
development by allowing access to source code. Free software encourages
the development of various applications (of that software) based on sharing
and reuse of its source code. We built the GMS using various free (for non-
commercial use) open source technologies. We believe that a basic enabling
technology such as a GMS, should support the free and open source
movement in order to promote the process of its refinement and evolution
by letting the community contribute to its development. For this reason, we
have released the prototype of the GMS under the LGPL license agreement
[LGPL].

6.4.3 Security

The GMS prototype does not provide functionality explicitly related to
security, such as built-in authentication or encryption. Using the GMS in a
(secure) testing environment to monitor for locating and removing errors,
does not require security features in the GMS. Therefore, it makes sense to
consider security aspects only for uses of the GMS during the normal
operation phase of the monitored application.

In general, we consider communication within administrative domain
regions secure, and thus delegate this responsibility to domain
administrators. We however consider communication between domains
insecure in the general case. For DMA-DMA communication between
DMAs belonging to different domains, designers need to consider providing
additional security, e.g., encryption of communication to prevent
eavesdropping.

176 CHAPTER 6 AN ARCHITECTURE FOR A GENERIC MONITORING SYSTEM

6.4.4 Reliability

We consider the following reliability issues in the GMS monitoring system:
reliable communication, tolerance to partial failure, and potential problems
with the ordering of monitoring reports.

Reliable communication

The technologies used in the GMS prototype provide reliable
communication among the physical components of the GMS – CORBA
uses the reliable transport protocol of the Internet. This means that the
GMS components eventually detect any failure in the communication. The
GMS uses a fail-fast strategy: when one interaction between GMS
components fails, the GMS assumes the network has become unavailable
and terminates the components. Designers who need more elaborate
behavior may extend our implementation appropriately.

Partial failure

A partial failure in the GMS we consider when a monitoring agent becomes
inaccessible for the rest of the system, e.g., it either terminated abnormally
or the communication network became unavailable.

We consider failure in a CMA equivalent to a failure of the
instrumented application part, which results in loosing subsequent
monitoring data from this part.

Failure in an LMA would result in subsequent loosing of monitoring
data from a whole host, however the rest of the monitoring system
continues to function.

Failure in a DMA would result in loosing monitoring data about a whole
administrative domain region. The other domains (if any) however, would
continue to provide monitoring data to their monitors. Designers can try to
prevent loosing a whole domain because of a failed DMA, for example, by
upgrading LMAs with domain consciousness, i.e., allow them to create new
DMA instances that in turn will seek out connection to the other DMAs of
the GMS.

Order of monitoring reports

Some monitoring applications may consider the delivery order of
monitoring reports important. The Inter-ORB protocol that CORBA uses,
takes care of the correct byte order during the communicating of operation
invocations. CORBA however, does not guarantee that two separate
monitoring reports sent with two separate operation invocations would

 IMPLEMENTATION REPORT 177

always end up at a monitor in the same order (of sending). This problem
results from a combination of various issues such as non-synchronized
(and/or imprecise) computer clocks, communication delays, loaded
networks, partial communication failures, and so on.

The GMS prototype does not provide any guarantees about the ordering
of monitoring reports. By definition, the GMS service requires a timestamp
from a physical clock present in each report, to use for filtering based on
time constraints. Nevertheless, this physical clock has accuracy as good as
the accuracy allowed by the protocol used for synchronizing computer
clocks (e.g., NTP [NTP]). We choose to leave reordering functionality out
of the GMS because of its processing cost in terms of overhead. Designers
may choose to extend the GMS prototype with a logical clock system. We
add a logical clocks system to the monitoring system during the
specialization of the GMS for monitoring object and component
communication.

Chapter 7

7. A system for monitoring distributed
object and component
communication

This chapter presents the design of a system for MOnitoring Distributed
Object and Component Communication (MODOCC). The MODOCC
system establishes the basis for building monitoring applications that
analyze object and component communication behavior in CORBA-based
Java applications. We design the MODOCC system following the design
approach presented in Chapter 5.

The MODOCC systems consists of two parts: (a) GMS specialization for
monitoring of object and component communication behavior and (b)
instrumentation that allows monitoring of Java objects, CORBA objects,
and the instances of components built with the Distributed Software
Components (DSC) framework.

First, we prepare for the design by further refining the requirements
that we have identified in Chapter 4. We use the design questions that we
formulated in Chapter 5 to structure the refinement.

We specialize the GMS presented in Chapter 6 by following stage two of
our design approach. The GMS specialization consists of two steps: (a)
definition of a MODOCC Monitoring Model (MM) that helps us to specify
explicitly what aspects of object and component communication we want to
monitor, and (b) definition of a MODOCC data structure for the
MODOCC MM. The MODOCC MM specializes the generic monitoring
model of the GMS (Chapter 6, section 6.1.1) by defining types of events
and their specific attributes. The MODOCC data structure specializes the
GMS data structure by defining how a MODOCC monitoring report
represents the event types and their specific attributes defined in the
MODOCC MM.

180 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

We design the MODOCC instrumentation by following stage three of
our design approach. The MODOCC instrumentation design for
monitoring object and component communication consists of four steps:
(a) design of sensors for Java objects, CORBA objects, and DSC component
instances, (b) sensor placement, (c) design of instrumentation tools for
Java, CORBA and DSC, and (d) a CMA (instrumentation) architecture.

In the end we discuss the performance of the MODOCC system
prototype that we have built.

7.1 Requirement refinement

In this section, we refine and structure the requirements from Chapter 4
relevant to GMS specialization, by answering the design questions from
Chapter 5.

Q1: Why do we want to monitor object and component communication?

In Chapter 3, we introduced object and component middleware. Object
and component communication plays a central role in defining the behavior
of a middleware-based application that consists of cooperating objects
and/or component instances. We require monitoring of object and
component communication for two reasons. Firstly, to allow the
application designer to visually examine an execution in order to determine
whether an application prototype faithfully implements its intended behavior
specified at the level of communicating object and component instances.
Secondly, to allow the application designer to locate and possibly remove
implementation errors. We restrict the communication that we want to
monitor to method calls and operation invocations.

For example, a monitoring system can visualize application behavior
using a message sequence diagram showing the sequence of operation
invocations among application objects during one particular execution of
the monitored application. Using this diagram, a tester can better
understand how the monitored application operates, can locate an error by
associating it with a particular invocation, can detect undesirable sequences
of invocations, and in general check the conformance of the monitored
application behavior to its object-oriented design.

Q2: What information do we need from a visualization of object and component
communication?

 REQUIREMENT REFINEMENT 181

The monitoring system should uniquely identify individual invocations,
provide information about the order among invocations, should uniquely
identify the objects or component instances that participate in an invocation,
and should allow inspection of invocation parameters. The visualization should
inform about order in the terms of causal precedence among operation
invocations (we introduced these terms in Chapter 2).

Furthermore, the monitoring system should have the capabilities to
provide information online, so that designers can (potentially) observe
operation invocations while the monitored application executes. Based on
this online information, for example, designers can steer the monitored
application in order to better expose some particular erroneous behavior.
Note that we do not require application steering capabilities from the
monitoring system.

Q3: What monitoring data does a monitor require from the MSS?

Visualization represents a presentation activity performed at a monitor (see
the discussion on monitoring activities in Chapter 2). A monitor analyzes
and visualizes the monitoring data coming from the MSS. Hence, the MSS
should provide sufficient monitoring data to support visualization as
discussed in the previous two questions.

An operation invocation represents a complex (potentially) distributed
activity. We can view an operation invocation as a sequence of several non-
distributed activities. This way of modeling an operation invocation allows
us to deal with distribution, by measuring the progress of related non-
distributed activities involved in an operation invocation. We consider the
following non-distributed activities: initiation of an invocation at the
location of the caller (object/component instance), receiving of an
invocation at the location of the called, returning of a result at the location
of the called, and the receiving of the result at the location of the caller (see
Chapter 3 for details on the middleware mechanism that handles operation
invocations). The successful completion of each one of these activities
represents an event (see the modeling concepts defined in Chapter 2). The
monitor requires to receive from the MSS event reports that represent these
events.

The monitor needs timestamps associated with each event report so that
it can restore the order (of occurrence) among the events belonging to a
single invocation. This way the monitor can determine whether an
invocation has completed (successful invocation) or not (which can mean
an error or some special condition that designers have overlooked). A
vector logical clock system allows keeping track of the progress of sequential
processes in the monitored application by generating vector timestamps

182 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

(described in Chapter 2). Vector timestamps allow restoring of the causal
precedence relation among events. Timestamps generated with the help of
an imprecise computer physical clock allow restoring of the temporal order
among the events.

For the proper visualization of object and component instances and
their involvement in communication, the monitor not only requires unique
identifiers (to distinguish among them) but also requires information about
their lifecycle and in particular their lifecycle activities. We consider two
types of lifecycle activities - creation and destruction of an object or
component instance. The monitor requires from the MSS event reports
representing the events of successful completion of lifecycle activities. For
example, a monitor can use the knowledge that objects can only
communicate after creation and before destruction to detect attempts for
communication with objects that the runtime environment has destroyed
(which developers typically consider as an error).

Q4: What monitoring data does the MSS require from the instrumentation?

We do not require the MSS to perform any specific processing activities on
monitoring data and therefore the MSS requires from the instrumentation
the same monitoring data we discussed in the answer to the previous
question. The MSS simply collects event reports from the instrumented
application parts (the instrumentation) and delivers them to the monitors
subscribed with it.

Q5: What measurements does the instrumentation need to perform?

In order to obtain the required monitoring data, the instrumentation needs
to detect the events corresponding to activities happening during an
operation invocation. We discussed event detection in Chapter 2, section
2.4.2. To detect the events necessary for monitoring an operation
invocation, the instrumentation needs to install proper sensors. In Chapter
3, section 3.4.1, we discussed mechanisms for message reflection. For
example, for the CORBA middleware, the interception points provided by
the Portable Interceptors specification and the POA allow for detecting the
completion of the activities we identified in the answer of question Q3.

The instrumentation needs to associate a timestamp with each event so
that monitors can reason about their order (of occurrence). To provide
causal precedence among events, the instrumentation needs to implement
and maintain a vector clock system. When the instrumentation detects an
event, it measures the current progress of its vector clock to generate a
vector timestamp. Since vector timestamps provide partial order among

 GMS SPECIALIZATION 183

events, the instrumentation also measures the physical computer clock to
provide an absolute timestamp that allows absolute (though inaccurate)
ordering of the events in the system.

When the instrumentation detects an event, it needs to identify uniquely
the object(s), component instance(s) and the process (for the vector clock)
concerning this event, so that the instrumentation can generate an event
report that properly characterizes the event. For this the instrumentation
measures the internal representations (e.g., names, pointers or hash codes)
of objects, component instances, and processes, and uses these
measurements to generate (if necessary) globally (for the whole distributed
system) unique identifiers that allow monitors to distinguish among
different objects, component instances and processes.

The instrumentation also needs to measure the values of parameters
(input parameters and results) of an invocation at the moment of event
detection.

In Chapter 8, we further elaborate on Q1, Q2 and Q3 in order to
define a generic monitor for the MODOCC system. In this chapter we
concentrate on Q4 (which coincides with Q3) and Q5, in order to build
the MODOCC system.

7.2 GMS specialization

In this section we describe the specialization of the GMS into an MSS for
monitoring object and component communication. Stage two of our design
methodology suggests that a designer should follow three steps in the
specialization of a GMS: definition of a monitoring model, definition of a
data structure, and adding of processing components. We follow steps one
and two, however we do not follow step three, since we do not require any
additional processing of monitoring data in the MODOCC system.

We structure the discussion in the following manner. First we define a
MODOCC MM that consists of an entity model and a behavior model. The
entity model describes the abstract structure of a monitored application in
terms of objects, component instances, processes and the relations among
them. The behavior model describes the behavior (within a single
application run) of entities (from the entity model) in terms of events,
where an event represents the successful completion (see Chapter 2) of a
non-distributed communication or lifecycle activity. The behavior model
also defines ordering relations (causal precedence and limited realized
causality) among events so that using them monitors can reason about
operation invocations (including relations among them) in the behavior of

184 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

the monitored application. Then we discuss a data structure of the
monitoring reports for the MODOCC system.

7.2.1 Entity model

Figure 7-1 shows a UML class diagram of the entity model of a
middleware-based application.

Component
Instance

0..*0..*

+communicates

Object

0..*0..*

+communicates

1..*

+realize

1..* Process

0..*0..*

+communicates

1..*

+realize

1..*

Figure 7-1 Entity
model

Entities

We distinguish three types of entities in a middleware-based application:
component instances, objects and processes. We defined the object and
component instance concepts in Chapter 3. We assume that a component
can offer its functionality through multiple interfaces, while an object can
offer its functionality through a single interface. We defined the process
concept in Chapter 2.

Entity relations

In Chapter 3 we made the observation that component technology often
evolves as a superstructure on object middleware. In this model we use this
observation to define that one or more objects realize the behavior of a
component instance within a single application run. In turn, one or more
processes realize the behavior of an object by sequentially performing
activities during application runtime. Some of these activities result in
entities communicating among each other. Component instances and
objects communicate via operation invocations and processes via message
exchange. In the behavior model we further discuss concrete activities that
entities of the entity model can perform.

7.2.2 Behavior model

We start by expressing component instance communication using object
communication, then object communication using activities that processes
perform. We also discuss lifecycle activities for components and objects.

 GMS SPECIALIZATION 185

Having identified the necessary activities, we define event types and event
attributes for each event type. We then discuss relations among events.

Mapping component communication to object communication

In Figure 7-2, component instance A invokes an operation on an interface
provided by component instance B.

IInnssttaannccee ooff
CCoommppoonneenntt AA

IInnssttaannccee ooff
CCoommppoonneenntt BB

OObbjjeecctt LL OObbjjeecctt MM
iinnvvooccaattiioonn

IInnssttaannccee ooff
CCoommppoonneenntt AA

IInnssttaannccee ooff
CCoommppoonneenntt BB

iinnvvooccaattiioonn

Since we assume that objects realize the behavior of components, there
exist two objects L and M that realize this particular operation invocation at
A and B respectively.

Figure 7-2 Mapping
of component
communication to
object
communication

Mapping object communication to process communication

We model an operation invocation between two objects as a sequence of
activities. We distinguish three types of operation invocations (Figure 7-3):
(a) method call, (b) synchronous operation invocation, and (c)
asynchronous (oneway) operation invocation. P1 and P2 represent processes
involved in performing communication activities. O1 and O2 represent the
caller and called objects respectively. Circles represent activities that we
consider significant. Arrows represent the order in which processes execute
activities. The object middleware used to build the monitored application
prescribes this order.

186 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

P1

send: O1

receive: O2

send response: O2

receive response: O1

P1 P2

send: O1

receive: O2

send response: O2

receive response: O1

P1 P2

send: O1

receive: O2

m1

m2

m1

t

(a) “Method call” (b) “Synchronous operation invocation” (c) “Asynchronous operation invocation”

In (a), both O1 and O2 represent local objects. We consider (a), because
most OO programming languages handle method calls in this way. We
model a method call using four activities: send represents the calling of the
method at O1, receive represents the beginning of the execution of the
method body at O2, send response represents the completion of the execution
of the method body at O2, and receive response represents the return of results
at O1. Hence we model the execution of a method call with the consecutive
execution of the activities send, receive, send response and receive response, by a
single process P1.

In (b), O1 and O2 represent objects possibly situated at remote physical
locations (or different execution environments at the same location). We
consider (b), because most contemporary object middleware products
handle synchronous operation invocations in this way (similarly to an RPC
call). We model a synchronous operation invocation using four activities:
send and receive response associated with object O1, and receive and send response
associated with remote object O2. During a synchronous operation
invocation, a process P1 executes send, to send a message m1 to process P2,
which performs receive to receive the message. Message m1 constitutes the
forward direction of an operation invocation. After sending the message, P1
waits for a response message. When the computation of the operation
implementation completes, process P2 performs send response to send
message m2 to process P2 containing the results (if any) from the operation
computation. Process P1 performs receive response to accept the message.

In (c), O1 and O2 again represent objects possibly situated at remote
physical locations (or different execution environments at the same
location). We consider (c), because the CORBA middleware handles
asynchronous (oneway) communication in this way. An asynchronous
operation invocation differs from a synchronous operation invocation in
that it does not require a response message.

Figure 7-3 Mapping
of object
communication to
process
communication

 GMS SPECIALIZATION 187

Lifecycle activities

Regarding the lifecycle of component instances we consider two activities:
create and release, where create results in a new component instance and
release results in the releasing of any system resources associated with an
existing component instance. Regarding the lifecycle of an object we again
consider two activities: create and release, with similar meaning as defined
above, but applied to objects.

Event types

In the previous sections we have identified communication and lifecycle
activities that we find interesting to a monitor. In this section, we associate
with each activity an event type. Each time a process successfully performs
an activity that we want to monitor, we require the MODOCC monitoring
system to detect this condition as an event of the event type associated with
that activity. In Table 7-1 we define the required communication event
types.
Communication
events

Description

m_snd This event occurs when send has completed during a
method call.

m_rcv This event occurs when receive has completed during a
method call.

m_snd_resp This event occurs when send response has completed
during a method call.

m_rcv_resp This event occurs when receive response has completed
during a method call.

i_snd This event occurs when send has completed during a
synchronous operation invocation.

i_rcv This event occurs when receive has completed during a
synchronous operation invocation.

i_snd_resp This event occurs when send response has completed
during a synchronous operation invocation.

i_rcv_resp This event occurs when receive response has completed
during a synchronous operation invocation.

o_snd This event occurs when send has completed during an
asynchronous operation invocation.

o_rcv This event occurs when receive has completed during an
asynchronous operation invocation.

Table 7-1
Communication
events

With Typescomm we denote the set of all communication event types.

188 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

In Table 7-2 we summarize how the defined event types relate to
operation invocations.
Invocation type Corresponding tuple of events
Method call (m_snd, m_rcv, m_snd_resp, m_rcv_resp)
Synchronous operation
invocation

(i_snd, i_rcv, I_snd_resp, i_rcv_resp)

Oneway operation
invocation

(o_snd, o_rcv)

Table 7-2
Invocations

In Table 7-3 we define lifecycle event types.
Lifecycle events Description
ob_create This event occurs when create has completed during

class instantiation.
ob_release This event occurs when release has completed during

class instantiation.
ci_create This event occurs when create has completed during

component instantiation.
ci_release This event occurs when release has completed during

class instantiation.

Table 7-3 Lifecycle
events

With Typeslife we denote the set of all lifecycle event types.
We define function Type: E (Typesa comm Types∪ life), such that Type(e)

for an event e∈E gives the type of the event, where E represents the set of
all events in some application run.

Event attributes

In Chapter 2 we define that an event has three types of attributes: time,
address, and information. The time attribute describes the moment of event
occurrence. The address attribute describes the place at which the event
occurred. The information attribute describes the effect or result of the
event. In this section we define concrete attributes for the communication
and lifecycle events (Table 7-4).
Event type Time attribute Address attributes Information attributes
m_snd lt ocaller, p ocalled, op, params
m_rcv lt ocalled, p ocaller, op, params
m_snd_resp lt ocalled, p ocaller, op, params
m_rcv_resp lt ocaller, p ocalled, op, params
i_snd lt ocaller, p ocalled, op, params
i_rcv lt ocalled, p ocaller, op, params, pcaller

i_snd_resp lt ocalled, p ocaller, op, params
i_rcv_resp lt ocaller, p ocalled, op, params, pcalled

Table 7-4 Event
attributes

 GMS SPECIALIZATION 189

o_snd lt ocaller, p ocalled, op, params
o_rcv lt ocalled, p ocaller, op, params, pcaller

ob_create lt c, p id
ob_release lt c, p id
ci_create lt p id
ci_release lt p id

Every event type from the MODOCC MM has one time attribute lt. The lt
attribute accepts as a value a timestamp that determines the moment of
event occurrence. The MODOCC system uses timestamps issued with the
help of a vector logical clock.

Every event type has an address attribute p that represents the process
that performed this event. Communication events have as an additional
address attribute the identifier of the object at which this event occurred
(ocaller or ocalled, depending on the event type). Object lifecycle events have as
an additional address attribute the identifier of the component this object
realizes.

All communication events have three information attributes: ocaller or ocalled
(depending on the event type) representing the identifier of the other
object that participates in the operation invocation, op representing the
signature of the operation invocation, and params representing the
parameters and/or result values of the operation invocation at the moment
of the occurrence of the communication event. Furthermore, i_rcv and o_rcv
have an additional pcaller information attribute, and i_rcv_resp has an
additional pcalled information attribute. These additional attributes contain
the identifier of the process that has sent (performed a send or send response
activity) a message to another process as part of performing an operation
invocation. Monitors that analyze communication events detected by the
MODOCC system use these event attributes in combination with the
timestamp to order and match individual events as part of an operation
invocation. Lifecycle events have as an information attribute the identifier of
the entity (object or component) whose lifecycle they relate to.

With Attribname we define the set of all attribute names. With Attribvalue we
define the set of all possible values for an attribute of an event. We define
an (infix) accessor operator “.” : E× Attribname a Attribvalue, such that for an
event e, e.“attribute name” produces the value of the corresponding
attribute of this event. For example, for a communication event e∈E, e.op
gives the name of the operation invocation that this event corresponds to.

190 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

Example: The “Hello!” application

To illustrate how the model applies to a concrete application, we consider a
simple system consisting of two components: a client and a server. The server
component offers an interface, defined in CORBA IDL as follows:

//Hello IDL
interface Server
{
 string hello(in string msg);
};

The client component C1 contains object O1, and the server component C2
contains object O2 (Figure 7-4). In the example we consider the following
scenario: “C1 invokes the hello operation on C2”. For this scenario, we
assume that process P1 performs activities within C1 and process P2
performs activities within C2.

 CC11 CC22

OO11 OO22

Table 7-5 contains a list of possible events that a monitor receives from the
MODOCC system for the selected scenario. We represent each event by its
type name followed by a list (between brackets) of its attribute values in the
order presented earlier. For simplicity, we disregard the timestamp
attribute by using a “_” on the corresponding position.

Figure 7-4 The
model of the �Hello�
application

Nr. Event
1 ci_create(_, P1, C1)

2 ci_create(_, P2, C2)

3 ob_create(_, C1, P1, O1)

4 ob_create(_, C2, P2, O2)

5 i_snd(_, O1, P1, O2, �hello�, �Hello, client here!�)

6 i_rcv(_, O2, P2, O1, �hello�, �Hello, client here!�, P1)

7 i_snd_resp(_, O2, P2, O1, �hello�, �Welcome, client! Server here!�)

8 i_rcv_resp(_, O1, P1, O2, �hello�, �Welcome, client! Server here!�, P2)

9 ob_release(_, C2, P2, O2)

10 ob_release(_, C1, P1, O1)

Table 7-5 List of
events for the
�Hello!� application

 GMS SPECIALIZATION 191

11 ci_release(_, P2, C2)

12 ci_release(_, P1, C1)

First, the application creates two components C1 and C2 at the client and
the server hosts, respectively (events 1, 2). The application creates O1
within the context of C1 (event 3), and O2 within the context of C2 (event
4). The process P1 starts executing the functionality of O1, which leads to
performing of “hello” invocation on O2 (event 5). O2 receives the invocation
(event 6) in the context of process P2. After executing the operation
functionality, O2 sends the result (event 7). The result arrives at O1 in the
context of P1 (event 8). Then the application releases objects and
component instances (events 9, 10, 11, 12). Figure 7-5 shows the events
altogether and relative to the middleware that handles the distribution
details.

CC11 CC22

OO11 OO22

MMiiddddlleewwaarree

11 22

33 44 99 1100

1111 1122

55 88 66

PP11 PP22

77

Events 5,6,7, and 8 represent successfully completed local interactions
(between the objects and the middleware) that altogether (in this order)
represent a synchronous operation invocation.

Figure 7-5 Events
for the �Hello�
application

Relations among the events

Monitors require from the MODOCC system information about the order
of communication events, so that they can restore correctly individual
invocations, and further to order invocations relative to each other within a
single application run. The lack of global time in low-cost distributed
system motivates the use of logical time to order the events in an
application run monitored with the MODOCC system.

In Chapter 2 we distinguished two types of causality relations: potential
and realized. In the following sections we describe how the MODOCC MM
uses potential and realized causality.

192 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

Monitoring potential causality with the MODOCC system

We associate with every event in an application run a logical timestamp
attribute. As discussed in Chapter 2, we can define a partial order relation,
denoted as “<”, on the timestamps issued by a logical clock system. With a
strongly consistent logical clock system, the “<” relation among
timestamps allows monitors to restore the causal precedence relation
(denoted by “ ”) among events they observe. We shall discuss a
particular design for a vector clock in the instrumentation design presented
later in this chapter. The causal precedence relation provides potential
causality among the events of an application run.

→

The partial order that causal precedence gives, by itself only means that
events occurred in some order in that particular application run. If a
designer has some additional knowledge about the model (e.g., original
design specification) of the monitored application, he/she may attempt to
determine whether the model allows a behavior that produces the observed
application run. If the model allows a trace however, the designer cannot
say anything about the correctness of the implementation, because a single
run does not determine all possible ways to execute the application. The
designer may have to check this way a lot of different runs in order to raise
his confidence in the implementation. If the model does not allow a run,
then we have two possible conclusions: the monitored application
implementation does not faithfully implement its model or, it does
implement its model faithfully, but it produces a disallowed run because of
a factor not considered in the model (e.g., a communication failure caused
by cutting a wire). The designer needs to reexamine its implementation in
order to distinguish the two cases. To narrow down the work during this
reexamination, a designer may want to analyze the causal relationships
among events, for example to find the reason for an event he considers as
error.

When the designer does not have access to the model of the monitored
application, he may try to determine the possible causes of a particular
event using the potential causality provided by the causal precedence
relation for an application run. Nevertheless, another application run may
produce the same event but in different order with the other events in the
application run, because the potential causality does not provide the
certainty of realized causality. Hence, potential causality only narrows down
the choice for a cause to a list of possible causes.

Middleware-based applications have something common in their
behavior – the middleware. By definition, the middleware represents a
collection of reusable blocks of functionality to provide to the application
layer certain transparency from low-level programming details. As a

 GMS SPECIALIZATION 193

consequence, all middleware-based applications sharing a particular
middleware, also share its behavior. For example, a CORBA-based
application would use the behavioral patterns of the CORBA middleware
for communication among its (potentially) distributed application objects.
Hence, all communication would follow the same model – the design of the
intended behavior of the CORBA object middleware. All this implies that,
since we have the goal to monitor middleware-based applications, our
MODOCC system has access to an important asset – the model of the
middleware. This model does not change over time and it prescribes all
possible types of communication behavior (earlier we limited the discussion
to three) between middleware objects. Furthermore, we assume that the
middleware implementation used during monitoring correctly implements
its model. In the next section, we discuss how the additional information
from the middleware model allows us to reason about realized causality
relation among events of an application run.

Monitoring realized causality with the MODOCC system

We have already used the model of the middleware when we defined the
event types and how events represent a method call, a synchronous
operation invocation, and an oneway operation invocation. According to
this model, in the scope of a single invocation certain event types precede
other event types in terms of realized causality. We define the binary
relation Causalitytypes ((Types⊂ comm×Typescomm)∪ (Typeslife× Typeslife)), as the
causal relation between event types. Table 7-6 shows all event type pairs
that this relation contains.

Event type
cause

Event type
effect

m_snd m_rcv
m_rcv m_snd_resp
m_snd_resp m_rcv_resp
i_snd i_rcv
i_rcv i_snd_resp
i_snd_resp i_rcv_resp
o_snd o_rcv
ob_create ob_release
ci_create ci_release

Table 7-6 Causal
relations between
event types
according to the
middleware model

We provide the following example application run (Figure 7-6) to illustrate
realized causality between events.

194 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

ttiimmee

pp11::oo11

pp22::oo22
ee22

ee11

pp33::oo33

ee33

ee44 ee55

ee66 ee77 ee1111

ee88 ee99

ee1100

iinnvv11

iinnvv22 iinnvv33

ee1122

The application run consists of three nested synchronous operation
invocations. Horizontal lines represent the passing of time at an object oi,
i∈{1,2,3}. Each object oi has a process pi associated with it. Each process
performs the activities of the corresponding object. Objects perform three
synchronous operation invocations that we denote with inv1, inv2 and inv3.
The quadruples (e1, e2, e11, e12), (e3, e4, e5, e6) and (e7, e8, e9, e10) represent
inv1, inv2 and inv3 respectively. According to their timestamps, these events
relate with causal precedence in the order provided by the arrows in the
diagram. According to the middleware model, the events within each
quadruple relate among each other with realized causality, for inv3, e1
represents the definite cause of e2, e2 represents the definite cause for e11,
e11 represents the definite cause of e12, and so on for the other two
invocations.

For an application run we define the Limited Realized Causality (LRC)
relation as a binary realized causality relation between the events of every
invocation in that application run. We call it limited, because it only involves
events resulting from middleware activities that we want to observe:
communication and lifecycle.

Let DC = (E, →) represent an application run. Let C() represent
the transitive closure of the causal precedence relation , and R()
represent its transitive reduction.

→
→ →

LRC E E, LRC = {(e⊂ × 1, e2): (Type(e1), Type(e2)) ∈Causalitytypes and
(((Type(e1) ∈Typescomm and Type(e2)∈Typescomm) and ((e1, e2)∈R())) or
((Type(e

→
1) ∈Typeslife and Type(e2)∈Typeslife) and ((e1, e2)∈C()) and

(e
→

1.id = e2.id)))}.

Informally, for two events e1, e2 to participate in the LRC, their types need
to relate causally in one of the ways defined earlier in Table 7-6.
Furthermore, for communication events, the two events should participate
in the transitive reduction of the causal precedence relation, i.e., e1 should
directly precede e2. For lifecycle events, both events should regard the same
object or component instance, and the events should participate in the
transitive closure of the causal precedence relation, i.e., e1 should

Figure 7-6 Three
nested
synchronous
operation
invocations

Definition 7-6
Limited Realized
Causality

 GMS SPECIALIZATION 195

transitively precede e2. Note that LRC defines a strict partial order on E,
and LRC⊂ C(), . →

The main application of the LRC comprises various analysis techniques
regarding invocations that need the certainty of realized causality. For
example, if a monitor receives only the first two events of an invocation
quadruple, this would imply an application hasn’t finished preparing the
result of the operation invocation (if any). If the last two events of the
quadruple never appear at the monitor (provided the monitoring system
operates correctly) this would imply an error in a particular application
component which the monitor can recognize automatically, without
intervention of a human operator. If only the first and the last events appear
at a monitor, this would imply an error in the operation of the monitoring
system itself, since according to the middleware model this kind of behavior
cannot happen. With this additional information, a human operator can
concentrate on dealing with the error, instead of spending a lot of time
searching for its location.

When a monitor receives information about an event (in the form of an
event report), it uses the information from the logical timestamp attribute
of the event to restore the causal precedence relation. Then, based on the
type of the event (and other event attributes in case of lifecycle event), the
monitor can restore the limited realized causality relation.

7.2.3 Data structure

Each time the MODOCC system detects a communication or a lifecycle
event we require the information about this event to become available to
monitors. The MODOCC system makes an event available to monitors by
generating an event report. An event report represents a special kind of
monitoring report that describes an event in terms of its type and specific
attributes.

In this section we define a data structure for the MODOCC MM. This
data structure defines (the structure of) the MODOCC event reports (i.e.,
reports that the MODOCC system can generate). Figure 7-7 shows the
structure of MODOCC event reports.

196 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

 MonitoringReport

EventReport

MCommEvent
o_caller
o_called
op
params
p_caller
p_called

MLFEvent
c
o

PTimestap
MEvent
event_type
lt
p 11

In Chapter 6 we defined a structure for monitoring reports that allows the
GMS to work with monitoring data in a generic way. Because we build the
MODOCC system on top of the GMS, we derive the definition of
MODOCC reports from the EventReport class, where the MEvent class
represents a MODOCC event report. We define two additional classes of
event reports derived from MEvent: MCommEvent and MLFEvent,
representing communication events and lifecycle events respectively. The
MEvent, McommEvent, and MLFEvent define specific attributes for every
event report corresponding to the event attributes from the MODOCC MM
(except for the event_type attribute – see below).

The MEvent class defines specific attributes common to both
communication and lifecycle events, and an additional attribute event_type to
distinguish among individual event types (that we defined in the MODOCC
MM). The MCommEvent defines attributes specific to communication
related events and the MLFEvent defines attributes specific to lifecycle
events. The GMS can access all specific attributes in a generic way by
enumerating them in the s_attributes list attribute of the MonitoringReport
base class (see Chapter 6 for the details).

The values of the event_type attribute enumerate the event types we
defined in the MODOCC MM. The values of all other attributes except lt,
represent unique identifiers for entities from the MODOCC entity model.
The lt attribute contains as a value an instance of the PTimestamp class
(Figure 7-8).

Figure 7-7 The
structure of
MODOCC event
reports

 INSTRUMENTATION DESIGN 197

PTimestap

pairs

Pair

p
c1..*1..*

The MODOCC system uses a vector clock system to generate vector logical
timestamps. We discussed the details of the vector clock system in Chapter
2. The value of the lt attribute represents a vector of pairs, where every pair
has an attribute p representing the id of a process, and an attribute c
representing the progress of the process in p, according to the vector clock
system. In the next section we further show how we implemented the rules
of the vector clock system.

Figure 7-8 The
logical timestamp

7.3 Instrumentation design

In this section we describe the instrumentation design for the MODOCC
system. We consider three types of instrumentation: instrumentation of an
object oriented programming runtime (Java) to monitor objects (i.e.,
objects local to a single execution environment), instrumentation of an
object middleware (CORBA) to monitor middleware objects (i.e., objects
that allow distributed communication), and instrumentation of a
component middleware (DSC) to monitor component instances.

The MODOCC MM defines several event types. For each event type, we
need to build software sensors that can detect the completion of the
activities represented by the event. We also need to determine where to
place these sensors with respect to the monitored application and the
middleware.

Middleware technologies provide to application developers tools that
facilitate the application development process. During the instrumentation
design we also need to provide tools that automate the instrumentation
process, so that developers can easily adapt for the purpose of monitoring
large numbers of different application objects and components.

The instrumentation should communicate with the GMS to send
monitoring data. For this purpose we design an architecture of a CMA that
encapsulates all sensors, their management, the packaging of the results of
measurements into event reports, and the sending of these event reports to
the GMS according to its service definition.

198 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

7.3.1 Sensor design and placement

In order to detect the occurrence of an activity corresponding to an event
type from the MODOCC MM, we want to put a sensor on the execution
path of the process performing the activity, so that the sensor would
execute right after the activity has completed its execution. We call this
method of detecting events interception. We associate with each event type
from the MODOCC MM, a sensor that gets executed right after the
moment of the completion of the activity. A sensor measures all the various
values that constitute the attributes of the event that this sensor detects.
The instrumentation has the responsibility to package these values in an
event report and to send the report to the GMS.

For communication events, we embed sensors on the communication
path between objects in order to detect the completions of local
interactions between the middleware and the objects participating in the
communication. For lifecycle events, we embed sensors in the middleware
object management facilities in order to detect the creation and destruction
of objects.

Sensors for Java

The Java platform offers two interfaces that can support installation of
sensors for communication and lifecycle events: the Java Virtual Machine
Profiler Interface (JVMPI) [JVMPI], and the Java Platform Debugger
Architecture (JPDA) [JPDA].

The JVMPI allows for establishing hooks on the path of the JVM class
loading mechanism during application runtime. Using JVMPI, designers can
monitor various object activities, such as method calling, creation of new
objects, synchronization between threads, etc. The JVMPI mainly finds use
in application benchmarking and performance testing, as done in JPMT
[HQGM02].

The JPDA debugging interface allows for monitoring (and manipulation
in terms of stopping, resuming, and step-by-step execution) of a JVM
started in debug mode (this includes everything that JVMPI can do). The
Java development kit offers the Java Debugging Interface (JDI) as a default
Java-based debugger front-end implementation of JPDA. We use the JDI to
place sensors that can detect “method call” and lifecycle events for Java
objects. We prefer to use the JDI because it presents the cheapest (with
respect to development resources) way to implement generic
instrumentation for Java. The work described in [BrM02] uses the same
approach for formal verification of the behavior of Java programs.

 INSTRUMENTATION DESIGN 199

JJPPDDAA//JJDDII
ccoonnnneeccttoorr

MMoonniittoorreedd
JJVVMM

MMoonniittoorriinngg
JJVVMM

JJDDII
SSeennssoorrss

IInnssttrruummeennttaattiioonn

Figure 7-9 presents the sensor architecture using the JPDA / JDI approach.
The instrumentation attaches JDI sensors to the JVM running a monitored
application. JDI provides several standard notifications from which we use
two: MethodEntryEvent and MethodExitEvent. The JDI sends a
MethodEntryEvent notification when an object has just called a method call
(but before the method started executing). The JDI sends the
MethodExitEvent notification when an object has just completed the
execution of a method call.

When a notification occurs, the JDI calls a handler (in this case the JDI
sensor we provide) in which we perform the measurements necessary for
generating communication events. At the moment of a notification the JDI
offers two options for progressing the monitored JVM: suspending all
threads in it, or suspending only the thread that carries out the activity that
resulted in the notification (the method call). We use the second option as
it does not enforce as much intervention in the application execution as the
first one – the process (i.e. thread in Java) execute the sensor and then
continues with its normal application execution. In contrast, suspending the
whole JVM diminishes the concurrency in the monitored application, by
making all notifications sequential. After performing the necessary
measurements, the notification handler (our sensor) resumes the suspended
thread so it can continue with its normal execution.

The MethodEntryEvent and MethodExitEvent notifications allow for
monitoring both arbitrary method calls and the creation of objects – the
JVM processes object constructors (calls to the “new” operator) and
destructors (i.e., calls on finalize() from the Java garbage collecting
mechanism) similarly to any other method. Note that since Java has
automated (implicit) garbage collection (which may occur upon demand for
more memory), we cannot monitor explicit object destruction.

The JDI provides a straightforward way to measure the values of the
name, parameters and results (including possible exceptions) of a method.
The monitoring system cannot use the standard object reference (the one
provided by the programming language runtime) to identify local objects
outside the JVM. For this reason, the instrumentation generates globally
unique identifiers using a mechanism that guarantees uniqueness. The
UUID/GUID [RPC] represents a generic method (that we do not use

Figure 7-9 JPDA /
JDI instrumentation
for monitoring of
Java object method
calls

200 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

because Java does not support it) for generation of globally unique
identifiers. In the MODOCC monitoring system we use proprietary
identifiers based on information about the host, the JVM and the object
reference within the JVM. We use a similar mechanism for the identifiers of
the processes (threads) involved in object communication. We discuss the
measuring of the time event attribute in the next section.

Sensors for the CORBA object middleware

CORBA objects can communicate among each other across the boundary of
a single execution environment, by using synchronous operation invocations
and oneway operation invocations. We model both types of invocations in
the MODOCC MM and therefore we want to monitor both. Furthermore,
we want to monitor the lifecycle of CORBA objects too.

CORBA offers two generic interfaces that allow one to monitor
(middleware) object lifecycle and communication activities: the Portable
Object Adapter (POA) and the Portable Interceptors (PI). We discussed
both interfaces in Chapter 3.

For monitoring of lifecycle activities we provide two alternative
approaches: using the POA and modifying the JacORB CORBA
implementation. Every CORBA-based application uses a reference to a
POA to create its CORBA objects. The ORB provides a default POA called
“RootPOA”, which we use to create a special MonitoringPOA. We than
replace the uses of the “RootPOA” in the monitored application, with our
MonitoringPOA, i.e., we modify the original monitored application code.
The MonitoringPOA contains sensors, which detect object creation or
destruction. The second approach does not require modification of the
application source code. In this approach, we embedded the sensors
directly in the JacORB implementation of the CORBA standard. This
method however, makes the instrumentation specific to the JacORB
product. We use the modified JacORB implementation as the default
approach in the MODOCC prototype. Designers of monitoring systems,
who do not prefer modifications of the ORB or use other ORB
implementations, can resort to the POA approach.

For monitoring communication activities we use modified
stubs/skeletons and the PI interface, to detect communication evens (Figure
7-10).

 INSTRUMENTATION DESIGN 201

 SSeerrvveerr’’ss JJVVMM

SSeennssoorrss

SSkkeelleettoonn

CClliieenntt’’ss JJVVMM

SSeennssoorrss

SSttuubb

OORRBB

PPoorrttaabbllee
IInntteerrcceeppttoorrss

SSeerrvveerr
OObbjjeecctt

CClliieenntt
OObbjjeecctt

CCoonntteexxtt CCaalllleerr CCoonntteexxtt SSeerrvveerr CCoonntteexxtt OORRBB

IInnssttrruummeenntteedd
OObbjjeecctt

MMiiddddlleewwaarree

MMoonniittoorreedd
AApppplliiccaattiioonn

IInnssttrruumm
eennttaattiioonn

IInnssttrruumm
eennttaattiioonn

A stub in CORBA represents the client object proxy and a skeleton
represents the server object proxy (see Chapter 3 for more details on the
proxies in object middleware). We embed sensors on the path of a CORBA
invocation in the stub at the client object side and in the skeleton at the
server object side. The client sensors detect the communication events that
represent local communication interactions between the client object and
the middleware – sending an operation invocation and receiving the result.
The server sensors detect the communication events that represent local
communication interactions between the server object and the middleware
– receiving an operation invocation and sending results. The CORBA
middleware processes an operation invocation in three separate contexts:
the context of the client object, the context of the ORB and the context of
the server object. The client sensors have access to the current process
context of the client object. In Chapter 2 we discussed that the metrication
rules for the vector clock system require access to the current process
context in order to store there information about the progress of the clock
system. Analogously, server sensors get executed in the context of the server
object. The metrication rules of the vector clock system also requires that
the client and the server exchange information between the contexts of
their corresponding processes. We use the Portable Interceptors interface
to install special monitoring interceptors that copy the necessary
information between the contexts of the client and the server. This works in
the following way. Every time a client object invokes an operation, the
monitoring interceptor at the client side copies the current value of the
vector clock of the current process from the client object context to the
client ORB context. The ORB then transmits this value to the server ORB
context together with the request object representing the operation. The
server monitoring interceptor copies the value of the clock that arrives with
the operation request, into the context of the server object, and merges it
with the clock value of the process of the server object that will process the
operation (according to the rules of the vector clock system). The whole
scheme repeats on the way back with the response of the operation

Figure 7-10
CORBA sensors

202 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

invocation, except for oneway operations (which do not produce a
response).

CORBA caller identity problem

The CORBA technology follows closely the client-server paradigm, which
leads to one significant problem during monitoring: the target object has a
well-defined identity represented by its unique object reference, however,
the caller (client) does not have a clearly defined identity (such as an unique
reference). This makes it difficult for an external observer (such as a
monitor using the MODOCC system) to uniquely determine the identity of
the caller object of an invocation. The work reported in [HaSte97]
identifies this identity problem of the sender (also called asymmetry
between send and receive) in the more generic context of communication
among processes. A sender process typically knows about the receiver
process, while the receiver process may receive a message without
information about the sender, because the communication system puts the
focus explicitly on the message content and message handling by the called
object.

Caller identity does not present a problem for the operation of the
CORBA platform itself. The ORB can perform its task without this
knowledge, because for the purpose of receiving invocation results back at
the caller the ORB internally maintains proprietary information. We cannot
use this information outside of the ORB. We need a generic method of
caller identification.

In the solution we propose, objects alternatively switch between the
client and the server roles, to cooperate among each other using remote
invocations. When a server object receives an invocation, it executes the
invocation according to its implementation. If, as a consequence of this
execution, the same object needs to make an operation invocation on
another remote object, the server object first assumes a client role, and
then performs the operation invocation. We can determine the identity of a
caller object (one that performs an invocation on another one) as the
identity of the last server object within the current process (of the caller)
that received an invocation request (Figure 7-11).

 INSTRUMENTATION DESIGN 203

A

request2

B

Legend:

remote
invocation

distributed object

a distributed
application part

request1

According to this solution, object A becomes the caller of request2 on
object B, because object A last served request in the context of the same
process. Nevertheless, this solution has one exception – active objects. An
active object performs an initiating remote call (without any other objects
calling it). For example, such active object may represent a human user that
interacts with the monitored application. We use two basic default
identities in this exceptional case: a GUI and a MAIN. We use GUI as an
identity of the caller when an object invocation results directly from the
interaction of a human user with the graphical user interface of the
monitored application. We use MAIN as the identity of the caller in all
other cases, including the start of the application.

Figure 7-11 The
client identity
becomes the
identity of the
object which last
had the server role.

Sensors for the DSC component framework

The Distributed Software Components (DSC) [BaBa98] component
framework belongs to the family of component middleware. The DSC
framework represents a generalization and an implementation of the TINA
[HaSte97][Ste97][Kri97] computational object model. In this section we
describe the instrumentation of the DSC runtime library that allows for the
monitoring of component lifecycle and communication events. In Chapter
8 we describe a monitor developed as part of the DSC framework’s testing
suite.

The DSC framework defines the rules and constraints that allow
component instances to collaborate. DSC uses CORBA as a distributed
processing environment. DSC designers use the Java programming platform
as an implementation technology.

A DSC component instance has one control interface and zero or more
operational interfaces defined in CORBA IDL. The control interface
provides common functionality related to various CORBA services, such as
persistence and transaction support. The operational interfaces define the
specific service that a component offers to its users. DSC component
instances communicate with each other in a client/server fashion by using

204 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

CORBA remote invocations. In addition to that, DSC components can
communicate using component events in a publish/subscribe fashion.

Within the FRIENDS project [FRIENDS] we have developed an
instrumentation that allows for the monitoring of lifecycle and
communication events of DSC components. We integrated this
instrumentation with the DSC runtime library to allow component
developers to observe the behavior of their prototype applications for
debugging and presentation purposes (presentation of results to the project
management body and to the scientific community).

The DSC framework explicitly supports creation and destruction of
component instances. We embedded sensors in the routines for creation
and destruction in order to detect component lifecycle events.

The MODOCC system supports monitoring of component
communication only for CORBA-based invocations among DSC
components. We do not consider the event-based component
communication. In DSC, a single CORBA object realizes each operational
interface of a component. Therefore, to detect communication events we
reuse the instrumentation for the monitoring of CORBA invocations
between objects presented in the previous section.

In DSC the caller component always has a unique reference associated
with it, hence we do not face the caller identity problem.

7.3.2 Design of instrumentation tools

In this section we discuss the instrumentation tools that we have developed
to provide developers with an automated instrumentation process. The JDI
interface does not require additional tool support to install the
instrumentation of the MODOCC system with any Java monitored
application. For the CORBA and the DSC instrumentation however, we
have developed design-time (see Chapter 5) instrumentation tools.

Modified IDL compiler for CORBA

As we have discussed in Chapter 3, the development of software using
CORBA requires the specification of object interfaces in IDL. The CORBA
standard provides mappings of an IDL specification to all major
programming languages. In Chapter 3 we made an overview of the software
development process for object middleware. In CORBA, designers process
the IDL specification with an IDL compiler for a specific programming
language or platform. The IDL compiler generates a set of source code
templates that allow a programmer to use a CORBA object in the role of a
server and in the role of a client. Among these templates we find the two

 INSTRUMENTATION DESIGN 205

types of proxies corresponding to the stub (client) and a skeleton (server),
in which we embed the sensors necessary for detecting communication
events. The manual modification of the proxies would require from
instrumentation developers a lot of effort dedicated solely to
instrumentation. We have automated the proxy modification process by
providing a tool based on the IDL-to-Java compiler of JacORB.

 OriginalJacORBCompiler

Interface

InterfaceBody

Parser

MODOCCIDL
get_instance()
p_s tart_block_comment()
p_end_block_comment()
p_declarat ions()
p_modocc_init()
p_s t_op_init()
p_s t_op_before_call()
p_s t_op_after_call_result()
p_s t_op_after_call_exception()
p_s t_op_before_local_cal l()
p_s t_op_after_local_call_finally()
p_sk_op_before_cal l()
p_sk_op_aftrer_call_result()
p_sk_op_after_call_except ion()

OpDecl

Figure 7-12 shows the architecture of the IDL compiler and the
modifications we have made to provide the sensors. The JacORB IDL
compiler uses three classes: Interface, InterfaceBody, and OpDecl. The
Interface class has the responsibility to generate the proxy declarative parts
and the InterfaceBody class has the responsibility to generate the body of
the proxies. The OpDecl has the responsibility to generate the code for each
individual operation in an interface. We modify these three classes by
embedding in them statements that generate sensor code necessary for
detecting communication events. We place the code generation routines in
a single class called MODOCCIDL.

During the compilation of an IDL specification the modified IDL
compiler automatically embeds all the necessary sensors on their
appropriate places. Although based on the JacORB product, the tool
generates Java stubs and skeletons that comply to the CORBA Portable
Stubs and Skeletons specification, which means that designers can in
principle use other ORB products than JacORB together with our tool.

Figure 7-12 The
modified IDL
compiler

Modified component generation facilities

The DSC framework provides to component developers a tool called
DscGen. The DscGen tool has the responsibility to process a component
specification and to generate the templates of a component described by
this specification. Figure 7-13 shows the steps in the process of
specification compilation performed by the DscGen tool.

206 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

Temporary IDL File

IDL files

PreProcessor

IDL Parser

IDL Parse Tree

IDL Compiler

Component Templates, Stubs, Skeletons

Equivalent IDL File

Equivalent IDL
Gen

CEIDL file

Designers use the CEIDL language to create a specification of a DSC
component. In this specification, designers define the component interface
names, dependencies of the component on the interfaces of other
components, all events it generates and events that it can consume. In the
first step, The Equivalent IDL Gen compiles a CEIDL specification to a
standard CORBA IDL specification called Equivalent IDL. The
PreProcessor combines the Equivalent IDL with the IDL files describing
the individual operational interfaces of the component. The IDL Parser
parses the result and feeds the parse three to the IDL Compiler. The IDL
Compiler generates the necessary templates, stubs and skeletons.

Internally, the DscGen tool also uses the JacORB IDL compiler to
generate the stubs and skeletons necessary for components to
communicate. Therefore, by providing the modified JacORB IDL compiler
to the DscGen tool we allow detecting of component communication
events.

Figure 7-13
Compilation of
component
specifications with
the DscGen tool

7.4 CMA design

The Co-located Monitoring Agent (CMA) has the responsibility to
encapsulate all instrumentation specific mechanisms and implement the

 CMA DESIGN 207

generic interfaces for interaction with the GMS (see Chapter 6 for more
details). In this section we present the architecture of the CMA for the
MODOCC system.

In the MODOCC system we design a CMA for monitoring of object and
component communication. Figure 7-14 shows the CMA architecture in
relation to the GMS.

 CCMMAA

SSeennssoorrMMaannaaggeerr

SSeennssoorrss

CCoolllleeccttoorr

PPaacckkaaggeerr

TTrraannssmmiitttteerr

ii__CCoonnffiigguurree

ii__SSeennddNNoottiiffyy

GGMMSS

In Chapter 6 we refined the GMS service into several interfaces that the
components of the GMS can implement. According to the GMS software
architecture, the instrumentation implements two interfaces i_Configure
and i_SendInterrogate. The CMA of the MODOCC system only implements
the i_Configure interface. Since the MODOCC system produces only event
reports and since we require online monitoring, we consider event-driven
report delivery using notifications on the i_SendNotify interface sufficient
for providing timely delivery of event reports to monitors. Therefore, the
CMA does not implement the i_SendInterrogate interface.

The CMA has five main component types: Sensors, a SensorManager, a
Collector, a Packager and a Transmitter. A Sensor represents a software
sensor that can detect one particular event type. The SensorManager has
the responsibility to manage and configure different sensors. For example,
the Sensor manager can turn some sensors on and off based on the
monitors’ runtime requirements for monitoring data. A Collector has the
responsibility to collect the information generated by sensors. The Packager
has the responsibility to package information coming from sensors into
proper event reports. The Transmitter has the responsibility to send event
reports to the GMS.

In Figure 7-15 we show how the CMA components interact during
monitoring. When a Sensor executes, it sends measured information to the
Collector with a notify() operation. The Collector sends the information
from the Sensor to the Packager with a package() operation. The Packager
packages an event report and returns the result to the Collector. The
Collector then calls the Transmitter with an externalize() operation, in
order to prepare the event report for sending to the GMS.

Figure 7-14 A CMA
architecture for the
MODOCC
instrumentation

208 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

 : Sensor : Collector : Packager : Transmitter

1. notify()
1.1. package()

1.2. externalize()

Internally, the Transmitter provides two basic strategies for sending
monitoring data to an LMA (of a GMS): immediate forwarding and low-priority
forwarding. The Transmitter performs immediate forwarding in the same
process context in which the sensor executed. We consider the major
benefit of this strategy the immediate sending of new monitoring data to
LMAs. This strategy has the drawback that the application process that
executes the sensor blocks until the sending of monitoring data to the LMA
completes.

The Transmitter performs the low-priority forwarding strategy in a
separate thread that has the responsibility to send monitoring data to the
LMA at a processing priority lower than the priorities of monitored
application processes. In this strategy, the externalize() operation returns
immediately, while a low-priority thread starts sending (in the background)
the new monitoring data to the LMA. We consider the major benefit of this
strategy the lower computational overhead on the application process
resulting from a shorter duration for sensor execution as compared to the
immediate forwarding strategy. We consider a drawback of low-priority
forwarding the additional delay that monitors may experience before
receiving the monitoring data (due to the low priority of the sending
thread).

Figure 7-15
Sequence diagram
of event generation

Implementing the vector clock rules

The Packager uses the data structure of event reports that we defined
earlier to produce event reports containing all necessary attributes values.
Generating the value of the timestamp attribute lt however, requires some
additional steps. To generate a timestamp for an event, the Packager uses
the LogicalTime utility class (see Figure 7-16). The LogicalTime class has
the responsibility to consistently perform the rules for updating the vector

 CMA DESIGN 209

clock system (we discussed the rules for a vector clock system in Chapter
2). Rule R1 requires access to the process context, in order to maintain a
local logical clock for each process. Rule R2 requires access to the context
of messages exchanged between processes, i.e., the context of operation
invocations used in the CORBA middleware (since we use CORBA for the
MODOCC system).

FlowContextMODOCCThreadContext 11

ThreadContextLocal

1..*1..*

LogicalTime
11

InheritableThreadLocal

The LogicalTime class allows access to the MODOCCThreadContext that
represents the current thread context for a Java program, and the
FlowContext that represents the current invocation context for a CORBA-
based application. We associate one MODOCCThreadContext object with
every thread in a Java program using a special ThreadContextLocal utility
class, which extends InheritableThreadLocal. The Java platform offers the
InheritableThreadLocal to allow any subclasses of this class to store and
retrieve information to and from the context of the current thread. In the
MODOCCThreadContext object associated with a thread, we keep the
logical clock for that thread. When the Packager requires a timestamp value
for an event report, it first retrieves the MODOCCThreadContext for the
current thread and then uses rule R1 to advance the clock from the
previous clock value. Then the Packager records the new clock value as the
timestamp for the current event report. The InheritableThreadLocal also
allows for automatic copying of thread context each time a process creates a
new (child) process. We use this to assign to a new process its own version
of a vector clock derived from its parent’s clock.

We associate every MODOCCThreadContext object with one
FlowContext object. We send the FlowContext along with every operation
invocation so that we can implement the R2 rule of the vector clock
consistently.

Figure 7-16
Structure of the
process context
used in the CMA

210 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

 client
thread
context

server
thread
context

ORB invocation context

client side
interceptor

server side
interceptor

Figure 7-17 shows how we use the CORBA Portable Interceptor API to
install custom interceptors, which have the responsibility to copy the
FlowContext among the three different execution contexts. The ORB
executes the custom interceptors in its own ORB context. The client side
interceptor has the responsibility to copy the FlowContext object from the
client thread context to the ORB invocation context (on the request
direction of the invocation), and from the ORB invocation context to the
client thread context (on the response direction of the invocation). The
server side interceptor has the responsibility to copy the FlowContext
object from the ORB invocation context to the server thread context (on
the request direction of the invocation), and from the server thread context
to the ORB invocation context (on the response direction of the
invocation). Furthermore, the interceptors use the ServiceContext field of
the CORBA request object to transport the FlowContext information
between the two interceptors (because these two may operate at remote
hosts).

For more details on the implementation of the mechanism consult the
source code of the MODOCC monitoring system available at [MODOCC].

Figure 7-17
Copying
FlowContext along
the invocation path

7.5 Performance measurements of the MODOCC
prototype

In Chapter 2 we identified two main performance issues during
monitoring: monitoring overhead and information consistency. Monitoring
overhead concerns the impact of the monitoring system on the behavior of
the monitored application. Information consistency reflects how faithfully the
monitoring system presents information to the monitoring application. In
this section we discuss the performance of the prototype of the MODOCC
monitoring system with respect to the monitoring overhead it introduces to
monitored applications. In Chapter 8, we discuss information consistency

 PERFORMANCE MEASUREMENTS OF THE MODOCC PROTOTYPE 211

of the MODOCC system in combination with the MSD Monitor that we
present in that chapter.

We provide the results of our performance tests for the CORBA
middleware instrumentation. We do not provide performance data for the
Java object instrumentation, because it uses the debug mode of the JVM to
detect events in the monitored application. The MODOCC monitoring
system using the Java object instrumentation has significant overhead,
comparable to the overhead of any Java debugger, because the debug mode
of the JVM executes the monitored application considerably slower than the
normal mode. As a consequence, we consider the Java object
instrumentation unusable outside a testing environment. A
reimplementation of the Java object instrumentation sensors using the
JVMPI has the potential to provide better performance results and make
the Java object instrumentation usable during the normal operation of the
monitored application [HQGM02].

Furthermore, we do not provide performance data for the DSC
component instrumentation either, because it relies entirely on the CORBA
middleware instrumentation for monitoring communication events, and
thus does not introduce any significant additional overhead.

We measured the performance of the prototype implementation of the
MODOCC system with the CORBA middleware instrumentation from two
perspectives: (a) computational overhead and (b) communication overhead.
Computational overhead characterizes the additional processing that
monitoring requires. Communication overhead characterizes the additional
communication resources (such as network bandwidth) that monitoring
requires. In the next sections we describe the technological decisions we
make, the setup for the measurements, the measuring of computational
overhead, and the measuring of communication overhead.

7.5.1 Technological decisions

We use Java 2 (v1.3 and above) as the implementation technology for the
MODOCC system.

We use the JacORB implementation of the CORBA standard. For
building, configuring and deploying the MODOCC system we use the same
approach as for the GMS (see Chapter 6), because we build the MODOCC
system using the GMS as a basis. In Appendix C we discuss how developers
can configure, deploy, and start the MODOCC system.

212 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

7.5.2 Setup

The setup consists of a test site including specific hardware and software,
and of a measurement scenario, which we run in the test site with several
different configurations of the MODOCC system.

Test site

We used two PCs: PC (A) with a Pentium III running at 550 MHz and 256
MB of physical memory, and a PC (B) with a Pentium IV at 1.7 GHz and
512 MB of physical memory.

Both PCs had MS Windows 2000 Professional installed with SUN Java
Virtual Machine version 1.4. We also installed Ethereal 0.9 [Eth03] to
monitor network traffic.

Measurement scenario

For a monitored application we use the “room booking example”
application [VoDu98]. We distribute an implementation of this example
together with the MODOCC source code at [MODOCC].

Room server:
Kitchen

Room server:
Living room

Meeting
factory

Reservation
client

DMA

LMA
Monitor

The monitoring system The monitored application

CMA

The room booking example application allows for making reservations of
rooms for conducting meetings (for whatever purpose). A separate room
server represents each room. A special meeting factory server has the
responsibility to create and cancel meetings. The reservation client application
shows to the user an interface that allows him/her to choose a room and a
time slot and to create a meeting, or to browse and cancel existing
meetings.

On the side of the monitored application, our deployment of the
example has two rooms, “Kitchen” and “Living room”, which the user can
reserve for meetings. We deploy the two room servers and the meeting
factory server on PC (B) and the client application on PC (A). On the side
of the monitoring system, our deployment has one LMA per execution

Figure 7-18 Demo
setup

 PERFORMANCE MEASUREMENTS OF THE MODOCC PROTOTYPE 213

environment, one LMA per host, one DMA on PC(A), and one monitor on
PC(B).

We define a test scenario in which the client “Books” and subsequently
“Cancels” meeting on all time slots of all rooms, and repeats this 100
times.

We ran the same scenario with six different configurations of the room
booking example and the MODOCC monitoring system (see Table 7-7).
Name Description
unmonitored original The original application
unmonitored instrumented The instrumented original, but

MODOCC inactive
monitored light deferred MODOCC active, timestamps

generated using physical clock, using
caching

monitored light direct MODOCC active, timestamps
generated using physical clock, sending
data directly

monitored heavy deferred MODOCC active, timestamps
generated using logical clock, using
caching

monitored heavy direct MODOCC active, timestamps
generated using logical clock, sending
data directly

Table 7-7 Six
configurations

The first configuration represents the original application that we want to
monitor. This configuration gives us a reference point for estimating the
performance of the monitored application when monitoring with the
MODOCC system.

The “unmonitored instrumented” configuration represents the
instrumented monitored application however, with an inactive monitoring
system. This configuration allows for measuring the overhead of an inactive
instrumentation on the monitored application.

The next four configurations represent an active monitoring system.
The “monitored light deferred” configuration represents the

instrumented monitored application, in which we generate timestamp
values using the physical computer clock, and we use the low-priority
forwarding policy (see section 7.4) for delivering monitoring data to the
GMS.

The “monitored light direct” configuration represents the instrumented
monitored application, in which we generate timestamp values using the
physical computer clock, and we use the immediate forwarding policy for
delivering monitoring data to the GMS.

214 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

The “monitored heavy deferred” configuration represents the
instrumented monitored application, in which we generate timestamp
values using the logical vector clock system, and we use the low-priority
forwarding policy for delivering monitoring data to the GMS.

The “monitored heavy direct” configuration represents the
instrumented monitored application, in which we generate timestamp
values using the logical vector clock system, and we use the immediate
forwarding policy for delivering monitoring data to the GMS.

The “light” and “heavy” configurations allow for assessing the difference
in overhead between using the inaccurate computer clocks and the logical
vector clock for generating timestamps.

The “deferred” and “direct” configurations allow for assessing the
difference in overhead between using the two different forwarding policies
for sending monitoring data to the GMS.

7.5.3 Computational overhead

We estimated the computational overhead of each configuration by
measuring the response times for each “Book” operation at the client (the
“Cancel” operation shows similar results). Figure 7-19 shows a summary of
these measurements.

Comparison chart: computational performance

13 14

73

375 382

7 12 19 24
48 4962

0
50

100
150
200
250
300
350
400
450

unmonitored
original

unmonitored
instrumented

monitored light
deferred

monitored light
direct

monitored heavy
deferred

monitored heavy
direct

m
ill

is
ec

on
ds

average operation Book time

standard deviation

We observe that an inactive MODOCC system has a minimal overhead.
When monitoring using timestamps generated from the physical clock
however, the MODOCC system starts adding some overhead. Caching the
event reports before sending them reduces the overhead a bit (the
“deferred” configurations). When the MODOCC system starts using the
logical clock however, we can see a significant increase of overhead per

Figure 7-19
Computational
performance

 PERFORMANCE MEASUREMENTS OF THE MODOCC PROTOTYPE 215

operation. This results mainly from the computational complexity of the
metrication rules of the vector clock system. Remember that each “book”
operation invocation results in four event reports, each of which contains a
logical timestamp generated using our vector clock implementation.
Nevertheless, we measure a relatively low deviation from the average
response time, which means that although we have high overhead, we can at
least predict how much this overhead changes within certain boundaries.

7.5.4 Communication overhead

Using the Ethereal network analyzer we measured the size of the data
exchanged over the network by the components of the monitored
application under the different configurations. We define three cases for
measuring communication size. The “unmonitored” case represents the
first two configurations. We consider these two configurations together
because they do not generate any additional traffic – we do not activate the
monitoring system for these configurations. The “light” case represents the
second two configurations. We consider these two configurations together
because they generate the same traffic – the low-priority and immediate
forwarding policies only concern when the instrumentation sends
monitoring data to the GMS but do not change the size of monitoring data.
The same applies for the “heavy” case. Figure 7-20 and Figure 7-21 show
the results of these measurements.

 Comparison chart: communicated data size

26,774

10,700

3,263

0

5,000

10,000

15,000

20,000

25,000

30,000

unmonitored light heavy

K
B

yt
es

As we can see, executing the same scenario in the three cases generates
different amounts of monitoring data. In terms of kilobytes, the traffic of
the MODOCC system in the “light” case equals roughly three times the
traffic of the unmonitored case. This difference in traffic size comes from
the additional invocations that the monitoring system performs during the
dissemination of the event reports.

Figure 7-20 Total
size of
communicated data

216 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

The “heavy” case generates roughly 2.5 times the traffic of the “light”
case. The number of event reports stays precisely the same however, in the
“heavy” case the size of the logical vector timestamp of each event report
changes proportionally with the number of new processes in the monitored
application.

 Com parison chart: G IO P packet num ber

4,833

33,729 33,708

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

unm onitored light heavy

In this setup of the testing environment, each invocation performed by the
monitored application (for its behaviour) or the monitoring system (for
disseminating event reports), roughly fits into a single GIOP packet, almost
without the need for GIOP fragmentation (one invocation to span over two
packets). This diagram shows that the number of GIOP packets (and hence
operation invocations) does not change between the “light” and the “heavy”
cases. The small difference of 21 GIOP packets comes from connection
reestablishments with the naming server resulting from some connection
timeouts. We disregard these as having insignificant effect on the
measurements.

Figure 7-21 Size of
CORBA
communication
(GIOP packets)

7.5.5 Concluding remarks

The current prototype of the MODOCC system produces high overhead in
our “toy” test application. This requires careful consideration about how to
use our monitoring system with a larger and more complex “real life”
application.

Monitoring of “real” applications

A “real” application may have a large number of remote objects that
frequently perform operation invocations on each other.

Monitoring using the physical computer clock produces (relatively)
constant computational overhead per event report, because generating the
event report’s timestamp from the physical computer clock takes constant
time. The communication overhead per event report also stays relatively

 PERFORMANCE MEASUREMENTS OF THE MODOCC PROTOTYPE 217

constant because the average size of an event report does not change over
time (for simplicity we assume that a communication event report does not
encapsulate the parameters of an operation). Therefore, the overall
overhead of the monitoring system stays proportional to the number of
invocations (communication event reports) and new objects (lifecycle event
reports). Therefore, we expect that the performance of a large monitored
application will deteriorate proportionally to its growth in terms of new
remote objects and an increasing average of the number of invocations per
second in the application.

Monitoring using the logical clocks adds additional computational
overhead to the previous case of using physical clocks. In this case, the
monitoring system requires additional processing that leads to a significant
increase of computational overhead per event report, because of the
algorithms required for maintaining a logical clock system. In contrast to
the previous case however, the communication overhead per event report
does not stay constant but grows with the number of processes in the
system – every new process (typically at least one per remote object)
increases the dimension of the vector clock system by one. Furthermore,
the logical clock system requires sending of system clock information along
with every operation (piggybacking). Therefore, we expect that the
performance of a large monitored application will deteriorate at an rate,
proportional to the number of processes in the system.

To help reason about how one can alleviate monitoring overhead we
look at the lifecycle of monitored applications.

Monitoring during testing

We observe that in a testing environment, testers can tolerate certain delay
resulting from the computational overhead of the MODOCC system, as
opposed to the normal environment in which users have stricter
requirements on application response time. Therefore, testers can afford to
use the accurate logical timestamps to provide partial order and causal
information among event reports occurring in the monitored application.

Monitoring during usage

Monitoring during the normal operation of the monitored application may
become impossible because of the potentially drastic performance
deterioration resulting from the monitoring overhead introduced by the
monitoring system.

218 CHAPTER 7 A SYSTEM FOR MONITORING DISTRIBUTED OBJECT AND COMPONENT COMMUNICATION

We consider several ways to alleviate monitoring overhead during
normal application usage: periodical monitoring, partial monitoring, offline
monitoring, and push-filtering.

In periodical monitoring, an administrator (or a tester) activates the
monitoring system only for a limited period of time, e.g., based on the
current load of the monitored application, habitual intervals of its users
during which they do not use the monitored application that much (meals,
evenings, weekends), etc. Periodical monitoring allows monitoring of the
monitored application at times when the overhead would not lead to
breaking any service contracts with application users. The MODOCC
monitoring system can dynamically turn on and off generation of
monitoring data.

In partial monitoring, the monitoring system only observes a part of the
monitored application. For this, an administrator activates the
instrumentation in some interesting parts of the application. The selection
of which part to monitor may depend again on the current load of that part,
but also on some high-level knowledge about, for example, the potential
source of an error. Partial monitoring allows monitoring of suspected
application parts, so that monitoring overhead does not affect the whole
application. The MODODCC prototype supports flexible configuration of
its instrumentation so that only parts of the application produce monitoring
data.

We discussed offline monitoring in Chapter 2. In offline monitoring,
the monitoring system does not immediately transport event reports to
monitors. Instead, after generating an event report, the monitoring system
saves it locally. Later, at a convenient moment (e.g., during the night or
during times of low load) the monitoring system transports the
accumulated data to the monitors. This removes (or delays) the
communication overhead resulting from sending event reports around, but
in the case of using logical clocks, the logical clock system still requires
piggybacking of system information with every invocation so that newly
generated event reports get correct logical timestamps. Note that the
MODOCC system prototype can support offline monitoring through re-
configuring the way the instrumentation sends the monitoring data to the
GMS.

In push-filtering, the monitoring system allows monitors to express
their interest in certain events in the monitored application, using a filtering
language. The monitoring system then treats a specification of monitor
interest as configuration information, which it pushes to the
instrumentation. The instrumentation then activates only the sensors that
produce relevant notifications. Note that although the GMS that we use
takes into account specification of interest, the current prototype of the

 PERFORMANCE MEASUREMENTS OF THE MODOCC PROTOTYPE 219

MODOCC system does not support it. We plan to introduce this
functionality in the future. Push-filtering reduces monitoring overhead by
making sure that the monitoring system produces only necessary
information.

Note that one can combine the mechanisms for alleviating monitoring
overhead we discussed so far in order to reduce overhead further when
compared to using only one mechanism. For example, combining offline
monitoring, with partial and periodical monitoring has the potential to yield
low overhead, which makes the monitoring system useful during the normal
operation of a monitored application.

Furthermore, we have not optimized the current prototype for
performance. We believe that a re-implementation of the vector clock
system for performance may give some reduction of the computational
overhead of the monitoring system.

In Chapter 2 we pointed out several approaches for reducing the size of
logical timestamps. While these approaches provide some reduction of the
communication overhead, they do not solve the major problem that the size
of the timestamps stays roughly proportional to the number of processes in
the monitored application.

Chapter 8

8. A monitor and monitoring
applications

This chapter presents the design and the implementation of the Message
Sequence Diagram (MSD) monitor for the MODOCC monitoring system.
The MSD monitor provides a basis for the development of variety of
monitoring applications. We design the MSD monitor following the design
approach presented in Chapter 5.

We evaluate the information consistency provided by the MSD monitor
and the MODOCC system from the perspective of monitor users using the
method presented in Chapter 2, section 2.8. In order to validate our
approach to monitoring, we present three applications of this monitor and
the MODOCC monitoring system. We close the chapter with some
concluding remarks.

8.1 MSD monitor

This section presents the design and the implementation of the Message
Sequence Diagram (MSD) monitor for the MODOCC monitoring system.

8.1.1 Functional requirements

In Chapter 7 we defined a MODOCC monitoring model that describes
single application runs in terms of objects, component instances, processes
and the communication and lifecycle activities they perform. The
MODOCC MM defines a set of event types that the MODOCC monitoring
system can detect and offer to monitors. We would like to develop a
generic MSD monitor that uses events of these types to allow application
developers analyze the communication among object and among
component instances during application runtime, for the purpose of testing

222 CHAPTER 8 A MONITOR AND MONITORING APPLICATIONS

and debugging application behavior. Based on requirements identified in
Chapter 4 and on the MODOCC MM defined in Chapter 7, we phrase the
following functional requirements for the MSD monitor:
1. The MSD monitor should allow online monitoring, i.e., it should depict

new information as soon as it becomes available to the monitor;
2. The MSD monitor should support offline monitoring in the following

way: it should provide a persistent storage for accumulated monitoring
data, so that users can analyze monitoring data at a later moment;

3. The MSD monitor should provide interoperability with other
communication analysis tools at the level of the data format used for
persistent storage, such as based on the ITU-T Z.120 [Z.120] or XMI
[XMI];

4. The MSD monitor presents information coming from the MODOCC
system in the following way: it offers a diagram similar to the UML
message sequence diagram and the ITU-T Z.120 Message Sequence
Chart. The diagram depicts the entities and their communication as the
monitoring application executes;

5. The MSD monitor should provide means for inspection of all
parameters of the event reports coming from the MODOCC system;

6. The MSD monitor should properly restore the partial order of the
causal precedence relation (Chapter 2, section 2.2.3) from the
timestamps attribute of the event reports. The MSD monitor should use
this partial order to position events and the invocations in which they
participate, in a message sequence diagram. The MSD monitor orders
unrelated events using the physical timestamp (the one generated using
the computer clock) of the monitoring report, to approximate the
(possibly inaccurate) relative position of the events in the diagram;

7. The MSD monitor should properly correlate the events constituting an
individual invocation using the LRC relation (Chapter 7, section 7.2.2),
and should properly visualize the dynamics of an invocation’s during
runtime: its initiation, its execution and the returning of a result;

8. The monitor should allow one to query the partial order topology
imposed on the events in an application run by using the causal
precedence relation. Possible queries include the generation of the set
of possible causes of an event and the set of possible effects of an event.
The monitor can depict these sets using alternative coloring for the
event in the set.

8.1.2 Monitor implementation

Figure 8-1 shows the architecture of the MSD Monitor.

 MSD MONITOR 223

 MMSSDD MMoonniittoorr

SSuubbssccrriibbeerr

RReecceeiivveerr

DDiiaaggrraamm GGUUII

DDiiaaggrraamm DDaattaa
MMooddeell

ii__DDaattaaNNoottiiffyy

uusseess aann
ii__SSuubbssccrriibbee

The MSD Monitor subscribes for monitoring data with the MODOCC
system through its Subscriber component. The Subscriber component uses
the i_Subscribe interface offered by a DMA of the MODOCC system (see
Chapter 6, section 6.3.2). To establish a successful subscription, the
Subscriber registers with the MODOCC system an i_DataNotify interface
offered by the Receiver component. The MODOCC system then uses this
interface to send event reports to the Receiver component.

We structure the rest of the monitor using the Model-View-Controller
(MVC) design pattern [BuMe+96], where the Receiver component
represents the Controller responsible for the input (new event reports from
the MODOCC system), the Diagram Data Model component represents
the Model responsible for processing and storing all monitoring data in the
MSD monitor, and the Diagram GUI component represents the View that
presents monitoring data to monitor users. When the Receiver component
receives new event reports, it passes them to the Diagram Data Model
component for processing. The Diagram Data Model component performs
all necessary processing activities and updates the Diagram GUI component
to show any new information on screen. In the next section we discuss each
of the components.

Figure 8-1 The
architecture of the
MSD Monitor

The Receiver component

The Receiver component uses an algorithm developed in [RST91] to
deliver event reports to the Diagram Data Model component according to
their causal precedence order. Basically, this algorithm delays the delivery
of an event report until the Receiver component has delivered all causally
preceding event reports. This makes sure that the Diagram Data Model
component maintains a consistent view of the monitored system at any
moment. An example of a similar approach constitutes the work described
in [Logean00] where the monitor performs event report reordering as part
of testing the prototypes of telecommunication services.

224 CHAPTER 8 A MONITOR AND MONITORING APPLICATIONS

The Diagram Data Model component

The Diagram Data Model component (DDM) maintains an ordered
collection of event reports, which represents an (partial) execution of the
monitored application. Since the use of a linear array suggests an absolute
order, but the vector timestamp that the MODOCC system uses provides
only partial order, we use the physical clock timestamp that every event
report also has (because event reports derive from monitoring reports of
the GMS – consult Chapters 6 and 7) to determine the order among
causally unrelated events.

The DDM maintains a list of the objects and a list of the components in
the current application execution.

The DDM also maintains a list of the messages exchanged between the
entities of the model. The DDM uses two types of messages, a request
message represents the successful receiving of an invocation (synchronous
or oneway) at the server side, and a response message represents the
successful receiving of a response (synchronous invocation) at the client
side. According to the MODOCC MM, a synchronous invocation
corresponds to a pair of request and response messages and an oneway
invocation corresponds to a single request message. To match events into
messages, the DDM restores the LRC relation (see Chapter 7 for the
definition).

The DDM updates the Diagram GUI component in the following cases:
it has received a new communication or lifecycle event, and it has matched
two communication events in a new message.

The Diagram GUI component

The Diagram GUI component offers a diagram (a graphical representation)
of the information maintained in the DDM. The diagram has an
organization similar to an UML message sequence diagram and the ITU-T
Z.120 Message Sequence Chart (Figure 8-2).

 MSD MONITOR 225

The horizontal axis of the diagram represents the entities in the current
application execution. For CORBA-based applications, the diagram shows
CORBA objects. For DSC-based applications the diagram shows
component instances. The vertical axis of the diagram represents time. Each
entity has a vertical line representing its lifecycle. The diagram represents an
event with a circle on the lifecycle line of the entity where this event has
occurred. A white circle represents communication events participating in a
synchronous invocation. A red (in the figure – dark grey) circle represents a
communication event of an invocation response with exception. A green (in
the figure – grey) circle represents an event participating in an oneway
invocation. A solid arrow represents a request message. A dashed arrow
represents a response message. We depict the name of the invocation
operation in the middle of a message arrow.

The user of the MSD Monitor can interact with the diagram. Besides
scrolling to view portions of a large diagram, the user can click the right
mouse button on an event to open a popup menu that offers three options:
“color chain after event”, “color chain before event” and “browse event”
(Figure 8-3). By selecting the “color chain after event” the user highlights
the set of events representing possible effects of the selected event. By
selecting “color chain before event” the user highlights the set of events that
represent the possible causes of the selected event. The line color of
highlighted events the arrows between them (if any), changes to purple to
illustrate the chain of cause or effect starting from the selected event. By
selecting “browse event”, a new window opens showing a table of all event
attributes. With this option, developers can inspect the parameters, result
or exceptions (if any) at any monitored moment of the execution of an
invocation.

Figure 8-2 The
diagram

226 CHAPTER 8 A MONITOR AND MONITORING APPLICATIONS

Furthermore, the user can zoom the diagram to fit more information onto
one screen, clear the diagram from old events and messages, print the
diagram in a pane format to allow assembly of large diagrams, save the
diagram for later, and open a saved diagram to finish postponed work.

The MSD Monitor can export the diagram to a file in the ITU-T Z.120
standard for message sequence charts. This feature allows for analysis of a
monitoring trace into other tools compatible with this standard. In section
8.2.2 we shall present an application that uses this feature of the monitor.

Figure 8-3 Event
inspection

Technology decisions

We implemented the MSD Monitor in Java. The MSD Monitor uses the
JacORB CORBA product to interact with the MODOCC system.

8.1.3 Information consistency

In Chapter 7 we evaluated the performance of the MODODCC monitoring
system from the point of view of the users of the monitored application. In
this section we quantify the information consistency of the MODOCC
monitoring system from the point of view of the users of the monitor – we
call these users observers. We use the evaluation method presented in
Chapter 2, section 2.8.

Minimal correctness

The MODOCC monitoring system detects all events that we have identified
in the MODOCC monitoring model and reports them to the MSD Monitor
accordingly. Hence EC = EM,C = E , where E

MO C represents the set of events

 MSD MONITOR 227

in the original unmonitored and un-instrumented distributed computation,
EM,C represents the set of events in the monitored instrumented distributed
computation, and E represents the set of events in the distributed

computation that the MSD monitor presents to the observer. Therefore,
our monitoring system fulfils the minimal non-interference and minimal accuracy
and hence minimal correctness properties.

MO

Total accuracy

Our monitoring system uses a strongly consistent vector clock system for event
timestamping, which allows for restoring the causal precedence relation
among events monitored in the instrumented application. This makes our
monitoring system totally accurate.

Better than minimal correctness

In Chapter 7 we defined the LRC relation for some object middleware
model that governs how objects and component instances communicate.
Since the selected evaluation method works with communication events
only, we consider from the LRC relation only the relations among
communication events – we define LRCcomm = LRC \ {(e1, e2) : Type(e1)

Types∈

R R

life and Type(e2)∈Typeslife}. From the definition of the LRC relation we
have that R(LRCcomm) R⊂ C, where R(LRCcomm) represents the transitive
reduction of the LRCcomm relation. We designed the MODOCC system to
preserve the LRC relation. This means that the relations among events
participating in an invocation do not change because of monitoring.
Therefore R(LRCcomm) R⊂ M,C, and from the total accuracy property (RM,C
=) we have that the R(LRC

MO comm) ⊂ . This effectively means that

the MODOCC monitoring system preserves some part of the relations in
the original application behavior (the ones between events from the
middleware), all the way to the observer. Therefore, we can say the
MODOCC monitoring system provides better than minimal non-interference
(but not strong non-interference), and from the total accuracy property follows
that the MODOCC system provides better than minimal correctness (but not
strong correctness).

MO

Discussion on strong and total correctness

Strong non-interference and strong accuracy imply strong correctness, and
total non-interference and total accuracy imply total correctness. We
demonstrated that a monitoring system can offer total accuracy by employing

228 CHAPTER 8 A MONITOR AND MONITORING APPLICATIONS

a strongly consistent system of vector clocks to describe the order the
events in the monitored application execution.

In order to provide strong non-interference, the monitoring system
needs to provide realized causality among events that belong to different
individual invocations. This means that the monitoring system must have
access to an accurate and detailed model of the monitored application
behavior, so that it can enforce the correct order among events in the
monitored computation.

In order to provide total non-interference, the monitoring framework
should not introduce any detectable monitoring overhead, in addition to
the requirements for strong non-interference. One can achieve zero
monitoring overhead only if designers use specialized hardware to detect
the necessary events without introducing any additional delay to the
monitored application. We consider this approach achievable, although
developing hardware instrumentation generally involves higher costs than
software instrumentation. Furthermore, hardware instrumentation falls out
of our scope.

8.2 Concrete monitoring applications

In this section we present the use of the MODOCC monitoring system and
of the MSD Monitor in three different monitoring applications.

8.2.1 Monitoring for testing and debugging of middleware-based
applications

Component developers and system integrators used the MODOCC system
and the MSD monitor within the FRIENDS project [FRIENDS] to improve
the quality of application prototypes.

Overview of the FRIENDS project

The FRIENDS project has as a goal to develop a flexible and extensible
software platform that provides an integrated solution to deployment,
creation, and usage of services and applications for next-generation
networks [FRIENDS].

The FRIENDS service platform architecture represents a component-
oriented implementation of the Telecommunications Information
Networking Architecture (TINA) [Kri97]. The FRIENDS service platform
architecture consists of various layers of components, ranging from service
session control components, to network control components. The

 CONCRETE MONITORING APPLICATIONS 229

FRIENDS project builds on the results of the Multimedia services on the
Electronic Super Highway (MESH) project [MESH].

Monitoring DSC

The Distributed Software Component (DSC) framework provides the
building blocks for the FRIENDS services platform. The DSC framework,
together with its development environment supports the development of
component-oriented services [VBM00]. Within the DSC framework, we
used the MODOCC system to build a testing environment that allows
service integrators to analyze service behavior in terms of how different
service components interact with each other [DiBa+00][DSQ00].

The testing environment uses the DSC component instrumentation
(introduced in Chapter 7) and the MSD monitor (introduced earlier in this
chapter). For FRIENDS services, the MSD diagram shows component
instances as entities on its horizontal axis.

In addition to the MSD diagram, for monitoring of FRIENDS services,
the MSD monitor provides an additional diagram – the Dynamic Service
Deployment (DSD) diagram (Figure 8-4). The DSD diagram uses the
additional information from the TINA-based FRIENDS service
architecture, in order to show how TINA-specific component instances
interact during runtime.

The DSD diagram shows TINA service component types as rectangles with
text inside, and their communication dependencies as arrows connecting
the rectangles. The diagram’s horizontal axis groups component types
according to (a) their role in the TINA architecture: consumer or provider,
while the diagram’s vertical axis groups the components according to (b)
their participation in TINA service access and usage sessions. When a
component instance of a certain type communicates with a component

Figure 8-4 Dynamic
service deployment
diagram

230 CHAPTER 8 A MONITOR AND MONITORING APPLICATIONS

instance of another type, an arrow appears on the diagram and the
rectangles representing the communicating component types become
white. The diagram shows live animation: an arrow between component
types, the instances of which have not interacted for some time, fades to a
dashed line arrow, and the rectangle of a component type that hasn’t
communicated with any other component type for a while changes its color
from white to gray. When the DDM matches two events in a message, it
notifies the DSD diagram the same way it notifies the MSD diagram. Hence
the DSD diagram presents to the observer a different view on the same
application execution.

FRIENDS service developers used the DSD diagram to visually
represent the dynamics of their prototypes in terms of interacting TINA
components. We used the DSD diagram for presentation purposes only.

Component developers and service integrators in FRIENDS used the
MSD diagram to achieve detailed visualization of the interactions among
various component instances.

The diagrams produced by the MSD monitor helped developers
discover errors in the implementation of the service platform and the
services build for this platform: (1) by finding an operation invocation that
did occur, but under the circumstances shouldn’t have occurred, (2)
finding that wrong order of calling operations results in the use of variables
with incorrect values, and (3) designers could trace (by using the coloring
causality chain option) operation invocations that caused an erroneous
invocation in order to examine the parameters of these operation
invocations and determine the reasons for the error.

Furthermore, the diagrams produced by the MSD monitor helped
service integrators to check whether the components of the different service
prototypes behaved according to the sequence of interactions defined in the
TINA architecture.

8.2.2 Semi-automatic conformance testing

Researchers within the FRIENDS project have also developed a model-
based approach to service creation [TeQua01]. This approach allows one to
check the conformance of a service prototype to its formal model.

Introduction to service creation in FRIENDS

The FRIENDS services platform provides integrated support for service
creation in a so-called service creation environment. The service creation
environment enables a service developer to design and implement the
requested service in an efficient and cost-effective way. The service creation

 CONCRETE MONITORING APPLICATIONS 231

environment promotes a model-based approach, which allows modeling of
the complete external behavior of each of the components that contribute
to a service, defining both the operations of its interfaces and the operations
invoked by this component on interfaces of other components, as well as
the relationships between these operations and their parameters
[TeQua01].

Using the model-based approach, the FRIENDS service creation
platform supports design time and runtime analyses of service properties. The
Testbed Studio [FraJa98] constitutes an essential tool in the service creation
platform, which supports various design time analyses. Testbed Studio
supports the editing of service specifications in the formal specification
language AMBER [EJ+99], including syntax and semantics checking, and
adds a number of analysis tools, such as step-wise simulation, quantitative
analysis, integrated use of the model checker SPIN [Holz97], and several
kinds of generated views on a model of a service. The tools for runtime
analysis of service properties in the FRIENDS service creation platform
allow for testing the conformance of a service prototype behavior to its
behavior model.

Using monitoring for testing service behavior

Figure 8-5 depicts how FRIENDS testers perform conformance testing.

22.. mmoonniittoorriinngg

AAmmbbeerr mmooddeell AAbbssttrraacctt ttrraaccee

RReeaall ttrraaccee SSeerrvviiccee pprroottoottyyppee

33.. mmaappppiinngg
 -- nnaammiinngg
 -- aabbssttrraaccttiioonn

44.. ccoommppaarriissoonn

11.. iimmpplleemmeennttaattiioonn

Figure 8-5 A
method for
conformance
testing

1. Developers use an AMBER model to implement a prototype;
2. Testers perform a particular scenario of service use on the resulting

prototype in the FRIENDS testing environment. This results in a real
trace. The MSD monitor saves the real trace in the ITU-T Z.120 file
format, in order to allow an independent (from the monitoring system)
analysis tool to further analyze the trace. The real trace contains the
request and response messages exchanged among component instances;

3. An analysis tool transforms the real trace into an abstract trace that
designers can check against the AMBER model. The transformation
involves rising the level of abstraction from the implementation level to
the model level, e.g. by removing interactions that appear too detailed
for the model level. Furthermore, the transformation clears any naming

232 CHAPTER 8 A MONITOR AND MONITORING APPLICATIONS

inconsistencies, so that names of trace entities uniquely correspond to
names of the model entities;

4. Using the simulator of the Testbed Studio, designers check whether the
AMBER model allows each message from the abstract trace in a step-
wise manner. We say that the abstract trace conforms to its model, if
the AMBER model allows all messages in the order indicated by the
abstract trace.

Tools support the activities in the whole process. The mapping of a real
trace to an abstract trace may require an amount of manual work,
depending on the additional refinement during the development of the
AMBER model into a software implementation of the service prototype.

By testing the conformance of multiple traces produced by various use
scenarios, testers can increase their confidence in the correctness of a
service prototype.

8.2.3 Validation of the UMTS Application Platform

Lucent Technologies Bell Labs carried out the UMTS Application Platform
project. This project produced a software platform that uses monitoring of
interactions among CORBA objects for testing and presentation purposes
[WPU01].

Overview of the UMTS Application Platform

The UMTS Application Platform project has as a goal the design and
implementation of a testbed for the development and deployment of end-
user applications for the third generation of mobile communication systems
– UMTS.

The UMTS application platform has to provide support for the
standardized interfaces required to enable interoperability and portability of
end-user applications within the telecommunication’s business domain.
The project considers as important standards in this respect the Open
Services Access standard [3GOSA] and the Presence and Availability
Management standard [PAM].

 CONCRETE MONITORING APPLICATIONS 233

UMTS Network

OSA/PAM Gateway

http
CORBA

CAMEL/SS7 Other

Personalized
Services

Network
Services

Applications
Operator branded

Third-party
Figure 8-6 Software
architecture of the
UMTS application
platform

Figure 8-6 shows the architecture of the UMTS application platform. The
OSA/PAM Gateway constitutes the main component of the UMTS
application platform architecture. The OSA/PAM Gateway offers
abstraction from the UMTS network layer by implementing the OSA
standard and the PAM standard as well as several other telecom standards.
The UMTS application platform designers implemented the OSA/PAM
Gateway using Java and CORBA.

Monitoring the UMTS platform

The Java-based CORBA instrumentation provided by the MODOCC system
allowed seamless integration with the UMTS platform prototype. The
automated tool for generation of the object instrumentation minimized the
effort from platform developers to prepare the platform prototype for
monitoring.

The designers of the UMTS application platform used the MODOCC
system to enhance the testing process during the platform development.
The UMTS application platform project uses telecommunication standards
that the standardization bodies have specified using, among other
descriptive techniques, UML message sequence diagrams. The testers
compared the message sequence diagrams generated by the MSD monitor
with the UML message sequence diagrams from the standard, in order to
determine whether their prototype correctly implements the standards.

In the occasion testers discovered discrepancies between the standard
and the implementation, they further looked in the detailed information
generated by the MODOCC monitoring system to find out about concrete
errors, this way cutting down the time for delivery of a working prototype
compliant to international telecom standards.

234 CHAPTER 8 A MONITOR AND MONITORING APPLICATIONS

8.3 Summary and conclusions

In this chapter we have presented the MSD monitor for the MODOCC
system. Furthermore, we have described three applications of the MSD
monitor. The first application integrated monitoring into a component
development platform to enhance the testing phase of component-based
software development. The second application illustrated how designers can
use monitoring at the level of application components for semi-automated
conformance testing of prototype behavior against models of their intended
behavior. The third application showed the usefulness of monitoring for
increasing the quality of critical and large business applications, such as an
UMTS application platform that has to conform to international
telecommunication standards.

With these applications we have shown that designers can use the
MODOCC systems for monitoring of different middleware-based
applications without additional development effort, investment in
monitoring software, and research in the area of monitoring. The MSD
monitor allows developers to examine the behavior of a prototype in order
to locate and remove implementation errors, check conformance with a
model, analyze causal relationships, and animate object and component
communication on screen for presentation purposes.

Chapter 9

9. Conclusions

In this thesis we presented an approach for monitoring the communication
behavior of distributed applications built with object and component
middleware. In this chapter we present conclusions about the work done
and the results achieved. First we summarize the major research
contributions of this thesis. Then we identify some remaining problems and
directions for future work in the area.

9.1 Contributions

This work makes the following contributions to the area of monitoring
distributed applications.

9.1.1 Design approach

We propose a design approach for building monitoring systems (Chapter
5). Compared to existing approaches, our design approach offers the
following unique combination of features:
– Separation of concerns about generic monitoring functionality from

concerns about functionality specific to the domain of the monitoring or
the domain of the monitored application;

– Separation of concerns about the monitoring application from the
concerns about the monitored application;

– Explicit modeling of the monitoring aspects of the monitored
application execution, required by the monitoring application;

– Stepwise development of a complete monitoring system.

Following this approach, designers increase the “openness” of their
monitoring system architecture, reduce development costs and possibly
achieve a more efficient monitoring system.

236 CHAPTER 9 CONCLUSIONS

9.1.2 MODOCC monitoring model

We define a model for monitoring communication in applications built
with object and component middleware (Chapter 7). Our model has the
following unique combination of features, compared to existing models:
– Support for monitoring of the communication behavior of objects,

component instances and processes;
– An event-based model of communication behavior;
– Support for reasoning about causal relations among events in terms of

both causal precedence and limited realized causality.

This model allows the application of existing formal methods to the analysis
of concurrent execution at the level of object and component
communication, such as conformance testing and verification.

9.1.3 A monitoring system for arbitrary middleware-based
applications

We propose the MODOCC monitoring system for applications built with
object and component technology (Chapter 7). The MODOCC monitoring
system has the following unique combination of features compared to
existing monitoring techniques:
– Independence of middleware software vendors and particular object-

oriented programming languages;
– A flexible and open-ended architecture for generic monitoring systems

with a clearly defined system service (see also Chapter 6);
– An instrumentation and a set of automatic instrumentation tools for

Java, CORBA, and the DSC framework.

Using the MODOCC system designers can concentrate on analysis, instead
of spending too much time to prepare their applications for monitoring.

9.1.4 Limited Realized Causality (LRC) relation

We define a new type of causal relation – LRC (Chapter 7, section 7.2.2).
The LRC has the following unique features compared to other (partial)
order relations and potential causality relations:
– The LRC relation allows reasoning about application behavior from

post-execution traces with the certainty of realized causality;
– The MODOCC monitoring system allows for restoring the LRC

relation. We demonstrate that the LRC relation allows the MODOCC
monitoring system to satisfy the stronger than minimal non-interference

 FUTURE WORK 237

property and thus stronger than minimal correctness (Chapter 8,
section 8.1.3).

Although limited to events in the middleware, the LRC relation constitutes
a powerful tool for analysis of application behavior.

9.1.5 A Message Sequence Diagram (MSD) monitor

We have designed and implemented the MSD monitor (Chapter 8). The
MSD monitor has the following unique combination of features, compared
to existing monitors:
– Visually represents the distributed execution of a middleware-based

application as a collection of communicating objects or component
instances;

– Uses a new visual notation, based on the UML Message Sequence
Diagram and the ITU-T Z.120 Message Sequence Chart, but extended
with additional dynamic features for online animation of object and
component communication;

– Orders events in the system according to the causal precedence relation
(partial order);

– Can match two corresponding communication events to a request or
response message and corresponding request and respond messages to
invocations using the LRC relation;

– Uses alternative coloring to visualize the chains of possible causes or
effects for a selected event in a distributed execution.

Software developers have successfully used the MSD monitor to produce
more reliable applications within the following research projects: MESH
[MESH], FRIENDS [FRIENDS], and UMTS Application Platform
[WPU01].

9.2 Future work

We identify the following directions into which the presented work can
further expand:

9.2.1 Design approach

We believe that designers of monitoring systems can benefit from our
design approach. Nevertheless, in its current state our design approach
provides guidelines but not enough generic building blocks (such as
architectural patterns) that designers can use to assemble a monitoring

238 CHAPTER 9 CONCLUSIONS

system – something necessary for a design methodology. Defining a design
methodology for building monitoring systems based on our design approach
constitutes an important original work in the area of monitoring distributed
applications. This work should also provide sufficient evidence that the
methodology provides the promised benefits, by applying it to the
development of several different monitoring systems.

9.2.2 Monitoring model

We assume that the middleware used by the monitoring system faithfully
implements its middleware model (i.e., “no debugging of the debugger”).
Since the middleware model dictates which event definitely causes which
other event, a correct implementation of the model allows us to restore the
LRC relation among events representing communication activities in the
middleware. We consider as a possibility for future research the extension
of the LRC relation beyond the middleware layer and into the application
layer. For this to work we have two requirements:
– Formal modeling of at least a part of the application behavior using a

suitable design language. In Chapter 8, section 8.2.2, we demonstrated
that a complete application model allows one to perform conformance
testing in order to improve a prototype implementation of the model;

– A faithful implementation of that model (achieved by some means, e.g.,
conformance testing). This assumption allows the designer to distinguish
the two possible sources of an observed erroneous behavior: (1)
problems in the model (e.g., some issue not considered in the model, or
a wrong model), (2) an implementation that does not conform to the
model because of implementation error.

Using such an extended LRC relation, a monitor can analyze the causes of
an event in the application model with the certainty of realized causality.
This gives designers a powerful tool for understanding and improving their
models.

9.2.3 The logical clock system

In Chapter 2 we point out the drawbacks of using vector clocks.
Furthermore, in Chapter 7 we give evidence about the large overhead
produced by the algorithms of the logical system. Possible future work
constitutes the reduction of this overhead, by implementing a more
efficient logical clock system than the vector clock.

In line of this work, one can also experiment with existing logical clocks
systems that promise lower overhead, such as in clustering [Ward01]. Such
approach however, needs to reevaluate the usefulness of the causal

 FUTURE WORK 239

precedence relation for monitoring purposes, since the monitoring system
can reconstruct causal precedence only for events belonging to the same
cluster but not to different clusters.

9.2.4 The instrumentation implementation

We also consider an original future research the making of our
instrumentation implementation more efficient. For the Java execution
environment, an instrumentation based on the JVMPI interface will
probably produce better results than an instrumentation based on the JDI
interface, since the JVMPI does not require running the Java virtual
machine in debug mode in order to install the proper monitoring sensors.

An implementation of the CORBA instrumentation in a programming
language, such as C++, that compiles to native binary code may reduce
the overhead for middleware objects.

9.2.5 Experiment with source code modification

In Chapter 5 we discuss that source code modification provides the
ultimate means for monitoring any aspect in the behavior of a monitored
application. Instrumenting the source code by a third party designer
however, may require a lot of knowledge about the monitored application.
For this reason we consider as original future work the use of
instrumentation tools for fast and correct source code instrumentation. In
this respect, embedding sensors in the source code using an aspect-oriented
approach, such as composition filters [Berg01], seems to us a promising
direction for building instrumentation tools for source code
instrumentation.

Appendix A

10. IDL interfaces of the GMS

File: modocc_types.idl

#ifndef modocc_types_idl
#define modocc_types_idl

module modocc
{
 //structures of the monitoring data
 struct _Attribute
 {
 string name;
 any value;
 };
 typedef sequence<_Attribute> AttributeList;

 struct _Time
 {
 string physical_timestamp;
 };
 struct _Address
 {
 string host_name;
 string host_ip_address;
 };
 struct _System
 {
 long detail_level;
 };

 valuetype MonitoringReport

242 IDL INTERFACES OF THE GMS

 {
 public _Time time;
 public _Address address;
 public _System system;
 public AttributeList s_attributes;
 };
 typedef sequence<MonitoringReport> MonitoringReportList;

 valuetype Event : MonitoringReport
 {
 public string name;

 factory create();
 };
 valuetype Status : MonitoringReport
 {
 public string name;

 factory create();
 };
 //structures of the availability information
 enum ReportTypes { report_event, report_status };
 enum TypesUpdateStatus { data_added, data_removed, data_changed };

 struct NamedOutput
 {
 string name;
 string type;
 };
 typedef sequence<NamedOutput> NamedOutputList;

 struct MonitoringReportType
 {
 string name;
 ReportTypes type;
 NamedOutputList attributes;
 };
 typedef sequence<MonitoringReportType> MonitoringReportTypeList;

 typedef sequence<string> StringList;
 typedef sequence<StringList> StringListList;
};

 IDL INTERFACES OF THE GMS 243

#endif

File: msap.idl

#ifndef msap_idl
#define msap_idl

#include <modocc_types.idl>

module modocc
{
 module msap
 {
 //forward declarations
 interface i_BrowseUpdate;
 interface i_DataNotify;

 //GMS interfaces
 interface i_Browse
 {
 /**
 * The request of the following synchronous operation represents
 * the "Browse interrogate req" service primitive.
 * The response of the following synchronous operation represents
 * the "Browse interrogate cnf" service primitive.
 */
 modocc::MonitoringReportTypeList interrogate(
 in string search_criteria);

 /**
 * The request of the following synchronous operation represents
 * the "Browse subscribe req" service primitive.
 * The response of the following synchronous operation represents
 * the "Browse subscribe cnf" service primitive.
 */
 boolean subscribe(in string monitor_id,
 in i_BrowseUpdate types_notification_reference);

 /**
 * The following oneway operation represents the
 * "Browse unsubscribe req" service primitive.
 */
 oneway void unsubscribe(in string monitor_id);

244 IDL INTERFACES OF THE GMS

 };
 interface i_Subscribe
 {
 /**
 * The request of the following synchronous operation represents
 * the "Request Data subscribe req" service primitive.
 * The response of the following synchronous operation represents
 * the "Request Data subscribe cnf" service primitive.
 */
 boolean subscribe(in string monitor_id,
 in string specification_of_interest,
 in i_DataNotify data_notification_reference);

 /**
 * The following oneway operation represents the
 * "Request Data unsubscribe req" service primitive.
 */
 oneway void unsubscribe(in string monitor_id);
 };
 interface i_Interrogate
 {
 /**
 * The request of the following synchronous operation represents
 * the "Request Data interrogate req" service primitive.
 * The response of the following synchronous operation represents
 * the "Receive Data interrogate cnf" service primitive.
 */
 void interrogate(in StringList data_selection_criteria,
 in i_DataNotify data_notification_reference);
 };

 //Monitor interfaces
 interface i_BrowseUpdate
 {
 /**
 * The following oneway operation represents the
 * "Browse update ind" service primitive.
 */
 oneway void update(
 in modocc::TypesUpdateStatus update_status);
 };
 interface i_DataNotify
 {

 IDL INTERFACES OF THE GMS 245

 /**
 * The following oneway operation represents the
 * "Receive Data notify ind" service primitive.
 */
 oneway void notify(
 in modocc::MonitoringReportList monitoring_data);
 };
 };
};
#endif

File: isap.idl

#ifndef isap_idl
#define isap_idl

#include <modocc_types.idl>

module modocc
{
 module isap
 {
 //GMS interfaces
 interface i_Announce
 {
 /**
 * The request of the following synchronous operation represents
 * the "Announce register req" service primitive.
 * The response of the following synchronous operation represents
 * the "Announce register cnf" service primitive.
 */
 boolean register(in string instrumentation_id,
 in string specification_of_availability);

 /**
 * The following oneway operation represents the
 * "Announce unregister req" service primitive.
 */
 oneway void unregister(in string instrumentation_id);
 };
 interface i_SendNotify
 {
 /**

246 IDL INTERFACES OF THE GMS

 * The following oneway operation represents the
 * "Send Data notify req" service primitive.
 */
 oneway void notify(
 in modocc::MonitoringReportList monitoring_data);
 };

 //CMA interfaces
 interface i_Configure
 {
 /**
 * The request of the following synchronous operation represents
 * the "Configure configure ind" service primitive.
 * The response of the following synchronous operation represents
 * the "Configure configure rsp" service primitive.
 */
 boolean configure(in StringList configuration_specification);
 };
 interface i_SendInterrogate
 {
 /**
 * The request of the following synchronous operation represents
 * the "Send Data interrogate ind" service primitive.
 * The response of the following synchronous operation represents
 * the "Send Data interrogate rsp" service primitive.
 */
 modocc::MonitoringReportList
 interrogate(in StringList data_selection_criteria);
 };
 };
};
#endif

File: gms_internal.idl

#ifndef gms_internal_idl
#define gms_internal_idl

#include <modocc_types.idl>
#include <msap.idl>

module modocc
{

 IDL INTERFACES OF THE GMS 247

 module repository
 {
 interface ii_Repository
 {
 /**
 * Given a list of event report names, this operation
 * returns a list of their descriptions.
 */
 boolean get_event_description1(in StringList event_list,
 out MonitoringReportTypeList descriptions);

 /**
 * Given a event report name pattern, this operation
 * returns a list of descriptions of events
 * matching the pattern.
 */
 boolean get_event_description2(in string event_pattern,
 out modocc::MonitoringReportTypeList descriptions);

 /**
 * Given a list of status report names this operation
 * returns a list of their descriptions.
 */
 boolean get_status_description(in StringList status_names,
 out MonitoringReportTypeList descriptions);

 /**
 * Given a list of event report names, this operation returns
 * a structure containing the unique identifies of the
 * instrumentation instances that can generate these
 * events.
 */
 void get_ids_for_events(in StringList event_names,
 out StringListList instrumentations);

 /**
 * Given a list of status report names, this operation returns
 * a structure containing the unique identifies of the
 * instrumentation instances which allow measuring of
 * these statuses.
 */
 void get_ids_for_statuses(in StringList event_names,
 out StringListList instrumentations);

248 IDL INTERFACES OF THE GMS

 };
 };
 module dissemination
 {
 interface ii_ConfigureInstrumentation
 {
 /**
 * Given a list of event report names, this operation
 * configures the instrumentation to start
 * producing events of the required types.
 */
 boolean switch_on(in string monitor_id,
 in StringList event_names);

 /**
 * Given a list of event report names, this operation
 * configures the instrumentation to stop
 * producing events of the required types.
 */
 boolean switch_off(in string monitor_id);
 };
 interface ii_ConfigureDelivery
 {
 /**
 * This operation adds a monitor to the event delivery
 * mechanism
 */
 void add_monitor(in string monitor_id,
 in modocc::msap::i_DataNotify data_notification_reference);

 /**
 * This operation removes a monitor from the event delivery
 * mechanism
 */
 void remove_monitor(in string monitor_id);
 };
 interface ii_DeliverEvent
 {
 /**
 * This operation delivers a list of events to a list of
 * interested monitors
 */
 oneway void deliver_events(in modocc::StringList monitor_ids,

 IDL INTERFACES OF THE GMS 249

 in modocc::MonitoringReportList event_list);
 };
 };
 module filtering
 {
 interface ii_ConfigureFiltering
 {
 /**
 * This operation adds to the filtering engine a
 * filter corresponding to a monitor
 */
 void add_filter(in string monitor_id, in any filter_tree);

 /**
 * This operation removes from the filtering engine a
 * filter corresponding to a monitor
 */
 void remove_filter(in string monitor_id);
 };
 };
};
#endif

Appendix B

11. How to use the GMS prototype

In this appendix we present several tasks important for the proper usage of
the GMS prototype: building, configuration and deployment, and startup.

Building the prototype

Although no international standardization organization has published any
formal standards for setting up of an open source project, the open source
community has come with informal recommendations, such as a publicly
available source tree, binary distributions, list of dependent technologies,
and a minimal documentation that allows developers to build and run an
open source project. We consider SourceForge [SF] a good source with
information on starting such projects. We use SourceForge to host the
development of the GMS prototype as a part of the MODOCC system (see
Chapter 7).

For providing the building process we have chosen the Ant technology
[ANT]. Ant stands for an extensible build tool entirely written in Java. It
has the portability and platform independence of Java. Furthermore, Ant
uses an XML-based specification for describing builds. This specification
does not depend on the features of a particular software execution platform
(except Java). Hence it does not rely on command shell scripting or other
OS features. The Ant allows for building of the GMS on any platform with
available Java 2 virtual machine.

We have made available to the general public the whole project source
code and documentation as part of the MODOCC project [MODOCC].
Executing of the ANT XML specification automatically takes care of the
proper order of compilation, building and packaging of system
components. Designers can easily adapt the XML script to their needs if
they want to modify or reuse parts of the GMS in other projects.

252 HOW TO USE THE GMS PROTOTYPE

Configuration and deployment

Designers can perform the system configuration of the MODOCC system
using a special configuration specification that describes the deployment of
GMS monitoring agents. This specification reflects the hierarchical
distribution model presented earlier. The specification itself represents an
XML document validated by this XML Schema. The following XML
Schema defines the structure of an configuration specification XML
document:

conf_spec.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="conf_spec">
 <xs:annotation>
 <xs:documentation>Comment describing your root
element</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="realm"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="realm">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="prop" type="property" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="domain" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="domain">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="prop" type="property" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="host" maxOccurs="unbounded"/>
 </xs:sequence>

 HOW TO USE THE GMS PROTOTYPE 253

 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="host">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="prop" type="property" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="unit" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="unit">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="prop" type="property" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="property">
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="value" type="xs:string" use="required"/>
 </xs:complexType>
</xs:schema>

An example of a valid configuration specification XML document we
provide in Appendix C.

During runtime, a software component called ConfSpecMgr processes
the configuration specification and provides monitoring agent with
configuration information. Suffice to say, the ConfSpecMgr provides access
to a logically centralized repository for configuration information within the
GMS. The configuration information organizes properties (name/value
pairs) into a hierarchy of domains (corresponding to the domains from the
hierarchical distribution model) containing hosts (corresponding to locality
regions), which contain units (corresponding to co-location regions).
Physical components of the monitoring system running in an unit can use
the properties defined at the level of the unit, and the properties defined at
the level of the host that executes the unit, and the properties defined at the
level of the domain to which that host belongs. Designers can override

254 HOW TO USE THE GMS PROTOTYPE

property values. For example, a property defined in a domain, can have its
value overridden by a property with the same name defined in a host,
contained in this domain. Analogously, a property defined in a host, can
have its value overridden by a property with the same name defined in a
unit on that host. This allows for a convenient organization of the
properties needed by many components belonging to the same region, but
allows the definition of regions of exceptions within the containing region.

Startup

Designers cannot execute a GMS by itself because they first need to build
an application of it for a particular monitored application. We present an
application process for our GMS prototype in the next chapter. After having
created a specialization of the GMS, the developers define a configuration
specification, and then run the monitored application together with the
monitoring system.

Designers perform the startup process using the hierarchical order of
the configuration: first they need to instantiate the CORBA naming service,
the DMAs and the DMA-DMA channels (CORBA notification service), than
the LMA on each application host, then the instrumented parts (with the
co-located CMAs inside) of the monitored application. In the future
versions of the GMS prototypes, we plan to provide a deployment tool that
uses the configuration specification to install and startup the application
automatically.

Discovery of running agents presents an important issue in a distributed
environment. The Naming Service represents a central repository for
storing references of remote CORBA object. Each monitoring agent of the
GMS contains several remote objects each implementing one interface of
the agent. The Naming service manages the references to these objects so
that other agents can access them. We consider this centralized approach
for discovery of running instances of the system inappropriate for use in
large distributed environments, where a centralized Naming Service may
become a bottleneck and a single point-of-failure. Designers who desire a
more flexible solution may combine an elaborated approach for the
communication of the DMA, e.g. by using the JXTA [Wil02] peer-to-peer
infrastructure, to perform dynamic and distributed discovery of other
DMAs using the peer discovery protocol part of the JXTA. Designers can do
the same for the discovery of LMA instances, however, we consider this
unnecessary in most cases, because designers can organize LMAs in
relatively small administrative domain regions each using its own instance of
the Naming Service. For small domains the peer-to-peer protocols do not
provide a significant benefit.

Appendix C

12. How to use the MODOCC
prototype

Configuration and deployment

In Chapter 6 we discussed the GMS configuration specification. We defined
the specification in XML and its structure using the XML Schema standard.
Using this definition, the MODOCC system further defines several
concrete properties, which designers can use to configure the MODOCC
monitoring system (in addition to the basic configuration for the GMS).
Bellow we list an example configuration file that describes a (static)
deployment of a simple CORBA application prepared for monitoring with
the MODOCC system. In the listing we highlight the important MODOCC
specific properties.

roombooking.xml

<?xml version="1.0" encoding="UTF-8"?>
<conf_spec xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="./conf_spec.xsd">
 <realm id="modocc_testbed">
 <domain id="room_booking_session">
 <prop name="modocc.active" value="yes"/>
 <prop name="modocc.forwarding.policy" value="deferred"/>
 <prop name="modocc.externalization.policy" value="SendToLMA"/>
 <prop name="modocc.mode" value="heavy"/>
 <prop name="modocc.ntp" value="enabled"/>
 <prop name="modocc.ntp.server" value="timehost.cs.utwente.nl"/>
 <prop name="modocc.ntp.offset.refresh.time" value="3600000"/>
 <host id="10.10.1.3">

256 HOW TO USE THE MODOCC PROTOTYPE

 <prop name="modocc.externalization.resource"
value="LMA_ref"/>

 <prop name="modocc.oa.port" value="5555"/>
 <unit id="meeting_factory"/>
 <unit id="room_server_1"/>
 <unit id="room_server_2"/>
 <unit id="room_booking_lma">

 <prop name="modocc.lma.service" value="DMA"/>
 </unit>
 <unit id="room_booking_dma">

 <prop name="modocc.oa.port" value="5554"/>
 </unit>
 </host>
 <host id="10.10.2.2">
 <prop name="modocc.externalization.resource" value="LMA_ref"/>

 <prop name="modocc.oa.port" value="5555"/>
 <unit id="room_client"/>
 <unit id="room_booking_lma">

 <prop name="modocc.lma.service" value="DMA"/>
 </unit>
 </host>
 </domain>
 </realm>
</conf_spec>

The following Table 12-1 describes each property. Some of these
properties have implications on the performance of the MODOCC system
and we will use them in section 7.6.
Property name Description
modocc.active Possible values: {yes, no*9}. Indicates

whether the MODOCC system should
monitor or not

modocc.forwarding.policy Possible values: {deferred*, direct}.
Indicates whether the CMA caches the
monitoring data it needs to send to the
LMA (deferred) in order to return the
control to the monitored application as
soon as possible or, sends the data
immediately (direct) and waits for a
response indicating successful
receiving

Table 12-1
MODOCC
configuration
properties

9 A * after a value indicates that the MODOCC system uses this value as a default in the case
a configuration specification does not define the property for some reason.

 HOW TO USE THE MODOCC PROTOTYPE 257

modocc.externalization.policy Possible values: {SaveToFile,
SendToLMA*}. Indicates whether the
CMA saves monitoring data locally to a
file or sends it to the LMA

modocc.externalization.resource In case the previous property indicates
saving to a file, this property indicates
the name of that file

modocc.mode Possible values: {light*, heavy}.
Indicates how the MODOCC system
generates event timestamps: from the
physical computer clock (light) or using
the MODOCC vector clock
implementation (heavy)

modocc.ntp Possible values: {enabled, disabled*}.
Indicates the use of the NTP protocol
for synchronization of the physical
computer clocks in the distributed
system monitored with MODOCC

modocc.ntp.server In case the previous property allows
use of NTP, this property holds an URL
to the NTP server (e.g., a LAN time
server, or a server somewhere on the
Internet hooked to an atomic clock)

modocc.ntp.offset.refresh.time This property indicates the time
between two subsequent
synchronizations using NTP. Normally,
computer clocks do not drift away from
each other too fast so MODOCC uses a
default value of one hour

modocc.oa.port This property indicates the CORBA port
for MODOCC internal CORBA objects.
Default value may differ between ORB
vendors

For the correct deployment of the MODOCC system designers need to
provide a command line parameter “-Dmodocc.config.file” to the Java
interpreter running every instrumented application part that indicated the
file or URL where every CMA instance can load the configuration
specification. Furthermore, designers have to make sure they have
configured the ORB to install the CMAORBInitializer as an orb initializer
so that it can install the necessary monitoring interceptors, using the ORB’s
Portable Interceptors API.

Starting the MODOCC system

To start the MODOCC system, designers first need to start the monitoring
agents of the GMS in the sequence indicated in Appendix B. Then they can

258 HOW TO USE THE MODOCC PROTOTYPE

start the parts of the monitored application. This will automatically
instantiate a CMA at each location. Then, the MODOCC system becomes
operational and users can start a monitor to perform some analysis and
presentation on information coming from the MODOCC system.

References

 On some occasions, we provide URLs for easy access to online versions of works
cited. For the full text of some of the cited works, you may need an account for the
ACM Digital Library or the IEEE Computer Society Digital Library.

[.NET] Microsoft .NET technology. http://www.microsoft.com/net/, 2002
[.NETST] Visual Studio .NET. http://msdn.microsoft.com/vstudio/, 2002
[3GOSA] 3rd Generation Partnership Project, Technical Specification Group and System

Aspects. “Virtual Home Environment / Open Service Architecture” (Release
1999). 3GPP TS 23.127 V3.3.0 (2000-12)

[AdSi95] Adelstein, F., Singhal, M. “Real-Time Causal Message Ordering In Multimedia
Systems”. In the Proceedings of the International Conference on Distributed
Computing Systems, pp. 36-43, 1995.

[AkTri88] Aksit, M., Tripathi, A. “Data Abstraction Mechanisms in Sina/st”, ACM Object-
Oriented Programming Systems, Languages and Applications Conference
Proceedings, September, 1988, pp. 267-275.

[AMIDST] http://amidst.ctit.utwente.nl/, 1999-2002.
[ANT] The Jakarta ANT project, http://jakarta.apache.org/ant/index.html, 2003
[APPC] AppCenter. http://www.borland.com/appcenter/index.html, 2002
[Arbab95] Arbab, F. Coordination of massively concurrent activities. CWI report CS-R9565,

1995.
[ARM98] “Systems Management: Application Response Measurement (ARM) API”. Open

Group Technical Standard C807, The Open Group, 1998.
http://www.opengroup.org/onlinepubs/009619299/.

[BaBa98] Bakker, J.L., H. Batteram. “Design and evaluation of the Distributed Software
Component framework for distributed communication architectures”. 2nd Intl.
Workshop on Enterprise Distributed Object Computing (EDOC'98), San Diego,
USA, Nov. 3–5, 1998, pp. 282-288.

[Bach86] Bach, M.J. “The design of the UNIX Operating System”. Prentice Hall, 1986.
[Bates85] Bates, P. “Debugging Heterogeneous Distributed Systems Using Event-Based

Models of Behavior”, ACM Transactions on Computer Systems, Vol. 13, Issue 1,
February, 1995, pp. 1-31

http://www.microsoft.com/net/
http://msdn.microsoft.com/vstudio/
http://amidst.ctit.utwente.nl/
http://jakarta.apache.org/ant/index.html
http://www.borland.com/appcenter/index.html

260 REFERENCES

[BeAb02] Benslimane, A., Abouaissa, A. “Dynamical grouping model for distributed real time
causal ordering”. In Computer Communications, Volume 25, Issue 3, pp. 288-
302, 2002

[BeHa+00] Bergmans, L., van Halteren, A., Ferreira Pires, L., van Sinderen, M., Aksit, M. A
“QoS-Control Architecture for Object Middleware”. Proceedings of the
IDMS’2000 workshop, Springer Verlag, 2000,pp.117-131.

[Berg01] Bergmans, L., Aksit, M., “Composing crosscutting concerns using composition
filters”, Communications of the ACM, October 2001, Vol. 44, No.10, pp. 51-57.

[Bertin99] Bertin, J. “Sémiologie Graphique”. Les Re-impressions des Editions de l'Ecole des
Hautes Etudes En Sciences Sociales, 1999

[Bi+00] Birman, K., Constable, R., Hayden, M., Kreitz, C., Rodeh, O., van Renesse, R.,
Vogels, W. “The Horus and Ensemble Projects: Accomplishments and
Limitations”. Proc. of the DARPA Information Survivability Conference &
Exposition (DISCEX '00), South Carolina, USA, January, 2000.

[BiJo87] Birman, K., Joseph, T. “Exploiting virtual synchrony in distributed systems”. In
Proceedings of the Eleventh ACM Symposium on Operating system principles,
pages 123–138, Austin, Texas, USA, November 1987.

[BiJo97] Birman, K.P., Joseph, T.A. “Reliable communication in the presence of failures”.
In ACM Transactions of Computer Systems, Volume 5, Issues 1, pp.47-76, 1987.

[Blair98i] Blair, G. S., Coulson, G., “The case for reflective middleware”, report.nr. MPG-
98-38, Distributed Multimedia Research Group, Lancaster University, 1998.

[Blair98ii] Blair, G. S., Coulson, G., Robin, P., Papathomas, M. “An Architecture for Next
Generation Middleware”, In the proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing
(Middleware'98), Lake District, UK.

[BMC00] “Application Service Management: Reducing Complexity in Today’s Distributed
Environmemt” — White Paper, March 2000.
http://www.bmc.com/products/whitepaper.html.

[Booch91] Booch, G. “Object-Oriented Design with Applications”. The Benjamin/Cummings
Publishing Company, Inc, 1991.

[Bour91] Bourland, D., “To Be or Not: An E-Prime Anthology”, Intl Society for General
Semantics, October, 1991.

[BrM02] Brörkens, M., Möller, M. “Dynamic Event Generation for Runtime Checking using
the JDI”. In the workshop on Runtime Verification’2002, Copenhagen, Denmark,
July, 2002.

[Buch98] Buchanan, M. “Quantum Teleportation”, New Scientist, 14 March, 1998.
[BuMe+96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. “Pattern-

Oriented Software Architecture, A System of Patterns”. John Wiley & Sons Ltd.,
1996

[CCM] CORBA Component Model Specification. http://www.omg.org/cgi-
bin/doc?ptc/2001-11-03, 2001

[CES] CORBA Event Service, http://www.omg.org/cgi-bin/doc?formal/2001-03-01

http://www.omg.org/cgi-bin/doc?ptc/2001-11-03
http://www.omg.org/cgi-bin/doc?ptc/2001-11-03
http://www.omg.org/cgi-bin/doc?formal/2001-03-01

 REFERENCES 261

[ChKo00] Chen, G. & Kotz, D. “A Survey of Context-Aware Mobile Computing Research”,
Technical report TR2000-381, Dept. of Computer Science, Dartmouth College,
November, 2000.

[CLSLDR] http://java.sun.com/j2se/1.4/docs/api/java/lang/ClassLoader.html, 2002
[CNS] CORBA Notification Service, http://www.omg.org/cgi-bin/doc?formal/2002-08-04
[COM+] Kirtland, M. “Object-Oriented Software Development Made Simple with COM+

Runtime Services”, Microsoft Systems Journal, 1997.
http://www.microsoft.com/msj/1197/complus.aspx

[CoMa91] Cooper, R., and Marzullo, K. “Consistent Detection of Global Predicates”. In the
proceedings of ACM orkshop on Parallel and Distributed Debugging, Santa Cruz,
California, pp. 163-173, May 1991.

[CORBA] http://www.omg.org/technology/documents/formal/corba_2.htm, CORBA/IIOP
Specification 2.6, 2001

[CORBA3] CORBA 3.0. http://www.omg.org/cgi-bin/doc?formal/02-06-33, 2002
[Crow96] Crowcroft, J. “Open Distributed Systems”. Artech House, February, 1996.
[CTRACE] CorbaTrace. http://corbatrace.tuxfamily.org/
[DCE] Distributed Computing Environment. http://www.opengroup.org/dce/, 2001
[DCOM] Distributed Component Object Model.

http://www.microsoft.com/com/tech/DCOM.asp, 2002
[DiBa+00] Diakov, N.K., Batteram, H. J., Zandbelt, H., Sinderen, M. J., “Design and

Implementation of a Framework for Monitoring Distributed Component
Interactions”, Proceedings of the 7th International Workshop, IDMS'2000, pp.
227-240, Enschede, The Netherlands, October 17-20, 2000

[Diet00] Dietrich, F. “Modeling Object-Oriented Communication Services with Temporal
Logic”. PhD Thesis, Thesis No. 2141, Swiss Federal Institute of Technology,
Lausanne, 2000.

[DMTF] Distributed Management Task Force. www.dmtf.org, 2002
[DSQ00] Diakov, N.K., Sinderen, M. J., Quartel, D., “Monitoring Extensions for

Component-Based Distributed Software”, Proceedings of the Protocols for
Multimedia Systems, PROMS'2000, pp. 417-424, Cracow, Poland, October 22-
25, 2000

[EfCh+01] Efstratiou, C., Cheverst, K., Davies, N., Friday, A. “An Architecture for the
Effective Support of Adaptive Context-Aware Applications”. In the proceedings of
the Second International Conference on Mobile Data Management (MDM’2001),
Springer- Verlag (LNCS 1987), pp.15-209, Berlin Heidelberg, Germany, 2001,
pp. 15-27.

[Gu+95] Gu, W., Eisenhauer, G., Kraemer, E., Stasko, K., Vetter, J., and Mallavarupu, N.
“Falcon: On-line Monitoring and Steering of Large-Scale Parallel Programs," in
Proc. FRONTIERS'95, pp. 11-19, February 1995.

[EJ+99] Eertink, H., Janssen, W.P.M., Oude Luttighuis, P.H.W.M, Teeuw, W.B., Vissers,
C.A. “A Business Process Design language”, Proceedings World Congress on
Formal Methods (FM'99), 1999.

[EJB] Enterprise Java Beans specification. http://java.sun.com/products/ejb/docs.html,
2002

http://java.sun.com/j2se/1.4/docs/api/java/lang/ClassLoader.html
http://www.omg.org/cgi-bin/doc?formal/2002-08-04
http://www.microsoft.com/msj/1197/complus.aspx
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/cgi-bin/doc?formal/02-06-33
http://corbatrace.tuxfamily.org/
http://www.opengroup.org/dce/
http://www.microsoft.com/com/tech/DCOM.asp
http://www.dmtf.org/
http://java.sun.com/products/ejb/docs.html

262 REFERENCES

[Eth03] The Ethereal Network Analyzer. http://www.ethereal.com/, 2003
[FaDi00] Guareis de Farias, C., Diakov, N. “Component-based Groupware Tailorability

using Monitoring Facilities”. Proceedings of CBG2000, the CSCW2000 workshop
on Component-Based Groupware, Telematica Instituut, The Netherlands, 2000,
pp. 16-21

[FelEr89] Feldkuhn, L. Erickson, J. “Event Management as a Common Functional Area of
Open Systems Management”. Proceedings of the IFIP Symposium on Integrated
Network Management, Boston, North-Holland, 1989, pp. 265-276.

[FiMi82] Fischer, M.J., Michael, A. “Sacrificing Serializability to Attain High Availability of
Data in an Unreliable Network”. In the proceedings of ACM Symp. Principle
Database Systems, ACM Press, New York, 1982, pp.70-75.

[FoZw90] Fowler, J., Zwaenepoel, W. “Causal Distributed Breakpoints”. In the proceedings
of the 10th International Conference on Distributed Computing Systems, 1990,
pp.134-141.

[FraJa98] Franken, H.M., and Janssen, W. “Get a grip on changing business processes
Results from the Testbed-project”, Knowledge & Process Management (Wiley),
vol. 5, no. 4, December 1998, p. 208-215.

[FRIENDS] http://www.telin.nl/Middleware/FRIENDS/ENindex.htm, 1999-2000.
[GEC98] Gershon, N., Eick, S. G., Card, S. “Information Visualization”, Interactions, Vol. 5,

Issue 2, ACM Press. New York. March/April, 1998.
[Geist+94] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V. “PVM:

Parallel Virtual Machine, A User's Guide and Tutorial for Networked Parallel
Computing”. MIT Press, Cambridge, Massachusetts, 1994.

[GeRo97] Gennaro, R., Rohatgi, P. “How to Sign Digital Streams”. In the proceedings of
“Advances in Cryptology” - CRYPTO'97, Lecture Notes in Computer Science , vol.
1295, Springer Verlag, August, 1997, pp. 180-197

[GiCo00] Gilfix, M., Couch, A. “Peep: Monitoring Your Network With Sound”. In the
Proceedings of the 14th Systems Administration Conference – LISA’2000,
December, 2000, pp. 109-117

[Giere98] Giere, R. N. “Understanding Scientific Reasoning”. Holt Rinehart & Winston, 4th
edition, January, 1998.

[Gold84] Goldberg, A. “Smaltalk-80: The Interactive Programming Environment”. Reading,
MA, Addison-Wesley, 1984.

[Google] www.google.com, 2002
[Halt03] Aart T. van Halteren. “Towards an adaptable QoS aware middleware for

distributed objects”, CTIT PhD.-thesis series, ISSN 1381-3617 nr 02-46, ISSN
1388-1795 No. 008, ISBN 90-75176-35-X, University of Twente, The
Netherlands, January 2003.

[HaSte97] Hamada, T., and F. Steegmans (ed.). “TINA-C, Network Components
Specification”. TINA-C consortium, Redbank (NJ) USA, December 1997.

[HeBr89] Helmbold, D., Bryan, D. “Design of Run Time Monitors for Concurrent
Programs”. Technical Report No. CSL-TR-89-395, Program Analysis and
Verification Group, Computer Science Laboratory. Standford, California, USA,
October, 1989.

http://www.ethereal.com/
http://www.telin.nl/Middleware/FRIENDS/ENindex.htm
http://www.google.com/

 REFERENCES 263

[Heis27] Heisenberg, W. “The physical content of quantum kinematics and mechanics.”
Translation by Wheeler, J.A. and Zurek, W.H., eds. Quantum theory and
measurement. Princeton: Princeton University Press. 1983, pp. 62--84.

[HeMcD96] Helmbold, D.P., McDowell, C.E., “Race Detection - Ten Years Later”. in:
Simmons, M.L., Hayes, A.H., Brown, J.S., Reed, D.A., "Debugging and
Performance Tuning for Parallel Computing Systems", IEEE Computer Society
Press, Los Alamitos, CA, USA, 1996, pp. 101-126.

[Hoare78] Hoare, C.A.R. “Communicating Sequential Processes”. Communications of the
ACM, Vol. 21, Nr. 8. August, 1978.

[Hof+94] Hofmann, R., Klar, R., Mohr, B., Quick, A., Siegle, M. “Distributed performance
monitoring: Methods, tools, and applications”. IEEE Transactions on Parallel and
Distributed Systems, vol. 5, num. 6, pp. 585-598, 1994.

[Hoff94] Hoffner, Y., “Monitoring in Distributed Systems”. ANSA project architecture
report, http://www.ansa.co.uk/, December 1994.

[Hold89] Holden, D. “Predictive Languages for Management”. In the proceedings of the
IFIP symposium on Integrated Network Management, Boston, North-Holland, pp.
585-596.

[Holz97] Holzmann, G.J., “The model checker SPIN”. IEEE Trans. on Soft. Eng., vol. 23,
no. 5, May 1997.

[HQGM02] Harkema, M., Quartel, D., Gijsen, B. M. M., van der Mei, R. D. “Performance
Monitoring of Java Applications”. in Proc. of the 3rd Workshop on Software and
Performance (WOSP 2002), ACM Press, Rome (Italy), July 2002, pp. 114-127.

[HriWo96] Hrischuk, C. E. & Woodside. C. “Proper time: Causal and temporal relations of a
distributed system”. Technical Report SCE-96-04, Systems and Computer
Engineering, Carleton University, Ottawa, Ontario, Canada, Mar. 1996. Submitted
to IEEE Transactions on Parallel and Distributed Systems.

[HSV99] Hasan, M., Sugla, B., Viswanathan, R. “A Conceptual Framework for Network
Management Event Correlation and Filtering Systems”. Proceedings of the Sixth
IFIP/IEEE International Symposium on Integrated Management. May, 1999.

[IEEE98] “IEEE Standard for Software Test Documentation”, ANSI/IEEE Std. 829-1998,
IEEE Standard Collection Software Engineering, 1998

[IONAMS] IONA Administrator Management Service. www.iona.com, 2002
[ISO87] Information processing systems - Open Systems Interconnection - Service

conventions. Technical Report ISO TR 8509, ISO, 1987
[ISO90] ISO 10165-1 OSI Management Information Services - Structure of Management

Information - Part 1, Management Information Model, 1990
[ISO92] ISO 10040: OSI Information Processing Systems, Management Overview, 1992
[ISO98] ITU/ISO, “Quality of Service – Framework”, ISO/IEC CD 13236, 1998.
[ISO9000] ISO standard 9000-2000. http://www.iso.org/, 2002
[ISOVOC] ISO standard 8402-1986 “Quality-Vocabulary”, 2002
[JACORB] The JacORB CORBA ORB implementation for Java, http://jacorb.org, 2003
[JaJou94] Jard, C., Jourdan, G.C., “Dependency Tracking and Filtering in Distributed

Computations”. In Brief Announcements ACM Symposium on Principles of
Distributed Computing, ACM Press, New York, 1994.

http://www.ansa.co.uk/
http://www.iona.com/
http://www.iso.org/
http://jacorb.org/

264 REFERENCES

[JBDER] Borland JBuilder. http://www.borland.com/jbuilder/, 2002
[JBR99] Jacobson, I., Booch, G., Rumbaugh, J. “The Unified Software Development

Process”. Addison-Wesley Pub Co, 1st edition, February, 1999.
[JD] Java Debugger, http://java.sun.com/j2se/1.4/docs/tooldocs/tools.html, 2001
[JLSU87] Joyce, J. Lomow, G., Slind, K., Unger, B. “Monitoring Distributed Systems”. ACM

Transactions on Computer Systems, Volume 5, Issue 2, pp. 121-150, May 1987.
[JMS] Java Messaging Service API. http://java.sun.com/products/jms/, 2002
[JMX] Java Management Extensions. http://java.sun.com/products/JavaManagement/,

2002
[JORAM] JORAM. http://www.objectweb.org/joram/doc/index.html, 2002
[JPDA] Java Platform Debugger Architecture,

http://java.sun.com/j2se/1.4.1/docs/guide/jpda/index.html
[JVMPI] Java Virtual Machine Profiler Interface,

http://java.sun.com/j2se/1.4.1/docs/guide/jvmpi/index.html
[Kath00] O. Kath, A. v. Halteren, F. Stoinski, M. Wegdam, Mike Fisher, “Integrated

Middleware Platform Management based on Portable Interceptors”, in Proc. 11th
IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management (DSOM 2000), LNCS 1960, Dec. 2000, Austin, Texas, USA.

[KBTB97] Kunz, T., Black, J.P., Taylor, D. J., Basten, T. “POET: TargetSystem -Independent
Visualisations of Complex Distributed-Application Executions”. The Computer
Journal, Volume 40, Issue 8, pp.499-512, 1997.

[KH+01] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. G. “An
Overview of AspectJ”. In Proceedings of the European Conference on Object-
Oriented Programming, Budapest, Hungary, 18-22 June 2001, Lecture Notes in
Computer Science, Volume 2072, pp 327-355, 2001.

[KhoCo86] Khoshafian, S., and Coperland, G. “Object Identity”. SIGPLAN Notices, vol. 21
(11), November, 1986.

[KQS92] Klar, R., Quick, A., Sötz, F. “Tools for a Model–driven Instrumentation for
Monitoring”. In the proceedings of the 5th International Conference on Modelling
Techniques and Tools for Computer Performance Evaluation, Elsevier Science
Publisher B.V., pp. 165–180, 1992.

[KR+00] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhães, L. C, Cambell, R.
“Monitoring, Security, and Dynamic Configuration with the dynamicTAO
Reflective ORB”. Middleware 2000 --- IFIP/ACM International Conference on
Distributed Systems Platforms, volume 1795 of Lecture Notes in Computer
Science, pages 71-87, Springer, April, 2000.

[Kranz00] Kranzlmüller, D. “Event Graph Analysis for Debugging Massively Parallel
Programs”. PhD dissertation, GUP Linz, Joh. Kepler University Linz, Austria,
September, 2000.

[Kranz97] Kranzlmüller, D., Grabner, S., and Volkert, J. “Debugging with the MAD
environment”. Journal of Parallel Computing, 23, issue 1–2, pp. 199–217, April
1997.

[KraWis98] Krawczyk, H., Wiszniewski, B. “Analysis and Testing of Distributed Software
Applications”, Research Studies Press Ltd., Baldoc, Hertfordshire, England, 1998.

http://www.borland.com/jbuilder/
http://java.sun.com/j2se/1.4/docs/tooldocs/tools.html
http://java.sun.com/products/jms/
http://java.sun.com/products/JavaManagement/
http://www.objectweb.org/joram/doc/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/jpda/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/jvmpi/index.html

 REFERENCES 265

[Kri97] Kristiansen, L. (ed.). “TINA-C, Service Architecture”. TINA-C consortium,
Redbank (NJ) USA, June 1997.

[Lamp78] Lamport, L. “Time, Clocks, and the Ordering of Events in a Distributed System”,
Communications of the ACM, Vol. 21, No. 7, July, 1978, pp. 558-564

[LBDK01] Laumay, P., Bruneton, E., De Palma, N., Krakowiak, S. “Preserving Causality in a
Scalable Message-Oriented Middleware”. In the Proceedings of Middleware’2001,
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg,
pp. 311-317, Germany, November 12-16, 2001.

[LDKK98] Logean, X., Dietrich, F., Karamyan, H., Koppenhöfer, S. “Run-time Monitoring of
Distributed Applications”. Proceedings of IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing - Middleware’98,
England, 15-18 September, 1998, pp. 459-473.

[LGPL] GNU Lesser GPL. http://www.gnu.org/copyleft/lesser.html
[Lieb86] Liebermann, H. “Using prototypical objects to implement shared behaviour in

object oriented systems”. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), 1986,
pp. 214-223.

[LiJo89] Lim, J., and Johnson, R. “The Heart of Object-Oriented Concurrent
Programming”. SIGPLAN Notices, vol. 24 (4), April, 1989.

[Logean00] Logean, X. “Run-time Monitoring and On-line Testing of Middleware Based
Communication Services”. PhD dissertation, Thesis No. 2137, Swiss Federal
Institute of Technology, Lausanne, 2000.

[LWSB97] Ludwig, T., Wismüller, R., Sunderam, V., Bode, A. “OMIS - On-line Monitoring
Interface Specification (Version 2.0)”. Technical University Munich, Report TUM-
I9733, SFB-Bericht Nr. 342/22/97, Munich, Germany, 1997.

[Mao99] Mao, J. “Monitoring and Analyzing Method Invocations in the 2K Operating
System”. Master's thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign, May, 1999.

[Marc86] Marcotty, M. & Ledgard, H. “The World of Programming Languages”, Springer-
Verlag, Berlin 1986.

[McDH89] McDowell, C.E., Helmbold, D.P., “Debugging Concurrent Programs”. ACM
Computing Surveys, Volume 21, Issue 4, pp. 593-622, December 1989.

[MESH] http://www.telin.nl/Mesh/, 1996-1999.
[Miller56] Miller, G. “The Magical Number Seven, Plus Minus Two: Some Limits on Our

Capacity for Processing Information”. The Psychological Review, vol. 63 (2),
March, 1956

[Mills92] Mills, D.L. “Network Time Protocol (Version 3) specification, implementation and
analysis”. Network Working Group Report RFC-1305, University of Delaware,
March 1992, 113 pp.

[MODOCC] The MODOCC project, http://modocc.sourceforge.net/, 2003
[M-W] http://www.m-w.com/. Merriam-Webster, Incorporated, January 2002.
[NTP] Network Time Protocol (Version 3), Network Working Group, rfc1305,

http://www.faqs.org/rfcs/rfc1305.html, 2002

http://www.gnu.org/copyleft/lesser.html
http://www.mesh.nl/
http://modocc.sourceforge.net/
http://www.m-w.com/
http://www.faqs.org/rfcs/rfc1305.html

266 REFERENCES

[Nutt75] Nutt, G.J. “Tutorial: Computer System Monitors”. IEEE Computer, vol. 8, nr. 11,
pp. 51–61 November, 1975.

[OLT03] IBM Distributed Debugger and Object Level Trace Version 9.1 Documentation,
online at: http://www-
3.ibm.com/software/webservers/appserv/doc/v40/aee/index.html, 2003

[ORBacus] http://www.iona.com/products/orbacus_home.htm
[ORBIX] Orbix Web ORB. www.iona.com, 2001
[OsGl96] Oskarsson, Ö., Glass, R.L. “An ISO-9000 Approach To Building Quality

Software”. Prentice-Hall, Inc. 1996.
[PAM] Presence and Availability Management (PAM) Forum, http://www.pamforum.org/,

2003.
[Parnas85] Parnas, D. “Software Aspects of Strategic Defense Systems”. Communications of

the ACM, vol. 28 (12), 1985.
[Pras95] Pras, A. “Network Management Architectures”. Ph.D. thesis, Twente University,

Enschede, 1995
[Pratt86] Pratt, V. “Modelling Concurrency with Partial Orders”. Int. Journal of Parallel

Programming, Vol. 15, No. 1, pp. 33-71, February, 1986.
[PTM97] Protic, J., Tomaevic, M., Milutinovic, V. “Distributed Shared Memory: Concepts

and Systems”. IEEE Computer Society, August, 1997.
[Put01] Putman, J. R. “Architecturing with RM-ODP”. Prentice Hall PTR, 2001
[Rack01] Rackl, G. “Monitoring and Managing Heterogeneous Middleware”. PhD thesis.

Technischen Universität Munchën, 2001.
[Rack99] Rackl, G. “Multi-Layer Monitoring in Distributed Object Environments”. In the

proceedings of the Second International Working Conference on Distributed
Applications and Interoperable Systems (DAIS’99), Kluwer Academic Publishers,
Helsinki, 1999, pp. 265-270.

[Rait00] Raitalaakso, T. “Dynamic Visualization of C++ Programs with UML Sequence
Diagrams”. Master Thesis, Tampere University of Technology, Tampere, Finland,
March, 2000.

[RaLe97] Rathmayer, S., Lenke, M. “A Tool for Online Visualization and Interactive Steering
of Parallel HPC Applications”. Proceedings of 11th International Parallel Processing
Symposium, pp. 181-186, 1997.

[RaLu01] Rackl, G., Ludwig, T. “A Methodology for Efficiently Developing On-Line Tools
for Heterogeneous Middleware”. In the proceedings of the HICSS-34 Conference,
January, 2001.

[RaSi96] Raynal, M., M. Singhal. “Logical time: Capturing causality in distributed systems”.
IEEE Computer 29, Feb. 1996, pp. 49-57.

[RFC2768] RFC2119, http://www.ietf.org/rfc/rfc2119.txt, 2002
[RFC2768] RFC2768, ftp://ftp.isi.edu/in-notes/rfc2768.txt, 2002
[RLRS00] Rackl, G., Lindermeier, M., Rudorfer, M., Süss, B. “MIMO --- An Infrastructure

for Monitoring and Managing Distributed Middleware Environments”, Middleware
2000 --- IFIP/ACM International Conference on Distributed Systems Platforms,
volume 1795 of Lecture Notes in Computer Science, pages 71-87. Springer, April
2000

http://www-3.ibm.com/software/webservers/appserv/doc/v40/aee/index.html
http://www-3.ibm.com/software/webservers/appserv/doc/v40/aee/index.html
http://www.iona.com/products/orbacus_home.htm
http://www.iona.com/
http://www.pamforum.org/
http://www.ietf.org/rfc/rfc2119.txt
ftp://ftp.isi.edu/in-notes/rfc2768.txt

 REFERENCES 267

[RMI] Java Remote Method Invocation. http://java.sun.com/products/jdk/rmi/, 2002
[Rosen96] Rosenberg, J.B. “How Debuggers Work: Algorithms, Data Structures, and

Architecture”. John Wiley & Sons, New York, 1996.
[Royce87] Royce, W.W. “Managing the development of large software systems: concepts and

techniques”. Proceedings of the Western Electronic Show and Convention
(WESCON), pp. 1-p, 1970. Reprinted in: Proceedings of the 9th International
Conference on Software Engineering (ICSE’87), pp. 328-338, 1987.

[RPC] ISO/IEC 11578:1996, “Remote Procedure Call”, Information technology, Open
Systems Interconnection

[RST91] Raynal, M., Schiper, A., Toueg, S. “The causal ordering abstraction and a simple
way to implement it”. Information Processing Letters 39, Elsevier Science
Publishers, September, 1991, pp. 343-350.

[Rumb88] Rumbaugh, J. “Relational Database Design Using an Object-Oriented
Methodology”. Communications of the ACM, vol. 31 (4), April, 1988.

[Sahai98] Sahai, A., Morin, C. “Towards Distributed and Dynamic Network Management”.
In the proceedings of IEEE/IFIP Network Operations and Management
Symposium (NOMS), New Orleans, USA, Feb 15-20, 1998.

[Sam95] Mansouri-Samani, M. “Monitoring of Distributed Systems”. PhD thesis. University
of London, Department of Computing, 1995

[S3DR204] Surface 3D Release 2, 2004. http://www.traxxdale.de/
[SchMa94] Schwarz, R., Mattern, F. “Detecting causal relationships in distributed

computations: in the search of the Holy Grail”. Distributed Computing, 7(3), pp.
149-174, 1994.

[SchSch01] Schantz, R. E., and Schmidt, D. C. “Middleware for Distributed Systems: Evolving
the Common Structure for Network-centric Applications,” Encyclopedia of
Software Eng., Wiley & Sons, New York, 2001; also available at
http://www.cs.wustl.edu/~schmidt/PDF/middleware-chapter.pdf.

[SF] The Source Forge, “A Home of Open Source Development”,
http://sourceforge.net, 2003

[SHA95] SHA-1: Secure Hashing Algorithm, Federal Information Processing Standards
Publication 180-1, April, 1995

[Shaer98] Al Shaer, E. S. “A Hierarchical Filtering Based Monitoring Architecture For Large
Scale Distributed Systems”. PhD thesis. Old Dominion University, Norfolk, 1998

[Shaw81] Shaw, M. “ALPHARD: Form and Content”. New York, NY, Springer-Verlag,
1981.

[SiKs92] Singhal, M., Kshemkalyani, A. “An Efficient Implementation of Vector Clocks”.
Information Processing Letters, Vol. 43, August, 1992, pp. 47-52.

[SILK] SILK software, www.segue.com, 2002
[Simon82] Simon, H. “The Sciences of the Artificial”. Cambridge, MA, MIT Press, 1982.
[SLC99] Schmidt, D.C., Levine, D.L., Cleeland, C. “Architectures and Patterns for High-

performance”, Real-time ORB Endsystems, Advances in Computers, Academic
Press, Ed., Marvin Zelkowitz, Volume 48, July 1999.

http://java.sun.com/products/jdk/rmi/
http://www.traxxdale.de/
http://sourceforge.net/
http://www.segue.com/

268 REFERENCES

[Slo95] Sloman, M. “Management Issues for Distributed Services”. In the proceedings of
IEEE Second International Workshop on Services in Distributed and Networked
Environments (SDNE’95), Whistler, British Columbia, Canada, 5-6 June 1995,
IEEE Computer Society Press, pp 52-59.

[SloMo89] Sloman, M., Moffett, J. “Managing Distributed Systems”. Imperial College,
London, 1989.

[Smith80] Newton-Smith, W. “The structure of Time”. Routledge & Kegan Paul, London,
July, 1980.

[SMST] SmartStubs. http://www.white-park.freeserve.co.uk/
[Snir+99] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. “MPI: The

Complete Reference”. Vol. 2, 2nd edition, MIT Press, Cambridge, Massachusetts,
1999.

[SNTP] Simple Network Time Protocol (Version 4), Network Working Group, rfc2030,
http://www.faqs.org/rfcs/rfc2030.html, 2002

[SPS02] Stallman, R. M., Pesch, R., Shebs, S. “Debugging with GDB: The GNU Source-
Level Debugger”. Free Software Foundation, January 2002.

[SQL99] ISO/IEC 9075-1:1999, “Information technology - Database language - SQL - Part
1: Framework” (SQL/Framework), 1999.

[SSRB00] Schmidt, D., Stal, M., Rohnert, H., Buschmann, F., “Pattern-Oriented Software
Architecture”, Volume 2, Patterns for Concurrent and Networked Objects. John
Wiley & Sons Ltd., 2000

[Ste97] Steegmans, F. (ed.). “TINA-C, Network Resource Architecture”. TINA-C
consortium, Redbank (NJ) USA, February 1997.

[Stitt92] Stitt, M. Debugging – “Creative Techniques and Tools for Software Repair”. John
Wiley & Sons, New York, 1992.

[STK96] Schade, A., Trommler, P., Kaiserswerth, M. “Object Instrumentation for
Distributed Applications Management”, in “Distributed Platforms”, Chapman &
Hall, pp. 173-185, London, 1996

[Sum92] Summers, J. A. “Precedence-preserving abstraction for distributed debugging”.
Master’s thesis, University of Waterloo, Ontario, 1992.

[Szy98] Szyperski, C. “Component software: beyond object-oriented programming”.
Addison-Wesley, USA, 1998.

[Tan92] Tanenbaum, A. S. “Modern Operating Systems”. Prentice Hall, 1992
[TeQu01] Teeuw, W. B., & Quartel, D. A. C. “Model-based service creation in the Friends

project”. Proceedings 6th International Conference on Protocols for Multimedia
Systems (PROMS 2001), October 17-19, Enschede, The Netherlands, 2001.
Springer- Verlag (LNCS 2213), pp.192-209, Berlin Heidelberg, Germany, 2001

[TeQua01] Teeuw, W. B., Quartel, D. A. C. “Model-based service creation in the Friends
project”. Proceedings 6th International Conference on Protocols for Multimedia
Systems (PROMS 2001). Springer-Verlag (LNCS 2213), pp.192-209, Berlin
Heidelberg, Germany, 2001

[TIVOLI] TIVOLI software from IBM, www.tivoli.com, 2003
[Tufte83] Tufte, E. “The Visual Display of Quantitative Information”. Graphics Press,

Chelshire, 1983.

http://www.white-park.freeserve.co.uk/
http://www.faqs.org/rfcs/rfc2030.html
http://www.tivoli.com/

 REFERENCES 269

[UML1.4] Unified Modeling Language (UML), version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm, 2002

[VBM00] Verhoosel, J. P. C., Batteram, H. J., Millian, R. S. “The FRIENDS Platform:
Conquering Complexity using Distributed Software Components”. Technical
report, Lucent technology Software Symposium, April 2000.

[ViPi+00] Vissers, C.A., Pires, L.F., Quartel, D.A.C., van Sinderen, M.J. “The Design of
Telematics Systems”. Lecture notes, Twente University, Enschede, The
Netherlands, November 2000.

[VoDu98] Vogel, A., Duddy, K. “Java programming with Corba”. John Wiley & Sons Inc, 2nd
edition, March 1998.

[Ward01] Ward, P. A. S. “A Scalable Partial-Order Data Structure For Distributed-System
Observation”. PhD dissertation, University of Waterloo, Ontario, Canada, 2001.

[WAS] WebSphere Application Server.
http://www.ibm.com/software/webservers/appserv/, 2003

[Weg03] Wegdam, M. “Dynamic Reconfiguration and Load Distribution in Component
Middleware”, PhD thesis, CTIT research series No. 03-50, Telematica Instituut
Research Series No. 9., Enschede, The Netherlands, 2003

[Weide01] Van der Weide, Th. P. “Information Discovery. Lecture notes on Information
Retrieval and Hypertext”, University of Nijmegen, April, 2001.

[WeiKu98] Weinreich, R., Kurschl, W. “Dynamic Analysis of Distributed Object-Oriented
Applications”. In the Proceedings of the 31st Hawaii International Conference on
System Sciences (HICSS-31), Software Technology, Big Island of Hawaii, USA,
January 6 - 9, 1998, IEEE Computer Society Press, pp. 386-399, 1998.

[WHAT] http://whatis.techtarget.com/. TechTarget, 2002
[Wil02] Wilson, B. J. “JXTA”. New Riders Publishing, June, 2002.
[WMI] Windows Management Instrumentation (WMI). www.microsoft.com, 2002
[WPU01] Wegdam, M., Plas, D-J., Unmehopa, M. “Validation of the Open Service Access

API for UMTS Application Provisioning”. In Proceedings of the 6th International
Conference on Protocols for Multimedia Systems (PROMS 2001), published by
Springer as LNCS 2213, pp. 210-221, ISBN 3-540-42708-2, October 17-19,
2001, Enschede, The Netherlands.

[XMI] XML Metadata Interchange specification. http://www.omg.org/cgi-
bin/doc?formal/2002-01-01, 2002

[Yas92] Yasuhiko, Y. “The Apertos Reflective Operating System: The Concept and Its
Implementation”, In the proceedings of OOPSLA'92, October 1992.

[Z.120] ITU-T Z.120. Message Sequence Chart (MSC). ITU-TSS, Oct. 1996.
[Zor00] Zoraja, I. “Online Monitoring in Software DSM Systems”. PhD thesis, Technische

Universität München, 2000.

http://www.omg.org/technology/documents/formal/uml.htm
http://www.ibm.com/software/webservers/appserv/
http://whatis.techtarget.com/
http://www.microsoft.com/
http://www.omg.org/cgi-bin/doc?formal/2002-01-01
http://www.omg.org/cgi-bin/doc?formal/2002-01-01

Table of Figures

Figure 1-1 Parties involved in monitoring 15
Figure 1-2 Middleware-based system 16
Figure 1-3 Monitoring of a middleware-based application 18
Figure 1-4 Middleware-based monitoring of middleware-based applications

 19
Figure 1-5 The management system for tree maintenance 26
Figure 1-6 The monitoring model of a tree developed by Mr. T 27
Figure 1-7 Thesis roadmap 29
Figure 2-1 Decomposition of the monitoring system 32
Figure 2-2 The relation between potential causality and temporal

precedence 37
Figure 2-3 A distributed execution 40
Figure 2-4 Functional model for monitoring 45
Figure 2-5 Inaccurate order of events due to variable delay 47
Figure 2-6 Three types of behavior 60
Figure 2-7 Three properties 61
Figure 3-1 A method call 67
Figure 3-2 The Proxy pattern as applied in object middleware 70
Figure 3-3 The Broker design pattern 71
Figure 3-4 Message sequence diagram of an operation invocation 72
Figure 3-5 A programming model for object middleware 73
Figure 3-6 A model of component-based application development 78
Figure 3-7 Component development 79
Figure 3-8 A CORBA component 81
Figure 3-9 Portable Interceptors – points of interception 83
Figure 4-1 The OLT architecture 90
Figure 4-2 The hierarchical architecture of HiFi 94
Figure 4-3 The MOTEL architecture 97
Figure 4-4 The MLM model 100

272 TABLE OF FIGURES

Figure 4-5 The MIMO architecture 101
Figure 5-1 Decomposition of the monitoring system 112
Figure 5-2 Decomposition of the design process 115
Figure 5-3 Relations among the stages 116
Figure 5-4 Steps in GMS design 117
Figure 5-5 The service of the GMS 118
Figure 5-6 A possible GMS model 119
Figure 5-7 Steps in GMS specialization 121
Figure 5-8 Relations among the generic and specific data structures 123
Figure 5-9 The Error class 123
Figure 5-10 Specialization of the GMS into a concrete MSS 124
Figure 5-11 Steps in instrumentation design 125
Figure 5-12 Steps in monitor design 130
Figure 6-1 GMS model 133
Figure 6-2 “Performing online monitoring” use case diagram 134
Figure 6-3 Example service primitives and relations among them. 139
Figure 6-4 Elements of the GMS service 140
Figure 6-5 Enabling relations between the six service elements 140
Figure 6-6 Browse service primitive relations 143
Figure 6-7 Announce service primitive relations 144
Figure 6-8 Configure service primitive relations 145
Figure 6-9 Send Data service primitive relations 145
Figure 6-10 M-SAP state chart diagram 146
Figure 6-11 I-SAP state chart diagram 147
Figure 6-12 Time sequence diagrams 148
Figure 6-13 MonitoringReport class 149
Figure 6-14 MonitoringReportType class 150
Figure 6-15 EBNF for the STSL language 151
Figure 6-16 EBNF for the SSIL language 152
Figure 6-17 Interface refinement for the GMS service 155
Figure 6-18 Functional decomposition of the GMS 157
Figure 6-19 Structure of the dissemination component 158
Figure 6-20 Monitor subscription scenario 159
Figure 6-21 Monitor un-subscription scenario 160
Figure 6-22 Notification about new monitoring data 160
Figure 6-23 Interrogation for monitoring data 161
Figure 6-24 The hierarchical distribution model 162
Figure 6-25 Relations among monitoring agents 164
Figure 6-26 Physical decomposition of a monitoring system. 165
Figure 6-27 Structural mapping of logical to physical components 166
Figure 6-28 A CMA registers with the GMS 167
Figure 6-29 A CMA unregisters with the GMS 168

 TABLE OF FIGURES 273

Figure 6-30 The GMS handles a subscription 168
Figure 6-31 The GMS handles an un-subscription 169
Figure 6-32 The GMS handles a request for status reports 169
Figure 6-33 The GMS adds a filter (new subscription) 170
Figure 6-34 The GMS removes a filter (un-subscribing) 171
Figure 6-35 The GMS processes an event 171
Figure 7-1 Entity model 184
Figure 7-2 Mapping of component communication to object

communication 185
Figure 7-3 Mapping of object communication to process communication

 186
Figure 7-4 The model of the “Hello” application 190
Figure 7-5 Events for the “Hello” application 191
Figure 7-6 Three nested synchronous operation invocations 194
Figure 7-7 The structure of MODOCC event reports 196
Figure 7-8 The logical timestamp 197
Figure 7-9 JPDA / JDI instrumentation for monitoring of Java object

method calls 199
Figure 7-10 CORBA sensors 201
Figure 7-11 The client identity becomes the identity of the object which last

had the server role. 203
Figure 7-12 The modified IDL compiler 205
Figure 7-13 Compilation of component specifications with the DscGen tool

 206
Figure 7-14 A CMA architecture for the MODOCC instrumentation 207
Figure 7-15 Sequence diagram of event generation 208
Figure 7-16 Structure of the process context used in the CMA 209
Figure 7-17 Copying FlowContext along the invocation path 210
Figure 7-18 Demo setup 212
Figure 7-19 Computational performance 214
Figure 7-20 Total size of communicated data 215
Figure 7-21 Size of CORBA communication (GIOP packets) 216
Figure 8-1 The architecture of the MSD Monitor 223
Figure 8-2 The diagram 225
Figure 8-3 Event inspection 226
Figure 8-4 Dynamic service deployment diagram 229
Figure 8-5 A method for conformance testing 231
Figure 8-6 Software architecture of the UMTS application platform 233

Index

causality, 36
fallacy, 36
potential causality, 37
realized causality, 37

communication event types, 187
component middleware, 17, 74

component, 74
component specification, 74

conformance testing, 230
CORBA, 72

portable interceptors, 83, 200
design questions, 112
design stages, 115, 116
distributed software application,

13
DSC, 203, 229
evaluation, 87

criteria, 87
HiFi, 93
MIMO, 99
MOTEL, 96
OLT, 89
requirements, 107

event-based monitoring model,
38
causal precedence, 39
concurrency, 40
distributed execution, 39
happened before, 39
message, 39

process, 38
FRIENDS, 228
GMS, 133

service, 137
service primitives, 141
use cases, 135

instrumentation, 15, 18, 32
interception, 198
sensor placement, 126
sensors, 46, 125
tools, 128, 204

instrumenting. See
instrumentation

ITU-T Z.120, 222
lifecycle event types, 188
limited realized causality, 194
logical time, 40

clock consistency, 41
logical clock, 40
matrix clock, 42
metrication, 41
scalar clock, 42
strong consistency, 41
topology, 41
vector clock, 42

middleware, 16
IPC, 67
middleware instrumentation,

22
middleware layer, 16, 22

276 INDEX

middleware-based application,
18

middleware-based system, 16
reflective middleware, 22, 82
RPC, 68

MODOCC, 179
monitoring model, 183

monitoring
application domain, 31

monitoring activities, 33, 45
dissemination, 51

selection criteria, 53
specification of interest, 52

generation, 46
detection delay, 47
monitoring trace, 47

presentation, 54
human comprehension, 54
sound, 55
visualization, 54

processing, 48
composite event, 49
event correlation, 48

monitoring model, 33
behavior, 34

event-based modeling, 34
status-based modeling, 34

design model, 33
entity, 34
event, 34

address, 35
atomicity, 35
information, 35
time, 35

event report, 35
monitoring report, 35
relations, 35

causal, 36
temporal, 35

runs, 33
status, 34
status report, 34

status variables, 34
status vector, 34
timestamp, 40

monitoring system, 15
aspects, 33
instrumentation tier, 32
measurements, 15
model-driven

instrumentation, 40
monitor tier, 32
monitoring data, 15
monitoring support system,

32
MSD monitor, 221
object middleware, 17, 69

broker, 71
lifecycle, 70
operation invocation, 70

object technology, 63
class, 64

relations, 64
communication, 66
object lifecycle, 65

objects and components, 75
open services access, 232
performance, 57

information consistency, 58
overhead, 33, 57

presence and availability
management, 232

reflection, 82
lifecycle reflection, 82
message reflection, 83

room booking example, 212
service, 112

access point, 137
element, 138
primitive, 137
provider, 137
user, 137

software manufacturing process,
14

 INDEX 277

monitoring, 14
computation replay, 14
conformance testing, 14
differentiation, 14
distributed breakpoints, 14
event inspection, 14
visual presentation, 14

operation and maintenance,
14
management, 15

testing, 14

validation, 14
software monitoring, 15

monitored application, 15
monitoring application, 15

temporal precedence, 36
properties, 36

time sequence diagrams, 138
vector clock system, 43

piggybacking, 43
requirements, 44
vector timestamp, 43

Samenvatting

Dit proefschrift presenteert ons werk op het gebied van het observeren van
gedistribueerde software applicaties (DSAs voor Distributed Software
Applications). We leveren drie hoofdresultaten op: (1) een
ontwerpbenadering voor het bouwen van “observatie” systemen, (2) een
systeemontwerp voor MOnitoring Distributed Object and Component
Communication (MODOCC) in applicaties die op middleware gebaseerd zijn
en (3) een “proof-of-concept” implementatie van dit ontwerp.

Het observeren van de uitvoering van DSAs speelt een essentiële rol in
het verbeteren van de kwaliteit ervan in termen van
gebruikersverwachtingen, performance en betrouwbaarheid. Bijvoorbeeld:
het observeren van de communicatie tussen onderdelen van een DSA levert
informatie op die gebruikt kan worden voor het ontdekken van fouten en
hun oorzaken, voor storing- en prestatieanalyses en voor het balanceren van
de systeembelasting over de DSA onderdelen.

Ontwerpers en programmeurs bouwen vaak observatie-hulpsystemen
om de test-, operatie- en onderhoudsfases van de levenscyclus van een DSA
te ondersteunen. Een observatie systeem moet daarvoor modellen en
mechanismen gebruiken die een consistente weergave van de DSA
uitvoering behouden, en die waar nodig informatie verschaffen over de
executie van de applicatie.

Dit proefschrift richt zich op het observeren van DSAs die gebouwd zijn
met object- en componenttechnologieën, en vooral op de executie aspecten
van objecten en componenten, zoals inter-object en inter-component
interactie.

Het manuscript heeft de volgende structuur:
Hoofdstuk 1 introduceert het onderzoeksgebied en geeft een

gedetailleerde uitleg over onze motivatie voor dit werk en stelt onze doelen
vast.

Hoofdstukken 2 en 3 introduceren terminologie en concepten, die door
het hele proefschrift gebruikt worden.

280 SAMENVATTING

Hoofdstuk 2 presenteert de basisterminologie en fundamentele
concepten op het gebied van het observeren van gedistribueerde software.

Hoofdstuk 3 geeft een overzicht van object- en component middleware
technologiëen.

Hoofdstuk 4 beschrijft en evalueert enkele bestaande observatie
systemen, en met name observatie systemen die geschikt zijn voor object en
component middleware ondersteunen. Als resultaat van deze evaluatie
definiëren we een aantal eisen voor ons observatie systeem.

Hoofstuk 5 beschrijft een ontwerpbenadering voor observatie systemen.
Deze ontwerpbenadering bestaat uit vier fases: Algemeen Observatie
Systeem (GMS voor Generic Monitoring System) ontwerp, GMS
specialisatie, instrumentatie ontwerp en observatie ontwerp.

Hoofdstukken 6, 7 en 8 volgen onze ontwerpbenadering met als doel
een systeem te bouwen voor het observeren van op middleware gebaseerde
applicaties.

Hoofdstuk 6 stelt een architectuur van een GMS voor. Het GMS bevat
alleen algemene eisen voor observatie. Dit hoofdstuk bevat tevens een
rapportage over een prototype GMS dat we hebben gebouwd.

Hoofdsuk 7 presenteert het ontwerp van een MODOCC systeem. Het
ontwerp omvat een model voor het observeren van de communicatie tussen
objecten en componenten en de aanpassingen aan de middleware die nodig
zijn het observatie proces. Tevens wordt hier de implementatie van het
prototype van deze aanpassingen beschreven.

Hoofstuk 8 beschrijft het ontwerp en de implementatie van een basale
monitor die de communicatie tussen objecten en componenten visualiseert.
Verder bespreken we het gebruik van het MODOCC systeem voor drie
verschillende observeringsapplicaties.

Hoofdstuk 9 bevat een samenvatting van dit proefschrift en
bedisscussieerd mogelijke richtingen voor vervolgonderzoek.

Предговор

Тази дисертация третира проблеми, свързани с наблюдаването на

разпределен софтуер. Основните резултати са три: (1)

методология за проектиране на системи за наблюдение, (2)

дизайн на система за наблюдаване на комуникацията в обектно-

ориентиран и компонентно-ориентиран разпределен софтуер, и

(3) реализация на тази система за наблюдение.

Наблюдаването на поведението на разпределен софтуер по

време на неговото изпълнение играе съществена роля при

подобряването на софтуерното качество от гледна точка на

потребителски очаквания, бързодействие, и надеждност.

Например, наблюдаването на комуникацията между физически

разпределени софтуерни части предоставя информация, която

може да се използва за откриване на грешки и за локализиране

на техните източници, за анализ на повреди, за анализ на

системно бързодействие, а също така и за балансиране на

натоварването на отделни системни компоненти.

Дизайнери и програмисти често използват ситеми за

наблюдение при тестване, употреба и поддръжка на разпределен

софтуер. Те се нуждаят от системи, които предоставят

консистентен модел на изпълнението на разпределения софтуер

и, когато е необходимо, могат да показват тази информация по

време на самото изпълнение на наблюдавания софтуер.

Тази дисертация фокусира върху наблюдаването на обектно- и

компонентно-ориентиран разпределен софтуер и по-конкретно,

върху наблюдаването на взаимодействия между обекти и

взаимодействия между компоненти.

Дисертацията има следната структура:

Глава 1 въвежда читателя в изследователската област,

посочва нашата мотивация и дефинира в детайл нашите

изследователски цели.

282 ПРЕДГОВОР

Глави 2 и 3 въвеждат терминологията, която използваме в

тази дисертация.

Глава 2 въвежда в областта на наблюдаване на разпределен

софтуер.

Глава 3 запознава читателя с обектно-ориентираните и

компонентните технологии.

В Глава 4 изследваме няколко от съществуващите системи за

наблюдение. В резултат на това изследване дефинираме

изисквания към нашата система за наблюдение.

Глава 5 описва нашата методология за построяване на

системи за наблюдение. Тя се състои от четири фази: дизайн на

системи с широко приложение, специализация на системи с

широко приложение към определена област, дизайн на

инструменти за измерване и дизайн на софтуерни монитори.

Глави 6, 7 и 8 следват фазите на нашата методология.

Глава 6 описва архитектура на система за наблюдение с

широко приложение. Тази система задоволява единствено тези от

нашите изисквания, които позволяват широко приложение. Тази

глава също докладва реализацията на прототип на система за

наблюдение с широко приложение.

Глава 7 представя дизайн на система за наблюдение на

обектна и компонентна комуникацията в разпределен софтуер,

базиран на обектно-ориентирани и компонентни технологии и

дизайн и реализация на инструментите за измерване тази

комуникация.

Глава 8 описва дизайн и реализация на софтуерен монитор,

служещ за визуализиране на обектна и компонентна

комуникацията. Тази глава представя също прилагането на

нашата система за наблюдение и на софтуерния монитор към три

различни проекта.

Глава 9 обобщава научния принос на тази дисертация и

дискутира възможностите за продължаване на тази

изследователска работа.

За Корицата

Изображението на корицата представлява стереограма: гледането

на стереограма по специален начин разкрива тримерна сцена.

Принципът, използван в стереогамите е формулиран за пръв път

от физика Сър Чарлз Уетстоун през 1833. Според този принцип,

когато човек гледа някаква сцена в околната среда, всяко око

вижда отделно изображение на същата сцена. Човешкият мозък

сглобява тези две изображение в нещо, което ние възприемаме

като тримерно изображение. Стереограмите използват този

принцип, за да скрият тримерна сцена в двумерно изображение.

Изображението на корицата съдържа следната тримерна сцена:

Следващите инструкции съставляват техника за гледане на

стереограми:

1. Приближете стереограмата много близо до лицето си;

2. Отпуснете очите си и гледайте през стереограмата с очи,

фокусирани зад равнината на стереограмата;

284 ЗА КОРИЦАТА

3. Бавно отдалечавайте стереограмата, като се стараете да не

местите погледа си и да не променяте фокуса му.

Може да отнеме известно време, за да видите тримерната сцена.

Също така отбележете, че само 85-90% от хората са в състояние

да виждат тримерната сцена на една стереограма.

Поставих тази стереограма на корицата на дисертацията си,

за да подчертая ролята на системите за наблюдение при

производството на софтуер. Софтуерът сам по себе си не

�съществува� в същия смисъл както една лъжица съществува

физически. При това отбележете, че разпечатана програма

�съществува� по-същия начин както и думата �лъжица� написана

на лист хартия. Най-реалното нещо от един софтуер са

електрическите заряди, намиращи се в компютърната памет или в

компютърния харддиск. Изпълнението на една софтуерна програма

може да се оприличи на вихрушка от електрически сигнали,

които се разкарват из частите на компютъра. �Реалният�

резултат от една програма в повечето случаи представлява

фотони излъчени от монитор към очите на потребителя. При

производството на софтуер, дизайнерите често използват

абстрактни концепции като обекти, компоненти и процеси. В

ролята на наблюдатели, ако искаме да наблюдаваме софтуерно

изпълнение в термините на същите абстрактни концепции, както

и при неговия дизайн, ние имаме нужда от система за

наблюдение. Такава система за наблюдение би ни разкрила

великолепния свят на взаимодействащи обекти, процеси и

компоненти, и как те довеждат програма до желан (или нежелан)

край.

За генерирането на стереограмата от корицата използвах

програмата Surface 3D Release 2 [S3DR204].

About the Cover Page

The image on the cover has certain special properties: when viewing it in a
special way one can see a tri-dimensional scene emerge out of it. We call
this type of images steregorams. The principle behind stereograms dates back
to 1833, when the physicist Sir Charles Wheatstone recognized that when
humans look at an object each eye sees a separate picture of that object.
The brain takes these two pictures and creates what we perceive as a three-
dimensional image. A stereogram exploits this feature of the brain to hide a
tri-dimensional scene in a two-dimensional image.

On the cover I have put an image, containing the following scene:

The following technique helps the viewer to see the hidden scene in a
stereogram:
1. Put your face close to the stereogram;
2. Allow your eyes to relax, and stare right through the stereogram as if

your eyes were focused at a point behind the surface of the stereogram;

286 ABOUT THE COVER PAGE

3. Slowly move away from the stereogram without changing the position of
your eyes.

You won’t see the emerging tri-dimensional scene immediately, but keep
trying. Please note that only 85-90 percent of people can see stereographic
pictures in a three-dimensional way.

I have created this particular stereogram to illustrate the role of a
monitoring system in software development. Software does not exist in the
same meaning of the word “exist” when applied to things such as potatoes.
Note that a print out of some program source code becomes as real as the
word “potato” written on a piece of paper. The electrical charges captured
within the computer memory or on the plates of the computer hard drive
represent the closest to “real” that software gets. When executing software,
its “real” execution constitutes a whirlwind of electrical impulses moving
around within the computer parts. The photons that user’s eyes detect
coming from the computer screen represent the closest to “real” output of
a computer program execution. We model software and what they do using
abstract (ones that do not “really” exist in the physical world) concepts
such as objects, processes, components and events, and if we want to “see”
what actually happens in this same terms during the “storm” of electrical
charges constituting a program’s execution, we need to use a monitoring
system. The monitoring system would reveal to us a fascinating world of
interacting objects, processes and components, which seem to govern how
the computer produces desired (or undesired) output.

To create the stereogram I used the free tool Surface 3D Release 2
[S3DR204].

Acronyms and Abbreviations

Short form Expanded form
API Application Programming Interface
CCM CORBA Component Model
CMA Co-located Monitoring Agent
COM Common Object Model
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
DCE Distributed Computing Environment
DCOM Distributed Common Object Model
DDM Diagram Data Model
DMA Domain Monitoring Agent
DSA Distributed Software Application
DSC Distributed Software Components
DSD Dynamic Service Deployment
EBNF Extended Backus-Naur Form
EJB Enterprise Java Beans
FIFO First In First Out
GMS Generic Monitoring System
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IDL Interface Definition Language
IPC Inter-Process Communication
JDI Java Debugging Interface
JDK Java Development Kit
JMS Java Messaging Service
JMX Java Management eXtensions
JNI Java Native Interface

288 ACRONYMS AND ABBREVIATIONS

JPDA Java Platform Debugger Interface
JSP Java Server Pages
JVM Java Virtual Machine
JVMPI Java Virtual Machine Profiler Interface
JXTA Juxtapose, the project
LMA Local Monitoring Agent
LRC Limited Realized Causality
MA Monitoring Agent
MLM Multi-Layer Monitoring
MM Monitoring Model
MODOCC MOnitoring Distributed Object and Component

Communication
MSD Message Sequence Diagram
MSS Monitoring Support System
NTP Network Time Protocol
OMG Object Management Group
OO Object-Oriented
ORB Object Request Broker
OS Operating System
OSA Open Services Access
PAM Presence and Availability Management
PI Portable Interceptors
POA Portable Object Adapter
RMI Remote Method Invocation
RPC Remote Procedure Call
SAP Service Access Point
SHA Secure Hash Algorithm
SNMP Simplified Network Management Protocol
SNTP Simple Network Time Protocol
SQL Structured Query Language
SSIL Simple Specification of Interest Language
STSL Simple Type Search Language
TINA Telecommunication Information Networking

Architecture
UML Unified Modeling Language
WAS WebSphere Application Server
WWW World Wide Web
XMI XML Metadata Interchange
XML eXtensible Markup Language

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Software monitoring
	Middleware-based systems
	Object middleware
	Component middleware

	Monitoring of middleware-based applications
	Monitoring communication behavior

	Problem statement
	Monitoring in distributed systems
	Monitoring at the middleware layer
	Design of monitoring systems

	Scope and objectives
	Approach
	Example: tree monitoring
	Approach to software monitoring

	Thesis structure

	Terminology and concepts
	General discussion
	Basic terminology
	Aspects of a monitoring system

	A monitoring model
	Modeling concepts
	Entities
	Entity behavior
	Status-based modeling
	Event-based modeling
	Relations among events
	Temporal relations
	Causal relations

	Status-based vs. event-based modeling
	An event-based monitoring model
	Using the monitoring model
	Logical time
	Existing logical clock systems

	The vector clock system
	Implementation issues of vector clocks

	Monitoring activities
	Generation activities
	Status report generation
	Event report generation
	Monitoring trace generation

	Processing activities
	Event correlation
	Ordering of events
	Detection of composite events

	Filtering
	Validation
	Detection of validity
	Restoring validity
	Security issues

	Trace manipulation
	Merging
	Splitting

	Dissemination activities
	Collecting monitoring data
	Storage
	Generation configuration

	Delivery of monitoring data
	Subscription-based delivery
	Request/response-based delivery

	Presentation activities
	Graphical information
	Sound information

	Scaling time
	Animation and replay
	Animation
	Replay

	Multiple views
	Interactive display
	Navigation
	Control

	Performance of monitoring systems
	Monitoring overhead
	Intrusion
	Resource sharing
	Undesirable effects of overhead

	Information consistency
	A method for performance assessment

	Overview of object and component middleware
	Object orientation
	The object concept
	The class concept
	Object lifecycle
	Objects and concurrency
	Object communication

	Object middleware
	Inter process communication
	Remote procedure call
	Object middleware
	Object lifecycle revisited
	Object communication revisited
	Developing object middleware-based applications

	Component middleware
	Software components
	Comparison between objects and components
	Classes vs. components
	Objects vs. component instances

	Developing component-based applications
	Discussion of existing component models
	CCM Abstract component model

	Monitoring capabilities in object and component middleware
	Reflective middleware
	Lifecycle reflection
	Message reflection

	Requirements on reflection mechanisms for middleware monitor
	Adding message reflection to middleware

	Conclusion

	Evaluation of monitoring systems
	Evaluation criteria
	Comments on the selection of monitoring systems

	OLT
	Architecture
	Middleware instrumentation for monitoring communication beha
	Support for analysis of concurrent activities
	Dealing with overhead

	HiFi
	Architecture
	Middleware instrumentation for monitoring of communication b
	Support for analysis of concurrent activities
	Dealing with overhead

	MOTEL
	Architecture
	Middleware instrumentation for monitoring of communication b
	Support for analysis of concurrent activities
	Dealing with overhead

	MIMO
	Architecture
	Middleware instrumentation for monitoring of communication b
	Support for analysis of concurrent activities
	Dealing with overhead

	Summary
	OLT
	Advantages
	Disadvantages

	HiFi
	Advantages
	Disadvantages

	MOTEL
	Advantages
	Disadvantages

	MIMO
	Advantages
	Disadvantages

	Conclusions
	Generic requirements
	Specific requirements

	A design approach for generic monitoring systems
	General discussion
	Design questions
	Building a monitoring system in stages

	GMS design
	Identification of generic user requirements
	Definition of a GMS service
	Definition of a software architecture
	Logical decomposition
	Physical decomposition

	GMS specialization
	Definition of a monitoring model
	Definition of a data structure
	Addition of processing components

	Instrumentation design
	Sensor design
	Sensor placement
	Development of instrumentation tools
	Instrumentation architecture
	Discussion on instrumentation performance

	Monitor design
	Definition of monitor functionality
	Monitor implementation

	Conclusions

	An architecture for a generic monitoring system
	Identification of generic user requirements
	Browse Availability
	Request Data
	Receive Data
	Announce Availability
	Configure Generation
	Send Data
	Use case dependencies

	Definition of the GMS service
	Basic concepts
	GMS service elements
	Relations between GMS service elements
	Service primitives
	Browse
	Request Data
	Receive Data
	Announce
	Configure
	Send Data

	Relations among service primitives
	Relations local to the monitor
	Relations local to the instrumentation
	Remote relations

	Service primitive parameters
	Monitoring data
	Specification of availability
	Search criteria
	Specification of interest
	Data selection criteria
	Configuration specification

	Definition of the GMS software architecture
	Logical decomposition
	Service-level interface refinement
	Functional decomposition of the GMS
	Functional decomposition of the Dissemination component
	Cooperative behavior of the GMS logical components

	Physical decomposition
	Hierarchical distribution model
	Hierarchical agent-based architecture
	Mapping functional components onto monitoring agents
	The Repository component
	The Configuration component
	The Interrogation component
	The Filtering component

	Quality of service

	Implementation report
	Supported functionality
	Technological decisions
	Security
	Reliability
	Reliable communication
	Partial failure
	Order of monitoring reports

	A system for monitoring distributed object and component com
	Requirement refinement
	GMS specialization
	Entity model
	Entities
	Entity relations

	Behavior model
	Mapping component communication to object communication
	Mapping object communication to process communication
	Lifecycle activities
	Event types
	Event attributes
	Example: The “Hello!” application
	Relations among the events
	Monitoring potential causality with the MODOCC system
	Monitoring realized causality with the MODOCC system

	Data structure

	Instrumentation design
	Sensor design and placement
	Sensors for Java
	Sensors for the CORBA object middleware
	CORBA caller identity problem
	Sensors for the DSC component framework

	Design of instrumentation tools
	Modified IDL compiler for CORBA
	Modified component generation facilities

	CMA design
	Implementing the vector clock rules

	Performance measurements of the MODOCC prototype
	Technological decisions
	Setup
	Test site
	Measurement scenario

	Computational overhead
	Communication overhead
	Concluding remarks
	Monitoring of “real” applications
	Monitoring during testing
	Monitoring during usage

	A monitor and monitoring applications
	MSD monitor
	Functional requirements
	Monitor implementation
	The Receiver component
	The Diagram Data Model component
	The Diagram GUI component
	Technology decisions

	Information consistency
	Minimal correctness
	Total accuracy
	Better than minimal correctness
	Discussion on strong and total correctness

	Concrete monitoring applications
	Monitoring for testing and debugging of middleware-based app
	Overview of the FRIENDS project
	Monitoring DSC

	Semi-automatic conformance testing
	Introduction to service creation in FRIENDS
	Using monitoring for testing service behavior

	Validation of the UMTS Application Platform
	Overview of the UMTS Application Platform
	Monitoring the UMTS platform

	Summary and conclusions

	Conclusions
	Contributions
	Design approach
	MODOCC monitoring model
	A monitoring system for arbitrary middleware-based applicati
	Limited Realized Causality (LRC) relation
	A Message Sequence Diagram (MSD) monitor

	Future work
	Design approach
	Monitoring model
	The logical clock system
	The instrumentation implementation
	Experiment with source code modification

	IDL interfaces of the GMS
	How to use the GMS prototype
	Building the prototype
	Configuration and deployment
	Startup

	How to use the MODOCC prototype
	Configuration and deployment
	Starting the MODOCC system

	References
	Table of Figures
	Index
	Samenvatting
	Предговор
	За Корицата
	About the Cover Page
	Acronyms and Abbreviations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimokU
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF00530065007400740069006e0067007300200066006f0072002000670065006e00650072006100740069006f006e0020006400690061006b006f0076002700730020007400680065007300690073>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [594.000 841.000]
>> setpagedevice

