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Abstract

In the last decade security related problems have attracted the attention of many researchers from
different areas, especially from the formal methods field. The massive research that grows up
around a new field is usually guided by the techniques and experiences specific to who is facing
the problem. This happened, for example, in cryptographic protocol analysis.

Once the surge of interest around a specific problem subsides, it is time to look for an inte-
gration among the different proposed approaches. In our opinion the quest for integration has a
doubly beneficial effect. Firstly, it allows to reuse knowledge, experiences and tools from different
areas of research in computer science. Secondly, it allows to understand the intrinsic difficulties
standing at the basis of a certain problem, independently of the formal approach initially used
to face it. For example, security properties like secrecy and authenticity are nowadays consid-
ered equally difficult to prove; this similarity was not clear at the beginning, when the different
formalizations for secrecy and authenticity seemed not to be directly comparable.

This thesis focuses on the study of integration of formal methodologies in security protocol
analysis and fault-tolerance analysis. The research is developed in two different directions: in-
terdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between
strategies of analysis in security protocols and fault-tolerance; in the latter, we search for con-
nections among different approaches of analysis within the security area. In the following we
summarize the main results of the research.

Interdisciplinary Perspective. In this perspective, we recognize in Model Checking [48], in
Partial Model Checking [16], and in Non Interference Analysis [101] those methodologies that
can be applied profitably in security protocol analysis and fault-tolerance analysis. This division
of research is articulated in the following objectives:

/ Objective 1 To show how model checking can be applied to the validation of both security
protocols and fault-tolerant systems.

Model Checking has been widely used to validate fault-tolerant, safety-critical, systems. We
report on an industrial experience of validation in this field. Through another industrial experience
of validation of an authentication protocol we show that model checking is a valid strategy for
the analysis of security protocols as well. When studying model checking for security protocol
analysis, we also develop an original logic-based, on-the-fly, model checker for the analysis of
security cryptographic protocols.



/ Objective 2 To show how a precise specification framework allows security protocol engi-
neering and fault-tolerance engineering to share common strategies and tools of analysis. The
framework requires the neat separation of the system model from its malicious environment.

The specification framework is proposed and discussed prevalently in the framework of the
CCS [158] process algebra. The common analysis strategies we identify originate in partial model
checking and non interference analysis. Such strategies have been proposed and studied preva-
lently in the verification of security protocols, and they have made it possible to analyze the
behavior of a protocol acting in an open, malicious, environment. By partial model checking,
the problem of checking a security property, expressediasalculus logic formula over a CCS
protocol model, can be reduced to a validation problem inatloalculus. By a non interference
approach, many security properties can be formalized and checked by existing tools.

When applying partial model checking to fault-tolerance we identify a subset ptthdculus,
whose validation problem can be solved in time linear in the size of the formula. We provide
examples of safety and liveness properties that can be expressed in the sub-calculus identified.
When applying non interference ideas we show how fault-tolerance can be reformulated in the
context of the Generalized Non Deducibility on Composition (GNDC) scheme of analysis; we
show also how GNDC analysis strategies and existing tools can be used in fault-tolerance.

Intra-disciplinary Perspective. In this outlook we relate the use of different formal models in
security. The formal models we consider are: process algebra, automata, and multiset rewriting.
The division of our study, conducted in a scenario of analysis of security protocols, is organized
in the following objectives:

/ Objective 3 To relate two famous formalisms used in the analysis of security, process algebras
and multiset rewriting, in the framework of cryptographic and authentication protocol analysis.

Actually, with “process algebra” we denote a family of calculi which have been proposed
for describing features of distributed and concurrent systems. Here, “multiset rewriting”, which
has roots in concurrency theory and rewriting logic, denotes a language used to study fundamental
issues in authentication protocols. We define special encodings between the two formalisms which
preserve a bisimulation-like equivalence, and consequently secrecy and authentication properties.

/ Objective 4 To redefine the GNDC theory in terms of Team Automata.

Automata-based formalisms have been widely used in the analysis of fault-tolerant systems.
Recently, Team Automata have been proposed to specify computer supported cooperative work
and concurrent systems, but they still miss an analysis framework. By proposing a GNDC theory
in terms of Team Automata, we allow the migration of some of the theory for security analysis
from process algebra to the automata world. We show how to apply our framework to study an
integrity property over a multicast cryptographic protocol.



Samenvatting

Problemen gerelateerd aan veilighesgurity hebben in het afgelopen decennium de aandacht
gekregen van vele onderzoekers uit verschillende gebieden, in het bijzonder uit de formele meth-
oden. De hoeveelheid onderzoek die tot stand komt rondom een nieuw gebied wordt meestal
gestuurd door de specifieke technieken en ervaringen van de persoon die het probleem aanpakt.

Zodra den verhoogde interesse rondom een specifiek probleem afneemt, is het tijd om op zoek
te gaan naar integratie van de verschillende invalshoeken die zijn voorgesteld. Wij zijn van mening
dat de zoektocht naar integratie een dubbel voordelig effect heeft. Ten eerste staat de integratie
het hergebruik van kennis, ervaringen en gereedschappen uit verschillende onderzoeksgebieden
binnen de informatica toe. Ten tweede helpt de integratie de intrinsieke moeilijkheden te be-
grijpen die aan de basis staan van een zeker probleem. Zo worden de veiligheidseigenschappen
secrecyenauthenticitybijvoorbeeld tegenwoordig beschouwd als even moeilijk te bewijzen; deze
gelijkheid was oorspronkelijk niet zo duidelijk, toen de verschillende formalisatiessexecy
enauthenticityniet direct vergelijkbaar leken.

De nadruk in dit proefschrift ligt op het bestuderen van de integratie van formele methodolo-
gieén binnerfault toleranceen security protocol analysisHet onderzoek vindt in twee verschil-
lende richtingen plaats: interdisciplinair en intradisciplinair. In de eerstgenoemde richting zoeken
we naar een voordelige interactie tussen analysestrategidfault toleranceen in veiligheid;
in de laatstgenoemde richting zoeken we naar connecties tussen de verschillende manieren van
analyse binnen het gebied van veiligheid. In wat volgt vatten we de belangrijkste uitkomsten van
dit onderzoek samen.

Interdisciplinair Perspectief. In dit perspectief herkennen we Model Checking48], in Par-
tial Model Checking16] en in Non-Interference Analysid01] de methodologin die op een
voordelige manier kunnen worden toegepadainit toleranceensecurity protocol analysisDeze
verdeling van onderzoek komt in de volgende doelstellingen naar voren:

/ Doelstelling 1 Laten zien hoenodel checkingcan worden toegepast om zowallt tolerant
systemen als veiligheidsprotocollen te valideren.

Model checkingvordt vaak gebruikt onfiault-tolerant safety-criticalsystemen te valideren.
Wij rapporteren over een indusite ervaring met validatie in dit onderzoeksveld. Middels een an-
dere industile ervaring met validatie van een authenticatieprotocol laten we zien danodél
checkingeen valide strategie is voor het analyseren van complexe authenticatieprotocollen. Terwijl
we model checkingoor security protocol analysibestuderen, ontwikkelen we ook een originele,



op logica gebaseerden-the-fly model checkemor de analyse van cryptografische veiligheid-
sprotocollen.

/ Doelstelling 2 Laten zien hoe een precies specificatiekadelt toleranceen security proto-

col engineeringoestaat om gemeenschappelijke stratégien gereedschappen voor analyse te
delen. Het kader vereist een duidelijke afscheiding tussen het systeemmodel en haar boosaardige
omgeving.

Het specificatiekader wordt voornamelijk binnen de context van de procesalgebra CCS [158]
voorgesteld en bediscussieerd. De gemeenschappelijke analysestrattigiavij identificeren,
stammen uifPartial Model Checkingen Non-Interference analysisZulke strategién zijn voor-
namelijk voor de verificatie van veiligheidsprotocollen voorgesteld en bestudeerd; zij maken het
bijvoorbeeld mogelijk om het gedrag van een protocol te analyseren dat in een open, boosaardige
omgeving handelt. Door middel vgrartial model checkindcan het probleem om een velighei-
dsprotocol, uitgedrukt in dg-calculus als een logische formule over een CCS protocolmodel,
te verifieren, gereduceerd worden tot een validatieprobleem in-dalculus. Middels eenon-
interferenceaanpak kunnen vele veiligheidseigenschappen door bestaande gereedschappen gefor-
maliseerd en geverifieerd worden.

Bij het toepassen vapartial model checkingp fault toleranceidentificeren we een deelk-
lasse van de-calculus waarvan verificatieprobleem kan worden opgelost in lineaire tijd, afhanke-
lijk van de lengte van de formule. We geven voorbeeldensafetyen livenesseigenschappen
die uitgedrukt kunnen worden in deidentificeerde subcalculus. Bij het toepassen nan-
interferenceédeegn laten we zien hofault toleranceherformuleerd kan worden in de context van
het Generalized Non Deducibility on Composition (GND&)alyseschema; we laten ook zien
hoe GNDC analysestrategés en bestaande gereedschappen kunnen worden hergebifaikdt in
tolerance

Intradisciplinair Perspectief. In dit perspectief relateren we het gebruik van verschillende for-
mele modellen in veiligheid. De formele modellen die we beschouwen zijn: procesalgebra, au-
tomaten emmultisetherschrijven. Onze studie, uitgevoerd als een scenario voor de analyse van
veiligheidsprotocollen, is als volgt georganiseerd:

/ Doelstelling 3 Het relateren van twee standaard formalismen die gebruikt worden voor vei-
ligheidsanalyse, procesalgebra’s emultisetherschrijven, binnen het kader van cryptografische
en authenticatie protocolanalyse.

Met “procesalgebra” duiden we eigenlijk een familie van calculi aan die zijn voorgesteld om
eigenschappen van gedistribueerde en concurrente systemen mee te beschrijven. Higudiuidt
tiset herschrijven”, wat wortelt in de theorie vaioncurrencyen herschrijflogica, een taal aan
die gebruikt wordt om fundamentele noties in authenticatieprotocollen mee te bestuderen. Wij
definieren speciale coderingen van de twee formalismen die een bisimulatie-achtige equivalentie
vertonen, en vervolgersecrecy enauthenticatieeigenschappen

/ Doelstelling 4 Het herdefingéren van de&SNDC theorie in termen van teamautomaten.

Formalismen gebaseerd op automaten worden vaak gebruikt voor de analyaselttmerant
systemen. Teamautomaten zijn recentelijk voorgesteld voor de specificatie van notiesmeor
puter supported cooperative woek concurrente systemen, maar zij missen nog een analysekader.



Door eenGNDC theorie in termen van teamautomaten voor te stellen, staan we de migratie van
een gedeelte van de theorie voor veiligheidsanalyse uit procesalgebra naar de wereld van auto-
maten toe. We laten zien hoe ons kader kan worden toegepast om een integriteitseigenschap over
eenmulticastcryptografisch protocol te bestuderen.
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Summary

Organization

This thesis is composed of different papers | have presented and published during my Ph.D. stud-
ies. The thesis is organized into three main parts, and a conclusive part (see Figure 1).

Part I: Formal Validation of Systems: Industrial Test Cases. This part collects my work

on formal validation of industrial systems. It reports the technical details of two experiences of
formal analysis. The former concerns the verification of a safety-critical fault-tolerant railway
system, and the latter focuses on the analysis of security aspects of an authentication protocol
used in the OSA/Parlay telecommunication network. Industrial test cases play an important role
in this thesis; all the problems that | have developed here were conceived while | was working on
the validation of real systems. In other words, the effort of modeling and analyzing a real system
makes clear what are the real difficulties, and hence the problems to be solved to have a real impact
for validation and verification.

Part Il: Analysis Techniques in Security and Fault-Tolerance. This part assembles my work

on the development of techniques of validation in security protogoalysis and fault-tolerance
analysis. In this chapter the beneficial interaction between the two disciplines emerges. First,
we re-design in fault-tolerance analysis terms, techniques of validation that have been originally
introduced for security analysis; non-interference and its formalization in terms of process alge-
bras, and module checking [126] through partial model checking [16]. Second, we design and
implement a logic-based model checker for security protocol analysis, whereas model checking is
a traditional validation technique for the analysis of dependable systems.

Part 1ll: Comparison of Formal Models in Security Protocol Analysis. This part gathers my

work on the interaction between different methodologies of modeling and verifying in security
protocol analysis. As formal models we chose process algebras (PA), multiset rewriting (MSR),
and team automata [194] (TA). Generally speaking, PA denote a family of calculi which have
been proposed for describing features of distributed and concurrent systems; MSR roots in con-
currency theory and rewriting logic and has been incorporated into a high-level specification lan-
guage for authentication protocols, the Common Authentication Protocol Specification Language
(CAPSL) [64]. TA derive from automata and they have been originally used to model concurrency

®Security protocols are sometimes called cryptographic protocols. We will use these two terms interchangeably.
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Figure 1: Organization Chart of the Thesis

and computer supported cooperative works. First we compare the expressiveness of PA and MSR
in the restricted field of security protocol analysis, and later we show how TA can be furnished
with a stable framework for the analysis of cryptographic protocols.

Part IV: Conclusions This part concludes the thesis. We identify general principles that emerge
from the present study and from our experience of integration.

Chapter Contents

Each of the main parts is organized into two chapters. We now summarise the contents of each
chapter.

Part I. This part contains Chapter 1 and Chapter 2 and it concerns the application of formal
methods to fault-tolerance and security protocol analysis. Chapter 1 is based on [97, 96, 98];
it reports a complete validation exercise of a fault-tolerant railway system. Chapter 2 is based
on [58, 57]; it relates on an experience of the validation of an authentication protocol that is part
of a Telecom web service.

Chapter 1 describes the experiences of formal specification and validation on a railway safety-
critical control system in which specific methodologies for the analysis of complex depend-
able systemse(g., triple modular redundancy) have been expressed. From the technical
document describing the system we built ROMELA [118] formal model. This requires
the design of a formal model that unambiguously describes the system at an appropriate
level of abstraction. This means first to examine a whole bunch of documents describing
the system requirements and to carefully filter out the information that is not significant,



or interesting, or that lays at a level of detail that is not the one the validation refers to.
The model is then analyzed through model checking [48, 49] by using the topI[£18].

Model checking suffers from a well known problem: the size of the state space of the model
can grow beyond the limits of the available hardwieee, exponentially in the number of

its components [47]. We find the same problem with our complex model. This implies the
use of abstraction and compositional strategies over the formal model, during the analysis
phase.

Chapter 2 describes a validation experience that consists in modeling and verifying a real-world
authentication protocol. This “Trust and Security Management” protocol, is implemented
as a protocol in the Parlay/OSA Application Program Interfaces (APIs) [1]. Parlay/OSA
architectures aim to stimulate third parties in developing new services exploiting mobile
telecommunications resources, while allowing the network operator to maintain control
over its network specially with respect to the quality of service offered and the security
usage. The chapter explains in detail how a formal model has been built, starting from the
UML [179] specification of the protocol, and how the experiments of verification have been
performed. Moreover, it critically comments on the verification results, which point out
weaknesses in the authentication procedure, and it suggests a possible solution for strength-
ening the security of the protocol.

Partll. This part contains Chapter 3 and Chapter 4, and it concerns the integration of techniques
of analysis in fault-tolerance and security cryptographic protocol engineering. They show how
the two disciplines can benefit of common strategies of analysis: model checking, techniques of
analysis of non-interference, and partial model checking. Chapter 3 is made up of the articles
[100, 99] and Chapter 4 is based on the papers [94, 95, 134].

Chapter 3 is theoretical. It studies how fault-tolerance analysis can benefit from techniques of
analysis developed for the study of security protocols. It uses the CCS process algebra as
a formal framework to model the fault-tolerant system and its (potentially malicious) envi-
ronment as two separate and interacting CCS processes. The environment is able to induce
the system to switch to insecure states. In this framework a system enjoys a fault-tolerance
property if the systems satisfies the property despite any interaction with the environment.
From the point of view of the analysis, this chapter studies the fault-tolerance of a sys-
tem, with respect to a given property, when the environment is an unspecified component.
In this case, the role of environment in fault-tolerance can be compared with that played
by the intruder in security protocol analysis. This chapter restates in fault-tolerance two
strategies of validation used in security protocols analysis. The first strategy consists in
reducing the problem of checking if a property (herg-aalculus formula) holds in our
framework, to a problem of validity in the-calculus. We exploit partial model checking
in this reduction step, and we show how the validity problem, generally EXPTIME com-
plete, can be solved efficiently in the universal conjunctive subclass gf-tadculus. The
second strategy consists in applying the Generalized Deducibility on Compositions frame-
work (in short, GNDC) [86] to fault-tolerance. GNDC is a uniform scheme for defining and
analyzing security properties, and it originates in the field of non-interference for security
analysis. This chapter shows how fault-tolerance properties can be uniformly characterized
as GNDC properties, and how theoretical resudtg.(compositionality), validation tech-
niques, and tools — well established in the GNDC security analysis — can be exploited for



fault-tolerance.

Chapter 4 proposes a logic-based model checking framework [48] for the verification of security
cryptographic protocols. Model checking enjoys a background of good results in depend-
ability and fault-tolerance analysis.@.,see [19, 38]). On the contrary its use in security
cryptographic protocol analysis was quite new when the papers, on which this chapter is
based, were initially proposed in 2000. In the proposed model checking framework, proto-
cols are modeled as terms of a process algebra which is inspired by the Abadi and Gordon
spi-calculus [6]. Security properties, such as secrecy and authenticity, are formalized using
linear time temporal logic.

Part Ill.  This part contains Chapter 5 and Chapter 6 and it concerns the integration of analysis
techniques within the field of security protocol analysis. Chapter 5 is based on [26, 24, 25] and
Chapter 6 is based on [197, 199, 198].

Chapter 5 develops a comparison between process algebras and multiset rewriting when applied
to the analysis of security cryptographic protocols. We compare an instance of process alge-
bra (calledPA p) and an instance of multiset rewriting (call®t5R p) which are expressive
when used to describe security protocols. Speeiaodingsfrom one formalism to the
other allow secrecy and authenticity properties to be preserved.

Chapter 6 starts from the fact that team automata (TA) are an emerging model for the formaliza-
tion of cooperative network systems and recently of multicast/broadcast protocols. In fact,
TA theory extends the classicafO automata theory by allowing the definition of differ-
ent parallel composition operators, that make it possible to formalize complex interactions.
This last feature makes TA an interesting model for the analysis of security protocols even
though TA lack a well-established analysis framework. The present chapter describes how
to model an insecure scenario for cryptographic multicast/broadcast protocols in terms of
TA and it proposes also the definition of GNDC theory for TA. Moreover it shows how, once
established the GNDC framework in terms of TA, it is possible to reuse part of the analysis
theory developed for process algebra in the automata world so that integrity properties can
be proved.

Part IV. This part is composed of Chapter 7. It synthesizes general principles representing the
conclusive remarks of the thesis.
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1

Validation of Fault-Tolerant Systems, a
Test Case: Analysis of a Railway,
Safety-Critical, Control System

“[...] e allora io quasi quasi prendo il “[...] I am going to take the train and
treno e vengo, vengo da te, ma il treno dei come, come to you. But the train of my
desideri, dei miei pensieri all’incontrario desires, of my thoughts runs in the opposite
va’ (A. Celentano, inAzzurro, V. direction.

Pallavicini e P. Conte, 1968)

Abstract

This chapter describes an experience of formal validation of a fault-tolerant railway control
system. The system is designed for the automatic management of medium-large scale railway
networks, and it is currently running at the Italian train station of “Roma Termini”.

The validation experience has been conducted in 1998 in the context of an industrial joint
project involving three partners: an Italian company working in the field of railway engi-
neering, the Ansaldobreda Segnalamento Ferroviario of Napoli, and two research institutes of
the Italian Research Council of Pisa, the Istituto di Elaborazione dell’Informazione and the
Centro Nazionale Universitario di Calcolo Elettronico. The project required the development
of formal models describing different components of the system: a fault-tolerant exclusion
mechanism and a fault-tolerant communication protocol. Moreover, the project demanded the
verification of fault-tolerance properties in case of Byzantine and fail silent faults.

This chapter reports on the design of the formal models and on the experiments of for-
mal verification. We use ROMELA as specification formal language, andi$ as a model
checker. The properties of interest are specified as safety or liveness properties by means
of PROMELA assertions or linear time logical formulas. To cope with the state-space explo-
sion problem we split the main models in sub-models. Each sub-model is realized in both a
concrete and an abstract version. Any abstract sub-model is provably equivalent to the cor-
responding concrete with respect to an established set of properties, but it contains a lesser
degree of parallelism. By an appropriate composition of abstract sub-models in a whole sys-
tem model, we are able to keep under control the space explosion problem and to complete
the verification of most of the demanded properties.

1.1 Introduction

The need for safety in automatic management of modern railways forces the introduction of so-
phisticated, fault tolerant, computer-based control systems that have an intrinsic degree of com-
plexity [13]. Their validation requires techniques frdormal methodg§111, 205, 34, 54] that

are able to overcome the limitations of traditional methodologies, such as testing and simulation.
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Generally speaking, formal methods are a set of mathematical approaches that support the rigor-
ous specification, design, and verification of computer systems; for these activities, they provide
formal languages, verification techniques and automatic tools. It has been proved that the use of
the formal methods in industrial processes helps in reaching a high level of dependability during
the design and the development of a software or hardware component [54]. Important factors en-
courage the application of formal methods in the industrial production. First of all, the interest in
discovering as many errors as possible before entering in the production phase; during this stage
the cost of correction per error increases enormously [135], whereas in railway applications an
error can even cause a disaster. Secondly, many institutions require industries to conform to inter-
national standards that strongly suggest formal methods, for example the EU directives EN 50128
CENELEC Railways Applications [175], and the IEC 65108 [119].

Railway control systems are particularly suitable to be analyzed with formal methods. Eis-
ner [73] states that railway systems share important robustness and locality properties that distin-
guish them from most hardware systems, this peculiarity makes them easily checkable by symbolic
model checking [48] and &tmarck checking [184]. As a matter of fact, in the last decade many
railway industries have started pilot projects to evaluate the impact of formal methods on their
production costs. Sometimes, industries have even developed their own validation environment
such as, for example, the LIVE [14] environment by the Ansaldobreda Segnalamento Ferroviario.
The experiments and the results from these pilot projects have stimulated a wide range of scientific
production é.g.,see [87, 132, 28, 45, 165, 27, 46]). As a significant example, Groote et al [107]
use the micro Common Representative Languag&RL) [105] to model the vital processor in-
terlocking that runs at the Dutch station of Hoorn-Kersenboogerd; correctness criteria, expressed
in a modal logic foruCRL [106], are verified automatically using tools generated with the meta
environment ASF+SDF [124]. Lately, Bernardeschi et al [20] show how it is possible to formal-
ize a significant part of a complex railway control system in the CCS process algebras [158], then
properties written in the computational tree logic (CTL) [189] are verified with the tool JACK [33].

In this chapter we describe the principal results of a project carried out by the Ansaldobreda
Segnalamento Ferroviario (ASF) of Napoli — an Italian company working in the field of railway
engineering — and two research institutes of the Italian Research Council (CNR), the Istituto di
Elaborazione della Informazione (IEI-CNR) and the Centro Nazionale Universitario di Calcolo
Elettronico (CNUCE-CNR) of Piga The project has required the validation of a fault tolerant
control system in presence of Byzantine [128] and silent faults. First described in [164], the
system is designed to behave safely even in case of arbitrary failures of some of its component,
and it controls safety-critical components of a railway network.

The industrial partner ASF has suggested the use of H@viRLA [116] specification lan-
guage and of the 8N [117, 118] model checker. WithEN, ASF has previously verified safety
properties of different parts of the system [45]. The analysis described in this chapter uses the
version 3.2 [117] of 8IN 2. It was the newest version in 1998, when the work was conducted.
Some advanced features were not present at that time, for example the extenstomai R and
SPIN to the discrete time [32]; this explains why in this chapter we design our own strategies to
describe time-related behavior, such as fail silent faults and time-outs.

'In September 2003 IEI-CNR and CNUCE-CNR merged into ISTI-CNR, the Istituto di Scienza e Tecnologie
dell'Informazione “A. Faedo”.
2At present, the latest version is the2.2.
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1.1.1 Linear Time Logic

In section recalls the (propositional) linear time logic [174] (LTL, for shortpinsaccepts prop-
erties expressed as formulas of LTL. We start with the definition of the linear time structure, that
formalizes the notion of a time line.

Definition 1.1.1 (Linear Time Structure) Let AP be a set of atomic propositions. lilkear time
structureis a triple M = (S, z, L) whereS is a set of states; : N — S is an infinite sequence
of states (called time line), and : S — 247 is a function that labels each state with the set of
atomic proposition true in that state.

Formulas of LTL are built using the following grammar:

¢=p | ¢ | oAd | Xo | U

wherep € AP, is a propositional symbol. Informally;¢ and¢ A ¢ are the propositional negation
and conjunction of formulas, wheredsand U are the basic temporal operator of LTL. The former
is called “next”, the latter “until”. In LTL we find also the (classic) propositional derived operators:

def

tt e _ff
oVe = a(mpnd)
p=¢ = -V

and the (important) following derived temporal operators:

“eventually” ©¢ = ttlU¢
“always” D¢ £ -0-¢

Formulas of LTL are interpreted over linear time structuMs= (S,z,L). A graphical,
intuitive, explanation of the temporal operators is shown in Figure 1.1.

Informally, we say that a formula holds in a state of a time line we mean that it holds in the
time line that starts from that state; we say that a formula holds in the timéviifet holds in
state the first state(0). The informal semantics of the temporal operators is as folldvsholds
in M if and only if ¢ holds in state:(1); O ¢ holds in)M if and only if ¢ holds in every state of the
time line; ¢ ¢ holds inM if and only if there is a future state of whegeeventually holdsy U ¢’
holds inM if ¢ holds in all the states until (possibly included) the state whérelds.

Formally, the notatiorM,z = ¢ means that is true in the time liner of the structure
M. Assuming the notation® standing for the suffix:(i), z(i + 1),... of the time linez, the
satisfiability relation/=, is defined inductively on the structure of the formulas follows:

M,z E=p iff  pe L(z(0))

MzEoANg iff MaxEg¢andM,z = ¢

M,z = —¢ iff M,z ¢

M,z =X¢ iff MazlEo

M,z =oUg¢ iff existsj, M,2/ = ¢ and foralli < j, M, 2% = ¢

We explicitly give also the formal semantics of the derived temporal operator:

M,z f=0¢ iff foralli>0, M2 = ¢
Mzl=<0¢ iff existsi >0, M,z = ¢
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¢
X ¢ 04».%@4»@%@ —————— »O%
@ ¢ ¢ @ ¢’
PU .%.;..4».4». 777777 >04>
¢ ¢ ® é é é

v &0 0 0 0 -0 —

% O——0—0

Figure 1.1: Graphical intuition for the semantics of the linear time operators “next”, “until”, “al-
ways”, and “eventually”. Each sequence represents the time line satisfying the related formula on
the left. States are depicted as circles, and arrows connect states in temporal sequence. A formula
above a state indicates that the formula holds in the state.

Aformula¢ is said to be satisfiable if and only if there exists a linear time strudture (S, z, L),
such thatM, z = ¢; in this case we say thatl is amodelfor ¢. In this chapter, the following
problem is also relevant:

Definition 1.1.2 (Model Checking Problem in LTL) LetM = (S, «, L) be a linear time struc-
ture, and¢ be a LTL formula. Thenodel checking problernonsists in answering the following
question: “isM a model for¢"? Or equivalently does M, x |= ¢"?.

An algorithm solving the model checking problem is called model checker.

1.1.2 PRROMELA and SPIN

This section briefly introduces thee8i model checker [118] and its high-level specification lan-
guage, ROMELA [116]. We do not enter in any technical detail here: when necessary throughout
this chapter, we shall provide brief explanations. For a complete referenceimai® FROMELA

we suggest the book [118].

SPIN is an efficient tool for the simulation and the verification fdMELA models. $IN
runs on Unix, Linux, and Windows. Its basic structure is illustrated in Figure 1.2. In simulation
mode, $IN can be used to get a quick impression of the types of behavior that are captured
by a model. In verification mode,P8\ checks correctness claims that are generated from logic
formulas expressed in LTL. When a claim is not valid over a modeIN$roduces a counter
example that shows explicitly how the property may be violated. The counter example can be fed
back to the 8IN simulator, so that the trail can be inspected in detail to determine the cause of
violation.

At high-level, a system model is specified as a setRbORELA process templates, thap S
translates into a set of finitetBhi automata [39]. A global automaton of the system behavior is
obtained by the interleaving product of all the automata composing the system. Once a model is
built, SPIN is used to generate an optimized, on-the-fly, verification program that can be compiled
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XSPIN

font-end

I
LT |
PROMELA <~ parser and
I
| |
| |

parser

translator

Syntax Error Random/Guided Verifier
Reporter Simulation Generator
Y
(5) Model-Specifig
ANSI C code

counter examples Executable
Verifier

Figure 1.2: The structure offsN. A PROMELA, high-level, description of a system is first checked

for syntax errors (1). Interactive simulation can be used to gain basic confidence that the model
has the intended properties (2). Optionally RORELA correctness claim can be generated from

a LTL formula (3). Then, 8INis used to generate a verifier, compiled with possible compile-time
choices for optimization in memory usage (4). If the verification fails|NSreturns a counter
example that can be fed back into the simulator (5). A graphical front-enejN{Provides a
user-friendly approach to thee8v environment (6).

and run separately. Different options can be set when compiling a verifier: partial order reduc-
tion, memory compression, data compact representation, or other optimization strategies can be
exploited in the analysis to deal with state space explosion problem [201], a fundamental problem
for any state space methods like model checking. Almost any system has huge number of states,
and the size of the structure used to represent a system, called states space, tends to grow expo-
nentially in the number of its processes and variables. This explosion causes a seriuos waste of the
computer memory, and in absence of optimization strategies it usually makes many verification
fail by out-of-memory.

Significant to this chapter are the optimization options of partial order reduction and memory
compression methods. Partial order reduction aims to reduce the number of system states that
need to be visited and stored in the state space to solve the model checking problem. This option is
enabled by default for all &N verification runs. Memory compression methods aim to reduce the
amount of memory that is required to store each state of the system. Options, Si@hla&PSE
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andMAare reserved for this target. Both reduce the memory requirement of an exhaustive search
by increasing the run-time requirements. TWOLLAPSHeature exploits a hierarchical indexing
method to achieve compression. TWé or minimized automaton, reduces memory by building
and updating a minimized finite state recognizer the state descriptor. Technical notes about the
algorithms for partial order reduction and memory compressions can be found in [118].

PROMELA is a language with a C-like syntax for the specification of the high-level behavior
of concurrent and interacting processes in a distributed systeRoMPLA is based on Dijk-
stra’s guarded command language [68] and Hoare’s language CSP [H&|jERA has non-
deterministic control flow structures and primitives for process creation and interprocess com-
munication. Other control flow statements allow the definition of atomic sequences, deterministic
steps, and escape sequencesRAKELA specification consists of one or more process templates,
calledproctype and at least one process instantiation. Processes are typically instantiated by the
built-in “init” process or by any already running process. Processes may terminate or run indef-
initely. Instantiated processes communicate via rendez-vous, via asynchronous message passing
through buffered channels, or shared memory.

1.2 System Description

The object of our study is theomputerized Central Apparat¢8CC) 2 a hardware system specif-

ically designed to manage medium/large railway networks. ACC is a highly programmable and
centralized control system deployed in a wider railway signaling system. This latter is a complex
and distributed architecture designed to manage a large railway network. Each node of the network
controls either a medium-large railway station or a line section with small stations, or a traffic line
with a simple interlocking logic. Figure 1.3 depicts the ACC architecture. The ACC is composed
of two independent sub-systems dedicated to management and vital functions:

Management functions control auxiliary tasks, such as data recording, diagnostic management
and remote control interface. They are run by the ACC sub-system called “RDT” (acronym
for Recording, Diagnosis and data Transmission) in Figure 1.3.

Vital functions are generally safety-critical procedures: they control critical machineries such as
train movements and the wayside equipment. Vital functions are run by the ACC sub-system
called “Vital Section” in Figure 1.3.

The vital section of the ACC is composed of seve&ahtrol Posts severaPeripheral Control
Units (PCUs), and &afety NucleuéSN). Control Posts are formed by input/output interfaces and
by terminals. From them, a human operator can issue critical commands intended for the PCUs
that, in turn, execute them. These commands are critical because their execution affects physical
machineries such as railway semaphores, rail points or level crossings. For this reason particular
attention is paid to guarantee the safety of the system in case of faults.

The SN, a hardware component, is specifically designed for control and safety purposes. It
monitors the state of the system and tries to discover a faulty compadreers, PCU or a com-
munication bus. Its architecture is based on a triple modular redundant [191] configuration of
computers; for this reason the SN also faces the problem of an internal consensus. The classical
solution to this problem (also known as the Byzantine Generals Problem [128, 22]), cannot be im-
plemented in the SN due to hardware constraints; in case of inconsistency, instead of looking for a

3“Apparato Centrale a Calcolatore”, in ltalian.
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consensus the SN tries to exclude the faulty component or to force the whole system to shutdown
safely.

Remark 1.2.1 We study of the behavior of the SN and its interaction with the PCUs. |

e S——— 0

| | renot e
SafEty il .

control
Peripherical Control Units

system

Vital Section Management Section

ACC

Figure 1.3: The architecture of the Computerized Central Apparatus (ACC). The Management
Section controls auxiliary tasks. The Vital Section controls physical devices and train movements.
Commands issued from the Control Posts are executed by the Peripheral Control Units. The Safety
Nucleus controls and manages the system in case of arbitrary faults in the Peripheral Control Units
or in the communication lines.

1.3 Formal Models

This section discusses how we represented time-outs, Byzantine faults and transient faults in
PROMELA. It also illustrates the two ®ROMELA models of the vital section of the ACC, which we
call TMR and TMR-Pcu; they describe different views of the ACC vital section:

1. TMR describes, in detail, the triple modular redundant architecture of the SN and its ex-
clusion logic mechanism (see also Figure 1.4). We us& Pprimarily to verify safety
properties of the SN in presence of Byzantine behavior of one of its components. PCUs
play only a marginal role here.

2. TMR-Pcu describes, in detail, the SN-PCU communication infrastruciuge fusses), the
relative communication protocol, and the internal PCU architecture (see also Figure 1.5).
Here, we model only those parts of the SN that are involved in the communication with the
PCUs,i.e., we explicitly avoid modeling the exclusion logic. We us®R-Pcu to verify
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liveness properties of the SN-PCU communication protocol and safety properties in case of
communication time-outs caused by faults in the busses or in some PCUs.

1.3.1 Formalization of Faults

Before describing the ®ROMELA models TMR and TMR-Pcu, we focus our attention on the for-
malization of the classes of faults that we consider in our analysis:

o fail silent faults (.e., faults causing time-outs in communication);

e Byzantine faults.

Both classes of faults are used within the modelsRTand TMR-Pcu. Byzantine faults are
supposed to happen only in some SN modules. In reality Byzantine faults only occur in SN
modules, therefore we assume that they do not occur elsewhere. Fail silent faults may originate
in any ACC component: SN modules, PCUs, or communication lines. Moreover, we also discuss
how to model temporary fail silent faults.

Fail Silent Faults

Fail silent faults cause the system to omit the correct answer [19]. In the case of ACC they cause
time-outs in communications. In other words, a fail silent fault becomes visible to the other system
components only when a communication event results in a time-out. ACC communications are
with time-outs, but since ROMELA does not deal with tinfe we have to abstract from any defini-
tion of it in our models. We simulate time-outs with a speeialpty message whose presence in
a channel must be interpreted as absence of the expected message. The use of the empty message
lightly changes the interpretation of send and receive and, consequently, their implementation in
our models. A “send” of a messageis now implemented as a non deterministic choice between
transmitting eithemn or e. A “receive” of a message in variablerequires a test == ¢ after
the reception: in fact, in a ‘receive” with time-outs there is the need to discern, depending on the
content of the message gotten, if a time-out has expired or not. This latter case happens if and only
if the message received is the empty message

In PROMELA, where typed and buffered (of lengKt channels are defined via the declaration
chan <name> = [N] of <type> ,the messageis defined as a reserved constant value for
example the integer valug This value must not be used in any other communication along the
whole formal model. Consequently, a “send” with time-outs is implementedRipMELA with
the following code:

/* kkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkk *

/ = implementation of a send with time-out */
/* *kkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkx *

/I global definitions
/[ (in the environment where the module are defined)

define EMPTY 0 // empty message

4See the discussion in Section 1.1.2
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Figure 1.4: The architecture ofMiR. The triple modular redundancy of the SN is represented in
detail: three (functionally) identical modules and an exclusion logic. Each SN module commu-
nicates with the others and with the exclusion logic via a dedicated symmetric link. PCUs are
connected with the SN through a shared bus.

chan ¢ = [0] of <t>; /I (synchronous) channel

[.]

/I local definition (within a module)

<t> msg; /I message (<> 0) of type <t>
[.]

(* implementation of a send with time-out */
If cImsg /I send the real message

o c!lEMPTY /I send the empty message
fi;
In PROMELA, comments are enclosed withir * / and the statement

if ;1 <guardl> -> <sl>
o <guard2> -> <s2>

[..]
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Safety
module A Nucleus

g 3

module B <:> module C

Primary Bus

Secondary Bus

| I I Peripheral

pcuq pcu, m pcuy Control
s L\ | [ Units
// \

\

computer A computer B

Figure 1.5: The architecture ofMR-Pcu. The communication infrastructure between SN and

the PCUs is represented in detail. PCUs are linked with the SN modules through a pair of busses,
called primary and secondary respectively. Each PCU module is composed of two identical com-
puters in configuration 2 out-of 2.

.. <guardn> -> <sn>
o else -> <sn+1>
fi

is a guarded, non deterministic, choice among the statersénts2, ..., sn. A statemens,
is enabled if the corresponding guagliard , is satisfied. When more statements are enabled,
one statement is selected non-deterministically. When preserglsthe guard is satisfied if and
only if all the other guards are not. The keywdrde , is a guard that is always enabled; it is
usually omitted and  true -> <s> iswritten as: <s> . The primitivec!x is the send
command over the channelof the value associated to. In the previous code implementing
the send with time-outs, the guards are always satisfied, so the “send” with time-outs is a pure
non-deterministic choice between sending the messegeor the empty message.

In PROMELA the “receive” with time-outs is coded as follows:

/* kkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkkkk *

/ = implementation of a receive with time-out */
/* *kkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkk *

/I global definitions
define EMPTY O /I empty message
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chan ¢ = [0] of <t>; // (synchronous) channel

[.]

[+ implementation of a receive with time-out */
c?X ->

if

o (x == EMPTY) -> <exception time-outs>

. else ->  <reception>

fi;

In PROMELA, c?x is the receive operation from chanmebf a value that will be stored into
the variablex. In the previous code, a message is first retrieved from the chantheln, if the
message proves to be the empty message, a procedure for handling the time-out is called.

Byzantine Faults

We start with a definition of Byzantine behavior due to Lammdl [128]:

Definition 1.3.1 (Byzantine Behavior) Assuming to have a finite s&f of identical modulesn
whose behavior is specified by a communication algorittim

1. all loyal modules inM run the same algorithm, and in particular they correctly send all
messages as specifiedAn

2. a Byzantine modulen’ € M runs the same algorithml as a loyal module but it can
arbitrarily fail in executing it. As an effect of failure the Byzantine module may send wrong
messages, it may send a message delayed with respect to a synchronization event, or it may
send no message at all.

Definition 1.3.1 focuses on communication events: any Byzantine fault in a module becomes
observable only when the faulty unit communicates. As a consequence of this assumption any
Byzantine fault is modeled as a communication error; precisely as a communication of a corrupted
message or as a delay in the communication, or as a lack of communication.

We model both a delay and a lack of communication with a timeteutwith the empty
message. To generate a corrupted message, we define a funetionpt() : (T — {e}) — T,
whereT is a message type. Given a messageorrupt(m) # m indicates that the message
is corrupted.

In PROMELA, an instance otorrupt() is the functioncorrupt(n) = —n. Note that, be-
cause for the choice of modeling the empty message with the integer value 0 there is no semantic
ambiguity between the concepts of “corrupted message” and “absence of a message”.

Byzantine faults, and the way we model them, affect tReRELA implementation of a send.

On the contrary the implementation of a receive does not require any further change with respect
to its implementation with time-outs. INRBMELA a Byzantine send appears as follows:

/* kkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkkkkhkkk * /

[ * implementation of a Byzantine fault * [

/* kkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkkkkhkkk * /
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/I global definitions
define EMPTY 0 // empty message
chan ¢ = [0] of <t>; // (synchronous) channel

/I local (to a module) definitions

<t> msg; /I message

[...]

/ = implementation of a send with Byzantine failure */
if

o true -> clmsg /Il send the corrected message

;. true -> c!lEMPTY /l time-outs (delay or lack)

.o true -> cl(-msg) /I send a corrupted message

fi;

In the code above, a non deterministic choice guides the possibility of sending the correct
message or causing a time-out, or sending a wrong message.

Temporary Fail Silent Faults

The behavior of each ACC module (see also Section 1.4 and 1.5) consists of a cyclic execution
of a sequence of statements; we call #aigcution loopASF is interested in modeling time-outs

that are persistent for at least one whole execution loop but not necessarily in all the loops. This
interest is motivated by what ASF has observed in the field.

As a solution, we model such faults in the following way: at the beginning of an execution
loop, a non-deterministic choice decides if a component, for instance a bus or a module, run in
either error-prone or in error-free mode. Running in error-prone mode means that every commu-
nication involving the component ends in a time-out. For example, if the component represents
a communication bus, every communication through it results in a time-out. A scheme of this
solution in RROMELA is as follows:

[ * initial setting of the state bit */
bit error_free = 1

[ * execution loop */

do
/ = change the state bit * [
if
error_free = lerror_free
skip
fi;

do /= a send =/
o cl(msg && error_free)
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S
od
do

In the code above, the state bit is changed first, then the send occurs. Moreover the statement

do
. <guardl> --> <sl>
. <guard2> --> <s2>

[.]

.. <guardn> --> <sn>
od

is a repetition construct; it cyclically selects, non-deterministically, one enabled statement among
the guarded statemergd, s2, ..., sn. We use the repetition construct to implement an execu-
tion loop. At the beginning of the execution loop a choice may change the state from error free
(error _free = 1 )toerror proneérror _free = 0 )orvice versa. Later any outgoing mes-
sage is sent in conjunction with the state bit: a value of 0 has the effect of resetting the outgoing
message to the value we use to model the empty message.

1.4 The TMR model

This section describes theviR model. Its general architecture, drawn in Figure 1.4, consists of:

o three identicatentral modulescalled module A, module B and module C. They constitute
the triple modular redundant configuration of the SN. They communicate with each other,
with the exclusion logic, and with the PCUs.

e a module calleexclusion logic It watches the central modules and acts as a voter. More-
over, the exclusion logic is able to exclude one inconsistent central module or to bring the
SN to a safe shutdown.

e the PCUs, consisting of control units (in our study. = 2). In the TMR, the behavior of
the PCUs is only sketched;

¢ the set otommunication channel§ hree symmetric channels connecting the three central
modules, three symmetric channels between the central modules and the exclusion logic,
and a single bus between the central modules and the PCUs.

In the following we explain only the RoOMELA model of a central module. This is sufficient to
understand what we are going to verify. The complet®RRELA codes, composed of thousands
of code lines, is property of ASF. We describe here, with permission, only what is needed to
understand this work.
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The Central Modules In TMR, modules A, B, and C are designed for the following tasks:

e to collect global information about the whole system staggthe local states of the other
central modules;

e to elaborate summary information about the system state first, then sending it to the exclu-
sion logic;

e to communicate with the PCUs.

The three central modules communicate with each other via symmetric channels. Each module is
connected via another symmetric channels with the exclusion logic, and via a bus with the PCUs.
The behavior of a central module is the execution loop, formally described with the following
pseudo-code:

/* kkkkkkkkkkkkhkkkkkkkkkkkkkhkkkkkk *

[ * execution loop */
/ *  kkkkkkkkkkkkhkkkkkkkkkkkhkkhkkkkkkk *
loop

1. * <synchronization>

2. <command elaboration>

3. * <data exchange with the other modules>

4, <distributed voting>

5. * <communication with exclusion logic>

/ * communication with the 2 PCUs * |
fori = 1 to 2 do
6.1 if <is my turn> then
6.2 = <synchronization>
6.3 = <send command to the PCUSs[i]>
6.4 = <receive acknowledge from the PCUs[i]>
endfor

endloop

In the code above we indicated the communication phases with ‘anWe now describe
informally each phase.

Synchronization. During this phase, each module exchanges a synchronization message with the
other modules. This phase is used to collect information about the state of activity of the
other modules. A time-out is interpreted as a sign of non activity. and the module that
caused the time-out is excluded by any later communication within the current execution
loop. Within the current loop the module that has caused the time-out is excluded from any
subsequent communication. The system is expected to run in a configuration of at least 2
out of 3; if a module detects a time-out from both the other two modules it enters in a safe
shutdown state;

Command elaboration. During this phase, each module composes a summing up of the local
view that the module has about the state of activity of the other two modules;

Data exchange.During this phase, each module sends to, and receives from the other modules
the message composed in the previous phase;
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Distributed voting. During each phase, each module checks the consistency of its local informa-
tion (about the system state) with that received from the other two modules, and composes
a new message about the result of this test;

Communication with the exclusion logic. During this phase, the result of the test is sent to the
exclusion logic, which, after having analyzed all the results, can decide to disconnect the
module(s) considered potentially faulty;

Communication with the PCUs. During this phase, a module communicates with the PCUs by
running a particular circular protocol. At each loop of this protocol only two modules are
enabled to communicate with the PCUs. A distributed procedure within the protocol, as-
sures a cyclic selection of the two modules candidate to the communication. Invthe T
this procedure is extremely simplified.

In the following we report a synthesis of th&@®MELA code implementing the synchroniza-
tion phase for the module C. In the code we have omitted programming details that are not signif-
icant at this level of description, for example the statematasic or d_step used to reduce
unnecessary parallelism in the model.

/ *  kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk * /
[ * synchronization phase */
/ *  kkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkk * /
[ *xx in the global environment ik

#define EMPTY 0 // the empty message
#define SYNCH 1 // the synchronization message

/ = global_activeC is the global state of module C. *

global_activeC = 1 /I state of activity of C

[-]

[ wxx module C’'s local variables *rk [
activeA C = 1; / = state of A, in C viewpoint * [
sentA C = 0; [ = flag "sent" (to module A) */
recvA C = 0; /| =+ flag "received" (from module A) * [
activeB_ C = 1; / = state of B, in C viewpoint * [
sentB_ C = 0; [ = flag "sent" (to module B) */
recvB_.C = 0; /| =+ flag "received" (from module B) * [
do

e — %/

[ * communication with A * [
I — * [
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/* send (with time-outs) to A * |
. (lsentA_C) ->
if
/I send the synch (if A is active)
;i true -> outAl(SYNCH && activeA C);
/[ time-outs
i1 true -> outAl(EMPTY);

fi;
sentA C = 1,
/ = receive (with time-outs) from A * [
.. atomic{(recvA_C && inA?[synA]) -> inA?synA;}
recvA C = 1;
[+ set the activity state of A */
if

;o synA == SYNCH -> activeA C = 1,
/[ time-outs imply no activity
.. else -> activeA C = 0;

fi;
S %/
/ * communication with B * [
) — * [
[+ Here activeB_C is used instead of activeA C */
/* recvB_C instead of recvA _C, */
[+ sentB_C instead of sendA_C etc. */

o[ ... the same for B ... ]

[ = exitloop when done all the two modules */
 (sentA_C && sentB_C && recvA_C && recvB_C) -> break;
od;

[ = safe shutdown if A and B are not active * [

if

.. lactiveA C && lactiveB C ->
/= goto a part of the code that is recognized as a * [
/ = safe shutdown. The module wait to be restarted */
goto SHUTDOWN

;o else -> skip
fi;
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SHUTDOWN:
/= Set the state of activity of C to "inactive” */
[+ C has safely shut down. */
global_activeC = 0;
<wait>

HereactiveA _CandactiveB _C are C’'s local variables that indicate the state of activity of
module A and module B, respectively; they are set at the beginning of the execution loop, and
reset in case a time-out occurs in a communication with module A or module B, respectively.

The RROMELA code implementing the other phases is similar except for the type of messages
involved and for some different local computation. As explained in Section 1.3.1, in its Byzantine
implementation a module may, in any send action, send a corrupted message. In reference to the
previous code, the fragment oRBMELA code that shows the Byzantine implementation of the
“communication with module A’ is as follows:

[.]

[ * communication with A */
. (lsentA_C) ->
if
/* send the synch (if A is active) */

o true -> outAl(SYNCH && activeA_C);
/* send a corrupted message */

.o true -> outAl(-SYNCH && activeA_C);
/ = time-outs * [

o true -> outAl(EMPTY);

fi;

sentA C = 1,

[.]

1.4.1 Formal Verification of TMR

This section lists some of the properties we verify for theRTmodel and the related results. We
postpone the discussion about how to cope with the state explosion problem, till Section 1.6. Prop-
erties are expressed as either LTL formulas RORELA assertionsAn assertion in ROMELA is
a statement including a boolean expression that is evaluated each time the statement is executed.
Assertions are used to express invariant properties over a model.

An informal description of the properties is as follows:

(TMR1) After a communication phase it is always true that if two modules do not receive any re-
ply from the third module, this latter module will be eventually disconnected by the exclusion
logic.

(TMR2) After a communication phase, it is always true that if one module does not receive any
reply from the other two modules, it will eventually enter a safe shut-down state.
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(TMR3) After a distributed voting phase, it is always true that if two modules, in reciprocal
agreement on the global state knowledge, recognize that a third module is not in agreement
with them, this latter module will be disconnected eventually by the exclusion logic.

All the previous properties can be formalized with LTL formulas with the following common
structure:

O(p=0(qg=<r))

Herep, ¢ andr are predicates on variables.

As an example let us consider property TMR1 written in the following way: “after a commu-
nication phase it is always true that if module A and module B do not receive any reply from C,
this latter will be eventually disconnected by the exclusion logic“. This formula is expressed with
the following formula:

O (—(activeCA) = O (~(activeCB) = O —(global _activeC)) A (1.4.1)
O (—(activeCB) = O (= (activeC_A) = O —(global_activeC))

HereactiveC _Ais a boolean variable of module A that evaluates to true if and only if A receives
areply from module CactiveC _Bevaluates to true if and only if B receives a reply from module
C;global _activeC is a global valuable that evaluates to true if and only if module C is active.
Informally formula (1.4.1) evaluates true if and only if when A does not receives a reply from C,
and B does not receive a reply from C then eventually C is not active.

(TMR4) After a communication phase, every module has sent and received a message (or the
empty message) from all the other modules.

Property TMR4 is specified with an assertion placed after each communication phase. For exam-
ple, this property in case of module C, is:

assert{(recvA_C+recvB_C==2) && (sentA_C+sentB_C==2)}

Here variablesecvA _C andrecvB _C are reset at the beginning of the execution loop, and set
after module C has received a message from module A and module B respectively. Similarly,
sentA _C(sentB _C, resp.) is reset at the beginning of the loop, and it is set after any send action
towards module A (module B, resp.).

(TMR5) A module is in safe shut-down state only if the other two have caused a time-out in a
previous communication phase.

Within module C, this property is specified as the following assertion located aftS8HO&@DOWN
entry label (see theBOMELA code in Section 1.4):

assert{activeA_C + activeB_C == 0}
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property | state vector| depth | RAM | result
TMR1 192 5266 20 | success
TMR2 192 5266 22 | success
TMR3 196 45273 25 | fail
TMR4 68 9763 14 | success
TMR5 68 9763 14 | success

Figure 1.6: Summary of the verification results ormR. These results are obtained by running
SPIN with MA+CO options selected, and with one Byzantine module. In the first column we have
the property name, in the second the number of bytes required to store the state vector, in the
third the depth of the search in number of steps, in the fourth the total memory required by the
verification in Mbytes, and in the last the result of the verification.

1.4.2 Discussion

Figure 1.6 reports a summary of the results of the verifications. We run the verification in presence
of one Byzantine module. We briefly discuss the result concerning property TMR3. The analysis
of the counterexample shows that the Byzantine module C causes one of the loyal modules to be
disconnected by the exclusion logic. In fact, module C fails in participating in a communication
with one module and makes that module believe that module C is not active. Consequently, in
the distributed voting the loyal module is found in disagreement, and then disconnected by the
exclusion logic. This is a typical disagreement situation due to Byzantine behaviors.

1.5 The TMR-Pcu model

The TMR-Pcu describes the SN-PCU communication protocol and in more detail the architecture
of PCUs. Figure 1.5 depicts a scheme of theRFPcu architecture, that is composed of:

o the three identicatentral modulesA, B and C. Here the modules implement an abstraction
of the SN,i.e., the part significant for the later analysis;

e the PCUs. They are composedro€ontrol units (in this study.=2), each consisting of two
computers, computer A and computer B;

¢ theinterconnectiorchannels. Three symmetric channels connecting the three central mod-
ules, and two busses, connecting the three modules to the two computers of the PCUs.

With respect to the WirR-Pcu model we are interested to verify:

1. liveness propertiesf SN-PCU communication protocol in the absence of a Byzantine mod-
ule. This protocol is implemented as a distributed algorithm designed to assure a cyclic use
of the busses and a cyclic selection of two central modules demanded to send the commands.

2. safety propertie®f SN-PCU communication protocol in case of some hardware faults. In
particular we are interested in temporary, fail silent faults in the interconnection busses and
in the computers A and B of a PCU.
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In our PROMELA code we define a process for each central module and a process for each
peripheral unit. We also define a synchronous symmetric channel between the central modules,
and four busses between the SN and PCU. The first two busses, model the primary and secondary
bus connecting SN and all computers “A’ of each PCU; the second two busses model the primary
and secondary busses connecting SN and all computers “B” of each PCU. In this way we want to
distinguish between computer A and B, avoiding to define different processes for this.

We now briefly describe the protocol run by a central module and the one run by a periph-
eral unit, giving the ROMELA code where significant. This protocol is a detailed version of the
“communication with the exclusion logic” phase in th&l® (see the pseudo-code in Section 1.4)

The protocol run by a central module It consists of several phases, as described by the follow-
ing pseudo-code:

loop
/ = communication with the PCUs * [
fori =1 to 2 do
6.1 <synchronization>
6.2 =« <decide the turn>
6.3 =* (x,j) = <diagnostic>
6.4 = msg = <message elaboration>
6.5 if <is my turn> the
6.6 =* <send msg to computer[x] of PCUJi], via buslj]>
6.7 * <receive acknowledge>
endfor
endloop

Informally, before communicating with the PCUs a module tries to gather information about
the global state of the system. In this case it is the state of activity of the other two modules, the
state of the two busses, and the state of the two computers of each PCU. We now describe each
phase separately.

Synchronization. This phase is a synthetic version of the synchronization phase ofntwe T
During this phase, a module checks the other modules activity state. This information is
used in a distributed tournament procedure to decide what module is enabled to send a
message to the periphery.

Diagnostic. During each phase, each module summarizes information about the global state, com-
posed of the activity state of the PCU computers and of the busses. This information is used
to decide which bus to use, and whether computer A or B will be the recipient of the message
to be prepared next.

Message elaboration.Depending on the state of the PCU computers, either the effective periph-
eral command or a special DIAGNOSTIC message is prepared;

Communication with the PCUs. During this phase, the SN sends its prepared message to the
PCUs.
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The protocol run by a peripheral unit

In TMR-Pcu the PCU model is realized in more detail. It is schematically described by the
following pseudo-code

loop

1. <decide the state>

/ * communication with the safety nucleus * [
parallel for (i = Ato B) and (j = 1 to 2) do
2.1 <computer[i] receives from a module via bus[j]>
2.2 <command elaboration>
2.3 <computer[i] send the ack via buslj]>
endfor

endloop

We now describe each phase in detail:

Decide the state.During this phase, non-deterministic choice is made to decide on the functional
state of the busses and of the computers A and B of the peripheral unit. In case of a state set
to “fault” every communication results in a time-out;

Receive a command.During this phase, each computer of each unit waits for a message from
one of the busses;

Elaborate the command. During this phase, each computer of each unit evaluates the message
received. A diagnostic message does not imply any further action, while effective com-
mands carry information about what action the PCUs have to perform. In our model they
are simply stored in a PCU local stack;

Acknowledgment. During this phase, an acknowledgment message is sent back to the all the
module of SN.

In the following we give a synthesis of th&kBMELA code of the PCU, called CDAL:

[ * recvAl _CDAl,recvB1 CDAl */
/= # msg received via busl, by computer A and B, resp. * |
/ = initially set to O * |

/ = recvA2_CDA1l,recvB2_CDAZ1: */

[+ # msg received via busl, by computer A and B, resp. * [
/ = initially set to O */

[ = stateBUS1, stateBUS2: state of busl, bus2 x [
| = stateA, stateB . state of computer A,B */
[+ all set to 1, meaning that the state is not faulty */
[+ loop =/

do
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/ = decide the state */
if
;o stateA = 0/ =+ fault in the 1st computer * [
;o stateA = 1/ + the 1st computer is now ok */
;o stateB = 0/ * fault in the 2nd computer * [
;. stateB = 1/ + the 1st computer is now ok */
;o stateBUS1 = 0/ * fault in the 1st bus */
o stateBUS1 = 1/ * 1st bus is ok * |
;o stateBUS2 = 0/ =+ fault in the 2nd bus */
;o stateBUS2 = 1/ * 2nd bus is ok  */

fi;
RECEIVING:skip;

| *
| *
| *

| *

| *

| *

| *

| *
| *

i = 0;

/ = Promela channels defined x [

/= Al, A2 : computer A-BUS1, A-BUS2 * [
[+ B1l, B2 . computer B-BUS1, B-BUS2 * [
do

*/
computer A receives from busl */
*/

.. atomic{!DONE && Alin?[PCU1, senderAl, msg] ->
Alin?PCU1, senderAl, msg;}

if
if it is a diagnostic message */
> msg == DIAGNOSTIC -> skip;

if it is a command message store it * [
o else -> msg[i] = msg; i++;
fi;

acknowledgment to all modules */
Alout!PCULA, (stateA && stateBUS1);
Alout!PCU1,B,(stateA && stateBUS1);
Alout!PCU1L,C,(stateA && stateBUSL1);

recvAl CDA1++;
* [

computer A receives from bus2 */
*/

. [... the same using A2, stateBUSZ2,
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recvA2_CDA1, senderA2 and stateA ..]

[ * * [
/ = computer B receives from busl * |
[ * * [

. [... the same using Bl, stateBUSI,
recvBl_CDA1, senderBl and stateB ..]

[ * */
[+ computer B receives from bus2 * [
[ * */

. [... the same using Bl, stateBUS2,
recvB2_CDA1, senderB2 and stateB ..]

:» DONE -> break;

od;
RECEIVED: skip
/= endloop =*/

od;

1.5.1 Formal Verification on TMR-PCU

In this section we list some of the properties verified for therRTPcu model, and the most
meaningful results. Again we postpone the discussion about how we were able to verify these
properties coping the the state explosion problem, till Section 1.6. The interesting properties in
this context can be described informally as follows:

(PCU1) Correctness of the communication protocols, in absence of Byzantine faults.

The termcorrectnes$iere means correctness of the diagnostic test and of the tournament algorithm
run by a module. This property is verified by checking absence of deadlock. We slightly modify
the RROMELA code of the PCUs in such a way as to force a peripheral unit to receive messages
according to the intended behavior protocol. If the central module does not follow, or fail to follow,
the protocol as the PCUs, the systems deadlocks.

(PCU2) When two or more modules are active, each peripheral unit eventually receives exactly
two messages in a single loop.

(PCU2) In presence of Byzantine errors in one module, and when two or more modules are
active, each peripheral unit eventually receives exactly two messages in a single loop.

(PCU3) When two or more modules are active, each peripheral unit eventually receives exactly
two message via different busses in a single loop.
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(PCU4) When two or more modules are active, each computer of every peripheral unit receives
exactly one message in a single loop.

All the previous properties are formulated with different LTL formulas with the following common
structure:

Op=((0CgADg=(O1)))

herep, ¢ andr are propositional formulas composed of predicates on variables. For example the
property PCU2 (instantiated for the PCU called CDAL), is expressed by the LTL formula:

O (global_activeA + global_activeB + global_activeC >= 2) = (1.5.1)
(0 (CDA1[5]@is _receiving) A O(CDA1[5]@is_receiving =
(< (CDA1[5]@has_received =
(recvAl CDA1 + recvB1 CDA1 +
recvA2 CDA1 + recvB2.CDA1 == 2))))

Variablesglobal _activeA , global _activeB , andglobal _activeC evaluate to 1
if and only if module A, module B, and module C respectively are active. The state labels
CDAl[5]@is _receiving andCDAL[5]@has _received indicate that the CDA with identi-
fier 5 is either running or has completed the communication phase with the central modules. Vari-
ablesrecvAl _CDAlandrecvA2 _CDA1(recvB1 _CDAlandrecvB2 _CDAJ respectively)in-
dicate the number of messages that computer A has received from bus 1 and from bus 2 (computer
B has received from bus 1 and from bus 2, respectively). Informally formula 1.5.1 says that when
al least two out of three central modules are active, the PCU called CDAL1 is infinitely often in
its receiving state and, whenever eventually the communication phase with central modules termi-
nates, it has received exactly two messages.

1.5.2 Discussion

Figure 1.7 reports a summary of the results of the verifications, run in the presence of one Byzan-
tine module. We briefly discuss the results for property PCW& want to prove safety properties

of the tournament algorithm in the hypothetic situation of a persistent Byzantine module. We prove
that Byzantine behavior in the communication with the periphery phase makes the tournament al-
gorithm fail. Analyzing the counter-example, we notice that three modules (and not two) send a
message to the PCUs. With this result we underline the critical role of safety logic: if it fails to
disconnect a Byzantine module before the tournament, this algorithm fails as well.

1.6 Abstraction and Implementation Strategies

The complexity of the ACC model forces us to introduce modularity technigues to cope with the
state explosion problem. We proceed as follows:

1. by physically separating, in theR®MELA model, each phase in the ACC behavior, with the
intention to use them as building blocks. In other words, we plan to develop the phases in
separate files, to be included in main file representing the whole ACC model;
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| property | state vector| depth | RAM | output |

PCU1 352 44047 60 | success
PCU2 284 25465 | 23 | success
pPCcu? 284 1295 33 | fall

PCU3 284 25465 | 23 | success
PCU4 288 449467 33 | success

Figure 1.7: Summary of the verification results oMR-PcuU. These results are obtained by
running S*IN with MA+CO options selected, and without Byzantine modules (with the only ex-
ception of PCU2"). In the first column we have the property’s name, in the second the dimensions
of the state vector (in byte), in the third the depth of the search (in number of steps), in the fourth
the total memory needed to the terminate the verification (in Mbytes), and in the last the result of
the verification.

2. by modeling each building block representingaammunicatiomphase, both in aorrectand
in aByzantineversion;

3. by modeling each building block representing a correct or a Byzantine communication both
in aconcreteand in anabstractversion.

In the Byzantine (versus the correct) version we implement the Byzantine version of the send.
In this way we: (a) can control the state space growth of the whole model by incrementally in-
serting Byzantine phases, which introduce more non-determinism than the corresponding correct
phase; (b) can test the robustness of the system in the presence of some particular Byzantine phases
and not in the presence of a widely distributed, less realistic, Byzantine behavior.

In the concrete (versus the abstract) version, we model communication with the maximum
parallelism: that is what happens in the real system. On the contrary, in the abstract version we
impose a total order the communication events. For example, module A sends and receives first
from B and then from C; module B receives and sends first to A and then sends and receives from
C; finally module C first receives from A and from B first, and then sends to A and to B. By build-
ing a modular model we obtain an acceptable degree of scalability. In this case, scalability refers
to abstract versus the concrete implementations and with respect to certain properties decided in
accordance with ASF. We prove invariant properties both in concrete and abstract versions. These
properties express fundamental invariants on the communication phases among internal modules
composing the ACC. These properties can be informally described as follows:

(P1) before starting a communication phase, at least two out of three modules are active;

(P2) after a communication phase, each module has sent a message to all the other active mod-
ules;

(P3) after a communication phase, from all the other active modules, a module has either received
a message, or detected a time-out.

(P4) after a communication phase, if a module has detected a time-out while receiving from all
other active modules, it will go in a safe shutdown state.

The properties, expressed aBIMELA assertions, were shown to be satisfied by usipninS
on both the concrete and abstract models. This was a sufficient condition (we agree with ASF) for
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not loosing information when substituting, in the model, a concrete phase with the corresponding
abstract version.

The correct and the concrete versions, with respect to the Byzantine and the abstract implemen-
tations, have different impacts on the state space. The correct version has less non-determinism
than the Byzantine version; the abstract version eliminates all non-determinism in the communi-
cation events. By an appropriate composition of different versions in the whole system model, we
obtain a large set of models at different abstraction levels (see Figure 1.8): we checked safety prop-
erties introduced in Section 1.4.1 and Section 1.5.1 by varying the number of the Byzantine phases
inserted in the model. In addition, whenever the state dimension started to become problematic for
our computational resources, we preferred the abstract over the concrete implementation of some,
or all, the phases. In this way we executed a wide set of verification runs. For example, the results
reported in Figure 1.6 have been performed by considering a module with one Byzantine phase in
its abstract implementation, whereas those in Figure 1.7 have been run with all the communication
phases in their abstract versions.

1.7 Conclusions

The project described in this chapter consists in verifying safety properties of a model of a safety-
critical control system in presence of Byzantine behavior of one of its components.

In the context of the project that motivates this valitation work, we report that some of errors
we have found fulfill the expectation of ASF; some other confirme what ASF has discovered
with traditional techniqued.€., code inspection, testing). Moreover, the great flexibility and high
expandability of formal models has helped us during almost all the steps of the project, when we
have been able to enriched our models, with respect to the initial requirements, at a very low time
and resources cost.

On the basis of this project an assessment of the application of the tool we used to support
formal specification and verification process has been made. For what concerns the language
PROMELA, we already underlined its suitability and expressive power in describing this type
of distributed system. The only disadvantage we have found was the absence of any automatic
management of termination of processes, that obliged us to model ad hoc time-outs as an active
communication with heavy repercussions on the size of the state space. In fact, we need to for-
malize a shutdown as an active behavior; a shutdown module does nothing but participates in all
the communication phases by sending empty messages to cause time-outs.

Regarding the tool &N the most important fact to be underlined is related to strategies deal-
ing with the state explosion problem. In particular, the use of a minimized automaton encoding
technique MA combined with the state compression optiQOLLAPSEturns out to be useful in
helping with out-of-memory problems, but at the cost of a long execution time. Most verifications,
due to the large state space size required the use of both optimization strategies.

As an example, Figure 1.9 contains representative data, concerning a verification on a 256
Mbyte RAM Pentium Il - Linux Suse 5.3 - for a system model whose complete description re-
quired 348 bytes per state; in the figure memory and time resources have been compared by using,
respectively, th€€ OLLAPSHfor which we ran out-of-memory, with the longest depth-first search
path containing 15125 transitions from the initial state) andGRE_LAPSE+ MAoptions (for
which we have successfully terminated the verification, with longest depth-first search of 15916).



abstract Byzantin phase

a) b)

Figure 1.8: a) The framework in which we develop abstract/concrete and Byzantine/correct model.
b) One of the model we used iniR-Pcu verification.



30 Chapter 1. Validation of Fault-Tolerance Systems: a Test Case
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Figure 1.9: A representative example of memory versus time usage irrauegperiments, with

CO and with CO+MA optimization strategies. On the left we report the RAM (in Mbytes) and
the time (in minutes) and the depth (in hundreds of steps) reached in a verification that ran out-of-
memory. In this verification only the CO option is used when compiling the model checker. On the
right, we report the same data for the same verification with the CO+MA compiler option enabled.
In this case, a significant reduction of memory makes the verification end without running out of
memory, at the cost of a considerable increase of the running time.
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Validation of Security Protocols, a Test
Case: Security Analysis of the
OSA/Parlay Framework

“Al solito, quelli dei telefoni tiravano a “As usual those of the phone company
praticare I'assurdo. Dicevano, per esempio: il were talking nonsense. They say, for
numero da lei chiamat® inesistente ... Ma come instance: the number you're calling
si permettevano un’affermazione acd@s3utti doesn'’t exist ... How could they dare to
i nummari che uno arrinisciva a pinsari erano make such a statement? All the numbers
esistenti. Se veniva a fagliare un nummaro, one can think of must exist. If only one
uno solo nell'ordine infinito dei nummari, tutto number was missing, one of them in the
il mondo sarebbe precipitato nel caos. Se ne infinite sequence of numbers, the whole
rendevano conto quelli dei telefonii @ no?” world would fall into chaos. Aren’t those
(Salvo Montalbano irLa pazienza del Ragno of the phone company aware of this?”

A. Camilleri, 2003)

Abstract

This chapter reports on an experience in analyzing the security of the Trust and Security Man-
agement (TSM) protocol, an authentication procedure within the OSA/Parlay Application
Program Interfaces (APIs) of the Open Service Access and Parlay Group. The experience
has been conducted jointly by research institutes, experienced in security, and an industry ex-
pert in telecommunication networking. OSA/Parlay APIs are designed to enable the creation
of telecommunication applications outside the traditional telecommunication network space
and business model. Network operators consider the OSA/Parlay architecture promising in
stimulating the development of web-service applications by third party providers that are not
necessarily expert in telecommunications. The TSM protocol is executed by the gateways to
OSA/Parlay networks; its role is to authenticate the client applications that try to access the
interfaces of some object representing an offered network capability. For this reason potential
security flaws in the TSM authentication strategy can lead to unauthorized use of network
with evident damages to the operator and to the quality of service. This chapter reports on a
rigorous formal analysis of the TSM specification originally given in UML,; it reports on the
design activity of the formal model, the tool-aided verification performed, and the security
flaws discovered. This will allow us to discuss how the security of the TSM protocol can be
generally improved.

2.1 Introduction

OSA/Parlay* Application Program Interfaces (APIs) [108] are designed for an easy interaction be-
tween traditional IT applications and telecommunication networks. OSA/Parlay APIs are abstract

1Seehttp://www.parlay.org
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building blocks of network capabilities that developers, not necessarily expert in telecommunica-
tions but perhaps with more expertise in the enterprise market, can quickly comprehend and use to
generate new applications. Concisely, OSA/Parlay APIs proposes an attractive framework where
programmers can develop innovative resources or design new services.

An example of such a service is the retrieval and purchase of goods via a mobile phone.
The service could be provided by a third party provider, different from the mobile operator. In
this case, the provider could develop the service by assembling components that control network
capabilities and functiong.g.,sending/receiving a SMS. These components are furnished by the
telecoms operator in particular their APIs. For example, the sending/receiving of a SMS could
be realized in the following SOAP body that, in XML notation where namespace and encoding
descriptors are omitted, appears as follows:

<sendSMS>
<dest_address>
tel:1234567
</dest_address>
<send_address>
tel:0123456
</send_address>
<message>
Could you please reserve
two seats for 9 o’clock?
</message>
</sendSMS>

OSA/Parlay APIs can also be used in the development of new web-based services. The Parlay
community has designed particular APls, called Parlay X APIs, based on web service principles
and oriented to the Internet community.

When network resources are broadly accessible, it becomes crucial to define and enforce ap-
propriate access rules between the entities that offer network capabilities and the service suppliers,
so that an operator can maintain full control over the usage of her resources and on the quality of
service. For instance, it is important that the use of services is guided by a set of rules defining
the supply conditions and the reciprocal obligations between the client and the network operator.
Service Level Agreements (SLAs) are commonly used to formalize a detailed description of all the
aspect of the deal. To avoid that unauthorized entities can sign an agreement and use the network
illegally, on-line authentication checks are of primary importance.

Authentication, in a distributed setting is usually achieved by the use of cryptographic proto-
cols. Experience teaches that such protocols need to be carefully checked, before being fielded.
Formal methods have been profitably applied in the verification of many security or authentication
protocols (e.g., [5, 53, 104, 138, 152, 177, 182]), and nowadays developers have access to libraries
of reliable protocols for different security goals. For example the Secure Socket Layer (SSL) by
Netscape, is widely used to ensure authenticity and secrecy in Internet transactions. Unfortunately,
the use of reliable, plugged-in, protocols is not sufficient to ensure security, just like the use of re-
liable cryptography is not sufficient to ensure secrecy in a communication. In this ambit formal
methods help to validate the correct use of security procedures.

In this chapter we discuss a validation experience whose aim is to analyze formally the au-
thentication mechanism in the Trust and Security Management protocol in OSA/Parlay APIs [1].
As a result of the analysis we propose an improvement concerning its security. This protocol is
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designed to protect telecommunication capabilities from unauthorized access and it implements
an authentication procedure. TSM is specified in the Unified Modeling Language (UML) [171],
where its composing messages, its interfaces towards the client and the server, and the methods im-
plementing security-critical procedures, are described at different levels of abstraction. The formal
validation experiment, conducted within a joint project between research Institutes and Telecom
Italia Lab, has revealed some security flaws of the authentication mechanism. From the analysis
of the traces showing the attacks, we were able to suggest possible solutions to fix the security
weaknesses discovered, and to state a general principle of prudent engineering (in the style of [8])
for improving the security in web-service applications.

2.2 The OSA/Parlay Architecture

The OSA/Parlay architecture enables service application developers to make use of network func-
tionality through an open standardized interface. OSA/Parlay APIs [1] provide an abstract and

coherent view of heterogeneous network capabilities, and they allow a developer to interface its
applications via distributed processing mechanisms. The OSA/Parlay architecture, shown in Fig-
ure 2.1, consists of:

e a set ofClient Applicationsaccessing the network resources;

e a set ofService Interfacesor Service Capability Features (SCFs), that represent interfaces
for controlling the network capabilities provided by network resoureeas ontrolling the
routing of voice calls, sending/receiving SMSs, locating a terminal, etc.);

e aFramework that provides a modular and “controlled” access to the SCFs.

¢ Network Resource@ the telecommunication network, implementing the network capabil-
ities.

A Parlay Gatewayincludes the framework functions and the Service Capability Services
(SCSs)i.e., the modules implementing the SCFs: it is a logical entity that can be implemented
in a distributed way across several systems. Since the target applications could be deployed in
an administrative domain different from the one of the Parlay Gateway, the secure and controlled
access to the SCFs is a predominant aspect for the Parlay architecture. To get the references of the
required SCFs, an application must interact several times with the framework interfaces. For ex-
ample, the application must carry out an authentication phase before selecting the SCFs required,
as described in Section 2.2.1. In this phase the framework verifies whether the application is autho-
rized to use the SCFs, according to a subscription profile. Finally, an agreement is digitally signed,
and the framework gives to the application the references to the required 8GFag CORBA
interface reference). These references are valid only for a single session of the application. When
the framework has to return an SCF reference to an application, it contacts the SCS which imple-
ments it, by passing all the configuration paramegegsthe Service Level Agreement conditions,
stored in the subscription profile of the application. The SCS creates a new instance of the SCF,
configured with the received parameters, and returns its reference to the framework. Each time the
application invokes a method on the SCF instance, the SCS executes it by taking into account the
configuration parameters received at instantiation time.
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Figure 2.1: The OSA/Parlay Architecture. The Trust and Security Management protocol runs
between the Framework Interfaces and the Clients.

2.2.1 Trust and Security Management protocol

One of the critical steps for guaranteeing controlled access to the SCFs is the authentication phase
between the gateway and the application. Itis supported by the protocol implemented by the Trust
and Security Management (TSM) API. We focuses on the analysis of the properties of this security
protocol, whose behavior is summarized by the message sequence chart in Figure 2.2. The main
steps of the protocol are:

e Initiate Authentication: the client invokes the methodritiateAuthentication
WithVersion " on the framework’spublic interface €.g.,an URL) to initiate the authen-
tication process. Both the client and the framework provide a reference to their own access
interfaces.

e Select Authentication Mechanism: the client invokes the methaglectAuthenti
cationMechanism " on the framework authentication interface, to negotiate which hash
function will be used in the authentication steps.

e The client and the framework authenticate each other. The framework could authenticate
the client before (or after) the client authenticates the framework, or the two authentication
processes could be interleaved. However, the client shall respond immediately to any chal-
lenge issued by the framework, as the framework might not respond to any challenge issued
by the client until the framework has successfully authenticated the client. Each authentica-
tion step is performed following a one-way Challenge Handshake Authentication Protocol
(CHAP) [133]i.e., by issuing a challenge in the “challenge” method, and checking if the
partner returns the correct response. An invocation of the methothéntication
succeeded ” signals the success of the challenge.
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e Request an access session: when authenticated by the framework, the client is permitted to
invoke “requestAccess " to start an access session. The client provides a reference to
its own Access interface, and the framework returns a reference to Access interface, unique
for this client.

e The access interface is used to negotiate the signing algorithm to be used in the session and
to obtain the references to other framework interfaces (we will call tlkenvjce framework
interface$, such as service discovery and service agreement management.

Having obtained the reference to a service framework interface the TSM finishes. Note that
the references to the interfaces must remain secret: if an intruder got hold of them, it would be
able to (abusively) access the services. For this reason our analysis will mainly concentrate on the
secrecy of these references. In fact, after the TSM ends, the client selects the required SCFs by
invoking the method $electService " on the service agreement management interface. The
client obtains a service token, which can be signed as part of the service agreement by the client
and the framework, through thesignServiceAgreement " and the ‘signAppService
Agreement " methods. Generally the service token has a limited lifetime: if the lifetime of the
service token expires, a method receiving the service token will return an error code. If the sign
service agreement phase succeeds, the framework returns to the client a reference to the selected
SCF, personalized with the client configuration parameters.

2.3 Formal Security Analysis

This section explains in detail the formal analysis of the security of the TSM protocol that we have
done. To carry out the verification phase we used CoProVe [59] a constraint-based system for the
verification of cryptographic protocofs CoProVe has been developed at the University of Twente
(NL); it is an improved version of the system designed by Millen and Shmatikov [156]. CoProVe

is based on the strand spaces model [77]; it enjoys an efficient implementation, a monotonic
behavior which allows to detect flaws associated to partial runs, and an expressive syntax in which
a principal may also perform explicit checks for deciding whether to continue or not with the
execution. All these features make CoProVe quite efficient in practice. The intruder model is that
of Dolev-Yao [69], where the malicious entity is identified with the communication infrastructure.
Protocols are written in Prolog-lake style, and properties are expressed as reachability predicates.
In case a security flaw is discovered, CoProVe can show one or all the traces showing the attack.

2.3.1 Modeling Choices

One of the challenges in applying tools of automatic analysis to industrial architectures lies in
translating the (usually less formal) specification into a rigorous formal model. In our experience,
translating a complex system design into a formal protocol specification involves many non-trivial
steps: software technology concepts such as method invocation and object interfaces have to be
“encoded” into an algebraic protocol specification. This encoding phase also forces the engineer
to reason about the security implication of using these constructs.

The OSA/Parlay framework APls specification consists of many pages of UML specification;
at this level of abstraction it is difficult to have a good overview of its security mechanisms. In
the APIs specification, for instance, there is no explicit transmission of messages: the exchange

2Freely accessible via the webketp://wwwes.cs.utwente.nl/24cqget/coprove.html
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Figure 2.2: Message sequence chart describing the steps of the TSM protocol [1]

of one (sometimes even more) messages happens exclusively by the mechanism “invocation of a
method over an object interface”. Moreover, different levels of abstraction are mixed: for exam-
ple, the same mechanism of “method invocation” is used both to describe, in one step, the whole
set of critical steps of the CHAP handshake and the single message starting of the protocol. More
critically, “method invocation” does not specify the confidentiality of the input/output parame-
ters involved. Innocent acknowledgment messages are treated in the same way as references to
confidential object interfaces.

The application of clear modeling choices encourages the design of a formal model without
the previous ambiguities. In translating the TSM specification in a model we define and apply the
following modeling choices.

Modelling Choice 1 A reference to a (new) private interfacg, is modeled by a (new) shared
encryption keyK F'.

Choice 1 reflects the fact that an intruder who does not know the private interface reference cannot
infer anything from any method invocation over that interface. This simple, but essential observa-
tion will make our security analysis straightforward, as we explain in Section 2.3.
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Modelling Choice 2 Calling a method, with parameteY/, over a private interface” is mod-
eled as sending the messag¥ } xr i.e.,, M encrypted withK' . Dually, getting the result is
translated as receiving a message encrypted with the daip

In Choice 2 we treat a reference to an object interface as a communication port; consequently
calling a method equates transmitting a message through that port. Moreover, we model the trans-
mission of a message through as the transit of a message encrypted with the/Key. In other
words, calling a method over an interface is modeled as a communication encrypted with the in-
terface key. This choice reminds of an observation by Abadi and Gordon [7], who suggest the use
of cryptographic keys to model mobility. Our situation is indeed much simpler: the only form of
“mobility” we have, is the dynamic creation of a “channel&., an interface reference.

2.3.2 Formal Models

We apply Choices 1 and 2 to design the TSM foraagtractmodel written in the usual represen-
tation of cryptographic protocols. The obtained model is as follows:

* initiate * * request access *

step 1. C—F:C,KC step 8. C—F :{reqtkr

step 2. F—C:KF step 9. F—C:{KA/fail}kp
* select authentication methods * * select signing methods *

step 3. C—F A[h, W, M} kP step10. C—F:{[s,s,s"]}ka
step 4. F—C :{h}kFr stepll. F—C :{s}ka

* challenge * * request for service interface *
step 5. F—C :{F,N}kc step12. C—F :{req'}ka

step 6. C—F :{C,h(N,SCF)}kc step13. F—C:{KS/fail}ka
step 7. F—C: {ok/fail} ko

In this abstract model; represents a client addthe framework, whil&®' — F' : M denotes
C sending messag¥® to F'. With { M} x we indicate the plain-text/ encrypted with a keyx,
while h (M) denotes the result of applying a hash functiaio M. In step 1 the client initiates the
protocol over the public interface of the framework, by providing its name and a reference to its
interface, K C. In step 2 the framework replies by sending a referehCE, to its own interface.

Remark 2.3.1 It may seem odd that despite modelling choice we transmit references to interfaces
(represented as keys) in clear. The expectation here is that the challenge response protocol of steps
5-7 would avoid intrusion anyway. |

In steps 3 and 4 the client asks the framework to choose an authentication methodhaifong
andh”. In steps 5 and 6 the actual CHAP protocol is carried out, using the hash function selected
in step 4. HereSCF represents a shared secret betwéeand F', required by CHAP [133].

Indeed the UML specification did not provide the details about the CHAP implementation; here
we use the version of CHAP where the client and the framework already share theSsgéret
In steps 8 and 9 the client asks for an interface where to invoke the request access for a service. In
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steps 10 and 11 the framework chooses the interface. Finally in steps 12 and 13 the client sends a
request for a service and receives back the reference to the relative framework interface.

The abstract model has been translated into the language required by CoProVe. The result of
this translation is @oncreteformal model; in addition, we encode (in the language of CoProVe)
the security properties that we want to check. In Figure 2.3 we report one of the concrete models
we used for checking whethéf A remains secret or not.

The specification in Figure 2.3 involves three principals: one clightohe frameworkf() and
eavesdropping agersdc ). Each role is specified by a sequence of send or receive actions that
mimic exactly the steps of the abstract model. Symhkdi$ used to denote symmetric encryption

using shared keys. Formal parametexg in the client roleC,F,Kc,Kf,N,Req,Ka,Scf are
used to denote all the objects used in the role specification. In a scenario these parameters are
instantiated with actual constants representing real objeets(f, _kf,n, _ka,scf ). Here

w on

_"is used when no instantiation is required, that is when a free variable is involved. The intruder
is assumed to know only the client and framework names plus its own nam&érification of
secrecy consists in asking if there is a trace leading the eavesdropper to know a secret.

2.3.3 Formal Analysis and Detected Weakness

The analysis performed on the model of TSM protocol, pointed out weaknesses in the security
mechanism. In the following we will describe the flaws discovered as a commented list of items.
Where significant, we show the output produced by CoProVe and we interpret the output.

Flaw 1. Anintruder can impersonate a client and start an authentication challenge with the frame-
work.

Anintruder can obtain the reference to the interface used by the client to start the authentication
challenge (kekf ). This happens, unsurprisingly, because the referkhde transmitted in clear,
as the following trace of CoProVe confirms:

1. [c,send(][c,kc])]
1'. [frecv([c,kc])]
2. [c,recv(_h325)]
2'. [f,send(kf)]

Each row represents a communication action. For exaroend|c,kc] represents the ac-

tion “send” that ‘t” executes with messagéc;kc] "; c,recv( _h325) represents the results

of a “receive” where the clientc” receives the name (in this case generated by the intruder)
“_h325". The sequence of actions reveal the attack. It can be visualized in the conventional nota-
tion of security protocol (where, we also writle325 as K F, the intruder key, because this is its
understood meaning.):

1. C —I(F):C,KC 2, I(F) — C: KE
1. I(C) — F:C,KC 2 F—1I(C):KF

This run comprises two parallel runs of the protocol, in which the intruder plays, respectively, the
role of the client against the framework((") in stepsl’ and2’) and the framework against the
client (I(F) in stepsl and?2).
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%

Initiator role specification

client(C,F,Kc,Kf,N,Req,Ka,Scf,[

%

send([C,Kc]),

recv(Kf),

recv([F,N]+Kc),
send([C,sha([N,Scf])]+Kc),
send(Req+Kf),
recv(Ka+Kf)]).

Responder role specification

framewk(C,F,Kc,Kf,N,Req,Ka,Scf,[

recv([C,Kc]),

send(Kf),

send([F,N]+Kc),
recv([C,sha([N,Scf])]+Kc),
recv(Req+Kf),
send(Ka+Kf)]).

% scenario specification
% pairs [name, Name]
% [label for the role; actual role]
scenario
([[c,Client1],
[f,Framew1],
[sec,Secr1]]):-

client(c,f,kc,_,_,req,_,scf,Clientl),
framewk(c,f,_kf,n,_ka,scf,Framew1),
secrecy(ka, Secrl).

% The initial intruder knowledge
initial_intruder_knowledge([c,f,e]).

% specify which roles we want
% to force to finish

%(only sec in this example)
% Secrecy check has_to_finish([sec]).
%(it is a singleton role)

secrecy(N, [ recv(N) ] ).

Figure 2.3: The “CoProVe” specification (in two columns) used to check the secrdcylofTo

reduce the search space here we implemented only steps 1-2, 5-6 and 8-9. In other words we
assumed: (a) a fixed hashing function(b) that the framework does not reply (instead of replying
“false”) if the client answer wrongly to the CHAP challenge.

This flaws is not serious in itself (provided the authentication procedure is able to detect an
intruder and close the communication), but it becomes serious when combined with the next weak-
nesses in the security; by knowikfj an intruder is able to grab other confidential information.

Flaw 2. An intruder can impersonate a client, authenticate itself to the framework and obtain the
reference to the interface used to request access to a servidea(key

This is a serious flaw that compromises the main goal of the protocol itself. Informally, a
malicious application can pass the authentication phase instead of an honest client, and it can
obtain a reference to the interface used to request a servickgReyl he study of the output of
CoProVe shows the existence of an “oracle” attack, where the intruder uses the client to get the
right answer to the challenge:

1. [c,send([c,kc])]

1'. [frecv(]c,kc])]

2. [c,recv(_h325)]

2'. [f,send(kf)]

5. [f,send([f,n] + Kc)]

5. J[c,recv([f,n] + kc)]

6. [c,send([c,sha([n,scf])] + kc)]
6'. [f,recv([c,sha([n,scf])] + kc)]
8. J[c,send(req + _h325)]
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9. [crrecv(_h391 + _h325)]

8'. [frecv(req + kf)]

9'. [f,send(ka + kf)]
[sec,recv(ka)]

Using the standard informal notation for describing protocols, the above trace is read as follows:

1. C—I(F):C,KC 6. C — I(F):{C,h(N,SCF)}kc
1. I(C)— F:C,KC 6 I(C)— F:{C,h(N,SCF)}kc
2. I(F)— C:KE 8. C — I(F):{req}kr
2. F—IC):KF 9. I(F) — C:{fail}kEg
5. F—>I(C):{F,N}KC 8. [(C)—>F:{7‘eq}KF
5. I(F) — C:{F,N}kc 9. F—IC):{KA}kr

This run comprises two parallel runs of the protocol, in which the intruder plays, respectively, the
role of the framework against the client and the role of the client against the framework.

Searching among the set of attacks returned by CoProVe, we find also the following, straight-
forward, man-in-the-middle, attack:

1. [c,send([c,kc])]

1'. [f,recv(]c,kc])]

2'. [f,send(kf)]

2. J[c,recv(kf)]

5. [f,send([f,n] + Kkc)]

5. [c,recv([f,n] + kc)]

6. [c,send([c,sha([n,scf])] + kc)]

6'. [f,recv([c,sha([n,scf])] + kc)]

8. [c,send(req + kf)]

8. [f,recv(req + kf)]

9. [f,send(ka + kf)]

9. [c,recv(_h325)]
[sec,recv(ka)]

This trace shows that the intruder can eavesdrop first thi&fkgpassed in clear, and then steal
the messagka-+kf . At this point keyka can be obtained by a simple decryption. This attack is
obviously straightforward at this point of the analysis, but it became clear as soon as we applied
Choice 1.

Flaw 3. An intruder can impersonate a client, authenticate itself to the framework, send a request
for a service and obtain the reference to a service framework interfac&gRey

This is also a serious flaw that compromises the main goal of the protocol. An intruder can
obtain the reference to a service framework interface Kedy It is easy to understand, that this is
possible, for example, as a consequence of flaw 1 and 2: once an intruder has authenticated itself
instead of the client, it can easily obtain the reference.

Further checks with CoProVe, show that the intruder can even retrieve this reference with
a man-in-the-middle attack.g., by listening to the communication between the client and the
framework and stealing the reference when it is passed in clear. In our model this attack can be
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explained as follows: the intruder intercepts, by eavesdropping, the meisS&te, 4 and it de-
crypts it. This is possible because the encryptionKdy is passed in clear and, by eavesdropping,
the intruder can easily obtafX A} x , and hencd{ A (see Flaw 2).

Flaw 4. An intruder can force the framework to use an authentication mechanism of her choice.

This flaw has been discovered using the specification in Figure 2.4, with two instances of the
framework. When a client offers a list of authentication methods, the first instance selects the
first method at the head of a list (here consisting of only two items), whereas the second instance
chooses the second. In this way we model different choices made by the framework.

The attack is shown by the following CoProVe trace; an intruder can force the framework to
select a particular authentication mechanism, by the use of a replay attack.

a.l. [c,send([ckc])]

a.l. [f,recv([ckc])]

a.2. [c,recv(_h320)]

a.2’. [f,send(kf)]

a.3. [c,send([al,a2] + _h320)]

a.3'. [frecv([al,a2] + kf)]

a.4'. [f,send([al,al] + kf)]

a.4. [crecv([al,al] + _h320,)]

a.5'. [f,send([f,n] + kc)]

a.5. [crecv([f,n] + kc)

a.6. [c,send([c,sha([n,scf])] + kc)

a.6’. [f,recv([c,sha([n,scf])] + kc)

a.8. [c,send(req + h320)]

a.9. [crecv(req + _h320)]

a.8. [f,recv(_h404 + kf)]

a.9'. [f,send(ka + kf)]

b.1'. [f,recv([c,_h487])]

b.2". [f,send(kf2)]

b.3. [frecv([al,al] + kf2)]

b.4'. [f,send([al,al] + kf2)]

b.8. [f,recv(_h488 + kf2)]

b.9'. [f,send(ka2 + kf2)],
[sec,recv(ka2)]

The attack can be represented in the following abstract steps:

a.l C — I(Fl):C,KC ad F1—I(C):{[rl]}kF
al I(C)— F1:C,KC L]

a2 I(F)—C:KE bl I(C) — F2:C,KE
a2 Fl-—I(C):KF b2 F2 — I(C): KF2
a3 I(C) — F1:{[h1,h2]}xr b4 F2 — I(C) : {[h1]}xcro

In the trace the intruder acts as a man-in-the-middle in a communication between the client and
the first instance of the framewoiK1 and it learns what method the framework is able to use
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(sequences.i). In the second run, the intruder acts as a client, and it offers to the second instance
of the frameworkF’2 the choice that the framework is able to accept (sequénged he structure

of the attack is such that it can be applied also for forcing the selection of a signing methpds
steps 10 and 11 of the abstract model.

2.4 Discussion

The analysis performed so far shows some weaknesses of the protocol, and gives also useful indi-
cations on how to improve the robustness of the protocol. This section discusses the weaknesses
here presented, and suggests possible solutions to increase the overall security. We start with some
preliminary considerations.

The security weak is because some references to interfaces are passed in the clear. This is
because the role of those references has been misunderstood, or under-evaluated, or more prob-
ably not recognized in the UML, high-level, object specification. A rigorous, synthetic, formal
specification and precise modeling choices help in giving each object its right role. In our case we
were able to identify in the role of some references to object interface the same role that session
keys have. This observation can be quoted as a principle:

Independently of their high-level representation, data that directly or indirectly gives
access to a secret, must be thought of (hence, modeled) as encryption keys.

This principle plays a role also in fixing the protocol. In fact, the common practice in protocol
engineering [8] suggests the use of (other) session keys to protect the confidentiality of sensitive
information, which in the case of TSM are the references to interfaces.

According to this model, session keys are indeed missing completely from the present im-
plementatiof, while their use could prevent the intruder from gaining a reference to an interface
(as shown, by a man-in-the-middle attack). Note that unfortunately it is not sufficient to establish
a session key during the challenge phase. In this case, Flaw 2 remains intact, as confirmed by
CoProVe. This implies that the structure of the protocol needs to be globally reviewed. An ad-
ditional point of discussion concerns the correct use of a CHAP-based authentication. From the
OSA/Parlay documentation [1] we read that security can be ensured if the “challenge” is frequently
invoked by the framework to authenticate the client that, in turn, must reply “immediately”:

However,the client shall respond immediately to any challenge issued by the frame-
work, as the framework might not respond to any challenge issued by the client until
the framework has successfully authenticated the client” ([1], page 19)

Our analysis proves that not only the intruder can act as a client with respect to the frame-
work, but also that it can passively observe, as man-in-the-middle, the framework and a client
authenticating each other as many times as they want, and then steal the references to the service
framework interfaces when they are transmitted in clear. At this point the intruder can substitute
itself for the client.

Flaw 4 is different in nature, and it teaches that particular care must be paid to the choice of
the encryption algorithms or digital signature procedures offered by the framework: for example,
the intruder can force the system to use the encryption algorithm that is easier to crack.

Do not confuse them with the session keys that appear in the abstract model. Those are part of the model and
represent private references to interfaces.
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2.5 Conclusions

This chapter discusses an industrial experience of formal analysis applied to the security aspects of
the OSA/Parlay Trust and Security Management protocol. The protocol is devised to authenticate
the clients before giving them access to the network services. Our experience confirms that formal
methods are an invaluable tool that can discover serious security flaws that may be overlooked
otherwise. This is true in two respects. First, the use of a formal model, where only the relevant
security features are expressed, helps in pointing out what are the critical parts for security. In
an informal description, on the other hand, this information is usually dispersed and difficult to
gather. Second, the use of an automatic tool allows us to identify dangerous man-in-the middle
attacks, which are notoriously difficult to detect in high-level specifications.

From this experience, conducted within a joint project between industry and research insti-
tutes, we state a general principle for security in web-services: it is essential to identify clearly the
security role of each object involved in service specification. It is vital especially for those objects
that abstractly represent encryption keys. This principle helps in simplifying the security analysis.
With the application of this principle we discover serious weaknesses more easily, and we are able
to discuss how the security of the TSM protocol can be generally improved.
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% Initiator role specification
client(C,F,Kc,Kf,N,Req,Scf,
Ka,A1,A2,A [

recv([C,F]),
send([C,Kc]),
recv(Kf),
send([A1,A2]+Kf),
recv([A,A]+Kf),
recv([F,N]+Kc),
send([C,sha([N,Scf])]+Kc)
send(Req+Kf),
recv(Ka+Kf)]).

% Responder role specification
framewk(C,F,Kc,Kf,N,Req,Scf,

Ka,A1,A2,[
recv([C,Kc]),
send(Kf),
recv([Al,A2]+Kf),
send([A1,Al1]+Kf),
send([F,N]+Kc),
recv([C,sha([N,Scf])]+Kc),
recv(Req+Kf),
send(Ka+Kf)]).

framewk2(C,F,Kc,Kf,Req,
Ka,A1,A2[

recv([C,Kc]),
send(Kf),
recv([A1l,A2]+Kf),
send([A2,A2]+Kf),
recv(Req+Kf),
send(Ka+Kf)]).

% secrecy check (singleton role)
secrecy(N, [ recv(N) ] ).

% Scenario
scenario([
[c,Client1],
[f,Framew1],
[f,Framew?],
[sec,Secrl]
D -
client(c,f,kc,_,_,req,scf,_,al,
a2, ,Clientl),

framewk(c,f,_,kf,n,_,scfka,_,_,
Framewl),

framewk2(c,f,_,kf2,n2, ka2, , ,
Framew?2),

secrecy(ka2, Secrl).

% Set up the intruder knowledge
initial_intruder_knowledge([c,f,e]).

% specify which roles we want
% to force to finish

% (only sec in this example)
has_to_finish([sec]).

Figure 2.4: The “CoProVe” code used to discover flaw 4 (in two columns). The model of the
framework includes the “select authentication method” phases of the abstract model and imple-
ments steps 1-9 of the abstract model. Step 7 is omiteeghe framework does not reply (instead

of sending “fail”) in case of failure of the challenge phase. The second instance of the framework
models only steps 1-4 and steps 86, those steps strictly necessary to discover the attack.
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Abstract

This chapter shows how fault-tolerance analysis can benefit from techniques of analysis devel-
oped for the study of security protocols. We use the CCS process algebra as a formal frame-
work. We model the fault-tolerant system and its environment as two separate and interacting
CCs processesl?gfE and ' respectively. InP;f , we describe the system’s failing behavior

and its fault-recovering procedures. Faults are represented by reserved actions from a finite
setd. In F', we model the fault assumptions, that is the assumptions over the modalities of
occurrence of faults; moreovdr, is able to trigger fault actions in by interacting through

the set of actions itF. In the CCS, this framework has to the general fc(nng I F)\ &.

From the point of view of the analysis, we study the fauIt-toIerancE’ﬁfwith respect to a

given property, wher#' is an unspecified component; in this case, the analysis can be made
independent from any particular fault assumption, and the rateazn be compared with that
played by the intruder in security protocol analysis. We restate in fault-tolerance two strate-
gies of validation used in security protocols analysis. The first strategy consists in reducing
the problem of checking if a property (hereg.acalculus formula) holds in our framework, to

a problem of validity in theu-calculus. We exploit partial model checking in this reduction
step, and we show how the validity problem, generally EXPTIME complete, can be solved ef-
ficiently in the universal conjunctive subclass of jhealculus. Through examples, we show

that this subclass is sufficiently expressive to model many important fault-tolerance proper-
ties. The second strategy consists in characterizing the fault-tolerance properties (here “fault
tolerance”, “fail stop”, “fail safe”, and “fail silent”) in the Generalized Non Deducibility on
Compositions, a scheme that has been profitably applied in the definition and in the analysis
of many security protocol properties. Thus, we can reuse in fault-tolerance the techniques for
validating non-interference from which the Generalized Non Deducibility on Compositions
originates. We also argue about the availability of effective methodologies of analysis, and
about the possibility of applying compositional techniques.

3.1 Related Work

Some preliminary ideas about a relationship between security and fault tolerance analysis can be
found in [204, 187, 185, 153, 151, 180, 122, 89].
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An informal and introductory comparison between properties in dependability and security is
presented in [121]. In a seminal paper [204], Weber shows that the concept of non-interference
[101] used in security, captures the intuitive notions of “fault-tolerance” and of “graceful degra-
dation”; informally, they can be read as “the occurrence of faults does not interfere (or weakly
interferes) with the visible behavior of the system” [204]. Weber suggests to validate a system
under different sets of fault scenarios, and he supposes that the likelihood of these scenarios is
determined by an environment interacting with the system.

We anticipate that in this chapter we develop these ideas further. First, we model a fault-
tolerant system and its environment in the formal framework of the Calculus of Communicating
Systems [158]; then we characterize fault-tolerance in terms of logical and non-interference prob-
lems. In our framework, we are able to propose different strategies of analysis, which were missing
in [204].

In [153] Meadows proposes a classification of security properties inspired by the taxonomy
used in fault-tolerance. She also argues that security analysis can be improved by incorporating
techniques typical of dependability. Four years later, following a complementary trend, Mead-
ows and McLean claim that the use of emerging results in security analysis can enrich the fault
prevention and fault removal strategies [151].

Rushby [180], observes analogies between non-interferences approaches in security and in
safety analysis mainly regarding the technique in system design called “partitioning”. Foley [88,
89] uses CSP [115] to define the “integrity” property as a predicate over traces. Integrity is a
common property of dependability and computer security; Foley shows how his characterization
classifies integrity as a non-interference property.

A formal characterization of safety properties such as non-interference, non deducibility, and
casuality and their role in fault intrusion tolerance is discussed by Stavridou and Dutertre in [187].
They affirm that, even though the pessimistic worst-case assumptions used in security are too
strong when applied to fault-tolerance, non-interference provides a useful framework for spec-
ifying and verifying safety, reliability and availability [187]. They also point out the need for
verification techniques of non-interference, especially those addressing compositionality.

In [185], Simpson, Woodcock and Davies, uses CSP to formalize “fail safe”, “fail soft”, and
“fault-tolerance” as properties of non-interference. These properties are expressed by a weak
version of a relation, called protection, defined for classes of events: in a pi@cess protected
from F if availability of E actions in any trace aP is unaffected by the occurrence of events from
F. A particular processRun(F') makes events fronk’ always available, and properties over a
system are defined by assuming the system to run concurrentlyRwithiF'). They also use the
CSP model checker [176] as a verification tool.

3.2 Introduction

In this chapter, we apply to fault-tolerance analysis two strategies used to define and to analyze
computer and protocol security properties. The first strategy, studied Section 3.6, requires a fault-
tolerance property to be expressed by-aalculus formula. It consists in reducing the problem

of checking if a property holds in our framework, to a problem of validity in ihealculus. We
exploit partial model checking in this reduction step, and we show how the validity problem,
generally EXPTIME complete, can be solved efficiently in the universal conjunctive subclass of
the u-calculus. The second strategy, studied in Section 3.8, consists in characterizing the fault-
tolerance properties “fault-tolerance”, “fail stop”, “fail safe”, and “fail silent” in the Generalized
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Non Deducibility on Compositions (in short, GNDC) [86]. GNDC is a scheme that has been
profitably applied in the definition and in the analysis of many security protocol properties. The
analysis of fault-tolerance properties within the GNDC can benefit from techniques and tools for
the verification of information flow and non-interference properties [82], from which GNDC ori-
ginate. Moreover, the uniform framework of GNDC helps in proving similarities between security
properties and fault-tolerance properties; we show, for example, that fault-tolerance is exactly the
BNDC [81] security property. Potentially this is also a first step towards a formal and uniform
taxonomy of fault-tolerance properties.

As a common modeling framework, our approach requires that a system, its failing behav-
ior, and its fault-recovering procedures, are formally specified as finite state terms in a process
algebra. Here, we use the Calculus of Communicating System (CCS) [158], but our framework
is completely general and it can be easily rephrased in other process algebras, for instance the
CSP [115] or ther-calculus [161]. The validation framework we propose falls intodpen sys-
temparadigm: a system acts within an unspecified environment which is able to trigger actions
in the system. We will call such an environmédatilty environmentUsually, the presence of an
environment causing any action of the system’s interface has two unpleasant effects: the first is the
well-known state space explosion [201], the second is that unrealistic situations may arise during
the analysis [93]. As a solution we verify a systétin a well-characterized classy of (faulty)
environments. Each faulty environmefite €4 acts as a fault-injector that interacts with the sys-
tem only through a specified finite s&tof fault actions. Differently from [185, 200], we treét
as an unspecified component of the system. In this way, we check the reliability of a system model
with respect to any potential occurrences of faults. In CCS, our framework can be summarized as
(P || F)\ J, whereP is the model of our fault-tolerant candidate systdmis an unspecified
term in€ 4, andd is the finite set of fault actions.

In the first part of this chapter we formalize fault-tolerance in a logical formalism, here a
variant of theu-calculus [35]. By partial model checking [16], the fault tolerance analysis problem
is reduced to a validity problem in thecalculus. Intuitively, the idea is as follows: proving that
VF € &4, (P || F)\J satisfies a fault-tolerance propedtyis equivalent to prove that the modified
formula¢ /5P is valid in €4, where /5 is the partial evaluation for the parallel composition and
restriction operators. The modified formuldy P characterizes exactly the scenarios of faults the
system is resilient to. Moreover, by considering the characteristic formputdis set of possible
fault scenarios, checking i? is fault-tolerant with respect to those scenarios is equivalent to check
the validity of ¢ = ¢//p. logical characterization of fault-tolerance is given, several analysis
techniques may be adopted. Some of them lead to efficient analysis of certain properties: we
identify a class of:-calculus formulas whose validity checking can be performed in linear-time in
the dimension o /5 P.

In the second part we study the application of Generalized Non Deducibility on Compositions
(GNDC) in fault-tolerance analysis. GNDC, first presented in [86], is a framework where a family
of security properties has been uniformly expressed and verified [86, 85]. GNDC has roots in
non-interference analysis, and it has not been applied to fault tolerance so far. In our framework a
GNDC property has the form:

P satisfiesGNDC® i VF € &5: (P || F)\Faa(P)

Generally speaking this means that a sysfe@njoys GNDCY if and only if P shows (with
respect to a process relatianthe same behavior ag P). This must be true even ® is com-
posed, by the parallel operatprwith any environmen#' chosen from€ 5. Here,E s represents
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the set of all environments which interact withthrough actionsf. GNDC is parametric iri, a
relation among processes representing the notion of “observation”, an@ ifunction between
CCS terms. GiverP, a(P) describes the expected (correct) behavioPof

In the uniform scheme of the GNDC we express and compare the fault-tolerance properties
“fault-tolerance”, “fail stop”, “fail safe”, and “fail silent”. This comparison describes a preliminary
step towards a formal classification of dependable properties, on the basis of the work by Focardi
et al [85] who have compiled a classification of security properties. Finally, we show how some
of the theoretical results of GNDC originally stated for security analysgs compositionality in
proving a GNDC property) can be reformulated and reused in the analysis of fault-tolerance.

The chapter is organized as follows: Section 3.3 summarises the basic theory of CCS. Sec-
tion 3.4 explains the uniform scheme that we use to model a fault-tolerant (candidate) system and
its environment. Section 3.5 recalls the (equatiopatalculus modal logic for process analysis.
Section 3.6 describes our characterization of fault-tolerance iptb&culus logic framework.
Moreover, it explains our solution methods based on partial model checking and on an efficient
methodology to check the validity in a subclass of ghealculus. Section 3.7 summarises the def-
initions of process behavioral equivalences we use in the rest of the chapter. Section 3.8 describes
our characterization of fault-tolerance in the GNDC scheme, and underlines our solution methods
in this framework. Section 3.9 concludes the chapter.

3.3 CCS Background

This section summarises the basic notions and definitions of the Calculus of Communicating Sys-
tem (CCS) [158], the calculus used through the chapter.

CCS assumes a sdict = L U L of (observablecommunication actionsNames fromg
model the emission of a signal; overlined names fibifcalled co-names) represent the reception
of a signal. The purpose of putting a line, called complementation, over a names is to show that the
corresponding action can synchronize with its complemented partner. Complementation follows
the rule thatt = a, for any communication actiom € Act. A special symbolr, is used to model
any (unobservabldpternal action hence the full set of possible actionsdst, = Act U {7}.
We leta, b range overdct,. The following grammar specifies the syntax of the language defining
all the CCS processes:

PQ = 0| aP | P+Q [ P|Q | P\A | P[f] | A

Informally, 0 is the process that does not perform any actian? is the process ready to
perform actior, then it behaves aB. Process” + () can choose non-deterministically to behave
either asP or as@. | is the operator of parallel composition: i | @, P and@ may evolve
concurrently or communicate via complementary communication actior3\ h whereA C L,
actionsa € A U A are prevented from happening; they are possible only in a communication
internal toP. P[f] is the process obtained fro by changing eaclhh € Act. into f(a); the
relabeling functionf must be such that(r) = 7. A is a process identifier. We assume that every
process identifiedt has a defining equatiod &£ P.

The operational semantics of CCS is given in the form of labelled transition syséemst .,

i») , Where stateg are CCS terms, actiondct, are CCS actions, and the transition relation
—2.C & x Act, x & is defined by structural induction as the least relation generated by the
following set of inference rules:
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The transition relation—— defines the usual concept of derivation in one step— P’
means that proced? evolves in one step into proce®$ by executing actioa € Act.. We write
P - to underline tha can perform an action and evolve in some process. The transitive and

reflexive closure of ), 4., — is written —*.

Definition 3.3.1 Given a CCS procesB, the setDer(P) = {P'|P —* P’}, is the set of its
derivatives A CCS proces®’ is finite statef Der(P) is finite.

Definition 3.3.2 LetSort(P) (called thesortof P) be the set of names of actions that syntactically
appear in the proces®, and letJ be a finite set of actions. The sét;, of processes whose sort
isinF U {7}, is so defined:

def

e E{F : Sort(F) C FU{r}}

3.4 Modeling Fault-Tolerant Systems

Using process algebras it is possible to provide a uniform framework for specifying fault-tolerant
systems. In [19, 21] CCS/Meije is used to specify a fault-tolerant system, its failing behavior, its
recovery strategies, and the fault assumptions. Fault assumptions define if a fault is, for instance,
temporary, permanent, or Byzantine.

We follow a similar modeling approach, but differently from [19, 21] we do not include any
specific fault assumption in the system specification. Instead, we develop a neat separation be-
tween the system and its environment that acts as a fault-injector. We call such a fault-injector
environmenfaulty environmentThis choice has important conceptual implications:

e the specification of the system must describe the behaviors of the system in reaction to
faults, but not the fault assumptions;

o all the fault assumptions are part of the faulty environment.

These are our technical ideas to encode fault-tolerance analysis as the analysis of an open
system. We are interested in evaluating the system behavior in a general and unspecified faulty en-
vironment; we describe our strategies of analysis in Section 3.6 and Section 3.8. In the following,
when talking about formal specifications of fault-tolerant systems, we understand the following
definitions:

A system is a finite state CCS process, describing the behavior of the system through the
execution of actions. Generallg,is a parallel composition of sub-processes, each modeling
sub-components of the system communicating with each other.
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A failing system is a finite state CCS procesB;, obtained by extending the proceBawith the
possibility of executing fault actions from a sg&t In Py we specify also the failure modes
i.e.,the behavior of the system induced by the occurrence of the faults.

A fault-tolerant (candidate) system is a finite state CCS procesé)#, obtained by adding to
Pz those processes modeling some error-recovery mechanism in accordance with some
fault-tolerant design strategge.g.,modular redundancy, voting). In CCB;?é has the form

(P 111 P57 Q) \ A where:

° ;1) . Pé") aren copies ofPz in a parallel composition.

e () is a process that represents an additional error detection module, for instance, a
voter. The detail description of this process usually depends on the particular fault-
tolerance strategy we are describing in the system specification.

e A ={ay, - ,a,}, ANTF = (is the set of names over Whidﬁérl) . ..Pé”) andQ
communicate.

Occurrences of faults are induced by a faulty environmeht, that causes faults to happen. It
interacts WithP# only through actions i.

The previous definitions suggest a uniform characterizatid?fafa fault-tolerant (candidate)
systemP can be obtained by applying, 1, a function,3, from processes to processes. In the
following, we abstract from any particul&rin our modifier(,)ﬁ. SonﬁE is the CCS specification
of the fault-tolerant version aP obtained by applying some fault-tolerance technique. As a unique
constraint, at model level, the s&tmust remain disjoint from any other set of actions and must
be accessible to the environment.

Example 3.4.1 We show the CCS specification of a simple fault-tolerant batfedy, The battery
returns one unit of energy when it receives a request message. Agtorandret model the
request signal and the unit of energy, respectively. The CCS process deséibiiggas follows:

Bat £ get.ret.Bat

In its failing version,Bal s ¢}, the battery may crash after it receives a request. As an effect,
it may produce either a valid energy unit (actiost,) or an invalid burst of energy (actiafet).
We assume two different possible faults: the former (acigncertainly causes the battery to
fail; the latter (actionf,) causes the battery to switch in a failing state where either a valid or
an invalid energy unit may be produced non-deterministically. A silent actipmodels some
internal behavior that appears before the module switches into its failing state as an efféct of a
fault. The CCS specification d¥at s ¢,y is as follows:

def —
Batys) ¢y = get.(retﬁat{fmfl}
+fo.reto.Batys, £} + fy.7.Bat’)

Bat/ d:Gf El.Bat{fOil} +E0-Bat{fo,f1}

Starting fromBat ¢, ¢,y we design the fault-tolerant version of the battery. It is composed of two
redundant instances of the battery and of the two additional mod6iiésa splitter, andCon, a
voter. We now give the CCS processes describing all of these components.
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Bat® £ Bat[get;/get,ret; 1 /ret]
Batgf)o £1} = Bats,s,[get;/get, Tet; o /Tety, ret; | /ret,]

The two indexed instances of the battétyt and Bat (¢, ¢, are specified by processBat ()

andBat() respectively, for = 1,2. Action get, (respectivelyget,) represents the request
that the splltter directs to the first (respectlvely the second) instance of the battery. Aettans
andret; o (respectivelyret,; andrets ) represent the outputs of the first (respectively, the
second) battery in case of a valid or an invalid production of energy.

Spl £ get get,.get,.ack.Spl

The CCS process specifying the splitt8p!, delivers the energy request to each of the two
redundant modules. For sake of simplicity, our splitter forwards a request of energy in a precise
order. MoreoverSpl cannot accept a new energy request until it receives a synchronization signal
from the controller (actioack).

def -
Con = retyp. Con’ + rety.ret. Con”
Con' = retyo.Con™ + rety.ret.Con™
Con” = retyo.Con’ + retyy.Con”

def ————
Con™ = Tack.Con

The controller can collect the energy units from the two batteries. If a valid unit is returned, the
controller shows it to the environment (actiséat). It also absorbs an eventual over production of
energy. After the controller has received a signal from both the batteries, it sends to the splitter the
synchronization messagek; if both batteries fail in producing their unit of energy the controller
only sends the messagek, and the splitter is ready to receive a new energy request. We can now
build two different fault-tolerant (candidate) specifications:

def

Bat{fo,fﬂ = (Spl] Bat" H Bat{f £1) | Con) \ A (3.4.2)

def

Battery?;mfl} (Spl || Bat?{{f)o,h} I Batff)o,ﬁ} | Con)\ A

whereA = {get,,get,, ret) g, rety 1, rete o, rets 1, ack}. [ |

Bat?f_c £} contains one potentially failing battery (see also Figure %}xeryffo ;) USes

two failing batteries. We will USGBat{f ) and Battery™ {fo, 1} as test cases throughout the
chapter.

3.4.1 Our Scenario for Fault-Tolerance Analysis

In this section, we introduce in our general scenario for the analysis of fault-tolerance, and we give
a formalization of it in CCS. As introduced in Section 3.2, we propose to study a fault-tolerant
(candidate) system in a generic and unspecified faulty environment acting as a fault-injector. The
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get ret

fo fi

Figure 3.1: The flow diagram of the (candidate) fault-tolerant version of the baﬂeﬁ{éo £}
Restricted actions are within brackets. 7

faulty environment is able to interact with the systems through a finite and defined set of fault
actions, in fact triggering the occurrence of faults in the systems. In CCS this scenario is so
defined:

VF ey, (PY|F)\F (3.4.2)

In scenario (3.4.2), procegsis the faulty environment, that interacts wiﬂf through the finite
set of actionsF. Moreover, F' is an unspecified component ranging oder, the set of possible
CCS processes whose sort ishiu {7}. Set€ 5 is the class of all possible faulty environment and
it represents our unique fault assumption model.

Remark 3.4.2 P;f we do not include other fault actions than those triggered’byherefore ¥
is exactlythe set of names over whidh! and F* interact. u

Remark 3.4.3 Fault actions are restricted. This implies tifat and F' have to synchronize on

F. At the abstraction level of our scenario of analysis, faults are then considered internab{
observable) actions of the failing systems: only the (probably faulty) behavior of a system is really
observable. ]

In practice, a system is either resilient to faults or the presence of faults is highlighted by
its subsequent behavior. Roughly speaking, in our framework “fault-tolerance” means that faults
cannot interfere with the normal observable behavior of the system.

Example 3.4.4 The scenario for analyzing the fault-tolerant (candidate) baﬂﬁ@ﬁo £1) is as
follows: ’

VE € Eiez1y, (Batly o0 | F)\ {£0,£1}
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3.5 Background on Logic and Properties of Processes

In this section we summarize the technical background required to understand the logic charac-
terization of fault-tolerance we will develop in Section 3.6. We summarise basic notions of the
modal-calculus and of the equationaicalculus in Section 3.5.1 and Section 3.5.2 respectively,
we digest the use of the-calculus for observational properties over processes in Section 3.5.3,
and we synthetize the basic of partial model checking in Section 3.5.4.

3.5.1 Modalpy-calculus

The modalu-calculus [35] is a modal logic with fix-point operators. Itis used in computer science
to express temporal properties of distributed systems, such as non-terminating behaviors, safety
and liveness properties [127]. Formulas of thealculus are generated by the following grammar:

pi=tt || X [oNG |oV P |(a)¢|[ale | nX.d|vX.

Herea ranges over the action sdtt, and X ranges over a set of variabl®s The fix-point
operators are (greatest fix-point) ang (least fix-point). The semantic§¢||,, of a u-calculus
formula ¢ is defined over labelled transition systems. Met= (Q, Qq, Act,, —) be a labelled
transition system, andan environment function that associates a subsgttofthe free variables
in ¢. As a notatiorp[xz/X] is the environmenp wherez is associated witlX'. If we leto range
over{u, v} then||¢| , is the set of states G¥( defined by the following equations:

X1, = p(X), |lttl, =9, [££], =0
161 A d2llo = llonllp O lld2llps Nd1V 2l = lléall, U llg2ll,
llal¢ll, = {QIVQ' : @ = Q' implies Q' € [|¢||,}
a)oll, = {QIFQ": @ — Q' and Q' € |||, }
loX.¢ll, = o f wheref(z) = [|¢]|pu/x]

A labelled transition systerVl satisfies gu-calculus formulap, written M =, ¢, if Qo €
|l #||,- We remove the subscriptwhen it is clear from the context or wheérdoes not contain free
variablesj.e.,when¢ is a closed formula.

Remark 3.5.1 The moda}:-calculus here presented does not contain a negation operatmw-
ever for any formulap there is a formulap®, called the complement af, which expresses the
negation ofp. A formula¢® is obtained by substituting for every operatorfiiits dual according
to the following inductive rules:

tt° = ff cse .
o 2 g (Ko = (K)o
(nZ.6)° = vZ.4° (6V ) = ¢ ng"
7 _ g WZ.0)° = pZ.g

The modalu-calculus subsumes [63, 23] several other state-based logics such as PDL, CTL,
and CTL*, and action-based logics such as ECTACTL and ACTL*. Moreover, theu-calculus
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enjoys the finite model propertye., if a closed formulap is satisfiable then there exists a finite
model forg [192]. A finitary axiomatization has been proposed by Walukievicz [202].

Many properties can be express in faealculus (see [190, 37]). For exampleX.(—)tt A
[—]X expresses “deadlock freedom”, gndl.(—)tt A [—a]X expresses “actiom must eventually
occur”. In writing properties, here and in the rest of the chapter, we use the shortcut notations
[K]¢ and (K)¢ where K is a set of actions imMct,: [K]¢ is a macro for/\ . ,-[a]¢ and (K)¢
for \/,cx(a)¢. Moreover—K is an abbreviation forlct, — K. The abbreviation-a stands for
—{a}; (Act;)¢ and[Act.]¢ are synthetically written as-)¢ and[—]¢, respectively.

3.5.2 Equationaly-calculus

The equational:i-calculus [125, 16, 23, 17] is an equivalent variant of thealculus. By the

use of standard techniques [15, 145, 146}-@alculus formulap can be transformed, in linear-
time in ¢, into an equivalent equationgtcalculus formula and vice-versa. For this reason the
p-calculus and the equationatcalculus can be use interchangeably in all the results we show
in this chapter. Bhat and Cleaveland proposed translations from CTL; @mtd ECTL* into
equationals-calculus [23].

The equational:-calculus is based on fix-point equations that substitute the recursion opera-
tors. LetX be a variable ranging over a S2bf variables, then a least (greatest) fix-point equation
isX =, ¢ (X =, ¢), whereg is anassertionthat is a modal formula without recursion operators.
The syntax of assertiong) and of lists of equationsgs is defined by the following grammar:

assertion o= tt|fE| X |[oAG oV |(a)o]]alg
equations list pu= (X=,0)p | (X=,0)¢ |¢€

It is assumed that variables appear only once on the left-hand sides of an equatipnshist
set of these variables is denoted2sfs(). An equations listy is closed if every variable that
appears in the assertions of the list islhafs(¢). Figure 3.2 gives example of properties in the
equationals-calculus.

The semantics of the equationaicalculus is defined over labelled transition systems. As a
notation,U represents the union of disjoint environments, drdknotes the empty environment.
Letting o be in{u, v}, cU.f(U) represents the fix-point of the functionf in one variablel.
Let beM = (Q, Qo, Act, L) a labelled transition system apdan environment function that
assigns a subset & to the free variables ig. The semanticg|¢||’,, of an equation list is an
environment which assigns subsets of state3 efstems to variables iefs(¢). Formally,[|][],
is defined by the following equations:

lell, =1
(X = ¢)¢Hlp = H‘PH/(pu[U/\X}) uU'/X]

WhereU’ = O'U-|_|¢||(pu[U/X}up'(U)), andp/(U) = H90||/(pu[U/X])- The interpretation||¢|| ,, of an
assertionp is defined as for thg-calculus.

Informally [|(X =, ¢)¢l|, says that the solution toX =, ¢)¢ is thes fixed point solution
U’ of ||¢]|, where the solution to the rest of the list of equatigns used as environment. A
labelled transition systef( satisfies an equation ligt, written M =, ¢ | X, if Qo € [¢ll,(X),
where X is the first variable in the lisp. We omitp out when it is evident from the context or
wheng is closed.
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X =, [-]X A(—)tt  Absence of deadlock

X =, [-]X A (a)tt On all-paths an actioa occurs

Y =, [-]Y V (a)ff There is path on which eventually mmccurs

{ X=Y Along all pathsa occurs infinitely often
Y=, [-]YV(a)X

Figure 3.2: Examples of properties in the equatignablculus [17], and their informal meaning.

3.5.3 Observableu:-calculus Properties over Processes

In case an external observer cannots@etions, a natural way of analyzing a process is abstract-
ing these actions from the behavior of the processes, while preserving the branching structure.
This is the viewpoint that we consider in our framework. Let us consider the following labelled
transition relation==, between CCS terms

pZ~p if PP
P%p if P ISY TP gcAct

Transitions== are callecbbservabldransitions, oweaktransitions in contrast to transitions
-~ which are qualified astrong

Modal p-calculus formulas are usually too strong with respect to what an external observer can
see. In other words they can distinguish processes that are indistinguishable if we would consider
only observable transitions. In order to make properties compatible with the notion of external
observation, modalities of the-calculus must be interpreted in terms of observable transitions,
that is by using the transitios® . In that case{(_)) and|[[]] are used instead ¢f) and[_], respec-
tively. The interpretation of formulga)) ¢, for example, is like{a) where the weak transition
relation is used instead of the strong one:

I{a)sll, = {QI2Q": Q == Q" and Q" € [|¢]l},}

Weak modalities can be also defined in terms of the corresponding strong modalities [189]; for
example(a)) £ nZ.(t)Z A {a)uZ.¢ A (7)Z. The sub-logic of the:-calculus obtained restricting
the modalities to the subsét( ), [[ |], (X)), [[K]]} (with 7 ¢ K) is called theobservational

u-calculus[189].

3.5.4 Partial Model Checking

Partial model checking [16, 17] is a technique that relies upon compositional methods for proving
properties of concurrent system. It has been introduced first by Andersen, who used the equational
u~calculus for technical convenience [16]. Indeed, thealculus and the equationatcalculus
can be used interchangeably in this context, as noticed in Section 3.5.2.

Reformulated in the CCS, the intuitive idea underlying partial evaluation is the following:
proving that(P || @) \ A satisfies an equationalcalculus formulap is equivalent to proving
that @ satisfies a modified formula/, P, where//4 P is the partial evaluation function for the
operators of parallel composition and restriction.
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In the following we useP |4 @ as an abbreviation faiP || Q) \ A. In Figure 3.3 we give
the definition of /4 , the partial evaluation function for the CCS operdfarwhere A C Act.
Andersen proves the following lemma [16]:

Lemma 3.5.2 Given a proces® || 4 @ (whereP is finite-state) and an equational specification
v | X we have:

PlaQE(@lX) it  Qk(plX)jaP

Remark 3.5.3 Andersen [17] proves that the size @f | X) /.4 P is exponentially larger that

(¢ | X) in the worst case. Andersen also proposes heuristics that (pakeX) /4 P smaller

while maintaining logic equivalence. Quoting Andersen “the strategies are generally valid but
might or might not succeed in decreasing the size of the assertion” [17]. ]

3.6 Logic Characterization and Analysis of Fault-Tolerance

In this section we explain our first framework for the analysis of fault-tolerance. From Section 3.4,
we recall that our proposal consists in viewing fault-tolerance analysis as the analysis of an open
system; a fault-tolerant system is studied when acting in a faulty environment. Here, we char-
acterize the problem of the analysis of fault-tolerance, with respect to a property, as a validation
problem in the (equational)-calculus. Within this framework we reformulate, in fault-tolerance
terms, a technique of validation studied in security protocol analysis [146, 148]. The technique
is based on partial model checking. Moreover, we study an efficient solution [122] for checking
the validity of a subclass of the-calculus. In the rest of the chapter, we do not make any distinc-
tion betweenu-calculus and equationatcalculus since these logics are equivalent and a formula

in one logic can be transformed in an equivalent formula in the other logic in linear-time (see
Section 3.5.2). Without lost of generality, we will refer only to ixealculus.

3.6.1 The Problem

Let us consider a system modg| its fault-tolerant (candidate) versioﬁf# , and ap-calculus
formula¢ expressing a desirable property of a system even in presence of faults. We are interested
in understanding under which fault assumptidhj% satisfiesp. This set can be formalized as
follows:

§ 0 _(pe ey (P s F) = 0} (36.1)

# ] . e -
Set&ffﬁt 15 characterizes the fault-tolerant capablllty}bf as the set of faulty environments

that makePg# preservep. If this set coincides with the class of all faulty environmégt that is

#1l - F . . . .
if 3((;39" lsFs) _ &+, then it means that no faulty environment is able to foR:,#e not to satisfy

¢. This observation leads to a first logic characterization of fault-tolerance, as in the following
definition:

Definition 3.6.1 (Logic Characterisation of Fault-Tolerance I) A processP:iﬁé is fault-tolerant
with respect to the logical property if and only if

P¥| 5 F.
%r((b F ”f f) — 83’
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SupposingWt = {Q, Qq, Act,, —} be afinite statd. 7'S, whereQ = {Qo, ..., Qn}:

(el X)faM = (p/aM)| Xq,,
efaM €

XQ, =0 ¢//A Ql)

(
(X =0 d)pfaM = { '('XQn = ®fla Qn)

pfaM

X/Ja@ = Xg

(a)9)a Q = (@) (@fa@Q)VV e 0 o/aQ, ifaFThag AUA

(@)9)la @ = ff, fac AUA

(T)o/)a @ = (MNJaQ)VV g, ¢faQV \/{QL,Q/ (@(0)a Q")
ac AUA

[akb//AQ = [a](¢//ﬂ Q)/\/\QL,Q/ ¢//A Q,a ifa?‘éT/\ag'AUA

la]o)a Q = tt, ifac AUA

(réfa Q = PO/ Q) A g r.q 01aQ A Afg2nq 814 )
ac AUA

(01 NP2)JaQ = (91/aQ) N (P2/a Q)

(D1 V) JaQ = (61/aQ)V (d2/a Q)

tt)aQ = tt

f£)aQ = ff

Figure 3.3: The partial evaluation function .

To check whether a mode‘Ersi‘i£ satisfies Definition 3.6.1 we have to solve the following prob-
lem:

VFely, (PYFP)\FEo (3.6.2)

Solving problem (3.6.2), that is checking the (candidate) system again any faulty environment
is, in principle, useful. As an example let us considfer 3.0 + £.£.b.0. In P, two consecutive
occurrences of a fault make the (good) actioaccur: here we think about one fault cancelling
the effect of the other. Checking the fault-toleranceé’ah a particular environment, for example
asF = £.F leads to the conclusion that, (i || ') \ {£}, actionb eventually happens. Checking
against an unspecified environment we can figure out, for example Fthat £.0 makes this
property false inP.

From the point of view of the analysis Definition 3.6.1 is not practical. It requires to perform
model checking against all environments. By exploiting partial model checking techniques we can
provide a more suitable definition of the set that characterize the fault-tolerant capabifify, of
as follows:

8ot ppy = I €es: FEG)s P¥} (3.6.3)
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Setsg// ) characterizes the fault-tolerance Bﬁ as the set of models of the formula
F iy

oy 3 P;ﬁ. If this set coincides with the sefg, of all possible (faulty environment) models, this
means thab /5 P;é is valid in £4. Characterization (3.6.1) and (3.6.3) are equivalent as stated in
the following proposition:

" (PFlsF) a
P tion3.6.2F, 7 =
roposition 3, SW/&P P
Proof. The thesis follows directly from Lemma 3.5.2. ]

The characterization in (3.6.3) is easier to manage since it corresponds to a common repre-
sentation of sets, and permits to define the analysis of a fault-tolerant process, with respect to a
property¢, as a validity checking problem in thecalculus. It brings to the following alternative
logic characterization of fault-tolerance:

Definition 3.6.3 (Logic Characterisation of Fault-Tolerance Il) A |orocessP;iE is fault-tolerant
with respect to the logical property if and only if¢ /5 P;f is a valid formula in€ 4.

We prove that:
Proposition 3.6.4 A procesng# satisfies Definition 3.6.1 if and only if it satisfies Definition 3.6.3.

Proof. From Proposition 3.6.2. ]

Definition 3.6.3 and Proposition 3.6.4 state that for checking if a mtﬁtgi’élsatisfies this
definition of fault tolerance, with respect to a propestywe have to solve the following validation
problem:

VF ey, FE¢, whered =ofs Pl (3.6.4)

In the next section we study efficient solutions to this problem, with respect to time complexity.

3.6.2 Improving the Time Complexity of the Analysis

The validity (satisfiability) problem for the (equationafjcalculus, such as (3.6.4), is generally
EXPTIME complete [75, 193]. Better performances are reached on particular subclasses of the
u-calculus. For example, the satisfiability problem in the disjunctive subclass pfthakulus is

linear time in the size of the formula [203]. It follows that the validity problem for those formulas
whose complement falls in the disjuntive subclass ofitkealculus {.e., the conjunctive subclass

of u-calculus) can be solved in linear time.

Our framework use the partial model checking to reduce the fault-tolerance checking problem
to a validity problem in the:-calculus. To obtain an efficient strategy of analysis, we have to look
for a subclass aofi-calculus that is closed under the partial evaluation function of the partial model
checking and whose complemented class fall in the disjuntive subclass pfdlleulus. In this
section we define theniversal conjunctiveubclass of the-calculus (we write in short{, M C),
and we prove that

e V,MC'is closed under the partial evaluation functiah/s P;
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e the class of the complementet M C' formulas is strictly included in the disjunctive-
calculus.

Remark 3.6.5 We use the two previous results to prove that (3.6.4) is solvable in time linear in
the size ofy'. [ ]

Remark 3.6.6 The size of the formula obtained after the partial model checking procedure is
polynomial in the size of the process and the formula, hence it can be, in the worst case, exponen-
tially longer than the original formula. Thus the effectiveness of our solution methods depends
also on the success of the heuristics that Andersen proposes toﬁma@ smaller while main-

taining logic equivalence. |

In the next sections we summarize the definitions and results about the disjunctive subclass
of the u-calculus; then we introduce thumiversal conjunctivesubclass of the-calculus and we
show how our validation problem can be solved efficiently in this class.

Disjunctive u-calculus

From [120] we reproduce the definition of the disjunctivealculus. Formulas in this subclass of

the u-calculus, called disjunctive formulas, are interesting because their satisfiability problem can
be solved in time linear in the size of the formula [120]. Their definition depends on the definition
of the following special class of formulas:

Definition 3.6.7 (Special Conjuntive Formulas)A conjunctiona; A ... A «a, is specialif and
only if everya; is either a literal or a formula of the forfn(a — ®) and for every actior there
is at most one conjunct of the forfm — ®) amonga, . .., a,.

Definition 3.6.8 (Disjunctive u-calculus formulas) The set ofdisjunctiveu-calculus formulas is
the smallest seb defined by the following clauses:

e every literal is a disjunctive formula,

e if o, 3 € Dthena Vv 3 € D. Moreover if X occurs only positively im, and does not occur
in the contextX A ~, for somey, thenuX.a, vX.ao € D.

° (ae@)é@if@gﬂ
e special conjunctive formulas are disjunctive formulas
The following theorems hold [120]:

Theorem 3.6.9 For every u-calculus formula there exists an equivalent disjunctivealculus
formula.

Theorem 3.6.10 Satisfiability checking for a disjunctiye-calculus formula can be done in linear
time in the size of the formula.

Remark 3.6.11 Theorems 3.6.9 and 3.6.10 lead to the conclusion that the transformatiopfrom
calculus to disjunctive:-calculus introduces, in the worst case, an exponential blow up. We will
avoid this problem by expressing our formulas directly in a subclass of the disjupetigkulus.

[ ]

The p-calculus construat — ®, wherea is an action and a finite set ofu-calculus formulas, is an abbreviation
for A{[a]¢ : ¢ € P} Ala] ©[203]. (a)¢ is equivalent ta — {¢, tt}, while [a]¢ is equivalenttda — ££) A (a —
{#}) so anyu-calculus formula can be written using this new construct.
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VAMC, the Universal Conjunctive p-calculus
We now identify and define the, M C; then we prove our main results, namely:
e V,MC'is closed under the partial evaluation functialy/s P (Lemma 3.6.13);

¢ the class of complementé&tl M C formulas is strictly included in the disjunctiyecalculus
(Lemma 3.6.14).

Definition 3.6.12 (Universal Conjuntive Formulas) The set,Y,MC, of universal conjunctive
u-calculus formulas is the largest subsefs€alculus formulas that can be written without either
the v operator or the(_) modality. The formulas of theé, A/ C are generated by the following
grammar:

¢pu=tf vt | Z| oA | [Klg|pZ.¢|vZ.¢
Lemma 3.6.13V, M C is closed under the partial model checking functjenP.

Proof. By definition of (_) /5 P (see Figure 3.3). For alF and all CCS proces®, (_)/s P
preserves\ and[_|, while the transformation df] introduces only. |

Lemma 3.6.141f ¢ € V,MC, the complement formula df, ¢°, is disjunctive in the sense of
Definition 3.6.8.

Proof. By structural induction ovep. If ¢ is a literal, or ifp = ¢1 A ¢2 the lemma holds trivially.
If ¢ = [K]¢1, theng® = (K)$1°. In this case the lemma holds sin(E)$;“ can be written as
(K) — {¢1 tt}, and¢,° is disjunctive by the induction hypothesis. ¢f= ;X .¢;(X) then
¢¢ = vX.01°(X) andg, is disjunctive by the induction hypothesis. The case v X.¢;(X) is
treated similarly. This concludes the proof. ]

The previous results are the foundation of our solution method for (3.6.4), synthesized by the
following theorem:

Theorem 3.6.15If ¢’ € V, M C then (3.6.4) can be solved in time linear in the size/of

Proof. Problem (3.6.4) requires the validity check@f TheV,MC formula¢’ is valid if and
only if the complement formula’® is not satisfiable¢’ can be obtained in linear time from.
By Lemma 3.6.14Y'“ is disjuntive, and by Theorem 3.6.10 the satisfiabilityptif is solvable in
linear time in its size. This concludes the proof. ]

Corollary 3.6.16 If ¢ € VA MC then (3.6.2) is answered in time linear in the sizegf P.

Proof. By partial model checkingyF' € E, (Pg# | F)\JF = o¢ifandonly if VE € €4, F =

¢/ P¥. By Lemma 3.6.13 5 P} is in theV,MC, and the Corollary follows immediately
from Theorem 3.6.15. u

3.6.3 V,MC Formulas in Fault-Tolerance

This section discusses the rolewg{M C' in fault-tolerance. We start with a general discussion
followed by a list of concrete properties. Those properties, taken from the literature, are divided
into two sublists: the former contains properties that fal jin\/ C, the latter contains those that

do not fall invV, M C.
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Suitability of VA M C in Fault-Tolerance: a Discussion

Accordingly to [19], fault-tolerance properties can be divided informally into the following cate-
gories:

o fault-toleranceif the system delivers a correct answer despite faults;

o fail-silenceif system failures can only be omission failures., it gives either a correct
answer or no answetr;

o fail-stopif, in case of faults, the system terminates;

o fail-safeif the system, in case of faults, enters into a state in which no catastrophic event
occur.

Depending on the particular system some of the previous properties are formalgafetys
or livenesgroperties; others are formalized as a combination of themthey are neither safety
nor liveness properties. Safety and liveness properties where first described by Lamport in [127],
who studied linear-time properties of reactive systems. He suggested that the intuitive meaning
of safety is “nothing bad happens in the lifetime of the system”, while the meaning of liveness is
“something good eventually happens” [127].

In the following we give an intuition to understand what kind of properties are expressible with
VYAMC. We need to refer to a formal definition of safety and liveness. In the rest of the chapter
we will use the following linear-time semantic definitions of safety and liveness [10, 166, 143],
that correspond to the branching-time definitions of universally safety and universally liveness
properties respectively [144].

Definition 3.6.17 (Semantic Characterization of Safety and Livenessl)et P be a property ex-
pressed as a sequence of everitss a:

safety property, if and only if every infinite sequence of events that does not satisfy this property
contains a finite prefix such that no infinite sequences obtained by adding an infinite suffix
to this finite prefix satisfies this property;

liveness property, if and only if for every finite sequence we can find an infinite suffix, so that the
resulting infinite sequence satisfies the property.

Remark 3.6.18 Alene and Schneider proved in [10] that any property can be classified as a safety
or a liveness property, or an intersection of them. ]

“Fail silence”, “fail stop” and “fail safe” enjoy a common structure [19]. In thecalculus, the
previous properties are expressible by formulas whose external fari.i§]¢ A [—] X, where

¢ expresses respectively a behavior without faults, a stop, or a safe behavior: i, MC,
formulas in this form fitYA M C. Properties expressing “fault-tolerance” are more general and
do not have a common form. In this case to understand if they,f/C' we have to study

each formula separately. As a general consideration we note that safety properties of the form
vX.p A [—]X, expressing “no bad state is ever reached” (hetethe complement of, holds

in the bad state) will fitY, M C only if ¢ fits. On the other hand, safety properties of the form
vX.[K]ff A [—]X, expressing “no bad action i ever happens” do fit M C.
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Liveness properties are a bit more tricky. For example, the general formulation of a liveness
property that involves a condition over a stage, expressing that “a state satisfyings eventually
reached” isuX.¢ V ((—)tt A [—]X) [190]. This form does not fit', M C because of thé—) and
theA.

The liveness property expressing “an actioeventually occurs” requires a discussion. Its
p-calculus formulationp X .(—)tt A [—a]X [37], does not fitYAM C. The subformulg—)tt is
required to avoid that the formula is trivially satisfied because the system deadlocks. If we assume
to check deadlock freedom separately, this conjunct can be removed and the weaker formulation,
pX.[—alX, fitsVAMC.

Other categories of formulas, which are neither safety nor liveness propedigsséme
cyclic properties) have to be considered one by one. We anticipate that witnesses of these formulas
fall in VAMC. We are now ready to give concrete examples of each category of formula in the
next section. This preliminary discussion also suggests how,théC formulas are related to the
set of fault-tolerance properties as illustrated in Figure 3.4.

Examples ofV, M C Formulas in Fault-Tolerance

This section provides examples of fault-tolerance properties that'doMtC' (positive examples)
and that do not fitYA M C (negative examples). providing examples of (categories of) formulas in

Positive Example

Our examples consist of a list 8, M C properties taken from [188, 37, 190]. For all the proper-
ties, we underline their use in fault-tolerance.

Safety Properties

Nothing Bad (positive example [190], page 128-130). lgtbe a property that holds in a bad
state. The general form expressing that “in case of some faditthre bad state is never
reached” is expressible as follows:

def

NothingBad(¢) = vZ.[Flo N [—]|Z

This class of safety formulas is ¥\ M C only if ¢¢isinV,MC. A necessary condition for
this to happen is, for example, th#t does not contain conjunctions.

Never ([37] page 42, [190] page 128). L&f be the set of transitions indicating a bad behavior.
Formula
Never(K) £ vZ.[K|tf A [-]Z

expresses the safety property “no transitiorkirever happeng’ It can be used to express
the following fail safe property “in case of a fault iy no bad transition ever happens”:

vX.[F]Never(K) N [—]X

2Another way of interpretingVever(K) is that the bad statéi)tt is ever reached.
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Fault Tolerant Properties

liveness safety

Unless
Fairness|

VAMC

others

Figure 3.4: Fault-tolerance properties that are expressibig &6C formulas.V,MC'is able to
express many safety property and some liveness property. See text for more details.

Deadlock or Termination ([188], page 7).

NoObservableAction £ [[-]]££

The previous formula expresses that the system is incapable of performing any observable
action, that is it either deadlocks or stops. This property can be used to express the fail stop
property “in case of fault§, the system deadlocks or terminates”

v X [F]NoObservableAction A [—] X

Unless ([190], page 43).

Unless(K,J) < uZ.[—(K U J)ff A [-J]Z

This formula expresses “in any run actions fréfmhappen unless & action occurs”. This
property where an action itf may not eventually occur, implements the weak version of
the until modality [35]. It can be used to express fault-tolerance, or as a building block to
express fail safe as follows:

vX.[F]Unless(K,J) A [—]X

Cycle | ([37] page 42) Properties expressing cycles aré,n/C. The simplest example is the
following safety property:

Cycle(a, b) £ vZ.[b)£f A [—a,b]Z A [a](vY.[a]££ A [—a,b]Y A [b]Z)
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expressing “two actiong andb occur in alternation”. A sequence (also infinite) of other
actions is allowed to interleave betweenaand the nexb. It expresses fault-tolerance, or
it can be used to express a fail safe behavior as follows:

vX.[F|Cycle(a, b) N [—]X

Formulas expressing cycles with more than two actions also f&ll i C [190].

Liveness Properties

Fairness | ([37], page 110). For an agent with sé#, b, c}

Fairness(b; o) £ vZ.pY oW Z A [[a]]Y A [[c, ]W

expresses the liveness property “no infinite sequence can be performed containing infinitely
many occurrences af, but no occurrences d@f'. It represents a fair behavior in case of
some fault, for example as in the following fail safe property:

vX_.[F|Fairness(b; a) A [—] X

Fairness Il ([190], page 130). Another, M C fairness property is:

Fairness'(a; b, ¢) £ vZ.(uY1.[b](vYa.[d(VY3.Y1 A [—a]Y3) A [—a]Ya) A [-]Z

Informally, it says “in any run, ifb andc happen infinitely often, than so does This
formula can be used to express the property saying and that “in any run, fairness holds in
case of some fault iff occur”:

vX.[F)Fairness'(a; b, ¢) A [-]X (3.6.5)

Finitely Often ([190], page 132). Another liveness property that falls' il/C' is:

FinOft(a) £ pZ.pY.[a)Z A |—a]Y

expressing “in each rum, can only happen finitely often”. Used as an invariant, it expresses
fault-tolerance. It can be also used to express either a fail silent or a fail safe behavior, as
follows:

vX.[FFinOft(a) N [—]X

Other Properties|

Some properties that are neither safety nor liveness properties\falliiC' also. For example,

the following variants of the cyclic properycle(a, b):
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Cycle Il ([190], page 131-132)

Cycle' (a,b) £ pY.[bJ££ A [a](nZ.[a)££ A [B]Y A [—b]Z) A [-D]Y

This property expresses the property “two actiarendb do occur in alternation” with the
constraint that no intervening actions are allowed to continue forever without the wext
b happening. The variant using a greatest fixed point

Cycle”(a,b) £ VY. [T A [a](uZ.[a]££ A [D]Y A [=b]Z) A [b]Y

also falls inv, M C. It expresses the same property@ag:le’(a, b) does, with the constraint
“other actions can intervene forever betweemamd the nexd, but whenever an happens
b must eventually happen”.

Negative Examples

This section lists examples of formulas that do not/fiV/ C'.

Nothing Bad (negative example [190], page 128-130] kétbe a condition that holds in a bad
state. The general form expressing the safety property that nothing bad happens is:

def

NothingBad(¢) = vX.[F]o A [-]X

If ¢ & V\MC, this family of properties fall outside ivi, M C’; a sufficient condition for this
to happen is when® contains conjunctions.

Deadlock Freedom ([37], page 109).

DeadlockFree = pX.(—e)tt A [[<]]X

Deadlock freedom cannot be expressed i/ C, because we cannot avoid tf{e)) moda
lity. Deadlock freedom is a particular instance of the formulas expressing the “eventually”
modality.

Eventually ([37], page 43). In this category we find, for example, the formula saying “an action
a eventually happens”:

Eventually(a) £ pX.(=)tt A [—a] X

If we want to exclude that the property holds because the system deadlocks (see the discus-
sion in section 3.6.3), this property does notfit\/ C. Also the generalization

Eventually(¢) = uX.¢ vV ((=)tt A [—a]X)

expressing “a closed formutaeventually holds” does not fall i, M C' either. As a con-
sequence, th&, M C fragment cannot express any formula containing the “eventually”
modality, for instance “always eventually”.

The last negative example is “strong until”:
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Strong Until ([37], page 43):

def

StrongUntil(¢, ) = uX.oV(pA{(=)tt A[—]X)

where X does not occur ip. Informally strong until says¢ holds untily becomes true”.
It also requires thapp becomes eventually true. Strong until needs the mod4lignd,
consequently, does not fall iy M C.

3.6.4 Our Running Example

This section shows a CCS model of a simple fault-tolerant system, and shows how we check a
fault-tolerance property in the framework of the analysis proposed so far.

Let us consider a different version of our fault-tolerant battery specified in Example 3.4.1 (see
also Figure 3.5). In this more sophisticated version the controller module also acts as a failure
detector: if both batteries do not produce a valid burst of energy, it returns the méasagdhe
CCS model is as follows:

Det = retyo.Det’ +rety.ret.Det”

Det’ & retyo.fail.Det” + ret,s.ret.Det”
Det’ ¥ retyo.Det” + rety 1. Det"”

Det” £ ack.Det

We now build two new fault-tolerant batteries we cElhe?. f0.51 and Energzzfo ¢,y Fespec-
tively. In the former (see Figure 3.5) we include one faulty battery and in the Second two faulty
batteries:

def

feoy = (S| Ene™ || Enell) .\ || Det)\ A

Ene?. (fo,£1}
Energzz{f )= = (Spl || Ene{f ) I Ene{f ) | Det) \ A

whereA = {get,, gety, ret; g, ret,1,retog, rety 1, ack}.

Let us now consider the following, M C formula expressing the safety property “in any run,
actionfail never occurs”

¢ EvX . ([fail]ff A[-]X) (3.6.6)

Equivalently, we can consider its equational version=, ([fail]ff A [-]X). We want to
prove that property (3.6.6) holds dime™ {f, £, } even in case of faults. The scenario of analysis
is:

VEiz,1) € Efz0,1) (Eneﬁmfl} | Fizo,)) \ {£0,£1} F ¢ (3.6.7)
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(retq,0)

ret
get
fail

(reta o)
(get,)

fo f1

Figure 3.5: The flow diagram of the (candidate) fault-tolerant version of the baﬂeaﬁo £}
Actions in brackets are internal actions.
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Figure 3.6: The minimum automata Weak-bisimilarf}]i@e{fo £}

Here, to keep the size of the model small, and the analysis tractable, we use the minimum
process weak bisimilar tEneﬁo’fl}, reported in Figure 3.6. The use of a weakly bisimilar process
here is justified by the fact that we are analyzing fault-tolerance at the abstraction level of an ex-
ternal observer. This means also that properties are intended in their observational-based interpre-
tation; the equivalence of the analysis is so preserved. The partial evalugtiens, Eneﬁf()vfl}

produces the following formula:

.'T]XO /\Xl)

F)X1 A Xo A [Fo, E1]X3)

?]X; A E(Z), ?1];(3); 3 (3.6.8)
?]Xg /\Xo)

Oiso.01) Enely 1 = (Xo =, [Faille£ A (-
(X1 =, [faillfs A (-
(Xo =, [fail]ff A ([
(X =, [Faillef A (-
whereF = {fo, f1,f1,fo}.

If we want to answer to the question “for every environment does the energizer satisfy the
formula ¢” we have to check the validity of formula (3.6.8). With the theory we described, this

can be donein linear time. Let us observe that the result in [120]that the satisfiability problem
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for p-calculus disjunctive formulas can be solved in linear time) is not still directly applicable. For
using it, we need to answer (3.6.7) by checking the satisfiability for the complement of formula
D it0,£1} Ene?fffO £} which proves to be exactly disjunctive in the sense of Definition 3.6.8.

3.7 Background on Observational Properties

This section opens the second part of the chapter, where we characterize fault-tolerance in terms
of GNDC. First, we summarize the basic background to understand the GNDC characterization of
fault-tolerance. In Section 3.7.1 we recalls the notion of observational equivalences among CCS
processes. In Section 3.7.2 we summarise the definitions of NDC, BNDC, SNNI, BSNNI, and
SBSNNI; these definitions formalize in CCS basic non-interference properties.

Later, in Section 3.8 we present our characterization of fault-tolerance in the GNDC, and we
show how to re-use, in fault-tolerance strategies analysis techniques proper of the non-interference.

3.7.1 Observational Equivalences among Processes

Properties over a system model can be expressed also by comparing its behavior with that of an-
other model. As we have done in Section 3.5.3, we consider the case in which an external observer
cannot see actions; hence, actionsare abstracted from our definition of process behavior. We
usetrace equivalencandweak bisimulatiorj159, 83] as binary relations to compare the behav-
ior of two processes. These relations represent two different notions of observational equivalence
among processes. Informally, the former states that the sets of traces of two trace equivalent
processes appear the same to an external observer; the latter affirms that two weakly bisimilar
processes share also the branching structure of their labelled transition systems.

Since we focus on observable actions, both previous relations implicitly refer to the observable
transition==, defined in Section 3.5.3. We now recall the formal definition of trace equivalence
and weak bisimulation from [83]:

Definition 3.7.1 Leta = a1 ...a, € Act* be a sequence of actions. We write=% P’ if and
only if there existPy, ..., P, € & suchthatP =% P =2 ... =& P, LetT(P) = {a € Act* :
JP', P =% P'} be the set of traces associated to a procBs¥Ve have that a CCS proce§scan
execute all the traces of a CCS procéséwritten P <;,4.. Q) if and only ifT(P) C T(Q). Two
processes’ and( are said to bdrace equivalenfwritten P ~; Q) if and only if P <4 @ and
Q Strace P

Remark 3.7.2 Relation~; can be defined also a$,qce N(<trace) - [

The general notion of bisimulation [158] consists of a mutual step-by-step simulation: given
two processe$’ and(@ when P executes a certain action moving B then( must be able to
simulate the single step by executing the same action and moving to aXewhich is again
bisimilar to P/, and vice-versa. A weak bisimulation is a bisimulation which does not care about
internalr actions. R

We write P =% P’ for P =% P'if a € Act and forP(——)*P’ if a = 7. Note thatP == P’
means thaf’ evolves inP’ with zero or morer.
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Definition 3.7.3 A relation®R on € x & is aweak bisimulationf for each (P, Q) € R and for
eacha € Act,:

if P % P then 3Q: Q=% Q and (P, Q)cR
ifQ %@ then 3IP':P=% P and(P,Q)eR

Two processe® and( are weakly bisimilar(written P =~ Q) if a weak bisimulation relation
R exists such thatP, Q) € R.

Remark 3.7.4 P =~ @ implies P =; @ [83]. ]

Weak bisimulation is able to detect most of the safety properties we use in this chapter, such
as fail safe, fail silent, fail stop, and fault-tolerance. Some liveness properties, such as deadlock
freedom, can be caught too; instead, the use of weak bisimulation does not allow to distinguish
between deadlocks and livelocks [37].

3.7.2 Information Flow and Non Interference Properties

Information flow properties have been introduced to study and control flow of information among
different entities. Many information flow properties have been uniformly formalized in a CCS-
like process algebraic setting [80, 81]. The common intuition behind these properties is strictly
related to the classic notion of non-interference [101], which aims to control the information flow
between two levels of user, low and high. Basically, non-interference says “no low level user is
able to deduct anything about the activity of a high level user”. Non-interference properties have
been also restated in terms of network security [85], where high users represent network intruders,
and low level users model cryptographic protocols.

Among the many formalizations of non-interference properties we are interestedMothe
Deducibility on Composition@NDC, for short), expressed in CCS as follotvs

PeNDC iff VX €&y (P X)\Hry P\K (3.7.1)

In (3.7.1)E4¢, whereH C Act is the set of all processes whose sort is the set of high actions.
The NDC is defined in terms of a trace equivalence. The version of NDC that uses weak bisimula-
tion, instead of trace equivalence, is called bisimulation-based NDC (in short, BNDC). Properties
NDC and BNDC (we write (B)NDC when we do not want to distinguish between them) can be
read as “no high level activity can change the low level observational behavior”. In fact, in (3.7.1)
P\ 3 exhibits only the low level behavior a?, while (P || X) \ H is the low level behavior of
Pl X.

Remark 3.7.5 From the informal reading of (B)NDC we can foresee its reading in fault-tolerance:
“no faulty environment (high level activity) can change the fault-tolerant system (low level) be-
havior”. ]

A serious obstacle to the verification of (B)NDC is the universal quantification over all the
possibleX € 4. In [83] two possible solutions are suggested and studied:

%Indeed, in [80] NDC has been originally formalized in SPA (Security Process Algebra) which is basically CCS
where the set of actions are partitioned into the $&&nd L of high and low actions.



72 Chapter 3. Techniques of Security Protocol Analysis in Fault-Tolerance

(Solution A) to define a most powerful enemy (with respect to a behavioral equivalence relation)
in such a way that the universal quantification over all possible enemies can be removed in
favor of a single check against the most powerful enemy.

(Solution B) to prove other properties ove?, stronger than (B)NDC, that do not require any
guantification.

Solution A, is based on the following definition and proposition.

Definition 3.7.6 A relation over processes, is aprecongruencwith respect to the CCS opera-
tors|| and) if the following property holds, for alP, @, X € € andA C Act:

P<@implies(P || X)\A<(Q ]| X)\A
The following results holds for precongruences [86, 85]:
Proposition 3.7.7 <. iS @ precongruence with respect to the CCS operataad \.

Proposition 3.7.8 Let be< a precongruence with respect ffaand\. If there exists two processes
Top € E4¢ such that for every process € £4¢ we haveX « Top, then

PeNDC, iff (P Top)\H<aP\ %K

In Proposition 3.7.8 we have used a generalized version of the NDC, where a generic precon-
gruencexis used instead of the trace equivalerge Proposition 3.7.8 implies also the following
corollary about the congruence relation induced by a precongruej@&s:

Corollary 3.7.9 Let< be a precongruence with respect/tand\, and let~< < (<) L. If there
exists two processdsot, Top € Eq¢ such that for every process € €4 we haveBot < X < Top,
then

PeNDC. iff  (P| Bot)\H ~ (P | Top)\ H ~ P\ K

In summary, solution A is based on the existence of a most powerful prdegsdf we can
find a processlop such thatvX € E4¢, X < Top, then checking NDC againgfop is necessary
and sufficient for checking NDC against &l in £4: the quantification is removed in favor of
single check against the (albeit huge) proc&ss.

Solution B exploits the following SNNI (acronym for, Strong Non-deterministic Non Interfer-
ence) property:

PeSNNI  iff  P\Hr~y P/K (3.7.2)

Here / is the CCS hide operator [83]P/ is the process® where all actions inid U 3 are
replaced by a action. SNNI is defined in terms of a trace equivalence; the version using weak
bisimulation is called Bisimulation-based SNNI (in short, BSNNI).

Remark 3.7.10 SNNI and BSNNI can be checked by exploiting only local conditions. No uni-
versal quantification ovef 4 is required. ]
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Another property of interest is the following SBSNNI [83] (Strong BSNNI):

P e SBSNNI  iff VP’ e Der(P): P' € BSNNI (3.7.3)

Informally P enjoys SBSNNI if any”’ in the derivative set of enjoys BSNNI. Note that if
P is finite state, theDer(P) is finite as well, and SBSNNI can be checked by performing a finite
number of BSNNI checks. Moreover, SBSNNI enjoys compositionality with respect to theg|CCS
and\ operators:

Proposition 3.7.11 P,Q € SBSNNI implies (P || Q) \ H € SBSNNI
Finally, the following proposition holds [83]:
Proposition 3.7.12 The following relations between NDC, BNDC, SNNI, and SBSNNI hold:

e SNNI = NDC
e SBSNNI C BNDC

SNNI is a sufficient and necessary condition for NDC. We can clféek SNNI instead of
P € NDC, and checking SNNI requires a test only involving local informatio#®in

SBSNNI is a sufficient condition for BNDC. We can cheBke SBSNNI to understand if
P € BNDC. SBSNNI is easily verifiable iP is finite state: it requires to check BSNNI — check
that requires only local information — over the finite set of derivative8.dfloreover, the SBSNNI
is compositional: we can reduce the combinatorial explosion due to the parallel composition by
checking it directly onP subsystems.

3.8 GNDC Characterization and Analysis of Fault-Tolerant

This section introduces GNDC basic ideas and its application in fault tolerance analysis. From
Section 3.2 we know that a GNDC property has the following general form:

Pe GNDC®  iff VX €&y: (P X)\ Haa(P)

This scheme is general enough to capture a wide class of security property definitions. For
example, more specific security properties such as the BNDC and the NDC, can be subsumed as
GNDC properties [85]. We instantiate fault-tolerance in GNDC, in three steps.

The first step requires to specify whatand € 4 are in this context: the former, is the process

Pg# obtained by following the uniform modeling framework described in Section 3.3; the latter,

that is€ 4, is the set of all faulty environmentg. We recall from Definition 3.3.2 thaty &t {X]

Sort(X) C FuU{r}}. Then the general GNDC scheme we propose for fault-tolerance, is:
Definition 3.8.1 (GNDC Characterization of Fault-Tolerance)
P¥ € GNDCS  iff  VFe&s: (P} | F)\F<a(P}) (3.8.1)

Remark 3.8.2 The separation between the system model and the environment we made in Section
3.4.1, allows us to leave' unspecified and to let it range ovés-. ]
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The second step requirassP;f) to be some basic property of fault-tolerance. In Section 3.8.1
we will see how to express properties like fail safe, fail silent, fail stop, and fault-tolerance over
our test cases models.

The third and last step for the instantiation of GNDC in fault tolerance, concerns understanding
what families of equivalences are suitable for the analysis of such properties. This will be
discussed in Section 3.6.2, where we wiitenstead ofP;ﬁ when no explicit reference to the
specification framework of Section 3.3 is required.

3.8.1 Fault-Tolerance Properties as Instances of GNDC

In this section we show how to express fail stop, fail silent, fail safe and fault-tolerance in the
GNDC scheme. Generally speaking these properties are modeled via a modified @é&ﬁ))m

of Pﬁ, representing the expected behavior with respect to the property under examination. In the
following we treat each property separately, and we express them over our running example. The
definitions of fail stop, fail silent, fail safe and fault-tolerance are taken from [19].

Fail Stop. A model of a systemP;E is expected to btail stopif, in case of faults, it switches into
a stop state.

In this case the model exhibiting a fail stop behawog, the proces&stOp(Pg#), is built using

the following ideas. Fault actions iﬁjf are abstracted away and replaced by silent actions; then,
expected behavior of the system is either able to manage the fault without showing faulty behavior,
or to stop.

Example 3.8.3 Let us consider the fault-tolerant mOchtteT’y{#fo £1) introduced in Example

3.4.1. A fail stop behavior model is, for example, the proms@,(Battery?;O f1}>’ written avsop
for short: 7

Qstop & get.(T.ret.cutop + 7.0) (3.8.2)

In (3.8.2) we model the idea that after having received a request of energy (@etipim case
of any fault (here hidden and represented by the silent acdi@ur fault-tolerant battery is either
able to satisfy the request and produce a valid unit of energy (acéo); or it stops by behaving
as the stuck process

Let us assume the battery is in an environment that always injects all the possible faults, that
def —

!; St;ffo’fl} = fo'f}?fmfl} + f1-9ffo,f1}- By using the tool CWB [55], for example, we can prove
a

(BatteryTy oy | Freoery) \ £, £1} 7% Qstop (3.8.3)
From (3.8.3) we can conclude thBtztteryffo £ ¢ GNDCZstor, -

Fail Safe. A model of a systemP;?E is expected to béail safeif in case of faults it switches to a
safe state.
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In this case the model depicting fail safe behaway.,the procesmsafe(P,f) can be built
starting froij.E following a procedure similar to the previous case. Faults are abstracted away
and represented by silent actions. Next the system is either able to manage the faults without
showing faulty behavior, or it shows a behavior that is considered safeany fault is detected.

The criteria describing a safe behavior are not clearly definable at this level of abstraction;
consequently the formulation of this class of properties is too general in GNDC. In our opinion
this is due to the fact that the wofdil safesays nothing about what behavior is considered safe for
the system. In fact, this is the feedback we expect to get from using GNDC: formulating properties
in GNDC helps us to understand the degree of formality in the definition of a property itself.

Example 3.8.4 Let us consider the CCS modEInergiszo £1} introduced in Section 3.6.4. A
possible fail safe behavior modelmfe(Energz'z?{io fl}) (in short,acsqze), is:

Qsafe = get.(T.Tet.agp + T.F21L.) (3.8.4)

In (3.8.4) we model as safe behavior the fact that the detector flags that no battery has produced
valid energy with the external actidiail. So after having received a request of energy (action
get) and after any fault occurrence, our model is able either to manage the fault and produce a
valid unit of energy (actiomet) or it signals that a failure happened (actifail). Again using

the CWB we can verify that:

(Energiz?éfoyfl} | Fitoe01) \{f0. £1} & Quape (3.8.5)
HereJ 7, is the faulty environment representing our fault assumptions. From (3.8.5) we con-

clude t at our fault-tolerant model satisfies the fail safe property under the assumption that faults
happen as expressedaflf[ifO 1}

In Section 3.8.2 we will discuss when, for suitable process reladio(’Energiz?; ) I

gj}(foil}) \ {fo0, 1} Q. is a sufficient condition for concluding thﬂat{f ) € GNDCY™™".

Fail Silent. A model of a systenP;é is expected to be fail silent if a fault is ignored.

In this casem(P;f) can be built starting fromP;E following the idea that it is able to manage
its faults without showing failure. Again occurrences of faults are abstracted away and represented
by silent actions.

Example 3.8.5 Let us consider the modeﬂﬂmftery?f;O £1) introduced in Example 3.4.1. A model
of fail silent behaviorasilem(Batteryﬁo f1}) (in short,avgjient), is:

def _—
Qsilent = get.(T.ret.qgijent + T-Qsilent) (3.8.6)

In (3.8.6) fail silent behavior is intended as the ability of the system of neither stopping nor show-
ing unpredictable behavior. In case of fault, it becomes ready again to receive a new request for
energy. So after having received a request for energy (agtioh our model is able either to
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manage the fault and produce a valid unit of energy (actiex) or it is ready to receive a new
energy request. Again using the CWB we can verify that:

(Batteryly ey | Fieg o) \ {051}~ Qitens (3.8.7)
Formula (3.8.7) implies that our fault-tolerant model satisfies the fail silent property under the
assumption that faults happen as expresséﬁf}'gfl}. For some other class of equivalenggs
this also implies thaBattery# € GND(C¢sient  as explained in Section 3.8.2. |
{fo,f1} <

Fault-Tolerance. A model of a systenPg# is expected to be fault-tolerant if its behavior is ob-
servationally equal to the behavior of a module that does not fail at all. In this case then
ay(P¥) = P¥ \ 7, that is fault-tolerant systems that can never execute any fault action.

Example 3.8.6 In this last example we consider two different versions of fault tolerant models:
the firstBaﬁ{éffO £1) is the fault tolerant candidate model introduced in Example 3.4.1. The second

model is the modified versioBne?. introduced in Example 3.8.4. Fault tolerant behavior for

{fo, 1}
B“t?ﬁfo,fl} andEneffO’fl} is formally defined by the following CCS processes:
ap Eap(Batly o) = Batly .\ {fo,£1} (3.8.8)
ofy £ ap(Enely ) = Enely .\ {fo,£1} (3.8.9)

In both (3.8.8) and (3.8.9) the expected fault-tolerant behavior is the same behavior as resp. models

Bat*’;o c andEneﬁO 1) where the fault actions are indeed not allowed to happen. By using the

CWB We verify that:

(Bat?{imfl} H Stszoil}) \ {fo’ fl} ~oQf (3.8.10)
(Ene?éfo,fl} I ‘rfy{ﬁfo,fﬁ) \{fo, f1} = a}t (3.8.11)
u

Remark 3.8.7 Observe that the GNDC instance wheris ~, and wherex(P ) is P} \ ¥ (i.e.,
what it will be using our “fault-tolerance” property calleg; in Section 3.8.1), is BNDC re-stated
in our framework. ]

In fact
#
P¥ e GNDCT) it wFees: (PE | F)\F~PE\T (3.8.12)

As a final observation we note that BNDC is not compositional with respect to parallel com-
position (see [146]), that is fro?, P’ € BNDC' it cannot be deduced th&t || P’ € BNDC.

Anyway there are bisimulation based-equivalences that are compositional andB&ply’,
so that they can be used to prove a sufficient condition for fault-tolerance, and the formulation of
fault-tolerance given in (3.8.12) results are attractive from this point of view. An example of these
properties is SBSNNI introduced in Section 3.7.1.
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3.8.2 Other Observational Relations in GNDC for Fault-Tolerance

In the previous section we have used weak bisimulation when formalizing the instances of fault-
tolerance properties in the GNDC; weak bisimulation is useful to detect most of the properties
defined so far. However in practical situations we expect that many systems will be fault-tolerant
under weaker conditions. As long as the system response is “good enough”, it may not be a
problem if the existence of faults can be deduced.

For example, the definition of fault-tolerance given in (3.8.12) is too strong and prevents the
observer to deduce thatyfaults have occurred.

If we exclude deadlock detection, for all the other safety properties defined in this chapter
the ability to distinguish the branching structures is not required. In fact safety properties do not
depend on the (branching) path leading to a fault.

This allows us to resort to a weaker form of observational equivalence suchcasequiva-
lenceandsimulation This has also, within GNDC theory, a positive effect on compositionality
and on avoiding the universal quantification of fault injectors over the faulty environment. In the
following we write P |5 @ as an abbreviation fofP || Q) \ &, and we refer to a generig(_)
function. Obviously the results will also hold for all _)’s considered so far.

Most General (Faulty) Environment

The possibility of avoiding universal quantifier in expression (3.8.1) is based on the theory of
precongruences whose results we introduced in Section 3.7.8. These results can be restated in
terms of the GNDC, also:

Proposition 3.8.8 ([86]) Let be< a precongruence with respect fo-. If there exists a process
Top € E4 such that for every process € €4 we haveX « Top, then:

Pc GNDC%  iff (P |g Top)<a(P)

In particular, if the hypothesis of the proposition above holds then it is sufficient to check that
a(P) is satisfied whenP is composed with thenost general environmenffop. In our fault-
tolerance analysis context it would permit to make only one single check, in order to prove that a
fault-tolerance property holds in every fault scenario. We have also the following corollary for the
congruence induced by

Corollary 3.8.9 ([86]) Let« to be a precongruence with respect|tg and lete< be defined as
an <L If there exist two processesnt, Top € €4 such that for every process ¢ €4 we have
Bot 14 X < Top then

Pe GNDCy,  iff (P ||y Bot) o< (P [|5 Top) > a(P)
We show that whenever we are interested in properties based on the notion of trace equiva-
lence, Proposition 3.7.8 and Corollary 3.8.9 hold.
In [86, 85] is reported the following proposition stating th&t.... is a precongruence with

respect to CCS operators.

Proposition 3.8.10 <, IS a precongruence with respect|te
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In addition we can prove the existence of the most general (failing) environment, and provide
its description. Let us consider the following process:

Top¥ = Z £.Top” + £. Top” (3.8.13)
fexr

It is straightforward to demonstrate that:

Proposition 3.8.11If X € &5 thenX <;rqce Top”.

def

Proof. We prove thaiR = {(X’, Top”) | X € Der(X’) N €4} is a (weak) simulation [158] (see
also Definition 3.8.12) containing the p&iX, Top”). As the simulation preorder is finer that the
trace preorder the thesis follows. There are three possible cases:

o X' L. X" with X" &, and Top” LN Top? is derivable; hence,X”, Top”) € R.

o X' 1 X7 with X" € &, and Top” —= Top? is derivable; hence, X", Top”) € R.

T

o X' 75 X" with X" € &g, and TopT == Top? is derivable; hencd, X", Top¥) € R.
n

So we have proved that there exists a most general environment with respegtio A
similar conclusion can be obtained when the followangulationrelation is considered:

Definition 3.8.12 ([160]) Let S a binary relation onE x €. Thens is said to be asimulationif

for each(P, Q) € $ and for eachu € Act,, if P %, P’ then there exist§)’ such that :a> Q'
and(P’,Q’) € 8.

We write@ <;,,, P if there exists a simulatio8 such that{ P, Q) € S. Itis easy to prove that
<sim IS @ precongruence with respect to CCS operators and that it admits the same most general
environment in (3.8.13).

Proposition 3.8.13
(1) <sim is a precongruence with respecttg

(2) if X € E5thenX <, Top”.

Proof of case 1.Let consider the followingR = {(P || X,Q |5 X) | P,Q,X € &P <gym
Q}. We show that is a simulation relation. The only interesting case is that invoivim'ghin

a communication: let assume that||s X —— P’ ||5 X', because® %, PlandX - X’

with @ € Act. Because of? <;,, @@, we have that) 4, @', and the transition) ||y X =
Q' |5 X' is derivable; moreoveP’ <.... Q" and hencéP’ |5 X', Q' ||+ X’) € R. The other
(simpler) cases are listed as follows:

e Ply X % P |5 X. This happens fon ¢ FUF, if P %, P'andX /. Because

of P <ym QthenQ == ' and soQ |5 X == @' |+ X is derivable. Moreover,
P’ <4race @ and hencéP’ |5 X, Q" || X) € R.
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e P |y X -% P |5 X'. This happens fon ¢ FUT, if X -2 X andP /. Then
Q |ls X % Q |5 X' is derivable, andP |5 X', Q ||+ X') € R.

[ ]
Proof of case 2.Directly from the proof of Proposition 3.8.11. ]

As a conclusion, whef ;... and<;,, are used as process relations, the checkitestisfies
GNDC properties can be carried out only against the “most general (faulty) environment”.

3.8.3 Compositional Analysis of Fault-Tolerance

This section illustrates that, whety,.... and<,;,,, are used as process preorders in our analysis
scheme, compositional proof rules for establishing that a system enjoys GNDC can be applied.
Compositionality is a desirable property in verification to infer a global fault-tolerance exploiting
local fault-tolerance results. Let us show it with a simple example, obtained with the following
processes:

Torch £ get(ret.f1ash.0 + fail.no flash.0)

S £ (Toreh || Ene{fmfl}#) \ {get,ret}
This example represents the behavior of a flashing tdkefeh using the fault-tolerant ener-
gizer of Example 3.8.6. The energizer is expected to furnish one unit of energy, even in case of
fault. The flashing torcl{orch emits af lash action whenever it receives exactly one unit of en-
ergy,no_flash otherwise. What an observer watching the systgmbtained by composing the
torch and the energizer, expects is to see dibsh actions. (Recall that the systeﬁme{fmfl}#
provides onlyret.) This safety property can be formalized as:

S e GNDCi(Si)n iff VFf S 8{f0,f1} : S H{f07f1} F{f07f1} <sim Oé(S) d:efm.o
Here the<g;,, relation has been used. In this case the expected behavior (given throtgh

is that one unit of energy is furnished (and so ddesh is observed). It is easy to convince us

that the given specification of the system enjoys our safety property. Let us now consider a system
S™ obtained by composing (in parallet)instances of the systefiand a similar safety property,

on theS™, that reflects the question “only at masflashes are observed”. In our scheme this is
equivalent to prove that:

s" e GNDCE®" iff

VF{fo,fl} € 8{f07f1} 05" ||{f0,f1} F{f07f1} <sim a(s)n d:efa(s) H H a(S)

n

Compositionality would made the previous statement true, for any fixedthout the need
of any additional check. In the following we prove that it is really the case when.. or <gm
are used. The following results hold:

Proposition 3.8.14 Let P, and P, be two processes such thBt GNDC‘iiize fori = 1,2.
Then -
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o P | P, € GNDCUFV(P)

Strace

o P | P, e GNDCEI)
Proof. Exploiting the existence of the most general environmént, and the fact thak,qce
(resp<sm) IS a precongruence. ]

Remark 3.8.15 We affirm that global fault-tolerance can be deduced from local fault-tolerance
in Section 3.8.3. Here, by local fault-tolerance we mean the property enjoyed by the formal
specification of sub-systems which are required to be fault-tolerant on their own. By global fault-
tolerance we mean the property enjoyed by the specification of a system which is obtained by the
composition of such sub-systemithoutthe adjoint of any other global modules, such as a voter.
Obviously we do not expect compositionality to hold in such cases. |

3.9 Conclusions

The general contribution of this chapter is that the theory and tools of security and security protocol
analysis can be profitably applied in fault-tolerant analysis. We start showing how a fault-tolerant
(candidate) system may be formalized using CCS. The formal specification is built following a
uniform modeling scheme requiring both the failing behavior (with respect to fault occurrences)
and fault-recovering procedures to be specified. Faults are represented by specific actions in the
system model, that a fault injector environment is able to activate.

This general framework has two main advantages. Firstly, it makes a logical characterization
of fault-tolerance possible: the fault tolerant verification problem, with respect to a given prop-
erty, is formulated as a module checking problem [12&], as the verification problem of an
open system acting in amspecifiedault injecting environment. Secondly, it allows the formal-
ization of some fault-tolerance properties within the GNDC framework. The consequence of our
logical characterization of fault-tolerance is that, by partial model checking, the fault-tolerant ver-
ification problem may be expressed as a validity problem irytiealculus. In this way, general
validation tools and proof techniques can be exploited. For a more efficient (and tailored) analysis
we propose, for example, the use of universal and conjungtiealculus formulas whose valid-
ity problem is solvable in time linear to the size of the formula (obtained after the partial model
checking step). A consequence of the characterization of fault-tolerance in the GNDC scheme,
is that we benefit from various theoretical results and analysis technigques from security analy-
sis, where GNDC has been introduced. Specifically, when either a trace relation or a simulation
relation are used, GNDC theory assures that efficient analysis procedures exist: fault-tolerance
benefits both of a static characterization of its properties, and of compositionality proofs. Another
advantage, is the possibility of comparing different fault-tolerance properties within GNDC, as is
already done for security properties [83, 81, 85]. Potentially, this is a preliminary step towards a
formal and uniform taxonomy of fault tolerant and security properties. For example, we show that
the fault-tolerance property is formalized as the instance of GNDC known as BNDC. This means
that fault-tolerance is precisely characterized as a non-interference property [204]. An immediate
consequence is that available tools for checking BNDC [146] can be used to check fault tolerance.

Fail safe and fail silent do not enjoy such a precise classification in terms of GNDC properties
known in security, although they are expressible in our running examples. From this formulation
effort it emerges that fail safe is a category of properties parametric in the notion of safe behavior,
and that its informal definition is too general to be unambiguously expressed in GNDC. This
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suggests that only a better classification of fail safeness can lead to a more precise formulation.
Similarly we managed to characterize completely fail stop in one of our examples, but here also a
general characterization is still missing.






4

SPYDER: a Model Checker for Security
Protocols

“The system does not communicate with the
outside, so it cannot be influenced remotely. The
computer system is secure” (Head engineer John
Arnold in Jurassic ParlCrichton, 1991)

Abstract

This chapter presents a model checking environment for security protocols. A protocol is
described as a term of a process algebra consisting of the parallel composition of a finite
number of, communicating and finitely behaviored, processes. Each process represents an
instance of a protocol role. The intruder is implicitly modeled in the semantics of the calculus
as an environment controlling all the communication events.

Security properties are written as formulas of a linear-time temporal logic. The model
checker runs a depth first search algorithm that tests the satisfiability of a formula over all the
traces, generated on-the fly, from a typed version of protocol.

4.1 Introduction

Past experience has shown how formal methods can be successfully applied to the analysis of se-
curity protocols €.g9.,see [40, 172, 77, 3, 102]). For example, secrecy, integrity and authenticity
properties [5] can be verified over protocol specifications written in the spi-calculus [7], a process
algebra derived from the-calculus [162] enriched with operators to encrypt and decrypt mes-
sages, via symbolic trace analysis [71, 12, 29, 79, 30] or type checking over typed versions on the
calculus [3, 102].

Here we propose bgic-based model-checkirjg8] approach to the verification of security
protocols. Protocols are expressed over a typed version of a spi-calculus dialect, which we call
the spy-calculus Properties are written as logic formulas whose satisfiability is checked over
temporal modelsif., labelled transition systems) which constitute the operational semantics of
thespy-calculus

Model-checking applied to process algebras close to the spi-calculus was new when the paper
[134](on which this chapter is based) appeared, although its use in protocol security analysis was
already knowné€.g.,see [155, 136, 163, 182, 53, 92]).

The originality of the approach will be explained using the illustration of Figure 4.1. Let us
suppose to have a finitgpy-calculugerm Z representing a finite number of runs of a protocol
involving a finite number of roles, and a security propeftio be checked on it. The semantics
of Z, a labelled transition systendsl"S, is generally infinite-state, because of the infinite number
of messages that each role, running the protocol, can receive from a potential intruder. In fact the
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intruder, following the Dolev-Yao [69] model, is potentially able to compose messages of infinite
length and to deliver them to honest participants in order to subvert the protocol goal.

To reduce the number of messages received by the honest agents to a finite number, our model
checker, 8YDER, checks the satisfiability of over a typed version of the protodd, (7). The
use of types allows us to filter out, during the execution of input actions, those messages from
the intruder that do not match the required type. The resulting model of the profdEs), (n
Figure) is proved to be finite-state in this case. MoreoverAnEER, types are provided through
the definition of a "typing” functiorCs,, introduced at run-time. In this way typed versions are
not fixed a priori and a user can obtain different typed versions of same untyped protocol model,
explore different partitions of the whole state space, and consequently increase the confidence that
the results of the analysis hold over the infinite model.

An additional element of flexibility comes from the use of a logic as a language to express
security properties. The logic used by¥DER has been shown to be sufficiently expressive to
model a large class of properties for example secrecy, authenticity but also some weak form of
privacy, anonymity, and non-repudiation (see [51, 52, 53] for details).

The proposed approach has both advantages and disadvantages. We have already noticed that
having a logic introduces flexibility in expressing security properties, especially the non-standard
ones such as weak forms of privacy or anonymity. In other model checking approaches, such as
for example Casper (which uses the model-checker FDR) [139, 70] the formalization of properties
with the exception of secrecy and integrity does not seem an easy task. The same can be said about
the tools NRL [155] and Mu# [163].

On the other hand we cannot cope with infinite-state models, that is with an unbounded net-
work. Some model checkers, for example NRL [155], can. Others, can deduce results over un-
bounded networks by analyzing bounded versions; for example work on data independence analy-
sis and CSP [36] has shown that FDR [2] (so also Casper [139]) can be used to infer security
results over protocols managing infinite nounces, katgs from an analysis performed over a
protocol that uses only a finite set of them. Our approach can help in reaching similar but weaker,
results: by the definition of different typing transformatioasy(,Cs,,, . . ., G’S”Z in Figure) and by
analyzing the related finite-state models the confidence that the same results hold over the infinite
model can be increased. In fact, as a theoretical result we prove that aniataakrace that
does not satisfy a formul# over a finite model of a typed version of a protocg (f checked
over LT'S, in Figure) always implies the presence of the same attack over the model of the corre-
sponding untyped version of the protocgt (f checked ovel. TS in Figure). This means that our
framework is sound. Generally the existence of an attack over the untyped version of a protocol
does not imply the same attack ovesecifictyped version, but we prove that a transformation
(e.g.,G’SZ in figure) always exists (even though we will not be able to build it without knowing the
attack) such that the resulting typed versiﬁgZ((Z) in Figure) shows the same flaw. This implies
that our framework is also complete.

The rest of the chapter is organized as follows. Section 4.2 and Section 4.3 present the syntax
and semantics of our calculus and the logic used to specify properties. Section 4.4 introduces
its typed version which admits a finite-state labelled transition semantics. Section 4.4.1 and Sec-
tion 4.5 define the class of functions that are used to obtain typed protocols starting from a generic
specification. Moreover in those sections the main results of this chapter are proved. Section 4.5.1
formally describes the model checker algorithm whose correctness is based on the theory previ-
ously developed. Section 4.6 concludes. A running example is used throughout the chapter to
illustrate the main ideas of the approach.
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Figure 4.1: The 8YDER environment. A protocol is described aspy-calculugerm Z, while

a property is specified as a logic formuyfa Usually the semantic model ¢f is an infinite state
labelled transition systerhT'S. A finite-state modeL TS, can be obtained from a typed specifi-
cationCs,, (Z) of the protocol, obtained fror@ and via a typing function§s,,. Different typing
functionsCg_, Cg’ can be introduced at run-time to obtain different finite models, each repre-
senting a particular partition of the whole infinite state spacé.71, is not a model forf (e.g.,

if LTS, ~ f), neither isLT'S. If LTS is not a model forf, there exists £’SZ such that the
correspondind.T'S; is not a model forf either.



86 Chapter 4. S pYDER: a Model Checker for Security Protocols

4.2 Thespy-calculus

This section introduces thepy-calculus It is a process algebra whose syntax is inspired by the
spi-calculus of Abadi and Gordon in [7].

4.2.1 Syntax

In the language we assume an infinite set of constinisames), an infinite set of variablés
and two binary functiong|,_} _ standing for encryption and, _) standing for pairing, respectively.
Moreover, we assume a finite setéfof labelsa, and a finite sel of integer identifiers.

The setMl of messagets defined as the collection containing at le€stnd such thad/, M’ €
M implies both(M, M') € M and{M},; € M. Similarly the setI” of termsis the collection
that contains at leadt U V and such that’, 7’ € T implies both(T", T") € T and{T'}» € 7.
Formally thespy-calculusyntax is defined by the following grammar:

protocols Z == Z|Z'|(\N)Z| (i, P)
roles P := 0]a(z).P|a(T).P|aT).P|P+P | (vN)P|[zisT|P

A protocol Z is the parallel composition of role instandgsP). (\N) restricts names iV .
A restricted name is initially privatee., unknown to the intruder. 10\ V) Z, N is bound inZ.

Eachrole instanceor agent, is composed of an identifieand by a process (rold}. In turn,
arole P is either:

1. 0, the process that does nothing;

2. a(x).P, theinput process ready to receive a message which will be bound to the variable
A label a is used to distinguish among different input actions;

3. a(T).P, theoutputprocess ready to send a tefinclassified as actioam;

4. o(T).P, theassertprocess ready to perform assertionof the term7". Differently from
outputs and inputs, assertions are not communication actions. Assertions are used for ver-
ification purposes only and they act as control flags in the execution of the protocols. As-
sertions were presented first by Woo and Lam in [206] as begin-events and end-events for
specifying protocol authenticity properties;

5. P + P’, the non-deterministic choice between proces3esd FP’;
6. (vN)P, the process that generates a new local nAmthen used withirP;

7. [zisT]P, thematchprocess that requires the tefiirto unify with the contents of a variable
x (possibly binding free variables ifi) in order to proceed aB.

In procesgvN) P the nameV is bound inP. In input process(x). P, the variabler is bound
in P, while in [x is T']P all the free variables ifi" are bound inP. We say that a variable, or a
name, is free if it is not bound.

We assume each role is always introduced by a defining equatiofx) ' p wherea is the
tuple of all the free variablesin P. In that cas@(IN) whereN is a tuple of names, is the same as
P[N /x| i.e.,the closed process where each free varialitex is replaced by the corresponding
nameN in N.
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Before describing an example specification of a protocol insghecalculus let us discuss
some of its characteristics. A protocol consists of a numbénité andsequentiaprocesses. The
use of finite processes avoids problems due to recursive processes, but it suffices to describe the
behavior of a role running a security protoceld.,see [43]). In fact, the specification of a role is
usually a finite sequence of actions.

Some security protocols show their vulnerability only when running over repeated sessions.
So we need to describe more runs of a protocol specification. Isgiecalculus as usual in
security protocol analysi®(g.,see [182, 71, 29)), it is possible to model a principal running a finite
number of sessions of the protocol by specifying, for examplestances(i,, P), ..., (ix, P),
of the same role”. We cannot model an unbounded replication of processes, usually written as
! P, because this would lead to infinite runs of a protocol.

In any case limiting the number of runs to be finite is a widely accepted strategy for the model
checking approach to securitg.§.,see [56]), where a finite-state analysis is required. This is the
case in most of the famous model checkers ¢i63], Brutus [53] or FDR [136], even if some
of them limit the number of steps not at syntax level but only during the analysis. By combining a
limited number of runs and the fact that agents are finite-behaviored, we implicitly are assuming
only a finite number of nounces, keys, process naates to be involved in a protocol. Again,
this constraint is required in order to have finite-state analysis, although the analysis remains NP-
Complete [114] even under these strict conditions. In [178, 36] Rostaéshow how, by the
application of data independence techniques, it is possible to reduce the problem of proving the
security of a model where an infinite supply of different nounces, kéyds required, to a finite
check where only a finite number of them are indeed involved. These techniques, ad-hoc proved
within the CSP theory, would merit more attention but restating them within our framework is
beyond the scope of this chapter.

To conclude this discussion, we observe that even the use of finite runs and a finite number of
nounces, keys, etc. is not sufficient to obtain finite-state models, for an intruder may still generate
data of an infinite length. We will postpone the discussion about how to cope with this last kind of
infiniteness, till Section 4.5.

Example 4.2.1 As an example of a specificationspy-calculuslet us consider the following key-
exchange protocol, a simplified (in the sense that it focuses on the agreement of a new session key)
version of Needham-Schroeder Shared Key protocol [167] (NSSK). The protocol requires three
roles: two principals A (the initiator) andB (the responder), and a trusted ser$ferFollowing

the common informal notation, NSSK is described as follows:

1. A —-5:AB

2. § —A: {KAB}KA57 {A7 KAB}KBS
3. A = B:{A Kap}kps

Informally, in the protocol,A initiates the communication, by sending a messa¢ieB) to
the trusted serves (step 1). With this messagéaskssS for a session key that can use to secure
communication withB. As a reply,S prepares a message composed of two parts. Both parts
contain the new session kéy 4z, created byS (step 2): the first par{ K 4p} i , 4, IS encrypted
with the keyK 45 thatS (already) shares witA (this means that onlyl should be able to decrypt
the message). The second p&dt, K45}k, iS reserved fo3, and it is encrypted with the key
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Kpg thatS shares withB. Instead of sending it directly tB, S relies onA to deliver the message
to B in step 3. One session of the NSSK protocol is encoded isgtiecalculusas follows:

(\Kas) \E3s) VA (\B)(\S)
NSSK @ (1,pa(A, B, S, Ka)(2,p5(A, B, S, Kys))
m (3apS<A7 B7 Kas; Kbs>>

where

def

pala,b, s, kqs) Cas((a, bY).cos(z).[x is ({z1}k,., T2)] - Cap(22).0

pB<CL, b,S,ka> = Cab(y)‘[y is {<a7 y1>}kbs]‘0

Ps(a,b; kas, kbs) = (VEKap)cas(2)-[2 18 {a, b)]-Cas ({ Kb} hass (@ Kab) 11, ))-0

Thespy-calculuspecification of the NSSK protocol shows three agent instances, one for each
role in the protocol. Instanc@,p4(A, B, S, K,s)) models one session of the process This
is the initiatorA, while (2, pp (A, B, S, Kys)) and(3, ps(A, B, K45, Kps)) model respectively the
respondei3 and the trusted servé.

ProcesdA first sends the message, b) to S, then A receives a reply in variable. Thenz
is analyzed: ifx is indeed a pair whose first part is encrypted with the sharedikgy then the
second part of is stored in variable:;. ThenA sendse;, to B. Otherwise the system gets stuck.

Three different labelg,;, c.s andc,s are used to distinguish input/output actions. In this
example keyd(,; and K3 and the names of participants B and .S are restricted, that is hidden
from the initial knowledge of the intruder. ]

4.2.2 Semantics

Differently from the usual approach taken in process algebras for secariy gee [5, 181]),

in our calculus, the intruder is not explicitly described as an additional process. Instead, the
strongest possible intrudere., the Dolev-Yao [69]ntruder €2, will appear in the semantics as an
environmenhaving complete control of any communications. A similar approach has been taken
in [31] where an environment-sensitive semantics is defined.

Assuming such an embedded intruder implies that, instead of symmetric and synchronous
communication via shared channels, our calculus uses asynchronous communicatiamsgua a
and anonymous channel, the intruder/environment (intruder from now on). Moreover, having
a unigue public channel implies that whenever a process performs an output, the message will
be given to the intruder, while during an input the message will be retrieved from those in the
intruder’s knowledge (see later for a formal definitiox@), from those that can be composed by
using the messages already known to the intruder.

An important question to ask at this point is: can the fact of modeling the intruder as an
embedded component cause a loss of power or flexibility? For example in this way we cannot
add new intruder capabilities. We can observe that, firstly, a precise set of capalalijieth¢se
used here, see Figure 4.2) has been identified in the literature and proved to be sufficient to catch
the security flaws we will investigate here.q.,see [85]); secondly, the semantics of the input
only depends on intruder capabilities, and it is not difficult to extend our calculus in order to be
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parametric with respect to this set. The only constraint we have is that the quekfitelongs
to the intruder knowledge”, wher®l is a message, must be decidable (see also later).

In the following we will give all the definitions required by tepy-calculugormal semantics.
We start with the definition dknowledge

Definition 4.2.2 (Knowledge) Let W C M be a finite set of messages. Threowledgeof I/,
written KS(W), is the setV U {M : W F* M}, wheret is the derivation symbol defining the
intruder capabilities in managing messages as given in Figure 4.2.

Here we require that the proof system is such that the quesfioa KS(W) is decidable
and derivable. This is indeed the case for the proof system of Table 4.2 (see [79] for the proof of
decidability). This assumption is needed if we want our model checking algorithm to be effective.

The operational semantics of tepy-calculugs given in terms of a labelled transition system
(LTS, in short). States of the LTS are pait: Z), of global statesandprotocols A global state
consists of théocal stateof each agent plus the state of the intruder. In turn, a local state contains
the namep of the role played by the agent, the $&t of messages it has received so far, and a
mappingo from variables to values. Formally:

Definition 4.2.3 (Global State) Let there ben process instances involved in a protocolglabal
state§ is a sequence of + 1 local states, where:

e G(0) is the local state of the intrudee,;

e G(7) is the local state of process instance identified lfpri = 1,..., n.
We write Glob to indicate the set of all global states.

Definition 4.2.4 (Local State) A local statd, is a triple (p, W, o) wherep € N is a nameJ/ C
M is a set of messages and V — M is a function from variables to messages.

Before going on, we give some technical details about the substitttiosed in the definition
of a local state. With the symbal we indicate the functiom undefined everywhere. We say
thato’ is approximated by, written o’ 3 o whenever the function’ coincides witho in every
value of the domain where is defined. Moreover we write(x) = o'(x) if both functions are
undefined at: or coincide inx. ¢ is the extension of to message terms. The tegtl’) = o(5)
evaluates to true if and only if both functions return the same ground message, false otherwise.

Giving a global stat&j, we indicate byp;, W;, ando; respectively, the items of the local state
§(i), fori = 0,...,n. When convenientl, will be used instead oft/. It is worth to underline
that in the operational semantics edéh ando; has a monotone growth rate along the protocol
execution. This implies that a variable is bound by the first (leftmost) input prefix or matching
operator in which it appears.

The transition rules of the LTS describe how a s{@e Z) evolves as a consequence of an
actiona. An action is identified by the agent identifiél(the agent that is performing the action),
by the action labek, and (if the action is a visible action) by the messagésnvolved in the
action. Formally:

Definition 4.2.5 (Action) An actiona is either: (a)i.a(M) or i.a(M) or i.a{(M) meaning that
instancei has executed, respectively an input, output or assertion, labell@ger the message
M:; or (b) 7, the internal action.
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Expanding rules

mEWE Wl—mWI—k'E WEmWEm
€ {}
WE m W E {m} W {(m, m')

<>

Shrinking rules

Wk {ml, WF k W F (m, m) W F (m, m)
S{} — S —Sl<>

W = m W = m W+ m

Figure 4.2: Inference rules defining the derivation symbpfor the intruder knowledge.W

is a set of initial messages. Among the expanding rules the first says that whatevéV igsin
derivable. The second, defines the rule for symmetric encryption and the third, defines the rule
for pair composition. The first shrinking rule defines decryption, whereas the last two define pair
projection.

We write Act; to indicate the set of all actions. The following definition gives the operational
semantics:

Definition 4.2.6 (Operational Semantics)
LetZ = (\N1)... \Np)(L, P1)] -..]||(n, P,), be a protocol. The associated labelled transition
systemis a tupl€Q, (So, Z), Act, Rz), where:

(@) Qz C Glob x Z is the set of states;
(b) (S0, Z) is the initial state so defined:

e Go(0) = (92, Wq, L), is the initial local state of the intruder, whefe is the name of
the intruder andiVg, is the initial set of messages known to the intruder, composed of
all the free names ix.

e S0(i) = (pi, Wi, L) forall ¢ € 7, is the initial local state of the role instanée More

precisely,p; is the name of the proceds, if p; o P, W; is the set of messages
knows, consisting of all free namesih

(c) Act, isthe set of actions;

(d) the transition relatiorfR; C Qy x Act x Q is the least transition relation defined by the
rules in Figure 4.3. Whenevey, o, ¢') € Rz we will write g = ¢/.

We now explain the rules in Figure 4.3 in an informal way. Redg and ruler; (and the
symmetricr=, andr,) define the usual transitions in case of respectively parallel composition
and non deterministic choice. Rute defines the transition in case of a match: we require that
the local binding functiorr; can be extended in such a way thagqualsi” wheno; is applied.

In the premises of the rute_ the condition?(c(7")) informally means that (7') must not con-

tain variables as decryption keys. We add this condition only to avoid unfair specifications where
encryption could be broken simply by using pattern matching. The u$¥_¢fis indeed a syn-
tactic constraint, whose presence does not interfere with our analysis. Foftaglig defined as
follows:
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(§5:2) (5 2") (S: Z||(, P)) = (5 : Z|| (i, P'))

r=y g

(S:Z||z") = (§': 2]|2") (S : Z||(i, P+P")) = (§' - Z||(i, P"))

oi(x) #L, P(G:(T)), Io' D 0;: '(T) = oi(x)

(S : Z||(i, [z is TIP)) = (S[o” foi] + Z||(i, P))

5(T) = M

ry

i.a(M)

(§: Z||(5,a(T).P)) "= (§[Wa U{M}/Wol : Z||(i, P))

5.(T) =M

ry

(S 2)G,a(T).P) " (5 - Z) G, P))

3o’ Jo;:0'(x) = M € KS(Wg)

ro

S+ 20, a(w).P)) "B (Sw; U (MY Wil for] < 201G, P))

N' ¢ ¢(P)U e(2)

ry

(S = Z||(i, (vN)P)) = (S[W; U{N"}/ W] : Z||(i, P[N"/N]))

R

(S:ZI(\N)Z") = (S : ZI|1Z')

Figure 4.3: Labelled Transition Systems rules. Rulesandr_, ,, which are the symmetric versus
of r=; andr, ;, have been omitted. See the text for an informal explanation.
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tt fT=MeM
tt fT=xeV

P(T) ={ P(T") it T = {T"} s
P ANP(To) ifT = (T, Ty)
ff otherwise.

Ruler, is for the output transition. We require that the téfhevaluates to a messagé, and
then the transition leads to a state where the meskadgeadded tdi, the intruder local state.
Ruler) is similar, but because an assertion is not a communication action, no message is put into
the local state of the intruder. It only leaves a trace as a label in the transition, whose presence can
be tested during the analysis. Ruiledefines the input transition. If the local binding function
o; can be extended in such a way thatquals some messagé in the intruder knowledge.é.,
M € KS(Q)), that message is retrieved and then added to the local state of the agent instance.
Note that even if all the premises are decidable, the number of messaljs$livi,) is generally
infinite. This produces infinite branching absence of limiting strategie®Ve will describe one
such strategy in Section 4.4.1. Ruig describes the creation of new names. Here:@@®) we
mean the set of constants that appear syntacticalf§ iRuler, describes the restriction operator.
This operator has no effect on the transition itself, but it modifies the definition of the initial
knowledge of the intruder. Restricted names are initially hidden from the intruder.

4.3 A Logic for Security Properties

This section shows how a linear time temporal logic can be used to express security properties.
Different logics for security can be found in literatueed.,see [40, 90]), but the logic we propose
here is inspired by the linear time temporal logic first introduced in [51]. It has been used to
express a large set of properties, from secrecy, authenticity, general correspondence properties,
weak forms of anonymity, privacy and non-repudiati@ng(, see [50, 52, 53]). Informally, its
terms talk about messages, roles identifiers, role names and local (with respect to a role instance)
message terms. Its propositions can express facts about actions that happened, tests about what
messages are known to a role (or to the intruder), and equality tests over message terms. Formulas
are either propositional formulas or the modal formula "eventually” in its past interpretation. By
using this modality it is possible to express properties about temporal correspondences among
events in protocol runs.

Formally, the logic shares with thepy-calculughe same set of named(), of variables V),
of integer identifiers%), and of labels.4). Moreover messages (skf), terms (sefl) are defined
as inspy-calculus We now explain in detail the syntax of the logic, also presented in Figure 4.4.
We leti range ovef, T overT, M overM, and\ overA U A U {7}.

A message termy, is (a)name(i), the name of the agent whose identifie,if) ;.7 the message
termT interpreted in the local state of the agent whose identifieoigc) a ground message
M e M.

An atomic proposition p is (a)Knows(i, ), a predicate on the presence, in the local state of the
agent identified by of ¢; (b) Acts(i.\(<)) (respectivelyActs(7)) a predicate on the fact that
a visible actioni.e., a send, receive or assertion, ovenas been performed by the agent
identified by: (respectively a silent action has been performed)s (€) ¢/, is an equality
test over terms.
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Aformula f is any propositional logic formula, or the modal formua f, where the symbol
O p is the modal operata@ventuallyin its past interpretation.

The derived operatorg (propositional or) and (propositional implication) can be derived
as usual froon and—. Moreover as a syntactic sugar we also use the formida¥s), wheres
is a variable, defined asgcqy f[s/i] andvs. f(s) defined as\(;cqy f[s/1].

Example 4.3.1In this example we show how to express security properties using the logic pre-
sented here. Let us start with the following authenticity property over the NSSK protocol formal-
ized in Example 4.2.1.

“When rolep g finishes the protocol thinking that the responder is the gojerole p 4
has at least started the same protocol thinking that the initiatpigs

The property can be logically expressed with the following formula:

FY Acts(2cap(2y) O Op(Acts(Lig(1.a2))) A (2 = o) (4.3.1)

Informally this says that whenever the agent with identification number 2 (the one who is
playing the role o) receives a messagednas a consequence of an input action labetigdl
then the agent identified by 1 (running the rplg) has previously sent a message i) to pp
through an action labelleg,,. Additionally the two messages are required to be equal.

The use of identification numbers in the formula makes it not so readable. A clearer way of
writing (4.3.1) is the following:

/I = . Ja. nam =pp N hame€a) =pag N 3.
1 w3 b (4.3.2)

Acts(b.cqp(b.y)) D Op(Acts(a.cap(a.xz2))) A (b.y = a.z2)

HereV and3 are used as syntactic sugar for a finite sequence (over the set of ideftifizr3}) of
respectivelyr andV. Similar abbreviations are necessary whenever we need to talk about a role
independently of the fact that more instances of it are modeled isghealculusormulation
of a protocol. We will use such style of expressing formulas in the rest of the paper. Formula
(4.3.2) informally says that whenever an agent (playing the rolesdfreceives a message in
(as a consequence of an input action labellggd then there exists an agent (running the role
pa) that has previously sent a message (identified y) to pp through an action labelled,.
Additionally (4.3.2) requires the two messages to be equal.

Another example of a property for our model of the NSSK protocol is the secrecy property
requiring that the intruder never learns the secretKay. It can be expressed by the formula:

fa déf ﬂKnows(x,KAB) (4.3.3)

Informally (4.3.3) expresses the fact that in any state the intruder must not be able to com-
pose the secret kelf 4 5, starting from the messages he has eavesdropped in the communication
channel. Moreover, if we wanted to express the fact that the secrdt kgyis known only to the
appropriate roles we could use the following:
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fru=pl=flhanf|Opf formulas
p = Knows(i, ¢)

| Acts(i.\(<)) | Acts(T NEAUAUA

| (c=¢") i€d atomic propositions
¢ u=name(i) | i.T | M TeT,MeM terms

Figure 4.4: Logic Syntax (see also Section 4.2 for definitiors &f, T, V).

fH def Va.Knows(xz, Kap) D
((name(z) = pg) V (name(z) = pa) V (name(z) = pp))
This formula says that for all instantiationsofif « knows the secret kel 4 5 thenx is the
instantiation of either the roles, p4 or pg. Here we observe that if we wanted to express the fact
that rolesp4 andpp know the secret key at the end of the protocol, we can use a slightly different

implementation with assertions. For example nelecan assert to have finished the protocol by
the use oknd(b), as follows:

(4.3.4)

de _ . —_—
pala,b, s, kqs) tef Cas({a, b)).ces(x).[z is ({21 }h,., x2)]-Cap(x2).end(b).0
The modification to process modeling the role Bfis similar, and we omit it. Then the
property that each honest role knows the key at the end of the protocol can be expressedas
where:

fa = Vz.(name(z) = pa A Acts(z.end(B))) D Knows(z, K4p)
fB = Va.(name(x) = pp A Acts(z.end(A))) D Knows(z, K 4p)
Additional examples of properties expressed in this logic, can be found in [50, 52, 53

We now explain how the logic is interpreted over the labelled transition systems, models of
spy-calculugprotocols. Message terms are interpreted over a global state, while the interpretation
of a formula is defined over traces obtained from the LTS. A trace is the temporal structure over

which the satisfiability of formulas is checked. Formallyraceis a finite sequence = ¢y - o -

q - - oy, - gn, Whereqq is the initial state of the LTS and for al ¢; A ¢i+1 IS a transition

from G-
We now define the interpretation function for each syntactic category of the logic. We will
start from message terms.

Definition 4.3.2 (Message Term Interpretation) Given a global staté, and a termT’, theterm
interpretationis the functiorM : Glob — T — MU {_L} given below:

M(G)(M) = M, whereM e M
M(9)(5.7) = o(T), where§(j)=(-0)
M(§)(name(j)) = p, whereS(j) = (p, - -)

1 otherwise
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Informally, name(j) is the message which represents§jrthe name of the process instance
whose identifier ig; j.T' is the message obtained by instantiating all the variables appearing in
using the set of bindings that the process identified hgs ing.

Atomic propositionsp (respectively, formulag) are interpreted over a trace We write
qi = p (respectivelyg; = f) when they are satisfied over a state= (9; : Z;) of 7 as follows:

Definition 4.3.3 (Atomic Proposition Interpretation) Given atracer = gy a1 -q1-... Qp - qp,
we have, fol < i < n:

g = Knows(j,¢) iff  M(S;)(s) € KS(W;), whereG;(j) = (-, W, )
¢ = Acts(4.A(¢))  iff o = jA(M), whereM = M(S;)(s
g FEs=¢ iff - M(S:)(c) = M(G)(<")

If we assume that the evaluation of the message ¢émy; returns the messagé, informally
Knows(j, M) is satisfied iny; if the role instance identified by can derivel! from message set

W;. Inturn, Acts(j.A(M)) is satisfied in a state;, if ¢;—; 240 g; is a transition of the trace.

Finally, ¢ = ¢’ is true if the interpretation terms coincidegn

Definition 4.3.4 (Formulae Interpretation) Given aformulaf and atracer = qp-a-. . .- qp,
we have that fol <7 < n:

g = p iff g F=p

a FE~f iff g fEf

s = hHNf it g fiandg = f

g =O0pf iff  there existgj, 0 < j < i suchthaty; = f

Informally the interpretation g, —f and f1 A f» do not differ from the common interpretation
of propositional formulas. Insteadp f is satisfied iny; if it is satisfied in some previous state of
the trace.

The obvious extension of satisfiability overis © = fiff ¢; = f, Vi : 0 < i < length(m).
Finally we say that a protocd satisfies a formuld, written Z |= f, if f is satisfied over all the
traces of the LTS model of.

Example 4.3.5 In this example we show how the interpretation of formulas works. Let us assume
we have the protocol below, where a rplg sends an encrypted message to itself via an insecure
channel. Formally:

Zs = (\K)(lva(K))
pa(k) = c({A}g).c(z).0k(A).0

In the specification we chose to hide the K€yused by the agent from the initial knowledge
of the intruder, and we suppose thatsignals the end of the protocol with an assertion labelled
ok(). The property expressing the fact that, when the protocol finishes, the message received is
the same of the one sent, can be expressed as follows:

f = Acts(1.0k(A)) O (Lo = {A}x)
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Let us now consider one of the traces coming from the labelled transition system maédel of
thatist = go-Q1-q1-0Q2-Q2 Q3 Qq3 where:

@0 = [(2,{A}, )] [(pa,{A, Ka}, 1)]

a; = 1e({A}lk)

o = [(Q.{A{Ajx}, L)), [(pa, {A Ka}, L)]

as = l.c({A}lk)

@2 = [(Q{AA{A}x} L) [(pa {A Ka}, [v — {A}k])]
ag = 1l.0k(A)

g3 = Q2

Itis easy to verify thatr |= f. In fact, fori € {0, 1,2}, ¢; = Acts(1.0k(A)) which makes the
implication true, while (a);3 = Acts(1.0k(A)) and (b)gs = (1.2 = {A} k), which also makes

S . ok(A) . e .
the implication true. (a) is true becau@e1 ok(A) gs is a transition inr, and (b) is true because

interpreted over the local state of 1¢#, is equal to{ A} k. It is also the case thadf |~ f because
there exists a trace such thatt’ [~ f, for exampler’ = ¢, - o} - ¢} - b, - ¢ - o - ¢§ where:

9 = 9o

Oéll = o1

@ = @

ay = l.c({A}a)

¢ = [(Q{A{A K} L)) [(pa, {A, Ka}, [z — {A}4])]
ay = Lok(A)

B = ¢

In this trace the intruder intercepts the messfdér and replaces it by A} 4. This is suffi-
cient to concludéeZ |~ f.
[

4.4 Typedspy-calculus

In Section 4.2 it has been pointed out that the us& 8tV ) generally creates an infinite num-
ber of input transitions but, to perform model checking, we need a finite-state labelled transition
system. This section studies the possibility of udiyyge information(mainly in input actions) to
select only those messages of a certain type in the intruder’s knowledge. In this way the intruder
has only a finite way of composing messages that fulfill a role’s input action and, consequently,
the corresponding transition system has a finite number of transitions. This suffices to obtain fi-
nite models considering that we deal with finite processes and finite protocol runs. It is worth to
underline that the use of types is here oriented only to obtain finite-state models, and not to use
type checking by way of protocol analysis.

In the following we define: (a) what a type is; (b) a partial relation between types (sub-typing)
and (c) the typed version of our calculus, where variables are adorned with types.
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Definition 4.4.1 (Type) A typet, is either: (1) abasic typeproc, key, nounce Or atom, (2) a
pair type( ¢, t/ ), (3) acrypto type{| ¢ [}+, a finiteunion of typeg @ t/. By T we mean the set of
all possibles types.

Types are partially ordered, with the following ordering relation:

Definition 4.4.2 Lett,t’ € T. We say that is a subtype of'written ast < ¢/, iff

t=tor(t' =ty @ty and (t <t} or t <))
t={ti [, and t' = {1t} [}, andt; <#; and t, <1,
t={t,ta)and t’' = (¢}, ¢, ) andt; <t| and ty <t

Types are used in a slightly extended version oftpg-calculus called thespyD-calculus
where names and variables are decorated with their type spyie-calculussyntax differs from
spy-calculusn the following points:

¢ the set of name3/( is partitioned amon@\,, N,,, Nj; andN,, of respectively, atomic mes-
sages, process names, keys, and nounces/timestamps.

e variables are written agped variablegz : t), wherez is a variable and is a type. The set
T of typed termd’, is then built, over the signatude U (V x T). ProtocolsZ and rolesP
remain almost unchanged but typed terms are used instead of terms.

The syntax okpyD-calculuss expressed by the following grammar:

protocols  Z == Z|Z'| \N)Z | (i, P)
roles P == 0|a(z:t).P|a(T).P ]Q(T) P|
P+ P |(wN)P|[(z:t)isT]P

We assume that onlyell typedprotocols are possible, meaning that all instances of a variable
bound by the same, leftmost, input primitive or match must have the same type.

Starting from basic types, explicitly assigned to names and variablep,lavel typeLTJ for
a typed terni” can be deduced easily by structural induction over tér@s for example the top
level type of the decorated terfiix : proc)} (i:xey) iS {| Proc [fxey- In the following we say that
a message terii has typet if |T'| = t, and we write|t| to indicate the number of basic types
appearing irt.

Using types we can define a bounded version of the intruder knowledge.

Definition 4.4.3 (Bounded Knowledge)Let W C M be a finite set of messages, and type.
ThenkS® called the tknowledgeis the following set of messages:

KSOW) ={M e KS(W): | M| <t}
About bounded knowledge the following results hold:

Lemma 4.4.4 Let W be a finite set of messages. Then for evesyT, KS(“(W) is a finite set.

with a little abuse of notation, the same function symaglis used both for the function returning a type given a
messagé//, and for the function returning a type given a typed t4fm
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Proof. The proof follows from the fact that| is finite, and the number of messages whose type
is a subtype of is finite. ]

Example 4.4.5AssumelW = {A, K}, andt = ( proc,key & proc ). ThenKS® (W) =
{<A7 A>7 <A7 K>} ]

Lemma 4.4.6 Let 1 be finite. Given a messagdé, the question/ € KS*) (W) is decidable.

Proof. We can easily compute thel/ | in linear time in the size of\f. If |[M| £ t thenM ¢
KS®(W). Otherwise| M | = t and we know from [53] thad/ € KS(W) is decidable. »

We are now ready to restate the operational semantiepydD-calculus making use of the
bounded knowledgé(S(t)(W) in input rule. ThespyD-calculussemantics is based on labelled
transition systems, which we call LTS The definition is almost the same of that of LTS (see
Definition 4.2.6) with the exception of the transition rutle which is re-defined in the rulé:

3o’ Doy :0'(z) = M € KSO (W)

Sl s ~ .\ t.a(M) o~
(S: ZI(i,a(z = 1).P)) "= (SWi U{M}/Willo' [oi] : Z||(i, P))
In 1, the bounded knowledg&'s ") is used instead ok'S. We write(§ : Z) -3, (§': Z') to
say that a typed protocdl, and the global statg, change as a consequence of actioft follows
that:

re

Theorem 4.4.7 The LTS is finite-state.

Proof. Having only finite processes and a finite number of role instances, the source of infinite
behavior is due to the input transition rule But from Lemma 4.4.4 it follows that there can only
be a finite number of transitions for eagpyD-calculugrotocol. ]

Logic formulas (see Section 4.3) may be interpreted over the tracespg - a1 - - ay - pp,
originating from LTS, exactly in the same way as they are interpreted over tracesning from
LTS. In fact, the satisfiability relation (see Section 4.3) depends on the compgradnitates
p = (S : Z), whose definition has not changed.

4.4.1 Building Typed Protocols

In this section we explain how to obtain, in a semi-automated way, tgpgD-calculugprotocols
starting from aspy-calculusspecification. We recall from Section 4.1 that our target is to build a
typed version at run-time starting from a singfey-calculusversion.

To avoid some technicalities, we require that protocols are written in the follomangal
form: variables used in the specification of different roles are distinct, and within a single role
variables bound by different binders.g.,input or match operator) are different. All the examples
described in this chapter are in normal form.

The basic way of obtaining a typed version of a protocol specification is througpiragy
function

Definition 4.4.8 (Typing Transformation) Atyping transformatioris a partial functions : V —
V x T, such that, for allz in the domain oB, 8(x) = = : t wheret is a type.
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Based on a transformatidhwe can define a mappingsg, that is a structural extension 8f
from variables to message terms, processes and protocols. Although different symbols should be
used for those extensions, for convenience we will used the same (overloaded) 8yrdralll of
them. The general idea is that, given a prota€pCs(2) is a typed version of with finite-state
semantics. To be precise, more than general transformations we are interested in transformations
whose domain is the set of variables of a given protocol. Formally:

Definition 4.4.9 (Transformation with respect to a Protocol)
Let Z be a protocol specification in normal form. thRansformation with respect t8 is a trans-
formations z whose domain is exactly the set of variables appearing.in

We can observe that given a protocoland a protocol transformatio$y;, the set of bound
and free names of andCs,(Z) is the same. In fact a protocol transformation acts only over
variables, while names are left untouched. The same can be observed for bound and free names of
processe#’, involved inZ, and processess,, (P) involved inCg,, (Z2).

Example 4.4.10This example shows a typing transformation. Referring to Example 4.2.1 let us
define the following protocol transformation function, over fi& S K:

T <’ {| key ’}keya {’ <| proc,key I) ‘}key l), ifv==x
Iyt keYa |f vV =o
| w24 Uprockoy ) ey o=,
€
Swssk(v) = 4 y: {| { proc,key ) ey, ifo=y
Y1 - keY7 |f vV =1Y1
z : ( proc,proc |), ifv==z2
4, else

\

The transformation is built following the intuition that messages received in varialoan
role pp indeed are messages of tyf)g] proc,key |) [lxey. The typed version of the protocol is
then the following:

(\Kas) (\Eps) \A)\B)(\5)
GSNSSK(NSSK) = (17pA<A7B>Sv Kas))m(21pB<A7B7S>Kb5>)
m (37 bs <A7 B, Kas; Kbs>)

Pa(a;b;8,kas) = Cas((a, b)) Cas(z : | {| key [xey, {| { proc,key | [fxey )
[z : ( {| key [xey, {| { proc,key | frey ) =

{1 : key}r,,, w2 : {| | proc, key ) [frey)]-
Cap(w2 : {| | proc, key |) [rey).0

pla,b,s,kys) = cap(y:{ { proc,key ) [fxey)
[y : {| { proc,key |) [xey is {(a, y1 : key)}x,,].0
D50, b, kas, kos) = cas(z 1 { proc, proc )|z : | proc,proc | is (a, b)].

(v Kap)Cas ({ K ab}as» (@ Kab) b1, ))-0



100 Chapter 4. S pYDER: a Model Checker for Security Protocols

4.5 Towards Finite Model Checking

After having shown how typedpyD-calculusprotocols can be obtained from (untypeshy-
calculusspecifications via the use of transformation functions, we are interested in investigating
the relationship between LTS and LTSWe would like to be sure that an attack ovesgyD-
calculusprotocol implies the presence of the same attack over the corresposlrcalculus
protocol, and vice-versa.

This section formally shows that there exists a trace inclusion relation between LTS and LTS
given a transformatiofi 7, the set of traces from LTS always includes the set of traces from.LTS
While this is not a surprise, a more interesting result is that given any trace of LTS, a transformation
can always be defined to yield the same trace in,LThis is mainly due to the fact that a variable
can be tagged with a union of types, so our scheme works also in presence of type flaw attacks.

Example 4.5.1 To show how this is possible let us resort to an example. The following standard
version of the seven-message Needham-Schroeder Public-Key Protocol:

—S:B

— A: {PKp, B}px,
— B :{Na,A}prKr,
—S:A

— B :{PKa,A}pK,
— A :{N4,Np,B}pk,
— B :{NB}rK,

o =N S R SO JUR O
5oV IV v i SRV R S

In [113] Heatheret al show an interesting type flaw attack on this protocol, in turn derived
from [154], when two runs (below) of the protocol are considered (we labelledantitie steps of
the first run and withs those of the second runs):

as. I — B:{N1,A}pk,

oy. B —S: A

Qs. S — B:{PKa,A}pk,

6. B — I4 : {N;,Np,B}pk,
Bs. Iings — A:{Nr,(NB,B)}prK,
Ba. B — Is: (Np,B)

or. T4 — B :{Np}pK,

An intruder, playing the role ofd in the first run, receives the messag¥;, Ng, B} pk,
from B in step 6, which uses this message subsequently in step 3 of the second run. In this second
run A is playing the role ofB, and soA interprets the message as the start of a new protocol.
ConsequenthA takes the field Nz, B) as an agent name, and whériries, in step 4, to request
(Np, B)’s public key (by sending théNp, B) identity to the server) this message is intercepted
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again and used by the intruder to end correctly the first run of the protocol. We can model the
protocol inspy-calculusas:

(\Ks) () \Kp) \A) (\B)(\S)

(1,pa(A, B, S, Ka))|[(2,pa(B, A, S, Kp)) ||
(37pB<A7 Bu Sa Kb>)”| (47PB<B’ A7 Sv Ka>)”|

(5apS<A7 B7 Kaa Kba Ks))m (67 S<Av B7 K(l7 Kba Ks>)

Here we have two instantiations of each role. In particular the rojesdirespectively ofpg) is
played once by (respectively byB) and once byB (respectively by4). The first steps of role
pp are the following:
de
palab, s, k) 2 (@) o is {(@n, Ta)}r] T(@a) P’
Here P’ represents the continuation of the process. To catch the type flaw we have to find a typing

that allows the variable to match with both messages used in the attack. One such a possible
type transformation for is:

Snssk(x) =z : { ( nounce,proc @ ( nounce,proc |) |} [xey

Unfortunately it seems not easy to find such a typing transformation without knowing the
attack first. Even in the formal proof (see later) our result is not constructive and we have no
general method to construct this abstraction. We conjecture that a static analysis of the message
flow along a protocol specification may help in defining significant transformations, but we have
not yet investigated in this direction. We point out this issue as an area of future work.

To arrive at the main results of this section, we start with some definitions, introducing basic
equivalence relations among global states and traces of the relative transition systems.

Definition~4.5.2 Given a transformation functio8, letq = (S : Z) be a state of the LTS, and
p=(9': 7" astate of the LT,S We say that they arequal up tdS and we writeg =g p, iff

e G=9;

e C3(2) = Z' where the symbet is interpreted as syntactic equality.

Definition 4.5.3 Given a transformation functio8, letm = qo - @1 - q1 - ... - @ - g, @Nd 7, =
po-a'y-p1-... 'y py betwo traces. We say that they @gual up tdS and we writer =g ,
iff for all &

o o =y,
® qJrk =8 Pk-

In the following we prove the main lemmas of this section. One states that given a trace in the
LTS, model ofCg, (Z), there always exists a corresponding trace (with respeegjon the LTS
model of Z. The second lemma proves that given a trace in the LTS modg| tfiere always
exists a typing transformatioBs,, (-) such that a corresponding trace (with respectt) exists
in the LTS model ofCg, (Z).
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Lemma 4.5.4 Suppose that is a protocol specification in normal form, aig a protocol trans-
formation with respect t&. LetII; be the set of traces from the LTS, mode¥ofnd IetH@SZ(Z)
be the set of traces of the LT $nodel ofCs, (7). Then for each trace, € HGSZ(Z) there exists
atracer € Ilz such thatr =g, m,.

Proof. We proceed by induction on the length of the trage= pg - a1 - p1 - ... - i - px. FOr any
n > 0, we show that a trace exists whose prefix of length (written 7[n]) is equal up taS ;7 to
the prefix of length, of 7, (written 7, [n]).

[base casen = 0]. In this caser,[0] = (Go : Cs,(Z)). Whatever tracer € II; we chose,
7[0] =s, m,[0] holds. In factr[0] = (G : Z) and7[0] =g, m,[0] immediately follows from the
definition of “=g "
[inductive step n > 0]. Let us assume that the theorem holds+#orThen there exists a trace
7 € IIz such thatr[n] =g, m,[n]. We prove that we can extend the trade| so thatr[n + 1] is
atrace ofll; andw[n + 1] =g, m,[n + 1].

Letm,[n + 1] bem,[n] - ant1 - pny1. We distinguish the cases of, ;1.

e [a,+1 =i.a(M), for somei]. This action arises only through the following transitide.(
by ruler?)

Pn Pn+1

(9n: 2y ala:1).P) "5 (SulWs UMY/ Willo'Joi] - Z1(i, P))

9n+l

Hereo’ : o/ 3 0; ando’(z) = M € KS")(Wg). By the induction hypothesis there exists
atracer € Il such thatr[n| =g, m,[n]. In particularrn] = qo -1 - ... oy - s, and
dn =s, pn- If we assume that, = (9', Z’) this means that (&’ = G,, and (b)Cs, (Z’) =
Z||(i, a(z : t).P). We observe thald € KS(Wq), becauses") (W) C KS(Wq), and
this implies that the transition

dn qn+1

(9n = 20 alx). P)) S (GulWi U (MY/Willo' Joi] - Z1(, P))
Snt1
is possible. It is easy to check th@t.1 =s, pn+1, and this suffices to conclude that
w[n+ 1] =g, m[n + 1].

e [ay+1 =i.a(M), for somei|. This action arises only through the following transitide.(
ruler):

Pn Pn+1

(Su : ZII(i,a(T).P)) "8 (S, [Wa U {M}/ W] : Z0(G, P))

9n+1

Hereo,;(T) = M. By the induction hypothesis there exists a tracec II; such that
m[n] =s, m[n]. In particularrn] = qo- a1 ... oy - g, andg, =s, p,. If we assume that

q0 = (9, ) this means that: (&' = Gy, (b) Cs,(P’) = (i,a(T).P). Moreover we have
0;(T) = 0,(T) = M. This means that the transition
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qdn dn+1

(Sn : Z|(i,a(T).P)) "0 (8, [Wa U {M}/Wa] : Z|(G, P))

9n+1

is possible. It is easy to check that,1 =s, pn+1, and this suffices to conclude that
wln + 1] =s, mln + 1].

e [a,+1 = 7). The only interesting case (we omit the other cases that are obvious) is when
the action is due to the following transitiong, rule r_):

Pn Pn+1
(Sn: ZN (i [(2 : £) is TIP)) 5 (Gulo”/oi] = Z|| P)
—_———
Gn+1
Here ®(5;(T)) and30’ J 0 : o'(T) = oy(x). Letw[n] begy - a1 -...- ay - gn, and

consider the statg, = (5’ : Z'). By the induction hypothesis we know thgt=s, p, and
as a consequence we have that: §aj= Gy, (b) Cs,(P') = (i,[(z : t) is T].P), and (c)
0;(T) = 0;(T) = M. This means that the transition

Pn Pn+1

(Sn = ZlI(i, [z is TIP)) = (Gulo/ai] = Z||P)

9n+1

is possible. It is easy to check that,1 =s, pn+1, and this suffices to conclude that
wln + 1] =s, mln + 1].

o [y 41 =i.a(M), for somei|. Similar to the case,,+1 = i.a(M).
|

Lemma 4.5.5 Suppose thaf is a protocol in normal form, andl; be the set of traces from the
LTS model ofZ. Then for each trace € 11, there exists a transformatiafi such that in the set
of traceslle; (z) of the LT$ model ofCg,, (Z) there is a tracer, such thatr, =g, .

Proof. Letw beqy - a1 --- oy, - g,. First of all let us defineés;. The idea is that the type of a
variablez is the union of types of the messages that are boundaiong the trace. Because our
protocols are in normal form, for each role instance, each variable is bound only by one operator
(i.e.,input or match). This means that, within a role, only one message is bound to each variable.
Globally more messages can be bound to a varialidat only in different role instances. Let us
constructS ;7 in the following way:

Remark 4.5.6 Assumeg = (9, Z’) is a state of a trace from the LTS model of a protocd?,
and letS z be the function returned by the algorithm 1. We have f1iais the message bound to a
variablex (i.e.,if M = o;(z), where§(i) = (p;, 05, W;) for somei) then

[M] < [8z()]
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Algorithm 1 functionBuildTypingFunctiofrr). Given a tracer returns a typing functio§ (7).
1. 87 «—1;
2: forall ¢ : o; € mdo
3:  leto;_4 the binding function iny; ¢
. let o; the binding function iny;

4
5 letV,_y = {z :0,_1(x) =L} {the set of vars not bound ip_; }

6: letV; ={x:0;(x) #L} {the set of vars bound to some message in gtate

7. letV =V, nV,;_; {exactly the set of vars assigned in consequence of the agtjon
g8: forall z € Vdo

9 if $z(z) =L then

10: S8z(z) —x: |oi(x)]

11 else

12: 8z(x) «— Sz(z) ® |oi(x)] {the type ofz is the type of each message received jn
13: end if

14:  end for

15: end for

At this point we can prove that there exists a tragec Cs,(Z) such thatr, =g, =. The
proof is by induction over the length af We show that for any. > 0 we can find a trace, such
thatm[n] = m,[n]

[base casen = 0]. In this caser[0] = (S0 : Z). Whatever tracer, € Ilg, () we chose
m,[0] =g, 7[0] holds. In factz[0] = (Go : Z) and for definitionr[0] =g, m,[0] trivially holds for
definition of “=g,”.

[inductive step n > 0]. Suppose that the theorem holds farwe will prove the theorem for
n+ 1. Letw[n + 1] bew([n] - ap+1 - gnt1. We will distinguish by cases over,, ;.

o [an11 =i.a(M), for somei]. This action arises only through the following transitide.(
by ruler-):

G+ ZU(ir ae) P)) "2 (§W; O (M} W[ o] - 21, P))

Snt1

whereo’ : ¢/ J 0; ando’(z) = M € KS(Wg). By the induction hypothesis there exists a
tracer, € Ile, (z) such thatr, [n] =g, [n]. In particularm,[n] = po-a;-... oy pp, and
pn = (Gn : Cs,(2)||(i, a(x : 8z(z)).Cs,(P))). In addition (see remark 4.5.6) we have that
|M] < |8z(z)]. This means that/ ¢ KS®)(Wq), wheret = |S,(x)|, and the transition

Pn

A

(Sn : €5, (2)](ir alz : $2(2)).Cs, (P))) "
(GalWi U {1}/ Wi /r] - €5, (2) 1€, (P))

Sn+1

is possible. Itis easy to check thaty 1 =s, pn+1-
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o [apt1 = i.a(M),i.a(M)( for somei), anda,+1 = 7|. These cases can be proved as in
Lemma 4.5.4.

Now we analyze the impact of the protocol transformation on the satisfiability of formulas. In
particular given a protocol specificatidf, a protocol transformatiofiz, and a formulaf to be
checked, we want to be sure thatfiitcan be checked ovets, (7). The answer is given by the
following theorems.

Theorem 4.5.7 Given a protocol”, a transformatior§; over Z, and a logic formulaf. LetIl,
be the set of traces of the LTS modeXoaind IetH@SZ( z) be the set of traces of the LiT®odel of
Cs,(Z), and letr € II; be andrm, € e (2) such thatr =g, m,. Thenr |= fiff m, |= Cs, (f).

Proof. Whenr =g, m,, 7 andm, coincide over the global state; the result follows becgtse
defined over the global states. |

Theorem 4.5.8 Given a protocolZ and a protocol transformatioS ; over Z. Suppose thaf is
a logic formula. Ther€s, (Z) i~ f implies Z |~ f

Proof. Cs,(Z) i~ f means that there exists a trage= po - o1 - ... - oy, - pp, Of LTS, such that
m, = f. By Lemma 4.5.4 there must exist a tracef LTS such thatr, =g, 7. By Theorem 4.5.7
we have thatr, |~ f. |

Theorem 4.5.9 Given a protoco and a formulaf such thatZ |~ f. Then there exists a protocol
transformationS z such thatCs, (Z) i~ f.

Proof. Z [~ f means that there exists a trace= pp - a1 - ... - ay, - pp, Of Iz such thatr (= f.
By Lemma 4.5.5 there exists a protocol transformasignand a tracer of HGSZ(Z) such that
m, =s, ™, and by Theorem 4.5.7 we have that}~ f. [ ]

Theorem 4.5.9 is possible because variables may assumg&; vigotentially any type. This
makes our type system too general to be used in a static type checking framework.

4.5.1 Model Checking thespy-calculus

This section presentsPSDER, the model checking framework we intend to use for verifying
security. The kernel procedure oP®DERIs described by Algorithm 2, a simple procedure which
visits a finite labelled transition system in a depth first search mode. As parameters the algorithm
requires a closed protocd in normal form, a protocol transformatidy,, and a formulaf to
be checked. Informally Algorithm 2 uses two stacks: (a) a stackontaining transitions that
implement the depth first traversal of the transition system; (b) a Stadkr storing prefixes of
traces. In particular during the depth first traversal of transitions, prefixes; - - - «; - p; are
built and the satisfiability of the formulfis checked over the staig. The procedure stops with
a counterexample if is discovered to be unsatisfied in some

Algorithm 2 has time complexit9 (|V'| - (| f| 4+ |Winaz| - [Mmaz|)) where|V | is the number of
states of the transition systeftf] is the length of formulgf, W, is the greatesiVo and M,,q.
is the biggest message used within the protocol. It is worth to underline that using the protocol
transformatiorS 7 limits the number of traces of the model to a finite number, even if it remains
exponential (when an exponential number of messages is involved in input actions). This means
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that our model checker runs in exponential time with respect to the length of messages involved in
the protocol.

We observe that the depth of the tree representing the LTS is linear in the number of steps made
by the agent. Therefore by using a on-the-fly generation strategy a depth first search requires lin-
ear space. BYDER has been implemented in Oc&mand its main modules are represented in
Figure 4.5. The first module lexically checkspy-calculusspecification and renames variables
to obtain a normal form of the protocol. This specification is then parsed and an internal represen-
tation of the protocol is built. The user provides also a logic formula and a typing function that are
given as input to the model checker module. The execution finishes with success or with a trace
showing why the formula is not satisfied.

Example 4.5.10We continue example 4.4.10 showing how a formula is checked over a typed
version of the protocol:

o (Eas) (\Ees) AA)(\B)(\S)
Coyssx (NSSK) = (L,pa(A, B, S, Kas))[I(2,p(A, B, S, Kys))
I(3, ps(A, B, Kus, Kps))

Pa(a;b;8,kas) = Cas((a, b))-Cas(x : | {| key [xey, { { proc,key | [xey )
[z : | { key ey, {| { proc,key | [xey ) =

({z1: key}r,,, z2 : { | proc,key | [key)]-
Cab(w2 : {| | proc,key | [rey).0

pB<a7 b, s, kb8> = Cab(y : {‘ <| proc, key |> ‘}keY)
[y :{ { proc,key | [fxey is {{a, y1 : key)}k,,].0
(b ks, Ki) " caa(z ¢ { proc, proc ) : { proc, proc | is {a, ).

(v Kab)Cas ({ab ks> {(@5 Kab) F )0

Figure 4.6 shows the transition system mode€gf (K E), while in Figure 4.7 we report a
table containing detailed information about the most significant states of the transition system (the
ones boxed in Figure 4.6). In the first column, state naqrea® reported, in the second the arrays
representing the global statggeach element of the array lays in a different row), and finally in
the third column the fragment of the calculdsrepresenting the protocol evolution. We want to
stress that the transition system is now finite state.

The formula given in example 4.4.10 (also reported at the end of the paragraph) and expressing
an authenticity property can be checked over the finite labelled transition system. It is easy to
verify that the formula is not satisfied. For example, in the tiace\; . . . A\7g; processs receives
a message befor& sends it, proving that the intruder has maliciously assurieddentity.

f % Wb 3a.name(d) = B A name(a) = A A (4.5.1)
ACtS(cap)b{(A, 22)} ks D OPACES(Cop)ay A
a.y1 = b.{(A4, m2>}KBS

20caml is available on line at the web sititp: \\caml.inria.fr
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Algorithm 2 function ModelCheckind Z is a closed protocol in normal fornf, is formula and
Sz is a transformation w.r.tz)

1:

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

NoarMwN

7 « Cg,(Z) {Get a typed protocol, usirgy }
po = (o : Z) {Set the initial stat
8a < () {an empty stack for containing actigns
8i < 0 {an empty stack containing actions and states (i.e., prefix of traces)
push(8, € - po)
repeat
_- p < head(8yy) {retrieve the element on the top of the stack (only the state is significant
here)}
if not mark(p) then {mark(p) equal true means thathas been not visited ygt
mark(p) < tt {markp as “visited"}
if (p:8m) ~ fthen{if fis not satisfied ovep along traceSy }
return ££, Sy {failure and return a counterexample
else{ f is satisfied
A — {a : a is an enabled transition from stagi¢
if A = () then {no transition is possible
pop(81) {delete head element- p from trace stack (i.e., backtragk)
else
Va € A, push(8),a) {push the enabled actions irfiq }
end if
end if
end if
if So # 0 then {if some transition remairjs
a < pop(8) {retrieve next transition (i.e., depth first search)
let o' : p % p/ inpush(8p, « - p') {extend the trace adding the suffix o'}
pp
else
pop(81) {backtrack
end if
until 81 = 0 {all states have been visitpd
return tt {succesp
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LEXER

spyder model - - - = b
normalization logic formula

_ | I
: I
spyder model in normal form |

\ v
spycal logic
LEX/PARSER LEX/PARSER

abstract model ‘

Py

model
checker

typing function - - - - — — .

counter example ok

Figure 4.5: The architecture of the 8DER prototype implemented in Ocaml

4.6 Conclusions

This chapter presents*SDER, a model checking environment for a typed spi-calculus dialect. A
protocol is specified as a term of a formal calculus calledsihe calculusdescribing a parallel
composition of a finite number of process instances, each representing a finite-behaviored role
running the protocol. More runs of a protocol can be described by instantiating more copies of
each agent. Thepy-calculushas an operational semantics based on labelled transition systems,
where the intruder is described in the Dolev-Yao style. Security properties can be expressed in a
linear time temporal logic.

Here types are used to obtain finite-state labelled transition systems. Types are assigned in
a flexible manner, by user-defined transformation functiéps, these are applied to a given
protocol specificatiorf to obtain a typed version iis, (Z), before running the model checker.

A transformationCsg,, is a “view” that a user can introduce to select a finite partition of the
state space. Different transformations can be used to select different portions of the state space,
increasing the confidence of the analysis.

As theoretical result we have proved that given a formfilan attack (that is a trace over
which f is not satisfied) over a transformed proto€gl, (Z) always implies the existence of the
same attack over the original protocol Obviously finding an attack via protocol transformations
is only a sound method.e., if an attack exists over a protocal we have no guarantee that the
attack can be found over a specific transformed protocol. Anyway, we prove that a transformation
@’SZ that preserves the attack always exists. This mean that our transformations are general enough
to maintain type flaws.
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As

As

LEGEND

As = 2.can({{4, K)}x,,)

(4, B))

-Cas

=1

A7 = Leap({{A, K)}ry,)

A2 = 3.cas ({4, B))

<<{K}Kabv {<A1 K>}Kbb>>
Leas ({E}kas: {(A KD} iy, )

.Cas

=3

A6

Figure 4.6: The finite state labelled transition system which magig|s . (N SSK).
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q ]9 | Z |
(Qv @7 J—) (\Kas)(\Kbs)(\A)(\B)(\S>
9 - (pA7W1aJ—) Z — <1apA<A>B7S>Kas>)
CLI7 (pp, W2, 1) 7 l(2.p5(A B, S, Kys))
(pS,Wg,J_) |||(33p5<AaBaKa87Kbs>)
Wa
(Q,{(4, B)}, 1) (L cas(@) [ is (21, 22)]Cap(22).0)
q1 91 = (pA,WI;J—) Z1= |||(27pB<A7B757Kb8>)
(pB’WZ’J-) |||(37pS<AﬂBvKa87KbS>)
(pSa W37 J—)
(, (4, B), 1)
(pa, W1, L) (1, cas(z).[7 is (w1, 22)[Cap(72).0)
(pB;W%J—) |H(%,pB<A,B,S, Kbs>>
g = 3,
@ | 92= (ps’w}’ Zy = | = is (A, B).(vKp)
e (4 B>3]) Cas(({Kab} Koy
%//’—/ {<A7 Kab>}Kbs>)'0)
3 (T, cos@)@ 15 (o1, 23] ear(@2).0)
m(%va<A7 Bv Sa Kbs>>
! ! ] — 37
q | 95 =52 Zy= | (VK )
Cas (({Kab} Kass
{{A4, Kap) } 5,.))-0)
(Qv Wa, J—) . _
(pA7 Wh, J_) ﬁ|1(720as(f<121[$3155<x[? §§>}Cab(x2)'0)
_ 7I/V , L 7. = yPB sy Dy 0y pg
il S M 2% 3, can({ K D (1A, ) 1 )0)
whereK is a new name
Wy
Wy
Wa U{({K}k.. ' T
Q, 7 . (1, cas ()] is (x1, x2)|Cap(22).0)
T () N S (2 o)1y 35 (A, 91)} 1, 10)
(pa, W1, L) 13,0)
(pB, Wa, 1)
(ps, W3, 03)

Figure 4.7: Details of the LTS of the protod®, . .. (VSSK) (part A). In the first column we list

the name of the states, in the second and third column their contentise global states and suf-
fixes of thespy-calculugprotocol specification (where we omitted types for sake of saving space).
In the initial stateV, = {A, B, S, K,s}, Wao = {A, B, S, Ky} andWs = {A, B, S, Kgus, Kps}
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9 ]S | Z
(Q, W, 1)
(oA, Wi L) (L, cas (@)
Wy E l(S (;517) 2)]
_ = Cap(x2).0
G| 95 gy, MRV Kbacdy 1 5= 0 004 Ky is
[y — {<A7 K>}Kbs] {<a7 y1>}Kbs'0)
N 1(3,0)
(pS7W3703)
(€, W, 1) (1, cas ().
(pa, W1, L) i [z is (21, 22)]
qu, 95= (pB7W2/’U2U[y1 HKv]) Zé: Tw(%g).@)
— I(2,0)
(ps. WY, %) 1(3,0)
(2, W), 1)
(pa,
" (1, [z is {21, 22)]cap(22).0)
= Wiy <{K}Kas7 {<A7K>}Kbs>7 7. = : 7 ¢ ‘
©19T e Kb LA B ) | T 1)
(05, Whoh)
(ps, W}, %)
(2 Wi, 1)
(Awi, %! i[””l;fﬁ’ ) (1, %o (2).0)
g | 9= R LV AR 1)
S 1(3,0)
(B3W2702)
(s, Wé’,aé))
(Q,WY, L
I (1,0)
¢ | gr= P Wio1) 7= ||(2,0)
(2, 13, 02) 1(3.0)
(ps. WY, %) ’

Figure 4.8: Details of the LTS of the protod®

NSSK(

NSSK) (continued).
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In our framework we do not have any automatic method to find a typing transformation catch-
ing an attack without knowing the attack first. The formal proof of completeness, where this
transformation is proved to exist, is not constructive and it does not help in this direction. At the
present version of the tool finding the right typing transformation depends on the experience of
the engineer that performs the verification. We conjecture that useful hints in defining a signifi-
cant typing transformation can emerge from a static analysis of the message flow along a protocol
specification. This conjecture is supported by those results that show that it is possible to use type
checking to check secrecy and authenticity(,see [3, 102]). Type checking for security protocol
is not commonly used, and the large availability of dynamic verifier confirms this impression. We
claim that static type checking can be profitably integrated in our tool with dynamic analysis: a
static (even partial) check can be used as front-end to built a set of typing transformations then
used in the dynamic model checker module. We have not investigated this solution yet, and we
point out it as a future research.

Our SPYDER implementation runs in exponential time in the size of the longest message in-
volved in the protocol. This matches the expected theoretical computational complexity, so it is
the best we can expect. We think that theySER performance can be significantly improved
by the use of partial order reduction techniques that may help in reducing even more the size of
protocol models (this is evident, for example, just looking at the model in Figure 4.6). In fact, the
use of partial order reduction has been applied with success in the model checker BRUTUS [52]
whose logic (and relative semantical models) have inspired the one we have used here. We leave
as a future work the porting of such techniques iy SER.
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Relating Multiset Rewriting and
Process Algebras for Security Protocol
Analysis

“Quando leggemmo il digto riso esser “When we had read how the desired smile
basciato da cotanto amante, questi, che was kissed by one who was so true a lover,
mai da me non fia diviso, la bocca mi this one, who never shall be parted from

bascd tutto tremante. Galeotto fu'l libro me, while all his body trembled, kissed my
e chi lo scrisse: quel giorno pi non mouth. A Gallehault indeed, that book and

vi leggemmo avante” (Francesca ima he who wrote it, too; that day we read no

Divina Commedia — Inferno Canto ,V more.”

Dante Alighieri)

Abstract

When analysing security protocols, different specification languages support very different
reasoning methodologies whose results are not directly or easily comparable. Therefore, es-
tablishing clear mappings among different frameworks is highly desirable, as it permits vari-
ous methodologies to cooperate by interpreting theoretical and practical results of one system
into another. In this chapter, we examine the relationship between two general verification
frameworks: multiset rewriting[SR) and a process algebrBA) inspired by CCS and the
m-calculus. Although defining a simple and general bijection betwWédsR andPA appears
difficult, we show that the sub-languages needed to specify cryptographic protocols admit an
effective translation that is not only trace-preserving, but also induces a correspondence re-
lation between the two languages. In particular, the correspondence sketched in this chapter
permits transferring several important trace-based properties such as secrecy and many forms
of authentication.

5.1 Introduction

In the last decade, security-related problems have attracted the attention of many researchers from
several different communities, especially formal methaalg.([4, 6, 40, 50, 43, 66, 79, 84, 82,
102, 150, 182, 77]). These researchers have often let their investigation be guided by the tech-
niques and experiences specific to their own areas of knowledge. This massive interest has deter-
mined a plethora of results that often are not directly comparable or integrable with one another. In
the last few years, attempts have been made to unify frameworks for specifying security properties
often expressed in different ways [86], and to study the relationships between different models for
representing security protocols [44].

In this chapter, we relate a transition-based and a form of process-based models for the descrip-
tion and the analysis of a large class of security protocols. We choose the multiset-rewriting for-
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malismMSR as a representative of the former, and synthesize salient features of popular process
algebras in a system that we cBW as an abstraction of the latter.

MSR, with its roots in concurrency theory and rewriting logic, has proved to be a language
suitable for studying foundational issues in security protocols [43]. It is also playing a practical
role through the closely related CIL intermediate language [66] of the CASPL security protocol
analysis system [65], in particular since translators from several tools to CIL have recently been
developed. Ties between betweaei$R and strand spaces [76], a popular specification language
for crypto-protocols, were analyzed by Cervesattal in [44].

Process algebra encompasses a family of well-known formal frameworks proposed to describe
features of distributed and concurrent systems. Here we U5k that borrows concepts from
different calculi, specifically CCS [158] and thecalculus [158]. We expect our results to be
applicable to other (value passing) process algebras used for security protocol aralydlse
spi-calculus [5] or CSP [181]. Indeed, when applied to security protocol analysis, most such
languages rely only on a well-identified subset of primitives, that we have isolated in the language
considered here.

We relateMSR andPA by definingencodingsrom one formalism to the other. Moreover
we propose @&orrespondence relationetweenMSR andPA protocol models, preserved by our
encodings, that is sufficient to transfer several useful trace-based properties such as secrecy and
many forms of authentication. Informally, this relation says thaWEdR configuration and A
process correspond if and only if the messages stored on the network and the messages known by
the intruder are the same, step by step, in the two models.

Consequences of the results in this chapter are:

e First, our encodings establish a relationship betweersgeeification methodologiam-
derlying MSR andPA. MSR is a representation paradigm based on transitions between
explicit states, as found, for example, in the vast majority of tools for security protocol
analysis [43, 50, 65, 70, 150, 172, 181]. The approach undergi@nd the languages
behind it,e.qg.,[5, 29, 82, 102, 77], represents concurrent systems, with security protocols
as a particular instance, as independent threads of computation communicating by message
passing. While specifications are obviously related, moving between paradigms is an error-
prone process unless guided by formal encodings.

e Second, the relationship we developed helps at relating verification results obtainable in
each model, in particular as far as secrecy and authentication are concerned. Sylstems
MSR overwhelmingly embrace a verification methodology based on some form of trace ex-
ploration: model-checking [50, 65, 70, 181], theorem proving [172], or a combination [150].
The situation is more complex in process-algebraic languages, in which the analysis can be
based on traces [29, 82, 186], but also on process equivalence [5], type-checking [102] and
other forms of symbolic reasoning [110]. While we do not study how these last three forms
of analysis map to in th&ISR world, we believe that the present study opens the door
to such an investigation. Authentication and secrecy are quintessential trace-based safety
properties (they are expressed in terms of intruder knowledge and messages passed onto
the network and our encodings preserve this information). Therefore relating trace-based
results inMSR andPA is valuable, in particular as these languages rely on different notions
of traces, and sometimes make different uses of tleegn,[82].

e Finally, by bridgingPA andMSR, we implicitly define a correspondence betwé¥hand
other languages for security analysiSR. has already been related to other formalisms,
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such as strand spaces [76] in a setting with an interleaving semantics (a worthy investigation
as remarked in [62]), while work on linear logic aMBR appears in [157].

5.2 Background

In this section, we recall the syntax and formal semantics of multiset rewrifgR{) and we
define the languag®A, that we will use as a representative of process algebras. Before doing so,
we present our notation for tuples, as bMBR andPA rely on these objects. Aipleis defined
by the following grammar:

tu=c¢|t;t

Atuplet is a sequence of items. We use the semicolgh &5 the tuple constructor: it is associa-
tive but not commutative. We writefor the empty tuple, which acts as the left and right identity
of “;”. We write ¢ € t to indicate that itent is present in tuplé, and use the notatioti C ¢ to
indicate that’ is a subsequence 6fi.e.,thatt’ can be obtained by deleting zero or more symbols
from t. Finally, given tupleg andt’ with ¢’ C ¢, we writet — ¢’ for the tuple obtained by filtering
out all itemst’ € ¢’ from t, while preserving the order of the remaining elements of the latter.

5.2.1 First Order Multiset Rewriting

The language of first-ord&d SR is defined by the following grammar:

Elements a == - | a(t),a
Rewriting Rules r = a(x) — Inb(x;n)
Rule sets rou= - | T

Multiset elements are chosen as atomic formul@s, wheret is a tuple of terms over some first-
order signatur&.. We writea(x) to emphasize that variables, drawn framappear in a multiset
a. Similarly we writet (respectivelyt) ast(x) (respectivelyt(x)), to underline that varibles
appear in a term (respectively in the tuple of termyg. Instead, we writg (respectivelyt) to
emphasize, when required, that a terim (respectively all the term ihiare) groundi.e., variable-
free.

In the sequel, the comma™“will denote multiset union and will implicitly be considered
commutative and associative, whilé,“the empty multiset, will act as a neutral element; we will
omit it when convenient. The operational semantic344R is expressed by the following two
judgments:

—

<Y

Single rule application T
Iterated rule application T

_)*

> S

<Y

The multisetsi andb are calledstatesand are always ground formulas. The arrow represents a
transition. These judgments are defined as follows:

msro

(7,a(x) — In.b(x;n)) : (¢ alt/x]) — (¢,bt/x, k/n])

7F:a—0b rib—"¢

msr.
- . -
ria—a

msri

a4 —'¢

it

The first inference shows how a rewrite rule= a(x) — 3n.b(x;n) is used to transform
a state into a successor state: it identifies a ground instgit¢®f its antecedent and replaces it
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with the ground instandit; k) of its consequent, whedeare fresh constants. Hele/z] denotes

the substitution (also writtefl) replacing every occurrence of a variableamongx with the
corresponding termin t. These rules implement a non-deterministic but sequential computation
model. This means that in general several rules are applicable at any step but only one rule,
chosen non-deterministically among them, is applied at each step. Concurrency is captured as the
permutability of (some) rule applications. The remaining rules define' as the reflexive and
transitive closure of—.

5.2.2 Process Algebras

Process algebraic specifications of security protocols are generally limited to the parallel compo-
sition of a number of processes describing the sequence of actions performed by each agent. With
this in mind, we forsake the full treatment of a traditional process algebra, suchas#heulus,
in favor of a more specific languagBA, that includes the features commonly used for describ-
ing cryptographic protocols. In particular, we lay d2h on two levels: sequential processes
describe the sequence of atomic actions (input, output, name generation, etc.) performed by an
individual agent angbarallel processebundle them into a multi-agent specifications. Sequential
processes are synchronous, although a systematic use of buffer processes will prevent the possi-
bility of blocking on an output action. For convenience, we will rely on polyadic communication
channels.

With these premises, the languagePef is defined by the following grammar:

L QliP | QP
| a(t).P | a(x).P | [x=t|P | va.P

Parallel processes @ := 0
Sequential processes P ::= 0
Parallel processes are defined as a parallel composition of — possibly replicated — sequential
processes. These, in turn, are a sequence of communication actions (input or output), pattern
matching and constant generation. An output pro@gss P is ready to send a tuple of terms
each built over a signatuig, along the polyadic channel named An input process:(x).P is
ready to receive a tuple of (ground) messages, each in the corresponding variahte The
processxz = t| P is a parallel pattern matching construct which forces any instantiatian of
to match the pattern, possibly binding previously unbound variables in the latter. Finally, the
creation of a new object i (as in ther-calculus [162]) is written asz. P (we will sometimes
abbreviatevx; . . ..vz,.P asva.P). The binders of our language are, a(x) which bind each
z in z, and[x = t] which binds any first occurrence of a variabletinThis induces the usual
definition of free and bound variables in a term or process.

The operational semantics BA is given by the following judgments:

Single interaction Q=q
Iterated interaction Q= qQ

They are defined as follows:

pao

@ [l a@).P || a(z).P") = (Q | P || P'lt/=])
t=1t[0] k¢ c(Q)Uc(P)

pay pay

@QIIE=21P)= (@] P[] @[l va.P) = (Q| Plk/x])
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PEP/ P/:>Q/ Q/EQ Q:Q// Q// :* Ql
pa= pasx pa

P=Q Q="Q Q=" Q

The first inferencergaction) shows how two sequential processes, respectively one ready to per-

form an output of a tuple of ground terms, and one ready to perform an input aveeact by

applying the instantiating substitutigty x| to P’. The second inference rulmétching says that

there must exist a substitutiorthat matches terms with ground termg, for [t = ¢] P to evolve

into P[4]. The third rule defines the semanticsiof as an instantiation with a fresh constaet,

a name which differs form those appearing in all the process terms ¢{hBnedenotes the set of

constant inP). The next rule allows interactions to happen modulo structural equivatenitet

in our case contains the usual monoidal equalities of parallel processes with respectdo,

the unfolding of replicationife., !P = !P || P), and the equatioft = t'| P = [t* = t*] P

which filter out identities in tuple’s matchinge., wheret* andt’* are obtained front andt’ by

removing all identical items in corresponding positions in a patter matching over tuples.

Finally, the last two inferences defing* as the reflexive and transitive closure=6f

1

5.3 Security Protocols

A cryptographic protocol is a collection of distributed programs supporting communication be-
tween participating agents and aimed at achieving predetermined security outcomes such as se-
crecy or authentication. The agents communicating in a protocol are gaitezipals, while the
individual programs they execute as part of the protocol are cadled Communication hap-

pens through a publioetworkand is therefore accessible to anyone, unless protected through
cryptography.

Both transition- and process-based languages have been widely used for the specification of
cryptographic protocols (see for example [4, 6, 50, 43, 66, 79, 84, 82, 102, 150, 182, 77]). In this
section, we defindISR p andPA p, two security-oriented instancesdfSR andPA respectively,
and describe how they can be used to specify security protocols.

Narrowing our investigation to a specific domain allows us to compare directly these restricted
versions ofPA andMSR. Moreover by restricting our analysis to cryptographic protocols, we are
able to obtain stronger correspondence results than what seems achievable in a general comparison
betweenPA andMSR[25].

The two specifications will rely on a common first-order signaftigethat includes at least
concatenation{(, _)) and encryption{_} ). In both formalisms, terms iR p stand for messages.
Predicate symbols are interpreted as sudtifiR p, and as channel nameskd p. Variables will
also be allowed in rules and processes.

5.3.1 Formalizing Protocols as Multiset Rewriting

MSR p relies on the following predicate symbols [44]:

Network Messages V): are the predicates used to model the network, whéfg means that
the termt is stored in the network.

Role States ): are the predicates used to model roles. Assuming a seteoidentifiersR, the
family of role state predicate§A,,(t) : ¢ = 0...[,}, is intended to hold in the internal
state t, of a principal in rolep € R during the sequence of protocol steps 0...[,. The
behavior of each rolg is described through a finite number of rules, indexed féam/,,.
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Intruder ( I): are the predicates used to model the intrutjavhere!(t), means that the intruder
knows the message

Persistent Predicates®): are ground predicates holding data that does not change during the
unfolding of the protocol €.9.,Kp(K; K') indicates that’x’ and K’ form a pair of pub-
lic/private keys). Rules use these predicates in a read-only manner to access the value of
persistent data.

A security protocol is expressed MiSR p as a set of rewrite rulesof a specific format called
asecurity protocol theoryGiven rolesR, it can be partitioned a&= U,cr(7,), 71, wherer, and
71 describe the behavior of a rolec R and of the intruded. For each rolep, the rules inr,
consist of:

e oneinitial rule

instantiation r,, : 7(x) — In.A,(z;n),7(x)

e zero or more{=1...1,) message exchange rules

send Tpi Api_i(x) — Ap(), N(t(z))
receive o Apii (@), N(y) — Ay (my)
analysis T, : A, () — Ap(x)

The first rule (nstantiatior) describes the instantiation step of a protocol role. All the new
names required in a role are generated during instantiation, and similarly all the varialles
referring to permanent datat) are bound to ground permanent terms in that rule. The second
rule (send describes an action of sending a messagemposed by using (all or a subset of) the
ground terms in the role’s state. The third rufecgivg describes a receive operation, where a
message stored in the net is retrieved, bound to variabland then stored into the internal state
of the role. The last ruleapalysi§ simulates the action of a role when it analyseg( decrypts
or splits) previously received messages.

This fairly explicit formulation ofMSR rules will simplify our comparison witfiPA p. Equiv-
alent, but more succinct, formulations can be found in [43, 42].

Rules in7; are the standard rules describing the intruder in the style of Dolev-Yao [69], whose
capabilities consist in intercepting, analyzing, synthesizing and constructing messages, with the
ability to access some permanent data. Formally:

T m(x) — I(x),n(x)

TIy: - — dn.I(n)

T N(z) — I(x)

T I(z) — N(z),1(z)

Ts: I((z1, z2)) — I(21), I(22), I({z1, 22))
Tt I(21), I(x2) — I((z1, 22)),I(z1), ( 2)
rit I({z}e), I(k),Kp(k; k') — I(2),Kp(k; k'), I({z}k), (k)
T I(x)algki - I({m}k) I(z), I(k)

Tl x) —

wherez, z;'s andk are variables. Informally, the first rule allows the intruder to acciess get
knowledge of) persistent data. In the second, rule the intruder creates a new ground datum. In
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the third, a message stored in the network is intercepted, while in the fourth a known message
is injected into the network channel. The remaining rules describe the intruder capabilities for
managing the messages it knows: more precisely its ability to decompose pairs, to compose pairs,
to decrypt a message (if the relative decryption key is known), and to create encrypted messages.
Finally, the last one describes the capability of the intruder in deleting message®igetting
knowledge).

In MSR p, a state is a multiset of the forsn= (N, A, I, 7), where the components collect
ground facts of the fornV(t), A,, (t), I(t), andr(t) respectively. Arinitial state 3 = (Io, 7)
contains only the initial intruder knowledgé,j and persistent predicate®)( Note thatt remains
the same in every state. A pdif : ) consisting of a protocol theory and a state is called a
configuration The initial configuration ig7 : 5¢).

Example 5.3.1 We make these definitions more concrete by showingMl8&® p representation
of the classical Needham-Schroeder Public K&gPK) protocol [167]. In the common informal
notation, it is written as follows:

B : {A, NA}KB
A:{Na,Np}K, (5.3.1)
B :

LA
. B
LA {NB}Kpy

L1

W N =

The abstract principall and the role it executes are called tihd@iator since it originates
the first message. Dually3 is theresponder This first message[A, N4}k, consists ofd’s
name and a freshly generated random valje (a nonce), and is encrypted usitijs public
key K . Upon successfully decrypting this message (using privatekkgﬁ/), B replies with the
second messagéN4, N}k ,, whereNp is a second nonce, generated®yUpon successfully
processing this messagé sends the final messa§é/s } i, which shall be interpreted bi.

Here, A and B perform distinct although related sequences of actigngeneratesV 4, sends
{A, Na}k,, waits for a message frol® and verifies that it matches the form@Va, N}k ,,
and finally sends the third messagé&s } k. This sequence of actions constitutés role. B’s
role is similar. BothM'SR p andPA p give a role-centric representation of a protocol.

The MSRp specification of theNSPK protocol consists of the rule-s&yspk Which we
partition as(R 4, Rp, 71). R4 andRp implement the roles of the initiatord) and the responder
(B) respectively, while’; describes the actions of a potential attacker, and have been fixed earlier
in the discussion.

First some abbreviations. We define
(w3 y; kai Ky, ky) = Pr(x), PrK(z; k), POK(y; ky), Kp(kas kg)

Here, persistent predicake (z) indicates that is the name of a principal; the predic®teX(z; k)
definesk, to be the public key of principat; the predicat®rK(z; k,) says that, is z’s private
key; finally, Kp(k.; k%) relates a public ke¥. and the corresponding private kiy. Two 5-tuples
of variables(a; b; kq; k; k) and (b; a; ky; k;; kq) Will occur repeatedly in this example; therefore
we shall abbreviate them as and B, respectively.



122 Chapter 5. Relating Multiset Rewriting and Process Algebra in Security

Then, the following rules describ#’s role:

T4, T(A) — Ing.m(A), Ao(A;ng)

ra, : Ao(A;ng) — N({a,nq}k, ), A1(A;ng)
Ra§ ra,: A(A;ng), N(m) — As(A;ng;m)

ray 0 Aa(Asng; {na, mptr,) — Az(Aingnp)

ra, : As(A;ng;np) — N{np}r,), Aa(A;ng;np)

The first ruler 4, in R4 is the instantiation rule of this role, and takes care of generating the
initiator's noncen, and collecting the persistent information used in the role. Ruleandr 4,
are send rules corresponding to the message transmissioh atef3 in protocol (5.3.1). Rules
r4, andr 4, realize the initiator’s actions in the second stepVstP K, namely the reception of a
messagen from b and the verification that it matches the expected patternn, }.,. Reception
and analysis are described as separated steps accordinghMi&ihe syntax.

The responder’s role is similarly specified by the followM&R p rule set:

rB, ¢ 7(B) — dny.w(B), Bo(B;ny)
rp, : Bo(B;ny), N(m) — Bi(B;np;m)
Rp "By - (B nbv{a na}kb) - BQ(B;nb;na)
rBy : Ba(B;np;ng) — N({na,np}r,), B3(B;np;ng)
rB, : B3(B;np;ng), N(m') — By(B;np;ng;m’)
7"35 : B4(B nb,na,{nb}kb) — B5(B nb,na)

Again, the instantiation ruleg, instantiate all the variableB to ground terms. Rulesg,,rp,

model the receiving steps and 3 in protocol (5.3.1), whilerp, is the rule corresponding the

sending steg@. Finally rulesrg,, rp, describe the analysis steps performed by the role.
Finally, we define the state portion of the initial configuratioa.(the initial state) to consist

of:
ﬁ(ABKA,KA,KB),
7(B; A; Kp; Ky K )
I(E). I(Kg), I(K). ™ BB A
( ) ( E) ( E) W(BEKB,KlBy E)7
N A I ﬁ(E A KE';K/EHKA)a

™

whereA, B, E, are specific principalsiandb above were variables), with acting as the attacker.
For each of them, the pseudo-functidiisand K’ denote their public and private key, respectively.
In this initial state, the intruder knowledge consists of its ndthand its public/private key
pair K, K. The persistent data defines the attributes (name, public and private key) of each
of these principals, in particular of the intrudgrwho may participate in the protocol as an honest
player if he wishes. This is useful, for example, when testing some authenticity property.
u

5.3.2 Protocols as Processes

A security protocol may be described in a fragmenPafwhere:

e Every communication happens through the net (H&yg, is the process that manages the
net as a public channel where protocol roles send and receive messages).
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e There is an intruder, with some initial knowledge, able to intercept and forge messages
passing through the net (hefk;, with initial knowledgeQy, ).

e Each principal starts the protocol in a certain rple

Formally a security protocol, involving a collection of rolés}, is expressed iPAp as a
“security protocol procesg”, defined as the parallel composition of five componerits;.; ||
I1, Py || Qu || Qi || Q1, where] P denotes the parallel composition of all the processés in
More precisely:

Pinet = 'N;(z).N,(z).0 This process describes the behavior of the network as a buffer that copies
messages from channdl; (input to the net) taV, (output from the net), implementing an
asynchronous form of message transmission on top of a synchronous calculus.

P, Each of these replicated sequential processes capture the actions that constitute a role, in the
sense defined favISR p. These processes have the form

b, ='7(x).vn.P,

HereP, is a sequential process that performs input and output only on the network channels,
and that analyses the received messages. Variatdaedn are free inP,.

Notice that pattern matching is sufficient for “extracting” a piece of information whgn
is used, but more general mechanisms could be considered (as in Crypto-CCS for exam-
ple [86]).We have used(x).P as a shortcut forr; (x1) ... 7 (xg).P, wherexz; C x.
Formally,

P, u= 0 | No@).P, | Nit).P, | [/ =t(x)] P,

Q=P || ... || P || 'Pr,, This is the specification of the intruder model in a Dolev-Yao
style. The dedicated channglholds the information the intruder operates on (it can be
either initial, intercepted, or forged). Eacdh,, fori = 1,...,9 describes one capability
of the intruder. The additional proces$,, has no meaning in term of intruder capability
but technically it behaves as a “garbage” collector of messages in the intruder knowledge.
Processe#’;, are defined as follows:

Py = m(x).1(x).0

Pr, = vn.d(n).0

P, = Ny(z).I(z).0

P[4 = I(!L‘)z(iﬂ)Nz(l‘)O - -

P[5 = [(1‘)[&’1})[%’ = <1‘1 x2>] I(xl) [( ) 0

P[6 = [(1‘1).[(%1 J(l'g) [(232 ((xl, $2>)70 B
Pr, = Rp(w).I(y)-1(y).[w = (y, y')].1(x).I(2).]x = {z}y].1(2).0
Pr = 1) T 1) 1) T({e}1).0

P]9 = I(ZE) 0

Pr, = I(z).1(z).0

Processe#’;, throughP;, perform the same actions as thESR p intruder rules with the
same index in Section 5.3.1. For exampRy, retrieves an object previously memorized
asI(x), splits it into the pairz;, z2), and then stores a copy of each of the tetms; and
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x: this is exactly what;, achieved. Channdl is used to store the intruder’s knowledge
in a distributed way. Proced?,, ensures that writing o is never blocking, even in our
synchronous calculus. In particular, it allows expressing every témmown to the intruder
as the singleton procesgt).0, since it can rewrite a trailing sequence of outplts.7(¢').0
into I(¢).0 || I(¢').0.

Qi = [['7(¢).0 This process represents what we called “persistent information” in the case of
MSRp. We can assume the same predicate (here channel) names with the same meaning.
This information is made available to client processes on each chanieed).,Kp). It is
assumed that no other process performs an outptt on

Qr1, = [11(t).0 fortermst. Qy, represents the initial knowledge of the intruder.

In PAp, aninitial stateis a proces$Pue: || [1,'7, | Qir || Qix || Q1,). Subsequent states
are obtained by applying the execution rule$af defined in Section 5.2.2.

Example 5.3.2 In order to gain a better understanding of iep specification methodology, we
will now express theVSPK protocol (5.3.1) in this language. T p specification ofNSPK
protocol will consist of the following processes:

Qnspk = Puet || Pa || P || Qi || Qir || Qro

Here P,,.; and @i; have already been defined. As witfiSRp, we rely on the abbreviations
A = (a;b;ka; k)3 k) and B = (b;a; k; ky; ko) for the given tuples of variables. The other
processes are as follows:

Pa = W(A). vng. N;({a,na}r,)- No(m). [m = {ng,mp}tr,] - Ni({ns}r,)- 0
wherew(A) is an abbreviation for the prefix
Pr(a).PrK(a; k,).PoK(b; ky).Kp(ka; k)

First, process’ 4 receives, through channefs the instantiating constants of the initiator role.
Then it sends the encrypted messdgen, },, on the net, where,, is a fresh name ank, the
responder’s public key. The®, 4 receives a message that it tries to interpret aén,, np }r, by
decryption using the private kéy,, and by splitting the results as the péir,, n;). If this step
succeeds the messaf®, }, is sent back to the net.

The proces® i representing the responder 86 PK is similarly defined as follows:

Pp = 7(B).vny. No(m).[m ={a,n.}g,] -
Ni({na, mo}e,). No(m'). [m' = {ny}y,] . 0
The initial knowledge of the intruder is:
Qr, =1(F).0| I(Kg).0| I(Kg).0

i.e., the intruder knows its name and its private/public key pairs. Finally the processes modeling
the persistent information are the following:

Q!ﬂ' = Qﬁ(A;B;KA;KfA;KB) || Qﬁ'(B;A;KB;KJ’B;KA) H
er(B;E;KB;KJ’B;KE) || er(E;A;KE;KjE;KA)
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wWhereQz z;y:k.:k.:k,) 1S the parallel composition of simple replicated processes that output each
objectinm(z; y; ky; kl; kyy) on channelst, i.e.,:

Pr(2).0 || PrR(z; k,).0 || PBK(y; &y ).0 || Kp(kas k1).0.

Here finishes the example showing how to write a security protocol in our subBét. of |

5.4 Encoding Protocol Specifications

This section describes two encodings: one ftdiSR p to PA p and the other froniPA p to MSR p.

As we define these encodings, we assume a common underlying sighgtute particular, the
predicate symbols and termsMSR p find their counterpart in channel names and messages in
PA p, respectively.

The first mapping, frolMSR p to PA p, is based on the observation that role state predicates
force MSR p rules to be applied sequentially within a role (this is not true for gendf&R the-
ories). Minor technicalities are involved in dealing with the presence of multiple instances of a
same role (they are addressed through replicated processes).

At its core, the inverse encoding, froBAp to MSR p, maps sequential agents to a set of
MSRp rules corresponding to roles: we generate appropriate role state predicates in correspon-
dence of the intermediate stages of each sequential process. The replication operator is not directly
involved in this mapping as it finds its counterpart in the way rewriting rules are applied. The trans-
formation of the intruder, whose behavior is fixed a priori, is treated off-line in both directions.

Before proceeding we introduce some simplifying assumptions and a preliminary observation.
Without loss of generality, we assume that the rewrite rules dfl8R.p theory are written in the
following form: variables occurring in two occurrences of a role state preditaiec), one in the
antecedent and one in the consequent of two consecutive rules, have the same name. Moreover,
in the antecedentl,,, (t(x)) of an analysis rule, we require that all the variables introduced by
t(x) be distinct from the variables’ in the consequenti,, (x’) of the preceding rule. These
assumptions, purely syntactical, simplify situations in the proofs without invalidating our analysis.
Example 5.3.1 implements them.

We begin by characterizing the structure of a gen®dc- statereachable from an initial
specification (see Sec. 5.3.2) as the parallel composition of precisely identified processes. We
have the following proposition:

Proposition 5.4.1 Let Q be aPA p initial state. IfQ is such that)y =* Q then@ can be written

as:
Q1

Q= (Puet [| [T P 1 Qur 1| @) 1| (@et | [T 2o | Qr || Qrem)
P P

where:
Qnet == 0 | Hﬁo(t)o
P, u= 0 | NP, | N(@).P, | E=1]F,
Qr == suffix of Py, for all j

Qrem == 0 | No(z).Ni(2).0 | 7(z)wn.P, | vn.P, | T[7(t).0
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Proof. By induction over the number of transition steps. As the base of the induction let us
observe that ®A p initial stateQ is exactly the procesg, || Q;, (whereQ = Py, || Hp P, |

Qi || Qir), and thatQy =* Q. Then, let beQ® such thatQy, =* Q' = Q. For inductive
hypothesis)’ may be written as a process of for@ || (Qnet || I, P || Qr || @rem), and

it is easy to check that, each transitighfrom @’ can be written as well as a process of form

Q (| (Qnet I TT, B | Q7 I @rem)- =

541 FromMSRpto PAp

This section defines the transformatipn that, given anMSR p configuration(r : §) with 7 =
(Up(p), 71) ands = (N, A, I, %) returns aPAp stateQy || Quer || [T, Py | Qr (with @,
(Bnet || Hp P!p || Q!I H Q!ﬂ'))'

More precisely[ ] is a tuple of encodingg.] %, [_]%1, [V []%, []7, []™, each operating
on a different component of tidSR p configuration, as depicted in the following scheme:

[(Up(Fp) Ui : N, A T, 7)] =
o

(Pt | JTP 1 Qu Il @) 1 (@net 1T 20 Il Q1)

N T L N ) LN v A L NG ¥ ot
[Up(7p)] T [A]40

This definition is interpreted as follows:

e P, isfixed a priori (see Section 5.3.2);
e I, P, and@y, result from the transformation of respectively(,) ands;
e ()i results from the transformation &f and

® Quet, [, B, andQ; result from transformation of, respectively, A and].

Intuitively, the transformationgu, (7,) ] and[7;] ! return the parallel composition of repli-
cated {.e., preceeded by a!) processes modeling the sequence of actions of each role and of the
intruder, respectively. The replication operator makes these processes always available for in-
stantiation as the MSR rules are. The intruder process is fixed a priori and its transformation is
obvious. The transformation @f,, e.g.,the rules of rolep, is more interesting: it results in a se-
quential proces$’,, whose send, receive or match sub-processes are obtained, respectively from
send, receive and analysis rules'ji(see also Example 5.4.2). Particular attention is reserved for
the translation of the first instantiation rulg, .

The next transformations act on predicaf%s[l and I in the MSRp state, and return the
parallel composition of sequential processes. More precisely, all the predi€étesn N are
transformed into singleton output proces2ést).0 representing the availability of the ground
datumt on the net. Similarly predicatdst) in I are transformed into output procesgés).0 rep-
resenting the intruder knows the datunfinally the transformation of each predicat&s(t), in
A returns the suffix of the proceg that model the remaining role rules, . . .. \Tpy,- Variable
in P, are partially instantiated depending on terms.in
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The acquisition of permanent facts and the creation of new variabl® mapped, respec-
tively to a sequence of input actions from proces8es and actiong/z for eachz in x. In turn
Q) is the parallel composition of replicated output process@s.0, each obtained from a per-
manent predicates(t) in 7. Their task is to make permanent fact always available to be received.
Whenever unambiguous, we will omit the identifying subscript from the encoding functions

1%, %, [N [ 4, [1%, or []7, simplifying them to]_].
[1%. In transforming processes,, for each rolep, a subroutine functio._] ?;) is called by the

top level transformatiof_]. Mf’;) ranges over the set of role rulelg(7,), and takes a tuple

x of variables as parameter. This parameter, initially the empty wplellects variables

used along the rewriting rule, and uses them opportunely in the building process. We define
it on the structure of the role rule,, € 7, involved. Formally fori = 0:

[1po] = F(@)wm.[rp 1l i1 7 (@) = InAg(z5m), 7 (@)
Arole generation rule is mapped onto a process which first receives, in sequence, permanent

terms via the channeisin 7 and then generates all the new namassed in this role.
ForO0 <i<l[,— 1

Nt @) [rp 1y o 1y = Ap (@) = Ay, (@), N(t(x))

HPHl-I?i) = { Nol) [Tp’”]zt;y) s e, = Ap(x), N(y) — Ap, 1 (T3 y)

[CB = t(m,)] [Tpi+2]zt/)7 if Tpix1 = Apz‘ (t(m/))’ - Api+1(m/)

The transformation of a send or a receive rewriting rule is straightforward. The translation of
an analysis rewriting rule is less obvious: the matcHing= ¢(«’)] is intended to simulate

the matching that — in the semanticsMBSR — happens between the terms in consequent,
A, (x), of ruler,, and the terms in the antecedety; (t(z')) of (actual) ruler,,, ,. Finally

and with a little abuse of notation, we §@Llp+ﬂ?;) = 0.

The final process defining the rgbbehavior is the following?, el (700 |

[[]%1. The intruder is handled by simply mappifgto Q7. More precisely, we define the trans-
formation function[ _] that relates the intruder rewriting rutg, with the sequential agents
Py, defined in Section 5.3.2. Moreover the transformation produces the additional process
Py,

At this point the transformation is complete as soon as the &tat¢N, A, I, 7) is treated.
[]4¢. ForeachA,,(t) € A, we defineP,, ) = (rpm}f;) [t/x], Where[rmlﬁs was defined

above ande are the variables appearing as argument otthesequenpredicated, (x) in
T‘p..

7

1N, [%, [-]7. The multisetN guides the definition of),,.;, that iSQ . el [xwes N(©).-0.

Similarly, Q; % 11 1(2)-0, andQ:z =l [Lr)es '7(1).0. Formally:
(o =0 . (1 =0 =0
[N(t), NT=N,(t).0 || [N] [1(), IT=1().0 || [T] [m(t), 7] =7 (£).0 [| [7]
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Example 5.4.2 (Translation of VSPK from MSRp to PAp) We now provide an example on how
[-] works. We apply it to th&/ISR p specification ofNSPK given in Section 5.3.1.

#(A)—3ng.7(A),Ao(Asmna)

[ 7{5 1 = !ﬁ(A).Vna.[rAJz:ma)
Ao(Asna)—N({analey, ), A1(Asna)

[ an = Nilanali) [ra1 i)
A1(A;na),N(m)—A2(A;na;m)

( Ta 1Eaine) = No(m).[ra5 ] {a i)

Ax(Amngi{nanp g ) —Az(Ana;ing)
[ 2 % 3 b ~|# _ [(Asn0;m) = (A;n4; {na, M6 }E,)] -
3 (A;ng;m) [TAJ#A;%;%)

As(Anasny) =N ({np}i, ), Aa(Anaing)

~~ —
( A Wainamy = Nillmohe)-1 4
# _
['W(A;na;nb) =0
In summary:
[Ra] = 7(A)wng..Ni({a,na}r,)-No(m

).
[As;ng;m = A;ng; {ng, m i, ) -Ni({np }1,)-0
which can be simplified into

[Ra] = !ﬁ(A).l/na.ﬁi({a,@}kb).No(m).
[m = {na,ns}r,] - Ni({ns}r,)-0

by means of the structural equivalence, which removes items in corresponding positions in pattern
matching over tuples. This process is exactly the same provided in Section 5.3.2.
Similarly (omitting the details) it is easy to check that:

[Rp| = 7(B).vny.Nyo(m). o
[B;ny;m = B;np; {a, natr,] -Ni({na, m},)-
No(m).[B;np;ng;m' = B;ny;ng; {np},] -0

5.4.2 FromPApto MSRp

This section defines the transformation that given aPAp state returns a configuration in
MSRp. Indeed| | consists of encodings

-] oy L-Jurs [-)nets L*Jﬂ |-Jrand|_|~,
each operating on different sub-processes offthe state. The following schema describes
the overall encoding pictorially (processes involved in any transformation are boxed):

Q
L(Pet [[|TL, Pp | Quz | Qe D) || (| @ret | TL, Po | Qr || @rem) =
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(U(F)) U 77 = N , A I 7 )
N AN
LHP P!pj!p \_Q!IJ!I I_Q'netjnet I_Hp PPJP \_QIJI \_Q!TFJTF

Note that the following processes are not involved in any transformation:

e P..t, since itimplements a form of buffering that is unnecessatMiR;

e (Q..m, SiNcCe it represents partial computations (see Proposition 5.4.1). As we will see later,
they will not have any significatISR p counterpart.

Intuitively |[], P, 1, analyzes each (un-banged) sequential proceBs@s [ |, P, and for
eachp returns the multiset of the rule correspondingfgs sequential steps. Input, output and
analysis sub-process i}, are mapped into receive, send, and analysis rewriting rules foprole
respectively. Prefixesx and input sequencegx) are turned into an instantiation rule. Techni-
calities are needed for the management of variables and of the predicate indexes in building rules
rp,’'S. Two parameters, the step number and the variables, are passed along the transformation.
Similar devices support the transformation of each proceB§G$Hp P,. They represent partial
execution of the protocol by role their analysis produces the state predicatg$t), for suitable
7 andt.

The transformation o€),; and Q.. are straightforward: the former maps directly to the in-
truder rewriting rules oMSR p, while in the latter eachr(t).0 in Qy, is mapped to the persistent
predicatesr(t). The same can be said about proce€3gs: each sequential proced, (t).0 is
mapped into a predicat¥(¢) in the MSR p state.

The transformation of the processesin is more complex. Indeed, we need to distinguish
between processes that represent immediately available intruder knowkedgd (¢).0) from
processes that do nat.g., N, (z).1(x).0). The former are transformed in corresponding intruder
predicated (¢), while the latter are generally discarded. Generally speakihg not injective,
and similar situations can happen while transforming processellifRy states. Said differently,

PA p steps are finer grained then thESRp steps, and as a consequence some processes do not
represent propeMSR objects (for example processes@h.,,) and they have to be ignored,
while others represeMISR p objects even when they are only partially completed (for example
processes$(t). ;) and their translation can be anticipated (see also Figure 5.1 or later for details).

In the following, with a little abuse of notation, we drop the subscript from the transformations,
L-|1ps L-J11s =) nets -] py [-] 7 @nd|_|z, when no ambiguity arises, writing them instead as We
now describe each transformation in detail.

|-|1p. The basic translation involves the transformation functiq@fm) for the P,’s (called as a

subroutine by the top level transformatiprj) which, given a sequential agent representing
arolep, returns the multiset of rules,. Herei is a non-negative integer. Formally:

|7 (x).vn. P, = {f(x) = InApy(niz)} U [ByE

[No()-PIE = {4, (@), N(y) = Ap@y)} U [PE )

N(0). B = {4, (@) = 4, (). N} U [PYE,

' = t@")] Py, = {Ap i (aft(@”)/a)]) = Ay, (@](2"= @)/2]), N (1)}
U B sal(@r—a)o)
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[-Jur.

The transformation of a send, of a receive and of a new process are quite obvious and require
no additional comment. The translation of a match progess- t(x")] . P;, whose aim is

to analyze some previously received message, yields an analysis rewrite rule. It would be
straightforward if all variables of the role were matched each time (possibly redundantly)
as these variables could be used to build the corresponding role predicate. Instead, only
a subset of all variables appears during matching (the variables that are being analyzed),
while the corresponding role predicate needs all of them. We reconstruct them be carrying
a parameter which stores the tuple of all the variables used so far by the role. With this as a
template, we can construct the right tuples in the rule antecedent and in the rule consequent.

The intruder proces®; is mapped directly to th&ISR p intruder rules’;, with each! P,
associated with,,. Process$Py,, is dropped.

| _|net- Each occurrence of a proceds(t).0 in Q¢ is mapped to a state eleme¥tt).

-y

Let P, be an instantiated suffix (ip[, £,) of a role specificatiorp, and letd = [z /t] be

the witnessing substitution. I?, starts with either a persistent inpux) or ther operator,
we set| P,| = -. Otherwise, let be the index at whictP, occurs inP,, as for the above
definition. Then| P,| = A, (t).

. Each object i) (that, we recall, contains all the prefixes Bf. processes), is translated

using the function _| 7, defined below:

10]7 = [No(2).0|; = |vn.Pr]; = |I(z).Pr]; = |7(z).Pr] = -

| 1(t)-Pr]r = I(), | Pr]r

[t =t@)].Plr = {‘LPI[GUI gtﬁgwnk[@e:;

. Each proceskr(x) in P, orm(x) in Py is translated into the state objentr).

The intuition underlying the definition df_|; is to collect all the ground output events of
a partially executed intruder processes.( processes that are suffixes of sofig, but
that do have not the formi(¢).0)! as process’;,, has the potential of turning them into
the canonical form/(¢).0. In this way, we map any such intruder suffix into BISR p
state where this knowledge is already present. In particular, each dbjeét(respectively
the I(¢).1(t).0) in Q; is rendered as the state eleméft) (respectively pair of elements
I(t),1(t)), and that the un-banged procesggsare mapped into the empty multiset. Note
that|_| 7 is not injective.

P andQ....,, disappeari(e.,they are mapped onto the empty multiset).

Example 5.4.3 (Translation of VSPK from PAp to MSRp) We now provide an example on how
| .| works, by applying it to thé®’A p specification ofNSPK given in Section 5.3.2. Let us start

'From now on let us call them ahtruder partial suffixes
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by considering the proceg$3;:

P,

111
PA

AN

PA = ﬁ(A).I/na.ﬁi({a,na}kb). No(m). [m = {na,nb}ka] .E({nb}kb).o

PZ//
Py
we have:
| P4 | = 7(A) — Ing.7(A), Ap(A;n,)
ULPAJ 1:(Aina))
LPUJTainay) =%MWHMMmMAMM)
OLPA ) G aima)
Pl amey = Ar(Asne). N(m) — Ax(Asng;m)
ULPA (5. smasm))
LPZ/J (3:(Amaim)) AZ(A NAa {na,nb}ka) - AS(A§ na?”b)
OLPY i dimainn)
LPIZ/,J i:(A;na;nb)) = A3(A Naj; nb) - N({nb}kb)7 A4(A7 Na; nb)
ULOJ Anaynb))
# _
LOJ (5:(Asma;ne)) -
In summary:
T(A) — Ing.m(A), Ag(A;ng)
AO(Aa na) - N({a7 na}k‘b)a Al (A7 na)
|[Pa) = Ai1(Aing), N(m)  — Az(Aingm)
A (Asng; {na, mptr,) — Az(Asng;ny)
A3(A;ng;np) — N({np}r,), Aa(A;ng;np)

Similarly (omitting details):

7(B) — 3ny.7(B), Bo(B;ny)

Bo(B nb) N( ) — Bl(B;nb;m)

Bi(Binyi {a,nab,), — Ba(Binyina)

BQ(B Ny, na) — N({na,nb}ka), Bg(B; Np, na)
Bs(B;ny;ng), N(m') — By(B;np;ng;m')

B4(B Np; Ng; {nb}kb) — B5(B nb,na)

5.5 Correspondence Relation betweeN SR p» and PAp

This section introduces a correspondence relation betWEsdp configurations andPA p states,
such that two corresponding computations are characterizédebyical network messages and
intruder knowledge, step by stefhis will allow us to prove that the translations presented in
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this chapter are reachability-preserving in a very strong sense. Indeed, we show that our encod-
ings transform a configuration (respectively a state) into a state (respectively configuration) that
correspond to each other in our relation, and this implies that our encodings can preserve secrecy
and authenticity properties while going fraviSR, to PA and vice versa (this is further discussed
in Section 5.6). In the following we formalize the notion of observation and transition step with
respect to the intruder and the network in M8R andPA frameworks.

Our notion of observation is concerned with only those messages representing terms in the
net and the intruder knowledge. They are given by the predicsités and I(¢) in an MSRp
configuration. Formally we have:

Definition 5.5.1 Given a multiset of ground atomdsand a predicate name € { N, I}, we define
the projectionof s alonga as the set’rj,(5) = {t : a(t) € §}. If C = (7; §) is a configuration,

we setPrj,(C) = Prj,(3).

Collecting the network messages and the intruder knowledgeRX ja state P is trickier
because of the particular form of the processes representing that the intruder and the network (see
Section 5.3). More precisely, these terms appear in output actions (over chainaid) that
will be surely executed by eith€p; or Q,..;. Indeed,Q; andQ,..; outputs (on those channels)
are always realizable, because procegggsand P,,.; can always accept them as input. In order
to collect those messages we introduce the notafiof to indicate that is the set of output
actions that proces® (intended to be&); or Q,..;:) is able to execute in later steps of execution.
Formally:

Definition 5.5.2 Given a process), the judgment) = is defined by the following rules:

rPs Q' BEN QR=Q
02 a(x).P LA a(t).P {a®)jue P Q=
0% P9 PlO] St =[] 20t = t[6]
Q| P) [t =¢.P = =1 .prLo

In the following we writea(t) € Q if a(t) € a wherea : Q .

Definition 5.5.3 Let a be a channel label i{N,, I}, we define the@bservationf process®
alonga as the seDbs,(Q) = {t : a(t) € Q}.

Using Definitions 5.5.1 and 5.5.3, we make precise what we intend fofSEp configuration
and aPA p state to be corresponding.

Definition 5.5.4 Given anMSR p configurationC' and aPA p state). We say that” and@ are
correspondingwritten C' < @, if and only if the following conditions hold:

1. Prjy(C) = Obsy,(Q)
2. Prj;(C) = Obs;(Q)

Informally C < Q means that the messages that are stored in the net and the intruder knowledge
are the same in configurati@riand state).

The interaction between our notions of observation and our encodings is captured in the fol-
lowing proposition:
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Proposition 5.5.5 Let C be anMSR p configuration, and) be aPA p state. Then:

et = 6 (5.5.1)
[1Q]] = Q" whereQ'issuchthalQ’| = Q, (5.5.2)
ObsNo(Q,) = ObsNO(Q) and ObS]<Q/) = Obs](Q)

Proof. The critical point here is when the non injectivg function is applied. More precisely,
| -] shows its non-injectivity when dealing with:

(a) intruder partial suffixes i.esuffixes of some’;, that do not have the form(t).0;

(b) not-yet-instantiated process rolés,, un-banged processes i) starting withrm or v.

In proving (5.5.1), we observe that starting from Bi$Rp configurationC, process[C']|
contain neither intruder partial suffixes nor not-yet-instantiated role processes. As a consequence
by applying agair -|, an easy induction yieldS' back.

More difficult is the proof of (5.5.2). Her& may contain some process that is an intruder
partial suffix, or a not-yet-instantiated process role. In this case diff€}e@, may converge, via
| -], to the same set of predicates]. However not-yet-instantiated process roles do not affect the
> relation, because only communication oweor pa, transitions are possible from them. Then
all the remaining difficulties are hidden in intruder partial suffixes. In Figure 5.1, we have depicted
one of these situation, involving where partial suffixegaf and P;,. Now we can observe that:

e because of the way we have defin@ds, () and from the fact thaQ|; = [Q']; = ... =
I, we have thaDbs;(Q) = Obs;(Q') = ..., i.e.,all the P;’s are equivalent with respect to
the following relation
de
0(Q1,Q2) &) Obs1(Q1) = Obs1(Q2)

From now on let us consider a witnggg] of the quotient clas§;/0.

e Prj (|Q'|1) = Obs;(Q') for all Q' € [Q'], becausd _|; is build exactly to maintain the
intruder knowledge.

Now when applyind | Q|| back for som&)’ € [Q], by definition of[_];, we obtain exactly
that Q#* € [Q] that contain no partial suffixes df;. Again Figure 5.1 may help visualize the

intuition. Analogous considerations (indeed simpler) can be provided when predi¢zaes!
processes itP,.; are involved. [

Moreover we have that aviSR p configuration always corresponds to its encodin§A:
Lemma 5.5.6 LetC be anMSR p configuration. Ther® i [C'].

Proof. Observe thaf N1 = [Ty(cx No(t):0, that [1] = T];)c; 1(t).0, and that no other
multiset inC generates any, (¢).0 or 1(t).0, via [_]. Then it easily follows that:

Prjn(C) = Obsn, (1C1)
Prj (C) = Obs;([CT)
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I(t1), I(t2)
MSR p state

/ I(t2).0 || T(t1)-I(x2).T(22).1({t1, 2)).0
(] PA p states
T(t1).0 || T(t2).0

Figure 5.1: An example of a possible scenario when applying the translations;

The dual result holds as weile., everyPA p state always corresponds toMSSR » encoding:
Lemma 5.5.7 Let beQ a PAp state. Then Q| < Q.

Proof. The proof follows considering similar argument of Lemma 5.5.6. ]

On the basis of these concepts, we can now define a relation bedf&Rp configurations
andPAp states, a form of weak bisimulation we cafirrespondencesuch that if iInMSRp is
possible to perform an action (by applying a rule) that will lead to a new configuration, then in
PA p is possible to follow some transitions that will lead in a corresponding state, and vice versa.

Definition 5.5.8 LetC andQ be the set of aMSR p configurations andA p states, respectively.
We callcorrespondencthe largest relation~ C € x Q satisfying the following conditions: for alll

(F:5)~Q

1. (F:8) Qs
2. ifr:5— &, thenQ = Q and(7:§) ~ Q’;
3. ifQ=0Q  thenf:5— §and(7:5)~ Q.
We say(7 : 5) and( are corresponderit there exists a correspondensesuch that(7 : §) ~ Q.

The following theorems affirm that there is a correspondence between security protocol spec-
ifications written inMSR p andPA p when related via the encodings here presented.

Theorem 5.5.9 Given anMSR p security protocol theory'. ThenC ~ [C].
Proof. See Appendix 5.8 ]
Theorem 5.5.10Given anPA p security protocol procesS. Then|Q| ~ Q.
Proof. See Appendix 5.8 ]

This means that anyISR p step can be faithfully simulated by zero or more step2An» through
the mediation of the encoding |, and vice-versa, the reverse translatjoh will map steps in
PA p into corresponding steps MSR p.
We conclude by observing that our encodings and Theorem 5.5.9 and 5.5.10 allow us to reason
about security properties in one of either frameworks and transfer the results to the other.
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5.6 Security Analysis

This section shows how our encodings preserve some security properties from one: formalisms
to the other: in particular those security properties whose definitions can be expressed in terms of
predicates over the intruder knowledge or the set of messages on the networks, spexdficady
andauthenticity

5.6.1 Secrecy

A secrecy property requires that a certain message)sagannot be discovered by an intruder
during any possible interactions with protocol participants. Generally speaking the discovery of a
secrecy flaw can be performed by looking for traces where the intruder acquires knowledge of the
secret. If no such trace exists, then secrecy is preserved.

In MSR p, the formal definition of such a secrecy violation is straightforwards in our context
by using thePrj ;(-) function:

Definition 5.6.1 (Secrecy violation inMSRp) Let beC' be anMSR p configuration of a proto-
col, andM be a ground message. We say thatloes not preserve the secraxdfyM if and only
if

3C'. ¢ — " and M € Prj;(C)

Definition 5.6.1 can often be verified quite efficiently using modern model checking and theorem
proving techniques [172, 43].
A secrecy flaw is defined similarly iRA p:

Definition 5.6.2 (Secrecy violation inPA p) Let Q be aPAp model of a protocol, and/ be a
ground message. We say tliadoes not preserve the secrecyldfif and only if

3Q', Q = Q', andM € Obs;(Q)

Again, Definition 5.6.2 can be efficiently verified by one of the existing strategies for checking
secrecy violation or secrecy preservation developed for process algelgagsing reachability
analysis techniques [79, 29].

The main fact here is that, independently from the checking strategy chosen, our correspon-
dence relation preserves secrecy. Indeed, the intruder knowledge in two corresponding models, an
MSR p configuration and A p state respectively, is the same step by step. So whenever there is
a computation that leads the intruder to discover a sédrai the MSR p model, there shall be a
computation in thé”A p model where the intruder is able to capture the same message. Then, by
producing corresponding models, our encodings are able to map secrecy propertidsSigm
to PA p and vice versa. In fact:

Proposition 5.6.3 Let beC' an MSR p configuration and\/ a ground message. Then
M € Prj;(C)iff M € Obs;([C])
Proof. Straightforward by Theorem 5.5.9. ]

and
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Proposition 5.6.4 Let be@ a PA p state andM a ground message. Then
M € Obs;(Q) iff M € Prj,(|Q))
Proof. Straightforward by Theorem 5.5.10. |

The obvious conclusion is that secrecy is preserved by our encodings.

Theorem 5.6.5Let beC an MSRp model of a protocoli(e., an initial MSRp configuration).
Then for any messag®/, a secrecy violation (w.r.i/) happens inC' if and only if a secrecy
violation (w.r.t. M) happens i C'].

Proof. Straightforward by Theorem 5.5.9 and Proposition 5.6.3. ]

Theorem 5.6.6 Let be Let b&) a PA p model of a protocoli(e., an initial PA p state). Then for
any messagé/, a secrecy violation (with respect t) happens inQ if and only if a secrecy
violation (with respect ta\/) happens in @ |.

Proof. Straightforward by Theorem 5.5.10 and Proposition 5.6.4. ]

5.6.2 Authentication

The treatment of authentication properties is a bit more delicate. There are several notions of au-
thentication. One of the most popular techniques was introduced by Woo and Lam [206]: roles
are annotated with unforgeable control actions cadlsgertionghat describe the state of the pro-
tocol execution from the point of view of the principal executing it: for example the initiator may
usebegin(L) to assert that the protocol has started, while the responder may aggdri when
it reaches its last event. The labeluniquely identifies relevant parameters of this session (the
principals involved, their role, nonces, etc.).

Generally speaking, if a protocol guarantees authentication, then in every rurrefich
event matches a distinbegin(L) event preceeding it, even in the presence of an attacker. If this
is the case, we know that the initiator and the responder have a compatible view of the world. If
we abstract a run as the sequence of assertions issued by all parties, this is equivalent [147] to
checking that in each run the numbereati(L) never exceeds the number ledgin(L), for the
sameL.

Definition 5.6.7 A protocol P satisfiesauthenticityif and only if for every run of the protocol and
for everyL, the number oénd(L) events never exceeds the numbedsegfin(L) events.

We show how this mechanism works for detecting Lowe’s attack ofVi$¥K protocol [138].
Consider that when one usdrstarts to run the protocol as initiator apparently with a responder
B, it sends a control messagegin((A, B)). When one useB running the role of responder
finishes a protocol apparently with an initiatdrrunning the role of initiator then it sends the
messagend((A, B)). ldeally, if we assume that these messages are never removed from the net,
the number of messages of the fobegin((A, B)) must be greater than the number of messages
of the formend({A, B)) at any point of any computation.
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The attack is given by the following sequence of actions. We only need three dsétsand
E such that4 initiates a run with a dishonest princip&lwho reroute it as a run witk. We write
E(A) to denote the intruder impersonating the agént

A — B : {Na, Ak,
E(A) — B : {Na, A}k,
B — E(A) : {Na,Np}k,
FE — A : {NAaNB}KA
A — F : {NB}KE
E(A) — B : {NB}Kp

Principal A starts a run of the protocol with the dishonest agéntvho decrypts the transmitted
values and repackages them as if they were intended for prinBip#lgent B, believing he is
responding ta4, sends the messag@'4, N}k, to E, who simply forwards it toA. This prin-

cipal replies toE with the last messagf@N4, Ng} i ,, that E' repackages foB as earlier. In the
end, A correctly believes she has authenticafedut B incorrectly assumes he has authenticated

A while he was talking t& only. Woo and Lam’s method reveals this failure of authentication: if
we start the initiator role with the assertibagin((A, B)) and conclude the responder role with
end((A, B)), we extract from the above run the trafieegin((A, E)),end({(4, B))}, which vi-

olates Definition 5.6.7. While this method may seem rather simple it has been shown very useful
for detecting attacks on security protocols (e.g., see [137]).

A possible solution to include authenticity in our framework comes from the observation that
it is possible to encode begin-end assertions through particular control messages in such a way
that the observational power of our correspondence relation is enough. Since our correspondence
relation “observes” only the status of the net and of the intruder knowledge, this implies that we
have to find a way to record the begin-end events in either the intruder knowledge or in the network.
Moreover because our notion of observation concerns sets we must face the problem of losing the
number of repetitions of events in sets. Both problem can be easily s@gdée [147]).

The latter one, for example can be solved by introducing in each control message information
that makes it unique.g.,a timestamp. This information is then filtered out when used to check
related begin-end events.

To solve the former problem we will develop a different strategy that consists in sending
begin-end assertions overpaivate network we call N*'. The goal of this private network is
only to collect control messages for sake of verification. Moreover we assume assertions be coded
as control messagebegin, L), (end, L), where the label. carries sufficient information for
uniquely identify the session. Moreover we assume fhatarries timestamp information that
make them unique in different run of the protocol.

In MSR p to model such a network we need a new predidéte A role may assert something
by sending a control message ovéf’. This can be done, for example, by using the send rewriting
rule. This requires a new classadsertion rulessimilar to send rules:

assertionrule A, (z) — A, (z), N"((a, L(z)))

wherea € {begin,end}. L

In PA p the private networkV?" is modeled by the proces& " (z). N (z).0, while a process’s
assertion is modeled by sending a message, of form €itkegin, L(x)) or (end, L(x)), towards
the channelV”. We deal with authentication by slightly modifying our encodings to take into
account the new symbol§”. The correspondence relation needs to be modified too. We handle
N by simply mirroring the treatment d¥.
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We can now define our instances of Definition 5.6.7 as in the following.

Definition 5.6.8 (Authenticity violation in MSRp) Let beC be anMSR p model of a protocol
(i.e., an initial configuration). We say that’ violates authenticityf and only if for someL,
3C’, ¢ — (', such that inPrj e (C’) the number ofeend, L) is greater of the number of
(begin, L).

If it is the case will writeC' = {end(L) < begin(L)}.

Definition 5.6.9 (Authenticity violation in PAp) Let be@ be aPAp model of a protocol. We
say thatQ) violates authenticityf and only if for some., 3Q’, Q =* @’ such that inObs 5 r(Q')
the number ofend, L) if greater of the number dfbegin, L).

If it is the case will writeQ F~ {end(L) — begin(L)}.

All the results stated in Section 5.5, remain valid. Precisely because the messages stored in the
network in two correspondent models, respectiveWW&R p and aPA p, are the same step by
step if there is a computation that leads to a authenticity flaw ilVii& p model, there would be
another computation in theA » model where the same flaw is shown, and vice versa. Then our
encodings, mapping models into correspondent models, are able to map authenticity properties
from MSR to PA and vice versa. The previous results can be formalized into the following
propositions

Proposition 5.6.10 Let beC' an MSRp» model of a protocol and. a ground control message.
ThenC' (= {end(L) — begin(L)} iff [C'] ~ {end(L) — begin(L)}.

Proof. Straightforward by Theorem 5.5.9. ]

Proposition 5.6.11 Let be@ a PA p model of a protocol and. a ground control message. Then

Q W~ {end(L) — begin(L)} iff Q] ~ {end(L) — begin(L)}.
Proof. Straightforward by Theorem 5.5.10. ]

The obvious conclusion is that authenticity is reserved by our encodings.

Theorem 5.6.12Let be Let be&” an MSR » model of a protocol. The@' preserves authenticity if
and only if[C'| does.

Proof. Straightforward by Theorem 5.5.9 and Proposition 5.6.10. ]

Theorem 5.6.13Let be Let be&) a PAp model of a protocol. Thefy preserves authenticity if
and only if @ | does.

Proof. Straightforward by Theorem 5.5.10 and Proposition 5.6.11. ]

5.7 Conclusions

This chapter shows how multiset rewriting theori®gSR) and process algebraB4) used to de-

scribe security protocols are related. We show how to define semantics preserving transformations
betweenMSR and PA describing protocols. The correspondence relation we used, is based on
which messages appear on the network and on which messages the intruder knows.
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5.8 (Appendix) Theorem Proofs

This appendix provides a proof for Theorem 5.5.9 and a proof for Theorem 5.5.10.

We begin this section by reminding thalMiSR p state is a multiset of forra = (N, A, I, 7),
where the components collect ground fadt&), A,,(t), I(t) andr(t) respectively, while & Ap
state is a process (see Proposition 5.4.1)

Q
(1D!net H HP'p H Q!I H Q'ﬂ') H (Qnet ” HPP H QI H Qrem)
P p

where:
Qnet == 0| J]No(t).0
B, u= 0|Ny(2).P, | Ni¢).P, | [t=¢]P,
Qr == suffixes ofP,, for all j
Qrem == 0 | No(z).Ni(2).0 | #(z)wn.P, | vn.P,| | [[7().0

Moreover in the following we will use implicitly the following proposition:
Proposition5.8.1 |!P | P || Q| = ['P || @]

Proof. Itis based on the fact that| maps processd3, coming from any transitioh? = P ||!P,
into the empty multiset. FormallytP | P || Q| = [!P], | P], |Q] = [!P],-, |Q] = ['P], | Q]
=['\rle] m

We now prove the following main theorem:
Main Theorem (Reminder) 1 Given anMSR p security protocol theory’'. ThenC ~ [C].
Proof. The proof consists in showing that

R=A{(C,[C]): Co =" CTU{(C,Q) : Co —" C, Q] =C}

is a correspondence. Because of Lemma 5.5.6 and Lemma 5.5.7 it is sufficient to show that for
all (C,Q) e R:

() C— CimpliesQ =* Q" and(C’,Q’) € R
(1) Q= Q impliesC —* C"and(C",Q’) € R.

Precisely(C’, Q') € R means that eithdr)’| = C" or Q' = [C"].

Before explaining the technical steps of the proof, let us focus on the following question. What
are the(C’, Q)') € R that are reachable viaSR p or PA p transition from(C, Q) € R? In other
words, given a transitio® — C’ (resp.,Q = Q') what transition§C'| =* Q' or Q =* @’
where|@Q| = C (resp.,|Q| —* C" or C —* C'" where[C'| = Q) satisfy conditionI) (resp.,
condition(ll) ) above?

Let us first focus or{l) and on Figure 5.2. and suppose thatlaR p transitonC — C’
occurs. Via[_] the only possibilePA p transition is[C] =* [C’] (e.g.,statesR) and @’ and
the relativeq) =* @’ transition in Figure 5.2). Instead via|, more transitiong) =* @’ are
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possible; precisely all those such thét| = C and|Q’| = C’ (e.g.,processes)”, @ andQ"” in
Figure 5.2 and transition@” =* @', Q =* Q' andQ” =* Q’).

Let now focus or{ll) and on Figure 5.2 again. Let supposBAp transition@ = @’ occurs.
Here it may be that the only coupl€”, Q') corresponding iR, via either|_| or [_], to (C, Q)
is such that” = C’. This happens when transitiégh = Q' is not able to simulate any complete
MSRp step €.g.,as the transitioid) = Q" and its correspondeit —* C, in Figure 5.2).

Proof of Part (I). The scheme which guides the proof of this part, is the following:

(a) [C] =* Q" and(C’, Q") e R

(h C — C"implies B)VQ: Q| =C,Q =*Q and(C',Q') € R

(5.8.1)

In the following we will itemize each sub-case witha), (I.a'), etc., or(1.b) (I.V'), etc., depend-
ing on it is respectively the first, second, etc., sub-case of brarjahes (b) of (5.8.1); moreover
let us observe that, becaude”| | = C (see Lemma 5.5.5)

{(C,[CT) : Co —" C}N{(C,Q) : Co —" C, Q] =C} #0

As a consequence some sub-casg$ pivill coincide with some sub-case 64). Precisely those
that do really differ, are those involving paifsQ@ |, ) such that) # [C']; to avoid repetitions
we will treat in(I.b) only those cases that differ from casegim).

Let beC’ such thatC — C’. It must have happened as a consequence of an application of
either a rewriting rule-,,, r,, send orr,, receive orr,, analysis fori > 0,...,[, or finally an
intruder ruler;; for j = 0,...,9. We will treat each rule separately. We also remind that for each
rule we will list different sub-cased.a) and(1.b).

e | (instantiation rule) r,, = 7(x) — In.Ay (n, x), 7(x)

In this case transition’ — C” can be specifically rewritten as:

C = #k),C"
0
——
Apolk/w; m/n], 7(k),C"
APO (E; m)> C
——————

Cl

where, we remindy (k) is an abbreviation for(k, ), - - - , 7(k, ) wherek; for all 7, are all ground
tuples of terms.



5.8. (Appendix) Theorem Proofs 141

MSR p state

o X
I
°

[-] -] [-] -]
PA p states e - (] = @ = (]

QH/ Q QH (2/
where: ¢ pq Q" CxQ"
CxQ C'x Q'

Figure 5.2: A possible scenario involving corresponding cou@lés)) and(C’, Q') in R, when
it occurs either a transitio’ — C’ or a transition = Q.

* Case(l.a): (C,Q) = (C,[C]). We have:

’Vrpo-‘
[7(k)] frpl-‘ztm)
— ~=
[cl = '#(k).0| F(x)vn. P, || Q" [def. of [_]]

el
t(z).vn.P, || '7(k).0 || '7(z).vn.P, | Q"

[C]
=" 0| Plo] || [C] [pao, pa=, pa,]
—_—

Il
2
=

<)

3

= 0 [rp 1 {01 1 TCT
— 0|l Ay (ksm)] | [C] [def. of [4,,(£)1]
= A (km)] | [C]

=[]

* Case(1.b): (C,Q) = (|Q], @). We need to identify thos@’s such thal Q| = C = 7 (k),C".
The only different case, w.r.{I.a), (indeed a family of cases) happen when

= H 7(k;).0) || T (zm). - 7r(zr).vm.Byl0'] || [C]

wheret’ = [k,/x1, - ,k,,_1/Tm-1]. In words,Q is a partially instantiated role that has
already started receiving its permanent terms, but not all. It is worth to underline that both
[Lich, »7(k;).0 and 7y, (zim). - - - .70 (r).vm. P, [0'] are mapped by_| into the empty multi-
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set; as a consequenp@ | = C. Let now observe that:

(Ilizpm,.., 7(k)-0) |
Q = Tm(Tm). - -+ 7p(2r).vn.P,[0]
I TCT
=* 0| P,0] || [C] [pap and pa, with m as new
names]
= B0 [C]
Q/

and it easy to check that’'| = @',
o|(sendrule)r,, = A, (x) = A, (x), N(t(x))

In this case transition’ — C” can be specifically rewritten as:

C= APi—l (ﬂ)ﬂ " — AP'L (ﬂ)? N(M)v c” (5.8.2)

Cl

whered is the substitution that allows the rutg, to be applied. The only significative situation
happens as a sub-case of statenjehof (5.8.1).
* Case(1.a): (C,Q) = (C,[C]). We have:

[C1 = Trallo1 1 O [def. of [Ap, , ([6])]]

= Ni(tl60])-[rp.1 175,01 | [C"] [unfolding 1,17 (6]
Ni(H[OD)- 7510 17 6]
= IN;(2).No(x).0 || [C"] [def. of Py, in [C"']]
o
D-[7pes 17y l6]
| Ni(a) No().0 |
N, (). N, (x).0 || [C"]

[cr
[Ap; (2[0])] [N (D]

= o 1y [0) 1| No(2[0).0 || [C"] [def. of pao]

Q/

—

Ni(t]

= [C]

o | (receiverule)r,, = A, (x), N(y) — A, (x;y)

In this case transition’ — C” can be specifically rewritten as:
C=Ap_,(x[0]),N(t),C" — Ay (2[0]; y[t/y]),C" (5.8.3)

C/
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wheref is the substitution that allows the rutg, to be applied. Again the only significative case
happens as a sub-case of cléssin statement (5.8.1).
*x Case(.a): (C,Q) = (C,[C]). We have:

[C1 = [rp ]} 10] | No(®).0 || [C"] [def. of [A,, , (=[0])1]
= No(®)-[Tpiss 1y 0] | No(®).0 || [C"]  [espandingr,, |7, [6]]
= [Poiss 1y 01791 [ O [ [C7] [pac]

>
= [C]

o (@nalysis rule)ry, = Ay, (t(z)) — Ay (@).

In this case transition’ — C’ can be specifically rewritten as:

C= A, (t=)[0]),C" — A, (z[0]),C” (5.8.4)

—_—
C/

Again the only interesting scenario comes from sub-¢asef (5.8.1). While analyzing this case
let us:

e rewrite the ground term(x)[0'] ask;

e assume that the consequent predicate ofrlle is A,, ,(«'), i.e.,ruler,, , = ... —
Apifl(w,)'

e assumé be the unifier such that’[f] = k, that is the substitution that unifies the predicate
A, («') with the ground predicatd,,, , (k) in theMSR p stateC'.

* Case(.a): (C,Q) = (C,[C]). We have:

[C1 = [ra el TC"
—~
= (@16 = t@)[6]]. [y 171 | TC"] - [Qef. Of 1,17,
= [ 1y 116" I TC" [pay, andt(x)[0][¢"] = k]
= (110111 10" [(see text below)]
3
=[]

Note that hered’ can be used instead 8" becaus®’ andd6” coincide onz, that in turn are all
the variables appearing im,, ., |.

e | (intruder rules) ry, for j = 0,...,9.

Let us consider just a significative rule, for example me= I(z1), [(z2) — ({1, z2)),
I(z1),I(z2). The proofs for the other intruder’s rules are similar. In this case trangitien> C’
can be specifically rewritten as:
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C = I(t1), I(tz), C" — I({t1, t2)), I(t2), I(t2),C". (5.8.5)

C/
*x Case(I.a): (C,Q) = (C,[CT]). Then we have:

o1’ [1(t2))’

"
[C] = I(t)0] I(t2)-0 [C"] [def. of [_]]
= I(t) 0 I(t2)0] Qrll Q" [expanding
?7,1_’ PAp state]
||( () O)H (I(t%) I(x2).1(x2).I({ ))-
I(xq).I(z1 x1, 2)).0 .
= ’ [expanding
| I(fl) I(2).0 || I(z).I(x).0 Qu (Py, and
| TC"] Pro)]

(1t 10N ()]
ﬁ C_/H C_/H y
=" 01 1({t1, 12).0) | 1(t2).0 || I(t2)-0 || [C"T " [pao]
Ql

= Je1

Let now start analyzing the ca$€’, Q) = (|Q], @). We need to identify thos@’s such that
|Q] = I(t1),I(t2),C". In fact, more different)’s (precisely different);) exist, for the non
injective | _| ;7 is now involved in the translation (see also Figure 5.1). In addition, we remind,
the only really significative (w.r.t. casd.a)) situations are those ones whepés are such that
Q# [C] _
* Case(1.V): a first case happens whéhcontains both the proceg$t,).0 and the proper suffix
of P[6, I(ﬁ).](l‘z).](xﬁ.]«tfl, x2>)0

Q = I(t2).0| I(t1)I(x2).1(x2).I({t1, 22)).0 || [C"]
1(t2).0
_ ) I (22) I (z2) I ({t1, 22))-0 -
= | 1(2)I().0 || I(x).I(z).0 [gi‘]’a”d'”g
I 1C"] ‘
= 0| I({ts, t2))-0 [| ()0 || I(t2).0 || [C"] [pao]

Q/

and it is easy to verify thatQ)’' | = C’

x Case(I.b"): a second case happens wie@iis [(t1, t2) = (21, 22)].1(x1).1(z2).0 || [C"]. In
words() contains a proper suffix of process. , standing for the intruder that has already acquired
the messagé, t»), but that has not yet performed the output in which it splits it. We remind that
in this casel _|; translates the process as it would have already performed the outputs, obtaining
the predicates(t,), I(t2). Then we have:
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Q = [(ty, t2) = (w1, w2)]. I (1)1 (22).0 || [C"]
[<t1, t2> <.CE1, I‘2>] 7($1)7($2)0
= — = f ! :
| 1) T(@)0 | € frem o
= I(t1)I(t2).0 || I(z).I(x).0 ]| [C"] [pag]
= I(t2).0] I(t).0] Q" [pao]
=% 0 I({t1, t2))-0 | I(t)0 | I(t2).0 | Q"  [see Casél.a)]

Q/

and it is easy to verify thatQ' | = C".
x Case(1.b"): the last case is whe@ = I(t1).I(t2).0 || [C"], where again a suffix of, is
involved. This case is simply a sub-case of the previous one.

Here ends the proof ¢f), where we have shown that for evely, Q) € R C — C’ implies
Q=*Q,and(C", Q") € R.

Proof of Part (Il).  The scheme which guides the proof of this part is the following:

(an vC,Q)eR, Q=@ implies C —*C and(C’,Q") eR

Because, we remin® = {(C, [C]) : Cy —* C} U{(C,Q) : Cy —* C,|Q]| = C}, the
previous statement can be specifically restated as:

V(C,Q) €
(a) [C] = Q’ impliesC —* ¢’ and(C’, Q') € R (5.8.6)
() VQ : Q] =C,Q = Q' impliesC —* ¢’ and(C",Q’) € R

where(C’, Q') € R means that eithe)’ | = C’ or @’ = [C"]. In the following we treat a list
of cases. Each case corresponds to a possibiensition. Again we will itemize each sub-case
with (I1.a), (I1.d'), etc., or(I11.b) (I1.V'), etc., depending on it is respectively the first, second,
etc., sub-case of branchgs) or (b) of (5.8.6).

° ’ (pag: i.e.,communication transition) ‘

Reasoning aboutag, we must distinguish among the name of the chaanalolved in the
reactioni.e.,a = N;, N,,m, I. Let us discuss each case separately.

(a = N;) Here we treat with transitions that involve channgl

*x Case(I1.a): (C,Q) = (C,[C]).

This case may happens whéh= A, _, (z[0]),C" andr,, = Ap,_,(z) — Ap,_,(x),
N(t(z)).
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In this case transitiofiC'] = @' can be specifically rewritten as:

Ap;_y (2[0])

A

[Ty 1 6]

(0] = We@e). 7E e
N;(t(x)[0]).P,[0] || Ni(z).N(z).0 ]| [C"] [expandingPAp state]

= B[0] || N (t()[0]).0 || [C"]

Q4

Then we have:
C= Api—l(x[e])’ " — N(t(a:)[&]), c” [Tpi-H]
N——
Cl

and it is easy to check tha€’| = Q'.

* Case(I1.b): (C,Q) = (|Q],Q). The only different case in this sub-part happens when
|Q] = 1(t),|Q"]|. We observe that @ producing such &ISR p state is the following:

Q=1(1).0 Ni(t').0 || Ni(2).No(2).0 || Q"
whereN;(t).0 is an intruder partial suffix of;, = I(x).N;(z).0. We remind thatV, (t).0

andN;(x).N,(x).0 are mapped, by_|, onto the empty multiset.
Let observe that transitiof) = @’ can be specifically rewritten as:

Q =

=

(£)-0 || Ni(£).0 || Ni(2).No(2).0 || Q"
(£)-0] 0] No(£).0 ]| Q"
e

I
I

Then we have:
LQJ = I@)? I_QHJ - I(t)v N@)? I_Q”J [by r1,]
Cl
and it is easy to check that’ = [Q'].

(a = N,) Here we treat with transitions that involve channgl
* Case(I1.a): (C,Q) = (C,[C1). This case happens whéh= N (t), A, ,(x[6]),C”

andr,, : A, (x),N(y) — A,_,(z;y). In this case transitiofC'] = Q' can be
specifically rewritten as:

[Ap;_1 (2[0])]

|—Tpi+11ﬁ,)[9]
— ~=
[CT = No@)-0| No(y). Bplo] [l [C"]
= 0| B[ollt/y] || [C"]

Q/
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Then we have:
C= N@)? APi—l (:13[9]), " — Api—l (IB; 3/) [0] @/y]v c” [by rﬂi]

Cl
and it is easy to check that' = |Q’|.

* Case(I1.a’). Another case of this class happen wiiéa- N (¢), C” andry, = N(z) —
I(z). Let observe that transitiofC'] = @' can be specifically rewritten as:

[l =

No(1).0 || [C"]
No(£)-0 | No(2).T(2).0 || [C"] [expandingPy]
= I().0] [C"]

Q/

Then we have:

C= N@)’ C" — I@)v c” [by rla]
~——
Cl

and it is easy to check that’ = |Q'].

(a = w) Here we will treat with transitions that involve channés.

*x Case(/I.a): (C,Q) = (C,[C1]). The only interesting scenario in this sub-case happens
when inC' no role predicates, w.r.t. a rojeare yet produced and whep, = 7(t(z)) —
n.A,,(z;n). Let observe that transitiofC'] = @’ can be specifically rewritten as:

[CT = P, Qx| [C"]
(@) (@) o
P = ,
= 7(t) vn. P, |'T7(t).0] [C] [byexpandingQ:., P,]
= ma(x2). - mp(xg).vn.Pylte/z1] || [C]

Q/

At this point, by observing that processg(t.). - - - .7 (t;).vn.P,lto/t1]. is indeed one that
is considered garbage by the| (i.e., it is mapped into the empty multiset) it is easy to
check that Q' | = C, and we conclude observing that—* C' is a possible transitiofy

x Case(I1.a"). Another sub-case happens when intruder is involved. Specifically when
[C] = Qi || Qi || [C"] and transition C = Q" may be istantiated as:

[CT = Q| Qrl[C"]
= 7(1).0[ 7(x).I(x).0 | [C"]
= 0 I(t).0] [C"]
e

Note that the particular case whei€] = vn.P, i.e.,is part of the casga,,.
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Then we have:

C =n(t),C" — w(t),1(t),[C"] [byrr]
D A

and it is easy to check that’ = | Q’|.

* Case(11.b): (C,Q) = (|Q],Q). The only interesting cases in this side, arise by consid-
ering those&y’s such that @ | = C, for someC : Cy —* C. In fact, if C' contains no role
predicates, w.r.t. a rolg, every@ containing only partial instantiations of that roliee(,
processes starting withzaor v that are suffix ofP,) is such that Q| = C. Treating this
class of case as a one general case, the trangjtienQ’ can be written as:

Q = m(xs). - mr(z)vnB, [ 7(0)0 | (7] [7>1]
= Mjt1 (l’j+1). cee .ﬂ'k(l‘k).I/TL.Pp[ﬁ/l‘j].O I LC”J
Q/

Note that despite this transition@’| = C still hold. In fact partial instantiated (role)
processes are mapped onto the empty multiset. Then we conclude observitig-thét C
is a possible transition.

(a=1) Here we treat with transitions that involve chandel When the intruder channdl is
involved, many different situations involving the intruder arise. Here we will treat just some
of the most significative onas.,those involving the states in Figure 5.1. The others can be
analyzed in a similar way.

* Case(II.a): (C,Q) = (C,[C]). A sub-case of this class happens wh@n= 1(¢;)
,I(t2), C". We start observing that transitigd'| = @’ can be written as:

[CT = I(t).0 [l I(t2)-0 || [C"]
I(t) 0 It)-0
= I(x1)I(x1).I(z2).I(x2).1((x1, 22)).0 [expandingPA p state]
Ire”]
0 It)0l
= I(t1).I(x2).I(x2).I({t1, x2)).0 [expandingPA p state]
e’

Q/

Note that despite this transition@)’| = C still holds. In fact partial instantiated (role)
processes are mapped onto the empty multiset. Then we conclude observitigthet C
is a possible transition.

No more interesting cases fall in this class. On the contrary, many cases arise when consid-
ering situation in clas®) i.e.,those@ suchthal Q| = C = I(t1),I(t2),C".

* CaseqI1.b),(I1.V),(I1.V"): (C,Q) = (|Q],Q"). Let us consider the following proce
sses (see also Figure 5.1)
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(t2)-1(t2)-0 [| [C"]
[(t1, t2) = (21, 22)] I(21).1(22).0 || [C"]

each translated int6' via | | (specifically via| -| 7). Let us observe that for arg’, : Q; =
Q;then| Q] = C,fori = 1,2, 3. Then we conclude observing th@t—* C'is a possible
corresponding transition.

I(t1).0 || I(t1)-I(x2) I (w2)-I((tr, 22)).0 || [C"]
I(t

x Case(I.b)"": A last interesting situation happens when:

Q= 1I(t2).0 ]| I(t1).0 || I(x2).1(x2).1({t1, z2)).0 || [C"]
In this case we observe that:
Q = I(t2).0| I(t1).0 | I(x2).I(x2)I({t1, x2))-0 || [C"]
0[] I(t1)-0 || I(t2)-I({t1, t2))-.0 || [C"]
o

Then we have:

Q] = I(t2), I(t1),C" — I(t2), I(t1), I((t1, t2)),C" [y 7]

C/

and it is easy to check tha@' | =

. ’pa,, (i.e.,new name generationj

The only possible transitiopa, happens when analyzing cases(# i.e., when (C, Q) =
(Q, |Q])-. In fact no process obtained frofn] can perform aa, transition as first step.
*x Case(11.b): (C,Q) = (|Q],Q"). The first easy scenario is the following:

vny...-.Unp
Q = Tm P [C]
= vng.---vng.Pyim/n] || [C]
Q/

In this case, beingns. - - - vny.P,[m/n] one of the processes left out by encodjng we have
that|Q’'| = |Q]| = C, and we conclude observing that—* C'is a possible transition.
* Case(I1.0'): the second, more interesting, scenario happens when :

Q = vn. P, | [C] [where# are the substitutions

applyed so far]
9/

—_——
= P, lmyn] | [C]
Q/
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Then we have
[CT]

———
Q) =7(8),C" — Apy(m;m) (0], [C]  [bY 7p,]
o’

and it is easy to check tha€’| = Q'.

e | pay (i.e.,matching)

The only interesting case happens wién= A4, («/[0]),C" andr,, = A,, ,(t(z)) —
A, (x). Let start observing that in this case transitj@n| = @’ can be written as:

i

[Ap;_1 (@'[0]D)]

705411y 0]

~ =
(€1 =[] =t@)]. Plo] | [C”]
[Toie 1) 01101=T Ap, (2l61[0))]
——
= P,[0]0] | [C"] [whered : z'[0] = t(x)[0']

Then we have:
C= A, ,(]0]),0" — A, (z[0]]¢']), C”

C/
and it is easy to check tha€’] = Q'.

° ’pa; (i.e.,structural equivalence)‘

The proof in case opa= transitions, follows easily from the previous transition cases by
induction.

Here ends proof ofll) , where we have shown that for evel¥, Q) € R Q = Q' implies
C —*C'yand(C", Q') € R. [ ]

Main Theorem (Reminder) 2 Given anPA p security protocol theor). Then|Q| ~ Q.

Proof. Similar to the proof of Theorem 5.5.9, by defining the relatidn= {(|Q], Q) : Qo =*
@} and showing that it is a correspondence relation |
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Security Analysis with Team Automata

“Molti ci gabbano” (Leonardo da Vinci in “Many people deceive us”
Aforismi, Novelle e Profezigl. da Vinci)

Abstract

In this chapter we develop a framework based on team automata that can be used for formal
security analysis. To this aim, we first define an insecure communication scenario for team
automata, which is general enough to encompass various communication protocols. Then,
we reformulate the Generalized Non-Deducibility on Compositions schema, originally intro-
duced in the context of process algebras, in terms of team automata. Based on the resulting
framework, we subsequently develop a compositional analysis strategy that can be used for
the verification of security properties for a variety of communication protocols. We apply the
framework in practise, by showing that integrity is guaranteed for a particular instance of the
Efficient Multi-chained Stream Signature protocol.

6.1 Introduction

Recent years have seen an increasing interest in the use of automata-based formalisms for the
specification and verification of security properties in communication protocols [109, 129, 140,
169, 170]. We continue this line of research by showing how team automata — an extension of
Input/Output (1/0O) automata [142] — can be used for security analysis.

Team automata offer a flexible formal model which allows one to specify the components of a
reactive, distributed system and — separately — to describe their interactions. Originally introduced
in the context of Computer Supported Cooperative Work for formalizing the conceptual and ar-
chitectural levels of groupware systems [18, 74, 123], team automata have proved their usefulness
also in the context of computer security. In [195] various access control strategies have been spec-
ified and analyzed by means of team automata. An effort was made in [72] to use team automata
to model and analyze a privacy property of a protocol by Caehial. [41] for securing mobile
agents in a hostile environment.

In this chapter we develop a general framework for security analysis with team automata. To
this aim, we first define an insecure communication scenario for team automata, based on the ad-
dition of a so-called most general intruder to a team automaton model of a secure communication
protocol. Then, we reformulate the GNDC schema in terms of team automata and subsequently
describe a compositional analysis strategy for insecure scenario, which can be used for verifying
security properties. Finally, we apply this framework to show that a particular instance of the
Efficient Multi-chained Stream Signature (EMSS) protocol [173] achieves integrity. The aim of
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this case study is not to provide new insights into the EMSS protocol, but rather to show the ef-
fectiveness of our approach for a well-known stream signature protocol, thus facilitating an easy
comparison for those familiar with other approaches.

Our approach is not unique. In [140], an experiment involving the combination of simple
shared-key communication with the Diffie-Hellman key distribution protocol [67] is modelled and
proved correct using I/O automata. As noted by the author herself, a limitation of I/O automata
approach is the fact that the protocol allows only purely passive eavesdroppers to listen in on the
communication. This choice simplifies the formulation of compositional results, as an eavesdrop-
per cannot change the course of communicatgg,, by conducting a communication in which
it pretends to be an honest participant. The 1/O automata approach does provide compositional
reasoning techniques.

Another related approach can be found in [169, 170], where interactive state machines —
another extension of 1/O automata — are introduced and applied to security analysis. In partic-
ular, interacting state machines are used to model and analyze the classic Needham-Schroeder
public-key authentication protocol in the corrected version by Lowe [138]. An advantage of this
approach is the fact that it allows one to automatize the verification, and to prove theorem-like
properties, using the theorem prover Isabelle/HOL [168]. What is missing are solid techniques for
compositional reasoning over more complex communication protocols.

This chapter is organized as follows. In Section 6.2 we define team automata, after which we
describe an insecure communication scenario for team automata in Section 6.3. In Section 6.4 we
reformulate the GNDC schema in terms of team automata and enrich the insecure scenario with a
compositional analysis strategy. We subsequently apply this in Section 6.5 by verifying integrity
in a case study, in which team automata specify an instance of the EMSS protocol. Finally, the
chapter is concluded by a summary of our main results and some directions for future work.

6.2 Background on Team Automata

A team automaton consists of a number of component automata — which are ordinary automata
without final states in which actions are divided into input, output, and internal actions — com-
bined in a coordinated way so that they can perform shared actions. Internal actions have strictly
local visibility and cannot be used for communicating with other component automata, while input
and output actions together form the external actions that are observable by other components and
that are used for the communication between components. During each communication step the
components within a team may simultaneously participate in one instantaneous iaetisgn-
chronize on this action, or remain idle. Component automata can thus be combined in a loose or
more tight fashion depending on the actions on which to synchronize and when. Team automata
can in turn be used as components in a higher-level team automaton.

Technically, team automata are an extension of I/O automata. However, whereas I/O automata
are required to be input enableg,., in each state it must be possible to execute every input action,
such a restriction does not hold for component (and team) automata. Moreover, the composition
of a set of component automata need not result in a unique team automaton, but can be a whole
range of team automata—distinguishable only by their synchronizations. /O automata, on the
other hand, are uniquely defined by their constituents. Finally, I/O automata do not allow output
actions to be synchronized, whereas team automata do.

The main feature distinguishing team automata from other models in the literature is the free-
dom they offer by allowing one tohoosethe synchronizations when composing a team from a
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Figure 6.1: Transition space of TA. Hede= X is an action name. Each tuple of circles represents

a state of the team automaton, whereas each individual circle represents a state of a component
automaton. Black circles are the states that participagetiansitions (here represented as dotted
lines). Any transition in the set),(8), of all the a-transitions is a potential-transition of the

team automata (here represented as solid lines). The definition of a transition ré&}aibows

only a selection ofi-transitions to be part of the resulting team automata (the cross-hatched area)

set of component automata. Most automata-based models, on the contrary, use a single method
of composition, resulting in composite automata that are uniquely defined by their constituents.
This holds for all the above mentioned automata-based models, and — in disguise — in several
non-automata-based models, like CSP and statecharts [112].

We briefly introduce the notation and terminology used throughout this chapter; then we recall
some definitions and results concerning team automata from [18, 196].

The (Cartesian) product of setg, with i € {1,...,n}, is denoted by[[;c¢; 3 Vi- In
addition to the prefix notation, we also use the infix notalignk --- x V;,. Forj € {1,...,n},
proj; : Hz‘e{l,...,n} Vi — Vj is defined by proj((ai, ..., a,)) = a;. The power-set of a séf is
denoted by2". Let ¥ andI be sets of symbold; C ¥ . The morphism presp : ¥* — I,
defined by pres(a) = aif a € I'and preg r-(a) = A (the empty string) otherwise, preserves the
symbols froml" and erases all other symbols. In the following we diséamthen no confusion
can arise, and we use of the trivial extension of pressets of sequences.

Letf: A— A’andg: B — B’ be functions. Therf x g: A x B — A’ x B’ is defined as
(f x g)(a,b) = (f(a),g(b)). We usef? as shorthand fof x f.

Definition 6.2.1 An automatoris a 4-tupleA = (Q, X, d, I), with a set( of states a set¥ of
actionsQ NX = g,asetd C Q x X x @ oftransitions and a setl C () of initial states The
setC 4 of computation®f A consists of all the sequences= qpa1q; - - - angn, Wheren > 0 and



154 Chapter 6. Security Analysis with Team Automata

qo € I,and foralli € {1,...,n}: ¢; € Q,a; € X, and(g;—1, a;,q;) € 9. TheF-behaviorBa of
A, withT' C %, is defined byBY, = pres:(C4).

TheX-behavior ofA is also called théehaviorof A, in which case&: may be omitted. Finally,
note that behavioral inclusion defines a preorder relation on automata.

As said before, team automata are composed of component automata, which are automata
distinguishingnput, output andinternal actions.

Definition 6.2.2 A component automatda a construct = (Q, (Xinp, Xout, Zint), 0, 1), with an
underlying automatofQ, X;,, U Xout U Xint, 6, ) and pairwise disjoint sets;,,,, of input, X,
of output and;,,; of internal actions

The set denotes the set;,, U X, U X, of actionsof the component automatdhand>. .
denotes its sef;,,, U3, Of externalactions. In the sequel we I8t= {C; | i € {1,...,n}} bean
arbitrary but fixed set of component automata specifie@;by (Q:, (Xi inp, i out, Ziint)s 9, 1),
with setX; = %; inp Ui out Ui int Of actions and set; ... = 3; inp U X oue Of €Xternal actions.

When composing team automata the various internal actions of the components automata must
be kept privatej.e., be uniguely associated to one component automaton. This is obtained by
requiring that; int N Uje(1,..ny—pp 2 = @, foralli € {1,...,n}, i.e., no internal action
of any component frond may appear as an action in any of the other components constituting
8. If this is the case, the8 is called acomposable systeand in the sequel we assume tl§at
is a composable system. We speak of a team automatorbaf/és components are exactly the
automata ir§.

The state space of a team automaton is the product of the state spaces of the compd$jents (in
The internal actions of the components are the internal actions of the team automaton. Each action
which is output for one or more of the components is an output action of the team. In particular, an
action that is an output action of one component and also an input action of another component, is
considered an output action of the team automaton. The input actions of the team that do not occur
at all as output action of any of the component§ jiiare the input actions of the team. The reason
for this construction is the following. When relating an input actiasf a component to an output
actiona of another component, the input may be thought of as being caused by the output. On
the other hand, the output action remains observable as output. Finally, the transitions of a team
automaton oveb are based on, but not fixed by, the transition of transition of the components
constitutingS. They are chosen by allowing certagnchronizationsn actions, while excluding
others. To define a TA, we need to synchronize various component automata. The following
definition allows us to define the "maximal synchronization” setting.d et, in the following
the setj,, calleda-transitionsof A, is defined ag, = {(¢,¢) | (¢,a,¢') € d}.

Definition 6.2.3 Let S a set of component automata, ands J;cqy .,y Zi- The setAq(8) of
synchronizationsf a is defined as

A8) = {lg.d)e J] @x [ @1@je{l....n}: proj;P(q.q) €6;a)
1€{1,...,n} 1€{1,...,n}
and (Vi € {1,...,n} :(proj*(q. ¢') € 6;.4) or (proj;(q) = proj;(¢')))}-
The setA,(8) thus contains all possible combinationscefransitions of the components &

with all non-participating components remaining idle. It is explicitly required that at least one
component is non-idle. Figure 6.1 gives an idea of the transition spa(® of a team automaton
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overS. When defining a team automaton oera specific subset ok, (8) must be chosen for
each actiom. This specifies the synchronization between the components constituting the team.

Definition 6.2.4 Let 8 = {(Qs, Xi inp> Liout, Zijint,0i, 1) | ¢ € {1,...,n}} be a set of com-
ponent automata. Aeam automatofi = (Q, (Xinp, Xout, Zint), 0, I) IS is a construct ove
with:

Q = H Qi>

i€{1,...,n}
Einp = ( U 2i,inp) - Eout,
1€{1,...,n}
Z:out = U Ei,outy
i€{1,...,n}
Yint = U X int,
i€{1,...,n}
FCRxXYEXQ

Herel = [[;cq1,. ny Lis 6 is such thab, = {(q.¢') | (¢,a,q") € 6} C Ay(8), foralla € ¥ =
Yinp U Zout U Xins, andd, = {(¢,¢') | (¢,a,¢") € 0} = Ay(8), forall a € Xjpy.

All team automata over a given composable system have the same set of states, the same
alphabet of actions — including the distribution over input, output, and internal actions — and the
same set of initial states. They only differ in the choice of the transition relataond only as far
as external actions are concerned: for each external actiom have the freedom to choosg
This implies thass, even if it is a composable system, does not uniquely define a team automaton.
Each choice of synchronizations thus defines a team automaton. It is important to observe that
every team automaton is again a component automatbich in turn can be used as a component
in anhierarchicallycomposed team.

It can be useful tdiide certain external actions of a team automaton before composing this
team with other teams to avoid synchronizations on these actions (on a higher level of the compo-
sition).

Definition 6.2.5 Let T = (Q, (Zinp, Xout, Zint), 0, I) be a team automaton and 1€t C X.,;.
Then hide(7) = (Q, (Binp — I Bout = 1, X UT), 0, 1).

In hider (7)), the external actions ifi have thus become unobservable to other automata by regard-
ing them as internal actions.

6.2.1 The Max-ai Team Automata

In the sequel, we make use of a team automaton of a specific type, welledi team automatdn
Informally, the max-ai team automaton over a composable sy&terthe unique team automaton

in which any execution of an actiansees the participation of all components having their set

of actions. Before we can define max-ai automata, we first need to define the following relation
RA(8):

Here “ai” stands for action indispensable.
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Definition 6.2.6 Leta € J;cqy, ) %i- The sefs-aifor a in 8, denoted byR3!(8), is defined as
RA(8) ={(q,¢) € Au(8) |Vie{l,....,n}: [a€ %; = projim(q, q') € dial}-

The setR¥(8) thus containgll and onlythosea-transitions fromA, (8) in which every com-
ponent automaton with as an action participates. Hence the max-ai team automatorsdaser
the unique team automaton in which any execution sées the participation of all components
havinga in their set of actions.

Definition 6.2.7 T = (Q, (Binp, Xout, Zint), 6, I) is the max-ai team automataver §, denoted
by ||| 8, if 6, = R2(8), forall a € X.

Figure 6.2 shows two component autom@taand C,. Figure 6.3 shows two of the several
team automata that can be built by starting from those component automata. We enforce maximal
synchronization i = ||| {C1, C2}: any execution of action and actiorb sees the participation
of both components whenever possilié’ is the team automaton ové€;, G, } in which any
execution of actior and actiorb sees the participation of only one component.

Cq: a, b external Co:
actions

L
a , a '
q1 %O Q1 q2 5

Figure 6.2: Example of two composite automata,andC2. Heregq, ¢}, ¢2, andg, are states,
solid lines are transitions, andandb are external actions. A curved arrow points the initial state
of each automaton.

r:rfree: Tai:

) (@Q%(Z&)
) (zz@ o

Figure 6.3: Example of two different TA ovéC;, Co}. T% is the max-ai team automatofi/ "ee
is the team automaton whose transition relation selects those transitions of the team involving only
one single component.

TheT'-behaviorof a team automatofi, denoted aBL, is defined as usual in automata theory
(see Definition 6.2.1). In particulaB’. = pres:(Cq), with setCy of computations ofl consist-
ing of all the sequences = qpa1q; ... ang,, Wheren > 0 andgg is an initial stateg;, are states,
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a; are actions anfly; 1, a;, ¢;) are transitions. Wheh = %,,;, thenB?"“f is the output behavior
of 7. By appropriately choosinB, also the input and the internal behaviorJo€an be defined.

Remark 6.2.8 In [18] it was shown that the behavior of an iteratively composed max-ai team
automaton equals that of the max-ai team automaton over the underlying components. For ex-
ample, considering the automata in Example 6.3} iindJ” are the max-ai team automata over
{T”,C3} and{C, C2 } respectively, and i is the max-ai team automaton oVt , Cs, C3}, then

B‘J‘/ = Bg‘. |

6.2.2 Compositionality in Team Automata

A team automaton is said to satisfpmpositionalityif its behavior can be described in terms of
that of its constituentse., when the behavior of the team automaton automata can be expressed
as ashuffledversion of the sequences that form the behaviors of the set of its components [196].

Definition 6.2.9 Let A; be alphabets and,; C A?, withi € {1,...,n}. Thefully synchronized
shuffle || (4. icq. .y L is defined ag| .o, Li = {w € (Ui, 0y Da)* | Vi €
{1,...,n} : presy, (w) € L;}.

Example 6.2.10Let A, Ay be alphabets. Lek; = {abc} be a sequence such that C A; =
{a,b,c} and Ly = {cd} a second sequence such tiiatC Ay = {¢,d}. Then, the fully syn-

chronized shuffleibe , || o, cd = {abed} (i.e., words must synchronize a1 N Ay = {c}).

]
Before continuing, we observe the following property of full synchronized shulffles.
Remark 6.2.11 Let A;, with i € {1, .., 4}, be alphabets and I&; C A}. Then
U {A1,A3} {L1> L3} - U {Ag,A4} {L2> L4}
wheneverL; C Ly andLs C L. [}

In [196] it was shown that the construction of team automata to certain types of synchroniza-
tion, like the one leading to max-ai team automata, guarantees compositionality.

Theorem 6.2.12 (Compositionality of team automata)Let 7 be the max-ai team automaton
overS. ThenBg = Be

U {2;1i€{1,...,n}} i

6.3 An Insecure Communication with Team Automata

In this section we use team automata to model a generic (insecure) communication system in
which to analyze security properties.

We assume all actions to be built over a first order signatyusehere predicate symbols are
seen as communication channels and atomic formulas as messages. We assunceritains
at least the following function symbols:_}_ encryption,(_, _) paring, 4(-) hashing, and those
indicating the secret and public key%(_) andpk(-) respectively. We letn, m’ range over the
set Messages of atomic formulas and, ¢’ over the setChannels of predicate symbols. In the
sequel Eve, Eve’, Pub, Pub/, Reveal, andReveal’ will be used as particular predicate names.
An action is denoted by(m), which represents a messagesent over channel. Given a set



158 Chapter 6. Security Analysis with Team Automata

M C Messages of messages, we defirg¢)M) = {¢(m) | m € M}. Given a seCC of predicate
names we defin€' (M) = {c(m) | m € M, ¢ € C}. Finally, with a little abuse of notation, we
will also write C' as an abbreviation for the s€{Messages).

We abstract from the cryptographic details concerning the operations according to which mes-
sages can be encrypted, decrypted, hasttexbterabut we assume the presence of a cryptosystem
(defined by a derivation operato) that implements these operations. By applying cryptographic
operations from this cryptosystem to a détof messages, a new sgtS(M) = {m | M F m}
of messages (usually called tdeduction s§tcan be obtained. This approach is standard in the
analysis of (cryptographic) communication protocols [53, 86, 134, 140].

In the sequel, we model a generic cryptographic communication protocol specification involv-
ing two rolesyiz.aninitiator T¢ and arespondefTz. We assume all the communication between
Ts andT g to flow through arinsecure channdkf. Figure 6.4). This insecure channel may release
some messages to amruder which, in turn, can eavesdrop on these messages as well as inject
fake messages in the communication channel. This is a standard approach for verifying security
properties for (cryptographic) communication protocols. A protocol specification is considered
secure with respect to a security property if it satisfies this property despite the presence of the
intruder. As in [140], the insecure channel and the intruder are modelled by team aufgmata
andTx. We thus propose a framewaork consisting of four types of team automata (see also Fig-
ure 6.4):

1. T plays the role of the protocol’s initiator,

2. T plays the role of the protocol’'s responder,

3. T1¢ plays the role of the insecure channel, and

4. Tx plays the role of the active and malicious intruder.

We let the initiator and the responder communicate with the insecure channel through disjoint
sets of action&25 ~and©Z | respectively, so that a direct communication between them is
impossible. TheT ¢, in turn, can interact with the intruder only through a distinctsgt,, of
actions. Finally, some particular actions may be used by an honest role to reveal some information
to the outside concerning,g.,a state reached during a run of the protocol.

We letT p denote the team automaton representing our protocol specification in the absence of the
intruder. We thus defin€p to be the max-ai team automaton o¥8fs, Tr, T;¢ } that is obtained
after hiding the action! = 5 U XE  ie. all messages passing through the insecure

channel ¢.9.,35 = {Pub(m),Pub/(m) | Vm € Messages} in Figure 6.4). Hence

Tp = hidesr ([|[{Ts,Tr, Tic})-

By hiding©f, ., Tp - appears as a black box, possibly with some output acﬁlfgbsandzﬁg—
signalling the successful reception of messages. Usually such signals are used only for verification
purposes and for the sequel we assumez]f%tm Eﬁg =g (e.g.,ZSSZ.g = {Reveal} andzﬁg =
{Reveal’} in Figure 6.4).

We let T; be the team automaton representing the protocol specification in presence of the
intruder. The actions i&! . serve as back-door for intrusion and are adde@ito(e.g.,~.,, =
{Eve, Eve'} in Figure 6.4). This is what we need to guarantee that the intrligemay commu-
nicate withTp only through the insecure channel. We defiheo be the max-ai team automaton

over{Tp,Tx} that is obtained after hiding the actiols,,,, i.e., all messages that the intruder

om?
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{Reveal} {Pub} {Pub’} {Reveal’}
assertions send/receive send/receive assertions
Tp

eavesdrop\ ‘ inject

{Eve} {Eve’}

&) 7,

Figure 6.4: The insecure communication scenario for Team Automata. The insecure scenario is
represented by the automatdin. Within the scenarioJs models the protocol’s initiatof] ;¢

models the insecure chann@ly models the protocol’s responder, ang represents the Dolev-

Yao [69] intruder. The team automat6ip, composed ove{Js, T;c, Tr} represents the secure
scenario.

can eavesdrop from and inject back into the insecure channel. We thus enforce maximal synchro-
nization between the intruder and the protocol. Hence

Tr = hides; ([[[{Tp.Tx})

We have now defined an insecure communication scenario for team automata by composing a
secure communication scenario with an intruder.

6.4 GNDC Security Analysis for Team Automata

In Chapter 3 (Section 3.2) we have already seen that GNDC is a scheme that has the form

P e GNDC? iff VX € &c: (P X)\Caa(P)

where(P || X) \ C denotes the parallel composition of procesBeand X restricted to commu-
nication over channels other th@h X is an arbitrary (possibly malicious) process in the environ-
ment€ ¢, the set of all processes whose communicating actions &'e By varying the parame-

ters< anda, the GNDC schema can be used to define and verify many security properties—among
which secrecy, integrity, and entity authentication [81, 84, 86, 104, 149]. Recently, a slightly ex-
tended GNDC schema was defined [85], incorporating the fact that the set of bad behawiors of
may depend or® itself and on the property under scrutiny.

In the specific context of analyzing cryptographic communication protocolstatie (initial)
knowledge of the hostile environment must be bound to a specific set of messages. This limitation
is needed to avoid a hostile intruder that is too strong, and which would therefore be able to corrupt
any secret (as it would know all cryptographic kegtsceterd. This brings us to the definition of a
new environmenﬁg, based o€ ¢, of all processes communicating through actiGhand having
an initial knowledge of at most the messageskifi(¢). For the analysis of safety properties
(e.g.,secrecy, integrity, and entity authentication) it is sufficient to consider the trace inclusion
relation< as a behavioral relation between the terms of the algebra [86]. Hence, let us consider
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the GNDC instance
P e GNDCY iff VX €& (P X)\C <a(P), (6.4.1)

which wasg.g.,used in [104] to analyze integrity in stream signature protocols. Informally, (6.4.1)
requires traces of proceé® || X) \ C to be included in the traces of proces&”), representing
the expected behavior ¢t when no adversary is present.

6.4.1 Reformulating GNDC in Terms of Team Automata

We begin by describing the team automafion= {Q, (X}, 5., £/,), 6, I} which models the
systemP. Because (6.4.1) requird3 to communicate withX through the channels contained
in C, we letC' = Cjpy, U Coyy; the actions inCy,, are input toX and the actions i, that are
output toX. In the sequel, we assun@éto coincide exactly with=! . and, in particularCi,,
with the actions i/, that are input td’x (e.g.,{Eve} in Figure 6.4) and,,; with the actions
inx! thatare output t6y (e.g.,{Eve’} in Figure 6.4). We are now able to formalize the hostile

environmen€ ¢ in terms of team automata as:
EC = {(Qa (Einpa Eout» Eint)a 5a I) ‘ Einp g Cinpa Eout g Cout}- (642)

In addition, (6.4.1) requires the initial knowledge of the environment to be bound to a specified set
of message®. This means that the environment should be able to produce, by means of only its
internal functioning, at most the messages containefiit¢). In terms of team automata, this
means that a component automaton in the environment, when considered as a stand-alone com-
ponent, can only execute output actions belonging't&’s (¢)). Formally, theinitial knowledge

of T is defined agy € By | v € ©7,"}, and the formal definition of the environmeéhg thus
becomes:

€l ={Xeec|{yeBx|vexy,} C (CKS(#))}. (6.4.3)
Finally, we need a behavioral notion of comparison between team automata which abstracts from
their internal and communicating actions. Furthermore, we want to be able to exclude all se-
guences containing an action occurringin Therefore, we hide the output actions involved in

the communications and we define thieservational behaviofwith respect to actions not ift')
of the resulting team automata as the sequences consisting solely of external actiors.not in

Definition 6.4.1 Let T = (Q, (Xinp, Lout, Zint), 6, I ) be a team automaton ovér let X, C
Yext, and letT’ = hidey,,,,, (7). Then theobservational behaviaf J’ with respect to actions not
in C, denoted byD§,, is defined as

Of, = {y € pres;yr (By) |y € X%, — C'}.

As a result we are able to reformulate (6.4.1) in terms of team automata.
Definition 6.4.2 Let«a(Tp) be the expected (correct) behaviorXf. Then:

Tp € GNDOZ™) iff WX € &2, Ofiiden |1 17y € ¥TP)-
Informally, Definition 6.4.2 says thdlkp (i.e.,a cryptographic communication protocol specified
in the insecure communication scenario) satisﬁﬁgDCg(TP) if and only if its observational
behavior, despite communicating with any intrudethrough the action€’, is included in(Tp).

A significant instance ok is, e.g., ajn (Tp) = ng, which will be used in Section 6.5.2 to
express integrity.
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6.4.2 Security Analysis Strategies for Team Automata

While allowing a uniform approach for specifying security properties, Definition 6.4.2 does not
provide us with effective strategies for the analysis of (cryptographic) communication protocols.
In particular, the universal quantification 0\&2 causes serious problems when checKiipge

GNDCé((‘TP). Luckily, the strategies developed for GNDC in the context of process algebras can
be transferred to team automata.

The Most General Intruder.  To avoid the infinite number of checks that the universal quantifi-
cation requires, we now show that there exists an attacker that is more powerful (with respect to
a chosen behavioral relation) than all the others. In this way one can reduce the analysis against
any environment to an analysis against only one, albeit very powerful, so-catlstgeneral in-

truder. From the theory of GNDC [85] we know that a sufficient condition for the existence of
such a most general intruder, is to have a behavioral relation thatrés@ngruencavith respect

to the (parallel) composition and restriction operators. Restated in our framework we say that

is a pre-congruence (with respect {id and hide;) if for every automator?, XX andX’ in E¢,
wheneveB§ « BY, thenOf ;. . Itis not difficult to prove that this

is true in our caseyiz.

C.
(e Ohldec( I{75X7})

Lemma6.43LetT = (Q,(2] %7 . 2T

inps Zouts Sing): 0, I) be a team automaton and lat X' € Ec.
Then

B{ C BY, impliesoﬁidec C Oﬁi

(IH7%3) dec(ll{7,20})"

and letB§ C BY,. By (6.4.2),X, C C because

ext

%
Proof. Letay---a, € Ohldec(m{:r,x})
X € &c. Then by Definition 6.4.1, for all € {1,...,n}, a; € X7, — C. We now use the

fact that by definition also all prefixes af - - - a,, are included iroﬁidec( 11{7.) and show by
. - . . - . C. 7. .
induction that all prefixes od; - - - a,, are also included "Ohldec( Mot First, considem;.

By Definition 6.4.1, eithen; € Bhid(_?c(ll\{‘_T,X}) or by -.--bmal € Bhide. (|| {7,x}) for some
m > 1 and where, for allj € [m], b; is an internal action of hige( ||| {T,X}). In both cases,
sinceB§{ C Bf, anda; € ©7, — C, foralli € {1,...,n}, it follows by Definition 6.4.1
thatql € Oﬁid@c(lll{‘xx_'})' NOYV assume that; - - - ay, € Oﬁidec(\l|{‘r,x/})’ with & < n, énd
considera; - - - ax+1. Using similar arguments as above and the induction hypothesis it follows
thatay - - - ap4+1 € Oﬁldec( {70 |
Sinceé"?J C &¢, this lemma holds fo¥, X' € 8% as well. Based on the approach of [86] we now
define a component automatdbpdc’, representing the most general intruder.

We specifyTopg in the way that I/O automata are commonly defined [140, 142]. Its states
are thus defined by the current values of the variables listed under States, while its transitions are
defined, per action, as preconditions (Pre) and effect (Effg., (¢, a, ¢’) is a transition ofTop‘g
if the precondition ofz is satisfied by, while ¢’ is the transformation of defined by the effect
of a. We omit the precondition (effect) of an action when itrige.

Recall that the sat’ of predicates that the intruder uses to interact with the insecure channel
is partitioned intoC,,,, and Cy: (€.9.,in Figure 6.4,C;y,, = {Eve} andC,,; = {Eve’}). Re-
call also thatC' (respectively,C;,, andC,,;) is an abbreviation fo’(Messages) (respectively,
Cinp(Messages)andCl,:(Messages)).
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Top(g

Actions
Inp: Cinp(Messages) Out: Cyy¢(Messages) Int: &

States

received C 2Cinp(Messages)

initially ¢
Transitions
c(m) € Cinp(Messages) c(m) € Coyur(Messages)
Eff: received := received U {m} Pre:m € KS(received)

The general way in whichfopg is specified implies that its behavior includes that of any
automaton fron€?,.

Lemma 6.4.4 For all X € &%, B{ CBC .
Top,

Proof. LetX € 8%. Then (6.4.3) implies thdX € £ and thus, by (6.4.2) and the specification

¢ ¢
of Top%, £, C Clinp = 2;0;’0 andx%, C Chu = 2P From (6.4.3) and the specification
of Top it follows immediately thaB5 C BTopg. [ ]

Lemmata 6.4.3 and 6.4.4 directly imply the following result.

¢ C c OF°.
Theorem 6.4.5Forall X € €7, Ohldec(m{trp,DC}) C Ohlda;(m{:rp,Topfg})'

Together with Definition 6.4.2, this gives us the following result.
Corollary 6.4.6 Leta(Tp) be as in Definition 6.4.2. Then

a(Tp) c
Tp € GNDCQ iff Ohidec(\H{‘J‘p,Top(g}) - a(‘Tp).

Compositional Results. We now report some compositionality results for the insecure commu-
nication scenario which, as we will see, can simplify the analysis.
To begin with, we let:
Ti =hidegr ([[[{Ts,Tic}) and Ty = hidegr  ([|[{T&, Tic}).

com com

We then letT» be the team automaton defined at the end of Sectioni.e.3with ¥/ = C
added tdT;c. Therefore,Jp represents the communication scenario in which an initiator and a
responder are connected by an insecure channel, but are not connected to the intruder. If we add

the most general intruder, some general compositional results can be proved. To this aim we let
T = hidec( ||| {T;, To:}) and T, = hidec( ||| {72, Topt}).-

The following lemma states that the observational behavior of the insecure scenario tlat,sees
T, interacting with the intrudefog’, can be obtained as a shuffle of the observational behaviors
of 7, andT?.
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Lemma 6.4.7 Let{m | {c(m) € =L} C ¢. Then

C C
Ohldec(m{m{m,mTopc} =l gy gr, {07, O }-

Proof. From the wayJ”, andT’, are composed it follows thélm =5 ands’2, = R Now

sig ext — “sig*

Iet‘I”:hldec(m{H|{TI,‘IQ},TopC}) It remains to prove thad$, = H . {OC OC .
—{z"1,

SmceEfw N Egg = @, this follows directly from the fact thafm | {c(m ) € ng} C ¢, i.e.,
addingTr (Ts) to T, (77,) does not change the signals froﬁi Szg) which Ts (Tg) can
output because all messages that(Ts) can send t@ ;o have already been included in the initial

knowledge ofT x . [

The previous lemma is used to prove a compositional result over the GNDC specification for
team automata. The following theorem says that;ifand T, satisfy GNDC with respect to two
propertiesa(T7) nd a(T2) respectively, their composition satisfies GNDC with respect to the
shuffle of these properties.

Theorem 6.4.81f T, € GNDCZ(TI) andJ, e GNDC’Z(TQ), then

I|{T,T2} € GNDC’ =71 273}{04(71)704("]'2)}

Proof. LetT; € GNDCE"") andT, € GNDCE?, ThenOS, € a(T;) andOF, C a(T»)
and thus, by Lemma 6.4.7 and Remark 6.2.11,

Ohldec(Hl{||\{717‘T4}TODC}) = Il =" 272}{0 7}

’ {za(T1), 2&(72)}{a( ) a((‘]i'g)}

N

6.5 A Case Study: The EMSS Protocol

The EMSS protocol was introduced in [173] and is used to sign digital streams. It exploits a
combination of hash functions and digital signatures and achieves robustness against packet loss,
i.e.,an incompletely received stream may still allow the user to verify the integrity of the packets
that were not lost.

Actually, EMSS is a family of protocols and here we focus on its deterministic (1,2) schema.
We assume that a send€rwants to send a stream of payloagsg, mq,...,mas t0 a set of
receivers{R,, | n > 1} (as usual for recipients of digital data streams, we assume that receivers
are not able to communicate to each other). The protocol then reduicesend tuples built from
payloads (called packets) to the receivers.

s Lo {R, |n>1} packet P,
R {R, |n>1} packet P =
s {R, |n>1} packet P,
g Do AR, |n>1} packet Psgn =

0, mg, &, D)
1,my, h(P), @)
1, My, ( i— 1) h(R_g» 2<1< last

{ ( Iast) (Plast—l)}sk:(s)>

{
{
(i,
{
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After the first two messages, each pacRetontains a meaningful payload;, together with
the hashes(P;_,) andh(P;_2) of the previous two packets sent. The end of a stream is indicated
by a signature packe®sign containing the hashes of the final two packets, along with a digital
signature. We assume that the private senderskég) cannot be deduced frofm,; | 0 < i <
last}.

6.5.1 The EMSS Protocol Modeled by Team Automata

In this section, we specify the deterministic (1,2) schema of the EMSS protocol with team au-
tomata. As already done for the specificationmg, we omit the precondition (effect) of an
action when it isrue.

The sendef of the stream is modelled by a CAs and the se{R,, | n > 1} of receivers by
n copies of a CATi. T uses its private keyk(Ts) and a public keyk(T ) to perform regular
digital signature operations. Lbtessages denote the seftmg, m1, ..., mpast} Of meaningful pay-
loads. TherTg andTr use the hash functioh : Messages — Hashed. Moreover,Js uses the
functions : 2Hashed —, Signed, defined bys(H) = Hy(g,), to sign sets of hashed messages with
its private keysk(Ts), whereasTr uses the functios : Signed — {true, false} and the public
key pk(Ts) to verify whether or not a set of hashed messages was signé&gl.by

In the specification offg we explicitly model that each of its actions is enabled only once
during a computation, thus prohibiting loops. For example, as sodhsdsas sentP,, then
this action’s preconditior; ¢ sent prohibits this action to be executed again. For the sake of
readability, we omit the addition of such preconditions to the specificatidfgdfut implicitly
assume that all the actions are executed only once during a computation. Note that each packet
contains the packet number; in the sequel we denote the packet with packet rpbyhgr.

Js
Actions
Inp: & Py P P;
Out: {(0,mo, @, @), (1,m1, h(Py), @)} U {(i,m;, hA(P;—1),h(Pi—2)) | 2 < i < last}
U {<{h(PIast)7 h(PIastfl)}sk(‘Ts)»

Int: {Hash | 0 <1 < last} U {Sign} Psign

States
sent C Messages, hashed C Hashed, signed C Signed, all initially @

Transitions
Fo
Eff: sent :=sentU { Py}

Hash, 0 <i < last
Pre: P; € sent A h(P;) ¢ hashed
Eff: hashed := hashed U {h(P;)}

P
Pre:h(Py) € hashed A P, ¢ sent
Eff: sent :=sentU {P;}
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P, 2 <i<last
Pre:{h(P;—1),h(P;—2)} C hashed A P; ¢ sent
Eff: sent :=sent U {P;}

Sign
Pre:h(Past) € hashed A s({h(Past), "(Past-1)}) ¢ signed
Eff: signed := signed U {s({R(Past), "(Past-1)})}

Psign
Pre{h(Past), h(PIast—l)}sk(iTs) € signed A Psign ¢ sent
Eff: sent := sent U { Psign}

Clearly Ts has no input, while its output behaviB?;“t consists of all prefixes afy P - - -
PastPsign. To send the packetBy, Py, . . ., Bast, Psign in this order,Ts must perform some in-
ternal computations. This is reflected by its internal behaﬁéﬁt consisting of all prefixes of
HashHash, - - - HashasSign

We now continue with the specification 8%. T is capable of receiving as input behavior
packets fromPy, P, ..., Past in the corresponding variablg®/, for i = 0,...,last Eventu-
ally Tr receives the signature packBfg,, that ends the receiving phase. Aftgf verifies the
accompanying digital signature dﬂs’ign(we assume thdl'z has previously retrieved the public
key pk(Tg) corresponding to the private key(Ts)); the verification of the signature allows;
to be sure of the integrity of the stream of verifiable payloads collectediatedM, which are
going to be sent to the application as output behavidrof The verification of the digital signa-
ture triggers the verification of the stream of the packets receivedi Eolast, ..., 0, afterTp
has verifiedP/, T verifies whether it has receive_,. If it is the caseJy extracts the hash
hi—1 from P/, computes the hasi( P/_,), and compares these two hashes. If they are equal, then
the variablem!_, that should contain the verifiable payload_; is extracted fromP,_,. Other-
wise T has no output behavior. On the other handlf did not receiveP/_; thenTy, verifies
whether it received;_,. If T did receiveP,_,, then it extracts the hagh_» from P/, computes
the hashi(P/_,), and compares the two hashes. If they are equal, then the vanigblethat
should contain the verifiable payload; - is extracted fromP;_». OtherwiseJr has no output
behavior. As already done for the specificatioWgfwe omit in the specification dfz the addi-
tion of preconditions that avoid loops; we implicitly assume that all the actions are executed only
once during a computation.

TR

Actions P P P

Inp: {{0, mg, @, @), (1,m4, ho), @)} U {(i,mg, b1, his) | 2 <i < last}

U {{{Mast; Prast-1 }sk(75)) }

Out: Payloads’ Psign
Int: {XtractH;, XtractM;, Hash | 0 < ¢ < last} U {Verify, Strean}

States
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received, xtractedM C Payloads’, xtractedH, hashed C Hashed, all initially @
{{verified;|i = 0,...,last sign},send} C {true, false}, initially false

Transitions

P!, 0 <i<last
Pre: Py, & received
Eff: received := received U { P/}

XtractH; 1, 1 <+ < last
P!

7

Pre:[{P!_,, (i,m}, hi—1,h;—2)} C received] A |verified; = true]
Eff: xtractedH := xtractedH U {h;_1}

XtractH; 2, 2 <1 < last
P!

7

Pre:[{P/_,, (i,m}, hi_1,hi—2)} C received] A [P;,_1 ¢ received] A [verified; = true]
Eff: xtractedH := xtractedH U {h;_2}

s,ign
Eff: received := received U { Pfign}

Verify
Pl

sign

iy . _ ——
Pre:[ sign € received] A [5({ ast; Plast-1}sk(75)) = true]
Eff: verifiedsign := true, xtractedH := xtractedH U { hiast, Plast—1}

P/

sign

/—/\ﬂ .
Pre:[{ P (Mast, Mast—1) } C received] A [verifiedsign = true]
Eff: xtractedH := xtractedH U {hjast}

P/

sign

* . .
Pre:[{ Plgi_1: (Plast, Mlast—1) } C received] A [P, ¢ received] A [verifiedsign = true]
Eff: xtractedH := xtractedH U {hj,g; 1}

Hash, 0 <i <last
Pre:h; € xtractedH A [P/ € received]
Eff: hashed := hashed U {h(P})}

XtractM;, 0 < i < last
Pre:[h; € xtractedH] A [h(P}) € hashed] A [R(P]) = h;]
Eff: xtractedM := xtractedM U {m/}, verified; := true



6.5. A Case Study: The EMSS Protocol 167

Stream
Pre:[[mjyg € xtractedM] V [[mi,q;_; € xtractedM] A |
A|verifiedsign = true]
Eff: send := true

m

Pre:[send = true| A [m(, € xtractedM] A |verifiedy = true]
Eff:xtractedM := xtractedM — {my,}

¢ received||]

/
last

m, 1 <i<last
Pre:[send = true| A [m/] € xtractedM]
A{m}, | i < k < last} N xtractedM = @] A |verified; = true]
Eff: xtractedM := xtractedM — {m/}

Remark 6.5.1 In the T model, we have explicitly inverted (with respect to the specification of
EMSS) the order of messages in the output behaviGirofWithout losing generality and without
changing the final results of our analysis, this choice simplifies some technicalities. Observe that
the first message of the output sequencgpust necessarily be eithet|,, or mj,q ;- u

We now go on with the construction the formal model of EMSg,s5. It is defined as the
max-ai team automaton ové‘frg,T%) | 1 <i<mn}. Formally:

Tomss = ||| {Ts, T | 1 <i < n},

Note thatT zpr55 has no input actions, while it has the union of the output (resp.,internal) actions
of Ts and theTz’s as its output (resp.,internal) actions.

6.5.2 Analysis of the EMSS Protocol

In this section we use the GNDC schema for team automata together with the insecure communica-
tion scenario in order to show that the deterministic (1,2) schema of the EMSS protocol guarantees
integrity. Note that this has already been validated in [149], where a CCS-like process algebra was
used instead. Our goal here is thus to use this particular case study to show the effectiveness of
team automata for security analysis.

We model the sende§ by Ts and the receiver by r. While here we consider origg, this
analysis can be extended in a natural way to the case in which therecapges ofT ;. We for-
mally define integrity as the ability af; to accept a message;, for anyi, only if it has indeed
been sent by’s. We also assume th@; signals the acceptance of a stream of messages as a legiti-
mate stream by issuing it as a list of messageseal’}. We require the expected (correct) obser-
vational behaviorn (Tp) of Tp with respect to integrity as the set containing all prefixes of the
subsequence (holes are due to packets losgpoéal’(m;,,) - - - Reveal’(m;, )Reveal’(m;,).
Formally:

Qing = {Reveal’(milast) ---Reveal’(m;, )Reveal’(m;,) | 0 <ig < ... < ijqs < Iast}

Further, we equiﬂ'opg with an initial knowledgep consisting of all output actions 6fs and
the public keypk(Ts), i.e., ¢ = {Po, P1, P;, Psign | 2 < i < last} U {pk(Tg)}, wherey =
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<0,m0,®,®>, P = <1,m1,h(P0),®>, P, = <i,mi,h(H,1),h(Pi,2)>, forall1 < i < last,

and Psign = ({n(Past), M(Past-1) }sk(75))- We do so solely for analysis reasong. in order

to enabIeTopg to send the correct messagesTte through the insecure channel. Note that the
messages contained in this initial knowledge are exactly those that the intruder is anyway able to
collect by eavesdropping whak sends through the insecure channel. As is common in security
analysis, we rely on thperfect encryption assumptipie., To@ cannot deducek(Tg) from ¢

nor can it forge hash and encryption functions by guessing. From Section 6.4.2 we recall that

T, =hidegr (|[|[{Ts,Tic}), Te =hidege ([|[{Tr,Tic})
T, = hidec([|[ {T;, Topt}), T4 = hidec (||| {T2, To})

Hence the observational behavior of the max-ai team automatonJgvand Topg is empty,
therefore

Lemma6.5.27; € GNDCE’.

Proof. Directly by Corollary 6.4.6 becauﬁﬁ = 0. |

idec (1Il {71 Topt.})
We now show that the observational behavior of the max-ai team automatofi.oaed Top, is
included in the expected observational behawigi(Tp) of Tp with respect to integrity,

Lemma 6.5.3 T, € GNDCETP),

Proof. Recall that the behavior &f, coincides withTr when it interacts with the intruder. Let
us concentrate on the observable (output) behaviGizah 7.

If Tz shows an empty output behaviar, the theorem is trivially satisfied. Otherwise the
output behavior off  is a sequence of messages. From Remark 6.5.1 the first message of this
sequence must be eithReveal’(mj,g) Or Reveal’(mj,_,). We treat only the case in which
the first message Beveal’(mj,); the other case is analogous. In the following we omit the
predicateReveal’( ), for sake of conciseness.

First we prove the following statement:

Claim 6.5.4 Let I, ..., Past, Psign be the correct packets sent By. If T is in state where
verified; = true and{ P/, Psign} C received thenP; = P;.

Proof of Claim6.5.4 By induction ovef = last, ..., 0, in which the base caseis= last

base case:(: = last). By the precondition oKtractMg;, verifiedast = true implies thathast €
xtractedH, h(Pg,) € hashed andhiast = h(Pg). By the precondition oWerify, hiast €
xtractedH implies thatPgg, € received andverifiedsign = true. From the hypothesis we
know thatPsign = (h(Plast), h(Past—1)) has been received (iﬁs’ing), so (by the precondition
of Verify) verifiedsign = true implies thathjas; is indeedh(Pag) i.€., it coincides with the
hash of the correct packéi,s.. For the properties of hash functions in cryptography this

means thaf ; = Past.

inductive step: assume that the hypothesis holds jor- i. By the precondition oKtractM;,
verified; = true provided thath; € xtractedH, h(P/) € hashed andh; = h(P]). Since
h; € xtractedH, either the precondition oXtractH; ; or the precondition oXtractH,; »)
must hold. Assume that the preconditionXdfactH; ; holds (the other case is analogous).
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We have thaf P/, P/, } C received andverified; 1 = true. By hypothesisPsignis received
and, by the inductive hypothesiB; | = P;y1 i.e., P/, is authentic. By the precondition of
XtractH; ; and by the hypothesis thagrified; = true it follows that the haslt;, extracted
from P/, = (msy1, hi, hi—1), iSh(P;) i.e., h; coincides withh(P;), the hash of the correct
packetP;. For the properties of hash functions in cryptography this meansithat P,.
End of the proof of Claing.5.4.

Now the result follows from the fact that: (a) the intruder is not able to fdrgg, because
it doesn’t know the private keyk(Tg) of Ts; (b) by the precondition of actions:, (for i =
0,...,last)in Tr, messages are revealeddy (hence byT,) in reverse order (with respect to the
packet number). =

Finally, after an observation on the composition of team automata that have no internal actions,
we can show that integrity is guaranteed in the instance of the EMSS protocol under scrutiny.

Remark 6.5.5 If {T, T} is a composable system, then cleddy (51 = By ]

Theorem 6.5.6 Tp € GNDC2"™7),

Proof. From Lemma 6.5.2 and 6.5.3 and Theorem 6.4.8 it follows that

< e}
|H {(‘T],TQ} = GNch{zTJ xT2y {071 ,072
= GNDCM {Reveal’ } {g’aint(‘rp)}
B c
e GNDC(éInt({‘TP)
Then by Corollary 6.4.6.0¢ C aint(Tp). SinceT;c has no inter-

_ hide (1] {1/1{7:,72}.Topt.}) _
nal actions,{7;c, 77} forms a composable system, the from Remarks 6.2.8 and 6.5.5 it fol-

lows thatB|H{|\\{271,72},Top2} =B and consequently, that

hidec (111 {111 {7+, 72}, Tor})

C C
HenceOhige, (| (7o Tortp) <

C N{Ts,Tr,Trc,Topl} — _B_H_\ {Tp,Topl}
Ohidec( 1 {7 Tor}) by Definition 6.4.1.

aint(Tp), and thus, by Corollary 6.4.6,p € GNDCE”‘(“TP). [

6.6 Conclusions and Future Work

We use team automata to define a framework for security analysis by constructing a general in-
secure communication scenario for team automata and by reformulating the GNDC schema in
terms of team automata. We also define some effective compositional analysis strategies for this
insecure communication scenario. We also investigate strategies of analysis in our framework. We
Firstly, we define the most general intruder in terms of team automata. By the use of the most

general intruder we are able to avoid the universal quantification presents in the re-formulation

of the GNDC schema for team automata. Secondly, we define a compositional analysis strategy
for team automata, and we show how security properties are preserved by composition over an
initiator and a responder. We use the framework to prove that integrity is guaranteed in a case
study in which team automata models the EMSS protocol.
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A goal for the future is to try to automate the current manual verification process. Since
team automata are an extension of I/O automatal@#eLanguage and Tools¢®1] may be of
help when trying to achieve this goal. Another goal for the future is to extend the team automata
framework with time, probability, or both. Such extensions of automata-based formalisms are well
studied in the literatures.g.,for I/O automata [141, 183]. In this respect, also the well-developed
theory oftimed automataneeds to be mentioned [11, 129]. Like their I/O automata counterparts,
timed team automata could consider time in the systems they model, whereas probabilistic team
automata would allow a probabilistic choice of the next state.
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7
Conclusions and Future Work

In this thesis we answer the following questions:

Question 1: can security protocol analysis and fault-tolerance analysis benefit from a common
background and common strategies?

Question 2: which are the differences and similarities between the various strategies used for
security protocol analysis?

We answer question 1 by identifying logic-based model checking as a strategy common to both
fault-tolerance analysis and security protocol analysis (Chapter 1 and Chapter 4). In the context
of industrial applications, we also show how existing tools can be used effectively in both fields
(Chapter 1 and Chapter 2). We prove that a scheme developed in security protocol analysis, the
Generalized Non Deducibility on Compositions (GNDC), can be re-formulated in the framework
of fault-tolerance analysis (Chapter 3). This result implies that any verification strategy used in
the GNDC for security analysis can be applied to fault-tolerance analysis as well. In particular,
we show that the “fault-tolerant” property is an instance of GNDC known as BNDC (Bisimulation
Non Deducibility on Compositions), and this implies that the existing tools for checking BNDC
can be used to check fault-tolerance as well.

Question 2 is answered in two different ways. Firstly, we prove that a bisimulation-like relation
exists between security protocols modeled as process in a process algebras and as a theory in
multiset rewriting systems (Chapter 5). To obtain this result, we use restricted versions of both
formalisms. Those versions are specifically tailored to security protocols. Secondly, we consider
Team Automata — an emerging automata-based formalism — and we show that the GNDC scheme
can be re-formulated in terms of Team Automata (Chapter 6).

7.1 Conclusions

We formulate the conclusions of this thesis in terms of some general principles and subsidiary,
specific statements. Statements are valid throughout this thesis, and generally summarize the
lessons learned during the experiences reported in this thesis. Principles have a wider validity.
Figure 7.1 shows principles and statements in a graphical form.

From Part | and Part Il we learn a lesson concerning the concept of attack in security and the
concept of fault in fault-tolerance.
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Principles & Statements
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Figure 7.1: The five Principles (in light grey boxes) and the three Statements (in dark boxes) of
Integration in Security Protocol Analysis and Fault Tolerance Analysis.

Principle I The Intruder (in security protocol analysis) and the Fault Injector (in fault-tolerance
analysis) are essentially the same entity.

The intruder and the fault-injector share a fundamental characteristic: they can be modeled
as a malicious and active environment trying to subvert system goals. The understanding of this
principle is at the basis of the idea of applying technigues from security analysis to fault-tolerance.

The similarities between the intruder and the fault-injector become evident as soon as we
make clear the separation between the system model and the environment with which the system
interacts. In Chapter 1, where this separation is missing and where the faults are embedded in
the system model, this principle is not immediately clear. Contrastingly, in Chapter 3, where this
separation is applied to a fault-tolerant system, this similarity is evident; this allows us to bring
some strategies from one field to the other. In particular, we are able to characterize fault-tolerance
as a logic validation problem in the-calculus; in addition, we are able to reformulate the GNDC
scheme in the context of fault-tolerant systems. Figure 7.2 illustrates the intersection between
security protocol and fault-tolerance analysis that emerges from Principle 1.

From Part Il, we learn an important lesson concerning the correct identification of a certain
role.

Principle Il In engineering security critical applications, it is essential to realize when an object
plays the role of an encryption key.

This principle emerges from our study of OSA/Parlay architecture (Chapter 2). The simple
yet crucial step that leads to the correct analysis is the understanding that interfaces in web ap-
plications may play the role of protecting access to a secret: this is exactly the role encryption
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Figure 7.2: Meeting Points between Fault Tolerance Analysis and Security Protocol Analysis

keys have. Every security system has key-like elements, that are sometimes difficult to identify.
The application of this principle says that recognizing the “being-key” property in an object is
essential, and objects of this kind have to be carefully protected.

We underline also that, while this principle is obvious in theory, in practice things are non-
trivial: informal specifications, resulting from long, cooperative development processes, can easily
hide a violation of this principle.

Principle Il The use of too much expressive power in a formal modelling notation is counter-
productive to the development of analysis strategies .

This principle says that high expressive power in a formal modelling notation is attractive only
when we focus on the modeling activity. High expressiveness hinders when we try to develop
effective analysis strategies.

This principle emerges from Chapter 4 and Chapter 5, and it becomes even more evident
in Chapter 6. In the following we list three specific statements supporting the principle, each
concerning the formal models studied in this thesis:

Statement 1 Multiset rewriting contains more inherent parallelism than it is required to analyze
security protocols.

Multiset rewriting is a powerful formalism for modeling and analyzing concurrent systems.
We do not need all of its power in expressing concurrency when describing and analyzing security
protocols. This statement emerges from Chapter 5, where a restricted version of multiset rewriting
proves to be sufficient to describe a large class of security protocols.

Statement 2 Most of the power of process algebras and multiset rewriting is unused when mod-
eling security protocols.

This statement stems from both Chapter 4 and Chapter 5. In the first, we model traditional
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Figure 7.3: Meeting Points between Process Algebra and Multiset Rewriting in Security Protocol
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security protocols without using features like mobility and intra-agent parallelism; security pro-
tocols are a parallel composition of sequential agents. Because of this, we are able to build an
optimized and more specific model checker. In Chapter 5 we restrict process algebra and multiset
rewriting to the security protocol context to obtain a strong result of correlation between (subsets
of) the two formalisms.

Statement 1 and Statement 2 are illustrated in Figure 7.3. Here, strand spaces [78] are placed in
the intersection. Strand spaces is a formalism that has been proved to be equivalent to a restricted
version of multiset rewriting [44]. Indirectly, we prove that strand spaces and process algebras are
related as well in the context of security protocol analysis.

Statement 3 Team Automata models are too complex for the effective support of security protocol
analysis.

Team Automata provides flexible models for the specification of communication in systems,
but the flexibility hinders when developing effective strategies of analysis. The possibility of defin-
ing different modalities of synchronization among automata brought us to study their application
in security protocol analysis. Peer-to-peer and multicast/broadcast communications can be ex-
pressed elegantly in team automata. Initially we were thinking of a potential unification between
strategies of analysis for security protocols and broadcast/multicast protocols [197]. What seemed
an advantage proved to be a disadvantage as soon as we started to develop the GNDC theory re-
quired for the development of strategies of security protocol analysis. In the end, in an attempt to
control the growth of the number of cases to be considered we were forced to use the very subset
of Team Automata required to describe traditional (unicast) security protocols.

Other calculi for the analysis of specific systems — ltkealculus [161] for mobility and (from
a certain point of view) spi-calculus [7] for security protocols — show their strength just in their
conciseness.

Figure 7.4 depicts the relation between process algebras and Team Automata with respect to
the validation of security protocols. GNDC can also be defined in Team Automata terms. Since
I/O automata are a special class of Team Automata it follows that GNDC can be re-defined in
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terms of I/O automata as well.

Principle IV In the analysis of security protocols, automata-based languages are more effective
in quantitative (real-time and probabilistic) than qualitative analysis of security protocols.

This principle emerges from our experience of modeling security properties using Team Au-
tomata. For example, the flexibility of Team Automata helps in expressing advanced commu-
nication paradigms, such as multicast and broadcast [197]. However, in the domain of security
protocol analysis, Team Automata tools and analysis techniques are not competitive.

On the other hand, a significant amount of work on automata in timed seaugtys€e [103]),
and the existing associated toodsd.,the real-time model checker UPPAAL) make them suitable
for studying timing attacks to securitg.g.,see [61]). For what concerns the probabilistic analysis
of security, automata based models are, at present, as promising as process-algebraic approaches
(e.g.,see [131, 130] for automata, and [9] for process algebras).

Security Protocol Analysis

Process Algebras

Team Automata

[/0 automata

Figure 7.4: Meeting Points between Team Automata and Process Algebra in Security Protocol
Analysis

Principle V Formal schemes of analysis are essential for the unification of analysis techniques.

Creating a scheme of analysis requires an effort of abstraction, whose goal is to identify the
essential entities and their relationships that are required by the analysis. Redefining a scheme
in a different formal model requires (only) the modeling of its entities and its relationships in the
new formal model. The modeling activity can be technically complex, but the theoretical effort of
unification is, in essence, contained in the scheme itself.

For example, for the GNDC scheme, the entities are the system under analysis, its malicious
environment, an agent showing the expected behavior of the system, and a notion of “observ-
ability” relation. In Chapter 3 we apply the GNDC scheme to fault-tolerance, by identifying the
malicious environment with a fault-injector; in Chapter 6 we instantiate GNDC in terms of team
automata showing how to model the entities of the scheme as automata. In both cases we reuse
analysis techniques that are established for the GNDC scheme.
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7.2 Future Work

The research of this thesis can be developed further in at least two different directions: to improve
the techniques of analysis, and to extend the principles of integration to emerging disciplines.

First Direction. The analysis techniques developed in each chapter of the thesis can be improved
further as follows:

e In Chapter 3 we study a formal specification of fail safe, fail silent, fail stop and fault-
tolerance properties in the GNDC scheme. We prove that the “fault-tolerance” property en-
joys a precise classification in terms of GNDC, whereas the other properties are completely
expressible in GNDC only when we consider their instances in our running examples. A
complete formal characterization of these properties is still missing. A goal for the future
is to understand better the formal characteristics of fail silent, fail stop and fail safety prop-
erties and to conclude the classification of fault-tolerant properties as instances of security
(non-interference) properties, by following what has been done in security, for example by
Gorrieri and Focardi in [81, 83].

¢ In Chapter 4 we design a logic based model checker for the analysis of security protocols.
Our implementation runs in exponential time in the size of the longest message involved in
the protocol. This matches the expected theoretical computational complexity, so it is the
best we can expect. We think that our tool performance can be significantly improved by the
use of partial order reduction techniques. Moreover, we think that a (front-end module of)
static type analysis of the message flow along a protocol specification may help in defining
significant transformations, that in turn are used by our tool to improve the efficiency of the
dynamic analysis. It is interesting to investigate this area as future work.

e In Chapter 5 we relate process algebras and multiset rewriting in the restricted setting of
security protocol analysis. We find a bisimulation-like relation between security protocol
models in the two formalisms, that maintains secrecy and authenticity properties. It would
be interesting to identify other area of research in where such a ‘bisimulation-like” relation
can be defined.

e In Chapter 6 we provide Team Automata with a framework for the analysis of security
protocols. In this domain, a goal for the future is to automate the current manual verification
process. Since team automata are an extension of I/O automati@Aheanguage and
Toolsef91] may be of help when trying to achieve this goal. Another goal for the future is to
extend the team automata framework with time, probability, or both. For this we can benefit
from many previous experiences reported in the literatarg.(see [141, 183, 11, 129])
where such extensions are proposed for different automata-based formalisms.

Second Direction. The principles of integration identified in this thesis have general validity
and can be applied to other fields of research as well. One of the possible contexts is privacy
control, which we started to investigate in [60]. In this emerging field, the need of instruments
for the specification and analysis of privacy policies is compelling. We hope that the usage of the
integration principles we have identified in this thesis can help in identifying techniques of process
specification and verification techniques also supported by verification tools.
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