
I NTEGRATION OF ANALYSIS TECHNIQUES

IN SECURITY AND FAULT -TOLERANCE

Gabriele Lenzini





Members of the dissertation committee:

prof. dr. P. H. Hartel University of Twente, Enschede (promotor)
prof. dr. H. Brinksma University of Twente, Enschede (promotor)
dr. S. Etalle University of Twente, Enschede (assistant promotor)
dott. S. Gnesi Istituto di Scienza e Tecnologie dell’Informazione CNR, Pisa, Italy
prof. dr. R. J. Wieringa University of Twente, Enschede
prof. dr. W. J. Fokkink Vrije Universiteit of Amsterdam, Amsterdam
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Abstract

In the last decade security related problems have attracted the attention of many researchers from
different areas, especially from the formal methods field. The massive research that grows up
around a new field is usually guided by the techniques and experiences specific to who is facing
the problem. This happened, for example, in cryptographic protocol analysis.

Once the surge of interest around a specific problem subsides, it is time to look for an inte-
gration among the different proposed approaches. In our opinion the quest for integration has a
doubly beneficial effect. Firstly, it allows to reuse knowledge, experiences and tools from different
areas of research in computer science. Secondly, it allows to understand the intrinsic difficulties
standing at the basis of a certain problem, independently of the formal approach initially used
to face it. For example, security properties like secrecy and authenticity are nowadays consid-
ered equally difficult to prove; this similarity was not clear at the beginning, when the different
formalizations for secrecy and authenticity seemed not to be directly comparable.

This thesis focuses on the study of integration of formal methodologies in security protocol
analysis and fault-tolerance analysis. The research is developed in two different directions: in-
terdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between
strategies of analysis in security protocols and fault-tolerance; in the latter, we search for con-
nections among different approaches of analysis within the security area. In the following we
summarize the main results of the research.

Interdisciplinary Perspective. In this perspective, we recognize in Model Checking [48], in
Partial Model Checking [16], and in Non Interference Analysis [101] those methodologies that
can be applied profitably in security protocol analysis and fault-tolerance analysis. This division
of research is articulated in the following objectives:

√
Objective 1 To show how model checking can be applied to the validation of both security

protocols and fault-tolerant systems.

Model Checking has been widely used to validate fault-tolerant, safety-critical, systems. We
report on an industrial experience of validation in this field. Through another industrial experience
of validation of an authentication protocol we show that model checking is a valid strategy for
the analysis of security protocols as well. When studying model checking for security protocol
analysis, we also develop an original logic-based, on-the-fly, model checker for the analysis of
security cryptographic protocols.



√
Objective 2 To show how a precise specification framework allows security protocol engi-

neering and fault-tolerance engineering to share common strategies and tools of analysis. The
framework requires the neat separation of the system model from its malicious environment.

The specification framework is proposed and discussed prevalently in the framework of the
CCS [158] process algebra. The common analysis strategies we identify originate in partial model
checking and non interference analysis. Such strategies have been proposed and studied preva-
lently in the verification of security protocols, and they have made it possible to analyze the
behavior of a protocol acting in an open, malicious, environment. By partial model checking,
the problem of checking a security property, expressed as aµ-calculus logic formula over a CCS
protocol model, can be reduced to a validation problem in theµ-calculus. By a non interference
approach, many security properties can be formalized and checked by existing tools.

When applying partial model checking to fault-tolerance we identify a subset of theµ-calculus,
whose validation problem can be solved in time linear in the size of the formula. We provide
examples of safety and liveness properties that can be expressed in the sub-calculus identified.
When applying non interference ideas we show how fault-tolerance can be reformulated in the
context of the Generalized Non Deducibility on Composition (GNDC) scheme of analysis; we
show also how GNDC analysis strategies and existing tools can be used in fault-tolerance.

Intra-disciplinary Perspective. In this outlook we relate the use of different formal models in
security. The formal models we consider are: process algebra, automata, and multiset rewriting.
The division of our study, conducted in a scenario of analysis of security protocols, is organized
in the following objectives:

√
Objective 3 To relate two famous formalisms used in the analysis of security, process algebras

and multiset rewriting, in the framework of cryptographic and authentication protocol analysis.

Actually, with “process algebra” we denote a family of calculi which have been proposed
for describing features of distributed and concurrent systems. Here, “multiset rewriting”, which
has roots in concurrency theory and rewriting logic, denotes a language used to study fundamental
issues in authentication protocols. We define special encodings between the two formalisms which
preserve a bisimulation-like equivalence, and consequently secrecy and authentication properties.

√
Objective 4 To redefine the GNDC theory in terms of Team Automata.

Automata-based formalisms have been widely used in the analysis of fault-tolerant systems.
Recently, Team Automata have been proposed to specify computer supported cooperative work
and concurrent systems, but they still miss an analysis framework. By proposing a GNDC theory
in terms of Team Automata, we allow the migration of some of the theory for security analysis
from process algebra to the automata world. We show how to apply our framework to study an
integrity property over a multicast cryptographic protocol.



Samenvatting

Problemen gerelateerd aan veiligheid (security) hebben in het afgelopen decennium de aandacht
gekregen van vele onderzoekers uit verschillende gebieden, in het bijzonder uit de formele meth-
oden. De hoeveelheid onderzoek die tot stand komt rondom een nieuw gebied wordt meestal
gestuurd door de specifieke technieken en ervaringen van de persoon die het probleem aanpakt.

Zodra den verhoogde interesse rondom een specifiek probleem afneemt, is het tijd om op zoek
te gaan naar integratie van de verschillende invalshoeken die zijn voorgesteld. Wij zijn van mening
dat de zoektocht naar integratie een dubbel voordelig effect heeft. Ten eerste staat de integratie
het hergebruik van kennis, ervaringen en gereedschappen uit verschillende onderzoeksgebieden
binnen de informatica toe. Ten tweede helpt de integratie de intrinsieke moeilijkheden te be-
grijpen die aan de basis staan van een zeker probleem. Zo worden de veiligheidseigenschappen
secrecyenauthenticitybijvoorbeeld tegenwoordig beschouwd als even moeilijk te bewijzen; deze
gelijkheid was oorspronkelijk niet zo duidelijk, toen de verschillende formalisaties voorsecrecy
enauthenticityniet direct vergelijkbaar leken.

De nadruk in dit proefschrift ligt op het bestuderen van de integratie van formele methodolo-
gieën binnenfault toleranceensecurity protocol analysis. Het onderzoek vindt in twee verschil-
lende richtingen plaats: interdisciplinair en intradisciplinair. In de eerstgenoemde richting zoeken
we naar een voordelige interactie tussen analysestrategieën in fault toleranceen in veiligheid;
in de laatstgenoemde richting zoeken we naar connecties tussen de verschillende manieren van
analyse binnen het gebied van veiligheid. In wat volgt vatten we de belangrijkste uitkomsten van
dit onderzoek samen.

Interdisciplinair Perspectief. In dit perspectief herkennen we inModel Checking[48], in Par-
tial Model Checking[16] en in Non-Interference Analysis[101] de methodologiëen die op een
voordelige manier kunnen worden toegepast infault toleranceensecurity protocol analysis. Deze
verdeling van onderzoek komt in de volgende doelstellingen naar voren:

√
Doelstelling 1 Laten zien hoemodel checkingkan worden toegepast om zowelfault tolerant

systemen als veiligheidsprotocollen te valideren.

Model checkingwordt vaak gebruikt omfault-tolerant, safety-criticalsystemen te valideren.
Wij rapporteren over een industriële ervaring met validatie in dit onderzoeksveld. Middels een an-
dere industrïele ervaring met validatie van een authenticatieprotocol laten we zien dat ookmodel
checkingeen valide strategie is voor het analyseren van complexe authenticatieprotocollen. Terwijl
wemodel checkingvoorsecurity protocol analysisbestuderen, ontwikkelen we ook een originele,
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op logica gebaseerde,on-the-fly model checkervoor de analyse van cryptografische veiligheid-
sprotocollen.

√
Doelstelling 2 Laten zien hoe een precies specificatiekaderfault toleranceen security proto-

col engineeringtoestaat om gemeenschappelijke strategieën en gereedschappen voor analyse te
delen. Het kader vereist een duidelijke afscheiding tussen het systeemmodel en haar boosaardige
omgeving.

Het specificatiekader wordt voornamelijk binnen de context van de procesalgebra CCS [158]
voorgesteld en bediscussieerd. De gemeenschappelijke analysestrategieën die wij identificeren,
stammen uitPartial Model Checkingen Non-Interference analysis. Zulke strategiëen zijn voor-
namelijk voor de verificatie van veiligheidsprotocollen voorgesteld en bestudeerd; zij maken het
bijvoorbeeld mogelijk om het gedrag van een protocol te analyseren dat in een open, boosaardige
omgeving handelt. Door middel vanpartial model checkingkan het probleem om een velighei-
dsprotocol, uitgedrukt in deµ-calculus als een logische formule over een CCS protocolmodel,
te verifiëren, gereduceerd worden tot een validatieprobleem in deµ-calculus. Middels eennon-
interferenceaanpak kunnen vele veiligheidseigenschappen door bestaande gereedschappen gefor-
maliseerd en geverifieerd worden.

Bij het toepassen vanpartial model checkingop fault toleranceidentificeren we een deelk-
lasse van deµ-calculus waarvan verificatieprobleem kan worden opgelost in lineaire tijd, afhanke-
lijk van de lengte van de formule. We geven voorbeelden vansafetyen livenesseigenschappen
die uitgedrukt kunnen worden in de geı̈dentificeerde subcalculus. Bij het toepassen vannon-
interferenceideëen laten we zien hoefault toleranceherformuleerd kan worden in de context van
het Generalized Non Deducibility on Composition (GNDC)analyseschema; we laten ook zien
hoeGNDC analysestrategieën en bestaande gereedschappen kunnen worden hergebruikt infault
tolerance.

Intradisciplinair Perspectief. In dit perspectief relateren we het gebruik van verschillende for-
mele modellen in veiligheid. De formele modellen die we beschouwen zijn: procesalgebra, au-
tomaten enmultisetherschrijven. Onze studie, uitgevoerd als een scenario voor de analyse van
veiligheidsprotocollen, is als volgt georganiseerd:

√
Doelstelling 3 Het relateren van twee standaard formalismen die gebruikt worden voor vei-

ligheidsanalyse, procesalgebra’s enmultisetherschrijven, binnen het kader van cryptografische
en authenticatie protocolanalyse.

Met “procesalgebra” duiden we eigenlijk een familie van calculi aan die zijn voorgesteld om
eigenschappen van gedistribueerde en concurrente systemen mee te beschrijven. Hier duidt “mul-
tiset herschrijven”, wat wortelt in de theorie vanconcurrencyen herschrijflogica, een taal aan
die gebruikt wordt om fundamentele noties in authenticatieprotocollen mee te bestuderen. Wij
definïeren speciale coderingen van de twee formalismen die een bisimulatie-achtige equivalentie
vertonen, en vervolgenssecrecy- enauthenticatieeigenschappen.

√
Doelstelling 4 Het herdefinïeren van deGNDC theorie in termen van teamautomaten.

Formalismen gebaseerd op automaten worden vaak gebruikt voor de analyse vanfault tolerant
systemen. Teamautomaten zijn recentelijk voorgesteld voor de specificatie van noties voorcom-
puter supported cooperative worken concurrente systemen, maar zij missen nog een analysekader.



Door eenGNDC theorie in termen van teamautomaten voor te stellen, staan we de migratie van
een gedeelte van de theorie voor veiligheidsanalyse uit procesalgebra naar de wereld van auto-
maten toe. We laten zien hoe ons kader kan worden toegepast om een integriteitseigenschap over
eenmulticastcryptografisch protocol te bestuderen.
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At this point, I like to imagine that most of you are asking why, why on earth did a guy like
me have to come to the Netherlands to complete his long path? I will give an answer, and I will do
with the words of a song by Vinicio Capossela, an Italian contemporary poet/musician. The song
is entitledMod́ı, the nickname of the most famous painter from my native city Livorno: Amedeo
Modigliani.

Basically, this song says that people from Livorno (like me) need to go somewhere else, usually
very far, to find what they are looking for. Moreover, to reach what for someone else is simply at
distance of grasp, we also need to follow weird and conflicting roads:4

[..] per amore tradivi,
per esister morivi,
per trovarmi fuggivi fin qua,
perch́e Livorno d̀a gloria
soltanto all’esilio
e ai morti la celebrit̀a.
(Mod́ı, V. Capossela)

[..] you betrayed for loving,
you died for living,
to find me, you run away
’cause Livorno gives glory
only to the exile,
and celebrity to those who have passed
away.

2“Knowing where and when to stop is also a matter of good manner”, Aristotle in Metaphysics, IV century B.C.
3Ricardo and Laura got married on February 12th, 2005
4All the translations are unofficial.



Prologue





Summary

Organization

This thesis is composed of different papers I have presented and published during my Ph.D. stud-
ies. The thesis is organized into three main parts, and a conclusive part (see Figure 1).

Part I: Formal Validation of Systems: Industrial Test Cases. This part collects my work
on formal validation of industrial systems. It reports the technical details of two experiences of
formal analysis. The former concerns the verification of a safety-critical fault-tolerant railway
system, and the latter focuses on the analysis of security aspects of an authentication protocol
used in the OSA/Parlay telecommunication network. Industrial test cases play an important role
in this thesis; all the problems that I have developed here were conceived while I was working on
the validation of real systems. In other words, the effort of modeling and analyzing a real system
makes clear what are the real difficulties, and hence the problems to be solved to have a real impact
for validation and verification.

Part II: Analysis Techniques in Security and Fault-Tolerance. This part assembles my work
on the development of techniques of validation in security protocol5 analysis and fault-tolerance
analysis. In this chapter the beneficial interaction between the two disciplines emerges. First,
we re-design in fault-tolerance analysis terms, techniques of validation that have been originally
introduced for security analysis; non-interference and its formalization in terms of process alge-
bras, and module checking [126] through partial model checking [16]. Second, we design and
implement a logic-based model checker for security protocol analysis, whereas model checking is
a traditional validation technique for the analysis of dependable systems.

Part III: Comparison of Formal Models in Security Protocol Analysis. This part gathers my
work on the interaction between different methodologies of modeling and verifying in security
protocol analysis. As formal models we chose process algebras (PA), multiset rewriting (MSR),
and team automata [194] (TA). Generally speaking, PA denote a family of calculi which have
been proposed for describing features of distributed and concurrent systems; MSR roots in con-
currency theory and rewriting logic and has been incorporated into a high-level specification lan-
guage for authentication protocols, the Common Authentication Protocol Specification Language
(CAPSL) [64]. TA derive from automata and they have been originally used to model concurrency

5Security protocols are sometimes called cryptographic protocols. We will use these two terms interchangeably.
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Security Protocol Analysis

PART III
PART I

PART II

PART IV

Fault Tolerance

Conclusions

Test Cases

Figure 1: Organization Chart of the Thesis

and computer supported cooperative works. First we compare the expressiveness of PA and MSR
in the restricted field of security protocol analysis, and later we show how TA can be furnished
with a stable framework for the analysis of cryptographic protocols.

Part IV: Conclusions This part concludes the thesis. We identify general principles that emerge
from the present study and from our experience of integration.

Chapter Contents

Each of the main parts is organized into two chapters. We now summarise the contents of each
chapter.

Part I. This part contains Chapter 1 and Chapter 2 and it concerns the application of formal
methods to fault-tolerance and security protocol analysis. Chapter 1 is based on [97, 96, 98];
it reports a complete validation exercise of a fault-tolerant railway system. Chapter 2 is based
on [58, 57]; it relates on an experience of the validation of an authentication protocol that is part
of a Telecom web service.

Chapter 1 describes the experiences of formal specification and validation on a railway safety-
critical control system in which specific methodologies for the analysis of complex depend-
able systems (e.g., triple modular redundancy) have been expressed. From the technical
document describing the system we built a PROMELA [118] formal model. This requires
the design of a formal model that unambiguously describes the system at an appropriate
level of abstraction. This means first to examine a whole bunch of documents describing
the system requirements and to carefully filter out the information that is not significant,
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or interesting, or that lays at a level of detail that is not the one the validation refers to.
The model is then analyzed through model checking [48, 49] by using the tool SPIN [118].
Model checking suffers from a well known problem: the size of the state space of the model
can grow beyond the limits of the available hardwarei.e., exponentially in the number of
its components [47]. We find the same problem with our complex model. This implies the
use of abstraction and compositional strategies over the formal model, during the analysis
phase.

Chapter 2 describes a validation experience that consists in modeling and verifying a real-world
authentication protocol. This “Trust and Security Management” protocol, is implemented
as a protocol in the Parlay/OSA Application Program Interfaces (APIs) [1]. Parlay/OSA
architectures aim to stimulate third parties in developing new services exploiting mobile
telecommunications resources, while allowing the network operator to maintain control
over its network specially with respect to the quality of service offered and the security
usage. The chapter explains in detail how a formal model has been built, starting from the
UML [179] specification of the protocol, and how the experiments of verification have been
performed. Moreover, it critically comments on the verification results, which point out
weaknesses in the authentication procedure, and it suggests a possible solution for strength-
ening the security of the protocol.

Part II. This part contains Chapter 3 and Chapter 4, and it concerns the integration of techniques
of analysis in fault-tolerance and security cryptographic protocol engineering. They show how
the two disciplines can benefit of common strategies of analysis: model checking, techniques of
analysis of non-interference, and partial model checking. Chapter 3 is made up of the articles
[100, 99] and Chapter 4 is based on the papers [94, 95, 134].

Chapter 3 is theoretical. It studies how fault-tolerance analysis can benefit from techniques of
analysis developed for the study of security protocols. It uses the CCS process algebra as
a formal framework to model the fault-tolerant system and its (potentially malicious) envi-
ronment as two separate and interacting CCS processes. The environment is able to induce
the system to switch to insecure states. In this framework a system enjoys a fault-tolerance
property if the systems satisfies the property despite any interaction with the environment.
From the point of view of the analysis, this chapter studies the fault-tolerance of a sys-
tem, with respect to a given property, when the environment is an unspecified component.
In this case, the role of environment in fault-tolerance can be compared with that played
by the intruder in security protocol analysis. This chapter restates in fault-tolerance two
strategies of validation used in security protocols analysis. The first strategy consists in
reducing the problem of checking if a property (here aµ-calculus formula) holds in our
framework, to a problem of validity in theµ-calculus. We exploit partial model checking
in this reduction step, and we show how the validity problem, generally EXPTIME com-
plete, can be solved efficiently in the universal conjunctive subclass of theµ-calculus. The
second strategy consists in applying the Generalized Deducibility on Compositions frame-
work (in short, GNDC) [86] to fault-tolerance. GNDC is a uniform scheme for defining and
analyzing security properties, and it originates in the field of non-interference for security
analysis. This chapter shows how fault-tolerance properties can be uniformly characterized
as GNDC properties, and how theoretical results (e.g.,compositionality), validation tech-
niques, and tools – well established in the GNDC security analysis – can be exploited for
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fault-tolerance.

Chapter 4 proposes a logic-based model checking framework [48] for the verification of security
cryptographic protocols. Model checking enjoys a background of good results in depend-
ability and fault-tolerance analysis (e.g.,see [19, 38]). On the contrary its use in security
cryptographic protocol analysis was quite new when the papers, on which this chapter is
based, were initially proposed in 2000. In the proposed model checking framework, proto-
cols are modeled as terms of a process algebra which is inspired by the Abadi and Gordon
spi-calculus [6]. Security properties, such as secrecy and authenticity, are formalized using
linear time temporal logic.

Part III. This part contains Chapter 5 and Chapter 6 and it concerns the integration of analysis
techniques within the field of security protocol analysis. Chapter 5 is based on [26, 24, 25] and
Chapter 6 is based on [197, 199, 198].

Chapter 5 develops a comparison between process algebras and multiset rewriting when applied
to the analysis of security cryptographic protocols. We compare an instance of process alge-
bra (calledPAP ) and an instance of multiset rewriting (calledMSRP ) which are expressive
when used to describe security protocols. Specialencodingsfrom one formalism to the
other allow secrecy and authenticity properties to be preserved.

Chapter 6 starts from the fact that team automata (TA) are an emerging model for the formaliza-
tion of cooperative network systems and recently of multicast/broadcast protocols. In fact,
TA theory extends the classicalI/O automata theory by allowing the definition of differ-
ent parallel composition operators, that make it possible to formalize complex interactions.
This last feature makes TA an interesting model for the analysis of security protocols even
though TA lack a well-established analysis framework. The present chapter describes how
to model an insecure scenario for cryptographic multicast/broadcast protocols in terms of
TA and it proposes also the definition of GNDC theory for TA. Moreover it shows how, once
established the GNDC framework in terms of TA, it is possible to reuse part of the analysis
theory developed for process algebra in the automata world so that integrity properties can
be proved.

Part IV. This part is composed of Chapter 7. It synthesizes general principles representing the
conclusive remarks of the thesis.
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Part I

Formal Validation of Systems:
Industrial Test Cases





1

Validation of Fault-Tolerant Systems, a
Test Case: Analysis of a Railway,
Safety-Critical, Control System

“[...] e allora io quasi quasi prendo il
treno e vengo, vengo da te, ma il treno dei
desideri, dei miei pensieri all’incontrario
va.” (A. Celentano, in Azzurro, V.
Pallavicini e P. Conte, 1968)

“[...] I am going to take the train and
come, come to you. But the train of my
desires, of my thoughts runs in the opposite
direction.

Abstract

This chapter describes an experience of formal validation of a fault-tolerant railway control
system. The system is designed for the automatic management of medium-large scale railway
networks, and it is currently running at the Italian train station of “Roma Termini”.

The validation experience has been conducted in 1998 in the context of an industrial joint
project involving three partners: an Italian company working in the field of railway engi-
neering, the Ansaldobreda Segnalamento Ferroviario of Napoli, and two research institutes of
the Italian Research Council of Pisa, the Istituto di Elaborazione dell’Informazione and the
Centro Nazionale Universitario di Calcolo Elettronico. The project required the development
of formal models describing different components of the system: a fault-tolerant exclusion
mechanism and a fault-tolerant communication protocol. Moreover, the project demanded the
verification of fault-tolerance properties in case of Byzantine and fail silent faults.

This chapter reports on the design of the formal models and on the experiments of for-
mal verification. We use PROMELA as specification formal language, and SPIN as a model
checker. The properties of interest are specified as safety or liveness properties by means
of PROMELA assertions or linear time logical formulas. To cope with the state-space explo-
sion problem we split the main models in sub-models. Each sub-model is realized in both a
concrete and an abstract version. Any abstract sub-model is provably equivalent to the cor-
responding concrete with respect to an established set of properties, but it contains a lesser
degree of parallelism. By an appropriate composition of abstract sub-models in a whole sys-
tem model, we are able to keep under control the space explosion problem and to complete
the verification of most of the demanded properties.

1.1 Introduction

The need for safety in automatic management of modern railways forces the introduction of so-
phisticated, fault tolerant, computer-based control systems that have an intrinsic degree of com-
plexity [13]. Their validation requires techniques fromformal methods[111, 205, 34, 54] that
are able to overcome the limitations of traditional methodologies, such as testing and simulation.



4 Chapter 1. Validation of Fault-Tolerance Systems: a Test Case

Generally speaking, formal methods are a set of mathematical approaches that support the rigor-
ous specification, design, and verification of computer systems; for these activities, they provide
formal languages, verification techniques and automatic tools. It has been proved that the use of
the formal methods in industrial processes helps in reaching a high level of dependability during
the design and the development of a software or hardware component [54]. Important factors en-
courage the application of formal methods in the industrial production. First of all, the interest in
discovering as many errors as possible before entering in the production phase; during this stage
the cost of correction per error increases enormously [135], whereas in railway applications an
error can even cause a disaster. Secondly, many institutions require industries to conform to inter-
national standards that strongly suggest formal methods, for example the EU directives EN 50128
CENELEC Railways Applications [175], and the IEC 65108 [119].

Railway control systems are particularly suitable to be analyzed with formal methods. Eis-
ner [73] states that railway systems share important robustness and locality properties that distin-
guish them from most hardware systems, this peculiarity makes them easily checkable by symbolic
model checking [48] and Stålmarck checking [184]. As a matter of fact, in the last decade many
railway industries have started pilot projects to evaluate the impact of formal methods on their
production costs. Sometimes, industries have even developed their own validation environment
such as, for example, the LIVE [14] environment by the Ansaldobreda Segnalamento Ferroviario.
The experiments and the results from these pilot projects have stimulated a wide range of scientific
production (e.g.,see [87, 132, 28, 45, 165, 27, 46]). As a significant example, Groote et al [107]
use the micro Common Representative Language (µCRL) [105] to model the vital processor in-
terlocking that runs at the Dutch station of Hoorn-Kersenboogerd; correctness criteria, expressed
in a modal logic forµCRL [106], are verified automatically using tools generated with the meta
environment ASF+SDF [124]. Lately, Bernardeschi et al [20] show how it is possible to formal-
ize a significant part of a complex railway control system in the CCS process algebras [158], then
properties written in the computational tree logic (CTL) [189] are verified with the tool JACK [33].

In this chapter we describe the principal results of a project carried out by the Ansaldobreda
Segnalamento Ferroviario (ASF) of Napoli – an Italian company working in the field of railway
engineering – and two research institutes of the Italian Research Council (CNR), the Istituto di
Elaborazione della Informazione (IEI-CNR) and the Centro Nazionale Universitario di Calcolo
Elettronico (CNUCE-CNR) of Pisa1. The project has required the validation of a fault tolerant
control system in presence of Byzantine [128] and silent faults. First described in [164], the
system is designed to behave safely even in case of arbitrary failures of some of its component,
and it controls safety-critical components of a railway network.

The industrial partner ASF has suggested the use of the PROMELA [116] specification lan-
guage and of the SPIN [117, 118] model checker. With SPIN, ASF has previously verified safety
properties of different parts of the system [45]. The analysis described in this chapter uses the
version 3.2 [117] of SPIN 2. It was the newest version in 1998, when the work was conducted.
Some advanced features were not present at that time, for example the extension of PROMELA and
SPIN to the discrete time [32]; this explains why in this chapter we design our own strategies to
describe time-related behavior, such as fail silent faults and time-outs.

1In September 2003 IEI-CNR and CNUCE-CNR merged into ISTI-CNR, the Istituto di Scienza e Tecnologie
dell’Informazione “A. Faedo”.

2At present, the latest version is the4.2.2.
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1.1.1 Linear Time Logic

In section recalls the (propositional) linear time logic [174] (LTL, for short). SPIN accepts prop-
erties expressed as formulas of LTL. We start with the definition of the linear time structure, that
formalizes the notion of a time line.

Definition 1.1.1 (Linear Time Structure) LetAP be a set of atomic propositions. Alinear time
structureis a triple M = (S, x, L) whereS is a set of states,x : N → S is an infinite sequence
of states (called time line), andL : S → 2AP is a function that labels each state with the set of
atomic proposition true in that state.

Formulas of LTL are built using the following grammar:

φ = p | ¬φ | φ ∧ φ′ | Xφ | φ U φ′

wherep ∈ AP , is a propositional symbol. Informally,¬φ andφ∧φ′ are the propositional negation
and conjunction of formulas, whereasX andU are the basic temporal operator of LTL. The former
is called “next”, the latter “until”. In LTL we find also the (classic) propositional derived operators:

ff
def= p ∧ ¬p

tt
def= ¬ff

φ ∨ φ′
def= ¬(¬φ ∧ ¬φ′)

φ⇒ φ′
def= ¬φ ∨ φ′

and the (important) following derived temporal operators:

“eventually” 3φ
def= ttU φ

“always” 2 φ
def= ¬3¬φ

Formulas of LTL are interpreted over linear time structuresM = (S, x, L). A graphical,
intuitive, explanation of the temporal operators is shown in Figure 1.1.

Informally, we say that a formulaφ holds in a state of a time line we mean that it holds in the
time line that starts from that state; we say that a formula holds in the time lineM if it holds in
state the first statex(0). The informal semantics of the temporal operators is as follows:Xφ holds
in M if and only if φ holds in statex(1); 2 φ holds inM if and only if φ holds in every state of the
time line;3φ holds inM if and only if there is a future state of whereφ eventually holds;φU φ′

holds inM if φ holds in all the states until (possibly included) the state whereφ′ holds.
Formally, the notationM, x |= φ means thatφ is true in the time linex of the structure

M. Assuming the notationxi standing for the suffixx(i), x(i + 1), . . . of the time linex, the
satisfiability relation,|=, is defined inductively on the structure of the formulaφ as follows:

M, x |= p iff p ∈ L(x(0))
M, x |= φ ∧ φ′ iff M, x |= φ andM, x |= φ′

M, x |= ¬φ iff M, x 6|= φ
M, x |= Xφ iff M, x1 |= φ
M, x |= φU φ′ iff exists j, M, xj |= φ′ and for alli < j, M, xi |= φ

We explicitly give also the formal semantics of the derived temporal operator:

M, x |= 2 φ iff for all i ≥ 0, M, xi |= φ
M, x |= 3φ iff exists i ≥ 0, M, xi |= φ
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φ

φφ φ φ φ φ

φ

φ φφ φ′

φ

X φ

φ U φ′

2 φ

3 φ

Figure 1.1: Graphical intuition for the semantics of the linear time operators “next”, “until”, “al-
ways”, and “eventually”. Each sequence represents the time line satisfying the related formula on
the left. States are depicted as circles, and arrows connect states in temporal sequence. A formula
above a state indicates that the formula holds in the state.

A formulaφ is said to be satisfiable if and only if there exists a linear time structureM = (S, x, L),
such thatM, x |= φ; in this case we say thatM is a modelfor φ. In this chapter, the following
problem is also relevant:

Definition 1.1.2 (Model Checking Problem in LTL) Let M = (S, x, L) be a linear time struc-
ture, andφ be a LTL formula. Themodel checking problemconsists in answering the following
question: “isM a model forφ”? Or equivalently does “M, x |= φ”?.

An algorithm solving the model checking problem is called model checker.

1.1.2 PROMELA and SPIN

This section briefly introduces the SPIN model checker [118] and its high-level specification lan-
guage, PROMELA [116]. We do not enter in any technical detail here: when necessary throughout
this chapter, we shall provide brief explanations. For a complete reference on SPIN and PROMELA

we suggest the book [118].
SPIN is an efficient tool for the simulation and the verification of PROMELA models. SPIN

runs on Unix, Linux, and Windows. Its basic structure is illustrated in Figure 1.2. In simulation
mode, SPIN can be used to get a quick impression of the types of behavior that are captured
by a model. In verification mode, SPIN checks correctness claims that are generated from logic
formulas expressed in LTL. When a claim is not valid over a model, SPIN produces a counter
example that shows explicitly how the property may be violated. The counter example can be fed
back to the SPIN simulator, so that the trail can be inspected in detail to determine the cause of
violation.

At high-level, a system model is specified as a set of PROMELA process templates, that SPIN

translates into a set of finite Büchi automata [39]. A global automaton of the system behavior is
obtained by the interleaving product of all the automata composing the system. Once a model is
built, SPIN is used to generate an optimized, on-the-fly, verification program that can be compiled
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PROMELA
LTL 

parser and

Generator

Verifier 

counter examples

TCL/TK
font−end

XSPIN

(6)

(1) (2) (4)
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(5) Model−Specific
ANSI C code

Verifier
Executable

Random/Guided

SimulationReporter

Syntax Error 

parser translator

Figure 1.2: The structure of SPIN. A PROMELA, high-level, description of a system is first checked
for syntax errors (1). Interactive simulation can be used to gain basic confidence that the model
has the intended properties (2). Optionally a PROMELA correctness claim can be generated from
a LTL formula (3). Then, SPIN is used to generate a verifier, compiled with possible compile-time
choices for optimization in memory usage (4). If the verification fails, SPIN returns a counter
example that can be fed back into the simulator (5). A graphical front-end, XSPIN, provides a
user-friendly approach to the SPIN environment (6).

and run separately. Different options can be set when compiling a verifier: partial order reduc-
tion, memory compression, data compact representation, or other optimization strategies can be
exploited in the analysis to deal with state space explosion problem [201], a fundamental problem
for any state space methods like model checking. Almost any system has huge number of states,
and the size of the structure used to represent a system, called states space, tends to grow expo-
nentially in the number of its processes and variables. This explosion causes a seriuos waste of the
computer memory, and in absence of optimization strategies it usually makes many verification
fail by out-of-memory.

Significant to this chapter are the optimization options of partial order reduction and memory
compression methods. Partial order reduction aims to reduce the number of system states that
need to be visited and stored in the state space to solve the model checking problem. This option is
enabled by default for all SPIN verification runs. Memory compression methods aim to reduce the
amount of memory that is required to store each state of the system. Options, such asCOLLAPSE
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andMAare reserved for this target. Both reduce the memory requirement of an exhaustive search
by increasing the run-time requirements. TheCOLLAPSEfeature exploits a hierarchical indexing
method to achieve compression. TheMA, or minimized automaton, reduces memory by building
and updating a minimized finite state recognizer the state descriptor. Technical notes about the
algorithms for partial order reduction and memory compressions can be found in [118].

PROMELA is a language with a C-like syntax for the specification of the high-level behavior
of concurrent and interacting processes in a distributed system. PROMELA is based on Dijk-
stra’s guarded command language [68] and Hoare’s language CSP [115]; PROMELA has non-
deterministic control flow structures and primitives for process creation and interprocess com-
munication. Other control flow statements allow the definition of atomic sequences, deterministic
steps, and escape sequences. A PROMELA specification consists of one or more process templates,
calledproctype, and at least one process instantiation. Processes are typically instantiated by the
built-in “init” process or by any already running process. Processes may terminate or run indef-
initely. Instantiated processes communicate via rendez-vous, via asynchronous message passing
through buffered channels, or shared memory.

1.2 System Description

The object of our study is theComputerized Central Apparatus(ACC) 3 a hardware system specif-
ically designed to manage medium/large railway networks. ACC is a highly programmable and
centralized control system deployed in a wider railway signaling system. This latter is a complex
and distributed architecture designed to manage a large railway network. Each node of the network
controls either a medium-large railway station or a line section with small stations, or a traffic line
with a simple interlocking logic. Figure 1.3 depicts the ACC architecture. The ACC is composed
of two independent sub-systems dedicated to management and vital functions:

Management functions control auxiliary tasks, such as data recording, diagnostic management
and remote control interface. They are run by the ACC sub-system called “RDT” (acronym
for Recording, Diagnosis and data Transmission) in Figure 1.3.

Vital functions are generally safety-critical procedures: they control critical machineries such as
train movements and the wayside equipment. Vital functions are run by the ACC sub-system
called “Vital Section” in Figure 1.3.

The vital section of the ACC is composed of severalControl Posts, severalPeripheral Control
Units (PCUs), and aSafety Nucleus(SN). Control Posts are formed by input/output interfaces and
by terminals. From them, a human operator can issue critical commands intended for the PCUs
that, in turn, execute them. These commands are critical because their execution affects physical
machineries such as railway semaphores, rail points or level crossings. For this reason particular
attention is paid to guarantee the safety of the system in case of faults.

The SN, a hardware component, is specifically designed for control and safety purposes. It
monitors the state of the system and tries to discover a faulty component,i.e., a PCU or a com-
munication bus. Its architecture is based on a triple modular redundant [191] configuration of
computers; for this reason the SN also faces the problem of an internal consensus. The classical
solution to this problem (also known as the Byzantine Generals Problem [128, 22]), cannot be im-
plemented in the SN due to hardware constraints; in case of inconsistency, instead of looking for a

3“Apparato Centrale a Calcolatore”, in Italian.
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consensus the SN tries to exclude the faulty component or to force the whole system to shutdown
safely.

Remark 1.2.1 We study of the behavior of the SN and its interaction with the PCUs.

...

 RDT Safety Nucleus

Control Posts

Peripherical Control Units

Vital Section Management Section

remote
control
system

ACC

Figure 1.3: The architecture of the Computerized Central Apparatus (ACC). The Management
Section controls auxiliary tasks. The Vital Section controls physical devices and train movements.
Commands issued from the Control Posts are executed by the Peripheral Control Units. The Safety
Nucleus controls and manages the system in case of arbitrary faults in the Peripheral Control Units
or in the communication lines.

1.3 Formal Models

This section discusses how we represented time-outs, Byzantine faults and transient faults in
PROMELA. It also illustrates the two PROMELA models of the vital section of the ACC, which we
call TMR and TMR-PCU; they describe different views of the ACC vital section:

1. TMR describes, in detail, the triple modular redundant architecture of the SN and its ex-
clusion logic mechanism (see also Figure 1.4). We use TMR primarily to verify safety
properties of the SN in presence of Byzantine behavior of one of its components. PCUs
play only a marginal role here.

2. TMR-PCU describes, in detail, the SN-PCU communication infrastructure (i.e.,busses), the
relative communication protocol, and the internal PCU architecture (see also Figure 1.5).
Here, we model only those parts of the SN that are involved in the communication with the
PCUs,i.e., we explicitly avoid modeling the exclusion logic. We use TMR-PCU to verify
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liveness properties of the SN-PCU communication protocol and safety properties in case of
communication time-outs caused by faults in the busses or in some PCUs.

1.3.1 Formalization of Faults

Before describing the PROMELA models TMR and TMR-PCU, we focus our attention on the for-
malization of the classes of faults that we consider in our analysis:

• fail silent faults (i.e., faults causing time-outs in communication);

• Byzantine faults.

Both classes of faults are used within the models TMR and TMR-PCU. Byzantine faults are
supposed to happen only in some SN modules. In reality Byzantine faults only occur in SN
modules, therefore we assume that they do not occur elsewhere. Fail silent faults may originate
in any ACC component: SN modules, PCUs, or communication lines. Moreover, we also discuss
how to model temporary fail silent faults.

Fail Silent Faults

Fail silent faults cause the system to omit the correct answer [19]. In the case of ACC they cause
time-outs in communications. In other words, a fail silent fault becomes visible to the other system
components only when a communication event results in a time-out. ACC communications are
with time-outs, but since PROMELA does not deal with time4, we have to abstract from any defini-
tion of it in our models. We simulate time-outs with a specialempty messageε, whose presence in
a channel must be interpreted as absence of the expected message. The use of the empty message
lightly changes the interpretation of send and receive and, consequently, their implementation in
our models. A “send” of a messagem is now implemented as a non deterministic choice between
transmitting eitherm or ε. A “receive” of a message in variablex requires a testx == ε after
the reception: in fact, in a ‘receive” with time-outs there is the need to discern, depending on the
content of the message gotten, if a time-out has expired or not. This latter case happens if and only
if the message received is the empty messageε.

In PROMELA, where typed and buffered (of lenghtN) channels are defined via the declaration
chan <name> = [N] of <type> , the messageε is defined as a reserved constant value for
example the integer value0. This value must not be used in any other communication along the
whole formal model. Consequently, a “send” with time-outs is implemented in PROMELA with
the following code:

/ * *************************************** * /
/ * implementation of a send with time-out * /
/ * *************************************** * /

// global definitions
// (in the environment where the module are defined)

define EMPTY 0 // empty message

4See the discussion in Section 1.1.2
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Exclusion Logic

Module A

Module B Module C

1 2 n

Peripheral Control Units

...

Bus

Figure 1.4: The architecture of TMR. The triple modular redundancy of the SN is represented in
detail: three (functionally) identical modules and an exclusion logic. Each SN module commu-
nicates with the others and with the exclusion logic via a dedicated symmetric link. PCUs are
connected with the SN through a shared bus.

chan c = [0] of <t>; // (synchronous) channel

[...]

// local definition (within a module)
<t> msg; // message (<> 0) of type <t>

[...]

/ * implementation of a send with time-out * /
if
:: c!msg // send the real message
:: c!EMPTY // send the empty message
fi;

In PROMELA, comments are enclosed within/ * * / and the statement

if :: <guard1> -> <s1>
:: <guard2> -> <s2>

[...]
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Safety 

Nucleus

...
pcu2 pcun

Primary BusSecondary Bus

Peripheral 

Control 

Units

pcu1

module B module C

module A

computer A computer B

Figure 1.5: The architecture of TMR-PCU. The communication infrastructure between SN and
the PCUs is represented in detail. PCUs are linked with the SN modules through a pair of busses,
called primary and secondary respectively. Each PCU module is composed of two identical com-
puters in configuration 2 out-of 2.

:: <guardn> -> <sn>
:: else -> <sn+1>

fi

is a guarded, non deterministic, choice among the statementss1 , s2 , . . ., sn . A statements ,
is enabled if the corresponding guard,guard , is satisfied. When more statements are enabled,
one statement is selected non-deterministically. When present, theelse guard is satisfied if and
only if all the other guards are not. The keywordtrue , is a guard that is always enabled; it is
usually omitted and:: true -> <s> is written as:: <s> . The primitivec!x is the send
command over the channelc of the value associated tox . In the previous code implementing
the send with time-outs, the guards are always satisfied, so the “send” with time-outs is a pure
non-deterministic choice between sending the messagemsg or the empty message.

In PROMELA the “receive” with time-outs is coded as follows:

/ * ***************************************** * /
/ * implementation of a receive with time-out * /
/ * ***************************************** * /

// global definitions
define EMPTY 0 // empty message
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chan c = [0] of <t>; // (synchronous) channel

[...]

/ * implementation of a receive with time-out * /
c?x ->

if
:: (x == EMPTY) -> <exception time-outs>
:: else -> <reception>
fi;

In PROMELA, c?x is the receive operation from channelc of a value that will be stored into
the variablex . In the previous code, a message is first retrieved from the channelc then, if the
message proves to be the empty message, a procedure for handling the time-out is called.

Byzantine Faults

We start with a definition of Byzantine behavior due to Lamportet al [128]:

Definition 1.3.1 (Byzantine Behavior) Assuming to have a finite setM of identical modulesm
whose behavior is specified by a communication algorithmA:

1. all loyal modules inM run the same algorithmA, and in particular they correctly send all
messages as specified inA;

2. a Byzantine modulem′ ∈ M runs the same algorithmA as a loyal module but it can
arbitrarily fail in executing it. As an effect of failure the Byzantine module may send wrong
messages, it may send a message delayed with respect to a synchronization event, or it may
send no message at all.

Definition 1.3.1 focuses on communication events: any Byzantine fault in a module becomes
observable only when the faulty unit communicates. As a consequence of this assumption any
Byzantine fault is modeled as a communication error; precisely as a communication of a corrupted
message or as a delay in the communication, or as a lack of communication.

We model both a delay and a lack of communication with a time-outi.e., with the empty
messageε. To generate a corrupted message, we define a functioncorrupt() : (T − {ε}) −→ T ,
whereT is a message type. Given a messagem, corrupt(m) 6= m indicates that the messagem
is corrupted.

In PROMELA, an instance ofcorrupt() is the functioncorrupt(n) = −n. Note that, be-
cause for the choice of modeling the empty message with the integer value 0 there is no semantic
ambiguity between the concepts of “corrupted message” and “absence of a message”.

Byzantine faults, and the way we model them, affect the PROMELA implementation of a send.
On the contrary the implementation of a receive does not require any further change with respect
to its implementation with time-outs. In PROMELA a Byzantine send appears as follows:

/ * ***************************************** * /
/ * implementation of a Byzantine fault * /
/ * ***************************************** * /
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// global definitions
define EMPTY 0 // empty message
chan c = [0] of <t>; // (synchronous) channel

// local (to a module) definitions
<t> msg; // message

[...]

/ * implementation of a send with Byzantine failure * /
if
:: true -> c!msg // send the corrected message
:: true -> c!EMPTY // time-outs (delay or lack)
:: true -> c!(-msg) // send a corrupted message
fi;

In the code above, a non deterministic choice guides the possibility of sending the correct
message or causing a time-out, or sending a wrong message.

Temporary Fail Silent Faults

The behavior of each ACC module (see also Section 1.4 and 1.5) consists of a cyclic execution
of a sequence of statements; we call thisexecution loop. ASF is interested in modeling time-outs
that are persistent for at least one whole execution loop but not necessarily in all the loops. This
interest is motivated by what ASF has observed in the field.

As a solution, we model such faults in the following way: at the beginning of an execution
loop, a non-deterministic choice decides if a component, for instance a bus or a module, run in
either error-prone or in error-free mode. Running in error-prone mode means that every commu-
nication involving the component ends in a time-out. For example, if the component represents
a communication bus, every communication through it results in a time-out. A scheme of this
solution in PROMELA is as follows:

/ * initial setting of the state bit * /
bit error_free = 1

/ * execution loop * /
do

/ * change the state bit * /
if

:: error_free = !error_free
:: skip

fi;

do / * a send * /
:: c!(msg && error_free)
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:: [...]
od

do

In the code above, the state bit is changed first, then the send occurs. Moreover the statement

do
:: <guard1> --> <s1>
:: <guard2> --> <s2>

[...]

:: <guardn> --> <sn>
od

is a repetition construct; it cyclically selects, non-deterministically, one enabled statement among
the guarded statementss1 , s2 , . . ., sn . We use the repetition construct to implement an execu-
tion loop. At the beginning of the execution loop a choice may change the state from error free
(error free = 1 ) to error prone (error free = 0 ) or vice versa. Later any outgoing mes-
sage is sent in conjunction with the state bit: a value of 0 has the effect of resetting the outgoing
message to the value we use to model the empty message.

1.4 The TMR model

This section describes the TMR model. Its general architecture, drawn in Figure 1.4, consists of:

• three identicalcentral modules, called module A, module B and module C. They constitute
the triple modular redundant configuration of the SN. They communicate with each other,
with the exclusion logic, and with the PCUs.

• a module calledexclusion logic. It watches the central modules and acts as a voter. More-
over, the exclusion logic is able to exclude one inconsistent central module or to bring the
SN to a safe shutdown.

• the PCUs, consisting ofn control units (in our studyn = 2). In the TMR, the behavior of
the PCUs is only sketched;

• the set ofcommunication channels. Three symmetric channels connecting the three central
modules, three symmetric channels between the central modules and the exclusion logic,
and a single bus between the central modules and the PCUs.

In the following we explain only the PROMELA model of a central module. This is sufficient to
understand what we are going to verify. The complete PROMELA codes, composed of thousands
of code lines, is property of ASF. We describe here, with permission, only what is needed to
understand this work.
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The Central Modules In TMR, modules A, B, and C are designed for the following tasks:

• to collect global information about the whole system statei.e., the local states of the other
central modules;

• to elaborate summary information about the system state first, then sending it to the exclu-
sion logic;

• to communicate with the PCUs.

The three central modules communicate with each other via symmetric channels. Each module is
connected via another symmetric channels with the exclusion logic, and via a bus with the PCUs.
The behavior of a central module is the execution loop, formally described with the following
pseudo-code:

/ * ******************************* * /
/ * execution loop * /
/ * ******************************* * /
loop
1. * <synchronization>
2. <command elaboration>
3. * <data exchange with the other modules>
4. <distributed voting>
5. * <communication with exclusion logic>

/ * communication with the 2 PCUs * /
for i = 1 to 2 do
6.1 if <is my turn> then
6.2 * <synchronization>
6.3 * <send command to the PCUs[i]>
6.4 * <receive acknowledge from the PCUs[i]>
endfor

endloop

In the code above we indicated the communication phases with an “* ”. We now describe
informally each phase.

Synchronization. During this phase, each module exchanges a synchronization message with the
other modules. This phase is used to collect information about the state of activity of the
other modules. A time-out is interpreted as a sign of non activity. and the module that
caused the time-out is excluded by any later communication within the current execution
loop. Within the current loop the module that has caused the time-out is excluded from any
subsequent communication. The system is expected to run in a configuration of at least 2
out of 3; if a module detects a time-out from both the other two modules it enters in a safe
shutdown state;

Command elaboration. During this phase, each module composes a summing up of the local
view that the module has about the state of activity of the other two modules;

Data exchange.During this phase, each module sends to, and receives from the other modules
the message composed in the previous phase;
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Distributed voting. During each phase, each module checks the consistency of its local informa-
tion (about the system state) with that received from the other two modules, and composes
a new message about the result of this test;

Communication with the exclusion logic. During this phase, the result of the test is sent to the
exclusion logic, which, after having analyzed all the results, can decide to disconnect the
module(s) considered potentially faulty;

Communication with the PCUs. During this phase, a module communicates with the PCUs by
running a particular circular protocol. At each loop of this protocol only two modules are
enabled to communicate with the PCUs. A distributed procedure within the protocol, as-
sures a cyclic selection of the two modules candidate to the communication. In the TMR,
this procedure is extremely simplified.

In the following we report a synthesis of the PROMELA code implementing the synchroniza-
tion phase for the module C. In the code we have omitted programming details that are not signif-
icant at this level of description, for example the statementsatomic or d step used to reduce
unnecessary parallelism in the model.

/ * ***************************************** * /
/ * synchronization phase * /
/ * ***************************************** * /

/ *** in the global environment *** /
#define EMPTY 0 // the empty message
#define SYNCH 1 // the synchronization message

/ * global_activeC is the global state of module C. * /

global_activeC = 1 // state of activity of C

[..]

/ *** module C’s local variables *** /
activeA_C = 1; / * state of A, in C viewpoint * /
sentA_C = 0; / * flag "sent" (to module A) * /
recvA_C = 0; / * flag "received" (from module A) * /

activeB_C = 1; / * state of B, in C viewpoint * /
sentB_C = 0; / * flag "sent" (to module B) * /
recvB_C = 0; / * flag "received" (from module B) * /

do

/ * -------------------- * /
/ * communication with A * /
/ * -------------------- * /
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/ * send (with time-outs) to A * /
:: (!sentA_C) ->

if
// send the synch (if A is active)
:: true -> outA!(SYNCH && activeA_C);
// time-outs
:: true -> outA!(EMPTY);
fi;
sentA_C = 1;

/ * receive (with time-outs) from A * /
:: atomic{(!recvA_C && inA?[synA]) -> inA?synA;}

recvA_C = 1;

/ * set the activity state of A * /
if
:: synA == SYNCH -> activeA_C = 1;
// time-outs imply no activity
:: else -> activeA_C = 0;
fi;

/ * -------------------- * /
/ * communication with B * /
/ * -------------------- * /

/ * Here activeB_C is used instead of activeA_C * /
/ * recvB_C instead of recvA_C, * /
/ * sentB_C instead of sendA_C etc. * /

:: [ ... the same for B ... ]

/ * exitloop when done all the two modules * /
:: (sentA_C && sentB_C && recvA_C && recvB_C) -> break;

od;

/ * safe shutdown if A and B are not active * /

if
:: !activeA_C && !activeB_C ->

/ * goto a part of the code that is recognized as a * /
/ * safe shutdown. The module wait to be restarted * /
goto SHUTDOWN

:: else -> skip
fi;



1.4. The TMR model 19

SHUTDOWN:
/ * Set the state of activity of C to ’’inactive’’ * /
/ * C has safely shut down. * /

global_activeC = 0;
<wait>

HereactiveA C andactiveB C are C’s local variables that indicate the state of activity of
module A and module B, respectively; they are set at the beginning of the execution loop, and
reset in case a time-out occurs in a communication with module A or module B, respectively.

The PROMELA code implementing the other phases is similar except for the type of messages
involved and for some different local computation. As explained in Section 1.3.1, in its Byzantine
implementation a module may, in any send action, send a corrupted message. In reference to the
previous code, the fragment of PROMELA code that shows the Byzantine implementation of the
“communication with module A” is as follows:

[...]

/ * communication with A * /
:: (!sentA_C) ->

if
/ * send the synch (if A is active) * /
:: true -> outA!(SYNCH && activeA_C);
/ * send a corrupted message * /
:: true -> outA!(-SYNCH && activeA_C);
/ * time-outs * /
:: true -> outA!(EMPTY);
fi;
sentA_C = 1;

[...]

1.4.1 Formal Verification of TMR

This section lists some of the properties we verify for the TMR model and the related results. We
postpone the discussion about how to cope with the state explosion problem, till Section 1.6. Prop-
erties are expressed as either LTL formulas or PROMELA assertions. An assertion in PROMELA is
a statement including a boolean expression that is evaluated each time the statement is executed.
Assertions are used to express invariant properties over a model.

An informal description of the properties is as follows:

(TMR1) After a communication phase it is always true that if two modules do not receive any re-
ply from the third module, this latter module will be eventually disconnected by the exclusion
logic.

(TMR2) After a communication phase, it is always true that if one module does not receive any
reply from the other two modules, it will eventually enter a safe shut-down state.
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(TMR3) After a distributed voting phase, it is always true that if two modules, in reciprocal
agreement on the global state knowledge, recognize that a third module is not in agreement
with them, this latter module will be disconnected eventually by the exclusion logic.

All the previous properties can be formalized with LTL formulas with the following common
structure:

2 (p⇒ 2 (q ⇒ 3 r))

Herep, q andr are predicates on variables.
As an example let us consider property TMR1 written in the following way: “after a commu-

nication phase it is always true that if module A and module B do not receive any reply from C,
this latter will be eventually disconnected by the exclusion logic“. This formula is expressed with
the following formula:

2
(
¬(activeC A)⇒ 2 (¬(activeC B)⇒ 3¬(global activeC)

)
∧ (1.4.1)

2
(
¬(activeC B)⇒ 2

(
¬(activeC A)⇒ 3¬(global activeC)

)
HereactiveC A is a boolean variable of module A that evaluates to true if and only if A receives
a reply from module C;activeC Bevaluates to true if and only if B receives a reply from module
C; global activeC is a global valuable that evaluates to true if and only if module C is active.
Informally formula (1.4.1) evaluates true if and only if when A does not receives a reply from C,
and B does not receive a reply from C then eventually C is not active.

(TMR4) After a communication phase, every module has sent and received a message (or the
empty message) from all the other modules.

Property TMR4 is specified with an assertion placed after each communication phase. For exam-
ple, this property in case of module C, is:

assert{(recvA_C+recvB_C==2) && (sentA_C+sentB_C==2)}

Here variablesrecvA C andrecvB C are reset at the beginning of the execution loop, and set
after module C has received a message from module A and module B respectively. Similarly,
sentA C (sentB C, resp.) is reset at the beginning of the loop, and it is set after any send action
towards module A (module B, resp.).

(TMR5) A module is in safe shut-down state only if the other two have caused a time-out in a
previous communication phase.

Within module C, this property is specified as the following assertion located after theSHUTDOWN
entry label (see the PROMELA code in Section 1.4):

assert{activeA_C + activeB_C == 0}
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property state vector depth RAM result
TMR1 192 5266 20 success
TMR2 192 5266 22 success
TMR3 196 45273 25 fail
TMR4 68 9763 14 success
TMR5 68 9763 14 success

Figure 1.6: Summary of the verification results on TMR. These results are obtained by running
SPIN with MA+CO options selected, and with one Byzantine module. In the first column we have
the property name, in the second the number of bytes required to store the state vector, in the
third the depth of the search in number of steps, in the fourth the total memory required by the
verification in Mbytes, and in the last the result of the verification.

1.4.2 Discussion

Figure 1.6 reports a summary of the results of the verifications. We run the verification in presence
of one Byzantine module. We briefly discuss the result concerning property TMR3. The analysis
of the counterexample shows that the Byzantine module C causes one of the loyal modules to be
disconnected by the exclusion logic. In fact, module C fails in participating in a communication
with one module and makes that module believe that module C is not active. Consequently, in
the distributed voting the loyal module is found in disagreement, and then disconnected by the
exclusion logic. This is a typical disagreement situation due to Byzantine behaviors.

1.5 The TMR -PCU model

The TMR-PCU describes the SN-PCU communication protocol and in more detail the architecture
of PCUs. Figure 1.5 depicts a scheme of the TMR-PCU architecture, that is composed of:

• the three identicalcentral modules, A, B and C. Here the modules implement an abstraction
of the SN,i.e., the part significant for the later analysis;

• the PCUs. They are composed ofn control units (in this studyn=2), each consisting of two
computers, computer A and computer B;

• the interconnectionchannels. Three symmetric channels connecting the three central mod-
ules, and two busses, connecting the three modules to the two computers of the PCUs.

With respect to the TMR-PCU model we are interested to verify:

1. liveness propertiesof SN-PCU communication protocol in the absence of a Byzantine mod-
ule. This protocol is implemented as a distributed algorithm designed to assure a cyclic use
of the busses and a cyclic selection of two central modules demanded to send the commands.

2. safety propertiesof SN-PCU communication protocol in case of some hardware faults. In
particular we are interested in temporary, fail silent faults in the interconnection busses and
in the computers A and B of a PCU.
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In our PROMELA code we define a process for each central module and a process for each
peripheral unit. We also define a synchronous symmetric channel between the central modules,
and four busses between the SN and PCU. The first two busses, model the primary and secondary
bus connecting SN and all computers “A” of each PCU; the second two busses model the primary
and secondary busses connecting SN and all computers “B” of each PCU. In this way we want to
distinguish between computer A and B, avoiding to define different processes for this.

We now briefly describe the protocol run by a central module and the one run by a periph-
eral unit, giving the PROMELA code where significant. This protocol is a detailed version of the
“communication with the exclusion logic” phase in the TMR (see the pseudo-code in Section 1.4)

The protocol run by a central module It consists of several phases, as described by the follow-
ing pseudo-code:

loop
/ * communication with the PCUs * /

for i = 1 to 2 do
6.1 <synchronization>
6.2 * <decide the turn>
6.3 * (x,j) = <diagnostic>
6.4 * msg = <message elaboration>
6.5 if <is my turn> the
6.6 * <send msg to computer[x] of PCU[i], via bus[j]>
6.7 * <receive acknowledge>

endfor
endloop

Informally, before communicating with the PCUs a module tries to gather information about
the global state of the system. In this case it is the state of activity of the other two modules, the
state of the two busses, and the state of the two computers of each PCU. We now describe each
phase separately.

Synchronization. This phase is a synthetic version of the synchronization phase of the TMR.
During this phase, a module checks the other modules activity state. This information is
used in a distributed tournament procedure to decide what module is enabled to send a
message to the periphery.

Diagnostic. During each phase, each module summarizes information about the global state, com-
posed of the activity state of the PCU computers and of the busses. This information is used
to decide which bus to use, and whether computer A or B will be the recipient of the message
to be prepared next.

Message elaboration.Depending on the state of the PCU computers, either the effective periph-
eral command or a special DIAGNOSTIC message is prepared;

Communication with the PCUs. During this phase, the SN sends its prepared message to the
PCUs.
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The protocol run by a peripheral unit

In TMR-PCU the PCU model is realized in more detail. It is schematically described by the
following pseudo-code

loop
1. <decide the state>
/ * communication with the safety nucleus * /

parallel_for (i = A to B) and (j = 1 to 2) do
2.1 <computer[i] receives from a module via bus[j]>
2.2 <command elaboration>
2.3 <computer[i] send the ack via bus[j]>

endfor
endloop

We now describe each phase in detail:

Decide the state.During this phase, non-deterministic choice is made to decide on the functional
state of the busses and of the computers A and B of the peripheral unit. In case of a state set
to “fault” every communication results in a time-out;

Receive a command.During this phase, each computer of each unit waits for a message from
one of the busses;

Elaborate the command. During this phase, each computer of each unit evaluates the message
received. A diagnostic message does not imply any further action, while effective com-
mands carry information about what action the PCUs have to perform. In our model they
are simply stored in a PCU local stack;

Acknowledgment. During this phase, an acknowledgment message is sent back to the all the
module of SN.

In the following we give a synthesis of the PROMELA code of the PCU, called CDA1:

/ * recvA1_CDA1,recvB1_CDA1 * /
/ * # msg received via bus1, by computer A and B, resp. * /
/ * initially set to 0 * /

/ * recvA2_CDA1,recvB2_CDA1: * /
/ * # msg received via bus1, by computer A and B, resp. * /
/ * initially set to 0 * /

/ * stateBUS1, stateBUS2: state of bus1, bus2 * /
/ * stateA, stateB : state of computer A,B * /
/ * all set to 1, meaning that the state is not faulty * /

/ * loop * /
do
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::
/ * decide the state * /

if
:: stateA = 0 / * fault in the 1st computer * /
:: stateA = 1 / * the 1st computer is now ok * /
:: stateB = 0 / * fault in the 2nd computer * /
:: stateB = 1 / * the 1st computer is now ok * /
:: stateBUS1 = 0 / * fault in the 1st bus * /
:: stateBUS1 = 1 / * 1st bus is ok * /
:: stateBUS2 = 0 / * fault in the 2nd bus * /
:: stateBUS2 = 1 / * 2nd bus is ok * /

fi;
RECEIVING:skip;

i = 0;

/ * Promela channels defined * /
/ * A1, A2 : computer A-BUS1, A-BUS2 * /
/ * B1, B2 : computer B-BUS1, B-BUS2 * /

do

/ * ----------------------------- * /
/ * computer A receives from bus1 * /
/ * ----------------------------- * /

:: atomic{!DONE && A1in?[PCU1, senderA1, msg] ->
A1in?PCU1, senderA1, msg;}

if
/ * if it is a diagnostic message * /

:: msg == DIAGNOSTIC -> skip;

/ * if it is a command message store it * /
:: else -> msg[i] = msg; i++;

fi;

/ * acknowledgment to all modules * /
A1out!PCU1,A,(stateA && stateBUS1);
A1out!PCU1,B,(stateA && stateBUS1);
A1out!PCU1,C,(stateA && stateBUS1);

recvA1_CDA1++;

/ * ----------------------------- * /
/ * computer A receives from bus2 * /
/ * ----------------------------- * /

:: [... the same using A2, stateBUS2,
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recvA2_CDA1, senderA2 and stateA ..]

/ * ----------------------------- * /
/ * computer B receives from bus1 * /
/ * ----------------------------- * /

:: [... the same using B1, stateBUS1,
recvB1_CDA1, senderB1 and stateB ..]

/ * ----------------------------- * /
/ * computer B receives from bus2 * /
/ * ----------------------------- * /

:: [... the same using B1, stateBUS2,
recvB2_CDA1, senderB2 and stateB ..]

:: DONE -> break;

od;
RECEIVED: skip
/ * endloop * /

od;

1.5.1 Formal Verification on TMR-PCU

In this section we list some of the properties verified for the TMR-PCU model, and the most
meaningful results. Again we postpone the discussion about how we were able to verify these
properties coping the the state explosion problem, till Section 1.6. The interesting properties in
this context can be described informally as follows:

(PCU1) Correctness of the communication protocols, in absence of Byzantine faults.

The termcorrectnesshere means correctness of the diagnostic test and of the tournament algorithm
run by a module. This property is verified by checking absence of deadlock. We slightly modify
the PROMELA code of the PCUs in such a way as to force a peripheral unit to receive messages
according to the intended behavior protocol. If the central module does not follow, or fail to follow,
the protocol as the PCUs, the systems deadlocks.

(PCU2) When two or more modules are active, each peripheral unit eventually receives exactly
two messages in a single loop.

(PCU2′) In presence of Byzantine errors in one module, and when two or more modules are
active, each peripheral unit eventually receives exactly two messages in a single loop.

(PCU3) When two or more modules are active, each peripheral unit eventually receives exactly
two message via different busses in a single loop.
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(PCU4) When two or more modules are active, each computer of every peripheral unit receives
exactly one message in a single loop.

All the previous properties are formulated with different LTL formulas with the following common
structure:

2 p⇒ ((2 3 q) ∧2 q ⇒ (3 r)))

herep, q andr are propositional formulas composed of predicates on variables. For example the
property PCU2 (instantiated for the PCU called CDA1), is expressed by the LTL formula:

2 (global activeA + global activeB + global activeC >= 2)⇒ (1.5.1)(
2 3 (CDA1[5]@is receiving) ∧ 2 (CDA1[5]@is receiving⇒
(3 (CDA1[5]@has received⇒
(recvA1 CDA1 + recvB1 CDA1 +
recvA2 CDA1 + recvB2 CDA1 == 2)))

)
Variablesglobal activeA , global activeB , andglobal activeC evaluate to 1

if and only if module A, module B, and module C respectively are active. The state labels
CDA1[5]@is receiving andCDA1[5]@has received indicate that the CDA with identi-
fier 5 is either running or has completed the communication phase with the central modules. Vari-
ablesrecvA1 CDA1andrecvA2 CDA1(recvB1 CDA1andrecvB2 CDA1, respectively) in-
dicate the number of messages that computer A has received from bus 1 and from bus 2 (computer
B has received from bus 1 and from bus 2, respectively). Informally formula 1.5.1 says that when
al least two out of three central modules are active, the PCU called CDA1 is infinitely often in
its receiving state and, whenever eventually the communication phase with central modules termi-
nates, it has received exactly two messages.

1.5.2 Discussion

Figure 1.7 reports a summary of the results of the verifications, run in the presence of one Byzan-
tine module. We briefly discuss the results for property PCU2′. We want to prove safety properties
of the tournament algorithm in the hypothetic situation of a persistent Byzantine module. We prove
that Byzantine behavior in the communication with the periphery phase makes the tournament al-
gorithm fail. Analyzing the counter-example, we notice that three modules (and not two) send a
message to the PCUs. With this result we underline the critical role of safety logic: if it fails to
disconnect a Byzantine module before the tournament, this algorithm fails as well.

1.6 Abstraction and Implementation Strategies

The complexity of the ACC model forces us to introduce modularity techniques to cope with the
state explosion problem. We proceed as follows:

1. by physically separating, in the PROMELA model, each phase in the ACC behavior, with the
intention to use them as building blocks. In other words, we plan to develop the phases in
separate files, to be included in main file representing the whole ACC model;
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property state vector depth RAM output

PCU1 352 44047 60 success
PCU2 284 25465 23 success
PCU2′ 284 1295 33 fail
PCU3 284 25465 23 success
PCU4 288 449467 33 success

Figure 1.7: Summary of the verification results on TMR-PCU. These results are obtained by
running SPIN with MA+CO options selected, and without Byzantine modules (with the only ex-
ception of PCU2’). In the first column we have the property’s name, in the second the dimensions
of the state vector (in byte), in the third the depth of the search (in number of steps), in the fourth
the total memory needed to the terminate the verification (in Mbytes), and in the last the result of
the verification.

2. by modeling each building block representing acommunicationphase, both in acorrectand
in aByzantineversion;

3. by modeling each building block representing a correct or a Byzantine communication both
in aconcreteand in anabstractversion.

In the Byzantine (versus the correct) version we implement the Byzantine version of the send.
In this way we: (a) can control the state space growth of the whole model by incrementally in-
serting Byzantine phases, which introduce more non-determinism than the corresponding correct
phase; (b) can test the robustness of the system in the presence of some particular Byzantine phases
and not in the presence of a widely distributed, less realistic, Byzantine behavior.

In the concrete (versus the abstract) version, we model communication with the maximum
parallelism: that is what happens in the real system. On the contrary, in the abstract version we
impose a total order the communication events. For example, module A sends and receives first
from B and then from C; module B receives and sends first to A and then sends and receives from
C; finally module C first receives from A and from B first, and then sends to A and to B. By build-
ing a modular model we obtain an acceptable degree of scalability. In this case, scalability refers
to abstract versus the concrete implementations and with respect to certain properties decided in
accordance with ASF. We prove invariant properties both in concrete and abstract versions. These
properties express fundamental invariants on the communication phases among internal modules
composing the ACC. These properties can be informally described as follows:

(P1) before starting a communication phase, at least two out of three modules are active;

(P2) after a communication phase, each module has sent a message to all the other active mod-
ules;

(P3) after a communication phase, from all the other active modules, a module has either received
a message, or detected a time-out.

(P4) after a communication phase, if a module has detected a time-out while receiving from all
other active modules, it will go in a safe shutdown state.

The properties, expressed as PROMELA assertions, were shown to be satisfied by using SPIN,
on both the concrete and abstract models. This was a sufficient condition (we agree with ASF) for
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not loosing information when substituting, in the model, a concrete phase with the corresponding
abstract version.

The correct and the concrete versions, with respect to the Byzantine and the abstract implemen-
tations, have different impacts on the state space. The correct version has less non-determinism
than the Byzantine version; the abstract version eliminates all non-determinism in the communi-
cation events. By an appropriate composition of different versions in the whole system model, we
obtain a large set of models at different abstraction levels (see Figure 1.8): we checked safety prop-
erties introduced in Section 1.4.1 and Section 1.5.1 by varying the number of the Byzantine phases
inserted in the model. In addition, whenever the state dimension started to become problematic for
our computational resources, we preferred the abstract over the concrete implementation of some,
or all, the phases. In this way we executed a wide set of verification runs. For example, the results
reported in Figure 1.6 have been performed by considering a module with one Byzantine phase in
its abstract implementation, whereas those in Figure 1.7 have been run with all the communication
phases in their abstract versions.

1.7 Conclusions

The project described in this chapter consists in verifying safety properties of a model of a safety-
critical control system in presence of Byzantine behavior of one of its components.

In the context of the project that motivates this valitation work, we report that some of errors
we have found fulfill the expectation of ASF; some other confirme what ASF has discovered
with traditional techniques (i.e.,code inspection, testing). Moreover, the great flexibility and high
expandability of formal models has helped us during almost all the steps of the project, when we
have been able to enriched our models, with respect to the initial requirements, at a very low time
and resources cost.

On the basis of this project an assessment of the application of the tool we used to support
formal specification and verification process has been made. For what concerns the language
PROMELA, we already underlined its suitability and expressive power in describing this type
of distributed system. The only disadvantage we have found was the absence of any automatic
management of termination of processes, that obliged us to model ad hoc time-outs as an active
communication with heavy repercussions on the size of the state space. In fact, we need to for-
malize a shutdown as an active behavior; a shutdown module does nothing but participates in all
the communication phases by sending empty messages to cause time-outs.

Regarding the tool SPIN the most important fact to be underlined is related to strategies deal-
ing with the state explosion problem. In particular, the use of a minimized automaton encoding
technique (MA) combined with the state compression option (COLLAPSE) turns out to be useful in
helping with out-of-memory problems, but at the cost of a long execution time. Most verifications,
due to the large state space size required the use of both optimization strategies.

As an example, Figure 1.9 contains representative data, concerning a verification on a 256
Mbyte RAM Pentium II - Linux Suse 5.3 - for a system model whose complete description re-
quired 348 bytes per state; in the figure memory and time resources have been compared by using,
respectively, theCOLLAPSE(for which we ran out-of-memory, with the longest depth-first search
path containing 15125 transitions from the initial state) and theCOLLAPSE+ MAoptions (for
which we have successfully terminated the verification, with longest depth-first search of 15916).
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Figure 1.8: a) The framework in which we develop abstract/concrete and Byzantine/correct model.
b) One of the model we used in TMR-PCU verification.
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Figure 1.9: A representative example of memory versus time usage in our SPIN experiments, with
CO and with CO+MA optimization strategies. On the left we report the RAM (in Mbytes) and
the time (in minutes) and the depth (in hundreds of steps) reached in a verification that ran out-of-
memory. In this verification only the CO option is used when compiling the model checker. On the
right, we report the same data for the same verification with the CO+MA compiler option enabled.
In this case, a significant reduction of memory makes the verification end without running out of
memory, at the cost of a considerable increase of the running time.
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Validation of Security Protocols, a Test
Case: Security Analysis of the
OSA/Parlay Framework

“Al solito, quelli dei telefoni tiravano a
praticare l’assurdo. Dicevano, per esempio: il
numero da lei chiamatòe inesistente ... Ma come
si permettevano un’affermazione accussı́? Tutti
i nummari che uno arrinisciva a pinsari erano
esistenti. Se veniva a fagliare un nummaro,
uno solo nell’ordine infinito dei nummari, tutto
il mondo sarebbe precipitato nel caos. Se ne
rendevano conto quelli dei telefoni, sı̀ o no?”
(Salvo Montalbano inLa pazienza del Ragno,
A. Camilleri, 2003)

“As usual those of the phone company
were talking nonsense. They say, for
instance: the number you’re calling
doesn’t exist ... How could they dare to
make such a statement? All the numbers
one can think of must exist. If only one
number was missing, one of them in the
infinite sequence of numbers, the whole
world would fall into chaos. Aren’t those
of the phone company aware of this?”

Abstract

This chapter reports on an experience in analyzing the security of the Trust and Security Man-
agement (TSM) protocol, an authentication procedure within the OSA/Parlay Application
Program Interfaces (APIs) of the Open Service Access and Parlay Group. The experience
has been conducted jointly by research institutes, experienced in security, and an industry ex-
pert in telecommunication networking. OSA/Parlay APIs are designed to enable the creation
of telecommunication applications outside the traditional telecommunication network space
and business model. Network operators consider the OSA/Parlay architecture promising in
stimulating the development of web-service applications by third party providers that are not
necessarily expert in telecommunications. The TSM protocol is executed by the gateways to
OSA/Parlay networks; its role is to authenticate the client applications that try to access the
interfaces of some object representing an offered network capability. For this reason potential
security flaws in the TSM authentication strategy can lead to unauthorized use of network
with evident damages to the operator and to the quality of service. This chapter reports on a
rigorous formal analysis of the TSM specification originally given in UML; it reports on the
design activity of the formal model, the tool-aided verification performed, and the security
flaws discovered. This will allow us to discuss how the security of the TSM protocol can be
generally improved.

2.1 Introduction

OSA/Parlay1 Application Program Interfaces (APIs) [108] are designed for an easy interaction be-
tween traditional IT applications and telecommunication networks. OSA/Parlay APIs are abstract

1Seehttp://www.parlay.org
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building blocks of network capabilities that developers, not necessarily expert in telecommunica-
tions but perhaps with more expertise in the enterprise market, can quickly comprehend and use to
generate new applications. Concisely, OSA/Parlay APIs proposes an attractive framework where
programmers can develop innovative resources or design new services.

An example of such a service is the retrieval and purchase of goods via a mobile phone.
The service could be provided by a third party provider, different from the mobile operator. In
this case, the provider could develop the service by assembling components that control network
capabilities and functions,e.g.,sending/receiving a SMS. These components are furnished by the
telecoms operator in particular their APIs. For example, the sending/receiving of a SMS could
be realized in the following SOAP body that, in XML notation where namespace and encoding
descriptors are omitted, appears as follows:

<sendSMS>
<dest_address>

tel:1234567
</dest_address>
<send_address>

tel:0123456
</send_address>
<message>

Could you please reserve
two seats for 9 o’clock?

</message>
</sendSMS>

OSA/Parlay APIs can also be used in the development of new web-based services. The Parlay
community has designed particular APIs, called Parlay X APIs, based on web service principles
and oriented to the Internet community.

When network resources are broadly accessible, it becomes crucial to define and enforce ap-
propriate access rules between the entities that offer network capabilities and the service suppliers,
so that an operator can maintain full control over the usage of her resources and on the quality of
service. For instance, it is important that the use of services is guided by a set of rules defining
the supply conditions and the reciprocal obligations between the client and the network operator.
Service Level Agreements (SLAs) are commonly used to formalize a detailed description of all the
aspect of the deal. To avoid that unauthorized entities can sign an agreement and use the network
illegally, on-line authentication checks are of primary importance.

Authentication, in a distributed setting is usually achieved by the use of cryptographic proto-
cols. Experience teaches that such protocols need to be carefully checked, before being fielded.
Formal methods have been profitably applied in the verification of many security or authentication
protocols (e.g., [5, 53, 104, 138, 152, 177, 182]), and nowadays developers have access to libraries
of reliable protocols for different security goals. For example the Secure Socket Layer (SSL) by
Netscape, is widely used to ensure authenticity and secrecy in Internet transactions. Unfortunately,
the use of reliable, plugged-in, protocols is not sufficient to ensure security, just like the use of re-
liable cryptography is not sufficient to ensure secrecy in a communication. In this ambit formal
methods help to validate the correct use of security procedures.

In this chapter we discuss a validation experience whose aim is to analyze formally the au-
thentication mechanism in the Trust and Security Management protocol in OSA/Parlay APIs [1].
As a result of the analysis we propose an improvement concerning its security. This protocol is
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designed to protect telecommunication capabilities from unauthorized access and it implements
an authentication procedure. TSM is specified in the Unified Modeling Language (UML) [171],
where its composing messages, its interfaces towards the client and the server, and the methods im-
plementing security-critical procedures, are described at different levels of abstraction. The formal
validation experiment, conducted within a joint project between research Institutes and Telecom
Italia Lab, has revealed some security flaws of the authentication mechanism. From the analysis
of the traces showing the attacks, we were able to suggest possible solutions to fix the security
weaknesses discovered, and to state a general principle of prudent engineering (in the style of [8])
for improving the security in web-service applications.

2.2 The OSA/Parlay Architecture

The OSA/Parlay architecture enables service application developers to make use of network func-
tionality through an open standardized interface. OSA/Parlay APIs [1] provide an abstract and
coherent view of heterogeneous network capabilities, and they allow a developer to interface its
applications via distributed processing mechanisms. The OSA/Parlay architecture, shown in Fig-
ure 2.1, consists of:

• a set ofClient Applicationsaccessing the network resources;

• a set ofService Interfaces, or Service Capability Features (SCFs), that represent interfaces
for controlling the network capabilities provided by network resources (e.g.,controlling the
routing of voice calls, sending/receiving SMSs, locating a terminal, etc.);

• aFramework, that provides a modular and “controlled” access to the SCFs.

• Network Resources, in the telecommunication network, implementing the network capabil-
ities.

A Parlay Gatewayincludes the framework functions and the Service Capability Services
(SCSs)i.e., the modules implementing the SCFs: it is a logical entity that can be implemented
in a distributed way across several systems. Since the target applications could be deployed in
an administrative domain different from the one of the Parlay Gateway, the secure and controlled
access to the SCFs is a predominant aspect for the Parlay architecture. To get the references of the
required SCFs, an application must interact several times with the framework interfaces. For ex-
ample, the application must carry out an authentication phase before selecting the SCFs required,
as described in Section 2.2.1. In this phase the framework verifies whether the application is autho-
rized to use the SCFs, according to a subscription profile. Finally, an agreement is digitally signed,
and the framework gives to the application the references to the required SCFs (e.g.,as CORBA
interface reference). These references are valid only for a single session of the application. When
the framework has to return an SCF reference to an application, it contacts the SCS which imple-
ments it, by passing all the configuration parameterse.g.,the Service Level Agreement conditions,
stored in the subscription profile of the application. The SCS creates a new instance of the SCF,
configured with the received parameters, and returns its reference to the framework. Each time the
application invokes a method on the SCF instance, the SCS executes it by taking into account the
configuration parameters received at instantiation time.
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Figure 2.1: The OSA/Parlay Architecture. The Trust and Security Management protocol runs
between the Framework Interfaces and the Clients.

2.2.1 Trust and Security Management protocol

One of the critical steps for guaranteeing controlled access to the SCFs is the authentication phase
between the gateway and the application. It is supported by the protocol implemented by the Trust
and Security Management (TSM) API. We focuses on the analysis of the properties of this security
protocol, whose behavior is summarized by the message sequence chart in Figure 2.2. The main
steps of the protocol are:

• Initiate Authentication: the client invokes the method “initiateAuthentication
WithVersion ” on the framework’spublic interface (e.g.,an URL) to initiate the authen-
tication process. Both the client and the framework provide a reference to their own access
interfaces.

• Select Authentication Mechanism: the client invokes the method “selectAuthenti
cationMechanism ” on the framework authentication interface, to negotiate which hash
function will be used in the authentication steps.

• The client and the framework authenticate each other. The framework could authenticate
the client before (or after) the client authenticates the framework, or the two authentication
processes could be interleaved. However, the client shall respond immediately to any chal-
lenge issued by the framework, as the framework might not respond to any challenge issued
by the client until the framework has successfully authenticated the client. Each authentica-
tion step is performed following a one-way Challenge Handshake Authentication Protocol
(CHAP) [133] i.e., by issuing a challenge in the “challenge” method, and checking if the
partner returns the correct response. An invocation of the method “authentication
succeeded ” signals the success of the challenge.
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• Request an access session: when authenticated by the framework, the client is permitted to
invoke “requestAccess ” to start an access session. The client provides a reference to
its own Access interface, and the framework returns a reference to Access interface, unique
for this client.

• The access interface is used to negotiate the signing algorithm to be used in the session and
to obtain the references to other framework interfaces (we will call them,service framework
interfaces), such as service discovery and service agreement management.

Having obtained the reference to a service framework interface the TSM finishes. Note that
the references to the interfaces must remain secret: if an intruder got hold of them, it would be
able to (abusively) access the services. For this reason our analysis will mainly concentrate on the
secrecy of these references. In fact, after the TSM ends, the client selects the required SCFs by
invoking the method “selectService ” on the service agreement management interface. The
client obtains a service token, which can be signed as part of the service agreement by the client
and the framework, through the “signServiceAgreement ” and the “signAppService
Agreement ” methods. Generally the service token has a limited lifetime: if the lifetime of the
service token expires, a method receiving the service token will return an error code. If the sign
service agreement phase succeeds, the framework returns to the client a reference to the selected
SCF, personalized with the client configuration parameters.

2.3 Formal Security Analysis

This section explains in detail the formal analysis of the security of the TSM protocol that we have
done. To carry out the verification phase we used CoProVe [59] a constraint-based system for the
verification of cryptographic protocols2. CoProVe has been developed at the University of Twente
(NL); it is an improved version of the system designed by Millen and Shmatikov [156]. CoProVe
is based on the strand spaces model [77]; it enjoys an efficient implementation, a monotonic
behavior which allows to detect flaws associated to partial runs, and an expressive syntax in which
a principal may also perform explicit checks for deciding whether to continue or not with the
execution. All these features make CoProVe quite efficient in practice. The intruder model is that
of Dolev-Yao [69], where the malicious entity is identified with the communication infrastructure.
Protocols are written in Prolog-lake style, and properties are expressed as reachability predicates.
In case a security flaw is discovered, CoProVe can show one or all the traces showing the attack.

2.3.1 Modeling Choices

One of the challenges in applying tools of automatic analysis to industrial architectures lies in
translating the (usually less formal) specification into a rigorous formal model. In our experience,
translating a complex system design into a formal protocol specification involves many non-trivial
steps: software technology concepts such as method invocation and object interfaces have to be
“encoded” into an algebraic protocol specification. This encoding phase also forces the engineer
to reason about the security implication of using these constructs.

The OSA/Parlay framework APIs specification consists of many pages of UML specification;
at this level of abstraction it is difficult to have a good overview of its security mechanisms. In
the APIs specification, for instance, there is no explicit transmission of messages: the exchange

2Freely accessible via the web athttp://wwwes.cs.utwente.nl/24cqet/coprove.html
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Client : IpInitial : IpAPILevelAuthentication Framework: IpAccess: IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion( )

2: selectAuthenticationMechanism( )

3: challenge( )

7: requestAccess( )

5: challenge( )

9: obtainInterface( )

4: authenticationSucceeded( )

6: authenticationSucceeded( )

8: selectSigningAlgorithm( )

Figure 2.2: Message sequence chart describing the steps of the TSM protocol [1]

of one (sometimes even more) messages happens exclusively by the mechanism “invocation of a
method over an object interface”. Moreover, different levels of abstraction are mixed: for exam-
ple, the same mechanism of “method invocation” is used both to describe, in one step, the whole
set of critical steps of the CHAP handshake and the single message starting of the protocol. More
critically, “method invocation” does not specify the confidentiality of the input/output parame-
ters involved. Innocent acknowledgment messages are treated in the same way as references to
confidential object interfaces.

The application of clear modeling choices encourages the design of a formal model without
the previous ambiguities. In translating the TSM specification in a model we define and apply the
following modeling choices.

Modelling Choice 1 A reference to a (new) private interface,F , is modeled by a (new) shared
encryption key,KF .

Choice 1 reflects the fact that an intruder who does not know the private interface reference cannot
infer anything from any method invocation over that interface. This simple, but essential observa-
tion will make our security analysis straightforward, as we explain in Section 2.3.
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Modelling Choice 2 Calling a method, with parameterM , over a private interfaceF is mod-
eled as sending the message{M}KF i.e., , M encrypted withKF . Dually, getting the result is
translated as receiving a message encrypted with the sameKF ;

In Choice 2 we treat a reference to an object interface as a communication port; consequently
calling a method equates transmitting a message through that port. Moreover, we model the trans-
mission of a message throughF , as the transit of a message encrypted with the keyKF . In other
words, calling a method over an interface is modeled as a communication encrypted with the in-
terface key. This choice reminds of an observation by Abadi and Gordon [7], who suggest the use
of cryptographic keys to model mobility. Our situation is indeed much simpler: the only form of
“mobility” we have, is the dynamic creation of a “channel”,i.e.,an interface reference.

2.3.2 Formal Models

We apply Choices 1 and 2 to design the TSM formalabstractmodel written in the usual represen-
tation of cryptographic protocols. The obtained model is as follows:

* initiate *
step 1. C−→F : C,KC
step 2. F−→C : KF

* select authentication methods *
step 3. C−→F : {[h, h′, h′′]}KF

step 4. F−→C : {h}KF

* challenge *
step 5. F−→C : {F,N}KC

step 6. C−→F : {C, h(N,SCF )}KC

step 7. F−→C : {ok/fail}KC

* request access *
step 8. C−→F : {req}KF

step 9. F−→C : {KA/fail}KF

* select signing methods *
step 10. C−→F : {[s, s′, s′′]}KA

step 11. F−→C : {s}KA

* request for service interface *
step 12. C−→F : {req ′}KA

step 13. F−→C : {KS/fail}KA

In this abstract model,C represents a client andF the framework, whileC −→ F : M denotes
C sending messageM to F . With {M}K we indicate the plain-textM encrypted with a keyK,
while h(M) denotes the result of applying a hash functionh to M . In step 1 the client initiates the
protocol over the public interface of the framework, by providing its name and a reference to its
interface,KC. In step 2 the framework replies by sending a reference,KF , to its own interface.

Remark 2.3.1 It may seem odd that despite modelling choice we transmit references to interfaces
(represented as keys) in clear. The expectation here is that the challenge response protocol of steps
5-7 would avoid intrusion anyway.

In steps 3 and 4 the client asks the framework to choose an authentication method amongh, h′

andh′′. In steps 5 and 6 the actual CHAP protocol is carried out, using the hash function selected
in step 4. Here,SCF represents a shared secret betweenC andF , required by CHAP [133].
Indeed the UML specification did not provide the details about the CHAP implementation; here
we use the version of CHAP where the client and the framework already share the secretSCF .
In steps 8 and 9 the client asks for an interface where to invoke the request access for a service. In
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steps 10 and 11 the framework chooses the interface. Finally in steps 12 and 13 the client sends a
request for a service and receives back the reference to the relative framework interface.

The abstract model has been translated into the language required by CoProVe. The result of
this translation is aconcreteformal model; in addition, we encode (in the language of CoProVe)
the security properties that we want to check. In Figure 2.3 we report one of the concrete models
we used for checking whetherKA remains secret or not.

The specification in Figure 2.3 involves three principals: one client (c ), one framework (f ) and
eavesdropping agent (sec ). Each role is specified by a sequence of send or receive actions that
mimic exactly the steps of the abstract model. Symbol “+” is used to denote symmetric encryption
using shared keys. Formal parameters (e.g.,in the client roleC,F,Kc,Kf,N,Req,Ka,Scf are
used to denote all the objects used in the role specification. In a scenario these parameters are
instantiated with actual constants representing real objects (i.e.,c,f, ,kf,n, ,ka,scf ). Here
“ ” is used when no instantiation is required, that is when a free variable is involved. The intruder
is assumed to know only the client and framework names plus its own name “e”. Verification of
secrecy consists in asking if there is a trace leading the eavesdropper to know a secret.

2.3.3 Formal Analysis and Detected Weakness

The analysis performed on the model of TSM protocol, pointed out weaknesses in the security
mechanism. In the following we will describe the flaws discovered as a commented list of items.
Where significant, we show the output produced by CoProVe and we interpret the output.

Flaw 1. An intruder can impersonate a client and start an authentication challenge with the frame-
work.

An intruder can obtain the reference to the interface used by the client to start the authentication
challenge (keykf ). This happens, unsurprisingly, because the referencekf is transmitted in clear,
as the following trace of CoProVe confirms:

1. [c,send([c,kc])]
1’. [f,recv([c,kc])]
2. [c,recv(_h325)]
2’. [f,send(kf)]

Each row represents a communication action. For example,c,send[c,kc] represents the ac-
tion “send” that “c ” executes with message “[c,kc] ”; c,recv( h325) represents the results
of a “receive” where the client “c ” receives the name (in this case generated by the intruder)
“ h325 ”. The sequence of actions reveal the attack. It can be visualized in the conventional nota-
tion of security protocol (where, we also writeh325 asKE, the intruder key, because this is its
understood meaning.):

1. C −→ I(F ) : C,KC
1’. I(C) −→ F : C,KC

2. I(F ) −→ C : KE
2’. F −→ I(C) : KF

This run comprises two parallel runs of the protocol, in which the intruder plays, respectively, the
role of the client against the framework (I(C) in steps1′ and2′) and the framework against the
client (I(F ) in steps1 and2).
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% Initiator role specification
client(C,F,Kc,Kf,N,Req,Ka,Scf,[

send([C,Kc]),
recv(Kf),
recv([F,N]+Kc),
send([C,sha([N,Scf])]+Kc),
send(Req+Kf),
recv(Ka+Kf)]).

% Responder role specification
framewk(C,F,Kc,Kf,N,Req,Ka,Scf,[

recv([C,Kc]),
send(Kf),
send([F,N]+Kc),
recv([C,sha([N,Scf])]+Kc),
recv(Req+Kf),
send(Ka+Kf)]).

% Secrecy check
%(it is a singleton role)
secrecy(N, [ recv(N) ] ).

% scenario specification
% pairs [name, Name]
% [label for the role; actual role]
scenario
([[c,Client1],

[f,Framew1],
[sec,Secr1]]):-

client(c,f,kc,_,_,req,_,scf,Client1),
framewk(c,f,_,kf,n,_,ka,scf,Framew1),
secrecy(ka, Secr1).

% The initial intruder knowledge
initial_intruder_knowledge([c,f,e]).

% specify which roles we want
% to force to finish
%(only sec in this example)
has_to_finish([sec]).

Figure 2.3: The “CoProVe” specification (in two columns) used to check the secrecy ofKA. To
reduce the search space here we implemented only steps 1-2, 5-6 and 8-9. In other words we
assumed: (a) a fixed hashing functionh; (b) that the framework does not reply (instead of replying
“false”) if the client answer wrongly to the CHAP challenge.

This flaws is not serious in itself (provided the authentication procedure is able to detect an
intruder and close the communication), but it becomes serious when combined with the next weak-
nesses in the security; by knowingkf an intruder is able to grab other confidential information.

Flaw 2. An intruder can impersonate a client, authenticate itself to the framework and obtain the
reference to the interface used to request access to a service (keyka ).

This is a serious flaw that compromises the main goal of the protocol itself. Informally, a
malicious application can pass the authentication phase instead of an honest client, and it can
obtain a reference to the interface used to request a service (keyka ). The study of the output of
CoProVe shows the existence of an “oracle” attack, where the intruder uses the client to get the
right answer to the challenge:

1. [c,send([c,kc])]
1’. [f,recv([c,kc])]
2. [c,recv(_h325)]
2’. [f,send(kf)]
5’. [f,send([f,n] + kc)]
5. [c,recv([f,n] + kc)]
6. [c,send([c,sha([n,scf])] + kc)]
6’. [f,recv([c,sha([n,scf])] + kc)]
8. [c,send(req + _h325)]
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9. [c,recv(_h391 + _h325)]
8’. [f,recv(req + kf)]
9’. [f,send(ka + kf)]

[sec,recv(ka)]

Using the standard informal notation for describing protocols, the above trace is read as follows:

1. C −→ I(F ) : C,KC
1’. I(C) −→ F : C,KC

2. I(F ) −→ C : KE
2’. F −→ I(C) : KF
5’. F −→ I(C) : {F,N}KC

5. I(F ) −→ C : {F,N}KC

6. C −→ I(F ) : {C, h(N,SCF )}KC

6’ I(C) −→ F : {C, h(N,SCF )}KC

8. C −→ I(F ) : {req}KE

9. I(F ) −→ C : {fail}KE

8’. I(C) −→ F : {req}KF

9’. F −→ I(C) : {KA}KF

This run comprises two parallel runs of the protocol, in which the intruder plays, respectively, the
role of the framework against the client and the role of the client against the framework.

Searching among the set of attacks returned by CoProVe, we find also the following, straight-
forward, man-in-the-middle, attack:

1. [c,send([c,kc])]
1’. [f,recv([c,kc])]
2’. [f,send(kf)]
2. [c,recv(kf)]
5’. [f,send([f,n] + kc)]
5. [c,recv([f,n] + kc)]
6. [c,send([c,sha([n,scf])] + kc)]
6’. [f,recv([c,sha([n,scf])] + kc)]
8. [c,send(req + kf)]
8’. [f,recv(req + kf)]
9’. [f,send(ka + kf)]
9. [c,recv(_h325)]

[sec,recv(ka)]

This trace shows that the intruder can eavesdrop first the keykf , passed in clear, and then steal
the messageka+kf . At this point keyka can be obtained by a simple decryption. This attack is
obviously straightforward at this point of the analysis, but it became clear as soon as we applied
Choice 1.

Flaw 3. An intruder can impersonate a client, authenticate itself to the framework, send a request
for a service and obtain the reference to a service framework interface (keyks ).

This is also a serious flaw that compromises the main goal of the protocol. An intruder can
obtain the reference to a service framework interface (keyks ). It is easy to understand, that this is
possible, for example, as a consequence of flaw 1 and 2: once an intruder has authenticated itself
instead of the client, it can easily obtain the reference.

Further checks with CoProVe, show that the intruder can even retrieve this reference with
a man-in-the-middle attacke.g., by listening to the communication between the client and the
framework and stealing the reference when it is passed in clear. In our model this attack can be
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explained as follows: the intruder intercepts, by eavesdropping, the message{KS}KA and it de-
crypts it. This is possible because the encryption keyKF is passed in clear and, by eavesdropping,
the intruder can easily obtain{KA}KF , and henceKA (see Flaw 2).

Flaw 4. An intruder can force the framework to use an authentication mechanism of her choice.

This flaw has been discovered using the specification in Figure 2.4, with two instances of the
framework. When a client offers a list of authentication methods, the first instance selects the
first method at the head of a list (here consisting of only two items), whereas the second instance
chooses the second. In this way we model different choices made by the framework.

The attack is shown by the following CoProVe trace; an intruder can force the framework to
select a particular authentication mechanism, by the use of a replay attack.

a.1. [c,send([c,kc])]
a.1’. [f,recv([c,kc])]
a.2. [c,recv(_h320)]
a.2’. [f,send(kf)]
a.3. [c,send([a1,a2] + _h320)]
a.3’. [f,recv([a1,a2] + kf)]
a.4’. [f,send([a1,a1] + kf)]
a.4. [c,recv([a1,a1] + _h320,)]
a.5’. [f,send([f,n] + kc)]
a.5. [c,recv([f,n] + kc)
a.6. [c,send([c,sha([n,scf])] + kc)
a.6’. [f,recv([c,sha([n,scf])] + kc)
a.8. [c,send(req + _h320)]
a.9. [c,recv(req + _h320)]
a.8’. [f,recv(_h404 + kf)]
a.9’. [f,send(ka + kf)]
b.1’. [f,recv([c,_h487])]
b.2’. [f,send(kf2)]
b.3’. [f,recv([a1,a1] + kf2)]
b.4’. [f,send([a1,a1] + kf2)]
b.8’. [f,recv(_h488 + kf2)]
b.9’. [f,send(ka2 + kf2)],

[sec,recv(ka2)]

The attack can be represented in the following abstract steps:

a.1 C −→ I(F1) : C,KC
a.1’ I(C) −→ F1 : C,KC

a.2 I(F ) −→ C : KE
a.2’ F1 −→ I(C) : KF

a.3 C −→ I(F1) : {[h1, h2]}KE

a.3’ I(C) −→ F1 : {[h1, h2]}KF

a.4’ F1 −→ I(C) : {[h1]}KF

[. . .]
b.1’ I(C) −→ F2 : C,KE
b.2’ F2 −→ I(C) : KF2
b.3’ I(C) −→ F2 : {[h1, h1]}KF2

b.4’ F2 −→ I(C) : {[h1]}KF2

In the trace the intruder acts as a man-in-the-middle in a communication between the client and
the first instance of the frameworkF1 and it learns what method the framework is able to use
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(sequencesa.i). In the second run, the intruder acts as a client, and it offers to the second instance
of the frameworkF2 the choice that the framework is able to accept (sequencesb.i). The structure
of the attack is such that it can be applied also for forcing the selection of a signing methodsi.e.,
steps 10 and 11 of the abstract model.

2.4 Discussion

The analysis performed so far shows some weaknesses of the protocol, and gives also useful indi-
cations on how to improve the robustness of the protocol. This section discusses the weaknesses
here presented, and suggests possible solutions to increase the overall security. We start with some
preliminary considerations.

The security weak is because some references to interfaces are passed in the clear. This is
because the role of those references has been misunderstood, or under-evaluated, or more prob-
ably not recognized in the UML, high-level, object specification. A rigorous, synthetic, formal
specification and precise modeling choices help in giving each object its right role. In our case we
were able to identify in the role of some references to object interface the same role that session
keys have. This observation can be quoted as a principle:

Independently of their high-level representation, data that directly or indirectly gives
access to a secret, must be thought of (hence, modeled) as encryption keys.

This principle plays a role also in fixing the protocol. In fact, the common practice in protocol
engineering [8] suggests the use of (other) session keys to protect the confidentiality of sensitive
information, which in the case of TSM are the references to interfaces.

According to this model, session keys are indeed missing completely from the present im-
plementation3, while their use could prevent the intruder from gaining a reference to an interface
(as shown, by a man-in-the-middle attack). Note that unfortunately it is not sufficient to establish
a session key during the challenge phase. In this case, Flaw 2 remains intact, as confirmed by
CoProVe. This implies that the structure of the protocol needs to be globally reviewed. An ad-
ditional point of discussion concerns the correct use of a CHAP-based authentication. From the
OSA/Parlay documentation [1] we read that security can be ensured if the “challenge” is frequently
invoked by the framework to authenticate the client that, in turn, must reply “immediately”:

However,the client shall respond immediately to any challenge issued by the frame-
work, as the framework might not respond to any challenge issued by the client until
the framework has successfully authenticated the client” ([1], page 19)

Our analysis proves that not only the intruder can act as a client with respect to the frame-
work, but also that it can passively observe, as man-in-the-middle, the framework and a client
authenticating each other as many times as they want, and then steal the references to the service
framework interfaces when they are transmitted in clear. At this point the intruder can substitute
itself for the client.

Flaw 4 is different in nature, and it teaches that particular care must be paid to the choice of
the encryption algorithms or digital signature procedures offered by the framework: for example,
the intruder can force the system to use the encryption algorithm that is easier to crack.

3Do not confuse them with the session keys that appear in the abstract model. Those are part of the model and
represent private references to interfaces.
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2.5 Conclusions

This chapter discusses an industrial experience of formal analysis applied to the security aspects of
the OSA/Parlay Trust and Security Management protocol. The protocol is devised to authenticate
the clients before giving them access to the network services. Our experience confirms that formal
methods are an invaluable tool that can discover serious security flaws that may be overlooked
otherwise. This is true in two respects. First, the use of a formal model, where only the relevant
security features are expressed, helps in pointing out what are the critical parts for security. In
an informal description, on the other hand, this information is usually dispersed and difficult to
gather. Second, the use of an automatic tool allows us to identify dangerous man-in-the middle
attacks, which are notoriously difficult to detect in high-level specifications.

From this experience, conducted within a joint project between industry and research insti-
tutes, we state a general principle for security in web-services: it is essential to identify clearly the
security role of each object involved in service specification. It is vital especially for those objects
that abstractly represent encryption keys. This principle helps in simplifying the security analysis.
With the application of this principle we discover serious weaknesses more easily, and we are able
to discuss how the security of the TSM protocol can be generally improved.
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% Initiator role specification
client(C,F,Kc,Kf,N,Req,Scf,

Ka,A1,A2,A,[
recv([C,F]),
send([C,Kc]),
recv(Kf),
send([A1,A2]+Kf),
recv([A,A]+Kf),
recv([F,N]+Kc),
send([C,sha([N,Scf])]+Kc)
send(Req+Kf),
recv(Ka+Kf)]).

% Responder role specification
framewk(C,F,Kc,Kf,N,Req,Scf,

Ka,A1,A2,[
recv([C,Kc]),
send(Kf),
recv([A1,A2]+Kf),
send([A1,A1]+Kf),
send([F,N]+Kc),
recv([C,sha([N,Scf])]+Kc),
recv(Req+Kf),
send(Ka+Kf)]).

framewk2(C,F,Kc,Kf,Req,
Ka,A1,A2,[

recv([C,Kc]),
send(Kf),
recv([A1,A2]+Kf),
send([A2,A2]+Kf),
recv(Req+Kf),
send(Ka+Kf)]).

% secrecy check (singleton role)
secrecy(N, [ recv(N) ] ).

% Scenario
scenario([

[c,Client1],
[f,Framew1],
[f,Framew2],
[sec,Secr1]

]) :-
client(c,f,kc,_,_,req,scf,_,a1,

a2,_,Client1),

framewk(c,f,_,kf,n,_,scf,ka,_,_,
Framew1),

framewk2(c,f,_,kf2,n2,_,ka2,_,_,
Framew2),

secrecy(ka2, Secr1).

% Set up the intruder knowledge
initial_intruder_knowledge([c,f,e]).

% specify which roles we want
% to force to finish
% (only sec in this example)
has_to_finish([sec]).

Figure 2.4: The “CoProVe” code used to discover flaw 4 (in two columns). The model of the
framework includes the “select authentication method” phases of the abstract model and imple-
ments steps 1–9 of the abstract model. Step 7 is omitted,i.e.,the framework does not reply (instead
of sending “fail”) in case of failure of the challenge phase. The second instance of the framework
models only steps 1–4 and steps 8–9,i.e., those steps strictly necessary to discover the attack.
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Techniques of Security Protocol
Analysis in Fault-Tolerance

Fenesta cu sta nova gelosia tutta lucente de
centrella d’oro, tu m’annascunne Nennella bella
mia, lassamela verè sinǹo me moro. (R. Murolo
in La Nova Gelosia, Serenata Napoletana del
’700)

Damn this new jalousie, shiny and with a
golden chain, you hide beloved Nennella
from my sight, please let me see her, or I
will die.

Abstract

This chapter shows how fault-tolerance analysis can benefit from techniques of analysis devel-
oped for the study of security protocols. We use the CCS process algebra as a formal frame-
work. We model the fault-tolerant system and its environment as two separate and interacting
CCS processes,P#

F andF respectively. InP#
F , we describe the system’s failing behavior

and its fault-recovering procedures. Faults are represented by reserved actions from a finite
setF. In F , we model the fault assumptions, that is the assumptions over the modalities of
occurrence of faults; moreover,F is able to trigger fault actions inP#

F by interacting through
the set of actions inF. In the CCS, this framework has to the general form(P#

F ‖ F ) \ F.
From the point of view of the analysis, we study the fault-tolerance ofP#

F with respect to a
given property, whenF is an unspecified component; in this case, the analysis can be made
independent from any particular fault assumption, and the role ofF can be compared with that
played by the intruder in security protocol analysis. We restate in fault-tolerance two strate-
gies of validation used in security protocols analysis. The first strategy consists in reducing
the problem of checking if a property (here aµ-calculus formula) holds in our framework, to
a problem of validity in theµ-calculus. We exploit partial model checking in this reduction
step, and we show how the validity problem, generally EXPTIME complete, can be solved ef-
ficiently in the universal conjunctive subclass of theµ-calculus. Through examples, we show
that this subclass is sufficiently expressive to model many important fault-tolerance proper-
ties. The second strategy consists in characterizing the fault-tolerance properties (here “fault
tolerance”, “fail stop”, “fail safe”, and “fail silent”) in the Generalized Non Deducibility on
Compositions, a scheme that has been profitably applied in the definition and in the analysis
of many security protocol properties. Thus, we can reuse in fault-tolerance the techniques for
validating non-interference from which the Generalized Non Deducibility on Compositions
originates. We also argue about the availability of effective methodologies of analysis, and
about the possibility of applying compositional techniques.

3.1 Related Work

Some preliminary ideas about a relationship between security and fault tolerance analysis can be
found in [204, 187, 185, 153, 151, 180, 122, 89].
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An informal and introductory comparison between properties in dependability and security is
presented in [121]. In a seminal paper [204], Weber shows that the concept of non-interference
[101] used in security, captures the intuitive notions of “fault-tolerance” and of “graceful degra-
dation”; informally, they can be read as “the occurrence of faults does not interfere (or weakly
interferes) with the visible behavior of the system” [204]. Weber suggests to validate a system
under different sets of fault scenarios, and he supposes that the likelihood of these scenarios is
determined by an environment interacting with the system.

We anticipate that in this chapter we develop these ideas further. First, we model a fault-
tolerant system and its environment in the formal framework of the Calculus of Communicating
Systems [158]; then we characterize fault-tolerance in terms of logical and non-interference prob-
lems. In our framework, we are able to propose different strategies of analysis, which were missing
in [204].

In [153] Meadows proposes a classification of security properties inspired by the taxonomy
used in fault-tolerance. She also argues that security analysis can be improved by incorporating
techniques typical of dependability. Four years later, following a complementary trend, Mead-
ows and McLean claim that the use of emerging results in security analysis can enrich the fault
prevention and fault removal strategies [151].

Rushby [180], observes analogies between non-interferences approaches in security and in
safety analysis mainly regarding the technique in system design called “partitioning”. Foley [88,
89] uses CSP [115] to define the “integrity” property as a predicate over traces. Integrity is a
common property of dependability and computer security; Foley shows how his characterization
classifies integrity as a non-interference property.

A formal characterization of safety properties such as non-interference, non deducibility, and
casuality and their role in fault intrusion tolerance is discussed by Stavridou and Dutertre in [187].
They affirm that, even though the pessimistic worst-case assumptions used in security are too
strong when applied to fault-tolerance, non-interference provides a useful framework for spec-
ifying and verifying safety, reliability and availability [187]. They also point out the need for
verification techniques of non-interference, especially those addressing compositionality.

In [185], Simpson, Woodcock and Davies, uses CSP to formalize “fail safe”, “fail soft”, and
“fault-tolerance” as properties of non-interference. These properties are expressed by a weak
version of a relation, called protection, defined for classes of events: in a processP , E is protected
from F if availability of E actions in any trace ofP is unaffected by the occurrence of events from
F . A particular process,Run(F ) makes events fromF always available, and properties over a
system are defined by assuming the system to run concurrently withRun(F ). They also use the
CSP model checker [176] as a verification tool.

3.2 Introduction

In this chapter, we apply to fault-tolerance analysis two strategies used to define and to analyze
computer and protocol security properties. The first strategy, studied Section 3.6, requires a fault-
tolerance property to be expressed by aµ-calculus formula. It consists in reducing the problem
of checking if a property holds in our framework, to a problem of validity in theµ-calculus. We
exploit partial model checking in this reduction step, and we show how the validity problem,
generally EXPTIME complete, can be solved efficiently in the universal conjunctive subclass of
the µ-calculus. The second strategy, studied in Section 3.8, consists in characterizing the fault-
tolerance properties “fault-tolerance”, “fail stop”, “fail safe”, and “fail silent” in the Generalized
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Non Deducibility on Compositions (in short, GNDC) [86]. GNDC is a scheme that has been
profitably applied in the definition and in the analysis of many security protocol properties. The
analysis of fault-tolerance properties within the GNDC can benefit from techniques and tools for
the verification of information flow and non-interference properties [82], from which GNDC ori-
ginate. Moreover, the uniform framework of GNDC helps in proving similarities between security
properties and fault-tolerance properties; we show, for example, that fault-tolerance is exactly the
BNDC [81] security property. Potentially this is also a first step towards a formal and uniform
taxonomy of fault-tolerance properties.

As a common modeling framework, our approach requires that a system, its failing behav-
ior, and its fault-recovering procedures, are formally specified as finite state terms in a process
algebra. Here, we use the Calculus of Communicating System (CCS) [158], but our framework
is completely general and it can be easily rephrased in other process algebras, for instance the
CSP [115] or theπ-calculus [161]. The validation framework we propose falls into theopen sys-
temparadigm: a system acts within an unspecified environment which is able to trigger actions
in the system. We will call such an environmentfaulty environment. Usually, the presence of an
environment causing any action of the system’s interface has two unpleasant effects: the first is the
well-known state space explosion [201], the second is that unrealistic situations may arise during
the analysis [93]. As a solution we verify a systemP in a well-characterized classEF of (faulty)
environments. Each faulty environmentF ∈ EF acts as a fault-injector that interacts with the sys-
tem only through a specified finite setF of fault actions. Differently from [185, 200], we treatF
as an unspecified component of the system. In this way, we check the reliability of a system model
with respect to any potential occurrences of faults. In CCS, our framework can be summarized as
(P ‖ F ) \ F, whereP is the model of our fault-tolerant candidate system,F is an unspecified
term inEF, andF is the finite set of fault actions.

In the first part of this chapter we formalize fault-tolerance in a logical formalism, here a
variant of theµ-calculus [35]. By partial model checking [16], the fault tolerance analysis problem
is reduced to a validity problem in theµ-calculus. Intuitively, the idea is as follows: proving that
∀F ∈ EF, (P ‖ F )\F satisfies a fault-tolerance propertyφ, is equivalent to prove that the modified
formulaφ//FP is valid in EF, where//F is the partial evaluation for the parallel composition and
restriction operators. The modified formulaφ//F P characterizes exactly the scenarios of faults the
system is resilient to. Moreover, by considering the characteristic formulasφ of a set of possible
fault scenarios, checking ifP is fault-tolerant with respect to those scenarios is equivalent to check
the validity of φ ⇒ ϕ//P . logical characterization of fault-tolerance is given, several analysis
techniques may be adopted. Some of them lead to efficient analysis of certain properties: we
identify a class ofµ-calculus formulas whose validity checking can be performed in linear-time in
the dimension ofφ//F P .

In the second part we study the application of Generalized Non Deducibility on Compositions
(GNDC) in fault-tolerance analysis. GNDC, first presented in [86], is a framework where a family
of security properties has been uniformly expressed and verified [86, 85]. GNDC has roots in
non-interference analysis, and it has not been applied to fault tolerance so far. In our framework a
GNDC property has the form:

P satisfiesGNDCα
/ iff ∀F ∈ EF : (P ‖ F ) \ F / α(P )

Generally speaking this means that a systemP enjoysGNDCα
/ if and only if P shows (with

respect to a process relation/) the same behavior asα(P ). This must be true even ifP is com-
posed, by the parallel operator‖, with any environmentF chosen fromEF. Here,EF represents



50 Chapter 3. Techniques of Security Protocol Analysis in Fault-Tolerance

the set of all environments which interact withP through actionsF. GNDC is parametric in/, a
relation among processes representing the notion of “observation”, and inα a function between
CCS terms. GivenP , α(P ) describes the expected (correct) behavior ofP .

In the uniform scheme of the GNDC we express and compare the fault-tolerance properties
“fault-tolerance”, “fail stop”, “fail safe”, and “fail silent”. This comparison describes a preliminary
step towards a formal classification of dependable properties, on the basis of the work by Focardi
et al [85] who have compiled a classification of security properties. Finally, we show how some
of the theoretical results of GNDC originally stated for security analysis (e.g.,compositionality in
proving a GNDC property) can be reformulated and reused in the analysis of fault-tolerance.

The chapter is organized as follows: Section 3.3 summarises the basic theory of CCS. Sec-
tion 3.4 explains the uniform scheme that we use to model a fault-tolerant (candidate) system and
its environment. Section 3.5 recalls the (equational)µ-calculus modal logic for process analysis.
Section 3.6 describes our characterization of fault-tolerance in theµ-calculus logic framework.
Moreover, it explains our solution methods based on partial model checking and on an efficient
methodology to check the validity in a subclass of theµ-calculus. Section 3.7 summarises the def-
initions of process behavioral equivalences we use in the rest of the chapter. Section 3.8 describes
our characterization of fault-tolerance in the GNDC scheme, and underlines our solution methods
in this framework. Section 3.9 concludes the chapter.

3.3 CCS Background

This section summarises the basic notions and definitions of the Calculus of Communicating Sys-
tem (CCS) [158], the calculus used through the chapter.

CCS assumes a setAct = L ∪ L of (observable)communication actions. Names fromL

model the emission of a signal; overlined names fromL (called co-names) represent the reception
of a signal. The purpose of putting a line, called complementation, over a names is to show that the
corresponding action can synchronize with its complemented partner. Complementation follows
the rule thata = a, for any communication actiona ∈ Act . A special symbol,τ , is used to model
any (unobservable)internal action; hence the full set of possible actions isActτ = Act ∪ {τ}.
We leta, b range overActτ . The following grammar specifies the syntax of the language defining
all the CCS processes:

P,Q ::= 0 | a.P | P + Q | P ‖ Q | P \A | P [f ] | A

Informally, 0 is the process that does not perform any action.a.P is the process ready to
perform actiona, then it behaves asP . ProcessP +Q can choose non-deterministically to behave
either asP or asQ. ‖ is the operator of parallel composition: inP ‖ Q, P andQ may evolve
concurrently or communicate via complementary communication actions. InP \A, whereA ⊆ L,
actionsa ∈ A ∪ A are prevented from happening; they are possible only in a communication
internal toP . P [f ] is the process obtained fromP by changing eacha ∈ Actτ into f(a); the
relabeling functionf must be such thatf(τ) = τ . A is a process identifier. We assume that every
process identifierA has a defining equationA

def= P .
The operational semantics of CCS is given in the form of labelled transition systems(E,Actτ ,

a−→) , where statesE are CCS terms, actionsActτ are CCS actions, and the transition relation
a−→⊆ E × Actτ × E is defined by structural induction as the least relation generated by the

following set of inference rules:
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a.P
a−→ P

P
a−→ P ′

P + Q
a−→ P ′

Q
a−→ Q′

P + Q
a−→ Q′

P
a−→ P ′

P ‖ Q
a−→ P ′ ‖ Q

Q
a−→ Q′

P ‖ Q
a−→ P ‖ Q′

P
a−→ P ′, Q

a−→ Q′, a 6= τ

P ‖ Q
τ−→ P ′ ‖ Q′

P
a−→ P ′

P [f ]
f(a)−→ P ′[f ]

P
a−→ P ′, a 6∈ A ∪A

P \A
a−→ P ′ \A

P
a−→ P ′, A

def= P

A
a−→ P ′

The transition relation
a−→ defines the usual concept of derivation in one step:P

a−→ P ′

means that processP evolves in one step into processP ′ by executing actiona ∈ Actτ . We write
P

a−→ to underline thatP can perform an actiona and evolve in some process. The transitive and
reflexive closure of

⋃
a∈Actτ

a−→ is written−→∗.

Definition 3.3.1 Given a CCS processP , the setDer(P ) = {P ′|P −→∗ P ′}, is the set of its
derivatives. A CCS processP is finite stateif Der(P ) is finite.

Definition 3.3.2 LetSort(P ) (called thesortofP ) be the set of names of actions that syntactically
appear in the processP , and letF be a finite set of actions. The set,EF, of processes whose sort
is in F ∪ {τ}, is so defined:

EF
def= {F : Sort(F ) ⊆ F ∪ {τ}}

3.4 Modeling Fault-Tolerant Systems

Using process algebras it is possible to provide a uniform framework for specifying fault-tolerant
systems. In [19, 21] CCS/Meije is used to specify a fault-tolerant system, its failing behavior, its
recovery strategies, and the fault assumptions. Fault assumptions define if a fault is, for instance,
temporary, permanent, or Byzantine.

We follow a similar modeling approach, but differently from [19, 21] we do not include any
specific fault assumption in the system specification. Instead, we develop a neat separation be-
tween the system and its environment that acts as a fault-injector. We call such a fault-injector
environmentfaulty environment. This choice has important conceptual implications:

• the specification of the system must describe the behaviors of the system in reaction to
faults, but not the fault assumptions;

• all the fault assumptions are part of the faulty environment.

These are our technical ideas to encode fault-tolerance analysis as the analysis of an open
system. We are interested in evaluating the system behavior in a general and unspecified faulty en-
vironment; we describe our strategies of analysis in Section 3.6 and Section 3.8. In the following,
when talking about formal specifications of fault-tolerant systems, we understand the following
definitions:

A system is a finite state CCS process,P , describing the behavior of the system through the
execution of actions. Generally,P is a parallel composition of sub-processes, each modeling
sub-components of the system communicating with each other.
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A failing system is a finite state CCS process,PF, obtained by extending the processP with the
possibility of executing fault actions from a setF. In PF we specify also the failure modes
i.e., the behavior of the system induced by the occurrence of the faults.

A fault-tolerant (candidate) system is a finite state CCS process,P#
F , obtained by adding to

PF those processes modeling some error-recovery mechanism in accordance with some
fault-tolerant design strategy (e.g.,modular redundancy, voting). In CCS,P#

F has the form

(P (1)
F ‖ · · · ‖ P

(n)
F ‖ Q) \A where:

• P
(1)
F . . . P

(n)
F aren copies ofPF in a parallel composition.

• Q is a process that represents an additional error detection module, for instance, a
voter. The detail description of this process usually depends on the particular fault-
tolerance strategy we are describing in the system specification.

• A = {a1, · · · , an}, A ∩ F = ∅ is the set of names over whichP (1)
F . . . P

(n)
F andQ

communicate.

Occurrences of faults are induced by a faulty environmentF , that causes faults to happen. It
interacts withP#

F only through actions inF.

The previous definitions suggest a uniform characterization ofP#
F : a fault-tolerant (candidate)

systemP can be obtained by applying, toP , a function,β, from processes to processes. In the
following, we abstract from any particularβ in our modifier( )#F . SoP#

F is the CCS specification
of the fault-tolerant version ofP obtained by applying some fault-tolerance technique. As a unique
constraint, at model level, the setF must remain disjoint from any other set of actions and must
be accessible to the environment.

Example 3.4.1 We show the CCS specification of a simple fault-tolerant battery,Bat . The battery
returns one unit of energy when it receives a request message. Actionsget andret model the
request signal and the unit of energy, respectively. The CCS process describingBat is as follows:

Bat def= get.ret.Bat

In its failing version,Bat{f0,f1}, the battery may crash after it receives a request. As an effect,
it may produce either a valid energy unit (actionret1) or an invalid burst of energy (actionret0).
We assume two different possible faults: the former (actionf0) certainly causes the battery to
fail; the latter (actionf1) causes the battery to switch in a failing state where either a valid or
an invalid energy unit may be produced non-deterministically. A silent action,τ , models some
internal behavior that appears before the module switches into its failing state as an effect of af1
fault. The CCS specification ofBat{f0,f1} is as follows:

Bat{f0,f1}
def= get.(ret1.Bat{f0,f1}

+f0.ret0.Bat{f0,f1} + f1.τ.Bat ′)

Bat ′ def= ret1.Bat{f0,f1} + ret0.Bat{f0,f1}

Starting fromBat{f0,f1} we design the fault-tolerant version of the battery. It is composed of two
redundant instances of the battery and of the two additional modules:Spl , a splitter, andCon, a
voter. We now give the CCS processes describing all of these components.
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Bat (i) def= Bat [geti/get, reti,1/ret]

Bat (i)
{f0,f1}

def= Bat{f0,f1}[geti/get, reti,0/ret0, reti,1/ret1]

The two indexed instances of the batteryBat andBat{f0,f1}, are specified by processesBat (i)

andBat (i)
{f0,f1} respectively, fori = 1, 2. Action get1 (respectively,get2) represents the request

that the splitter directs to the first (respectively, the second) instance of the battery. Actionsret1,1

andret1,0 (respectively,ret2,1 andret2,0) represent the outputs of the first (respectively, the
second) battery in case of a valid or an invalid production of energy.

Spl def= get.get1.get2.ack.Spl

The CCS process specifying the splitter,Spl , delivers the energy request to each of the two
redundant modules. For sake of simplicity, our splitter forwards a request of energy in a precise
order. Moreover,Spl cannot accept a new energy request until it receives a synchronization signal
from the controller (actionack).

Con def= ret1,0.Con ′ + ret1,1.ret.Con ′′

Con ′ def= ret2,0.Con ′′′ + ret2,1.ret.Con ′′′

Con ′′ def= ret2,0.Con ′′′ + ret2,1.Con ′′′

Con ′′′ def= ack.Con

The controller can collect the energy units from the two batteries. If a valid unit is returned, the
controller shows it to the environment (actionret). It also absorbs an eventual over production of
energy. After the controller has received a signal from both the batteries, it sends to the splitter the
synchronization messageack; if both batteries fail in producing their unit of energy the controller
only sends the messageack, and the splitter is ready to receive a new energy request. We can now
build two different fault-tolerant (candidate) specifications:

Bat#
{f0,f1}

def= (Spl ‖ Bat (1) ‖ Bat (2)
{f0,f1} ‖ Con) \A (3.4.1)

Battery#
{f0,f1}

def= (Spl ‖ Bat (1)
{f0,f1} ‖ Bat (2)

{f0,f1} ‖ Con) \A

whereA = {get1, get2, ret1,0, ret1,1, ret2,0, ret2,1, ack}.

Bat#
{f0,f1}, contains one potentially failing battery (see also Figure 3.1);Battery#

{f0,f1}, uses

two failing batteries. We will useBat#
{f0,f1} andBattery#{f0, f1} as test cases throughout the

chapter.

3.4.1 Our Scenario for Fault-Tolerance Analysis

In this section, we introduce in our general scenario for the analysis of fault-tolerance, and we give
a formalization of it in CCS. As introduced in Section 3.2, we propose to study a fault-tolerant
(candidate) system in a generic and unspecified faulty environment acting as a fault-injector. The



54 Chapter 3. Techniques of Security Protocol Analysis in Fault-Tolerance

get Spl Con ret

Bat (1)

f0 f1

(ret2,0)

(ret2,1)

(get2)

(get1)

(ack)

Bat (2)
{f0,f1}

(ret1,1)

Figure 3.1: The flow diagram of the (candidate) fault-tolerant version of the battery,Bat#
{f0,f1}.

Restricted actions are within brackets.

faulty environment is able to interact with the systems through a finite and defined set of fault
actions, in fact triggering the occurrence of faults in the systems. In CCS this scenario is so
defined:

∀F ∈ EF, (P#
F ‖ F ) \ F (3.4.2)

In scenario (3.4.2), processF is the faulty environment, that interacts withP#
F through the finite

set of actionsF. Moreover,F is an unspecified component ranging overEF, the set of possible
CCS processes whose sort is inF∪{τ}. SetEF is the class of all possible faulty environment and
it represents our unique fault assumption model.

Remark 3.4.2 P#
F we do not include other fault actions than those triggered byF . Therefore,F

is exactlythe set of names over whichP#
F andF interact.

Remark 3.4.3 Fault actions are restricted. This implies thatPF andF have to synchronize on
F. At the abstraction level of our scenario of analysis, faults are then considered internal (i.e.,not
observable) actions of the failing systems: only the (probably faulty) behavior of a system is really
observable.

In practice, a system is either resilient to faults or the presence of faults is highlighted by
its subsequent behavior. Roughly speaking, in our framework “fault-tolerance” means that faults
cannot interfere with the normal observable behavior of the system.

Example 3.4.4 The scenario for analyzing the fault-tolerant (candidate) batteryBat#
{f0,f1} is as

follows:

∀F ∈ E{f0,f1}, (Bat#
{f0,f1} ‖ F ) \ {f0, f1}



3.5. Background on Logic and Properties of Processes 55

3.5 Background on Logic and Properties of Processes

In this section we summarize the technical background required to understand the logic charac-
terization of fault-tolerance we will develop in Section 3.6. We summarise basic notions of the
modalµ-calculus and of the equationalµ-calculus in Section 3.5.1 and Section 3.5.2 respectively,
we digest the use of theµ-calculus for observational properties over processes in Section 3.5.3,
and we synthetize the basic of partial model checking in Section 3.5.4.

3.5.1 Modalµ-calculus

The modalµ-calculus [35] is a modal logic with fix-point operators. It is used in computer science
to express temporal properties of distributed systems, such as non-terminating behaviors, safety
and liveness properties [127]. Formulas of theµ-calculus are generated by the following grammar:

φ := tt | ff | X | φ ∧ φ′ | φ ∨ φ′ | 〈a〉φ | [a]φ | µX.φ | νX.φ

Herea ranges over the action setActτ andX ranges over a set of variablesV. The fix-point
operators areν (greatest fix-point) andµ (least fix-point). The semantics,‖φ‖ρ, of a µ-calculus
formulaφ is defined over labelled transition systems. LetM = (Q, Q0,Actτ ,

a−→) be a labelled
transition system, andρ an environment function that associates a subset ofQ to the free variables
in φ. As a notationρ[x/X] is the environmentρ wherex is associated withX. If we let σ range
over{µ, ν} then‖φ‖ρ is the set of states ofM defined by the following equations:

‖X‖ρ = ρ(X), ‖tt‖ρ = Q, ‖ff‖ρ = ∅
‖φ1 ∧ φ2‖ρ = ‖φ1‖ρ ∩ ‖φ2‖ρ, ‖φ1 ∨ φ2‖ρ = ‖φ1‖ρ ∪ ‖φ2‖ρ

‖[a]φ‖ρ = {Q|∀Q′ : Q
a−→ Q′ implies Q′ ∈ ‖φ‖ρ}

‖〈a〉φ‖ρ = {Q|∃Q′ : Q
a−→ Q′ and Q′ ∈ ‖φ‖ρ}

‖σX.φ‖ρ = σf wheref(x) def= ‖φ‖ρ[x/X]

A labelled transition systemM satisfies aµ-calculus formulaφ, written M |=ρ φ, if Q0 ∈
‖φ‖ρ. We remove the subscriptρ when it is clear from the context or whenφ does not contain free
variables,i.e.,whenφ is a closed formula.

Remark 3.5.1 The modalµ-calculus here presented does not contain a negation operator¬. How-
ever for any formulaφ there is a formulaφc, called the complement ofφ, which expresses the
negation ofφ. A formulaφc is obtained by substituting for every operator inφ its dual according
to the following inductive rules:

ttc = ff
(〈K〉φ)c = [K]φc

(φ ∧ φ′)c = φc ∨ φ′c

(µZ.φ)c = νZ.φc

Zc = Z

ffc = tt
([K]φ)c = 〈K〉φc

(φ ∨ φ′)c = φc ∧ φ′c

(νZ.φ)c = µZ.φc

The modalµ-calculus subsumes [63, 23] several other state-based logics such as PDL, CTL,
and CTL∗, and action-based logics such as ECTL∗, ACTL and ACTL∗. Moreover, theµ-calculus
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enjoys the finite model property,i.e., if a closed formulaφ is satisfiable then there exists a finite
model forφ [192]. A finitary axiomatization has been proposed by Walukievicz [202].

Many properties can be express in theµ-calculus (see [190, 37]). For example,νX.〈−〉tt ∧
[−]X expresses “deadlock freedom”, andµX.〈−〉tt∧ [−a]X expresses “actiona must eventually
occur”. In writing properties, here and in the rest of the chapter, we use the shortcut notations
[K]φ and〈K〉φ whereK is a set of actions inActτ : [K]φ is a macro for

∧
a∈K [a]φ and〈K〉φ

for
∨

a∈K〈a〉φ. Moreover−K is an abbreviation forActτ −K. The abbreviation−a stands for
−{a}; 〈Actτ 〉φ and[Actτ ]φ are synthetically written as〈−〉φ and[−]φ, respectively.

3.5.2 Equationalµ-calculus

The equationalµ-calculus [125, 16, 23, 17] is an equivalent variant of theµ-calculus. By the
use of standard techniques [15, 145, 146], aµ-calculus formulaφ can be transformed, in linear-
time in φ, into an equivalent equationalµ-calculus formula and vice-versa. For this reason the
µ-calculus and the equationalµ-calculus can be use interchangeably in all the results we show
in this chapter. Bhat and Cleaveland proposed translations from CTL, CTL∗ and ECTL∗ into
equationalµ-calculus [23].

The equationalµ-calculus is based on fix-point equations that substitute the recursion opera-
tors. LetX be a variable ranging over a setV of variables, then a least (greatest) fix-point equation
is X =µ φ (X =ν φ), whereφ is anassertion, that is a modal formula without recursion operators.
The syntax of assertions (φ) and of lists of equations (ϕ) is defined by the following grammar:

assertion φ := tt | ff | X | φ ∧ φ′ | φ ∨ φ′ | 〈a〉φ | [a]φ
equations list ϕ ::= (X =ν φ) ϕ | (X =µ φ) ϕ | ε

It is assumed that variables appear only once on the left-hand sides of an equations listϕ : the
set of these variables is denoted asDefs(ϕ). An equations listϕ is closed if every variable that
appears in the assertions of the list is inDefs(ϕ). Figure 3.2 gives example of properties in the
equationalµ-calculus.

The semantics of the equationalµ-calculus is defined over labelled transition systems. As a
notation,t represents the union of disjoint environments, and[] denotes the empty environment.
Letting σ be in{µ, ν}, σU.f(U) represents theσ fix-point of the functionf in one variableU .
Let beM = (Q, Q0,Actτ ,

a−→) a labelled transition system andρ an environment function that
assigns a subset ofQ to the free variables inφ. The semantics,‖ϕ‖′ρ, of an equation listϕ is an
environment which assigns subsets of states ofQ systems to variables inDefs(ϕ). Formally,‖ϕ‖′ρ
is defined by the following equations:

‖ε‖′ρ = []
‖(X =σ φ)ϕ‖′ρ = ‖ϕ‖′(ρt[U ′\X]) t [U ′/X]

whereU ′ = σU.‖φ‖(ρt[U/X]tρ′(U)), andρ′(U) = ‖ϕ‖′(ρt[U/X]). The interpretation,‖φ‖ρ, of an
assertionφ is defined as for theµ-calculus.

Informally ‖(X =σ φ)ϕ‖′ρ says that the solution to(X =σ φ)ϕ is theσ fixed point solution
U ′ of ‖φ‖ρ where the solution to the rest of the list of equationsϕ is used as environment. A
labelled transition systemM satisfies an equation listϕ, writtenM |=ρ ϕ ↓ X, if Q0 ∈ ‖ϕ‖′ρ(X),
whereX is the first variable in the listϕ. We omitρ out when it is evident from the context or
whenϕ is closed.
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X =ν [−]X ∧ 〈−〉tt Absence of deadlock

X =ν [−]X ∧ 〈a〉tt On all-paths an actiona occurs

Y =µ [−]Y ∨ 〈a〉ff There is path on which eventually noa occurs{
X =ν Y

Y =µ [−]Y ∨ 〈a〉X
Along all pathsa occurs infinitely often

Figure 3.2: Examples of properties in the equationalµ-calculus [17], and their informal meaning.

3.5.3 Observableµ-calculus Properties over Processes

In case an external observer cannot seeτ actions, a natural way of analyzing a process is abstract-
ing these actions from the behavior of the processes, while preserving the branching structure.
This is the viewpoint that we consider in our framework. Let us consider the following labelled
transition relation

a=⇒, between CCS terms

P
τ=⇒ P ′ if P

τ−→
∗

P ′

P
a=⇒ P ′ if P

τ−→
∗ a−→ τ−→

∗
P ′, a ∈ Act

Transitions
a=⇒ are calledobservabletransitions, orweaktransitions in contrast to transitions

a−→ which are qualified asstrong.
Modalµ-calculus formulas are usually too strong with respect to what an external observer can

see. In other words they can distinguish processes that are indistinguishable if we would consider
only observable transitions. In order to make properties compatible with the notion of external
observation, modalities of theµ-calculus must be interpreted in terms of observable transitions,
that is by using the transition

a=⇒. In that case,〈〈 〉〉 and[[ ]] are used instead of〈 〉 and[ ], respec-
tively. The interpretation of formula〈〈a〉〉φ, for example, is like〈a〉φ where the weak transition
relation is used instead of the strong one:

‖〈〈a〉〉φ‖′ρ = {Q| ∃Q′ : Q
a=⇒ Q′ and Q′ ∈ ‖φ‖′ρ}

Weak modalities can be also defined in terms of the corresponding strong modalities [189]; for
example〈〈a〉〉 def= µZ.〈τ〉Z ∧ 〈a〉µZ.φ∧ 〈τ〉Z. The sub-logic of theµ-calculus obtained restricting
the modalities to the subset{〈〈 〉〉, [[ ]], 〈〈K〉〉, [[K]]} (with τ 6∈ K) is called theobservational
µ-calculus[189].

3.5.4 Partial Model Checking

Partial model checking [16, 17] is a technique that relies upon compositional methods for proving
properties of concurrent system. It has been introduced first by Andersen, who used the equational
µ-calculus for technical convenience [16]. Indeed, theµ-calculus and the equationalµ-calculus
can be used interchangeably in this context, as noticed in Section 3.5.2.

Reformulated in the CCS, the intuitive idea underlying partial evaluation is the following:
proving that(P ‖ Q) \ A satisfies an equationalµ-calculus formulaφ is equivalent to proving
thatQ satisfies a modified formulaφ//A P , where//A P is the partial evaluation function for the
operators of parallel composition and restriction.
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In the following we useP ‖A Q as an abbreviation for(P ‖ Q) \ A. In Figure 3.3 we give
the definition of//A , the partial evaluation function for the CCS operator‖A whereA ⊆ Act .
Andersen proves the following lemma [16]:

Lemma 3.5.2 Given a processP ‖A Q (whereP is finite-state) and an equational specification
ϕ↓X we have:

P ‖A Q |= (ϕ↓ X) iff Q |= (ϕ↓ X)//A P

Remark 3.5.3 Andersen [17] proves that the size of(ϕ ↓ X)//‘A P is exponentially larger that
(ϕ ↓ X) in the worst case. Andersen also proposes heuristics that make(ϕ ↓ X)//A P smaller
while maintaining logic equivalence. Quoting Andersen “the strategies are generally valid but
might or might not succeed in decreasing the size of the assertion” [17].

3.6 Logic Characterization and Analysis of Fault-Tolerance

In this section we explain our first framework for the analysis of fault-tolerance. From Section 3.4,
we recall that our proposal consists in viewing fault-tolerance analysis as the analysis of an open
system; a fault-tolerant system is studied when acting in a faulty environment. Here, we char-
acterize the problem of the analysis of fault-tolerance, with respect to a property, as a validation
problem in the (equational)µ-calculus. Within this framework we reformulate, in fault-tolerance
terms, a technique of validation studied in security protocol analysis [146, 148]. The technique
is based on partial model checking. Moreover, we study an efficient solution [122] for checking
the validity of a subclass of theµ-calculus. In the rest of the chapter, we do not make any distinc-
tion betweenµ-calculus and equationalµ-calculus since these logics are equivalent and a formula
in one logic can be transformed in an equivalent formula in the other logic in linear-time (see
Section 3.5.2). Without lost of generality, we will refer only to theµ-calculus.

3.6.1 The Problem

Let us consider a system modelP , its fault-tolerant (candidate) versionP#
F , and aµ-calculus

formulaφ expressing a desirable property of a system even in presence of faults. We are interested
in understanding under which fault assumptionsP#

F satisfiesφ. This set can be formalized as
follows:

F
(P#

F ‖FF )

φ = {F ∈ EF : (P#
F ‖F F ) |= φ} (3.6.1)

SetF
(P#

F ‖FF )

φ characterizes the fault-tolerant capability ofP#
F as the set of faulty environments

that makeP#
F preserveφ. If this set coincides with the class of all faulty environmentEF, that is

if F
(P#

F ‖FFF)

φ = EF, then it means that no faulty environment is able to forceP#
F not to satisfy

φ. This observation leads to a first logic characterization of fault-tolerance, as in the following
definition:

Definition 3.6.1 (Logic Characterisation of Fault-Tolerance I) A processP#
F is fault-tolerant

with respect to the logical propertyφ if and only if

F
(P#

F ‖FFF)

φ = EF.
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SupposingM = {Q, Q0,Actτ ,→} be a finite stateLTS , whereQ = {Q0, . . . , Qn}:

(ϕ↓ X)//A M = (ϕ//A M)↓ XQ0 ,

ε//A M = ε

(X =σ φ)ϕ//A M =


(XQ1 =σ φ//A Q1)
. . .

(XQn =σ φ//A Qn)
ϕ//A M

X//A Q = XQ

〈a〉φ//A Q = 〈a〉(φ//A Q) ∨
∨

Q
a−→Q′ φ//A Q′, if a 6= τ ∧ a 6∈ A ∪A

〈a〉φ//A Q = ff, if a ∈ A ∪A

〈τ〉φ//A Q = 〈τ〉(φ//A Q) ∨
∨

Q
τ−→Q′ φ//A Q′ ∨

∨�
Q

a−→Q′

a∈A∪A

〈a〉(φ//A Q′)

[a]φ//A Q = [a](φ//A Q) ∧
∧

Q
a−→Q′ φ//A Q′, if a 6= τ ∧ a 6∈ A ∪A

[a]φ//A Q = tt, if a ∈ A ∪A

[τ ]φ//A Q = [τ ](φ//A Q) ∧
∧

Q
τ−→Q′ φ//A Q′ ∧

∧�
Q

a−→Q′

a∈A∪A

[a](φ//A Q′)

(φ1 ∧ φ2)//A Q = (φ1//A Q) ∧ (φ2//A Q),
(φ1 ∨ φ2)//A Q = (φ1//A Q) ∨ (φ2//A Q)
tt//A Q = tt

ff//A Q = ff

Figure 3.3: The partial evaluation function for‖A.

To check whether a modelP#
F satisfies Definition 3.6.1 we have to solve the following prob-

lem:

∀F ∈ EF, (P#
F ‖ F ) \ F |= φ (3.6.2)

Solving problem (3.6.2), that is checking the (candidate) system again any faulty environment
is, in principle, useful. As an example let us considerP = a.0 + f.f.b.0. In P , two consecutive
occurrences of a fault make the (good) actionb occur: here we think about one fault cancelling
the effect of the other. Checking the fault-tolerance ofP in a particular environment, for example
asF = f.F leads to the conclusion that, in(P ‖ F ) \ {f}, actionb eventually happens. Checking
against an unspecified environment we can figure out, for example, thatF = f.0 makes this
property false inP .

From the point of view of the analysis Definition 3.6.1 is not practical. It requires to perform
model checking against all environments. By exploiting partial model checking techniques we can
provide a more suitable definition of the set that characterize the fault-tolerant capability ofP#

F ,
as follows:

FF
(φ//F P#

F )
= {F ∈ EF : F |= φ//F P#

F } (3.6.3)
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Set FF
(φ//F P#

F )
characterizes the fault-tolerance ofP#

F as the set of models of the formula

φ//F P#
F . If this set coincides with the set,EF, of all possible (faulty environment) models, this

means thatφ//F P#
F is valid inEF. Characterization (3.6.1) and (3.6.3) are equivalent as stated in

the following proposition:

Proposition 3.6.2 F
(P#

F ‖FF )

φ = FF
(φ//F P#

F )

Proof. The thesis follows directly from Lemma 3.5.2.

The characterization in (3.6.3) is easier to manage since it corresponds to a common repre-
sentation of sets, and permits to define the analysis of a fault-tolerant process, with respect to a
propertyφ, as a validity checking problem in theµ-calculus. It brings to the following alternative
logic characterization of fault-tolerance:

Definition 3.6.3 (Logic Characterisation of Fault-Tolerance II) A processP#
F is fault-tolerant

with respect to the logical propertyφ if and only ifφ//F P#
F is a valid formula inEF.

We prove that:

Proposition 3.6.4 A processP#
F satisfies Definition 3.6.1 if and only if it satisfies Definition 3.6.3.

Proof. From Proposition 3.6.2.

Definition 3.6.3 and Proposition 3.6.4 state that for checking if a modelP#
F satisfies this

definition of fault tolerance, with respect to a propertyφ, we have to solve the following validation
problem:

∀F ∈ EF, F |= φ′, whereφ′ = φ//F P#
F (3.6.4)

In the next section we study efficient solutions to this problem, with respect to time complexity.

3.6.2 Improving the Time Complexity of the Analysis

The validity (satisfiability) problem for the (equational)µ-calculus, such as (3.6.4), is generally
EXPTIME complete [75, 193]. Better performances are reached on particular subclasses of the
µ-calculus. For example, the satisfiability problem in the disjunctive subclass of theµ-calculus is
linear time in the size of the formula [203]. It follows that the validity problem for those formulas
whose complement falls in the disjuntive subclass of theµ-calculus (i.e., the conjunctive subclass
of µ-calculus) can be solved in linear time.

Our framework use the partial model checking to reduce the fault-tolerance checking problem
to a validity problem in theµ-calculus. To obtain an efficient strategy of analysis, we have to look
for a subclass ofµ-calculus that is closed under the partial evaluation function of the partial model
checking and whose complemented class fall in the disjuntive subclass of theµ-calculus. In this
section we define theuniversal conjunctivesubclass of theµ-calculus (we write in short,∀∧MC),
and we prove that

• ∀∧MC is closed under the partial evaluation function( )//F P ;
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• the class of the complemented∀∧MC formulas is strictly included in the disjunctiveµ-
calculus.

Remark 3.6.5 We use the two previous results to prove that (3.6.4) is solvable in time linear in
the size ofφ′.

Remark 3.6.6 The size of the formula obtained after the partial model checking procedure is
polynomial in the size of the process and the formula, hence it can be, in the worst case, exponen-
tially longer than the original formula. Thus the effectiveness of our solution methods depends
also on the success of the heuristics that Andersen proposes to makeφ//F P#

F smaller while main-
taining logic equivalence.

In the next sections we summarize the definitions and results about the disjunctive subclass
of theµ-calculus; then we introduce theuniversal conjunctivesubclass of theµ-calculus and we
show how our validation problem can be solved efficiently in this class.

Disjunctive µ-calculus

From [120] we reproduce the definition of the disjunctiveµ-calculus. Formulas in this subclass of
theµ-calculus, called disjunctive formulas, are interesting because their satisfiability problem can
be solved in time linear in the size of the formula [120]. Their definition depends on the definition
of the following special class of formulas:

Definition 3.6.7 (Special Conjuntive Formulas)A conjunctionα1 ∧ . . . ∧ αn is specialif and
only if everyαi is either a literal or a formula of the form1 (a → Φ) and for every actiona there
is at most one conjunct of the form(a→ Φ) amongα1, . . . , αn.

Definition 3.6.8 (Disjunctiveµ-calculus formulas) The set ofdisjunctiveµ-calculus formulas is
the smallest setD defined by the following clauses:

• every literal is a disjunctive formula,

• if α, β ∈ D thenα∨ β ∈ D. Moreover ifX occurs only positively inα, and does not occur
in the contextX ∧ γ, for someγ, thenµX.α, νX.α ∈ D.

• (a→ Φ) ∈ D if Φ ⊆ D

• special conjunctive formulas are disjunctive formulas

The following theorems hold [120]:

Theorem 3.6.9 For everyµ-calculus formula there exists an equivalent disjunctiveµ-calculus
formula.

Theorem 3.6.10Satisfiability checking for a disjunctiveµ-calculus formula can be done in linear
time in the size of the formula.

Remark 3.6.11 Theorems 3.6.9 and 3.6.10 lead to the conclusion that the transformation fromµ-
calculus to disjunctiveµ-calculus introduces, in the worst case, an exponential blow up. We will
avoid this problem by expressing our formulas directly in a subclass of the disjunctiveµ-calculus.

1Theµ-calculus constructa → Φ, wherea is an action andΦ a finite set ofµ-calculus formulas, is an abbreviation
for
V
{[a]φ : φ ∈ Φ}∧ [a]

W
Φ [203]. 〈a〉φ is equivalent toa → {φ, tt}, while [a]φ is equivalent to(a → ff)∧ (a →

{φ}) so anyµ-calculus formula can be written using this new construct.
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∀∧MC, the Universal Conjunctiveµ-calculus

We now identify and define the∀∧MC; then we prove our main results, namely:

• ∀∧MC is closed under the partial evaluation function( )//F P (Lemma 3.6.13);

• the class of complemented∀∧MC formulas is strictly included in the disjunctiveµ-calculus
(Lemma 3.6.14).

Definition 3.6.12 (Universal Conjuntive Formulas) The set,∀∧MC, of universal conjunctive
µ-calculus formulas is the largest subset ofµ-calculus formulas that can be written without either
the∨ operator or the〈 〉 modality. The formulas of the∀∧MC are generated by the following
grammar:

φ ::= ff | tt | Z | φ ∧ φ′ | [K]φ | µZ.φ | νZ.φ

Lemma 3.6.13∀∧MC is closed under the partial model checking function//F P .

Proof. By definition of ( )//F P (see Figure 3.3). For allF and all CCS processP , ( )//F P
preserves∧ and[ ], while the transformation of[ ] introduces only∧.

Lemma 3.6.14 If φ ∈ ∀∧MC, the complement formula ofφ, φc, is disjunctive in the sense of
Definition 3.6.8.

Proof. By structural induction overφ. If φ is a literal, or ifφ = φ1∧φ2 the lemma holds trivially.
If φ = [K]φ1, thenφc = 〈K〉φ1

c. In this case the lemma holds since〈K〉φ1
c can be written as

〈K〉 → {φ1
c, tt}, andφ1

c is disjunctive by the induction hypothesis. Ifφ = µX.φ1(X) then
φc = νX.φ1

c(X) andφ1
c is disjunctive by the induction hypothesis. The caseφ = νX.φ1(X) is

treated similarly. This concludes the proof.

The previous results are the foundation of our solution method for (3.6.4), synthesized by the
following theorem:

Theorem 3.6.15 If φ′ ∈ ∀∧MC then (3.6.4) can be solved in time linear in the size ofφ′.

Proof. Problem (3.6.4) requires the validity check ofφ′. The∀∧MC formulaφ′ is valid if and
only if the complement formulaφ′c is not satisfiable.φ′c can be obtained in linear time fromφ′.
By Lemma 3.6.14φ′c is disjuntive, and by Theorem 3.6.10 the satisfiability ofφ′c’ is solvable in
linear time in its size. This concludes the proof.

Corollary 3.6.16 If φ ∈ ∀∧MC then (3.6.2) is answered in time linear in the size ofφ//F P .

Proof. By partial model checking,∀F ∈ EF, (P#
F ‖ F ) \ F |= φ if and only if ∀F ∈ EF, F |=

φ//F P#
F . By Lemma 3.6.13φ//F P#

F is in the∀∧MC, and the Corollary follows immediately
from Theorem 3.6.15.

3.6.3 ∀∧MC Formulas in Fault-Tolerance

This section discusses the role of∀∧MC in fault-tolerance. We start with a general discussion
followed by a list of concrete properties. Those properties, taken from the literature, are divided
into two sublists: the former contains properties that fall in∀∧MC, the latter contains those that
do not fall in∀∧MC.
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Suitability of ∀∧MC in Fault-Tolerance: a Discussion

Accordingly to [19], fault-tolerance properties can be divided informally into the following cate-
gories:

• fault-toleranceif the system delivers a correct answer despite faults;

• fail-silence if system failures can only be omission failuresi.e., it gives either a correct
answer or no answer;

• fail-stop if, in case of faults, the system terminates;

• fail-safe if the system, in case of faults, enters into a state in which no catastrophic event
occur.

Depending on the particular system some of the previous properties are formalized assafety
or livenessproperties; others are formalized as a combination of them,i.e., they are neither safety
nor liveness properties. Safety and liveness properties where first described by Lamport in [127],
who studied linear-time properties of reactive systems. He suggested that the intuitive meaning
of safety is “nothing bad happens in the lifetime of the system”, while the meaning of liveness is
“something good eventually happens” [127].

In the following we give an intuition to understand what kind of properties are expressible with
∀∧MC. We need to refer to a formal definition of safety and liveness. In the rest of the chapter
we will use the following linear-time semantic definitions of safety and liveness [10, 166, 143],
that correspond to the branching-time definitions of universally safety and universally liveness
properties respectively [144].

Definition 3.6.17 (Semantic Characterization of Safety and Liveness)LetP be a property ex-
pressed as a sequence of events.P is a:

safety property, if and only if every infinite sequence of events that does not satisfy this property
contains a finite prefix such that no infinite sequences obtained by adding an infinite suffix
to this finite prefix satisfies this property;

liveness property, if and only if for every finite sequence we can find an infinite suffix, so that the
resulting infinite sequence satisfies the property.

Remark 3.6.18 Alene and Schneider proved in [10] that any property can be classified as a safety
or a liveness property, or an intersection of them.

“Fail silence”, “fail stop” and “fail safe” enjoy a common structure [19]. In theµ-calculus, the
previous properties are expressible by formulas whose external form isνX.[F]φ ∧ [−]X, where
φ expresses respectively a behavior without faults, a stop, or a safe behavior: ifφ ∈ ∀∧MC,
formulas in this form fit∀∧MC. Properties expressing “fault-tolerance” are more general and
do not have a common form. In this case to understand if they fit∀∧MC we have to study
each formula separately. As a general consideration we note that safety properties of the form
νX.φ ∧ [−]X, expressing “no bad state is ever reached” (hereφc, the complement ofφ, holds
in the bad state) will fit∀∧MC only if φ fits. On the other hand, safety properties of the form
νX.[K]ff ∧ [−]X, expressing “no bad action inK ever happens” do fit∀∧MC.
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Liveness properties are a bit more tricky. For example, the general formulation of a liveness
property that involves a condition over a statei.e.,expressing that “a state satisfyingφ is eventually
reached” isµX.φ∨ (〈−〉tt∧ [−]X) [190]. This form does not fit∀∧MC because of the〈−〉 and
the∧.

The liveness property expressing “an actiona eventually occurs” requires a discussion. Its
µ-calculus formulation,µX.〈−〉tt ∧ [−a]X [37], does not fit∀∧MC. The subformula〈−〉tt is
required to avoid that the formula is trivially satisfied because the system deadlocks. If we assume
to check deadlock freedom separately, this conjunct can be removed and the weaker formulation,
µX.[−a]X, fits ∀∧MC.

Other categories of formulas, which are neither safety nor liveness properties, (e.g., some
cyclic properties) have to be considered one by one. We anticipate that witnesses of these formulas
fall in ∀∧MC. We are now ready to give concrete examples of each category of formula in the
next section. This preliminary discussion also suggests how the∀∧MC formulas are related to the
set of fault-tolerance properties as illustrated in Figure 3.4.

Examples of∀∧MC Formulas in Fault-Tolerance

This section provides examples of fault-tolerance properties that do fit∀∧MC (positive examples)
and that do not fit∀∧MC (negative examples). providing examples of (categories of) formulas in

Positive Example

Our examples consist of a list of∀∧MC properties taken from [188, 37, 190]. For all the proper-
ties, we underline their use in fault-tolerance.

Safety Properties

Nothing Bad (positive example [190], page 128–130). Letφc be a property that holds in a bad
state. The general form expressing that “in case of some fault inF the bad state is never
reached” is expressible as follows:

NothingBad(φ) def= νZ.[F]φ ∧ [−]Z

This class of safety formulas is in∀∧MC only if φc is in ∀∧MC. A necessary condition for
this to happen is, for example, thatφc does not contain conjunctions.

Never ([37] page 42, [190] page 128). LetK be the set of transitions indicating a bad behavior.
Formula

Never(K) def= νZ.[K]ff ∧ [−]Z

expresses the safety property “no transition inK ever happens”2. It can be used to express
the following fail safe property “in case of a fault inF, no bad transition ever happens”:

νX.[F]Never(K ) ∧ [−]X

2Another way of interpretingNever(K) is that the bad state〈K〉tt is ever reached.
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others

safety
liveness

Fairness I
Unless

Cycle II

Fault Tolerant Properties

∀∧MC

Figure 3.4: Fault-tolerance properties that are expressible as∀∧MC formulas.∀∧MC is able to
express many safety property and some liveness property. See text for more details.

Deadlock or Termination ([188], page 7).

NoObservableAction def= [[−]]ff

The previous formula expresses that the system is incapable of performing any observable
action, that is it either deadlocks or stops. This property can be used to express the fail stop
property “in case of faultsF, the system deadlocks or terminates”:

νX.[F]NoObservableAction ∧ [−]X

Unless ([190], page 43).

Unless(K , J ) def= µZ.[−(K ∪ J)]ff ∧ [−J ]Z

This formula expresses “in any run actions fromK happen unless aJ action occurs”. This
property where an action inJ may not eventually occur, implements the weak version of
the until modality [35]. It can be used to express fault-tolerance, or as a building block to
express fail safe as follows:

νX.[F]Unless(K , J ) ∧ [−]X

Cycle I ([37] page 42) Properties expressing cycles are in∀∧MC. The simplest example is the
following safety property:

Cycle(a, b) def= νZ.[b]ff ∧ [−a, b]Z ∧ [a](νY.[a]ff ∧ [−a, b]Y ∧ [b]Z)
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expressing “two actionsa andb occur in alternation”. A sequence (also infinite) of other
actions is allowed to interleave between ana and the nextb. It expresses fault-tolerance, or
it can be used to express a fail safe behavior as follows:

νX.[F]Cycle(a, b) ∧ [−]X

Formulas expressing cycles with more than two actions also fall in∀∧MC [190].

Liveness Properties

Fairness I ([37], page 110). For an agent with sort{a, b, c}

Fairness(b; a) def= νZ.µY.νW.[[b]]Z ∧ [[a]]Y ∧ [[c, ε]]W

expresses the liveness property “no infinite sequence can be performed containing infinitely
many occurrences ofa, but no occurrences ofb”. It represents a fair behavior in case of
some fault, for example as in the following fail safe property:

νX.[F]Fairness(b; a) ∧ [−]X

Fairness II ([190], page 130). Another∀∧MC fairness property is:

Fairness ′(a; b, c) def= νZ.(µY1.[b](νY2.[c](νY3.Y1 ∧ [−a]Y3) ∧ [−a]Y2) ∧ [−]Z

Informally, it says “in any run, ifb andc happen infinitely often, than so doesa”. This
formula can be used to express the property saying and that “in any run, fairness holds in
case of some fault inF occur”:

νX.[F]Fairness ′(a; b, c) ∧ [−]X (3.6.5)

Finitely Often ([190], page 132). Another liveness property that falls in∀∧MC is:

FinOft(a) def= µZ.µY.[a]Z ∧ [−a]Y

expressing “in each run,a can only happen finitely often”. Used as an invariant, it expresses
fault-tolerance. It can be also used to express either a fail silent or a fail safe behavior, as
follows:

νX.[F]FinOft(a) ∧ [−]X

Other Properties

Some properties that are neither safety nor liveness properties fall in∀∧MC also. For example,
the following variants of the cyclic propertyCycle(a, b):
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Cycle II ([190], page 131-132)

Cycle ′(a, b) def= µY.[b]ff ∧ [a](µZ.[a]ff ∧ [b]Y ∧ [−b]Z) ∧ [−b]Y

This property expresses the property “two actionsa andb do occur in alternation” with the
constraint that no intervening actions are allowed to continue forever without the nexta or
b happening. The variant using a greatest fixed point

Cycle ′′(a, b) def= νY.[b]ff ∧ [a](µZ.[a]ff ∧ [b]Y ∧ [−b]Z) ∧ [−b]Y

also falls in∀∧MC. It expresses the same property asCycle ′(a, b) does, with the constraint
“other actions can intervene forever between ana and the nextb, but whenever ana happens
b must eventually happen”.

Negative Examples

This section lists examples of formulas that do not fit∀∧MC.

Nothing Bad (negative example [190], page 128–130] Letφc be a condition that holds in a bad
state. The general form expressing the safety property that nothing bad happens is:

NothingBad(φ) def= νX.[F]φ ∧ [−]X

If φ 6∈ ∀∧MC, this family of properties fall outside in∀∧MC; a sufficient condition for this
to happen is whenφc contains conjunctions.

Deadlock Freedom ([37], page 109).

DeadlockFree def= µX.〈〈−ε〉〉tt ∧ [[−]]X

Deadlock freedom cannot be expressed in∀∧MC, because we cannot avoid the〈〈 〉〉 moda
lity. Deadlock freedom is a particular instance of the formulas expressing the “eventually”
modality.

Eventually ([37], page 43). In this category we find, for example, the formula saying “an action
a eventually happens”:

Eventually(a) def= µX.〈−〉tt ∧ [−a]X

If we want to exclude that the property holds because the system deadlocks (see the discus-
sion in section 3.6.3), this property does not fit∀∧MC. Also the generalization

Eventually(φ) def= µX.φ ∨ (〈−〉tt ∧ [−a]X)

expressing “a closed formulaφ eventually holds” does not fall in∀∧MC either. As a con-
sequence, the∀∧MC fragment cannot express any formula containing the “eventually”
modality, for instance “always eventually”.

The last negative example is “strong until”:
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Strong Until ([37], page 43):

StrongUntil(φ, ϕ) def= µX.φ ∨ (ϕ ∧ 〈−〉tt ∧ [−]X)

whereX does not occur inφ. Informally strong until says “φ holds untilϕ becomes true”.
It also requires thatϕ becomes eventually true. Strong until needs the modality〈〉 and,
consequently, does not fall in∀∧MC.

3.6.4 Our Running Example

This section shows a CCS model of a simple fault-tolerant system, and shows how we check a
fault-tolerance property in the framework of the analysis proposed so far.

Let us consider a different version of our fault-tolerant battery specified in Example 3.4.1 (see
also Figure 3.5). In this more sophisticated version the controller module also acts as a failure
detector: if both batteries do not produce a valid burst of energy, it returns the messagefail. The
CCS model is as follows:

Det def= ret1,0.Det ′ + ret1,1.ret.Det ′′

Det ′ def= ret2,0.fail.Det ′′′ + ret2,1.ret.Det ′′′

Det ′′ def= ret2,0.Det ′′′ + ret2,1.Det ′′′

Det ′′′ def= ack.Det

We now build two new fault-tolerant batteries we callEne#
{f0,f1} andEnergiz#

{f0,f1} respec-
tively. In the former (see Figure 3.5) we include one faulty battery, and in the second two faulty
batteries:

Ene#
{f0,f1}

def= (Spl ‖ Ene(1) ‖ Ene(2)
{f0,f1} ‖ Det) \A

Energiz#
{f0,f1}

def= (Spl ‖ Ene(1)
{f0,f1} ‖ Ene(2)

{f0,f1} ‖ Det) \A

whereA = {get1, get2, ret1,0, ret1,1, ret2,0, ret2,1, ack}.

Let us now consider the following∀∧MC formula expressing the safety property “in any run,
actionfail never occurs”

φ
def= νX.([fail]ff ∧ [−]X) (3.6.6)

Equivalently, we can consider its equational versionX =ν ([fail]ff ∧ [−]X). We want to
prove that property (3.6.6) holds onEne#{f0, f1} even in case of faults. The scenario of analysis
is:

∀F{f0,f1} ∈ E{f0,f1}, (Ene#
{f0,f1} ‖ F{f0,f1}) \ {f0, f1} |= φ (3.6.7)
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Figure 3.5: The flow diagram of the (candidate) fault-tolerant version of the battery,Ene#
{f0,f1}.

Actions in brackets are internal actions.
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Figure 3.6: The minimum automata weak-bisimilar toEne#
{f0,f1}.

Here, to keep the size of the model small, and the analysis tractable, we use the minimum
process weak bisimilar toEne#

{f0,f1}, reported in Figure 3.6. The use of a weakly bisimilar process
here is justified by the fact that we are analyzing fault-tolerance at the abstraction level of an ex-
ternal observer. This means also that properties are intended in their observational-based interpre-
tation; the equivalence of the analysis is so preserved. The partial evaluation,φ//{f0,f1} Ene#

{f0,f1}
produces the following formula:

φ//{f0,f1} Ene#
{f0,f1} = (X0 =ν [fail]ff ∧ ([−F]X0 ∧X1)

(X1 =ν [fail]ff ∧ ([−F]X1 ∧X2 ∧ [f0, f1]X3)
(X2 =ν [fail]ff ∧ ([−F]X2 ∧ [f0, f1]X3))
(X3 =ν [fail]ff ∧ ([−F]X3 ∧X0)

(3.6.8)

whereF = {f0, f1, f1, f0}.
If we want to answer to the question “for every environment does the energizer satisfy the

formulaφ” we have to check the validity of formula (3.6.8). With the theory we described, this
can be done in linear time. Let us observe that the result in [120] (i.e.,that the satisfiability problem
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for µ-calculus disjunctive formulas can be solved in linear time) is not still directly applicable. For
using it, we need to answer (3.6.7) by checking the satisfiability for the complement of formula
φ//{f0,f1} Ene#

{f0,f1}, which proves to be exactly disjunctive in the sense of Definition 3.6.8.

3.7 Background on Observational Properties

This section opens the second part of the chapter, where we characterize fault-tolerance in terms
of GNDC. First, we summarize the basic background to understand the GNDC characterization of
fault-tolerance. In Section 3.7.1 we recalls the notion of observational equivalences among CCS
processes. In Section 3.7.2 we summarise the definitions of NDC, BNDC, SNNI, BSNNI, and
SBSNNI; these definitions formalize in CCS basic non-interference properties.

Later, in Section 3.8 we present our characterization of fault-tolerance in the GNDC, and we
show how to re-use, in fault-tolerance strategies analysis techniques proper of the non-interference.

3.7.1 Observational Equivalences among Processes

Properties over a system model can be expressed also by comparing its behavior with that of an-
other model. As we have done in Section 3.5.3, we consider the case in which an external observer
cannot seeτ actions; hence, actionsτ are abstracted from our definition of process behavior. We
usetrace equivalenceandweak bisimulation[159, 83] as binary relations to compare the behav-
ior of two processes. These relations represent two different notions of observational equivalence
among processes. Informally, the former states that the sets of traces of two trace equivalent
processes appear the same to an external observer; the latter affirms that two weakly bisimilar
processes share also the branching structure of their labelled transition systems.

Since we focus on observable actions, both previous relations implicitly refer to the observable
transition

a=⇒, defined in Section 3.5.3. We now recall the formal definition of trace equivalence
and weak bisimulation from [83]:

Definition 3.7.1 Let ã = a1 . . . an ∈ Act∗ be a sequence of actions. We writeP
ã=⇒ P ′ if and

only if there existP1, . . . , Pn ∈ E such thatP
a1=⇒ P1

a2=⇒ . . .
an=⇒ Pn. LetT(P ) = {ã ∈ Act∗ :

∃P ′, P
ã=⇒ P ′} be the set of traces associated to a processP . We have that a CCS processQ can

execute all the traces of a CCS processP (writtenP ≤trace Q) if and only ifT(P ) ⊆ T(Q). Two
processesP andQ are said to betrace equivalent(writtenP ≈t Q) if and only ifP ≤trace Q and
Q ≤trace P .

Remark 3.7.2 Relation≈t can be defined also as≤trace ∩(≤trace)−1.

The general notion of bisimulation [158] consists of a mutual step-by-step simulation: given
two processesP andQ whenP executes a certain action moving toP ′ thenQ must be able to
simulate the single step by executing the same action and moving to a termQ′ which is again
bisimilar toP ′, and vice-versa. A weak bisimulation is a bisimulation which does not care about
internalτ actions.

We writeP
ba=⇒ P ′ for P

a=⇒ P ′ if a ∈ Act and forP ( τ−→)∗P ′ if a = τ . Note thatP
bτ=⇒ P ′

means thatP evolves inP ′ with zero or moreτ .
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Definition 3.7.3 A relationR on E × E is a weak bisimulationif for each(P,Q) ∈ R and for
eacha ∈ Actτ :

if P
a−→ P ′ then ∃Q′ : Q

ba=⇒ Q′ and (P ′, Q′) ∈ R

if Q
a−→ Q′ then ∃P ′ : P

ba=⇒ P ′ and (P ′, Q′) ∈ R

Two processesP andQ areweakly bisimilar(writtenP ≈ Q) if a weak bisimulation relation
R exists such that(P,Q) ∈ R.

Remark 3.7.4 P ≈ Q impliesP ≈t Q [83].

Weak bisimulation is able to detect most of the safety properties we use in this chapter, such
as fail safe, fail silent, fail stop, and fault-tolerance. Some liveness properties, such as deadlock
freedom, can be caught too; instead, the use of weak bisimulation does not allow to distinguish
between deadlocks and livelocks [37].

3.7.2 Information Flow and Non Interference Properties

Information flow properties have been introduced to study and control flow of information among
different entities. Many information flow properties have been uniformly formalized in a CCS-
like process algebraic setting [80, 81]. The common intuition behind these properties is strictly
related to the classic notion of non-interference [101], which aims to control the information flow
between two levels of user, low and high. Basically, non-interference says “no low level user is
able to deduct anything about the activity of a high level user”. Non-interference properties have
been also restated in terms of network security [85], where high users represent network intruders,
and low level users model cryptographic protocols.

Among the many formalizations of non-interference properties we are interested in theNon
Deducibility on Compositions(NDC, for short), expressed in CCS as follows3:

P ∈ NDC iff ∀X ∈ EH : (P ‖ X) \H ≈t P \H (3.7.1)

In (3.7.1)EH, whereH ⊂ Act is the set of all processes whose sort is the set of high actions.
The NDC is defined in terms of a trace equivalence. The version of NDC that uses weak bisimula-
tion, instead of trace equivalence, is called bisimulation-based NDC (in short, BNDC). Properties
NDC and BNDC (we write (B)NDC when we do not want to distinguish between them) can be
read as “no high level activity can change the low level observational behavior”. In fact, in (3.7.1)
P \H exhibits only the low level behavior ofP , while (P ‖ X) \H is the low level behavior of
P ‖ X.

Remark 3.7.5 From the informal reading of (B)NDC we can foresee its reading in fault-tolerance:
“no faulty environment (high level activity) can change the fault-tolerant system (low level) be-
havior”.

A serious obstacle to the verification of (B)NDC is the universal quantification over all the
possibleX ∈ EH. In [83] two possible solutions are suggested and studied:

3Indeed, in [80] NDC has been originally formalized in SPA (Security Process Algebra) which is basically CCS
where the set of actions are partitioned into the setsH andL of high and low actions.
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(Solution A) to define a most powerful enemy (with respect to a behavioral equivalence relation)
in such a way that the universal quantification over all possible enemies can be removed in
favor of a single check against the most powerful enemy.

(Solution B) to prove other properties overP , stronger than (B)NDC, that do not require any
quantification.

Solution A, is based on the following definition and proposition.

Definition 3.7.6 A relation over processes,/, is aprecongruencewith respect to the CCS opera-
tors‖ and\ if the following property holds, for allP,Q,X ∈ E andA ⊆ Act :

P / Q implies(P ‖ X) \A / (Q ‖ X) \A

The following results holds for precongruences [86, 85]:

Proposition 3.7.7≤trace is a precongruence with respect to the CCS operators‖ and\.

Proposition 3.7.8 Let be/ a precongruence with respect to‖ and\. If there exists two processes
Top ∈ EH such that for every processX ∈ EH we haveX / Top, then

P ∈ NDC / iff (P ‖ Top) \H / P \H

In Proposition 3.7.8 we have used a generalized version of the NDC, where a generic precon-
gruence/ is used instead of the trace equivalence≈t. Proposition 3.7.8 implies also the following
corollary about the congruence relation induced by a precongruence/ [85]:

Corollary 3.7.9 Let/ be a precongruence with respect to‖ and\, and let∼def= /∩ (/)−1. If there
exists two processesBot ,Top ∈ EH such that for every processX ∈ EH we haveBot / X /Top,
then

P ∈ NDC∼ iff (P ‖ Bot) \H ∼ (P ‖ Top) \H ∼ P \H

In summary, solution A is based on the existence of a most powerful processTop. If we can
find a processTop such that∀X ∈ EH, X / Top, then checking NDC againstTop is necessary
and sufficient for checking NDC against allX in EH: the quantification is removed in favor of
single check against the (albeit huge) processTop.

Solution B exploits the following SNNI (acronym for, Strong Non-deterministic Non Interfer-
ence) property:

P ∈ SNNI iff P \H ≈t P/H (3.7.2)

Here/ is the CCS hide operator [83]:P/H is the processP where all actions inH ∪ H are
replaced by aτ action. SNNI is defined in terms of a trace equivalence; the version using weak
bisimulation is called Bisimulation-based SNNI (in short, BSNNI).

Remark 3.7.10 SNNI and BSNNI can be checked by exploiting only local conditions. No uni-
versal quantification overEH is required.
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Another property of interest is the following SBSNNI [83] (Strong BSNNI):

P ∈ SBSNNI iff ∀P ′ ∈ Der(P ) : P ′ ∈ BSNNI (3.7.3)

Informally P enjoys SBSNNI if anyP ′ in the derivative set ofP enjoys BSNNI. Note that if
P is finite state, theDer(P ) is finite as well, and SBSNNI can be checked by performing a finite
number of BSNNI checks. Moreover, SBSNNI enjoys compositionality with respect to the CCS‖
and\ operators:

Proposition 3.7.11 P,Q ∈ SBSNNI implies (P ‖ Q) \H ∈ SBSNNI

Finally, the following proposition holds [83]:

Proposition 3.7.12 The following relations between NDC, BNDC, SNNI, and SBSNNI hold:

• SNNI = NDC

• SBSNNI ⊂ BNDC

SNNI is a sufficient and necessary condition for NDC. We can checkP ∈ SNNI instead of
P ∈ NDC , and checking SNNI requires a test only involving local information inP .

SBSNNI is a sufficient condition for BNDC. We can checkP ∈ SBSNNI to understand if
P ∈ BNDC . SBSNNI is easily verifiable ifP is finite state: it requires to check BSNNI – check
that requires only local information – over the finite set of derivatives ofP . Moreover, the SBSNNI
is compositional: we can reduce the combinatorial explosion due to the parallel composition by
checking it directly onP subsystems.

3.8 GNDC Characterization and Analysis of Fault-Tolerant

This section introduces GNDC basic ideas and its application in fault tolerance analysis. From
Section 3.2 we know that a GNDC property has the following general form:

P ∈ GNDCα
/ iff ∀X ∈ EH : (P ‖ X) \H / α(P )

This scheme is general enough to capture a wide class of security property definitions. For
example, more specific security properties such as the BNDC and the NDC, can be subsumed as
GNDC properties [85]. We instantiate fault-tolerance in GNDC, in three steps.

The first step requires to specify whatP andEH are in this context: the former, is the process
P#

F obtained by following the uniform modeling framework described in Section 3.3; the latter,

that isEH, is the set of all faulty environment,EF. We recall from Definition 3.3.2 thatEF
def= {X |

Sort(X) ⊆ F ∪ {τ}}. Then the general GNDC scheme we propose for fault-tolerance, is:

Definition 3.8.1 (GNDC Characterization of Fault-Tolerance)

P#
F ∈ GNDCα

/ iff ∀F ∈ EF : (P#
F ‖ F ) \ F / α(P#

F ) (3.8.1)

Remark 3.8.2 The separation between the system model and the environment we made in Section
3.4.1, allows us to leaveF unspecified and to let it range overEF.
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The second step requiresα(P#
F ) to be some basic property of fault-tolerance. In Section 3.8.1

we will see how to express properties like fail safe, fail silent, fail stop, and fault-tolerance over
our test cases models.

The third and last step for the instantiation of GNDC in fault tolerance, concerns understanding
what families of equivalences/ are suitable for the analysis of such properties. This will be
discussed in Section 3.6.2, where we writeP instead ofP#

F when no explicit reference to the
specification framework of Section 3.3 is required.

3.8.1 Fault-Tolerance Properties as Instances of GNDC

In this section we show how to express fail stop, fail silent, fail safe and fault-tolerance in the
GNDC scheme. Generally speaking these properties are modeled via a modified versionα(P#

F ),
of P#

F , representing the expected behavior with respect to the property under examination. In the
following we treat each property separately, and we express them over our running example. The
definitions of fail stop, fail silent, fail safe and fault-tolerance are taken from [19].

Fail Stop. A model of a systemP#
F is expected to befail stop if, in case of faults, it switches into

a stop state.

In this case the model exhibiting a fail stop behavior,e.g.,the processαstop(P
#
F ), is built using

the following ideas. Fault actions inP#
F are abstracted away and replaced by silent actions; then,

expected behavior of the system is either able to manage the fault without showing faulty behavior,
or to stop.

Example 3.8.3 Let us consider the fault-tolerant modelBattery#
{f0,f1} introduced in Example

3.4.1. A fail stop behavior model is, for example, the processαstop(Battery#
{f0,f1}), writtenαstop

for short:

αstop
def= get.(τ.ret.αstop + τ.0) (3.8.2)

In (3.8.2) we model the idea that after having received a request of energy (actionget) in case
of any fault (here hidden and represented by the silent actionτ ) our fault-tolerant battery is either
able to satisfy the request and produce a valid unit of energy (actionret), or it stops by behaving
as the stuck process0.

Let us assume the battery is in an environment that always injects all the possible faults, that
is F∗

{f0,f1}
def= f0.F

∗
{f0,f1} + f1.F

∗
{f0,f1}. By using the tool CWB [55], for example, we can prove

that

(Battery#
{f0,f1} ‖ F∗

{f0,f1}) \ {f0, f1} 6≈ αstop (3.8.3)

From (3.8.3) we can conclude thatBattery#
{f0,f1} 6∈ GNDCαstop

≈ .

Fail Safe. A model of a systemP#
F is expected to befail safeif in case of faults it switches to a

safe state.
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In this case the model depicting fail safe behaviore.g., the processαsafe(P
#
F ) can be built

starting fromP#
F following a procedure similar to the previous case. Faults are abstracted away

and represented by silent actions. Next the system is either able to manage the faults without
showing faulty behavior, or it shows a behavior that is considered safe,e.g.,any fault is detected.

The criteria describing a safe behavior are not clearly definable at this level of abstraction;
consequently the formulation of this class of properties is too general in GNDC. In our opinion
this is due to the fact that the wordfail safesays nothing about what behavior is considered safe for
the system. In fact, this is the feedback we expect to get from using GNDC: formulating properties
in GNDC helps us to understand the degree of formality in the definition of a property itself.

Example 3.8.4 Let us consider the CCS modelEnergiz#
{f0,f1} introduced in Section 3.6.4. A

possible fail safe behavior model,αsafe(Energiz#
{f0,f1}) (in short,αsafe ), is:

αsafe
def= get.(τ.ret.αsafe + τ.fail.) (3.8.4)

In (3.8.4) we model as safe behavior the fact that the detector flags that no battery has produced
valid energy with the external actionfail. So after having received a request of energy (action
get) and after any fault occurrence, our model is able either to manage the fault and produce a
valid unit of energy (actionret) or it signals that a failure happened (actionfail). Again using
the CWB we can verify that:

(Energiz#
{f0,f1} ‖ F∗

{f0,f1}) \ {f0, f1} ≈ αsafe (3.8.5)

HereF∗
{f0,f1} is the faulty environment representing our fault assumptions. From (3.8.5) we con-

clude that our fault-tolerant model satisfies the fail safe property under the assumption that faults
happen as expressed inF∗

{f0,f1}.

In Section 3.8.2 we will discuss when, for suitable process relation/, (Energiz#
{f0,f1} ‖

F∗
{f0,f1}) \ {f0, f1} / αsafe is a sufficient condition for concluding thatBat#

{f0,f1} ∈ GNDCαsafe
/ .

Fail Silent. A model of a systemP#
F is expected to be fail silent if a fault is ignored.

In this caseα(P#
F ) can be built starting fromP#

F following the idea that it is able to manage
its faults without showing failure. Again occurrences of faults are abstracted away and represented
by silent actions.

Example 3.8.5 Let us consider the modelBattery#
{f0,f1} introduced in Example 3.4.1. A model

of fail silent behavior,αsilent(Battery#
{f0,f1}) (in short,αsilent ), is:

αsilent
def= get.(τ.ret.αsilent + τ.αsilent) (3.8.6)

In (3.8.6) fail silent behavior is intended as the ability of the system of neither stopping nor show-
ing unpredictable behavior. In case of fault, it becomes ready again to receive a new request for
energy. So after having received a request for energy (actionget), our model is able either to
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manage the fault and produce a valid unit of energy (actionret) or it is ready to receive a new
energy request. Again using the CWB we can verify that:

(Battery#
{f0,f1} ‖ F∗

{f0,f1}) \ {f0, f1} ≈ αsilent (3.8.7)

Formula (3.8.7) implies that our fault-tolerant model satisfies the fail silent property under the
assumption that faults happen as expressed inF∗

{f0,f1}. For some other class of equivalences/,

this also implies thatBattery#
{f0,f1} ∈ GNDCαsilent

/ , as explained in Section 3.8.2.

Fault-Tolerance. A model of a systemP#
F is expected to be fault-tolerant if its behavior is ob-

servationally equal to the behavior of a module that does not fail at all. In this case then
αft(P

#
F ) = P#

F \ F, that is fault-tolerant systems that can never execute any fault action.

Example 3.8.6 In this last example we consider two different versions of fault tolerant models:
the firstBat#

{f0,f1} is the fault tolerant candidate model introduced in Example 3.4.1. The second

model is the modified versionEne#
{f0,f1} introduced in Example 3.8.4. Fault tolerant behavior for

Bat#
{f0,f1} andEne#

{f0,f1} is formally defined by the following CCS processes:

αft
def= αft(Bat#

{f0,f1}) = Bat#
{f0,f1} \ {f0, f1} (3.8.8)

α′ft
def= αft(Ene#

{f0,f1}) = Ene#
{f0,f1} \ {f0, f1} (3.8.9)

In both (3.8.8) and (3.8.9) the expected fault-tolerant behavior is the same behavior as resp. models
Bat#

{f0,f1} andEne#
{f0,f1} where the fault actions are indeed not allowed to happen. By using the

CWB we verify that:

(Bat#
{f0,f1} ‖ F∗

{f0,f1}) \ {f0, f1} ≈ αft (3.8.10)

(Ene#
{f0,f1} ‖ F∗

{f0,f1}) \ {f0, f1} ≈ α′ft (3.8.11)

Remark 3.8.7 Observe that the GNDC instance where/ is≈, and whereα(P#
F ) is P#

F \ F (i.e.,
what it will be using our “fault-tolerance” property calledαft in Section 3.8.1), is BNDC re-stated
in our framework.

In fact

P#
F ∈ GNDCαft(P

#
F )

≈ iff ∀F ∈ EF : (P#
F ‖ F ) \ F ≈ P#

F \ F (3.8.12)

As a final observation we note that BNDC is not compositional with respect to parallel com-
position (see [146]), that is fromP, P ′ ∈ BNDC it cannot be deduced thatP ‖ P ′ ∈ BNDC .

Anyway there are bisimulation based-equivalences that are compositional and implyBNDC ,
so that they can be used to prove a sufficient condition for fault-tolerance, and the formulation of
fault-tolerance given in (3.8.12) results are attractive from this point of view. An example of these
properties is SBSNNI introduced in Section 3.7.1.
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3.8.2 Other Observational Relations in GNDC for Fault-Tolerance

In the previous section we have used weak bisimulation when formalizing the instances of fault-
tolerance properties in the GNDC; weak bisimulation is useful to detect most of the properties
defined so far. However in practical situations we expect that many systems will be fault-tolerant
under weaker conditions. As long as the system response is “good enough”, it may not be a
problem if the existence of faults can be deduced.

For example, the definition of fault-tolerance given in (3.8.12) is too strong and prevents the
observer to deduce thatanyfaults have occurred.

If we exclude deadlock detection, for all the other safety properties defined in this chapter
the ability to distinguish the branching structures is not required. In fact safety properties do not
depend on the (branching) path leading to a fault.

This allows us to resort to a weaker form of observational equivalence such astrace equiva-
lenceandsimulation. This has also, within GNDC theory, a positive effect on compositionality
and on avoiding the universal quantification of fault injectors over the faulty environment. In the
following we writeP ‖F Q as an abbreviation for(P ‖ Q) \ F, and we refer to a genericα( )
function. Obviously the results will also hold for allα( )’s considered so far.

Most General (Faulty) Environment

The possibility of avoiding universal quantifier in expression (3.8.1) is based on the theory of
precongruences whose results we introduced in Section 3.7.8. These results can be restated in
terms of the GNDC, also:

Proposition 3.8.8 ([86]) Let be/ a precongruence with respect to‖F. If there exists a process
Top ∈ EF such that for every processX ∈ EF we haveX / Top, then:

P ∈ GNDCα
/ iff (P ‖F Top) / α(P )

In particular, if the hypothesis of the proposition above holds then it is sufficient to check that
α(P ) is satisfied whenP is composed with themost general environment, Top. In our fault-
tolerance analysis context it would permit to make only one single check, in order to prove that a
fault-tolerance property holds in every fault scenario. We have also the following corollary for the
congruence induced by/:

Corollary 3.8.9 ([86]) Let / to be a precongruence with respect to‖F and let./ be defined as
/ ∩ /−1. If there exist two processesBot ,Top ∈ EF such that for every processX ∈ EF we have
Bot / X / Top then

P ∈ GNDCα
./ iff (P ‖F Bot) ./ (P ‖F Top) ./ α(P )

We show that whenever we are interested in properties based on the notion of trace equiva-
lence, Proposition 3.7.8 and Corollary 3.8.9 hold.

In [86, 85] is reported the following proposition stating that≤trace is a precongruence with
respect to CCS operators.

Proposition 3.8.10≤trace is a precongruence with respect to‖F
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In addition we can prove the existence of the most general (failing) environment, and provide
its description. Let us consider the following process:

TopF =
∑
f∈F

f.TopF + f.TopF (3.8.13)

It is straightforward to demonstrate that:

Proposition 3.8.11 If X ∈ EF thenX ≤trace TopF.

Proof. We prove thatR
def= {(X ′,TopF) | X ∈ Der(X ′) ∩ EF} is a (weak) simulation [158] (see

also Definition 3.8.12) containing the pair(X,TopF). As the simulation preorder is finer that the
trace preorder the thesis follows. There are three possible cases:

• X ′ f−→ X ′′, with X ′′ ∈ EF, andTopF f−→ TopF is derivable; hence,(X ′′,TopF) ∈ R.

• X ′ f−→ X ′′, with X ′′ ∈ EF, andTopF f−→ TopF is derivable; hence,(X ′′,TopF) ∈ R.

• X ′ τ−→ X ′′, with X ′′ ∈ EF, andTopF bτ=⇒ TopF is derivable; hence,(X ′′,TopF) ∈ R.

So we have proved that there exists a most general environment with respect to≤trace. A
similar conclusion can be obtained when the followingsimulationrelation is considered:

Definition 3.8.12 ([160]) Let S a binary relation onE × E. ThenS is said to be asimulationif

for each(P,Q) ∈ S and for eacha ∈ Actτ , if P
a−→ P ′ then there existsQ′ such thatQ

ba=⇒ Q′

and(P ′, Q′) ∈ S.

We writeQ ≤sim P if there exists a simulationS such that(P,Q) ∈ S. It is easy to prove that
≤sim is a precongruence with respect to CCS operators and that it admits the same most general
environment in (3.8.13).

Proposition 3.8.13

(1) ≤sim is a precongruence with respect to‖F

(2) if X ∈ EF thenX ≤sim TopF.

Proof of case 1.Let consider the followingR
def= {(P ‖F X, Q ‖F X) | P,Q,X ∈ E,P ≤sim

Q}. We show that is a simulation relation. The only interesting case is that involvingτ within

a communication: let assume thatP ‖F X
τ−→ P ′ ‖F X ′, becauseP

a−→ P ′ andX
a−→ X ′

with a ∈ Act . Because ofP ≤sim Q, we have thatQ
ba=⇒ Q′, and the transitionQ ‖F X

bτ=⇒
Q′ ‖F X ′ is derivable; moreoverP ′ ≤trace Q′ and hence(P ′ ‖F X ′, Q′ ‖F X ′) ∈ R. The other
(simpler) cases are listed as follows:

• P ‖F X
a−→ P ′ ‖F X. This happens fora 6∈ F ∪ F, if P

a−→ P ′ andX 6 a−→. Because

of P ≤sim Q thenQ
ba=⇒ Q′ and soQ ‖F X

ba=⇒ Q′ ‖F X is derivable. Moreover,
P ′ ≤trace Q′ and hence(P ′ ‖F X, Q′ ‖F X) ∈ R.
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• P ‖F X
a−→ P ‖F X ′. This happens fora 6∈ F ∪ F, if X

a−→ X andP 6 a−→. Then
Q ‖F X

a−→ Q ‖F X ′ is derivable, and(P ‖F X ′, Q ‖F X ′) ∈ R.

Proof of case 2.Directly from the proof of Proposition 3.8.11.

As a conclusion, when≤trace and≤sim are used as process relations, the check thatP satisfies
GNDC properties can be carried out only against the “most general (faulty) environment”.

3.8.3 Compositional Analysis of Fault-Tolerance

This section illustrates that, when≤trace and≤sim are used as process preorders in our analysis
scheme, compositional proof rules for establishing that a system enjoys GNDC can be applied.
Compositionality is a desirable property in verification to infer a global fault-tolerance exploiting
local fault-tolerance results. Let us show it with a simple example, obtained with the following
processes:

Torch def= get(ret.flash.0 + fail.no flash.0)
S

def= (Torch ‖ Ene{f0,f1}
#) \ {get, ret}

This example represents the behavior of a flashing torchTorch using the fault-tolerant ener-
gizer of Example 3.8.6. The energizer is expected to furnish one unit of energy, even in case of
fault. The flashing torchTorch emits aflash action whenever it receives exactly one unit of en-
ergy,no flash otherwise. What an observer watching the systemS, obtained by composing the
torch and the energizer, expects is to see onlyflash actions. (Recall that the systemEne{f0,f1}

#

provides onlyret.) This safety property can be formalized as:

S ∈ GNDCα(S)
≤sim

iff ∀Ff ∈ E{f0,f1} : S ‖{f0,f1} F{f0,f1} ≤sim α(S) def= flash.0

Here the≤sim relation has been used. In this case the expected behavior (given throughα(S))
is that one unit of energy is furnished (and so oneflash is observed). It is easy to convince us
that the given specification of the system enjoys our safety property. Let us now consider a system
Sn obtained by composing (in parallel)n instances of the systemS and a similar safety property,
on theSn, that reflects the question “only at mostn flashes are observed”. In our scheme this is
equivalent to prove that:

Sn ∈ GNDCα(S)n

≤sim
iff

∀F{f0,f1} ∈ E{f0,f1} : Sn ‖{f0,f1} F{f0,f1} ≤sim α(S)n def= α(S) ‖ . . . ‖ α(S)︸ ︷︷ ︸
n

Compositionality would made the previous statement true, for any fixedn, without the need
of any additional check. In the following we prove that it is really the case when≤trace or≤sim

are used. The following results hold:

Proposition 3.8.14 Let P1 and P2 be two processes such thatPi ∈ GNDCα(Pi)
≤trace

for i = 1, 2.
Then
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• P1 ‖ P2 ∈ GNDCα(P1)‖α(P2)
≤trace

• P1 ‖ P2 ∈ GNDCα(P1)‖α(P2)
≤sim

Proof. Exploiting the existence of the most general environmentTop, and the fact that≤trace

(resp.≤sim) is a precongruence.

Remark 3.8.15 We affirm that global fault-tolerance can be deduced from local fault-tolerance
in Section 3.8.3. Here, by local fault-tolerance we mean the property enjoyed by the formal
specification of sub-systems which are required to be fault-tolerant on their own. By global fault-
tolerance we mean the property enjoyed by the specification of a system which is obtained by the
composition of such sub-systemswithout the adjoint of any other global modules, such as a voter.
Obviously we do not expect compositionality to hold in such cases.

3.9 Conclusions

The general contribution of this chapter is that the theory and tools of security and security protocol
analysis can be profitably applied in fault-tolerant analysis. We start showing how a fault-tolerant
(candidate) system may be formalized using CCS. The formal specification is built following a
uniform modeling scheme requiring both the failing behavior (with respect to fault occurrences)
and fault-recovering procedures to be specified. Faults are represented by specific actions in the
system model, that a fault injector environment is able to activate.

This general framework has two main advantages. Firstly, it makes a logical characterization
of fault-tolerance possible: the fault tolerant verification problem, with respect to a given prop-
erty, is formulated as a module checking problem [126],i.e., as the verification problem of an
open system acting in anunspecifiedfault injecting environment. Secondly, it allows the formal-
ization of some fault-tolerance properties within the GNDC framework. The consequence of our
logical characterization of fault-tolerance is that, by partial model checking, the fault-tolerant ver-
ification problem may be expressed as a validity problem in theµ-calculus. In this way, general
validation tools and proof techniques can be exploited. For a more efficient (and tailored) analysis
we propose, for example, the use of universal and conjunctiveµ-calculus formulas whose valid-
ity problem is solvable in time linear to the size of the formula (obtained after the partial model
checking step). A consequence of the characterization of fault-tolerance in the GNDC scheme,
is that we benefit from various theoretical results and analysis techniques from security analy-
sis, where GNDC has been introduced. Specifically, when either a trace relation or a simulation
relation are used, GNDC theory assures that efficient analysis procedures exist: fault-tolerance
benefits both of a static characterization of its properties, and of compositionality proofs. Another
advantage, is the possibility of comparing different fault-tolerance properties within GNDC, as is
already done for security properties [83, 81, 85]. Potentially, this is a preliminary step towards a
formal and uniform taxonomy of fault tolerant and security properties. For example, we show that
the fault-tolerance property is formalized as the instance of GNDC known as BNDC. This means
that fault-tolerance is precisely characterized as a non-interference property [204]. An immediate
consequence is that available tools for checking BNDC [146] can be used to check fault tolerance.

Fail safe and fail silent do not enjoy such a precise classification in terms of GNDC properties
known in security, although they are expressible in our running examples. From this formulation
effort it emerges that fail safe is a category of properties parametric in the notion of safe behavior,
and that its informal definition is too general to be unambiguously expressed in GNDC. This
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suggests that only a better classification of fail safeness can lead to a more precise formulation.
Similarly we managed to characterize completely fail stop in one of our examples, but here also a
general characterization is still missing.
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SPYDER: a Model Checker for Security
Protocols

“The system does not communicate with the
outside, so it cannot be influenced remotely. The
computer system is secure” (Head engineer John
Arnold inJurassic Park, Crichton, 1991)

Abstract

This chapter presents a model checking environment for security protocols. A protocol is
described as a term of a process algebra consisting of the parallel composition of a finite
number of, communicating and finitely behaviored, processes. Each process represents an
instance of a protocol role. The intruder is implicitly modeled in the semantics of the calculus
as an environment controlling all the communication events.

Security properties are written as formulas of a linear-time temporal logic. The model
checker runs a depth first search algorithm that tests the satisfiability of a formula over all the
traces, generated on-the fly, from a typed version of protocol.

4.1 Introduction

Past experience has shown how formal methods can be successfully applied to the analysis of se-
curity protocols (e.g.,see [40, 172, 77, 3, 102]). For example, secrecy, integrity and authenticity
properties [5] can be verified over protocol specifications written in the spi-calculus [7], a process
algebra derived from theπ-calculus [162] enriched with operators to encrypt and decrypt mes-
sages, via symbolic trace analysis [71, 12, 29, 79, 30] or type checking over typed versions on the
calculus [3, 102].

Here we propose alogic-based model-checking[48] approach to the verification of security
protocols. Protocols are expressed over a typed version of a spi-calculus dialect, which we call
the spy-calculus. Properties are written as logic formulas whose satisfiability is checked over
temporal models (i.e., labelled transition systems) which constitute the operational semantics of
thespy-calculus.

Model-checking applied to process algebras close to the spi-calculus was new when the paper
[134](on which this chapter is based) appeared, although its use in protocol security analysis was
already known (e.g.,see [155, 136, 163, 182, 53, 92]).

The originality of the approach will be explained using the illustration of Figure 4.1. Let us
suppose to have a finitespy-calculusterm Z representing a finite number of runs of a protocol
involving a finite number of roles, and a security propertyf to be checked on it. The semantics
of Z, a labelled transition systemsLTS, is generally infinite-state, because of the infinite number
of messages that each role, running the protocol, can receive from a potential intruder. In fact the
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intruder, following the Dolev-Yao [69] model, is potentially able to compose messages of infinite
length and to deliver them to honest participants in order to subvert the protocol goal.

To reduce the number of messages received by the honest agents to a finite number, our model
checker, SPYDER, checks the satisfiability off over a typed version of the protocolCSZ

(Z). The
use of types allows us to filter out, during the execution of input actions, those messages from
the intruder that do not match the required type. The resulting model of the protocol (LTS[ in
Figure) is proved to be finite-state in this case. Moreover in SPYDER, types are provided through
the definition of a ”typing” functionCSZ

introduced at run-time. In this way typed versions are
not fixed a priori and a user can obtain different typed versions of same untyped protocol model,
explore different partitions of the whole state space, and consequently increase the confidence that
the results of the analysis hold over the infinite model.

An additional element of flexibility comes from the use of a logic as a language to express
security properties. The logic used by SPYDER has been shown to be sufficiently expressive to
model a large class of properties for example secrecy, authenticity but also some weak form of
privacy, anonymity, and non-repudiation (see [51, 52, 53] for details).

The proposed approach has both advantages and disadvantages. We have already noticed that
having a logic introduces flexibility in expressing security properties, especially the non-standard
ones such as weak forms of privacy or anonymity. In other model checking approaches, such as
for example Casper (which uses the model-checker FDR) [139, 70] the formalization of properties
with the exception of secrecy and integrity does not seem an easy task. The same can be said about
the tools NRL [155] and Murφ [163].

On the other hand we cannot cope with infinite-state models, that is with an unbounded net-
work. Some model checkers, for example NRL [155], can. Others, can deduce results over un-
bounded networks by analyzing bounded versions; for example work on data independence analy-
sis and CSP [36] has shown that FDR [2] (so also Casper [139]) can be used to infer security
results over protocols managing infinite nounces, keysetc. from an analysis performed over a
protocol that uses only a finite set of them. Our approach can help in reaching similar but weaker,
results: by the definition of different typing transformations (e.g.,CSZ

, . . . ,C′′′SZ
in Figure) and by

analyzing the related finite-state models the confidence that the same results hold over the infinite
model can be increased. In fact, as a theoretical result we prove that an attacki.e., a trace that
does not satisfy a formulaf over a finite model of a typed version of a protocol (6|= f checked
overLTS[ in Figure) always implies the presence of the same attack over the model of the corre-
sponding untyped version of the protocol (6|= f checked overLTS in Figure). This means that our
framework is sound. Generally the existence of an attack over the untyped version of a protocol
does not imply the same attack over aspecifictyped version, but we prove that a transformation
(e.g.,C′SZ

in figure) always exists (even though we will not be able to build it without knowing the
attack) such that the resulting typed version (C′SZ

(Z) in Figure) shows the same flaw. This implies
that our framework is also complete.

The rest of the chapter is organized as follows. Section 4.2 and Section 4.3 present the syntax
and semantics of our calculus and the logic used to specify properties. Section 4.4 introduces
its typed version which admits a finite-state labelled transition semantics. Section 4.4.1 and Sec-
tion 4.5 define the class of functions that are used to obtain typed protocols starting from a generic
specification. Moreover in those sections the main results of this chapter are proved. Section 4.5.1
formally describes the model checker algorithm whose correctness is based on the theory previ-
ously developed. Section 4.6 concludes. A running example is used throughout the chapter to
illustrate the main ideas of the approach.
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Figure 4.1: The SPYDER environment. A protocol is described as aspy-calculustermZ, while
a property is specified as a logic formulaf . Usually the semantic model ofZ is an infinite state
labelled transition systemLTS. A finite-state modelLTS[ can be obtained from a typed specifi-
cationCSZ

(Z) of the protocol, obtained fromZ and via a typing functionsCSZ
. Different typing

functionsC′′SZ
,C′′′SZ

can be introduced at run-time to obtain different finite models, each repre-
senting a particular partition of the whole infinite state space. IfLTS[ is not a model forf (e.g.,
if LTS[ 6|= f ), neither isLTS. If LTS is not a model forf , there exists aC′SZ

such that the
correspondingLTS′

[ is not a model forf either.
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4.2 Thespy-calculus

This section introduces thespy-calculus. It is a process algebra whose syntax is inspired by the
spi-calculus of Abadi and Gordon in [7].

4.2.1 Syntax

In the language we assume an infinite set of constantsN (names), an infinite set of variablesV

and two binary functions,{ } standing for encryption and〈 , 〉 standing for pairing, respectively.
Moreover, we assume a finite set ofA of labelsa, and a finite setI of integer identifiersi.

The setM of messagesis defined as the collection containing at leastN and such thatM,M ′ ∈
M implies both〈M, M ′〉 ∈ M and{M}M ′ ∈ M. Similarly the setT of termsis the collection
that contains at leastN ∪ V and such thatT, T ′ ∈ T implies both〈T, T ′〉 ∈ T and{T}T ′ ∈ T.
Formally thespy-calculussyntax is defined by the following grammar:

protocols Z ::= Z|||Z ′ | (\N)Z | (i, P )

roles P ::= 0 | a(x).P | a(T ).P | a(T ).P | P + P ′ | (νN)P | [x is T ]P

A protocolZ is the parallel composition of role instances(i, P ). (\N) restricts names inN .
A restricted name is initially privatei.e.,unknown to the intruder. In(\N)Z, N is bound inZ.

Eachrole instance, or agent, is composed of an identifieri and by a process (role)P . In turn,
a role P is either:

1. 0, the process that does nothing;

2. a(x).P , theinput process ready to receive a message which will be bound to the variablex.
A labela is used to distinguish among different input actions;

3. a(T ).P , theoutputprocess ready to send a termT , classified as actiona;

4. a(T ).P , theassertprocess ready to perform anassertionof the termT . Differently from
outputs and inputs, assertions are not communication actions. Assertions are used for ver-
ification purposes only and they act as control flags in the execution of the protocols. As-
sertions were presented first by Woo and Lam in [206] as begin-events and end-events for
specifying protocol authenticity properties;

5. P + P ′, the non-deterministic choice between processesP andP ′;

6. (νN)P , the process that generates a new local nameN , then used withinP ;

7. [xisT ]P , thematchprocess that requires the termT to unify with the contents of a variable
x (possibly binding free variables inT ) in order to proceed asP .

In process(νN)P the nameN is bound inP . In input processa(x).P , the variablex is bound
in P , while in [x is T ]P all the free variables inT are bound inP . We say that a variable, or a
name, is free if it is not bound.

We assume each roleP is always introduced by a defining equationp〈x〉 def
= P wherex is the

tuple of all the free variablesx in P . In that casep〈N〉whereN is a tuple of names, is the same as
P [N/x] i.e., the closed process where each free variablex in x is replaced by the corresponding
nameN in N .
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Before describing an example specification of a protocol in thespy-calculus, let us discuss
some of its characteristics. A protocol consists of a number offiniteandsequentialprocesses. The
use of finite processes avoids problems due to recursive processes, but it suffices to describe the
behavior of a role running a security protocol (e.g.,see [43]). In fact, the specification of a role is
usually a finite sequence of actions.

Some security protocols show their vulnerability only when running over repeated sessions.
So we need to describe more runs of a protocol specification. In thespy-calculus, as usual in
security protocol analysis (e.g.,see [182, 71, 29]), it is possible to model a principal running a finite
number of sessions of the protocol by specifying, for example,k instances,(i1, P ), . . . , (ik, P ),
of the same roleP . We cannot model an unbounded replication of processes, usually written as
!P , because this would lead to infinite runs of a protocol.

In any case limiting the number of runs to be finite is a widely accepted strategy for the model
checking approach to security (e.g.,see [56]), where a finite-state analysis is required. This is the
case in most of the famous model checkers Murφ [163], Brutus [53] or FDR [136], even if some
of them limit the number of steps not at syntax level but only during the analysis. By combining a
limited number of runs and the fact that agents are finite-behaviored, we implicitly are assuming
only a finite number of nounces, keys, process namesetc.. to be involved in a protocol. Again,
this constraint is required in order to have finite-state analysis, although the analysis remains NP-
Complete [114] even under these strict conditions. In [178, 36] Roscoeet al show how, by the
application of data independence techniques, it is possible to reduce the problem of proving the
security of a model where an infinite supply of different nounces, keysetc. is required, to a finite
check where only a finite number of them are indeed involved. These techniques, ad-hoc proved
within the CSP theory, would merit more attention but restating them within our framework is
beyond the scope of this chapter.

To conclude this discussion, we observe that even the use of finite runs and a finite number of
nounces, keys, etc. is not sufficient to obtain finite-state models, for an intruder may still generate
data of an infinite length. We will postpone the discussion about how to cope with this last kind of
infiniteness, till Section 4.5.

Example 4.2.1 As an example of a specification inspy-calculus, let us consider the following key-
exchange protocol, a simplified (in the sense that it focuses on the agreement of a new session key)
version of Needham-Schroeder Shared Key protocol [167] (NSSK). The protocol requires three
roles: two principals,A (the initiator) andB (the responder), and a trusted serverS. Following
the common informal notation, NSSK is described as follows:

1. A → S : A,B

2. S → A : {KAB}KAS
, {A,KAB}KBS

3. A → B : {A,KAB}KBS

Informally, in the protocol,A initiates the communication, by sending a message〈A,B〉 to
the trusted serverS (step 1). With this messageA asksS for a session key thatA can use to secure
communication withB. As a reply,S prepares a message composed of two parts. Both parts
contain the new session keyKAB, created byS (step 2): the first part,{KAB}KAS

, is encrypted
with the keyKAS thatS (already) shares withA (this means that onlyA should be able to decrypt
the message). The second part,{A,KAB}KBS

, is reserved forB, and it is encrypted with the key
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KBS thatS shares withB. Instead of sending it directly toB, S relies onA to deliver the message
to B in step 3. One session of the NSSK protocol is encoded in thespy-calculusas follows:

NSSK
def
=

(\Kas)(\Kbs)(\A)(\B)(\S)

(1, pA〈A,B, S,Kas〉)|||(2, pB〈A,B, S,Kbs〉)
|||(3, pS〈A,B, Kas,Kbs〉)

where

pA〈a, b, s, kas〉
def
= cas(〈a, b〉).cas(x).[x is 〈{x1}kas , x2〉].cab(x2).0

pB〈a, b, s, kbs〉
def
= cab(y).[y is {〈a, y1〉}kbs

].0

pS〈a, b, kas, kbs〉
def
= (νKab)cas(z).[z is 〈a, b〉].cas(〈{Kab}kas , {〈a,Kab〉}kbs

〉).0

Thespy-calculusspecification of the NSSK protocol shows three agent instances, one for each
role in the protocol. Instance(1, pA〈A,B, S,Kas〉) models one session of the processpA. This
is the initiatorA, while (2, pB〈A,B, S,Kbs〉) and(3, pS〈A,B, Kas,Kbs〉) model respectively the
responderB and the trusted serverS.

ProcessA first sends the message〈a, b〉 to S, thenA receives a reply in variablex. Thenx
is analyzed: ifx is indeed a pair whose first part is encrypted with the shared keyKas, then the
second part ofx is stored in variablex2. ThenA sendsx2 to B. Otherwise the system gets stuck.

Three different labelscab, cas and cbs are used to distinguish input/output actions. In this
example keysKas andKbs and the names of participantsA, B andS are restricted, that is hidden
from the initial knowledge of the intruder.

4.2.2 Semantics

Differently from the usual approach taken in process algebras for security (e.g., see [5, 181]),
in our calculus, the intruder is not explicitly described as an additional process. Instead, the
strongest possible intruder,i.e., the Dolev-Yao [69]intruder Ω, will appear in the semantics as an
environmenthaving complete control of any communications. A similar approach has been taken
in [31] where an environment-sensitive semantics is defined.

Assuming such an embedded intruder implies that, instead of symmetric and synchronous
communication via shared channels, our calculus uses asynchronous communications via aunique
and anonymous channel, the intruder/environment (intruder from now on). Moreover, having
a unique public channel implies that whenever a process performs an output, the message will
be given to the intruder, while during an input the message will be retrieved from those in the
intruder’s knowledge (see later for a formal definition)i.e., from those that can be composed by
using the messages already known to the intruder.

An important question to ask at this point is: can the fact of modeling the intruder as an
embedded component cause a loss of power or flexibility? For example in this way we cannot
add new intruder capabilities. We can observe that, firstly, a precise set of capabilities (e.g.,those
used here, see Figure 4.2) has been identified in the literature and proved to be sufficient to catch
the security flaws we will investigate here (e.g.,see [85]); secondly, the semantics of the input
only depends on intruder capabilities, and it is not difficult to extend our calculus in order to be
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parametric with respect to this set. The only constraint we have is that the question ”M belongs
to the intruder knowledge”, whereM is a message, must be decidable (see also later).

In the following we will give all the definitions required by thespy-calculusformal semantics.
We start with the definition ofknowledge:

Definition 4.2.2 (Knowledge) Let W ⊆ M be a finite set of messages. Theknowledgeof W ,
written KS (W ), is the setW ∪ {M : W `∗ M}, where` is the derivation symbol defining the
intruder capabilities in managing messages as given in Figure 4.2.

Here we require that the proof system is such that the questionM ∈ KS (W ) is decidable
and derivable. This is indeed the case for the proof system of Table 4.2 (see [79] for the proof of
decidability). This assumption is needed if we want our model checking algorithm to be effective.

The operational semantics of thespy-calculusis given in terms of a labelled transition system
(LTS, in short). States of the LTS are pairs(G : Z), of global statesandprotocols. A global state
consists of thelocal stateof each agent plus the state of the intruder. In turn, a local state contains
the namep of the role played by the agent, the setW of messages it has received so far, and a
mappingσ from variables to values. Formally:

Definition 4.2.3 (Global State) Let there ben process instances involved in a protocol. Aglobal
stateG is a sequence ofn + 1 local states, where:

• G(0) is the local state of the intruderΩ;

• G(i) is the local state of process instance identified byi, for i = 1, . . . , n.

We writeGlob to indicate the set of all global states.

Definition 4.2.4 (Local State) A local statel, is a triple (p, W, σ) wherep ∈ N is a name,W ⊆
M is a set of messages andσ : V −→M is a function from variables to messages.

Before going on, we give some technical details about the substitutionσ, used in the definition
of a local state. With the symbol⊥ we indicate the functionσ undefined everywhere. We say
thatσ′ is approximated byσ, writtenσ′ w σ whenever the functionσ′ coincides withσ in every
value of the domain whereσ is defined. Moreover we writeσ(x) = σ′(x) if both functions are
undefined atx or coincide inx. σ̂ is the extension ofσ to message terms. The testσ̂(T ) = σ̂(S)
evaluates to true if and only if both functions return the same ground message, false otherwise.

Giving a global stateG, we indicate bypi, Wi, andσi respectively, the items of the local state
G(i), for i = 0, . . . , n. When convenientWΩ will be used instead ofW0. It is worth to underline
that in the operational semantics eachWi andσi has a monotone growth rate along the protocol
execution. This implies that a variable is bound by the first (leftmost) input prefix or matching
operator in which it appears.

The transition rules of the LTS describe how a state(G : Z) evolves as a consequence of an
actionα. An action is identified by the agent identifier,i (the agent that is performing the action),
by the action labela, and (if the action is a visible action) by the messagesM involved in the
action. Formally:

Definition 4.2.5 (Action) An actionα is either: (a)i.a〈M〉 or i.a〈M〉 or i.a〈M〉 meaning that
instancei has executed, respectively an input, output or assertion, labelleda over the message
M ; or (b) τ , the internal action.
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Expanding rules

m ∈W
E∈

W ` m

W ` m W ` k
E{}

W ` {m}k

W ` m W ` m′
E<>

W ` 〈m, m′〉

Shrinking rules

W ` {m}k W ` k
S{}

W ` m

W ` 〈m, m′〉
S<>

W ` m

W ` 〈m, m′〉
S′<>

W ` m′

Figure 4.2: Inference rules defining the derivation symbol`, for the intruder knowledge.W
is a set of initial messages. Among the expanding rules the first says that whatever is inW is
derivable. The second, defines the rule for symmetric encryption and the third, defines the rule
for pair composition. The first shrinking rule defines decryption, whereas the last two define pair
projection.

We writeActτ to indicate the set of all actions. The following definition gives the operational
semantics:

Definition 4.2.6 (Operational Semantics)
Let Z = (\N1) . . . (\Nk)(1, P1)||| . . . |||(n, Pn), be a protocol. The associated labelled transition
system is a tuple(QZ , 〈G0, Z〉,Act ,RZ), where:

(a) QZ ⊆ Glob × Z is the set of states;

(b) 〈G0, Z〉 is the initial state so defined:

• G0(0) = (Ω,WΩ,⊥), is the initial local state of the intruder, whereΩ is the name of
the intruder andWΩ is the initial set of messages known to the intruder, composed of
all the free names inZ.

• G0(i) = (pi,Wi,⊥) for all i ∈ I, is the initial local state of the role instancei. More

precisely,pi is the name of the processP , if pi
def
= P , Wi is the set of messagespi

knows, consisting of all free names inPi.

(c) Actτ is the set of actions;

(d) the transition relationRZ ⊆ QZ × Act × QZ is the least transition relation defined by the
rules in Figure 4.3. Whenever(q, α, q′) ∈ RZ we will write q

α→ q′.

We now explain the rules in Figure 4.3 in an informal way. Ruler≡1 and ruler+1 (and the
symmetricr≡2 andr+2) define the usual transitions in case of respectively parallel composition
and non deterministic choice. Ruler= defines the transition in case of a match: we require that
the local binding functionσi can be extended in such a way thatx equalsT whenσi is applied.
In the premises of the ruler= the conditionP(σ̂(T )) informally means that̂σ(T ) must not con-
tain variables as decryption keys. We add this condition only to avoid unfair specifications where
encryption could be broken simply by using pattern matching. The use ofP( ) is indeed a syn-
tactic constraint, whose presence does not interfere with our analysis. FormallyP( ) is defined as
follows:
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(G : Z ′) α→ (G′ : Z ′′)
r≡1

(G : Z|||Z ′) α→ (G′ : Z|||Z ′′)

(G : Z|||(i, P )) α→ (G′ : Z|||(i, P ′))
r+1

(G : Z|||(i, P +P ′′)) α→ (G′ : Z|||(i, P ′))

σi(x) 6=⊥, P(σ̂i(T )), ∃σ′ w σi : σ̂′(T ) = σi(x)
r=

(G : Z|||(i, [x is T ]P )) τ→ (G[σ′/σi] : Z|||(i, P ))

σ̂i(T ) = M
r!

(G : Z|||(i, a(T ).P ))
i.a〈M〉→ (G[WΩ ∪ {M}/WΩ] : Z|||(i, P ))

σ̂i(T ) = M
r!!

(G : Z|||(i, a(T ).P ))
i.a〈M〉→ (G : Z|||(i, P ))

∃σ′ w σi : σ′(x) = M ∈ KS (WΩ)
r?

(G : Z|||(i, a(x).P ))
i.a〈M〉→ (G[Wi ∪ {M}/Wi][σ′/σi] : Z|||(i, P ))

N ′ 6∈ c(P ) ∪ c(Z)
rν

(G : Z|||(i, (νN)P )) τ→ (G[Wi ∪ {N ′}/W ′
i ] : Z|||(i, P [N ′/N ]))

r\

(G : Z|||(\N)Z ′) τ→ (G : Z|||Z ′)

Figure 4.3: Labelled Transition Systems rules. Rulesr≡2 andr+2, which are the symmetric versus
of r≡1 andr+1, have been omitted. See the text for an informal explanation.
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P(T ) =


tt if T = M ∈M

tt if T = x ∈ V

P(T ′) if T = {T ′}M
P(T1) ∧ P(T2) if T = 〈T1, T2〉
ff otherwise.

Ruler! is for the output transition. We require that the termT evaluates to a messageM , and
then the transition leads to a state where the messageM is added toWΩ, the intruder local state.
Ruler!! is similar, but because an assertion is not a communication action, no message is put into
the local state of the intruder. It only leaves a trace as a label in the transition, whose presence can
be tested during the analysis. Ruler? defines the input transition. If the local binding function
σi can be extended in such a way thatx equals some messageM in the intruder knowledge (i.e.,
M ∈ KS (Ω)), that message is retrieved and then added to the local state of the agent instance.
Note that even if all the premises are decidable, the number of messages inKS (WΩ) is generally
infinite. This produces infinite branchingin absence of limiting strategies. We will describe one
such strategy in Section 4.4.1. Rulerν describes the creation of new names. Here byc(P ) we
mean the set of constants that appear syntactically inP . Ruler\ describes the restriction operator.
This operator has no effect on the transition itself, but it modifies the definition of the initial
knowledge of the intruder. Restricted names are initially hidden from the intruder.

4.3 A Logic for Security Properties

This section shows how a linear time temporal logic can be used to express security properties.
Different logics for security can be found in literature (e.g.,see [40, 90]), but the logic we propose
here is inspired by the linear time temporal logic first introduced in [51]. It has been used to
express a large set of properties, from secrecy, authenticity, general correspondence properties,
weak forms of anonymity, privacy and non-repudiation (e.g.,see [50, 52, 53]). Informally, its
terms talk about messages, roles identifiers, role names and local (with respect to a role instance)
message terms. Its propositions can express facts about actions that happened, tests about what
messages are known to a role (or to the intruder), and equality tests over message terms. Formulas
are either propositional formulas or the modal formula ”eventually” in its past interpretation. By
using this modality it is possible to express properties about temporal correspondences among
events in protocol runs.

Formally, the logic shares with thespy-calculusthe same set of names (N), of variables (V),
of integer identifiers (I), and of labels (A). Moreover messages (setM), terms (setT) are defined
as inspy-calculus. We now explain in detail the syntax of the logic, also presented in Figure 4.4.
We leti range overI, T overT, M overM, andλ overA ∪A ∪ {τ}.

A message termς is (a)name(i), the name of the agent whose identifier isi, (b) i.T the message
termT interpreted in the local state of the agent whose identifier isi or (c) a ground message
M ∈M.

An atomic proposition ρ is (a)Knows(i, ς), a predicate on the presence, in the local state of the
agent identified byi of ς; (b) Acts(i.λ(ς)) (respectivelyActs(τ)) a predicate on the fact that
a visible actioni.e., a send, receive or assertion, overς has been performed by the agent
identified byi (respectively a silent action has been performed). (c)ς = ς ′, is an equality
test over terms.
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A formula f is any propositional logic formula, or the modal formula♦P f , where the symbol
♦P is the modal operatoreventuallyin its past interpretation.

The derived operators∨ (propositional or) and⊃ (propositional implication) can be derived
as usual from∧ and¬. Moreover as a syntactic sugar we also use the formulas∃s.f(s), wheres
is a variable, defined as∨{i∈I}f [s/i] and∀s.f(s) defined as∧{i∈I}f [s/i].

Example 4.3.1 In this example we show how to express security properties using the logic pre-
sented here. Let us start with the following authenticity property over the NSSK protocol formal-
ized in Example 4.2.1:

“When rolepB finishes the protocol thinking that the responder is the rolepA, rolepA

has at least started the same protocol thinking that the initiator ispB.”

The property can be logically expressed with the following formula:

f
def
= Acts(2.cab(2.y)) ⊃ ♦P (Acts(1.cab(1.x2))) ∧ (2.y = 1.x2) (4.3.1)

Informally this says that whenever the agent with identification number 2 (the one who is
playing the role ofpB) receives a message iny (as a consequence of an input action labelledcab)
then the agent identified by 1 (running the rolepA) has previously sent a message (inx2) to pB

through an action labelledcab. Additionally the two messages are required to be equal.
The use of identification numbers in the formula makes it not so readable. A clearer way of

writing (4.3.1) is the following:

f ′ def
= ∀b. ∃a. name(b) = pB ∧ name(a) = pA ∧ (4.3.2)

Acts(b.cab(b.y)) ⊃ ♦P (Acts(a.cab(a.x2))) ∧ (b.y = a.x2)

Here∀ and∃ are used as syntactic sugar for a finite sequence (over the set of identifiers{1, 2, 3}) of
respectively∧ and∨. Similar abbreviations are necessary whenever we need to talk about a role
independently of the fact that more instances of it are modeled in thespy-calculusformulation
of a protocol. We will use such style of expressing formulas in the rest of the paper. Formula
(4.3.2) informally says that whenever an agent (playing the role ofpB) receives a message iny
(as a consequence of an input action labelledcab) then there exists an agent (running the role
pA) that has previously sent a message (identified bya.x2) to pB through an action labelledcab.
Additionally (4.3.2) requires the two messages to be equal.

Another example of a property for our model of the NSSK protocol is the secrecy property
requiring that the intruder never learns the secret keyKAB. It can be expressed by the formula:

fΩ
def
= ¬Knows(x, KAB) (4.3.3)

Informally (4.3.3) expresses the fact that in any state the intruder must not be able to com-
pose the secret keyKAB, starting from the messages he has eavesdropped in the communication
channel. Moreover, if we wanted to express the fact that the secret keyKAB is known only to the
appropriate roles we could use the following:
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f ::= ρ | ¬f | f1 ∧ f2 | ♦P f formulas

ρ ::= Knows(i, ς)
| Acts(i.λ(ς)) | Acts(τ) λ ∈ A ∪A ∪A

| (ς = ς ′) i ∈ I atomic propositions

ς ::= name(i) | i.T |M T ∈ T,M ∈M terms

Figure 4.4: Logic Syntax (see also Section 4.2 for definitions ofI, A, T, V).

fH
def
= ∀x.Knows(x,KAB) ⊃

((name(x) = pS) ∨ (name(x) = pA) ∨ (name(x) = pB))
(4.3.4)

This formula says that for all instantiations ofx, if x knows the secret keyKAB thenx is the
instantiation of either the rolepS , pA or pB. Here we observe that if we wanted to express the fact
that rolespA andpB know the secret key at the end of the protocol, we can use a slightly different
implementation with assertions. For example rolepA can assert to have finished the protocol by
the use ofend(b), as follows:

pA〈a, b, s, kas〉
def
= cas(〈a, b〉).cas(x).[x is 〈{x1}kas , x2〉].cab(x2).end(b).0

The modification to process modeling the role ofB is similar, and we omit it. Then the
property that each honest role knows the key at the end of the protocol can be expressed asfA∧fB

where:

fA
def
= ∀x.(name(x) = pA ∧ Acts(x.end(B))) ⊃ Knows(x, KAB)

fB
def
= ∀x.(name(x) = pB ∧ Acts(x.end(A))) ⊃ Knows(x,KAB)

Additional examples of properties expressed in this logic, can be found in [50, 52, 53]

We now explain how the logic is interpreted over the labelled transition systems, models of
spy-calculusprotocols. Message terms are interpreted over a global state, while the interpretation
of a formula is defined over traces obtained from the LTS. A trace is the temporal structure over
which the satisfiability of formulas is checked. Formally, atrace is a finite sequenceπ = q0 · α1 ·
q1 · . . . · αn · qn, whereq0 is the initial state of the LTS and for alli, qi

αi+1→ qi+1 is a transition
from qi.

We now define the interpretation function for each syntactic category of the logic. We will
start from message terms.

Definition 4.3.2 (Message Term Interpretation) Given a global stateG, and a termT , theterm
interpretation, is the functionM : Glob → T →M ∪ {⊥} given below:

M(G)(M) = M, whereM ∈M

M(G)(j.T ) = σ̂(T ), whereG(j) = ( , , σ)
M(G)(name(j)) = p, whereG(j) = (p, , )
⊥ otherwise
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Informally, name(j) is the message which represents, inG, the name of the process instance
whose identifier isj; j.T is the message obtained by instantiating all the variables appearing inT ,
using the set of bindings that the process identified byj has inG.

Atomic propositionsρ (respectively, formulasf ) are interpreted over a traceπ. We write
qi |= ρ (respectively,qi |= f ) when they are satisfied over a stateqi = (Gi : Zi) of π as follows:

Definition 4.3.3 (Atomic Proposition Interpretation) Given a traceπ = q0 ·α1 ·q1 · . . . ·αn ·qn,
we have, for1 ≤ i ≤ n:

qi |= Knows(j, ς) iff M(Gi)(ς) ∈ KS (Wj), whereGi(j) = ( ,Wj , )
qi |= Acts(j.λ(ς)) iff αi = j.λ(M), whereM = M(Gi)(ς)
qi |= ς = ς ′ iff M(Gi)(ς) = M(Gi)(ς ′)

If we assume that the evaluation of the message termς in qi returns the messageM , informally
Knows(j, M) is satisfied inqi if the role instance identified byj can deriveM from message set

Wj . In turn,Acts(j.λ(M)) is satisfied in a stateqi, if qi−1
j.λ(M)→ qi is a transition of the traceπ.

Finally, ς = ς ′ is true if the interpretation terms coincide inqi.

Definition 4.3.4 (Formulae Interpretation) Given a formulaf and a traceπ = q0·α1·. . .·αn·qn,
we have that for1 ≤ i ≤ n:

qi |= ρ iff qi |= ρ
qi |= ¬f iff qi 6|= f
qi |= f1 ∧ f2 iff qi |= f1 andqi |= f2

qi |= ♦P f iff there existsj, 0 ≤ j ≤ i such thatqj |= f

Informally the interpretation ofρ,¬f andf1∧f2 do not differ from the common interpretation
of propositional formulas. Instead♦P f is satisfied inqi if it is satisfied in some previous state of
the trace.

The obvious extension of satisfiability overπ is π |= f iff qi |= f , ∀i : 0 ≤ i ≤ length(π).
Finally we say that a protocolZ satisfies a formulaf , writtenZ |= f , if f is satisfied over all the
traces of the LTS model ofZ.

Example 4.3.5 In this example we show how the interpretation of formulas works. Let us assume
we have the protocol below, where a rolepA sends an encrypted message to itself via an insecure
channel. Formally:

Zs = (\K)(1, pA(K))
pA(k) = c({A}k).c(x).ok(A).0

In the specification we chose to hide the keyK used by the agent from the initial knowledge
of the intruder, and we suppose thatA signals the end of the protocol with an assertion labelled
ok(). The property expressing the fact that, when the protocol finishes, the message received is
the same of the one sent, can be expressed as follows:

f = Acts(1.ok(A)) ⊃ (1.x = {A}K)
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Let us now consider one of the traces coming from the labelled transition system model ofZs,
that isπ = q0 · α1 · q1 · α2 · q2 · α3 · q3 where:

q0 = [(Ω, {A},⊥)], [(pA, {A,KA},⊥)]
α1 = 1.c({A}K)
q1 = [(Ω, {A, {A}K},⊥)], [(pA, {A,KA},⊥)]
α2 = 1.c({A}K)
q2 = [(Ω, {A, {A}K},⊥)], [(pA, {A,KA}, [x← {A}K ])]
α3 = 1.ok(A)
q3 = q2

It is easy to verify thatπ |= f . In fact, fori ∈ {0, 1, 2}, qi 6|= Acts(1.ok(A)) which makes the
implication true, while (a)q3 |= Acts(1.ok(A)) and (b)q3 |= (1.x = {A}K), which also makes

the implication true. (a) is true becauseq2
1.ok(A)→ q3 is a transition inπ, and (b) is true becausex,

interpreted over the local state of 1 inq3, is equal to{A}K . It is also the case thatZ 6|= f because
there exists a traceπ′ such thatπ′ 6|= f , for exampleπ′ = q′0 · α′1 · q′1 · α′2 · q′2 · α′3 · q′3 where:

q′0 = q0

α′1 = α1

q′1 = q1

α′2 = 1.c({A}A)
q′2 = [(Ω, {A, {A}K},⊥)], [(pA, {A,KA}, [x← {A}A])]
α′3 = 1.ok(A)
q′3 = q′2

In this trace the intruder intercepts the message{A}K and replaces it by{A}A. This is suffi-
cient to concludeZ 6|= f .

4.4 Typedspy-calculus

In Section 4.2 it has been pointed out that the use ofKS (WΩ) generally creates an infinite num-
ber of input transitions but, to perform model checking, we need a finite-state labelled transition
system. This section studies the possibility of usingtype information(mainly in input actions) to
select only those messages of a certain type in the intruder’s knowledge. In this way the intruder
has only a finite way of composing messages that fulfill a role’s input action and, consequently,
the corresponding transition system has a finite number of transitions. This suffices to obtain fi-
nite models considering that we deal with finite processes and finite protocol runs. It is worth to
underline that the use of types is here oriented only to obtain finite-state models, and not to use
type checking by way of protocol analysis.

In the following we define: (a) what a type is; (b) a partial relation between types (sub-typing)
and (c) the typed version of our calculus, where variables are adorned with types.
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Definition 4.4.1 (Type) A type t, is either: (1) abasic typeproc, key, nounce or atom, (2) a
pair type〈| t, t′ |〉, (3) acrypto type{| t |}t′, a finiteunion of typest⊕ t′. ByT we mean the set of
all possibles types.

Types are partially ordered, with the following ordering relation:

Definition 4.4.2 Let t, t′ ∈ T. We say thatt is a subtype oft′written ast ≤ t′, iff
t = t′ or

(
t′ = t′1 ⊕ t′2 and (t ≤ t′1 or t ≤ t′2)

)
t = {| t1 |}t2 and t′ = {| t′1 |}t′2 andt1 ≤ t′1 and t2 ≤ t′2
t = 〈| t1, t2 |〉 and t′ = 〈| t′1, t′2 |〉 andt1 ≤ t′1 and t2 ≤ t′2

Types are used in a slightly extended version of thespy-calculus, called thespyD-calculus,
where names and variables are decorated with their type. ThespyD-calculussyntax differs from
spy-calculusin the following points:

• the set of namesN is partitioned amongNa, Np, Nk andNn of respectively, atomic mes-
sages, process names, keys, and nounces/timestamps.

• variables are written astyped variables(x : t), wherex is a variable andt is a type. The set
T̃ of typed terms̃T , is then built, over the signatureΣ ∪ (V × T). ProtocolsZ̃ and rolesP̃
remain almost unchanged but typed terms are used instead of terms.

The syntax ofspyD-calculusis expressed by the following grammar:

protocols Z̃ ::= Z̃|||Z̃ ′ | (\N)Z̃ | (i, P̃ )

roles P̃ ::= 0 | a(x : t).P̃ | a(T̃ ).P̃ | a(T̃ ).P̃ |
P̃ + P̃ ′ | (νN)P̃ | [(x : t) is T̃ ]P̃

We assume that onlywell typedprotocols are possible, meaning that all instances of a variable
bound by the same, leftmost, input primitive or match must have the same type.

Starting from basic types, explicitly assigned to names and variables, atop level typebT̃ c for
a typed termT̃ can be deduced easily by structural induction over terms1. So for example the top
level type of the decorated term{(x : proc)}(k:key) is {| proc |}key. In the following we say that

a message term̃T has typet if bT̃ c = t, and we write|t| to indicate the number of basic types
appearing int.

Using types we can define a bounded version of the intruder knowledge.

Definition 4.4.3 (Bounded Knowledge)Let W ⊂ M be a finite set of messages, andt a type.
ThenKS (t) called the t-knowledgeis the following set of messages:

KS (t)(W ) = {M ∈ KS (W ) : bMc ≤ t}

About bounded knowledge the following results hold:

Lemma 4.4.4 LetW be a finite set of messages. Then for everyt ∈ T, KS (t)(W ) is a finite set.

1With a little abuse of notation, the same function symbolb c is used both for the function returning a type given a
messageM , and for the function returning a type given a typed termT̃ .
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Proof. The proof follows from the fact that|t| is finite, and the number of messages whose type
is a subtype oft is finite.

Example 4.4.5 AssumeW = {A,K}, and t = 〈| proc, key⊕ proc |〉. ThenKS (t)(W ) =
{〈A, A〉, 〈A, K〉}.

Lemma 4.4.6 LetW be finite. Given a messageM , the questionM ∈ KS (t)(W ) is decidable.

Proof. We can easily compute thebMc in linear time in the size ofM . If bMc 6≤ t thenM 6∈
KS (t)(W ). OtherwisebMc = t and we know from [53] thatM ∈ KS (W ) is decidable.

We are now ready to restate the operational semantics ofspyD-calculus, making use of the
bounded knowledgeKS (t)(W ) in input rule. ThespyD-calculussemantics is based on labelled
transition systems, which we call LTS[. The definition is almost the same of that of LTS (see
Definition 4.2.6) with the exception of the transition ruler?, which is re-defined in the rulẽr?:

∃σ′ w σi : σ′(x) = M ∈ KS (t)(WΩ)
r̃?

(G : Z̃|||(i, a(x : t).P̃ ))
i.a〈M〉→[ (G[Wi ∪ {M}/Wi][σ′/σi] : Z̃|||(i, P̃ ))

In r̃? the bounded knowledgeKS (t) is used instead ofKS . We write(G : Z̃) α→[ (G′ : Z̃ ′) to
say that a typed protocol̃Z, and the global stateG, change as a consequence of actionα. It follows
that:

Theorem 4.4.7 The LTS[ is finite-state.

Proof. Having only finite processes and a finite number of role instances, the source of infinite
behavior is due to the input transition rulẽr?. But from Lemma 4.4.4 it follows that there can only
be a finite number of transitions for eachspyD-calculusprotocol.

Logic formulas (see Section 4.3) may be interpreted over the tracesπ[ = ρ0 · α1 · · ·αn · ρn,
originating from LTS[, exactly in the same way as they are interpreted over tracesπ coming from
LTS. In fact, the satisfiability relation (see Section 4.3) depends on the componentG of states
ρ = (G : Z̃), whose definition has not changed.

4.4.1 Building Typed Protocols

In this section we explain how to obtain, in a semi-automated way, typedspyD-calculusprotocols
starting from aspy-calculusspecification. We recall from Section 4.1 that our target is to build a
typed version at run-time starting from a singlespy-calculusversion.

To avoid some technicalities, we require that protocols are written in the followingnormal
form: variables used in the specification of different roles are distinct, and within a single role
variables bound by different binders (e.g.,input or match operator) are different. All the examples
described in this chapter are in normal form.

The basic way of obtaining a typed version of a protocol specification is through atyping
function:

Definition 4.4.8 (Typing Transformation) A typing transformationis a partial functionS : V→
V× T, such that, for allx in the domain ofS, S(x) = x : t wheret is a type.
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Based on a transformationS we can define a mappingCS, that is a structural extension ofS

from variables to message terms, processes and protocols. Although different symbols should be
used for those extensions, for convenience we will used the same (overloaded) symbolCS for all of
them. The general idea is that, given a protocolZ, CS(Z) is a typed version ofZ with finite-state
semantics. To be precise, more than general transformations we are interested in transformations
whose domain is the set of variables of a given protocol. Formally:

Definition 4.4.9 (Transformation with respect to a Protocol)
Let Z be a protocol specification in normal form. Atransformation with respect toZ is a trans-
formationSZ whose domain is exactly the set of variables appearing inZ.

We can observe that given a protocolZ and a protocol transformationSZ , the set of bound
and free names ofZ andCSZ

(Z) is the same. In fact a protocol transformation acts only over
variables, while names are left untouched. The same can be observed for bound and free names of
processesP , involved inZ, and processesCSZ

(P ) involved inCSZ
(Z).

Example 4.4.10This example shows a typing transformation. Referring to Example 4.2.1 let us
define the following protocol transformation function, over theNSSK:

SNSSK(v)
def
=



x : 〈| {| key |}key, {| 〈| proc, key |〉 |}key |〉, if v = x
x1 : key, if v = x1

x2 : {| 〈| proc, key |〉 |}key, if v = x2

y : {| 〈| proc, key |〉 |}key, if v = y
y1 : key, if v = y1

z : 〈| proc, proc |〉, if v = z
⊥, else

The transformation is built following the intuition that messages received in variabley from
role pB indeed are messages of type{| 〈| proc, key |〉 |}key. The typed version of the protocol is
then the following:

CSNSSK
(NSSK)

def
=

(\Kas)(\Kbs)(\A)(\B)(\S)
(1, pA〈A,B, S,Kas〉)|||(2, pB〈A,B, S,Kbs〉)
|||(3, pS〈A,B, Kas,Kbs〉)

pA〈a, b, s, kas〉
def
= cas(〈a, b〉).cas(x : 〈| {| key |}key, {| 〈| proc, key |〉 |}key |〉)

[x : 〈| {| key |}key, {| 〈| proc, key |〉 |}key |〉 =
〈{x1 : key}kas , x2 : {| 〈| proc, key |〉 |}key〉].
cab(x2 : {| 〈| proc, key |〉 |}key).0

pB〈a, b, s, kbs〉
def
= cab(y : {| 〈| proc, key |〉 |}key)

[y : {| 〈| proc, key |〉 |}key is {〈a, y1 : key〉}Kbs
].0

pS〈a, b, kas, kbs〉
def
= cas(z : 〈| proc, proc |〉)[z : 〈| proc, proc |〉 is 〈a, b〉].

(νKab)cas(〈{Kab}kas , {〈a,Kab〉}kbs
〉).0
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4.5 Towards Finite Model Checking

After having shown how typedspyD-calculusprotocols can be obtained from (untyped)spy-
calculusspecifications via the use of transformation functions, we are interested in investigating
the relationship between LTS and LTS[. We would like to be sure that an attack over aspyD-
calculusprotocol implies the presence of the same attack over the correspondingspy-calculus
protocol, and vice-versa.

This section formally shows that there exists a trace inclusion relation between LTS and LTS[:
given a transformationSZ , the set of traces from LTS always includes the set of traces from LTS[.
While this is not a surprise, a more interesting result is that given any trace of LTS, a transformation
can always be defined to yield the same trace in LTS[. This is mainly due to the fact that a variable
can be tagged with a union of types, so our scheme works also in presence of type flaw attacks.

Example 4.5.1 To show how this is possible let us resort to an example. The following standard
version of the seven-message Needham-Schroeder Public-Key Protocol:

1. A → S : B

2. S → A : {PKB, B}PKS

3. A → B : {NA, A}PKB

4. B → S : A

5. S → B : {PKA, A}PKS

6. B → A : {NA, NB, B}PKA

7. A → B : {NB}PKB

In [113] Heatheret al show an interesting type flaw attack on this protocol, in turn derived
from [154], when two runs (below) of the protocol are considered (we labelled withα the steps of
the first run and withβ those of the second runs):

α3. IA → B : {NI , A}PKB

α4. B → S : A

α5. S → B : {PKA, A}PKS

α6. B → IA : {NI , NB, B}PKA

β3. I(NB ,B) → A : {NI , (NB, B)}PKA

β4. B → IS : (NB, B)
α7. IA → B : {NB}PKB

An intruder, playing the role ofA in the first run, receives the message{NI , NB, B}PKA

from B in step 6, which uses this message subsequently in step 3 of the second run. In this second
run A is playing the role ofB, and soA interprets the message as the start of a new protocol.
ConsequentlyA takes the field(NB, B) as an agent name, and whenA tries, in step 4, to request
(NB, B)’s public key (by sending the(NB, B) identity to the server) this message is intercepted
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again and used by the intruder to end correctly the first run of the protocol. We can model the
protocol inspy-calculusas:

(\Ks)(\Ka)(\Kb)(\A)(\B)(\S)
(1, pA〈A,B, S,Ka〉)|||(2, pA〈B,A, S,Kb〉)|||
(3, pB〈A,B, S,Kb〉)|||(4, pB〈B,A, S,Ka〉)|||
(5, pS〈A,B, Ka,Kb,Ks〉)|||(6, pS〈A,B, Ka,Kb,Ks〉)

Here we have two instantiations of each role. In particular the role ofpA (respectively ofpB) is
played once byA (respectively byB) and once byB (respectively byA). The first steps of role
pB are the following:

pB〈a, b, s, kb〉
def
= c(x).[x is {〈xn, xa〉}kb

].c(xa).P ′

HereP ′ represents the continuation of the process. To catch the type flaw we have to find a typing
that allows the variablex to match with both messages used in the attack. One such a possible
type transformation forx is:

SNSSK(x) = x : {| 〈| nounce, proc⊕ 〈| nounce, proc |〉 |〉 |}key

Unfortunately it seems not easy to find such a typing transformation without knowing the
attack first. Even in the formal proof (see later) our result is not constructive and we have no
general method to construct this abstraction. We conjecture that a static analysis of the message
flow along a protocol specification may help in defining significant transformations, but we have
not yet investigated in this direction. We point out this issue as an area of future work.

To arrive at the main results of this section, we start with some definitions, introducing basic
equivalence relations among global states and traces of the relative transition systems.

Definition 4.5.2 Given a transformation functionS, let q = (G : Z) be a state of the LTS, and
ρ = (G′ : Z̃ ′) a state of the LTS[. We say that they areequal up toS and we writeq =S ρ, iff

• G = G′;

• CS(Z) = Z̃ ′ where the symbol= is interpreted as syntactic equality.

Definition 4.5.3 Given a transformation functionS, let π = q0 · α1 · q1 · . . . · αn · qn, andπ[ =
ρ0 · α′1 · ρ1 · . . . · α′n · ρn be two traces. We say that they areequal up toS and we writeπ =S π[

iff for all k

• αk = α′k;

• qk =S ρk.

In the following we prove the main lemmas of this section. One states that given a trace in the
LTS[ model ofCSZ

(Z), there always exists a corresponding trace (with respect to=S) in the LTS
model ofZ. The second lemma proves that given a trace in the LTS model ofZ, there always
exists a typing transformationCSZ

( ) such that a corresponding trace (with respect to=S) exists
in the LTS[ model ofCSZ

(Z).
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Lemma 4.5.4 Suppose thatZ is a protocol specification in normal form, andSZ a protocol trans-
formation with respect toZ. LetΠZ be the set of traces from the LTS, model ofZ, and letΠCSZ

(Z)

be the set of traces of the LTS[, model ofCSZ
(Z). Then for each traceπ[ ∈ ΠCSZ

(Z) there exists
a traceπ ∈ ΠZ such thatπ =SZ

π[.

Proof. We proceed by induction on the length of the traceπ[ = ρ0 · α1 · ρ1 · . . . · αk · ρk. For any
n ≥ 0, we show that a traceπ exists whose prefix of lengthn (written π[n]) is equal up toSZ to
the prefix of lengthn, of π[ (writtenπ[[n]).

[base case: n = 0]. In this caseπ[[0] = (G0 : CSZ
(Z)). Whatever traceπ ∈ ΠZ we chose,

π[0] =SZ
π[[0] holds. In fact,π[0] = (G0 : Z) andπ[0] =SZ

π[[0] immediately follows from the
definition of “=SZ

”.

[inductive step: n > 0]. Let us assume that the theorem holds forn. Then there exists a trace
π ∈ ΠZ such thatπ[n] =SZ

π[[n]. We prove that we can extend the traceπ[n] so thatπ[n + 1] is
a trace ofΠZ andπ[n + 1] =SZ

π[[n + 1].
Let π[[n + 1] beπ[[n] · αn+1 · ρn+1. We distinguish the cases ofαn+1.

• [αn+1 = i.a〈M〉, for somei]. This action arises only through the following transition (i.e.,
by rule r̃?)

ρn︷ ︸︸ ︷
(Gn : Z̃|||(i, a(x : t).P̃ ))

i.a〈M〉→[

ρn+1︷ ︸︸ ︷
(Gn[Wi ∪ {M}/Wi][σ′/σi]︸ ︷︷ ︸

Gn+1

: Z̃|||(i, P̃ ))

Hereσ′ : σ′ w σi andσ′(x) = M ∈ KS (t)(WΩ). By the induction hypothesis there exists
a traceπ ∈ ΠZ such thatπ[n] =SZ

π[[n]. In particularπ[n] = q0 · α1 · . . . · αn · qn, and
qn =SZ

ρn. If we assume thatqn = (G′, Z ′) this means that (a)G′ = Gn and (b)CSZ
(Z ′) =

Z̃|||(i, a(x : t).P̃ ). We observe thatM ∈ KS (WΩ), becauseKS (t)(WΩ) ⊆ KS (WΩ), and
this implies that the transition

qn︷ ︸︸ ︷
(Gn : Z|||(i, a(x).P ))

i.a〈M〉→

qn+1︷ ︸︸ ︷
(Gn[Wi ∪ {M}/Wi][σ′/σi]︸ ︷︷ ︸

Gn+1

: Z|||(i, P ))

is possible. It is easy to check thatqn+1 =SZ
ρn+1, and this suffices to conclude that

π[n + 1] =SZ
π[[n + 1].

• [αn+1 = i.a〈M〉, for somei]. This action arises only through the following transition (i.e.,
rule r̃!):

ρn︷ ︸︸ ︷
(Gn : Z̃|||(i, a(T̃ ).P̃ ))

i.a〈M〉→

ρn+1︷ ︸︸ ︷
(Gn[WΩ ∪ {M}/WΩ]︸ ︷︷ ︸

Gn+1

: Z̃|||(i, P̃ ))

Here σ̂i(T̃ ) = M . By the induction hypothesis there exists a traceπ ∈ ΠZ such that
π[n] =SZ

π[[n]. In particularπ[n] = q0 ·α1 · . . . ·αn · qn, andqn =SZ
ρn. If we assume that

q0 = (G, q) this means that: (a)G′ = Gn, (b) CSZ
(P ′) = (i, a(T̃ ).P̃ ). Moreover we have

σ̂i(T̃ ) = σ̂i(T ) = M . This means that the transition
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qn︷ ︸︸ ︷
(Gn : Z|||(i, a(T ).P ))

i.a〈M〉→
qn+1︷ ︸︸ ︷

(Gn[WΩ ∪ {M}/WΩ]︸ ︷︷ ︸
Gn+1

: Z|||(i, P ))

is possible. It is easy to check thatqn+1 =SZ
ρn+1, and this suffices to conclude that

π[n + 1] =SZ
π[[n + 1].

• [αn+1 = τ ]. The only interesting case (we omit the other cases that are obvious) is when
the action is due to the following transition (i.e., rule r̃=):

ρn︷ ︸︸ ︷
(Gn : Z̃|||(i, [(x : t) is T̃ ]P̃ )) τ→

ρn+1︷ ︸︸ ︷
(Gn[σ′/σi]︸ ︷︷ ︸

Gn+1

: Z̃|||P̃ )

HereP(σ̂i(T̃ )) and∃σ′ w σi : σ̂′(T̃ ) = σi(x). Let π[n] be q0 · α1 · . . . · αn · qn, and
consider the stateqn = (G′ : Z ′). By the induction hypothesis we know thatqn =SZ

ρn and
as a consequence we have that: (a)G′ = Gn, (b) CSZ

(P ′) = (i, [(x : t) is T̃ ].P̃ ), and (c)
σ̂i(T̃ ) = σ̂i(T ) = M . This means that the transition

ρn︷ ︸︸ ︷
(Gn : Z|||(i, [x is T ]P )) τ→

ρn+1︷ ︸︸ ︷
(Gn[σ/σi]︸ ︷︷ ︸

Gn+1

: Z|||P )

is possible. It is easy to check thatqn+1 =SZ
ρn+1, and this suffices to conclude that

π[n + 1] =SZ
π[[n + 1].

• [αn+1 = i.a〈M〉, for somei]. Similar to the caseαn+1 = i.a〈M〉.

Lemma 4.5.5 Suppose thatZ is a protocol in normal form, andΠZ be the set of traces from the
LTS model ofZ. Then for each traceπ ∈ ΠZ there exists a transformationS such that in the set
of tracesΠCSZ

(Z) of the LTS[ model ofCSZ
(Z) there is a traceπ[ such thatπ[ =SZ

π.

Proof. Let π be q0 · α1 · · ·αn · qn. First of all let us defineSZ . The idea is that the type of a
variablex is the union of types of the messages that are bound tox along the trace. Because our
protocols are in normal form, for each role instance, each variable is bound only by one operator
(i.e., input or match). This means that, within a role, only one message is bound to each variable.
Globally more messages can be bound to a variablex but only in different role instances. Let us
constructSZ in the following way:

Remark 4.5.6 Assumeq = (G′, Z ′) is a state of a traceπ from the LTS model of a protocolZ,
and letSZ be the function returned by the algorithm 1. We have thatM is the message bound to a
variablex (i.e., if M = σi(x), whereG(i) = (pi, σi,Wi) for somei) then

bMc ≤ bSZ(x)c
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Algorithm 1 functionBuildTypingFunction(π). Given a traceπ returns a typing functionS(Z).
1: SZ ←⊥;
2: for all i : αi ∈ π do
3: let σi−1 the binding function inqi−1

4: let σi the binding function inqi

5: let Vi−1 = {x : σi−1(x) =⊥} {the set of vars not bound inqi−1}
6: let Vi = {x : σi(x) 6=⊥} {the set of vars bound to some message in stateqi}
7: let V = Vi ∩ Vi−1 {exactly the set of vars assigned in consequence of the actionαi}
8: for all x ∈ V do
9: if SZ(x) =⊥ then

10: SZ(x)← x : bσi(x)c
11: else
12: SZ(x)← SZ(x)⊕ bσi(x)c {the type ofx is the type of each message received inx}
13: end if
14: end for
15: end for

At this point we can prove that there exists a traceπ[ ∈ CSZ
(Z) such thatπ[ =SZ

π. The
proof is by induction over the length ofπ. We show that for anyn ≥ 0 we can find a traceπ[ such
thatπ[n] = π[[n]

[base case: n = 0]. In this caseπ[0] = (G0 : Z). Whatever traceπ[ ∈ ΠCSZ
(Z) we chose

π[[0] =SZ
π[0] holds. In fact,π[0] = (G0 : Z) and for definitionπ[0] =SZ

π[[0] trivially holds for
definition of “=SZ

”.

[inductive step: n > 0]. Suppose that the theorem holds forn, we will prove the theorem for
n + 1. Let π[n + 1] beπ[n] · αn+1 · qn+1. We will distinguish by cases overαn+1.

• [αn+1 = i.a〈M〉, for somei]. This action arises only through the following transition (i.e.,
by ruler?):

qn︷ ︸︸ ︷
(Gn : Z|||(i, a(x).P ))

i.a〈M〉→

qn+1︷ ︸︸ ︷
(G[Wi ∪ {M}/Wi][σ′/σi]︸ ︷︷ ︸

Gn+1

: Z|||(i, P ))

whereσ′ : σ′ w σi andσ′(x) = M ∈ KS (WΩ). By the induction hypothesis there exists a
traceπ[ ∈ ΠCSZ

(Z) such thatπ[[n] =SZ
π[n]. In particularπ[[n] = ρ0 ·α1 · . . . ·αn ·ρn, and

ρn = (Gn : CSZ
(Z)|||(i, a(x : SZ(x)).CSZ

(P ))). In addition (see remark 4.5.6) we have that
bMc ≤ bSZ(x)c. This means thatM ∈ KS (t)(WΩ), wheret = bSZ(x)c, and the transition

ρn︷ ︸︸ ︷
(Gn : CSZ

(Z)|||(i, a(x : SZ(x)).CSZ
(P )))

i.a〈M〉→[

ρn+1︷ ︸︸ ︷
(Gn[Wi ∪ {M}/Wi][σ′/σi]︸ ︷︷ ︸

Gn+1

: CSZ
(Z)|||CSZ

(P ))

is possible. It is easy to check thatqn+1 =SZ
ρn+1.
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• [αn+1 = i.a〈M〉, i.a〈M〉( for somei), andαn+1 = τ ]. These cases can be proved as in
Lemma 4.5.4.

Now we analyze the impact of the protocol transformation on the satisfiability of formulas. In
particular given a protocol specificationZ, a protocol transformationSZ , and a formulaf to be
checked, we want to be sure that iff can be checked overCSZ

(Z). The answer is given by the
following theorems.

Theorem 4.5.7 Given a protocolZ, a transformationSZ overZ, and a logic formulaf . LetΠZ

be the set of traces of the LTS model ofZ, and letΠCSZ
(Z) be the set of traces of the LTS[ model of

CSZ
(Z), and letπ ∈ ΠZ be andπ[ ∈ ΠCSZ

(Z) such thatπ =SZ
π[. Thenπ |= f iff π[ |= CSZ

(f).

Proof. Whenπ =SZ
π[, π andπ[ coincide over the global state; the result follows because|= is

defined over the global states.

Theorem 4.5.8 Given a protocolZ and a protocol transformationSZ overZ. Suppose thatf is
a logic formula. ThenCSZ

(Z) 6|= f implies Z 6|= f

Proof. CSZ
(Z) 6|= f means that there exists a traceπ[ = ρ0 · α1 · . . . · αn · ρn, of LTS[ such that

π[ 6|= f . By Lemma 4.5.4 there must exist a traceπ of LTS such thatπ[ =SZ
π. By Theorem 4.5.7

we have thatπ[ 6|= f .

Theorem 4.5.9 Given a protocolZ and a formulaf such thatZ 6|= f . Then there exists a protocol
transformationSZ such thatCSZ

(Z) 6|= f .

Proof. Z 6|= f means that there exists a traceπ = ρ0 · α1 · . . . · αn · ρn, of ΠZ such thatπ 6|= f .
By Lemma 4.5.5 there exists a protocol transformationSZ and a traceπ of ΠCSZ

(Z) such that
π[ =SZ

π, and by Theorem 4.5.7 we have thatπ[ 6|= f .

Theorem 4.5.9 is possible because variables may assume, viaSZ , potentially any type. This
makes our type system too general to be used in a static type checking framework.

4.5.1 Model Checking thespy-calculus

This section presents SPYDER, the model checking framework we intend to use for verifying
security. The kernel procedure of SPYDER is described by Algorithm 2, a simple procedure which
visits a finite labelled transition system in a depth first search mode. As parameters the algorithm
requires a closed protocolZ in normal form, a protocol transformationSZ , and a formulaf to
be checked. Informally Algorithm 2 uses two stacks: (a) a stackSΛ containing transitions that
implement the depth first traversal of the transition system; (b) a stackSΠ for storing prefixes of
traces. In particular during the depth first traversal of transitions, prefixesρ0 · α1 · · ·αi · ρi are
built and the satisfiability of the formulaf is checked over the stateqi. The procedure stops with
a counterexample iff is discovered to be unsatisfied in someρi.

Algorithm 2 has time complexityO(|V | · (|f |+ |Wmax| · |Mmax|)) where|V | is the number of
states of the transition system,|f | is the length of formulaf , Wmax is the greatestWΩ andMmax

is the biggest message used within the protocol. It is worth to underline that using the protocol
transformationSZ limits the number of traces of the model to a finite number, even if it remains
exponential (when an exponential number of messages is involved in input actions). This means
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that our model checker runs in exponential time with respect to the length of messages involved in
the protocol.

We observe that the depth of the tree representing the LTS is linear in the number of steps made
by the agent. Therefore by using a on-the-fly generation strategy a depth first search requires lin-
ear space. SPYDER has been implemented in Ocaml2, and its main modules are represented in
Figure 4.5. The first module lexically checks aspy-calculusspecification and renames variables
to obtain a normal form of the protocol. This specification is then parsed and an internal represen-
tation of the protocol is built. The user provides also a logic formula and a typing function that are
given as input to the model checker module. The execution finishes with success or with a trace
showing why the formula is not satisfied.

Example 4.5.10We continue example 4.4.10 showing how a formula is checked over a typed
version of the protocol:

CSNSSK
(NSSK)

def
=

(\Kas)(\Kbs)(\A)(\B)(\S)
(1, pA〈A,B, S,Kas〉)|||(2, pB〈A,B, S,Kbs〉)
|||(3, pS〈A,B, Kas,Kbs〉)

pA〈a, b, s, kas〉
def
= cas(〈a, b〉).cas(x : 〈| {| key |}key, {| 〈| proc, key |〉 |}key |〉)

[x : 〈| {| key |}key, {| 〈| proc, key |〉 |}key |〉 =
〈{x1 : key}kas , x2 : {| 〈| proc, key |〉 |}key〉].
cab(x2 : {| 〈| proc, key |〉 |}key).0

pB〈a, b, s, kbs〉
def
= cab(y : {| 〈| proc, key |〉 |}key)

[y : {| 〈| proc, key |〉 |}key is {〈a, y1 : key〉}Kbs
].0

pS〈a, b, kas, kbs〉
def
= cas(z : 〈| proc, proc |〉)[z : 〈| proc, proc |〉 is 〈a, b〉].

(νKab)cas(〈{Kab}kas , {〈a,Kab〉}kbs
〉).0

Figure 4.6 shows the transition system model ofCSZ
(KE), while in Figure 4.7 we report a

table containing detailed information about the most significant states of the transition system (the
ones boxed in Figure 4.6). In the first column, state namesq are reported, in the second the arrays
representing the global statesG (each element of the array lays in a different row), and finally in
the third column the fragment of the calculusZ representing the protocol evolution. We want to
stress that the transition system is now finite state.

The formula given in example 4.4.10 (also reported at the end of the paragraph) and expressing
an authenticity property can be checked over the finite labelled transition system. It is easy to
verify that the formula is not satisfied. For example, in the traceq0 ·λ1 . . . λ7q7 processB receives
a message beforeA sends it, proving that the intruder has maliciously assumedA’s identity.

f
def
= ∀b. ∃a. name(b) = B ∧ name(a) = A ∧ (4.5.1)

Acts(cab)b{〈A, x2〉}KBS
⊃ ♦P Acts(cab)ay1 ∧

a.y1 = b.{〈A, x2〉}KBS

2Ocaml is available on line at the web sitehttp: \\caml.inria.fr
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Algorithm 2 functionModelChecking(Z is a closed protocol in normal form,f is formula and
SZ is a transformation w.r.t.Z)

1: Z̃ ← CSZ
(Z) {Get a typed protocol, usingSZ}

2: ρ0 = (G0 : Z̃) {Set the initial state}
3: SΛ ← ∅ {an empty stack for containing actions}
4: SΠ ← ∅ {an empty stack containing actions and states (i.e., prefix of traces)}
5: push(SΠ, ε · ρ0)
6: repeat
7: · ρ← head(SΠ) {retrieve the element on the top of the stack (only the state is significant

here)}
8: if not mark(ρ) then {mark(ρ) equal true means thatρ has been not visited yet}
9: mark(ρ)← tt {markρ as “visited”}

10: if (ρ : SΠ) 6|= f then {if f is not satisfied overρ along traceSΠ}
11: return ff, SΠ {failure and return a counterexample}
12: else{f is satisfied}
13: Λ← {α : α is an enabled transition from stateρ}
14: if Λ = ∅ then {no transition is possible}
15: pop(SΠ) {delete head elementα · ρ from trace stack (i.e., backtrack)}
16: else
17: ∀α ∈ Λ, push(SΛ, α) {push the enabled actions intoSΛ}
18: end if
19: end if
20: end if
21: if SΛ 6= ∅ then {if some transition remains}
22: α← pop(SΛ) {retrieve next transition (i.e., depth first search)}
23: let ρ′ : ρ

α→ ρ′ in push(SΠ, α · ρ′) {extend the trace adding the suffixα · ρ′}
24: ρ← ρ′

25: else
26: pop(SΠ) {backtrack}
27: end if
28: until SΠ = ∅ {all states have been visited}
29: return tt {success}
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counter example ok

abstract model

spyder model in normal form

spyder model
logic formula

typing function 

logicspycal

model
checker

LEX/PARSER LEX/PARSER

normalization
+

LEXER

Figure 4.5: The architecture of the SPYDER prototype implemented in Ocaml

4.6 Conclusions

This chapter presents SPYDER, a model checking environment for a typed spi-calculus dialect. A
protocol is specified as a term of a formal calculus called thespy-calculusdescribing a parallel
composition of a finite number of process instances, each representing a finite-behaviored role
running the protocol. More runs of a protocol can be described by instantiating more copies of
each agent. Thespy-calculushas an operational semantics based on labelled transition systems,
where the intruder is described in the Dolev-Yao style. Security properties can be expressed in a
linear time temporal logic.

Here types are used to obtain finite-state labelled transition systems. Types are assigned in
a flexible manner, by user-defined transformation functionsCSZ

; these are applied to a given
protocol specificationZ to obtain a typed version inCSZ

(Z), before running the model checker.
A transformationCSZ

is a “view” that a user can introduce to select a finite partition of the
state space. Different transformations can be used to select different portions of the state space,
increasing the confidence of the analysis.

As theoretical result we have proved that given a formulaf , an attack (that is a trace over
which f is not satisfied) over a transformed protocolCSZ

(Z) always implies the existence of the
same attack over the original protocolZ. Obviously finding an attack via protocol transformations
is only a sound method,i.e., if an attack exists over a protocolZ we have no guarantee that the
attack can be found over a specific transformed protocol. Anyway, we prove that a transformation
C′SZ

that preserves the attack always exists. This mean that our transformations are general enough
to maintain type flaws.
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λ1 = 1.cas〈〈A, B〉〉

λ2 = 3.cas〈〈A, B〉〉 λ7 = 1.cab〈{〈A, K〉}Kbs
〉

λ5 = 2.cab〈{〈A, K〉}Kbs
〉

λ6 = 1.cas〈〈{K}Kas , {〈A, K〉}Kbs
〉〉
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, {〈A, K〉}Kbs

〉〉

Figure 4.6: The finite state labelled transition system which modelsCSNSSK
(NSSK).



110 Chapter 4. S PYDER: a Model Checker for Security Protocols

q G Z̃

q0 G0 =

(Ω, ∅,⊥)
(pA,W1,⊥)
(pB,W2,⊥)
(pS ,W3,⊥)

Z̃0 =

(\Kas)(\Kbs)(\A)(\B)(\S)
(1, pA〈A,B, S,Kas〉)
|||(2, pB〈A,B, S,Kbs〉)
|||(3, pS〈A,B, Kas,Kbs〉)

q1 G1 =
(Ω,

WΩ︷ ︸︸ ︷
{〈A, B〉},⊥)

(pA,W1,⊥)
(pB,W2,⊥)
(pS ,W3,⊥)

Z̃1 =
(1, cas(x)[x is 〈x1, x2〉]cab(x2).0)
|||(2, pB〈A,B, S,Kbs〉)
|||(3, pS〈A,B, Kas,Kbs〉)

q2 G2 =

(Ω, 〈A, B〉,⊥)
(pA,W1,⊥)
(pB,W2,⊥)
(pS ,W3 ∪ {〈A, B〉︸ ︷︷ ︸

W ′
3

},

[z ← 〈A, B〉]︸ ︷︷ ︸
σ′3

)

Z̃2 =

(1, cas(x).[x is 〈x1, x2〉]cab(x2).0)
|||(2, pB〈A,B, S,Kbs〉)

|||

(3,
[z is 〈A, B〉].(νKab)
cas(〈{Kab}Kas ,
{〈A,Kab〉}Kbs

〉).0)

q′2 G′2 = G2 Z̃ ′
2 =

(1, cas(x)[x is 〈x1, x2〉]cab(x2).0)
|||(2, pB〈A,B, S,Kbs〉)

|||

(3,
(νKab)
cas(〈{Kab}Kas ,
{〈A,Kab〉}Kbs

〉).0)

q3 G3 =

(Ω,WΩ,⊥)
(pA,W1,⊥)
(pB,W2,⊥)
(pS ,W ′

3 ∪ {K}︸ ︷︷ ︸
W ′′

3

, σ′3)
Z̃3 =

(1, cas(x)[x is 〈x1, x2〉]cab(x2).0)
|||(2, pB〈A,B, S,Kbs〉)
|||(3, cas(〈{K}kas , {〈A,K〉}kbs

〉).0)
whereK is a new name

q4 G4 =
(Ω,

W ′
Ω︷ ︸︸ ︷

WΩ ∪ {〈{K}Kas ,
{〈A,K〉}Kbs

〉} ,⊥)

(pA,W1,⊥)
(pB,W2,⊥)
(pS ,W ′′

3 , σ′3)

Z̃4 =
(1, cas(x)[x is 〈x1, x2〉]cab(x2).0)
|||(2, cab(y).[y is {〈A, y1〉}Kbs

].0)
|||(3, 0)

Figure 4.7: Details of the LTS of the protocolCSNSSK
(NSSK) (part A). In the first column we list

the name of the states, in the second and third column their contentsi.e., the global states and suf-
fixes of thespy-calculusprotocol specification (where we omitted types for sake of saving space).
In the initial stateW1 = {A,B, S,Kas}, W2 = {A,B, S,Kbs} andW3 = {A,B, S,Kas,Kbs}
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q G Z̃

q5 G5 =

(Ω,W ′
Ω,⊥)

(pA,W1,⊥)

(pB,

W ′
2︷ ︸︸ ︷

W2 ∪ {{〈A, K〉}Kbs
},

[y ← {〈A, K〉}Kbs
]︸ ︷︷ ︸

σ2

)

(pS ,W ′′
3 , σ′3)

Z̃5 =

(1, cas(x).
[x is 〈x1, x2〉]
cab(x2).0)
|||(2, {〈A, K〉}Kbs

is
{〈a, y1〉}Kbs

.0)
|||(3, 0)

q′5 G′5 =

(Ω,W ′
Ω,⊥)

(pA,W1,⊥)
(pB,W ′

2, σ2 ∪ [y1 ← K]︸ ︷︷ ︸
σ′2

)

(pS ,W ′′
3 , σ′3)

Z̃ ′
5 =

(1, cas(x).
[x is 〈x1, x2〉]
cab(x2).0)
|||(2, 0)
|||(3, 0)

q6 G6 =

(Ω,W ′
Ω,⊥)

(pA,
W ′

1︷ ︸︸ ︷
W1 ∪ 〈{K}Kas , {〈A,K〉}Kbs

〉,
[x← 〈{K}Kas , {〈A,K〉}Kbs

〉]︸ ︷︷ ︸
σ1

)

(pB,W ′
2, σ

′
2)

(pS ,W ′′
3 , σ′3)

Z̃6 =
(1, [x is 〈x1, x2〉]cab(x2).0)
|||(2, 0)
|||(3, 0)

q′6 G′6 =

(Ω,W ′
Ω,⊥)

(A,W ′
1,

σ1 ∪ [x1 ← K,
x2 ← {〈A, K〉}Kbs

]︸ ︷︷ ︸
σ′1

)

(B,W ′
2, σ

′
2)

(S, W ′′
3 , σ′3)

Z̃ ′
6 =

(1, cab(x2).0)
|||(2, 0)
|||(3, 0)

q7 G7 =

(Ω,W ′
Ω,⊥)

(pA,W ′
1, σ

′
1)

(pB,W ′
2, σ

′
2)

(pS ,W ′′
3 , σ′3)

Z̃7 =
(1, 0)
|||(2, 0)
|||(3, 0)

Figure 4.8: Details of the LTS of the protocolCSNSSK
(NSSK) (continued).
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In our framework we do not have any automatic method to find a typing transformation catch-
ing an attack without knowing the attack first. The formal proof of completeness, where this
transformation is proved to exist, is not constructive and it does not help in this direction. At the
present version of the tool finding the right typing transformation depends on the experience of
the engineer that performs the verification. We conjecture that useful hints in defining a signifi-
cant typing transformation can emerge from a static analysis of the message flow along a protocol
specification. This conjecture is supported by those results that show that it is possible to use type
checking to check secrecy and authenticity (e.g.,see [3, 102]). Type checking for security protocol
is not commonly used, and the large availability of dynamic verifier confirms this impression. We
claim that static type checking can be profitably integrated in our tool with dynamic analysis: a
static (even partial) check can be used as front-end to built a set of typing transformations then
used in the dynamic model checker module. We have not investigated this solution yet, and we
point out it as a future research.

Our SPYDER implementation runs in exponential time in the size of the longest message in-
volved in the protocol. This matches the expected theoretical computational complexity, so it is
the best we can expect. We think that the SPYDER performance can be significantly improved
by the use of partial order reduction techniques that may help in reducing even more the size of
protocol models (this is evident, for example, just looking at the model in Figure 4.6). In fact, the
use of partial order reduction has been applied with success in the model checker BRUTUS [52]
whose logic (and relative semantical models) have inspired the one we have used here. We leave
as a future work the porting of such techniques to SPYDER.
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Relating Multiset Rewriting and
Process Algebras for Security Protocol
Analysis

“Quando leggemmo il dis̈ıato riso esser
basciato da cotanto amante, questi, che
mai da me non fia diviso, la bocca mi
bascìo tutto tremante. Galeotto fu’l libro
e chi lo scrisse: quel giorno più non
vi leggemmo avante.” (Francesca inLa
Divina Commedia – Inferno Canto V,
Dante Alighieri)

“When we had read how the desired smile
was kissed by one who was so true a lover,
this one, who never shall be parted from
me, while all his body trembled, kissed my
mouth. A Gallehault indeed, that book and
he who wrote it, too; that day we read no
more.”

Abstract

When analysing security protocols, different specification languages support very different
reasoning methodologies whose results are not directly or easily comparable. Therefore, es-
tablishing clear mappings among different frameworks is highly desirable, as it permits vari-
ous methodologies to cooperate by interpreting theoretical and practical results of one system
into another. In this chapter, we examine the relationship between two general verification
frameworks: multiset rewriting (MSR) and a process algebra (PA) inspired by CCS and the
π-calculus. Although defining a simple and general bijection betweenMSR andPA appears
difficult, we show that the sub-languages needed to specify cryptographic protocols admit an
effective translation that is not only trace-preserving, but also induces a correspondence re-
lation between the two languages. In particular, the correspondence sketched in this chapter
permits transferring several important trace-based properties such as secrecy and many forms
of authentication.

5.1 Introduction

In the last decade, security-related problems have attracted the attention of many researchers from
several different communities, especially formal methods (e.g.,[4, 6, 40, 50, 43, 66, 79, 84, 82,
102, 150, 182, 77]). These researchers have often let their investigation be guided by the tech-
niques and experiences specific to their own areas of knowledge. This massive interest has deter-
mined a plethora of results that often are not directly comparable or integrable with one another. In
the last few years, attempts have been made to unify frameworks for specifying security properties
often expressed in different ways [86], and to study the relationships between different models for
representing security protocols [44].

In this chapter, we relate a transition-based and a form of process-based models for the descrip-
tion and the analysis of a large class of security protocols. We choose the multiset-rewriting for-
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malismMSR as a representative of the former, and synthesize salient features of popular process
algebras in a system that we callPA as an abstraction of the latter.

MSR, with its roots in concurrency theory and rewriting logic, has proved to be a language
suitable for studying foundational issues in security protocols [43]. It is also playing a practical
role through the closely related CIL intermediate language [66] of the CASPL security protocol
analysis system [65], in particular since translators from several tools to CIL have recently been
developed. Ties between betweenMSR and strand spaces [76], a popular specification language
for crypto-protocols, were analyzed by Cervesatoet al in [44].

Process algebra encompasses a family of well-known formal frameworks proposed to describe
features of distributed and concurrent systems. Here we use aPA that borrows concepts from
different calculi, specifically CCS [158] and theπ-calculus [158]. We expect our results to be
applicable to other (value passing) process algebras used for security protocol analysis,e.g.,the
spi-calculus [5] or CSP [181]. Indeed, when applied to security protocol analysis, most such
languages rely only on a well-identified subset of primitives, that we have isolated in the language
considered here.

We relateMSR andPA by definingencodingsfrom one formalism to the other. Moreover
we propose acorrespondence relationbetweenMSR andPA protocol models, preserved by our
encodings, that is sufficient to transfer several useful trace-based properties such as secrecy and
many forms of authentication. Informally, this relation says that anMSR configuration and aPA
process correspond if and only if the messages stored on the network and the messages known by
the intruder are the same, step by step, in the two models.

Consequences of the results in this chapter are:

• First, our encodings establish a relationship between thespecification methodologiesun-
derlying MSR andPA. MSR is a representation paradigm based on transitions between
explicit states, as found, for example, in the vast majority of tools for security protocol
analysis [43, 50, 65, 70, 150, 172, 181]. The approach underlyingPA and the languages
behind it,e.g.,[5, 29, 82, 102, 77], represents concurrent systems, with security protocols
as a particular instance, as independent threads of computation communicating by message
passing. While specifications are obviously related, moving between paradigms is an error-
prone process unless guided by formal encodings.

• Second, the relationship we developed helps at relating verification results obtainable in
each model, in particular as far as secrecy and authentication are concerned. Systemsà la
MSR overwhelmingly embrace a verification methodology based on some form of trace ex-
ploration: model-checking [50, 65, 70, 181], theorem proving [172], or a combination [150].
The situation is more complex in process-algebraic languages, in which the analysis can be
based on traces [29, 82, 186], but also on process equivalence [5], type-checking [102] and
other forms of symbolic reasoning [110]. While we do not study how these last three forms
of analysis map to in theMSR world, we believe that the present study opens the door
to such an investigation. Authentication and secrecy are quintessential trace-based safety
properties (they are expressed in terms of intruder knowledge and messages passed onto
the network and our encodings preserve this information). Therefore relating trace-based
results inMSR andPA is valuable, in particular as these languages rely on different notions
of traces, and sometimes make different uses of them,e.g.,[82].

• Finally, by bridgingPA andMSR, we implicitly define a correspondence betweenPA and
other languages for security analysis.MSR has already been related to other formalisms,
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such as strand spaces [76] in a setting with an interleaving semantics (a worthy investigation
as remarked in [62]), while work on linear logic andMSR appears in [157].

5.2 Background

In this section, we recall the syntax and formal semantics of multiset rewriting (MSR) and we
define the language,PA, that we will use as a representative of process algebras. Before doing so,
we present our notation for tuples, as bothMSR andPA rely on these objects. Atuple is defined
by the following grammar:

t ::= ε | t; t

A tuple t is a sequence of items. We use the semicolon (“;”) as the tuple constructor: it is associa-
tive but not commutative. We writeε for the empty tuple, which acts as the left and right identity
of “ ;”. We write t ∈ t to indicate that itemt is present in tuplet, and use the notationt′ v t to
indicate thatt′ is a subsequence oft, i.e., thatt′ can be obtained by deleting zero or more symbols
from t. Finally, given tuplest andt′ with t′ v t, we writet− t′ for the tuple obtained by filtering
out all itemst′ ∈ t′ from t, while preserving the order of the remaining elements of the latter.

5.2.1 First Order Multiset Rewriting

The language of first-orderMSR is defined by the following grammar:

Elements ã ::= · | a(t), ã
Rewriting Rules r ::= ã(x)→ ∃n.b̃(x;n)
Rule sets r̃ ::= · | r, r̃

Multiset elements are chosen as atomic formulasa(t), wheret is a tuple of terms over some first-
order signatureΣ. We writeã(x) to emphasize that variables, drawn fromx, appear in a multiset
ã. Similarly we writet (respectivelyt) ast(x) (respectivelyt(x)), to underline that variblesx
appear in a termt (respectively in the tuple of termst). Instead, we writet (respectivelyt) to
emphasize, when required, that a termt is (respectively all the term int are) ground,i.e.,variable-
free.

In the sequel, the comma “,” will denote multiset union and will implicitly be considered
commutative and associative, while “·”, the empty multiset, will act as a neutral element; we will
omit it when convenient. The operational semantics ofMSR is expressed by the following two
judgments:

Single rule application r̃ : ã −→ b̃

Iterated rule application r̃ : ã −→∗ b̃

The multisets̃a and b̃ are calledstatesand are always ground formulas. The arrow represents a
transition. These judgments are defined as follows:

msr0

(r̃, ã(x)→ ∃n.b̃(x;n)) : (c̃, ã[t/x]) −→ (c̃, b̃[t/x,k/n])

msr∗

r̃ : ã −→∗ ã

r̃ : ã −→ b̃ r̃ : b̃ −→∗ c̃
msr1

r̃ : ã −→∗ c̃

The first inference shows how a rewrite ruler = ã(x) → ∃n.b̃(x;n) is used to transform
a state into a successor state: it identifies a ground instanceã(t) of its antecedent and replaces it
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with the ground instancẽb(t;k) of its consequent, wherek are fresh constants. Here[t/x] denotes
the substitution (also writtenθ) replacing every occurrence of a variablex amongx with the
corresponding termt in t. These rules implement a non-deterministic but sequential computation
model. This means that in general several rules are applicable at any step but only one rule,
chosen non-deterministically among them, is applied at each step. Concurrency is captured as the
permutability of (some) rule applications. The remaining rules define−→∗ as the reflexive and
transitive closure of−→.

5.2.2 Process Algebras

Process algebraic specifications of security protocols are generally limited to the parallel compo-
sition of a number of processes describing the sequence of actions performed by each agent. With
this in mind, we forsake the full treatment of a traditional process algebra, such as theπ-calculus,
in favor of a more specific language,PA, that includes the features commonly used for describ-
ing cryptographic protocols. In particular, we lay outPA on two levels: sequential processes
describe the sequence of atomic actions (input, output, name generation, etc.) performed by an
individual agent andparallel processesbundle them into a multi-agent specifications. Sequential
processes are synchronous, although a systematic use of buffer processes will prevent the possi-
bility of blocking on an output action. For convenience, we will rely on polyadic communication
channels.

With these premises, the language ofPA is defined by the following grammar:

Parallel processes Q ::= 0 | Q ‖ P | Q ‖ !P

Sequential processes P ::= 0 | a(t).P | a(x).P | [x = t] P | νx.P

Parallel processes are defined as a parallel composition of – possibly replicated – sequential
processes. These, in turn, are a sequence of communication actions (input or output), pattern
matching and constant generation. An output processa(t).P is ready to send a tuple of termst,
each built over a signatureΣ, along the polyadic channel nameda. An input processa(x).P is
ready to receive a tuple of (ground) messages, each in the corresponding variablex ∈ x. The
process[x = t] P is a parallel pattern matching construct which forces any instantiation ofx
to match the patternt, possibly binding previously unbound variables in the latter. Finally, the
creation of a new object inP (as in theπ-calculus [162]) is written asνx.P (we will sometimes
abbreviateνx1. . . . νxn.P asνx.P ). The binders of our language areνx, a(x) which bind each
x in x, and[x = t] which binds any first occurrence of a variable int. This induces the usual
definition of free and bound variables in a term or process.

The operational semantics ofPA is given by the following judgments:

Single interaction Q⇒ Q′

Iterated interaction Q⇒∗ Q′

They are defined as follows:

pa0

(Q ‖ a(t).P ‖ a(x).P ′)⇒ (Q ‖ P ‖ P ′[t/x])

t = t′[θ]
pa[]

(Q ‖ [t = t′] P )⇒ (Q ‖ P [θ])

k 6∈ c(Q) ∪ c(P )
paν

(Q ‖ νx.P )⇒ (Q ‖ P [k/x])
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P ≡ P ′ P ′ ⇒ Q′ Q′ ≡ Q
pa≡

P ⇒ Q
pa∗

Q⇒∗ Q

Q⇒ Q′′ Q′′ ⇒∗ Q′
pa1

Q⇒∗ Q′

The first inference (reaction) shows how two sequential processes, respectively one ready to per-
form an output of a tuplet of ground terms, and one ready to perform an input overx react by
applying the instantiating substitution[t/x] to P ′. The second inference rule (matching) says that
there must exist a substitutionθ that matches termst′ with ground termst, for [t = t′]P to evolve
into P [θ]. The third rule defines the semantics ofνx as an instantiation with a fresh constanti.e.,
a name which differs form those appearing in all the process terms (herec(P ) denotes the set of
constant inP ). The next rule allows interactions to happen modulo structural equivalence≡, that
in our case contains the usual monoidal equalities of parallel processes with respect to‖ and0,
the unfolding of replication (i.e., !P ≡ !P ‖ P ), and the equation[t = t′] P ≡ [t∗ = t′∗] P
which filter out identities in tuple’s matching,i.e.,wheret∗ andt′∗ are obtained fromt andt′ by
removing all identical items in corresponding positions in a patter matching over tuples.

Finally, the last two inferences define⇒∗ as the reflexive and transitive closure of⇒.

5.3 Security Protocols

A cryptographic protocol is a collection of distributed programs supporting communication be-
tween participating agents and aimed at achieving predetermined security outcomes such as se-
crecy or authentication. The agents communicating in a protocol are calledprincipals, while the
individual programs they execute as part of the protocol are calledroles. Communication hap-
pens through a publicnetworkand is therefore accessible to anyone, unless protected through
cryptography.

Both transition- and process-based languages have been widely used for the specification of
cryptographic protocols (see for example [4, 6, 50, 43, 66, 79, 84, 82, 102, 150, 182, 77]). In this
section, we defineMSRP andPAP , two security-oriented instances ofMSR andPA respectively,
and describe how they can be used to specify security protocols.

Narrowing our investigation to a specific domain allows us to compare directly these restricted
versions ofPA andMSR. Moreover by restricting our analysis to cryptographic protocols, we are
able to obtain stronger correspondence results than what seems achievable in a general comparison
betweenPA andMSR[25].

The two specifications will rely on a common first-order signatureΣP that includes at least
concatenation (〈 , 〉) and encryption ({ } ). In both formalisms, terms inΣP stand for messages.
Predicate symbols are interpreted as such inMSRP , and as channel names inPAP . Variables will
also be allowed in rules and processes.

5.3.1 Formalizing Protocols as Multiset Rewriting

MSRP relies on the following predicate symbols [44]:

Network Messages (̃N ): are the predicates used to model the network, whereN(t) means that
the termt is stored in the network.

Role States (̃A): are the predicates used to model roles. Assuming a set ofrole identifiersR, the
family of role state predicates{Aρi(t) : i = 0 . . . lρ}, is intended to hold in the internal
state,t, of a principal in roleρ ∈ R during the sequence of protocol stepsi = 0 . . . lρ. The
behavior of each roleρ is described through a finite number of rules, indexed from0 to lρ.
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Intruder ( Ĩ): are the predicates used to model the intruderI, whereI(t), means that the intruder
knows the messaget.

Persistent Predicates (̃π): are ground predicates holding data that does not change during the
unfolding of the protocol (e.g.,Kp(K;K ′) indicates thatK andK ′ form a pair of pub-
lic/private keys). Rules use these predicates in a read-only manner to access the value of
persistent data.

A security protocol is expressed inMSRP as a set of rewrite rules̃r of a specific format called
asecurity protocol theory. Given rolesR, it can be partitioned as̃r = ∪ρ∈R(r̃ρ), r̃I , wherer̃ρ and
r̃I describe the behavior of a roleρ ∈ R and of the intruderI. For each roleρ, the rules inr̃ρ

consist of:

• oneinitial rule

instantiation rρ0 : π̃(x) → ∃n.Aρ0(x;n), π̃(x)

• zero or more (i = 1 . . . lρ) message exchange rules:

send rρi : Aρi−1(x) → Aρi(x), N(t(x))

receive rρi : Aρi−1(x), N(y) → Aρi(x; y)

analysis rρi : Aρi−1(t(x)) → Aρi(x)

The first rule (instantiation) describes the instantiation step of a protocol role. All the new
names required in a roleρ are generated during instantiation, and similarly all the variablesx
referring to permanent datãπ(t) are bound to ground permanent terms in that rule. The second
rule (send) describes an action of sending a messaget composed by using (all or a subset of) the
ground terms in the role’s state. The third rule (receive) describes a receive operation, where a
messaget stored in the net is retrieved, bound to variabley and then stored into the internal state
of the role. The last rule (analysis) simulates the action of a role when it analyses (e.g.,decrypts
or splits) previously received messages.

This fairly explicit formulation ofMSR rules will simplify our comparison withPAP . Equiv-
alent, but more succinct, formulations can be found in [43, 42].

Rules inr̃I are the standard rules describing the intruder in the style of Dolev-Yao [69], whose
capabilities consist in intercepting, analyzing, synthesizing and constructing messages, with the
ability to access some permanent data. Formally:

rI1 : π(x) → I(x), π(x)
rI2 : · → ∃n.I(n)
rI3 : N(x) → I(x)
rI4 : I(x) → N(x), I(x)
rI5 : I(〈x1, x2〉) → I(x1), I(x2), I(〈x1, x2〉)
rI6 : I(x1), I(x2) → I(〈x1, x2〉), I(x1), I(x2)
rI7 : I({x}k), I(k), Kp(k; k′) → I(x), Kp(k; k′), I({x}k), I(k)
rI8 : I(x), I(k) → I({x}k), I(x), I(k)
rI9 : I(x) → ·

wherex, xi’s andk are variables. Informally, the first rule allows the intruder to access (i.e., get
knowledge of) persistent data. In the second, rule the intruder creates a new ground datum. In
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the third, a message stored in the network is intercepted, while in the fourth a known message
is injected into the network channel. The remaining rules describe the intruder capabilities for
managing the messages it knows: more precisely its ability to decompose pairs, to compose pairs,
to decrypt a message (if the relative decryption key is known), and to create encrypted messages.
Finally, the last one describes the capability of the intruder in deleting messages (i.e., forgetting
knowledge).

In MSRP , a state is a multiset of the form̃s = (Ñ , Ã, Ĩ, π̃), where the components collect
ground facts of the formN(t), Aρi(t), I(t), andπ(t) respectively. Aninitial state s̃0 = (Ĩ0, π̃)
contains only the initial intruder knowledge (Ĩ0) and persistent predicates (π̃). Note that̃π remains
the same in every state. A pair(r̃ : s̃) consisting of a protocol theorỹr and a statẽs is called a
configuration. The initial configuration is(r̃ : s̃0).

Example 5.3.1 We make these definitions more concrete by showing theMSRP representation
of the classical Needham-Schroeder Public Key (NSPK ) protocol [167]. In the common informal
notation, it is written as follows:

1. A −→ B : {A,NA}KB

2. B −→ A : {NA, NB}KA

3. A −→ B : {NB}KB

(5.3.1)

The abstract principalA and the role it executes are called theinitiator since it originates
the first message. Dually,B is the responder. This first message,{A,NA}KB

, consists ofA’s
name and a freshly generated random valueNA (a nonce), and is encrypted usingB’s public
key KB. Upon successfully decrypting this message (using private keyK−1

B ), B replies with the
second message,{NA, NB}KA

, whereNB is a second nonce, generated byB. Upon successfully
processing this message,A sends the final message{NB}KB

which shall be interpreted byB.

Here,A andB perform distinct although related sequences of actions:A generatesNA, sends
{A,NA}KB

, waits for a message fromB and verifies that it matches the format{NA, NB}KA
,

and finally sends the third message,{NB}KB
. This sequence of actions constituteA’s role. B’s

role is similar. BothMSRP andPAP give a role-centric representation of a protocol.

The MSRP specification of theNSPK protocol consists of the rule-setRNSPK which we
partition as(RA,RB, r̃I). RA andRB implement the roles of the initiator (A) and the responder
(B) respectively, whilẽrI describes the actions of a potential attacker, and have been fixed earlier
in the discussion.

First some abbreviations. We define

π̃(x; y; kx; k′x, ky) = Pr(x), PrK(x; k′x), PbK(y; ky), Kp(kx; k′x)

Here, persistent predicatePr(z) indicates thatz is the name of a principal; the predicatePbK(z; kz)
defineskz to be the public key of principalx; the predicatePrK(z; k′z) says thatk′z is z’s private
key; finally,Kp(kz; k′z) relates a public keykz and the corresponding private keyk′z. Two 5-tuples
of variables(a; b; ka; k′a; kb) and(b; a; kb; k′b; ka) will occur repeatedly in this example; therefore
we shall abbreviate them asA andB, respectively.
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Then, the following rules describeA’s role:

RA



rA0 : π̃(A) → ∃na.π̃(A), A0(A;na)

rA1 : A0(A;na) → N({a, na}kb
), A1(A;na)

rA2 : A1(A;na), N(m) → A2(A;na;m)
rA3 : A2(A;na; {na, nb}ka)→ A3(A;na;nb)
rA4 : A3(A;na;nb) → N({nb}kb

), A4(A;na;nb)

The first rulerA0 in RA is the instantiation rule of this role, and takes care of generating the
initiator’s nonce,na and collecting the persistent information used in the role. RulesrA1 andrA4

are send rules corresponding to the message transmission step1 and3 in protocol (5.3.1). Rules
rA2 andrA3 realize the initiator’s actions in the second step ofNSPK , namely the reception of a
messagem from b and the verification that it matches the expected pattern{na, nb}ka . Reception
and analysis are described as separated steps accordingly to theMSRP syntax.

The responder’s role is similarly specified by the followingMSRP rule set:

RB



rB0 : π̃(B) → ∃nb.π̃(B), B0(B;nb)

rB1 : B0(B;nb), N(m) → B1(B;nb;m)
rB2 : B1(B;nb; {a, na}kb

), → B2(B;nb;na)
rB3 : B2(B;nb;na) → N({na, nb}ka), B3(B;nb;na)
rB4 : B3(B;nb;na), N(m′)→ B4(B;nb;na;m′)
rB5 : B4(B;nb;na; {nb}kb

) → B5(B;nb;na)

Again, the instantiation rulerB0 instantiate all the variablesB to ground terms. RulesrB1 , rB4

model the receiving steps1 and3 in protocol (5.3.1), whilerB3 is the rule corresponding the
sending step2. Finally rulesrB2 , rB5 describe the analysis steps performed by the role.

Finally, we define the state portion of the initial configuration (i.e., the initial state) to consist
of:

︸︷︷︸
Ñ

︸︷︷︸
Ã

I(E), I(KE), I(K ′
E)︸ ︷︷ ︸

Ĩ

,

π̃(A;B;KA;K ′
A;KB),

π̃(B;A;KB;K ′
B;KA),

π̃(B;E;KB;K ′
B;KE),

π̃(E;A;KE ;K ′
E ;KA),︸ ︷︷ ︸

π̃

whereA, B, E, are specific principals (a andb above were variables), withE acting as the attacker.
For each of them, the pseudo-functionsK andK ′ denote their public and private key, respectively.

In this initial state, the intruder knowledge consists of its nameE and its public/private key
pair KE ,K ′

E . The persistent datãπ defines the attributes (name, public and private key) of each
of these principals, in particular of the intruderE who may participate in the protocol as an honest
player if he wishes. This is useful, for example, when testing some authenticity property.

5.3.2 Protocols as Processes

A security protocol may be described in a fragment ofPA where:

• Every communication happens through the net (hereP!net is the process that manages the
net as a public channel where protocol roles send and receive messages).



5.3. Security Protocols 123

• There is an intruder, with some initial knowledge, able to intercept and forge messages
passing through the net (hereQ!I , with initial knowledgeQI0).

• Each principal starts the protocol in a certain roleρ.

Formally a security protocol, involving a collection of roles{ρ}, is expressed inPAP as a
“security protocol processQ”, defined as the parallel composition of five components:P!net ‖∏

ρ P!ρ ‖ Q!I ‖ Q!π ‖ QI0 where
∏

P denotes the parallel composition of all the processes inP.
More precisely:

P!net = !Ni(x).No(x).0 This process describes the behavior of the network as a buffer that copies
messages from channelNi (input to the net) toNo (output from the net), implementing an
asynchronous form of message transmission on top of a synchronous calculus.

P!ρ Each of these replicated sequential processes capture the actions that constitute a role, in the
sense defined forMSRP . These processes have the form

P!ρ = !π̃(x).νn.Pρ

HerePρ is a sequential process that performs input and output only on the network channels,
and that analyses the received messages. Variablesx andn are free inPρ.

Notice that pattern matching is sufficient for “extracting” a piece of information whenΣP

is used, but more general mechanisms could be considered (as in Crypto-CCS for exam-
ple [86]).We have used̃π(x).P as a shortcut forπ1 (x1) . . . πk (xk).P , wherexi v x.
Formally,

Pρ ::= 0 | No(y).Pρ | Ni(t).Pρ | [x′ = t(x)] Pρ

Q!I = !PI1 ‖ . . . ‖ !PI9 ‖ !PI10 This is the specification of the intruder model in a Dolev-Yao
style. The dedicated channelI holds the information the intruder operates on (it can be
either initial, intercepted, or forged). EachPIi , for i = 1, . . . , 9 describes one capability
of the intruder. The additional processPI10 has no meaning in term of intruder capability
but technically it behaves as a “garbage” collector of messages in the intruder knowledge.
ProcessesPIi are defined as follows:

PI1 = π(x).I (x).0
PI2 = νn.I (n).0
PI3 = No(x).I (x).0
PI4 = I (x).I (x).Ni(x).0
PI5 = I (x).I (x).[x = 〈x1, x2〉].I (x1).I (x2).0
PI6 = I (x1).I (x1).I (x2).I (x2).I (〈x1, x2〉).0
PI7 = Kp(w).I (y).I (y).[w = 〈y, y′〉].I (x).I (x).[x = {z}y′ ].I (z).0
PI8 = I (x).I (x).I (k).I (k).I ({x}k).0
PI9 = I (x).0
PI10 = I (x).I (x).0

ProcessesPI1 throughPI9 perform the same actions as theMSRP intruder rules with the
same index in Section 5.3.1. For example,PI5 retrieves an objectx previously memorized
asI(x), splits it into the pair(x1, x2), and then stores a copy of each of the termsx, x1 and
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x2: this is exactly whatrI5 achieved. ChannelI is used to store the intruder’s knowledge
in a distributed way. ProcessPI10 ensures that writing onI is never blocking, even in our
synchronous calculus. In particular, it allows expressing every termt known to the intruder
as the singleton processI (t).0, since it can rewrite a trailing sequence of outputsI (t).I (t′).0
into I (t).0 ‖ I (t′).0.

Q!π =
∏

!π(t).0 This process represents what we called “persistent information” in the case of
MSRP . We can assume the same predicate (here channel) names with the same meaning.
This information is made available to client processes on each channelπ (e.g.,Kp). It is
assumed that no other process performs an output onπ.

QI0 =
∏

I (t).0 for termst. QI0 represents the initial knowledge of the intruder.

In PAP , an initial state is a process(P!net ‖
∏

ρ!Pρ ‖ Q!I ‖ Q!π ‖ QI0). Subsequent states
are obtained by applying the execution rules ofPA defined in Section 5.2.2.

Example 5.3.2 In order to gain a better understanding of thePAP specification methodology, we
will now express theNSPK protocol (5.3.1) in this language. ThePAP specification ofNSPK
protocol will consist of the following processes:

QNSPK = P!net ‖ P!A ‖ P!B ‖ Q!I ‖ Q!π ‖ QI0

HereP!net andQ!I have already been defined. As withMSRP , we rely on the abbreviations
A = (a; b; ka; k′a; kb) and B = (b; a; kb; k′b; ka) for the given tuples of variables. The other
processes are as follows:

P!A = !π̃(A). νna. Ni({a, na}kb
). No(m). [m = {na, nb}ka ] . Ni({nb}kb

). 0

whereπ̃(A) is an abbreviation for the prefix

Pr(a).PrK(a; k′a).PbK(b; kb).Kp(ka; k′a)

First, processP!A receives, through channels̃π, the instantiating constants of the initiator role.
Then it sends the encrypted message{a, na}kb

on the net, wherena is a fresh name andkb the
responder’s public key. Then,P!A receives a messagem that it tries to interpret as{na, nb}ka by
decryption using the private keyka, and by splitting the results as the pair(na, nb). If this step
succeeds the message{nb}kb

is sent back to the net.
The processP!B representing the responder ofNSPK is similarly defined as follows:

P!B = !π̃(B). νnb. No(m).[m = {a, na}kb
] .

Ni({na, nb}ka). No(m′). [m′ = {nb}kb
] . 0

The initial knowledge of the intruder is:

QI0 = I (E).0 ‖ I (KE).0 ‖ I (K ′
E).0

i.e., the intruder knows its name and its private/public key pairs. Finally the processes modeling
the persistent information are the following:

Q!π = Qπ̃(A;B;KA;K′
A;KB) ‖ Qπ̃(B;A;KB ;K′

B ;KA) ‖
Qπ̃(B;E;KB ;K′

B ;KE) ‖ Qπ̃(E;A;KE ;K′
E ;KA)
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whereQπ̃(x;y;kx;k′x;ky) is the parallel composition of simple replicated processes that output each
object inπ̃(x; y; kx; k′x; ky) on channels̃π, i.e., :

!Pr(x).0 ‖ !PrK(x; k′x).0 ‖ !PbK(y; ky).0 ‖ !Kp(kx; k′x).0 .

Here finishes the example showing how to write a security protocol in our subset ofPA.

5.4 Encoding Protocol Specifications

This section describes two encodings: one fromMSRP toPAP and the other fromPAP toMSRP .
As we define these encodings, we assume a common underlying signatureΣP . In particular, the
predicate symbols and terms inMSRP find their counterpart in channel names and messages in
PAP , respectively.

The first mapping, fromMSRP to PAP , is based on the observation that role state predicates
forceMSRP rules to be applied sequentially within a role (this is not true for generalMSR the-
ories). Minor technicalities are involved in dealing with the presence of multiple instances of a
same role (they are addressed through replicated processes).

At its core, the inverse encoding, fromPAP to MSRP , maps sequential agents to a set of
MSRP rules corresponding to roles: we generate appropriate role state predicates in correspon-
dence of the intermediate stages of each sequential process. The replication operator is not directly
involved in this mapping as it finds its counterpart in the way rewriting rules are applied. The trans-
formation of the intruder, whose behavior is fixed a priori, is treated off-line in both directions.

Before proceeding we introduce some simplifying assumptions and a preliminary observation.
Without loss of generality, we assume that the rewrite rules of anMSRP theory are written in the
following form: variables occurring in two occurrences of a role state predicateAρi(x), one in the
antecedent and one in the consequent of two consecutive rules, have the same name. Moreover,
in the antecedentAρi(t(x)) of an analysis rule, we require that all the variables introduced by
t(x) be distinct from the variablesx′ in the consequentAρi(x

′) of the preceding rule. These
assumptions, purely syntactical, simplify situations in the proofs without invalidating our analysis.
Example 5.3.1 implements them.

We begin by characterizing the structure of a genericPAP state reachable from an initial
specification (see Sec. 5.3.2) as the parallel composition of precisely identified processes. We
have the following proposition:

Proposition 5.4.1 LetQ be aPAP initial state. IfQ is such thatQ0 ⇒∗ Q thenQ can be written
as:

Q ≡

Q!︷ ︸︸ ︷
(P!net ‖

∏
ρ

P!ρ ‖ Q!I ‖ Q!π) ‖ (Qnet ‖
∏
ρ

Pρ ‖ QI ‖ Qrem)

where:

Qnet ::= 0 |
∏

No(t).0

Pρ ::= 0 | No(x).Pρ | Ni(t).Pρ | [t = t′] Pρ

QI ::= suffix ofPIj , for all j

Qrem ::= 0 | No(x).Ni(x).0 | π̃(x).νn.Pρ | νn.Pρ |
∏

π(t).0
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Proof. By induction over the number of transition steps. As the base of the induction let us
observe that aPAP initial stateQ0 is exactly the processQ! ‖ QI0 (whereQ! = P!net ‖

∏
ρ P!ρ ‖

Q!I ‖ Q!π), and thatQ0 ⇒∗ Q0. Then, let beQ such thatQ0 ⇒∗ Q′ ⇒ Q. For inductive
hypothesisQ′ may be written as a process of formQ! ‖ (Qnet ‖

∏
ρ Pρ ‖ QI ‖ Qrem), and

it is easy to check that, each transitionQ from Q′ can be written as well as a process of form
Q! ‖ (Q′

net ‖
∏

ρ P ′
ρ ‖ Q′

I ‖ Q′
rem).

5.4.1 FromMSRP to PAP

This section defines the transformationd e that, given anMSRP configuration(r̃ : s̃) with r̃ =
(∪ρ(r̃ρ), r̃I) and s̃ = (Ñ , Ã, Ĩ, π̃) returns aPAP stateQ! ‖ Qnet ‖

∏
ρ Pρ ‖ QI (with Q! =

(P!net ‖
∏

ρ P!ρ ‖ Q!I ‖ Q!π)).
More preciselyd e is a tuple of encodingsd eRρ , d eRI , d eN d eAρ , d eI , d eπ, each operating

on a different component of theMSRP configuration, as depicted in the following scheme:

d(∪ρ(r̃ρ) ∪ r̃I : Ñ , Ã, Ĩ, π̃)e =
Q!︷ ︸︸ ︷

(!Pnet ‖
∏
ρ

P!ρ︸ ︷︷ ︸
d∪ρ(r̃ρ)eRρ

‖ Q!I︸︷︷︸
dr̃IeRI

‖ Q!π︸︷︷︸
dπ̃eπ

) ‖ (Qnet︸︷︷︸
dÑeN

‖
∏
ρ

Pρ︸ ︷︷ ︸
dÃeAρ

‖ QI︸︷︷︸
dĨeI

)

This definition is interpreted as follows:

• Pnet is fixed a priori (see Section 5.3.2);

•
∏

ρ P!ρ andQ!I , result from the transformation of respectively∪ρ(r̃ρ) andr̃I ;

• Q!π results from the transformation ofπ̃, and

• Qnet,
∏

ρ Pρ, andQI result from transformation of, respectivelỹN , Ã andĨ.

Intuitively, the transformationsd∪ρ(r̃ρ)eRρ anddr̃IeRI return the parallel composition of repli-
cated (i.e., preceeded by a !) processes modeling the sequence of actions of each role and of the
intruder, respectively. The replication operator makes these processes always available for in-
stantiation as the MSR rules are. The intruder process is fixed a priori and its transformation is
obvious. The transformation of̃rρ, e.g.,the rules of roleρ, is more interesting: it results in a se-
quential processPρ, whose send, receive or match sub-processes are obtained, respectively from
send, receive and analysis rules inr̃ρ (see also Example 5.4.2). Particular attention is reserved for
the translation of the first instantiation rulerρ0 .

The next transformations act on predicatesÑ , Ã and Ĩ in the MSRP state, and return the
parallel composition of sequential processes. More precisely, all the predicatesN(t) in Ñ are
transformed into singleton output processesNo(t).0 representing the availability of the ground
datumt on the net. Similarly predicatesI(t) in Ĩ are transformed into output processesI (t).0 rep-
resenting the intruder knows the datumt. Finally the transformation of each predicatesAρi(t), in
Ã returns the suffix of the processPρ that model the remaining role rulesrρi+1 , . . . , rρlρ

. Variable
in Pρ are partially instantiated depending on terms int.
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The acquisition of permanent facts and the creation of new variablesx are mapped, respec-
tively to a sequence of input actions from processesQ!π, and actionsνx for eachx in x. In turn
Q!π is the parallel composition of replicated output processesπ(t).0, each obtained from a per-
manent predicatesπ(t) in π̃. Their task is to make permanent fact always available to be received.

Whenever unambiguous, we will omit the identifying subscript from the encoding functions
d eRρ , d eRI , d eN d eAρ , d eI , or d eπ, simplifying them tod e.

d eRρ . In transforming processesP!ρ, for each roleρ, a subroutine functiond e#(x) is called by the

top level transformationd e. d e#(x) ranges over the set of role rules∪ρ(r̃ρ), and takes a tuple
x of variables as parameter. This parameter, initially the empty tupleε, collects variables
used along the rewriting rule, and uses them opportunely in the building process. We define
it on the structure of the role rulerρi ∈ r̃ρ involved. Formally fori = 0:

drρ0e = π̃(x).νn.drρ1e
#
(x;n) if rρ0 : π̃(x)→ ∃n.Aρ0(x;n), π̃(x)

A role generation rule is mapped onto a process which first receives, in sequence, permanent
terms via the channelsπ in π̃ and then generates all the new namesn used in this role.

For0 < i ≤ lρ − 1:

drρi+1e
#
(x) =



Ni(t(x)).drρi+2e
#
(x) , if rρi+1 = Aρi(x)→ Aρi+1(x), N(t(x))

No(y)drρi+2e
#
(x;y) , if rρi+1 = Aρi(x), N(y)→ Aρi+1(x; y)

[x = t(x′)] drρi+2e
#
(x′)

, if rρi+1 = Aρi(t(x
′)),→ Aρi+1(x

′)

The transformation of a send or a receive rewriting rule is straightforward. The translation of
an analysis rewriting rule is less obvious: the matching[x = t(x′)] is intended to simulate
the matching that — in the semantics ofMSR — happens between the terms in consequent,
Aρi(x), of rulerρi and the terms in the antecedentAρi(t(x

′)) of (actual) rulerρi+1 . Finally

and with a little abuse of notation, we setdrρlρ+1
e#(x) = 0.

The final process defining the roleρ behavior is the following:Pρ
def
= drρ0e

d eRI . The intruder is handled by simply mappingr̃I to Q!I . More precisely, we define the trans-
formation functiond e that relates the intruder rewriting rulerIj with the sequential agents
PIj defined in Section 5.3.2. Moreover the transformation produces the additional process
!PI10 .

At this point the transformation is complete as soon as the states̃ = (Ñ , Ã, Ĩ, π̃) is treated.

d eAρ . For eachAρi(t) ∈ Ã, we definePAρi (t)
= drρi+1e

#
(x)[t/x], wheredrρi+1e

#
( ) was defined

above andx are the variables appearing as argument of theconsequentpredicateAρi(x) in
rρi .

d eN , d eI , d eπ. The multisetÑ guides the definition ofQnet, that isQnet
def
=

∏
N(t)∈Ñ N (t).0.

Similarly, QI
def
=

∏
I(t)∈Ĩ I (t).0, andQ!π

def
=

∏
π(t)∈π̃ !π(t).0. Formally:

d·e =0
dN(t), Ñe=No(t).0 ‖ dÑe

d·e =0
dI(t), Ĩe= I (t).0 ‖ dĨe

d·e =0
dπ(t), π̃e= !π(t).0 ‖ dπ̃e
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Example 5.4.2 (Translation ofNSPK from MSRP to PAP ) We now provide an example on how
d e works. We apply it to theMSRP specification ofNSPK given in Section 5.3.1.

d
π̃(A)→∃na.π̃(A),A0(A;na)︷︸︸︷

rA0 e = !π̃(A).νna.drA1e
#
(A;na)

d
A0(A;na)→N({a,na}kb

),A1(A;na)︷︸︸︷
rA1 e#(A;na) = Ni({a, na}kb

).drA2e
#
(A;na)

d
A1(A;na),N(m)→A2(A;na;m)︷︸︸︷

rA2 e#(A;na) = No(m).drA3e
#
(A;na;m)

d
A2(A;na;{na,nb}ka )→A3(A;na;nb)︷︸︸︷

rA3 e#(A;na;m) =
[(A;na;m) = (A;na; {na, nb}ka)] .

drA4e
#
(A;na;nb)

d
A3(A;na;nb)→N({nb}kb

),A4(A;na;nb)︷︸︸︷
rA4 e#(A;na;nb)

= Ni({nb}kb
).d.e#(A;na;nb)

d.e#(A;na;nb)
= 0

In summary:

dRAe = !π̃(A).νna.Ni({a, na}kb
).No(m).

[A;na;m = A;na; {na, nb}ka ] .Ni({nb}kb
).0

which can be simplified into

dRAe = !π̃(A).νna.Ni({a, na}kb
).No(m).

[m = {na, nb}ka ] .Ni({nb}kb
).0

by means of the structural equivalence, which removes items in corresponding positions in pattern
matching over tuples. This process is exactly the same provided in Section 5.3.2.

Similarly (omitting the details) it is easy to check that:

dRBe = !π̃(B).νnb.No(m).
[B;nb;m = B;nb; {a, na}kb

] .Ni({na, nb}ka).
No(m).[B;nb;na;m′ = B;nb;na; {nb}kb

] .0

5.4.2 FromPAP to MSRP

This section defines the transformationb c that given aPAP state returns a configuration in
MSRP . Indeedb c consists of encodings
b c!ρ, b c!I , b cnet, b cρ b cI andb cπ,
each operating on different sub-processes of thePAP state. The following schema describes

the overall encoding pictorially (processes involved in any transformation are boxed):

b(

Q!︷ ︸︸ ︷
P!net ‖

∏
ρ P!ρ ‖ Q!I ‖ Q!π )c ‖ ( Qnet ‖

∏
ρ Pρ ‖ QI ‖ Qrem) =
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( ∪ρ(r̃ρ)︸ ︷︷ ︸
b
Q

ρ P!ρc!ρ

∪ r̃I︸︷︷︸
bQ!Ic!I

: Ñ︸︷︷︸
bQnetcnet

, Ã︸︷︷︸
b
Q

ρ Pρcρ

Ĩ︸︷︷︸
bQIcI

π̃︸︷︷︸
bQ!πcπ

,)

Note that the following processes are not involved in any transformation:

• P!net, since it implements a form of buffering that is unnecessary inMSR;

• Qrem, since it represents partial computations (see Proposition 5.4.1). As we will see later,
they will not have any significantMSRP counterpart.

Intuitively b
∏

ρ P!ρc!ρ analyzes each (un-banged) sequential processesPρ in
∏

ρ P!ρ and for
eachρ returns the multiset of the rule corresponding toPρ’s sequential steps. Input, output and
analysis sub-process inPρ are mapped into receive, send, and analysis rewriting rules for roleρ,
respectively. Prefixesνx and input sequences̃π(x) are turned into an instantiation rule. Techni-
calities are needed for the management of variables and of the predicate indexes in building rules
rρi ’s. Two parameters, the step number and the variables, are passed along the transformation.
Similar devices support the transformation of each processesPρ in

∏
ρ Pρ. They represent partial

execution of the protocol by roleρ, their analysis produces the state predicatesAρi(t), for suitable
i andt.

The transformation ofQ!I andQ!π are straightforward: the former maps directly to the in-
truder rewriting rules ofMSRP , while in the latter each!π(t).0 in Q!π is mapped to the persistent
predicatesπ(t). The same can be said about processesQnet: each sequential processNo(t).0 is
mapped into a predicateN(t) in theMSRP state.

The transformation of the processes inQI is more complex. Indeed, we need to distinguish
between processes that represent immediately available intruder knowledge (e.g., I (t).0) from
processes that do not (e.g.,No(x).I (x).0). The former are transformed in corresponding intruder
predicatesI(t), while the latter are generally discarded. Generally speakingb c is not injective,
and similar situations can happen while transforming processes intoMSRP states. Said differently,
PAP steps are finer grained then theMSRP steps, and as a consequence some processes do not
represent properMSR objects (for example processes inQrem) and they have to be ignored,
while others representMSRP objects even when they are only partially completed (for example
processesI (t).P ′

I ) and their translation can be anticipated (see also Figure 5.1 or later for details).
In the following, with a little abuse of notation, we drop the subscript from the transformations,

b c!ρ, b c!I , b cnet, b cρ, b cI andb cπ, when no ambiguity arises, writing them instead asb c. We
now describe each transformation in detail.

b c!ρ. The basic translation involves the transformation functionb c#(i;x) for theP!ρ’s (called as a
subroutine by the top level transformationb c) which, given a sequential agent representing
a roleρ, returns the multiset of rules̃rρ. Herei is a non-negative integer. Formally:

bπ̃(x).νn.P ′
ρc = {π̃(x)→ ∃n.Aρ0(n;x)} ∪ bP ′

ρc
#
(1:(x;n))

bNo(y).P ′
ρc

#
(i:x) = {Aρi−1(x), N(y)→ Aρi(x; y)} ∪ bP ′

ρc
#
(i+1:(x;y))

bNi(t).P ′
ρc

#
(i:x) = {Aρi−1(x)→ Aρi(x), N(t)} ∪ bP ′

ρc
#
(i+1:x)

b[x′ = t(x′′)] .P ′
ρc

#
(i:x) = {Aρi−1(x[t(x′′)/x′])→ Aρi(x[(x′′− x)/x′]), N(t)}

∪ bP ′
ρc

#
(i+1:(x[(x′′−x)/x′]))

b0c#(i;x) = ·
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The transformation of a send, of a receive and of a new process are quite obvious and require
no additional comment. The translation of a match process[x′ = t(x′′)] .P ′

ρ, whose aim is
to analyze some previously received message, yields an analysis rewrite rule. It would be
straightforward if all variables of the role were matched each time (possibly redundantly)
as these variables could be used to build the corresponding role predicate. Instead, only
a subset of all variables appears during matching (the variables that are being analyzed),
while the corresponding role predicate needs all of them. We reconstruct them be carrying
a parameter which stores the tuple of all the variables used so far by the role. With this as a
template, we can construct the right tuples in the rule antecedent and in the rule consequent.

b c!I . The intruder processQ!I is mapped directly to theMSRP intruder rules̃rI , with each!PIj

associated withrIj . Process!PI10 is dropped.

b cnet. Each occurrence of a processNo(t).0 in Qnet is mapped to a state elementN(t).

b cρ. Let Pρ be an instantiated suffix (in
∏

ρ Pρ) of a role specificationP!ρ, and letθ = [x/t] be
the witnessing substitution. IfPρ starts with either a persistent inputπ(x) or theν operator,
we setbPρc = ·. Otherwise, leti be the index at whichPρ occurs inP!ρ as for the above
definition. ThenbPρc = Aρi(t).

b cI . Each object inQI (that, we recall, contains all the prefixes ofPIj processes), is translated
using the functionb cI , defined below:

b0cI = bNo(t).0cI = bνn.PIcI = bI (x).PIcI = bπ(x).PIcI = ·

bI (t).PIcI = I(t), bPIcI

b[t = t(x)] .PIcI =
{
bPI [θ]cI if t(x)[θ] = t
· otherwise

b cπ. Each process!π(x) in P!π, or π(x) in Pπ is translated into the state objectπ(x).

The intuition underlying the definition ofb cI is to collect all the ground output events of
a partially executed intruder processes (i.e., processes that are suffixes of somePIj , but
that do have not the formI (t).0)1 as processPI10 has the potential of turning them into
the canonical formI (t).0. In this way, we map any such intruder suffix into anMSRP

state where this knowledge is already present. In particular, each objectI (t).0 (respectively
the I (t).I (t).0) in QI is rendered as the state elementI(t) (respectively pair of elements
I(t), I(t)), and that the un-banged processesPIj are mapped into the empty multiset. Note
thatb cI is not injective.

P!net andQrem disappear (i.e., they are mapped onto the empty multiset).

Example 5.4.3 (Translation ofNSPK from PAP to MSRP ) We now provide an example on how
b c works, by applying it to thePAP specification ofNSPK given in Section 5.3.2. Let us start

1From now on let us call them allintruder partial suffixes.
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by considering the processPA:

PA = π̃(A).νna.

P ′
A︷ ︸︸ ︷

Ni({a, na}kb
).No(m).

P ′′′
A︷ ︸︸ ︷

[m = {na, nb}ka ] .Ni({nb}kb
).0︸ ︷︷ ︸

P ′′′′
A︸ ︷︷ ︸

P ′′
A

we have:

bPAc = π̃(A)→ ∃na.π̃(A), A0(A;na)
∪bP ′

Ac
#
(1:(A;na))

bP ′
Ac

#
(1:(A;na)) = A0(A;na)→ N({A,na}kb

), A1(A;na)
∪bP ′′

Ac
#
(2:(A;na))

bP ′′
Ac

#
(2:(A;na)) = A1(A;na), N(m)→ A2(A;na;m)

∪bP ′′′
A c

#
(3:(A;na;m))

bP ′′′
A c

#
(3:(A;na;m)) = A2(A;NA; {na, nb}ka)→ A3(A;na;nb)

∪bP ′′′
A c

#
(4:(A;na;nb))

bP ′′′′
A c

#
(4:(A;na;nb))

= A3(A;na;nb)→ N({nb}kb
), A4(A;na;nb)

∪b0c#(5:(A;na;nb))

b0c#(5:(A;na;nb))
= ·

In summary:

bPAc =


π̃(A) → ∃na.π̃(A), A0(A;na)
A0(A;na) → N({a, na}kb

), A1(A;na)
A1(A;na), N(m) → A2(A;na;m)
A2(A;na; {na, nb}ka)→ A3(A;na;nb)
A3(A;na;nb) → N({nb}kb

), A4(A;na;nb)

Similarly (omitting details):

bPBc =



π̃(B) → ∃nb.π̃(B), B0(B;nb)
B0(B;nb), N(m) → B1(B;nb;m)
B1(B;nb; {a, na}kb

), → B2(B;nb;na)
B2(B;nb;na) → N({na, nb}ka), B3(B;nb;na)
B3(B;nb;na), N(m′)→ B4(B;nb;na;m′)
B4(B;nb;na; {nb}kb

) → B5(B;nb;na)

5.5 Correspondence Relation betweenMSRP and PAP

This section introduces a correspondence relation betweenMSRP configurations andPAP states,
such that two corresponding computations are characterized byidentical network messages and
intruder knowledge, step by step. This will allow us to prove that the translations presented in
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this chapter are reachability-preserving in a very strong sense. Indeed, we show that our encod-
ings transform a configuration (respectively a state) into a state (respectively configuration) that
correspond to each other in our relation, and this implies that our encodings can preserve secrecy
and authenticity properties while going fromMSR to PA and vice versa (this is further discussed
in Section 5.6). In the following we formalize the notion of observation and transition step with
respect to the intruder and the network in theMSR andPA frameworks.

Our notion of observation is concerned with only those messages representing terms in the
net and the intruder knowledge. They are given by the predicatesN(t) andI(t) in an MSRP

configuration. Formally we have:

Definition 5.5.1 Given a multiset of ground atoms̃s and a predicate namea ∈ {N, I}, we define
theprojectionof s̃ alonga as the setPrj a(s̃) = {t : a(t) ∈ s̃}. If C = (r̃; s̃) is a configuration,
we setPrj a(C̃) = Prj a(s̃).

Collecting the network messages and the intruder knowledge of aPAP stateP is trickier
because of the particular form of the processes representing that the intruder and the network (see
Section 5.3). More precisely, these terms appear in output actions (over channelsNo or I) that
will be surely executed by eitherQI or Qnet. Indeed,QI andQnet outputs (on those channels)
are always realizable, because processesPI10 andP!net can always accept them as input. In order
to collect those messages we introduce the notationQ

α→ to indicate thatα is the set of output
actions that processQ (intended to beQI or Qnet) is able to execute in later steps of execution.
Formally:

Definition 5.5.2 Given a processQ, the judgmentQ
α→ is defined by the following rules:

0 ∅→ a(x).P ∅→

P
α→

a(t).P
{a(t)}∪α→ νn.P

∅→

Q′ α→ Q ≡ Q′

Q
α→

Q
α→ P

α′
→

(Q ‖ P ) α∪α′
→

P [θ] α→ t′ = t[θ]

[t′ = t] .P
α→

6 ∃θ : t′ = t[θ]

[t′ = t] .P
∅→

In the following we writea(t) ∈ Q if a(t) ∈ α whereα : Q
α→.

Definition 5.5.3 Let a be a channel label in{No, I}, we define theobservationsof processQ
alonga as the setObsa(Q) = {t : a(t) ∈ Q}.

Using Definitions 5.5.1 and 5.5.3, we make precise what we intend for anMSRP configuration
and aPAP state to be corresponding.

Definition 5.5.4 Given anMSRP configurationC and aPAP stateQ. We say thatC andQ are
corresponding, writtenC ./ Q, if and only if the following conditions hold:

1. PrjN (C) = ObsNo(Q)
2. Prj I(C) = ObsI(Q)

Informally C ./ Q means that the messages that are stored in the net and the intruder knowledge
are the same in configurationC and stateQ.

The interaction between our notions of observation and our encodings is captured in the fol-
lowing proposition:
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Proposition 5.5.5 LetC be anMSRP configuration, andQ be aPAP state. Then:

bdCec = C; (5.5.1)

dbQce = Q′ whereQ′ is such thatbQ′c ./ Q, (5.5.2)

ObsNo(Q
′) = ObsNo(Q) andObsI(Q′) = ObsI(Q).

Proof. The critical point here is when the non injectiveb c function is applied. More precisely,
b c shows its non-injectivity when dealing with:

(a) intruder partial suffixes i.e.,suffixes of somePIj that do not have the formI (t).0;

(b) not-yet-instantiated process roles,i.e.,un-banged processes inPρ starting withπ or ν.

In proving (5.5.1), we observe that starting from anMSRP configurationC, processdCe
contain neither intruder partial suffixes nor not-yet-instantiated role processes. As a consequence
by applying againb c, an easy induction yieldsC back.

More difficult is the proof of (5.5.2). HereQ may contain some process that is an intruder
partial suffix, or a not-yet-instantiated process role. In this case differentQ, Q′, may converge, via
b c, to the same set of predicatesπ̃, Ĩ. However not-yet-instantiated process roles do not affect the
./ relation, because only communication overπ or paν transitions are possible from them. Then
all the remaining difficulties are hidden in intruder partial suffixes. In Figure 5.1, we have depicted
one of these situation, involving where partial suffixes ofPI5 andPI6 . Now we can observe that:

• because of the way we have definedObsI( ) and from the fact thatbQcI = bQ′cI = . . . =
Ĩ, we have thatObsI(Q) = ObsI(Q′) = . . ., i.e.,all thePI ’s are equivalent with respect to
the following relation

O(Q1, Q2)
def
= ObsI(Q1) = ObsI(Q2)

From now on let us consider a witness[Q] of the quotient classQI/O.

• Prj I(bQ′cI) = ObsI(Q′) for all Q′ ∈ [Q′], becauseb cI is build exactly to maintain the
intruder knowledge.

Now when applyingdbQcIeI back for someQ′ ∈ [Q], by definition ofd eI , we obtain exactly
that Q# ∈ [Q] that contain no partial suffixes ofPIj . Again Figure 5.1 may help visualize the
intuition. Analogous considerations (indeed simpler) can be provided when predicatesÑ and
processes inPnet are involved.

Moreover we have that anMSRP configuration always corresponds to its encoding inPAP :

Lemma 5.5.6 LetC be anMSRP configuration. ThenC ./ dCe.

Proof. Observe thatdÑe =
∏

N(t)∈Ñ No(t).0, that dĨe =
∏

I(t)∈Ĩ I (t).0, and that no other

multiset inC generates anyNo(t).0 or I (t).0, via d e. Then it easily follows that:

PrjN (C) = ObsNo(dCe)
Prj I(C) = ObsI(dCe)
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I(t1), I(t2)

I (t1).0 ‖ I (t2).0

[〈t1, t2〉 = 〈x1, x2〉].I (x1).I (x2).0

I (t1).I (t2).0

b c
d e

MSRP state

PAP states

I (t2).0 ‖ I (t1).I (x2).I (x2).I (〈t1, x2〉).0

Figure 5.1: An example of a possible scenario when applying the translationsbd eIcI

The dual result holds as well,i.e.,everyPAP state always corresponds to itsMSRP encoding:

Lemma 5.5.7 Let beQ a PAP state. ThenbQc ./ Q.

Proof. The proof follows considering similar argument of Lemma 5.5.6.

On the basis of these concepts, we can now define a relation betweenMSRP configurations
andPAP states, a form of weak bisimulation we callcorrespondence, such that if inMSRP is
possible to perform an action (by applying a rule) that will lead to a new configuration, then in
PAP is possible to follow some transitions that will lead in a corresponding state, and vice versa.

Definition 5.5.8 LetC andQ be the set of allMSRP configurations andPAP states, respectively.
We callcorrespondencethe largest relation∼ ⊆ C×Q satisfying the following conditions: for all
(r̃ : s̃) ∼ Q

1. (r̃ : s̃) ./ Q;
2. if r̃ : s̃ −→ s̃′, thenQ⇒∗ Q′ and(r̃ : s̃′) ∼ Q′;
3. if Q⇒ Q′, thenr̃ : s̃ −→∗ s̃′ and(r̃ : s̃′) ∼ Q′.

We say(r̃ : s̃) andQ arecorrespondentis there exists a correspondence∼ such that(r̃ : s̃) ∼ Q.

The following theorems affirm that there is a correspondence between security protocol spec-
ifications written inMSRP andPAP when related via the encodings here presented.

Theorem 5.5.9 Given anMSRP security protocol theoryC. ThenC ∼ dCe.

Proof. See Appendix 5.8

Theorem 5.5.10Given anPAP security protocol processQ. ThenbQc ∼ Q.

Proof. See Appendix 5.8

This means that anyMSRP step can be faithfully simulated by zero or more steps inPAP through
the mediation of the encodingd e, and vice-versa, the reverse translationb c will map steps in
PAP into corresponding steps inMSRP .

We conclude by observing that our encodings and Theorem 5.5.9 and 5.5.10 allow us to reason
about security properties in one of either frameworks and transfer the results to the other.
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5.6 Security Analysis

This section shows how our encodings preserve some security properties from one: formalisms
to the other: in particular those security properties whose definitions can be expressed in terms of
predicates over the intruder knowledge or the set of messages on the networks, specificallysecrecy
andauthenticity.

5.6.1 Secrecy

A secrecy property requires that a certain message, sayM , cannot be discovered by an intruder
during any possible interactions with protocol participants. Generally speaking the discovery of a
secrecy flaw can be performed by looking for traces where the intruder acquires knowledge of the
secret. If no such trace exists, then secrecy is preserved.

In MSRP , the formal definition of such a secrecy violation is straightforwards in our context
by using thePrj I( ) function:

Definition 5.6.1 (Secrecy violation inMSRP ) Let beC be anMSRP configuration of a proto-
col, andM be a ground message. We say thatC does not preserve the secrecyof M if and only
if

∃C ′. C −→∗ C ′ and M ∈ Prj I(C
′)

Definition 5.6.1 can often be verified quite efficiently using modern model checking and theorem
proving techniques [172, 43].

A secrecy flaw is defined similarly inPAP :

Definition 5.6.2 (Secrecy violation inPAP ) Let Q be aPAP model of a protocol, andM be a
ground message. We say thatQ does not preserve the secrecy ofM if and only if

∃Q′, Q⇒∗ Q′, andM ∈ ObsI(Q′)

Again, Definition 5.6.2 can be efficiently verified by one of the existing strategies for checking
secrecy violation or secrecy preservation developed for process algebras,e.g.,using reachability
analysis techniques [79, 29].

The main fact here is that, independently from the checking strategy chosen, our correspon-
dence relation preserves secrecy. Indeed, the intruder knowledge in two corresponding models, an
MSRP configuration and aPAP state respectively, is the same step by step. So whenever there is
a computation that leads the intruder to discover a secretM in theMSRP model, there shall be a
computation in thePAP model where the intruder is able to capture the same message. Then, by
producing corresponding models, our encodings are able to map secrecy properties fromMSRP

to PAP and vice versa. In fact:

Proposition 5.6.3 Let beC anMSRP configuration andM a ground message. Then

M ∈ Prj I(C) iff M ∈ ObsI(dCe)

Proof. Straightforward by Theorem 5.5.9.

and
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Proposition 5.6.4 Let beQ a PAP state andM a ground message. Then

M ∈ ObsI(Q) iff M ∈ Prj I(bQc)

Proof. Straightforward by Theorem 5.5.10.

The obvious conclusion is that secrecy is preserved by our encodings.

Theorem 5.6.5 Let beC an MSRP model of a protocol (i.e., an initial MSRP configuration).
Then for any messageM , a secrecy violation (w.r.tM ) happens inC if and only if a secrecy
violation (w.r.t.M ) happens indCe.

Proof. Straightforward by Theorem 5.5.9 and Proposition 5.6.3.

Theorem 5.6.6 Let be Let beQ a PAP model of a protocol (i.e.,an initial PAP state). Then for
any messageM , a secrecy violation (with respect toM ) happens inQ if and only if a secrecy
violation (with respect toM ) happens inbQc.

Proof. Straightforward by Theorem 5.5.10 and Proposition 5.6.4.

5.6.2 Authentication

The treatment of authentication properties is a bit more delicate. There are several notions of au-
thentication. One of the most popular techniques was introduced by Woo and Lam [206]: roles
are annotated with unforgeable control actions calledassertionsthat describe the state of the pro-
tocol execution from the point of view of the principal executing it: for example the initiator may
usebegin(L) to assert that the protocol has started, while the responder may assertend(L) when
it reaches its last event. The labelL uniquely identifies relevant parameters of this session (the
principals involved, their role, nonces, etc.).

Generally speaking, if a protocol guarantees authentication, then in every run eachend(L)
event matches a distinctbegin(L) event preceeding it, even in the presence of an attacker. If this
is the case, we know that the initiator and the responder have a compatible view of the world. If
we abstract a run as the sequence of assertions issued by all parties, this is equivalent [147] to
checking that in each run the number ofend(L) never exceeds the number ofbegin(L), for the
sameL.

Definition 5.6.7 A protocolP satisfiesauthenticityif and only if for every run of the protocol and
for everyL, the number ofend(L) events never exceeds the number ofbegin(L) events.

We show how this mechanism works for detecting Lowe’s attack on theNSPK protocol [138].
Consider that when one userA starts to run the protocol as initiator apparently with a responder
B, it sends a control messagebegin(〈A, B〉). When one userB running the role of responder
finishes a protocol apparently with an initiatorA running the role of initiator then it sends the
messageend(〈A, B〉). Ideally, if we assume that these messages are never removed from the net,
the number of messages of the formbegin(〈A, B〉) must be greater than the number of messages
of the formend(〈A, B〉) at any point of any computation.
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The attack is given by the following sequence of actions. We only need three users:A,B and
E such thatA initiates a run with a dishonest principalE who reroute it as a run withB. We write
E(A) to denote the intruder impersonating the agentA:

A −→ E : {NA, A}KE

E(A) −→ B : {NA, A}KB

B −→ E(A) : {NA, NB}KA

E −→ A : {NA, NB}KA

A −→ E : {NB}KE

E(A) −→ B : {NB}KB

PrincipalA starts a run of the protocol with the dishonest agentE, who decrypts the transmitted
values and repackages them as if they were intended for principalB. AgentB, believing he is
responding toA, sends the message{NA, NB}KA

to E, who simply forwards it toA. This prin-
cipal replies toE with the last message{NA, NB}KA

, thatE repackages forB as earlier. In the
end,A correctly believes she has authenticatedE, butB incorrectly assumes he has authenticated
A while he was talking toE only. Woo and Lam’s method reveals this failure of authentication: if
we start the initiator role with the assertionbegin(〈A, B〉) and conclude the responder role with
end(〈A, B〉), we extract from the above run the trace{begin(〈A, E〉), end(〈A, B〉)}, which vi-
olates Definition 5.6.7. While this method may seem rather simple it has been shown very useful
for detecting attacks on security protocols (e.g., see [137]).

A possible solution to include authenticity in our framework comes from the observation that
it is possible to encode begin-end assertions through particular control messages in such a way
that the observational power of our correspondence relation is enough. Since our correspondence
relation “observes” only the status of the net and of the intruder knowledge, this implies that we
have to find a way to record the begin-end events in either the intruder knowledge or in the network.
Moreover because our notion of observation concerns sets we must face the problem of losing the
number of repetitions of events in sets. Both problem can be easily solved (e.g.,see [147]).

The latter one, for example can be solved by introducing in each control message information
that makes it uniquee.g.,a timestamp. This information is then filtered out when used to check
related begin-end events.

To solve the former problem we will develop a different strategy that consists in sending
begin-end assertions over aprivate network, we call NP . The goal of this private network is
only to collect control messages for sake of verification. Moreover we assume assertions be coded
as control messages〈begin, L〉, 〈end, L〉, where the labelL carries sufficient information for
uniquely identify the session. Moreover we assume thatL carries timestamp information that
make them unique in different run of the protocol.

In MSRP to model such a network we need a new predicateNP . A role may assert something
by sending a control message overNP . This can be done, for example, by using the send rewriting
rule. This requires a new class ofassertion rules, similar to send rules:

assertion rule Aρi−1(x)→ Aρi(x), NP (〈a, L(x)〉)

wherea ∈ {begin, end}.
In PAP the private networkNP is modeled by the process!N P

i (x).N P
o (x).0, while a process’s

assertion is modeled by sending a message, of form either〈begin, L(x)〉 or 〈end, L(x)〉, towards
the channelNP

i . We deal with authentication by slightly modifying our encodings to take into
account the new symbolsNP . The correspondence relation needs to be modified too. We handle
NP by simply mirroring the treatment ofN .
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We can now define our instances of Definition 5.6.7 as in the following.

Definition 5.6.8 (Authenticity violation in MSRP ) Let beC be anMSRP model of a protocol
(i.e., an initial configuration). We say thatC violates authenticityif and only if for someL,
∃C ′, C −→∗ C ′, such that inPrjNP (C ′) the number of〈end, L〉 is greater of the number of
〈begin, L〉.

If it is the case will writeC 6|= {end(L) ↪→ begin(L)}.

Definition 5.6.9 (Authenticity violation in PAP ) Let beQ be aPAP model of a protocol. We
say thatQ violates authenticityif and only if for someL, ∃Q′, Q⇒∗ Q′ such that inObsNP (Q′)
the number of〈end, L〉 if greater of the number of〈begin, L〉.

If it is the case will writeQ 6|= {end(L) ↪→ begin(L)}.
All the results stated in Section 5.5, remain valid. Precisely because the messages stored in the

network in two correspondent models, respectively anMSRP and aPAP , are the same step by
step if there is a computation that leads to a authenticity flaw in theMSRP model, there would be
another computation in thePAP model where the same flaw is shown, and vice versa. Then our
encodings, mapping models into correspondent models, are able to map authenticity properties
from MSR to PA and vice versa. The previous results can be formalized into the following
propositions

Proposition 5.6.10 Let beC an MSRP model of a protocol andL a ground control message.
ThenC 6|= {end(L) ↪→ begin(L)} iff dCe 6|= {end(L) ↪→ begin(L)}.

Proof. Straightforward by Theorem 5.5.9.

Proposition 5.6.11 Let beQ a PAP model of a protocol andL a ground control message. Then
Q 6|= {end(L) ↪→ begin(L)} iff bQc 6|= {end(L) ↪→ begin(L)}.

Proof. Straightforward by Theorem 5.5.10.

The obvious conclusion is that authenticity is reserved by our encodings.

Theorem 5.6.12Let be Let beC anMSRP model of a protocol. ThenC preserves authenticity if
and only ifdCe does.

Proof. Straightforward by Theorem 5.5.9 and Proposition 5.6.10.

Theorem 5.6.13Let be Let beQ a PAP model of a protocol. ThenQ preserves authenticity if
and only ifbQc does.

Proof. Straightforward by Theorem 5.5.10 and Proposition 5.6.11.

5.7 Conclusions

This chapter shows how multiset rewriting theories (MSR) and process algebras (PA) used to de-
scribe security protocols are related. We show how to define semantics preserving transformations
betweenMSR andPA describing protocols. The correspondence relation we used, is based on
which messages appear on the network and on which messages the intruder knows.
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5.8 (Appendix) Theorem Proofs

This appendix provides a proof for Theorem 5.5.9 and a proof for Theorem 5.5.10.
We begin this section by reminding that aMSRP state is a multiset of form̃s = (Ñ , Ã, Ĩ, π̃),

where the components collect ground factsN(t), Aρi(t), I(t) andπ(t) respectively, while aPAP

state is a process (see Proposition 5.4.1)

Q!︷ ︸︸ ︷
(P!net ‖

∏
ρ

P!ρ ‖ Q!I ‖ Q!π) ‖ (Qnet ‖
∏
ρ

Pρ ‖ QI ‖ Qrem)

where:

Qnet ::= 0 |
∏

No(t).0

Pρ ::= 0 | No(x).Pρ | Ni(t).Pρ | [t = t′] Pρ

QI ::= suffixes ofPIj , for all j

Qrem ::= 0 | No(x).Ni(x).0 | π̃(x).νn.Pρ | νn.Pρ | |
∏

π(t).0

Moreover in the following we will use implicitly the following proposition:

Proposition 5.8.1 b!P ‖ P ‖ Qc = b!P ‖ Qc

Proof. It is based on the fact thatb cmaps processesP , coming from any transition!P ⇒ P ‖!P ,
into the empty multiset. Formally:b!P ‖ P ‖ Qc = b!P c, bP c, bQc = b!P c, ·, bQc = b!P c, bQc
= b!P ‖ Qc

We now prove the following main theorem:

Main Theorem (Reminder) 1 Given anMSRP security protocol theoryC. ThenC ∼ dCe.

Proof. The proof consists in showing that

R = {(C, dCe) : C0 −→∗ C} ∪ {(C,Q) : C0 −→∗ C, bQc = C}

is a correspondence∼. Because of Lemma 5.5.6 and Lemma 5.5.7 it is sufficient to show that for
all (C,Q) ∈ R:

(I) C −→ C ′ impliesQ⇒∗ Q′ and(C ′, Q′) ∈ R

(II) Q⇒ Q′ impliesC −→∗ C ′ and(C ′, Q′) ∈ R.

Precisely(C ′, Q′) ∈ R means that eitherbQ′c = C ′ or Q′ = dC ′e.
Before explaining the technical steps of the proof, let us focus on the following question. What

are the(C ′, Q′) ∈ R that are reachable via aMSRP or PAP transition from(C,Q) ∈ R? In other
words, given a transitionC −→ C ′ (resp.,Q ⇒ Q′) what transitionsdCe ⇒∗ Q′ or Q ⇒∗ Q′

wherebQc = C (resp.,bQc −→∗ C ′ or C −→∗ C ′ wheredCe = Q) satisfy condition(I) (resp.,
condition(II) ) above?

Let us first focus on(I) and on Figure 5.2. and suppose that aMSRP transitionC −→ C ′

occurs. Viad e the only possibilePAP transition isdCe ⇒∗ dC ′e (e.g.,statesQ andQ′ and
the relativeQ ⇒∗ Q′ transition in Figure 5.2). Instead viab c, more transitionsQ ⇒∗ Q′ are
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possible; precisely all those such thatbQc = C andbQ′c = C ′ (e.g.,processesQ′′′, Q andQ′′ in
Figure 5.2 and transitionsQ′′′ ⇒∗ Q′, Q⇒∗ Q′ andQ′′ ⇒∗ Q′).

Let now focus on(II) and on Figure 5.2 again. Let suppose aPAP transitionQ⇒ Q′ occurs.
Here it may be that the only couple(C ′, Q′) corresponding inR, via eitherb c or d e, to (C,Q)
is such thatC = C ′. This happens when transitionQ ⇒ Q′ is not able to simulate any complete
MSRP step (e.g.,as the transitionQ⇒ Q′′ and its correspondentC −→∗ C, in Figure 5.2).

Proof of Part (I). The scheme which guides the proof of this part, is the following:

(I) C −→ C ′ implies
(a) dCe ⇒∗ Q′ and(C ′, Q′) ∈ R

(b) ∀Q : bQc = C,Q⇒∗ Q′ and(C ′, Q′) ∈ R
(5.8.1)

In the following we will itemize each sub-case with(I.a), (I.a′), etc., or(I.b) (I.b′), etc., depend-
ing on it is respectively the first, second, etc., sub-case of branches(a) or (b) of (5.8.1); moreover
let us observe that, becausebdCec = C (see Lemma 5.5.5)

{(C, dCe) : C0 −→∗ C} ∩ {(C,Q) : C0 −→∗ C, bQc = C} 6= ∅

As a consequence some sub-cases of(b) will coincide with some sub-case of(a). Precisely those
that do really differ, are those involving pairs(bQc, Q) such thatQ 6= dCe; to avoid repetitions
we will treat in(I.b) only those cases that differ from cases in(I.a).

Let beC ′ such thatC −→ C ′. It must have happened as a consequence of an application of
either a rewriting rulerρ0 , rρi send orrρi receive orrρi analysis fori > 0, . . . , lρ or finally an
intruder rulerIj for j = 0, . . . , 9. We will treat each rule separately. We also remind that for each
rule we will list different sub-cases(I.a) and(I.b).

• (instantiation rule) rρ0 = π̃(x)→ ∃n.Aρ0(n,x), π̃(x)

In this case transitionC −→ C ′ can be specifically rewritten as:

C = π̃(k), C ′′

→ Aρ0 [

θ︷ ︸︸ ︷
k/x;m/n], π̃(k), C ′′

= Aρ0(k;m), C︸ ︷︷ ︸
C′

where, we remind,̃π(k) is an abbreviation forπ(k1), · · · , π(kr) whereki for all i, are all ground
tuples of terms.
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MSRP state

b cb c b c

d e

PAP states

b c

d e

Q′′QQ′′′ Q′

C′

⇒ ⇒

−→
C

⇒

C ./ Q

C ./ Q′′′ C ./ Q′′

C′ ./ Q′
where:

Figure 5.2: A possible scenario involving corresponding couples(C,Q) and(C ′, Q′) in R, when
it occurs either a transitionC −→ C ′ or a transitionQ⇒ Q′.

? Case(I.a): (C,Q) = (C, dCe). We have:

dCe =

dπ̃(k)e︷ ︸︸ ︷
!π̃(k).0 ‖

drρ0e︷ ︸︸ ︷
!π̃(x).νn.

drρ1e
#
(x;n)︷︸︸︷

Pρ ‖ Q′′︸ ︷︷ ︸
dC′′e

[def. of d e]

≡ π̃(k).0 ‖ π̃(x).νn.Pρ ‖ !π̃(k).0 ‖ !π̃(x).νn.Pρ ‖ Q′′︸ ︷︷ ︸
dCe

⇒∗ 0 ‖ Pρ[θ] ‖ dCe︸ ︷︷ ︸
Q′

[pa0, pa≡, paν ]

= 0 ‖ drρ1e
#
(x;n)[θ] ‖ dCe

= 0 ‖ dAρ0(k;m)e ‖ dCe [def. of dAρi(t)e]
≡ dAρ0(k;m)e ‖ dCe

= dC ′e

? Case(I.b): (C,Q) = (bQc, Q). We need to identify thoseQ’s such thatbQc = C = π̃(k), C ′′.
The only different case, w.r.t.(I.a), (indeed a family of cases) happen when

Q =
( r∏
i=m

π(ki).0
)
‖ πm(xm). · · · .πr (xr).νn.Pρ[θ′] ‖ dCe

whereθ′ = [k1/x1, · · · , km−1/xm−1]. In words,Q is a partially instantiated role that has
already started receiving its permanent terms, but not all. It is worth to underline that both∏

i=m,...,r π(ki).0 andπm(xm). · · · .πr (xr).νn.Pρ[θ′] are mapped byb c into the empty multi-
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set; as a consequencebQc = C. Let now observe that:

Q =

(∏
i=m,...,r π(ki).0

)
‖

πm(xm). · · · .πr (xr).νn.Pρ[θ′]
‖ dCe

⇒∗ 0 ‖ Pρ[θ] ‖ dCe [pa0 and paν with m as new
names]

≡ Pρ[θ] ‖ dCe︸ ︷︷ ︸
Q′

and it easy to check thatdC ′e = Q′.

• (send rule)rρi = Aρi−1(x)→ Aρi(x), N(t(x))

In this case transitionC −→ C ′ can be specifically rewritten as:

C = Aρi−1(x[θ]), C ′′ → Aρi(x[θ]), N(t[θ]), C ′′︸ ︷︷ ︸
C′

(5.8.2)

whereθ is the substitution that allows the rulerρi to be applied. The only significative situation
happens as a sub-case of statement(a) of (5.8.1).
? Case(I.a): (C,Q) = (C, dCe). We have:

dCe = drρie
#
(x)[θ] ‖ dC

′′e [def. of dAρi−1(x[θ])e]

= Ni(t[θ]).drρi+1e
#
(x)[θ] ‖ dC

′′e [unfolding drρie
#
(x)[θ]]

=
Ni(t[θ]).drρi+1e

#
(x)[θ] ‖

!Ni(x).No(x).0 ‖ dC ′′′e︸ ︷︷ ︸
dC′′e

[def. of P!net in dC ′′e]

≡

Ni(t[θ]).drρi+1e
#
(x)[θ]

‖ Ni(x).No(x).0 ‖
!Ni(x).No(x).0 ‖ dC ′′′e︸ ︷︷ ︸

dC′′e

⇒

dAρi (x[θ])e︷ ︸︸ ︷
drρi+1e

#
(x)[θ] ‖

dN(t[θ])e︷ ︸︸ ︷
No(t[θ]).0 ‖ dC ′′e︸ ︷︷ ︸
Q′

[def. of pa0]

= dC ′e

• (receive rule)rρi = Aρi−1(x), N(y) −→ Aρi(x; y)

In this case transitionC −→ C ′ can be specifically rewritten as:

C = Aρi−1(x[θ]), N(t), C ′′ −→ Aρi(x[θ]; y[t/y]), C ′′︸ ︷︷ ︸
C′

(5.8.3)
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whereθ is the substitution that allows the rulerρi to be applied. Again the only significative case
happens as a sub-case of class(a) in statement (5.8.1).
? Case(I.a): (C,Q) = (C, dCe). We have:

dCe = drρie
#
(x)[θ] ‖ No(t).0 ‖ dC ′′e [def. of dAρi−1(x[θ])e]

= No(y).drρi+1e
#
(x;y)[θ] ‖ No(t).0 ‖ dC ′′e [espandingdrρie

#
(x)[θ]]

⇒ drρi+1e
#
(x;y)[θ][t/y] ‖ 0 ‖ dC ′′e︸ ︷︷ ︸

Q′

[pa0]

= dC ′e

• (analysis rule)rρi = Aρi−1(t(x)) −→ Aρi(x).

In this case transitionC −→ C ′ can be specifically rewritten as:

C = Aρi−1(t(x)[θ′]), C ′′ −→ Aρi(x[θ′]), C ′′︸ ︷︷ ︸
C′

(5.8.4)

Again the only interesting scenario comes from sub-case(a) of (5.8.1). While analyzing this case
let us:

• rewrite the ground termt(x)[θ′] ask;

• assume that the consequent predicate of rulerρi−1 is Aρi−1(x
′), i.e., rule rρi−1 = . . . −→

Aρi−1(x
′).

• assumeθ be the unifier such thatx′[θ] = k, that is the substitution that unifies the predicate
Aρi−1(x

′) with the ground predicateAρi−1(k) in theMSRP stateC.

? Case(I.a): (C,Q) = (C, dCe). We have:

dCe = drρie
#
(x′)[θ] ‖ dC

′′e

= [

k︷︸︸︷
x′[θ] = t(x)[θ]].drρi+1e

#
(x)[θ] ‖ dC

′′e [def. of drρie
#
(x′)]

⇒ drρi+1e
#
(x)[θ][θ

′′] ‖ dC ′′e [pa[], andt(x)[θ][θ′′] = k]

= drρi+1e
#
(x)[θ

′] ‖ dC ′′e︸ ︷︷ ︸
Q′

[(see text below)]

= dC ′e

Note that here,θ′ can be used instead ofθθ′′ becauseθ′ andθθ′′ coincide onx, that in turn are all
the variables appearing indrρi+1e.

• (intruder rules) rIj , for j = 0, . . . , 9.

Let us consider just a significative rule, for example rulerI6 = I(x1), I(x2) → I(〈x1, x2〉),
I(x1), I(x2). The proofs for the other intruder’s rules are similar. In this case transitionC −→ C ′

can be specifically rewritten as:



144 Chapter 5. Relating Multiset Rewriting and Process Algebra in Security

C = I(t1), I(t2), C ′′ −→ I(〈t1, t2〉), I(t1), I(t2), C ′′︸ ︷︷ ︸
C′

. (5.8.5)

? Case(I.a): (C,Q) = (C, dCe). Then we have:

dCe =

dI(t1)eI︷ ︸︸ ︷
I (t1).0 ‖

dI(t2)eI︷ ︸︸ ︷
I (t2).0 ‖ dC ′′e [def. of d e]

= I (t1).0 ‖ I (t2).0 ‖ Q!I ‖ Q′′︸ ︷︷ ︸
dC′′e

[expanding
PAP state]

≡

I (t1).0 ‖ I (t2).0
‖ I (x1).I (x1).I (x2).I (x2).I (〈x1, x2〉).0
‖ I (x).I (x).0 ‖ I (x).I (x).0
‖ dC ′′e

[expanding
Q!I (PI6 and
PI10)]

⇒∗ 0 ‖

dI(〈t1, t2〉)eI︷ ︸︸ ︷
I (〈t1, t2〉.0) ‖

dI(t1)eI︷ ︸︸ ︷
I (t1).0 ‖

dI(t2)eI︷ ︸︸ ︷
I (t2).0 ‖ dC ′′e︸ ︷︷ ︸

Q′

[pa0]

= dC ′e

Let now start analyzing the case(C,Q) = (bQc, Q). We need to identify thoseQ’s such that
bQc = I(t1), I(t2), C ′′. In fact, more differentQ’s (precisely differentQI ) exist, for the non
injective b cI is now involved in the translation (see also Figure 5.1). In addition, we remind,
the only really significative (w.r.t. case(I.a)) situations are those ones whereQ’s are such that
Q 6= dCe
? Case(I.b′): a first case happens whenQ contains both the processI (t2).0 and the proper suffix
of PI6 , I (t1).I (x2).I (x2).I (〈t1, x2〉).0.

Q = I (t2).0 ‖ I (t1).I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e

≡

I (t2).0
‖ I (t1).I (x2).I (x2).I (〈t1, x2〉).0
‖ I (x).I (x).0 ‖ I (x).I (x).0
‖ dC ′′e

[espanding
Q!I ]

⇒∗ 0 ‖ I (〈t1, t2〉).0 ‖ I (t1).0 ‖ I (t2).0 ‖ dC ′′e︸ ︷︷ ︸
Q′

[pa0]

and it is easy to verify thatbQ′c = C ′.
? Case(I.b′′): a second case happens whenQ is [〈t1, t2〉 = 〈x1, x2〉].I (x1).I (x2).0 ‖ dC ′′e. In
wordsQ contains a proper suffix of processPI5 , standing for the intruder that has already acquired
the message〈t1, t2〉, but that has not yet performed the output in which it splits it. We remind that
in this caseb cI translates the process as it would have already performed the outputs, obtaining
the predicatesI(t1), I(t2). Then we have:
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Q = [〈t1, t2〉 = 〈x1, x2〉].I (x1).I (x2).0 ‖ dC ′′e

≡
[〈t1, t2〉 = 〈x1, x2〉].I (x1).I (x2).0
‖ I (x).I (x).0 ‖ dC ′′e

[from !PI10 ;
pa!]

⇒ I (t1).I (t2).0 ‖ I (x).I (x).0 ‖ dC ′′e [pa[]]

⇒ I (t2).0 ‖ I (t1).0 ‖ Q′′ [pa0]

⇒∗ 0 ‖ I (〈t1, t2〉).0 ‖ I (t1).0 ‖ I (t2).0 ‖ Q′′︸ ︷︷ ︸
Q′

[see Case(I.a)]

and it is easy to verify thatbQ′c = C ′.
? Case(I.b′′′): the last case is whenQ = I (t1).I (t2).0 ‖ dC ′′e, where again a suffix ofPI5 is
involved. This case is simply a sub-case of the previous one.

Here ends the proof of(I) , where we have shown that for every(C,Q) ∈ R C −→ C ′ implies
Q⇒∗ Q′, and(C ′, Q′) ∈ R.

Proof of Part (II). The scheme which guides the proof of this part is the following:

(II) ∀(C,Q) ∈ R, Q⇒ Q′ implies C −→∗ C ′ and(C ′, Q′) ∈ R

Because, we remind,R = {(C, dCe) : C0 −→∗ C} ∪ {(C,Q) : C0 −→∗ C, bQc = C}, the
previous statement can be specifically restated as:

∀(C,Q) ∈ R,
(a) dCe ⇒ Q′ impliesC −→∗ C ′ and(C ′, Q′) ∈ R

(b) ∀Q : bQc = C,Q⇒ Q′ impliesC −→∗ C ′ and(C ′, Q′) ∈ R

(5.8.6)

where(C ′, Q′) ∈ R means that eitherbQ′c = C ′ or Q′ = dC ′e. In the following we treat a list
of cases. Each case corresponds to a possible⇒ transition. Again we will itemize each sub-case
with (II.a), (II.a′), etc., or(II.b) (II.b′), etc., depending on it is respectively the first, second,
etc., sub-case of branches(a) or (b) of (5.8.6).

• (pa0: i.e.,communication transition)

Reasoning aboutpa0, we must distinguish among the name of the channela involved in the
reactioni.e.,a = Ni, No, π, I. Let us discuss each case separately.

(a = Ni) Here we treat with transitions that involve channelNi.

? Case(II.a): (C,Q) = (C, dCe).

This case may happens whenC = Aρi−1(x[θ]), C ′′ andrρi : Aρi−1(x) −→ Aρi−1(x),
N(t(x)).



146 Chapter 5. Relating Multiset Rewriting and Process Algebra in Security

In this case transitiondCe ⇒ Q′ can be specifically rewritten as:

dCe =

Aρi−1 (x[θ])︷ ︸︸ ︷
Ni(t(x)[θ]).

drρi+1e
#
(x)

[θ]︷ ︸︸ ︷
Pρ[θ] ‖ dC ′′e

≡ Ni(t(x)[θ]).Pρ[θ] ‖ Ni(x).N (x).0 ‖ dC ′′e [expandingPAP state]

⇒ Pρ[θ] ‖ N (t(x)[θ]).0 ‖ dC ′′e︸ ︷︷ ︸
Q′

Then we have:

C = Aρi−1(x[θ]), C ′′ −→ N(t(x)[θ]), C ′′︸ ︷︷ ︸
C′

[rρi+1 ]

and it is easy to check thatdC ′e = Q′.

? Case(II.b): (C,Q) = (bQc, Q). The only different case in this sub-part happens when
bQc = I(t), bQ′′c. We observe that aQ producing such aMSRP state is the following:

Q = I (t).0 ‖ Ni(t′).0 ‖ Ni(x).No(x).0 ‖ Q′′

whereNi(t).0 is an intruder partial suffix ofPI4 = I (x).Ni(x).0. We remind thatNi(t).0
andNi(x).No(x).0 are mapped, byb c, onto the empty multiset.

Let observe that transitionQ⇒ Q′ can be specifically rewritten as:

Q = I (t).0 ‖ Ni(t).0 ‖ Ni(x).No(x).0 ‖ Q′′

⇒ I (t).0 ‖ 0 ‖ No(t).0 ‖ Q′′︸ ︷︷ ︸
Q′

Then we have:

bQc = I(t), bQ′′c −→ I(t), N(t), bQ′′c︸ ︷︷ ︸
C′

[by rI4 ]

and it is easy to check thatC ′ = bQ′c.

(a = No) Here we treat with transitions that involve channelNo.

? Case(II.a): (C,Q) = (C, dCe). This case happens whenC = N(t), Aρi−1(x[θ]), C ′′

and rρi : Aρi−1(x), N(y) −→ Aρi−1(x; y). In this case transitiondCe ⇒ Q′ can be
specifically rewritten as:

dCe = No(t).0 ‖

dAρi−1 (x[θ])e︷ ︸︸ ︷
No(y).

drρi+1e
#
(x)

[θ]︷ ︸︸ ︷
Pρ[θ] ‖ dC ′′e

⇒ 0 ‖ Pρ[θ][t/y] ‖ dC ′′e︸ ︷︷ ︸
Q′
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Then we have:

C = N(t), Aρi−1(x[θ]), C ′′ −→ Aρi−1(x; y)[θ][t/y], C ′′︸ ︷︷ ︸
C′

[by rρi ]

and it is easy to check thatC ′ = bQ′c.
? Case(II.a′). Another case of this class happen whenC = N(t), C ′′ andrI3 = N(x) −→
I(x). Let observe that transitiondCe ⇒ Q′ can be specifically rewritten as:

dCe = No(t).0 ‖ dC ′′e
≡ No(t).0 ‖ No(x).I (x).0 ‖ dC ′′e [expandingP!I ]

⇒ I (t).0 ‖ dC ′′e︸ ︷︷ ︸
Q′

Then we have:

C = N(t), C ′′ −→ I(t), C ′′︸ ︷︷ ︸
C′

[by rI3 ]

and it is easy to check thatC ′ = bQ′c.

(a = π) Here we will treat with transitions that involve channelπ’s.

? Case(II.a): (C,Q) = (C, dCe). The only interesting scenario in this sub-case happens
when inC no role predicates, w.r.t. a roleρ are yet produced and whenrρ0 = π̃(t(x)) −→
∃n.Aρ0(x;n). Let observe that transitiondCe ⇒ Q′ can be specifically rewritten as:

dCe = P!ρ ‖ Q!π ‖ dC ′′e

≡

π1 (x1).··· .πk (xk))︷︸︸︷
π̃(t) .νn.

drρ1e
#
(x;n)︷︸︸︷

Pρ ‖!π1 (t).0 ‖ dCe [by expandingQ!π, P!ρ]

⇒ π2 (x2). · · · .πk (xk).νn.Pρ[t0/x1] ‖ dCe︸ ︷︷ ︸
Q′

At this point, by observing that processπ2 (t2). · · · .πk (tk).νn.Pρ[t0/t1]. is indeed one that
is considered garbage by theb c (i.e., it is mapped into the empty multiset) it is easy to
check thatbQ′c = C, and we conclude observing thatC −→∗ C is a possible transition2.

? Case(II.a′). Another sub-case happens when intruder is involved. Specifically when
dCe = Q!π ‖ Q!I ‖ dC ′′e and transitiondCe ⇒ Q′ may be istantiated as:

dCe = Q!π ‖ Q!I ‖ dC ′′e
≡ π(t).0 ‖ π(x).I (x).0 ‖ dC ′′e
⇒ 0 ‖ I (t).0 ‖ dC ′′e︸ ︷︷ ︸

Q′

2Note that the particular case wheredCe = νn.Pρ i.e., is part of the casepaν .
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Then we have:

C = π(t), C ′′ −→ π(t), I(t), dC ′′e︸ ︷︷ ︸
C′

[by rI1 ]

and it is easy to check thatC ′ = bQ′c.
? Case(II.b): (C,Q) = (bQc, Q). The only interesting cases in this side, arise by consid-
ering thoseQ’s such thatbQc = C, for someC : C0 −→∗ C. In fact, if C contains no role
predicates, w.r.t. a roleρ, everyQ containing only partial instantiations of that role (i.e.,
processes starting with aπ or ν that are suffix ofPρ) is such thatbQc = C. Treating this
class of case as a one general case, the transitionQ⇒ Q′ can be written as:

Q = πj (xj). · · · .πk (xk).νn.Pρ ‖ πj (t).0 ‖ bC ′′c [j > 1]

⇒ πj+1 (xj+1). · · · .πk (xk).νn.Pρ[t/xj ].0 ‖ bC ′′c︸ ︷︷ ︸
Q′

Note that despite this transition,bQ′c = C still hold. In fact partial instantiated (role)
processes are mapped onto the empty multiset. Then we conclude observing thatC −→∗ C
is a possible transition.

(a = I) Here we treat with transitions that involve channelI. When the intruder channelI is
involved, many different situations involving the intruder arise. Here we will treat just some
of the most significative onesi.e., those involving the states in Figure 5.1. The others can be
analyzed in a similar way.

? Case(II.a): (C,Q) = (C, dCe). A sub-case of this class happens whenC = I(t1)
, I(t2), C ′′. We start observing that transitiondCe ⇒ Q′ can be written as:

dCe = I (t1).0 ‖ I (t2).0 ‖ dC ′′e

≡
I (t1).0 ‖ I (t2).0 ‖
I (x1).I (x1).I (x2).I (x2).I (〈x1, x2〉).0
‖ dC ′′e

[expandingPAP state]

⇒
0 ‖ I (t2).0 ‖
I (t1).I (x2).I (x2).I (〈t1, x2〉).0
‖ dC ′′e︸ ︷︷ ︸

Q′

[expandingPAP state]

Note that despite this transition,bQ′c = C still holds. In fact partial instantiated (role)
processes are mapped onto the empty multiset. Then we conclude observing thatC −→∗ C
is a possible transition.

No more interesting cases fall in this class. On the contrary, many cases arise when consid-
ering situation in class(b) i.e., thoseQ such thatbQc = C = I(t1), I(t2), C ′′.

? Cases(II.b), (II.b′), (II.b′′): (C,Q) = (bQc, Q′). Let us consider the following proce
sses (see also Figure 5.1)
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Q1 = I (t1).0 ‖ I (t1).I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e
Q2 = I (t1).I (t2).0 ‖ dC ′′e
Q3 = [〈t1, t2〉 = 〈x1, x2〉] I (x1).I (x2).0 ‖ dC ′′e

each translated intoC via b c (specifically viab cI ). Let us observe that for anyQ′
i : Qi ⇒

Q′
i thenbQ′

ic = C, for i = 1, 2, 3. Then we conclude observing thatC −→∗ C is a possible
corresponding transition.

? Case(I.b)′′′: A last interesting situation happens when:

Q = I (t2).0 ‖ I (t1).0 ‖ I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e

In this case we observe that:

Q = I (t2).0 ‖ I (t1).0 ‖ I (x2).I (x2).I (〈t1, x2〉).0 ‖ dC ′′e
⇒ 0 ‖ I (t1).0 ‖ I (t2).I (〈t1, t2〉).0 ‖ dC ′′e︸ ︷︷ ︸

Q′

Then we have:

bQc = I(t2), I(t1), C ′′ −→ I(t2), I(t1), I(〈t1, t2〉), C ′′︸ ︷︷ ︸
C′

[by rI6 ]

and it is easy to check thatbQ′c = C ′.

• paν (i.e.,new name generation)

The only possible transitionpaν happens when analyzing cases in(b) i.e., when (C,Q) =
(Q, bQc). In fact no process obtained fromd e can perform apaν transition as first step.
? Case(II.b): (C,Q) = (bQc, Q′). The first easy scenario is the following:

Q =
νn1.··· .νnh︷︸︸︷

νn .Pρ ‖ dCe

⇒ νn2. · · · νnh.Pρ[m/n1] ‖ dCe︸ ︷︷ ︸
Q′

In this case, beingνn2. · · · νnh.Pρ[m/n1] one of the processes left out by encodingb c, we have
thatbQ′c = bQc = C, and we conclude observing thatC −→∗ C is a possible transition.
? Case(II.b′): the second, more interesting, scenario happens when :

Q = νnh.Pρ[θ] ‖ dCe [whereθ are the substitutions
applyed so far]

⇒ Pρ

θ′︷ ︸︸ ︷
[θ][m/n1] ‖ dCe︸ ︷︷ ︸

Q′
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Then we have

bQc =

dCe︷ ︸︸ ︷
π̃(t), C ′′ −→ Aρ0(x;n)[θ′], dCe︸ ︷︷ ︸

C′

[by rρ0 ]

and it is easy to check thatdC ′e = Q′.

• pa[] (i.e.,matching)

The only interesting case happens whenC = Aρi−1(x
′[θ]), C ′′ andrρi = Aρi−1(t(x)) −→

Aρi(x). Let start observing that in this case transitiondCe ⇒ Q′ can be written as:

dCe =

dAρi−1 (x′[θ])e︷ ︸︸ ︷
[x′[θ] = t(x)].

drρi+1e
#
(x)

[θ]︷ ︸︸ ︷
Pρ[θ] ‖ bC ′′c

⇒

drρi+1e
#
(x)

[θ][θ′]=dAρi (x[θ][θ′])e︷ ︸︸ ︷
Pρ[θ][θ′] ‖ bC ′′c [whereθ′ : x′[θ] = t(x)[θ′]]

Then we have:
C = Aρi−1(x

′[θ]), C ′′ −→ Aρi(x[θ][θ′]), C ′′︸ ︷︷ ︸
C′

and it is easy to check thatdC ′e = Q′.

• pa≡ (i.e.,structural equivalence)

The proof in case ofpa≡ transitions, follows easily from the previous transition cases by
induction.

Here ends proof of(II) , where we have shown that for every(C,Q) ∈ R Q ⇒ Q′ implies
C −→∗ C ′, and(C ′, Q′) ∈ R.

Main Theorem (Reminder) 2 Given anPAP security protocol theoryQ. ThenbQc ∼ Q.

Proof. Similar to the proof of Theorem 5.5.9, by defining the relationR′ = {(bQc, Q) : Q0 ⇒∗

Q} and showing that it is a correspondence relation∼.
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Security Analysis with Team Automata
“Molti ci gabbano” (Leonardo da Vinci in
Aforismi, Novelle e Profezie, L. da Vinci)

“Many people deceive us”

Abstract

In this chapter we develop a framework based on team automata that can be used for formal
security analysis. To this aim, we first define an insecure communication scenario for team
automata, which is general enough to encompass various communication protocols. Then,
we reformulate the Generalized Non-Deducibility on Compositions schema, originally intro-
duced in the context of process algebras, in terms of team automata. Based on the resulting
framework, we subsequently develop a compositional analysis strategy that can be used for
the verification of security properties for a variety of communication protocols. We apply the
framework in practise, by showing that integrity is guaranteed for a particular instance of the
Efficient Multi-chained Stream Signature protocol.

6.1 Introduction

Recent years have seen an increasing interest in the use of automata-based formalisms for the
specification and verification of security properties in communication protocols [109, 129, 140,
169, 170]. We continue this line of research by showing how team automata — an extension of
Input/Output (I/O) automata [142] — can be used for security analysis.

Team automata offer a flexible formal model which allows one to specify the components of a
reactive, distributed system and – separately – to describe their interactions. Originally introduced
in the context of Computer Supported Cooperative Work for formalizing the conceptual and ar-
chitectural levels of groupware systems [18, 74, 123], team automata have proved their usefulness
also in the context of computer security. In [195] various access control strategies have been spec-
ified and analyzed by means of team automata. An effort was made in [72] to use team automata
to model and analyze a privacy property of a protocol by Cachinet al. [41] for securing mobile
agents in a hostile environment.

In this chapter we develop a general framework for security analysis with team automata. To
this aim, we first define an insecure communication scenario for team automata, based on the ad-
dition of a so-called most general intruder to a team automaton model of a secure communication
protocol. Then, we reformulate the GNDC schema in terms of team automata and subsequently
describe a compositional analysis strategy for insecure scenario, which can be used for verifying
security properties. Finally, we apply this framework to show that a particular instance of the
Efficient Multi-chained Stream Signature (EMSS) protocol [173] achieves integrity. The aim of
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this case study is not to provide new insights into the EMSS protocol, but rather to show the ef-
fectiveness of our approach for a well-known stream signature protocol, thus facilitating an easy
comparison for those familiar with other approaches.

Our approach is not unique. In [140], an experiment involving the combination of simple
shared-key communication with the Diffie-Hellman key distribution protocol [67] is modelled and
proved correct using I/O automata. As noted by the author herself, a limitation of I/O automata
approach is the fact that the protocol allows only purely passive eavesdroppers to listen in on the
communication. This choice simplifies the formulation of compositional results, as an eavesdrop-
per cannot change the course of communication,e.g.,by conducting a communication in which
it pretends to be an honest participant. The I/O automata approach does provide compositional
reasoning techniques.

Another related approach can be found in [169, 170], where interactive state machines —
another extension of I/O automata — are introduced and applied to security analysis. In partic-
ular, interacting state machines are used to model and analyze the classic Needham-Schroeder
public-key authentication protocol in the corrected version by Lowe [138]. An advantage of this
approach is the fact that it allows one to automatize the verification, and to prove theorem-like
properties, using the theorem prover Isabelle/HOL [168]. What is missing are solid techniques for
compositional reasoning over more complex communication protocols.

This chapter is organized as follows. In Section 6.2 we define team automata, after which we
describe an insecure communication scenario for team automata in Section 6.3. In Section 6.4 we
reformulate the GNDC schema in terms of team automata and enrich the insecure scenario with a
compositional analysis strategy. We subsequently apply this in Section 6.5 by verifying integrity
in a case study, in which team automata specify an instance of the EMSS protocol. Finally, the
chapter is concluded by a summary of our main results and some directions for future work.

6.2 Background on Team Automata

A team automaton consists of a number of component automata — which are ordinary automata
without final states in which actions are divided into input, output, and internal actions — com-
bined in a coordinated way so that they can perform shared actions. Internal actions have strictly
local visibility and cannot be used for communicating with other component automata, while input
and output actions together form the external actions that are observable by other components and
that are used for the communication between components. During each communication step the
components within a team may simultaneously participate in one instantaneous action,i.e., syn-
chronize on this action, or remain idle. Component automata can thus be combined in a loose or
more tight fashion depending on the actions on which to synchronize and when. Team automata
can in turn be used as components in a higher-level team automaton.

Technically, team automata are an extension of I/O automata. However, whereas I/O automata
are required to be input enabled,i.e., in each state it must be possible to execute every input action,
such a restriction does not hold for component (and team) automata. Moreover, the composition
of a set of component automata need not result in a unique team automaton, but can be a whole
range of team automata—distinguishable only by their synchronizations. I/O automata, on the
other hand, are uniquely defined by their constituents. Finally, I/O automata do not allow output
actions to be synchronized, whereas team automata do.

The main feature distinguishing team automata from other models in the literature is the free-
dom they offer by allowing one tochoosethe synchronizations when composing a team from a
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a ∈ Σ

δa

∆a(S)

Figure 6.1: Transition space of TA. Herea ∈ Σ is an action name. Each tuple of circles represents
a state of the team automaton, whereas each individual circle represents a state of a component
automaton. Black circles are the states that participate ina-transitions (here represented as dotted
lines). Any transition in the set,∆a(S), of all thea-transitions is a potentiala-transition of the
team automata (here represented as solid lines). The definition of a transition relationδa allows
only a selection ofa-transitions to be part of the resulting team automata (the cross-hatched area)
.

set of component automata. Most automata-based models, on the contrary, use a single method
of composition, resulting in composite automata that are uniquely defined by their constituents.
This holds for all the above mentioned automata-based models, and — in disguise — in several
non-automata-based models, like CSP and statecharts [112].

We briefly introduce the notation and terminology used throughout this chapter; then we recall
some definitions and results concerning team automata from [18, 196].

The (Cartesian) product of setsVi, with i ∈ {1, . . . , n}, is denoted by
∏

i∈{1,...,n} Vi. In
addition to the prefix notation, we also use the infix notationV1 × · · · × Vn. For j ∈ {1, . . . , n},
projj :

∏
i∈{1,...,n} Vi → Vj is defined by projj((a1, . . . , an)) = aj . The power-set of a setV is

denoted by2V . Let Σ andΓ be sets of symbols,Γ ⊆ Σ . The morphism presΣ,Γ : Σ∗ → Γ∗,
defined by presΣ,Γ(a) = a if a ∈ Γ and presΣ,Γ(a) = λ (the empty string) otherwise, preserves the
symbols fromΓ and erases all other symbols. In the following we discardΣ when no confusion
can arise, and we use of the trivial extension of presΓ to sets of sequences.

Let f : A→ A′ andg : B → B′ be functions. Thenf × g : A×B → A′ ×B′ is defined as
(f × g)(a, b) = (f(a), g(b)). We usef [2] as shorthand forf × f .

Definition 6.2.1 An automatonis a 4-tupleA = (Q,Σ, δ, I), with a setQ of states, a setΣ of
actions, Q ∩ Σ = ∅, a setδ ⊆ Q × Σ × Q of transitions, and a setI ⊆ Q of initial states. The
setCA of computationsof A consists of all the sequencesα = q0a1q1 · · · anqn, wheren ≥ 0 and



154 Chapter 6. Security Analysis with Team Automata

q0 ∈ I, and for all i ∈ {1, . . . , n}: qi ∈ Q, ai ∈ Σ, and(qi−1, ai, qi) ∈ δ. TheΓ-behaviorBΓ
A of

A, with Γ ⊆ Σ, is defined byBΓ
A = presΓ(CA).

TheΣ-behavior ofA is also called thebehaviorof A, in which caseΣ may be omitted. Finally,
note that behavioral inclusion defines a preorder relation on automata.

As said before, team automata are composed of component automata, which are automata
distinguishinginput, output, andinternalactions.

Definition 6.2.2 A component automatonis a constructC = (Q, (Σinp,Σout,Σint), δ, I), with an
underlying automaton(Q,Σinp ∪ Σout ∪ Σint, δ, I) and pairwise disjoint setsΣinp of input, Σout

of output, andΣint of internal actions.

The setΣ denotes the setΣinp ∪ Σout ∪ Σint of actionsof the component automatonC andΣext

denotes its setΣinp∪Σout of externalactions. In the sequel we letS = {Ci | i ∈ {1, . . . , n}} be an
arbitrary but fixed set of component automata specified byCi = (Qi, (Σi,inp,Σi,out,Σi,int), δi, Ii),
with setΣi = Σi,inp∪Σi,out∪Σi,int of actions and setΣi,ext = Σi,inp∪Σi,out of external actions.

When composing team automata the various internal actions of the components automata must
be kept private,i.e., be uniquely associated to one component automaton. This is obtained by
requiring thatΣi,int ∩

⋃
j∈({1,...,n}−{i}) Σj = ∅, for all i ∈ {1, . . . , n}, i.e., no internal action

of any component fromS may appear as an action in any of the other components constituting
S. If this is the case, thenS is called acomposable systemand in the sequel we assume thatS

is a composable system. We speak of a team automaton overS if its components are exactly the
automata inS.

The state space of a team automaton is the product of the state spaces of the components (inS).
The internal actions of the components are the internal actions of the team automaton. Each action
which is output for one or more of the components is an output action of the team. In particular, an
action that is an output action of one component and also an input action of another component, is
considered an output action of the team automaton. The input actions of the team that do not occur
at all as output action of any of the components inS, are the input actions of the team. The reason
for this construction is the following. When relating an input actiona of a component to an output
actiona of another component, the input may be thought of as being caused by the output. On
the other hand, the output action remains observable as output. Finally, the transitions of a team
automaton overS are based on, but not fixed by, the transition of transition of the components
constitutingS. They are chosen by allowing certainsynchronizationson actions, while excluding
others. To define a TA, we need to synchronize various component automata. The following
definition allows us to define the ”maximal synchronization” setting. Leta ∈ Σ, in the following
the setδa, calleda-transitionsof A, is defined asδa = {(q, q′) | (q, a, q′) ∈ δ}.

Definition 6.2.3 Let S a set of component automata, anda ∈
⋃

i∈{1,...,n} Σi. The set∆a(S) of
synchronizationsof a is defined as

∆a(S) = {(q, q′) ∈
∏

i∈{1,...,n}

Qi ×
∏

i∈{1,...,n}

Qi | (∃ j ∈ {1, . . . , n} : projj
[2](q, q′) ∈ δj,a)

and(∀ i ∈ {1, . . . , n} :
(
proji

[2](q, q′) ∈ δi,a) or (proji(q) = proji(q
′))

)
}.

The set∆a(S) thus contains all possible combinations ofa-transitions of the components inS,
with all non-participating components remaining idle. It is explicitly required that at least one
component is non-idle. Figure 6.1 gives an idea of the transition space∆a(S) of a team automaton
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overS. When defining a team automaton overS, a specific subset of∆a(S) must be chosen for
each actiona. This specifies the synchronization between the components constituting the team.

Definition 6.2.4 Let S = {(Qi,Σi,inp,Σi,out, Σi,int, δi, Ii) | i ∈ {1, . . . , n}} be a set of com-
ponent automata. Ateam automatonT = (Q, (Σinp,Σout,Σint), δ, I) is is a construct overS
with:

Q =
∏

i∈{1,...,n}

Qi,

Σinp = (
⋃

i∈{1,...,n}

Σi,inp)− Σout,

Σout =
⋃

i∈{1,...,n}

Σi,out,

Σint =
⋃

i∈{1,...,n}

Σi,int,

δ ⊆ Q× Σ×Q

HereI =
∏

i∈{1,...,n} Ii, δ is such thatδa = {(q, q′) | (q, a, q′) ∈ δ} ⊆ ∆a(S), for all a ∈ Σ =
Σinp ∪ Σout ∪ Σint, andδa = {(q, q′) | (q, a, q′) ∈ δ} = ∆a(S), for all a ∈ Σint.

All team automata over a given composable system have the same set of states, the same
alphabet of actions — including the distribution over input, output, and internal actions — and the
same set of initial states. They only differ in the choice of the transition relationδ and only as far
as external actions are concerned: for each external actiona we have the freedom to chooseδa.
This implies thatS, even if it is a composable system, does not uniquely define a team automaton.
Each choice of synchronizations thus defines a team automaton. It is important to observe that
every team automaton is again a component automaton, which in turn can be used as a component
in anhierarchicallycomposed team.

It can be useful tohide certain external actions of a team automaton before composing this
team with other teams to avoid synchronizations on these actions (on a higher level of the compo-
sition).

Definition 6.2.5 Let T = (Q, (Σinp,Σout,Σint), δ, I) be a team automaton and letΓ ⊆ Σext.
Then hideΓ(T) = (Q, (Σinp − Γ,Σout − Γ,Σint ∪ Γ), δ, I).

In hideΓ(T), the external actions inΓ have thus become unobservable to other automata by regard-
ing them as internal actions.

6.2.1 The Max-ai Team Automata

In the sequel, we make use of a team automaton of a specific type, calledmax-ai team automaton1.
Informally, the max-ai team automaton over a composable systemS is the unique team automaton
in which any execution of an actiona sees the participation of all components havinga in their set
of actions. Before we can define max-ai automata, we first need to define the following relation
Rai

a (S):

1Here “ai” stands for action indispensable.
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Definition 6.2.6 Let a ∈
⋃

i∈{1,...,n} Σi. The setis-ai for a in S, denoted byRai
a (S), is defined as

Rai
a (S) = {(q, q′) ∈ ∆a(S) | ∀ i ∈ {1, . . . , n} : [a ∈ Σi ⇒ proji

[2](q, q′) ∈ δi,a]}.

The setRai
a (S) thus containsall and onlythosea-transitions from∆a(S) in which every com-

ponent automaton witha as an action participates. Hence the max-ai team automaton overS is
the unique team automaton in which any execution ofa sees the participation of all components
havinga in their set of actions.

Definition 6.2.7 T = (Q, (Σinp,Σout,Σint), δ, I) is the max-ai team automatonoverS, denoted
by ||| S, if δa = Rai

a (S), for all a ∈ Σ.

Figure 6.2 shows two component automataC1 andC2. Figure 6.3 shows two of the several
team automata that can be built by starting from those component automata. We enforce maximal
synchronization inTai = ||| {C1,C2}: any execution of actiona and actionb sees the participation
of both components whenever possible.Tfree is the team automaton over{C1,C2} in which any
execution of actiona and actionb sees the participation of only one component.

q1 q′1
a

C1:

b

q2 q′2
a

C2:

b

a, b external
actions

Figure 6.2: Example of two composite automata,C1 andC2. Hereq1, q′1, q2, andq′2 are states,
solid lines are transitions, anda andb are external actions. A curved arrow points the initial state
of each automaton.
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(
q1

q′2

)

(
q′1
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(
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Figure 6.3: Example of two different TA over{C1,C2}. Tai is the max-ai team automaton.Tfree

is the team automaton whose transition relation selects those transitions of the team involving only
one single component.

TheΓ-behaviorof a team automatonT, denoted asBΓ
T, is defined as usual in automata theory

(see Definition 6.2.1). In particular,BΓ
T = presΓ(CT), with setCT of computations ofT consist-

ing of all the sequencesα = q0a1q1 . . . anqn, wheren ≥ 0 andq0 is an initial state,qi, are states,
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ai are actions and(qi−1, ai, qi) are transitions. WhenΓ = Σout, thenBΣout
T is the output behavior

of T. By appropriately choosingΓ, also the input and the internal behavior ofT can be defined.

Remark 6.2.8 In [18] it was shown that the behavior of an iteratively composed max-ai team
automaton equals that of the max-ai team automaton over the underlying components. For ex-
ample, considering the automata in Example 6.3, ifT′ andT′′ are the max-ai team automata over
{T′′,C3} and{C1,C2} respectively, and ifT is the max-ai team automaton over{C1,C2,C3}, then
BT′ = BT.

6.2.2 Compositionality in Team Automata

A team automaton is said to satisfycompositionalityif its behavior can be described in terms of
that of its constituentsi.e., when the behavior of the team automaton automata can be expressed
as ashuffledversion of the sequences that form the behaviors of the set of its components [196].

Definition 6.2.9 Let∆i be alphabets andLi ⊆ ∆∗
i , with i ∈ {1, . . . , n}. Thefully synchronized

shuffle, || {∆i|i∈{1,...,n}} Li is defined as|| {∆i|i∈{1,...,n}} Li = {w ∈ (
⋃

i∈{1,...,n} ∆i)∗ | ∀ i ∈
{1, . . . , n} : pres∆i

(w) ∈ Li}.

Example 6.2.10Let ∆1,∆2 be alphabets. LetL1 = {abc}be a sequence such thatL1 ⊆∆1 =
{a, b, c} andL2 = {cd} a second sequence such thatL2 ⊆ ∆2 = {c, d}. Then, the fully syn-
chronized shuffleabc ∆1

|| ∆2
cd = {abcd} (i.e., words must synchronize on∆1 ∩ ∆2 = {c}).

Before continuing, we observe the following property of full synchronized shuffles.

Remark 6.2.11 Let ∆i, with i ∈ {1, .., 4}, be alphabets and letLi ⊆ ∆∗
i . Then

|| {∆1,∆3}
{L1, L3} ⊆ || {∆2,∆4}

{L2, L4}

wheneverL1 ⊆ L2 andL3 ⊆ L4.

In [196] it was shown that the construction of team automata to certain types of synchroniza-
tion, like the one leading to max-ai team automata, guarantees compositionality.

Theorem 6.2.12 (Compositionality of team automata)LetT be the max-ai team automaton
overS. ThenBT = || {Σi|i∈{1,...,n}} BCi

.

6.3 An Insecure Communication with Team Automata

In this section we use team automata to model a generic (insecure) communication system in
which to analyze security properties.

We assume all actions to be built over a first order signatureσ, where predicate symbols are
seen as communication channels and atomic formulas as messages. We assume thatσ contains
at least the following function symbols:{ } encryption,〈 , 〉 paring,h( ) hashing, and those
indicating the secret and public key,sk( ) andpk( ) respectively. We letm,m′ range over the
setMessages of atomic formulas andc, c′ over the setChannels of predicate symbols. In the
sequel,Eve, Eve′, Pub, Pub′, Reveal, andReveal′ will be used as particular predicate names.
An action is denoted byc(m), which represents a messagem sent over channelc. Given a set
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M ⊆ Messages of messages, we definec(M) = {c(m) | m ∈ M}. Given a setC of predicate
names we defineC(M) = {c(m) | m ∈ M, c ∈ C}. Finally, with a little abuse of notation, we
will also writeC as an abbreviation for the setC(Messages).

We abstract from the cryptographic details concerning the operations according to which mes-
sages can be encrypted, decrypted, hashed,et cetera, but we assume the presence of a cryptosystem
(defined by a derivation operator`) that implements these operations. By applying cryptographic
operations from this cryptosystem to a setM of messages, a new setKS (M) = {m | M ` m}
of messages (usually called thededuction set) can be obtained. This approach is standard in the
analysis of (cryptographic) communication protocols [53, 86, 134, 140].

In the sequel, we model a generic cryptographic communication protocol specification involv-
ing two roles,viz.aninitiator TS and aresponderTR. We assume all the communication between
TS andTR to flow through aninsecure channel(cf. Figure 6.4). This insecure channel may release
some messages to anintruder which, in turn, can eavesdrop on these messages as well as inject
fake messages in the communication channel. This is a standard approach for verifying security
properties for (cryptographic) communication protocols. A protocol specification is considered
secure with respect to a security property if it satisfies this property despite the presence of the
intruder. As in [140], the insecure channel and the intruder are modelled by team automataTIC

andTX . We thus propose a framework consisting of four types of team automata (see also Fig-
ure 6.4):

1. TS plays the role of the protocol’s initiator,

2. TR plays the role of the protocol’s responder,

3. TIC plays the role of the insecure channel, and

4. TX plays the role of the active and malicious intruder.

We let the initiator and the responder communicate with the insecure channel through disjoint
sets of actionsΣS

com and ΣR
com, respectively, so that a direct communication between them is

impossible. TheTIC , in turn, can interact with the intruder only through a distinct setΣI
com of

actions. Finally, some particular actions may be used by an honest role to reveal some information
to the outside concerning,e.g.,a state reached during a run of the protocol.
We letTP denote the team automaton representing our protocol specification in the absence of the
intruder. We thus defineTP to be the max-ai team automaton over{TS ,TR, TIC } that is obtained
after hiding the actionsΣP

com = ΣS
com ∪ ΣR

com, i.e., all messages passing through the insecure
channel (e.g.,ΣP

com = {Pub(m), Pub′(m) | ∀m ∈ Messages} in Figure 6.4). Hence

TP = hideΣP
com

( ||| {TS ,TR,TIC }).

By hidingΣP
com, TP - appears as a black box, possibly with some output actionsΣS

sig andΣR
sig—

signalling the successful reception of messages. Usually such signals are used only for verification
purposes and for the sequel we assume thatΣS

sig ∩ ΣR
sig = ∅ (e.g.,ΣS

sig = {Reveal} andΣR
sig =

{Reveal′} in Figure 6.4).
We let TI be the team automaton representing the protocol specification in presence of the

intruder. The actions inΣI
com serve as back-door for intrusion and are added toTIC (e.g.,ΣI

com =
{Eve, Eve′} in Figure 6.4). This is what we need to guarantee that the intruderTX may commu-
nicate withTP only through the insecure channel. We defineTI to be the max-ai team automaton
over{TP ,TX } that is obtained after hiding the actionsΣI

com, i.e., all messages that the intruder
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assertions
TS

TI

injecteavesdrop

TP

TIC

TX

assertions send/receivesend/receive

{Reveal}
TR

{Eve} {Eve′}

{Pub} {Reveal′}{Pub′}

Figure 6.4: The insecure communication scenario for Team Automata. The insecure scenario is
represented by the automatonTI . Within the scenario,TS models the protocol’s initiator,TIC

models the insecure channel,TR models the protocol’s responder, andTX represents the Dolev-
Yao [69] intruder. The team automatonTP , composed over{TS ,TIC ,TR} represents the secure
scenario.

can eavesdrop from and inject back into the insecure channel. We thus enforce maximal synchro-
nization between the intruder and the protocol. Hence

TI = hideΣI
com

( ||| {TP ,TX })

We have now defined an insecure communication scenario for team automata by composing a
secure communication scenario with an intruder.

6.4 GNDC Security Analysis for Team Automata

In Chapter 3 (Section 3.2) we have already seen that GNDC is a scheme that has the form

P ∈ GNDCα
/ iff ∀X ∈ EC : (P ‖ X) \ C / α(P )

where(P ‖ X) \ C denotes the parallel composition of processesP andX restricted to commu-
nication over channels other thanC. X is an arbitrary (possibly malicious) process in the environ-
mentEC , the set of all processes whose communicating actions are inC. By varying the parame-
ters/ andα, the GNDC schema can be used to define and verify many security properties—among
which secrecy, integrity, and entity authentication [81, 84, 86, 104, 149]. Recently, a slightly ex-
tended GNDC schema was defined [85], incorporating the fact that the set of bad behaviors ofP
may depend onP itself and on the property under scrutiny.

In the specific context of analyzing cryptographic communication protocols, thestatic(initial)
knowledge of the hostile environment must be bound to a specific set of messages. This limitation
is needed to avoid a hostile intruder that is too strong, and which would therefore be able to corrupt
any secret (as it would know all cryptographic keys,et cetera). This brings us to the definition of a
new environmentEφ

C , based onEC , of all processes communicating through actionsC and having
an initial knowledge of at most the messages inKS (φ). For the analysis of safety properties
(e.g.,secrecy, integrity, and entity authentication) it is sufficient to consider the trace inclusion
relation≤ as a behavioral relation between the terms of the algebra [86]. Hence, let us consider
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the GNDC instance

P ∈ GNDCα
≤ iff ∀X ∈ E

φ
C : (P ‖ X) \ C ≤ α(P ), (6.4.1)

which was,e.g.,used in [104] to analyze integrity in stream signature protocols. Informally, (6.4.1)
requires traces of process(P ‖ X) \ C to be included in the traces of processα(P ), representing
the expected behavior ofP when no adversary is present.

6.4.1 Reformulating GNDC in Terms of Team Automata

We begin by describing the team automatonTP = {Q, (ΣP
inp,Σ

P
out,Σ

P
int), δ, I} which models the

systemP . Because (6.4.1) requiresP to communicate withX through the channels contained
in C, we letC = Cinp ∪ Cout; the actions inCinp are input toX and the actions inCout that are
output toX. In the sequel, we assumeC to coincide exactly withΣI

com and, in particular,Cinp

with the actions inΣI
com that are input toTX (e.g.,{Eve} in Figure 6.4) andCout with the actions

in ΣI
com that are output toTX (e.g.,{Eve′} in Figure 6.4). We are now able to formalize the hostile

environmentEC in terms of team automata as:

EC = {(Q, (Σinp,Σout,Σint), δ, I) | Σinp ⊆ Cinp, Σout ⊆ Cout}. (6.4.2)

In addition, (6.4.1) requires the initial knowledge of the environment to be bound to a specified set
of messagesφ. This means that the environment should be able to produce, by means of only its
internal functioning, at most the messages contained inKS (φ). In terms of team automata, this
means that a component automaton in the environment, when considered as a stand-alone com-
ponent, can only execute output actions belonging toC(KS (φ)). Formally, theinitial knowledge
of T is defined as{γ ∈ BT | γ ∈ ΣT

out
∗}, and the formal definition of the environmentE

φ
C thus

becomes:

E
φ
C = {X ∈ EC | {γ ∈ BX | γ ∈ ΣX

out
∗} ⊆ (C(KS (φ)))∗}. (6.4.3)

Finally, we need a behavioral notion of comparison between team automata which abstracts from
their internal and communicating actions. Furthermore, we want to be able to exclude all se-
quences containing an action occurring inC. Therefore, we hide the output actions involved in
the communications and we define theobservational behavior(with respect to actions not inC)
of the resulting team automata as the sequences consisting solely of external actions not inC.

Definition 6.4.1 Let T = (Q, (Σinp,Σout,Σint), δ, I) be a team automaton overS, let Σcom ⊆
Σext, and letT′ = hideΣcom(T). Then theobservational behaviorof T′ with respect to actions not
in C, denoted byOC

T′ , is defined as

OC
T′ = {γ ∈ pres

ΣT′
ext

(BT′) | γ ∈ ΣT′
ext − C

∗}.

As a result we are able to reformulate (6.4.1) in terms of team automata.

Definition 6.4.2 Letα(TP ) be the expected (correct) behavior ofTP . Then:

TP ∈ GNDCα(TP )
⊆ iff ∀X ∈ E

φ
C : OC

hideC( ||| {TP ,X}) ⊆ α(TP ).

Informally, Definition 6.4.2 says thatTP (i.e., a cryptographic communication protocol specified
in the insecure communication scenario) satisfiesGNDCα(TP )

⊆ if and only if its observational
behavior, despite communicating with any intruderX through the actionsC, is included inα(TP ).
A significant instance ofα is, e.g., αint(TP ) = OC

TP
, which will be used in Section 6.5.2 to

express integrity.
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6.4.2 Security Analysis Strategies for Team Automata

While allowing a uniform approach for specifying security properties, Definition 6.4.2 does not
provide us with effective strategies for the analysis of (cryptographic) communication protocols.
In particular, the universal quantification overE

φ
C causes serious problems when checkingTP ∈

GNDCα(TP )
⊆ . Luckily, the strategies developed for GNDC in the context of process algebras can

be transferred to team automata.

The Most General Intruder. To avoid the infinite number of checks that the universal quantifi-
cation requires, we now show that there exists an attacker that is more powerful (with respect to
a chosen behavioral relation) than all the others. In this way one can reduce the analysis against
any environment to an analysis against only one, albeit very powerful, so-calledmost general in-
truder. From the theory of GNDC [85] we know that a sufficient condition for the existence of
such a most general intruder, is to have a behavioral relation that is apre-congruencewith respect
to the (parallel) composition and restriction operators. Restated in our framework we say that/
is a pre-congruence (with respect to||| and hideC) if for every automatonT, X andX′ in EC ,
wheneverBC

X / BC
X′ thenOC

hideC( ||| {T,X}) / OC
hideC( ||| {T,X′}). It is not difficult to prove that this

is true in our case,viz.

Lemma 6.4.3 Let T = (Q, (ΣT
inp,Σ

T
out,Σ

T
int), δ, I) be a team automaton and letX,X′ ∈ EC .

Then
BC

X ⊆ BC
X′ impliesOC

hideC( ||| {T,X}) ⊆ OC
hideC( ||| {T,X′}).

Proof. Let a1 · · · an ∈ OC
hideC( ||| {T,X}) and letBC

X ⊆ BC
X′ . By (6.4.2),ΣX

ext ⊆ C because

X ∈ EC . Then by Definition 6.4.1, for alli ∈ {1, . . . , n}, ai ∈ ΣT
ext − C. We now use the

fact that by definition also all prefixes ofa1 · · · an are included inOC
hideC( ||| {T,X}) and show by

induction that all prefixes ofa1 · · · an are also included inOC
hideC( ||| {T,X′}). First, considera1.

By Definition 6.4.1, eithera1 ∈ BhideC( ||| {T,X}) or b1 · · · bma1 ∈ BhideC( ||| {T,X}), for some
m ≥ 1 and where, for allj ∈ [m], bj is an internal action of hideC( ||| {T,X}). In both cases,
sinceBC

X ⊆ BC
X′ and ai ∈ ΣT

ext − C, for all i ∈ {1, . . . , n}, it follows by Definition 6.4.1
that a1 ∈ OC

hideC( ||| {T,X′}). Now assume thata1 · · · ak ∈ OC
hideC( ||| {T,X′}), with k < n, and

considera1 · · · ak+1. Using similar arguments as above and the induction hypothesis it follows
thata1 · · · ak+1 ∈ OC

hideC( ||| {T,X′}).

SinceE
φ
C ⊆ EC , this lemma holds forX,X′ ∈ E

φ
C as well. Based on the approach of [86] we now

define a component automatonTopφ
C , representing the most general intruder.

We specifyTopφ
C in the way that I/O automata are commonly defined [140, 142]. Its states

are thus defined by the current values of the variables listed under States, while its transitions are
defined, per actiona, as preconditions (Pre) and effect (Eff),i.e., (q, a, q′) is a transition ofTopφ

C

if the precondition ofa is satisfied byq, while q′ is the transformation ofq defined by the effect
of a. We omit the precondition (effect) of an action when it istrue.

Recall that the setC of predicates that the intruder uses to interact with the insecure channel
is partitioned intoCinp andCout (e.g., in Figure 6.4,Cinp = {Eve} andCout = {Eve′}). Re-
call also thatC (respectively,Cinp andCout) is an abbreviation forC(Messages) (respectively,
Cinp(Messages)andCout(Messages)).
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Topφ
C

Actions
Inp: Cinp(Messages) Out: Cout(Messages) Int: ∅

States
received ⊆ 2Cinp(Messages), initially φ

Transitions
c(m) ∈ Cinp(Messages) c(m) ∈ Cout(Messages)

Eff: received := received ∪ {m} Pre:m ∈ KS (received)

The general way in whichTopφ
C is specified implies that its behavior includes that of any

automaton fromE
φ
C .

Lemma 6.4.4 For all X ∈ E
φ
C , BC

X ⊆ BC
Topφ

C

.

Proof. Let X ∈ E
φ
C . Then (6.4.3) implies thatX ∈ EC and thus, by (6.4.2) and the specification

of Topφ
C , ΣX

inp ⊆ Cinp = ΣTopφ
C

inp andΣX
out ⊆ Cout = ΣTopφ

C
out . From (6.4.3) and the specification

of Topφ
C it follows immediately thatBC

X ⊆ BC
Topφ

C

.

Lemmata 6.4.3 and 6.4.4 directly imply the following result.

Theorem 6.4.5 For all X ∈ E
φ
C , OC

hideC( ||| {TP ,X}) ⊆ OC
hideC( ||| {TP ,Topφ

C})
.

Together with Definition 6.4.2, this gives us the following result.

Corollary 6.4.6 Letα(TP ) be as in Definition 6.4.2. Then

TP ∈ GNDCα(TP )
⊆ iff OC

hideC( ||| {TP ,Topφ
C})
⊆ α(TP ).

Compositional Results. We now report some compositionality results for the insecure commu-
nication scenario which, as we will see, can simplify the analysis.

To begin with, we let:

T1 = hideΣP
com

( ||| {TS ,TIC }) and T2 = hideΣP
com

( ||| {TR,TIC }).

We then letTP be the team automaton defined at the end of Section 6.3,i.e., with ΣI
com = C

added toTIC . Therefore,TP represents the communication scenario in which an initiator and a
responder are connected by an insecure channel, but are not connected to the intruder. If we add
the most general intruder, some general compositional results can be proved. To this aim we let

T′1 = hideC( ||| {T1 , Topφ
C}) and T′2 = hideC( ||| {T2 , Topφ

C}).

The following lemma states that the observational behavior of the insecure scenario that seesT1 ,
T2 interacting with the intruderTopφ

C , can be obtained as a shuffle of the observational behaviors
of T′1 andT′2 .
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Lemma 6.4.7 Let{m | {c(m) ∈ ΣP
com} ⊆ φ. Then

OC
hideC( ||| { ||| {T1 ,T2 },Topφ

C})
= ||

{ΣT′1 ,Σ
T′2 }
{OC

T′
1
,OC

T′
2
}.

Proof. From the wayT′1 andT′2 are composed it follows thatΣT′
1

ext = ΣS
sig andΣT′

2
ext = ΣR

sig. Now

letT′′ = hideC( ||| { ||| {T1 ,T2}, Topφ
C}). It remains to prove thatOC

T′′ = ||
{ΣT′1 ,Σ

T′2 }
{OC

T′
1
,OC

T′
2
}.

SinceΣS
sig ∩ ΣR

sig = ∅, this follows directly from the fact that{m | {c(m) ∈ ΣP
com} ⊆ φ, i.e.,

addingTR (TS ) to T′1 (T′2 ) does not change the signals fromΣS
sig (ΣR

sig) which TS (TR) can
output because all messages thatTR (TS ) can send toTIC have already been included in the initial
knowledge ofTX .

The previous lemma is used to prove a compositional result over the GNDC specification for
team automata. The following theorem says that ifT1 andT2 satisfy GNDC with respect to two
propertiesα(T1 ) nd α(T2 ) respectively, their composition satisfies GNDC with respect to the
shuffle of these properties.

Theorem 6.4.8 If T1 ∈GNDCα(T1 )
⊆ andT2 ∈GNDCα(T2 )

⊆ , then

|||{T1 ,T2}∈GNDC
||
{ΣT1 ,ΣT2 }

{α(T1 ),α(T2 )}

⊆

Proof. Let T1 ∈ GNDCα(T1 )
⊆ andT2 ∈ GNDCα(T2 )

⊆ . ThenOC
T′
1
⊆ α(T1 ) andOC

T′
2
⊆ α(T2 )

and thus, by Lemma 6.4.7 and Remark 6.2.11,

OC
hideC( ||| { ||| {T1 ,T2 },Topφ

C})
= ||

{ΣT′1 ,Σ
T′2 }
{OC

T′
1
,OC

T′
2
}

⊆ ||
{Σα(T1 ),Σα(T2 )}

{α(T1 ), α(T2 )}

6.5 A Case Study: The EMSS Protocol

The EMSS protocol was introduced in [173] and is used to sign digital streams. It exploits a
combination of hash functions and digital signatures and achieves robustness against packet loss,
i.e.,an incompletely received stream may still allow the user to verify the integrity of the packets
that were not lost.

Actually, EMSS is a family of protocols and here we focus on its deterministic (1,2) schema.
We assume that a senderS wants to send a stream of payloadsm0,m1, . . . ,mlast to a set of
receivers{Rn | n ≥ 1} (as usual for recipients of digital data streams, we assume that receivers
are not able to communicate to each other). The protocol then requiresS to send tuples built from
payloads (called packets) to the receivers.

S
P0−→ {Rn | n ≥ 1} packet P0 = 〈0,m0, ∅, ∅〉

S
P1−→ {Rn | n ≥ 1} packet P1 = 〈1,m1, h(P0), ∅〉

S
Pi−→ {Rn | n ≥ 1} packet Pi = 〈i, mi, h(Pi−1), h(Pi−2)〉 2 ≤ i ≤ last

S
Psign−→ {Rn | n ≥ 1} packet Psign = 〈{h(Plast), h(Plast−1)}sk(S)〉
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After the first two messages, each packetPi contains a meaningful payloadmi, together with
the hashesh(Pi−1) andh(Pi−2) of the previous two packets sent. The end of a stream is indicated
by a signature packetPsign containing the hashes of the final two packets, along with a digital
signature. We assume that the private sender keysk(S) cannot be deduced from{mi | 0 ≤ i ≤
last}.

6.5.1 The EMSS Protocol Modeled by Team Automata

In this section, we specify the deterministic (1,2) schema of the EMSS protocol with team au-
tomata. As already done for the specification ofTopφ

C , we omit the precondition (effect) of an
action when it istrue.

The senderS of the stream is modelled by a CATS and the set{Rn | n ≥ 1} of receivers by
n copies of a CATR. TS uses its private keysk(TS ) and a public keypk(TS ) to perform regular
digital signature operations. LetMessages denote the set{m0,m1, . . . ,mlast} of meaningful pay-
loads. ThenTS andTR use the hash functionh : Messages → Hashed. Moreover,TS uses the
functions : 2Hashed → Signed, defined bys(H) = Hsk(TS ), to sign sets of hashed messages with
its private keysk(TS ), whereasTR uses the function̄s : Signed → {true, false} and the public
keypk(TS ) to verify whether or not a set of hashed messages was signed byTS .

In the specification ofTS we explicitly model that each of its actions is enabled only once
during a computation, thus prohibiting loops. For example, as soon asTS has sentP0, then
this action’s preconditionP0 /∈ sent prohibits this action to be executed again. For the sake of
readability, we omit the addition of such preconditions to the specification ofTS but implicitly
assume that all the actions are executed only once during a computation. Note that each packet
contains the packet number; in the sequel we denote the packet with packet numberi, by Pi.

TS

Actions
Inp: ∅
Out: {

P0︷ ︸︸ ︷
〈0,m0, ∅, ∅〉,

P1︷ ︸︸ ︷
〈1,m1, h(P0), ∅〉} ∪ {

Pi︷ ︸︸ ︷
〈i, mi, h(Pi−1), h(Pi−2)〉 | 2 ≤ i ≤ last}

∪ {〈{h(Plast), h(Plast−1)}sk(TS )〉︸ ︷︷ ︸
Psign

}

Int: {Hashi | 0 ≤ i ≤ last} ∪ {Sign}

States
sent ⊆ Messages, hashed ⊆ Hashed, signed ⊆ Signed, all initially ∅

Transitions
P0

Eff: sent := sent ∪ {P0}

Hashi, 0 ≤ i ≤ last
Pre:Pi ∈ sent ∧ h(Pi) /∈ hashed
Eff: hashed := hashed ∪ {h(Pi)}

P1

Pre:h(P0) ∈ hashed ∧ P1 /∈ sent
Eff: sent := sent ∪ {P1}
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Pi, 2 ≤ i ≤ last
Pre:{h(Pi−1), h(Pi−2)} ⊆ hashed ∧ Pi /∈ sent
Eff: sent := sent ∪ {Pi}

Sign
Pre:h(Plast) ∈ hashed ∧ s({h(Plast), h(Plast−1)}) /∈ signed
Eff: signed := signed ∪ {s({h(Plast), h(Plast−1)})}

Psign

Pre:{h(Plast), h(Plast−1)}sk(TS ) ∈ signed ∧ Psign /∈ sent
Eff: sent := sent ∪ {Psign}

ClearlyTS has no input, while its output behaviorBΣout
TS

consists of all prefixes ofP0P1 · · ·
PlastPsign. To send the packetsP0, P1, . . . , Plast, Psign in this order,TS must perform some in-
ternal computations. This is reflected by its internal behaviorBΣint

TS
consisting of all prefixes of

Hash0Hash1 · · · HashlastSign.
We now continue with the specification ofTR. TR is capable of receiving as input behavior

packets fromP0, P1, . . . , Plast, in the corresponding variablesP ′
i , for i = 0, . . . , last. Eventu-

ally TR receives the signature packetPsign, that ends the receiving phase. After,TR verifies the
accompanying digital signature ofP ′

sign(we assume thatTR has previously retrieved the public
key pk(TS ) corresponding to the private keysk(TS )); the verification of the signature allowsTR

to be sure of the integrity of the stream of verifiable payloads collected inxtractedM, which are
going to be sent to the application as output behavior ofTR. The verification of the digital signa-
ture triggers the verification of the stream of the packets received. Fori = last, . . . , 0, afterTR

has verifiedP ′
i , TR verifies whether it has receivedP ′

i−1. If it is the case,TR extracts the hash
hi−1 from P ′

i , computes the hashh(P ′
i−1), and compares these two hashes. If they are equal, then

the variablem′
i−1 that should contain the verifiable payloadmi−1 is extracted fromP ′

i−1. Other-
wiseTR has no output behavior. On the other hand, ifTR did not receiveP ′

i−1 thenTR verifies
whether it receivedP ′

i−2. If TR did receiveP ′
i−2, then it extracts the hashhi−2 from P ′

i , computes
the hashh(P ′

i−2), and compares the two hashes. If they are equal, then the variablem′
i−2 that

should contain the verifiable payloadmi−2 is extracted fromPi−2. OtherwiseTR has no output
behavior. As already done for the specification ofTS we omit in the specification ofTR the addi-
tion of preconditions that avoid loops; we implicitly assume that all the actions are executed only
once during a computation.

TR

Actions

Inp: {

P ′
0︷ ︸︸ ︷

〈0,m′
0, ∅, ∅〉,

P ′
1︷ ︸︸ ︷

〈1,m′
1, h0), ∅〉} ∪ {

P ′
i︷ ︸︸ ︷

〈i,m′
i, h

′
i−1, hi−2〉 | 2 ≤ i ≤ last}

∪ {〈{hlast, hlast−1}sk(TS )〉︸ ︷︷ ︸
P ′

sign

}

Out: Payloads′

Int: {XtractHi, XtractMi, Hashi | 0 ≤ i ≤ last} ∪ {Verify, Stream}

States
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received, xtractedM ⊆ Payloads′, xtractedH, hashed ⊆ Hashed, all initially ∅
{{verifiedi|i = 0, . . . , last, sign}, send} ⊆ {true, false}, initially false

Transitions

P ′
i , 0 ≤ i ≤ last

Pre:P ′
sign 6∈ received

Eff: received := received ∪ {P ′
i}

XtractHi,1, 1 ≤ i ≤ last

Pre: [{P ′
i−1,

P ′
i︷ ︸︸ ︷

〈i,m′
i, hi−1, hi−2〉} ⊆ received] ∧ [verifiedi = true]

Eff: xtractedH := xtractedH ∪ {hi−1}

XtractHi,2, 2 ≤ i ≤ last

Pre: [{P ′
i−2,

P ′
i︷ ︸︸ ︷

〈i,m′
i, hi−1, hi−2〉} ⊆ received] ∧ [Pi−1 /∈ received] ∧ [verifiedi = true]

Eff: xtractedH := xtractedH ∪ {hi−2}

P ′
sign

Eff: received := received ∪ {P ′
sign}

Verify

Pre: [P ′
sign ∈ received] ∧ [s̄({

P ′
sign︷ ︸︸ ︷

hlast, hlast−1}sk(TS )) = true]
Eff: verifiedsign := true, xtractedH := xtractedH ∪ {hlast, hlast−1}

XtractHsign,1

Pre: [{P ′
last,

P ′
sign︷ ︸︸ ︷

〈hlast, hlast−1〉} ⊆ received] ∧ [verifiedsign = true]
Eff: xtractedH := xtractedH ∪ {hlast}

XtractHsign,2

Pre: [{P ′
last−1,

P ′
sign︷ ︸︸ ︷

〈hlast, hlast−1〉} ⊆ received] ∧ [P ′
last /∈ received] ∧ [verifiedsign = true]

Eff: xtractedH := xtractedH ∪ {h′last−1}

Hashi, 0 ≤ i ≤ last
Pre:hi ∈ xtractedH ∧ [P ′

i ∈ received]
Eff: hashed := hashed ∪ {h(P ′

i )}

XtractMi, 0 ≤ i ≤ last
Pre: [hi ∈ xtractedH] ∧ [h(P ′

i ) ∈ hashed] ∧ [h(P ′
i ) = hi]

Eff: xtractedM := xtractedM ∪ {m′
i}, verifiedi := true
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Stream
Pre: [[m′

last ∈ xtractedM] ∨ [[m′
last−1 ∈ xtractedM] ∧ [P ′

last /∈ received]]]
∧[verifiedsign = true]

Eff: send := true

m′
0

Pre: [send = true] ∧ [m′
0 ∈ xtractedM] ∧ [verified0 = true]

Eff:xtractedM := xtractedM− {m′
0}

m′
i, 1 ≤ i ≤ last

Pre: [send = true] ∧ [m′
i ∈ xtractedM]

∧[{m′
k | i ≤ k ≤ last} ∩ xtractedM = ∅] ∧ [verifiedi = true]

Eff: xtractedM := xtractedM− {m′
i}

Remark 6.5.1 In theTR model, we have explicitly inverted (with respect to the specification of
EMSS) the order of messages in the output behavior ofTR. Without losing generality and without
changing the final results of our analysis, this choice simplifies some technicalities. Observe that
the first message of the output sequence ofTR must necessarily be eitherm′

last or m′
last−1.

We now go on with the construction the formal model of EMSS,TEMSS . It is defined as the
max-ai team automaton over{TS ,T

(i)
R | 1 ≤ i ≤ n}. Formally:

TEMSS = ||| {TS ,T
(i)
R | 1 ≤ i ≤ n},

Note thatTEMSS has no input actions, while it has the union of the output (resp.,internal) actions
of TS and theTR ’s as its output (resp.,internal) actions.

6.5.2 Analysis of the EMSS Protocol

In this section we use the GNDC schema for team automata together with the insecure communica-
tion scenario in order to show that the deterministic (1,2) schema of the EMSS protocol guarantees
integrity. Note that this has already been validated in [149], where a CCS-like process algebra was
used instead. Our goal here is thus to use this particular case study to show the effectiveness of
team automata for security analysis.

We model the senderS by TS and the receiver byTR. While here we consider oneTR, this
analysis can be extended in a natural way to the case in which there aren copies ofTR. We for-
mally define integrity as the ability ofTR to accept a messagemi, for anyi, only if it has indeed
been sent byTS . We also assume thatTR signals the acceptance of a stream of messages as a legiti-
mate stream by issuing it as a list of messages{Reveal′}. We require the expected (correct) obser-
vational behaviorαint(TP ) of TP with respect to integrity as the set containing all prefixes of the
subsequence (holes are due to packets loss) ofReveal′(milast) · · · Reveal′(mi1)Reveal

′(mi0).
Formally:

αint
def=

{
Reveal′(milast) · · · Reveal

′(mi1)Reveal
′(mi0) | 0 ≤ i0 < . . . < ilast ≤ last

}
Further, we equipTopφ

C with an initial knowledgeφ consisting of all output actions ofTS and
the public keypk(TS ), i.e., φ = {P0, P1, Pi, Psign | 2 ≤ i ≤ last} ∪ {pk(TS )}, whereP0 =
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〈0,m0, ∅, ∅〉, P1 = 〈1,m1, h(P0), ∅〉, Pi = 〈i,mi, h(Pi−1), h(Pi−2)〉, for all 1 ≤ i ≤ last,
andPsign = 〈{h(Plast), h(Plast−1)}sk(TS )〉. We do so solely for analysis reasons,viz. in order

to enableTopφ
C to send the correct messages toTR through the insecure channel. Note that the

messages contained in this initial knowledge are exactly those that the intruder is anyway able to
collect by eavesdropping whatTS sends through the insecure channel. As is common in security
analysis, we rely on theperfect encryption assumption, i.e., TopφC cannot deducesk(TS ) from φ
nor can it forge hash and encryption functions by guessing. From Section 6.4.2 we recall that

T1 = hideΣP
com

( ||| {TS ,TIC }), T2 = hideΣP
com

( ||| {TR,TIC })

T′1 = hideC( ||| {T1 , Topφ
C}), T′2 = hideC( ||| {T2 , Topφ

C})

Hence the observational behavior of the max-ai team automaton overT1 and Topφ
C is empty,

therefore

Lemma 6.5.2 T1 ∈ GNDC ∅
⊆.

Proof. Directly by Corollary 6.4.6 becauseOC
hideC( ||| {T1 ,Topφ

C})
= ∅.

We now show that the observational behavior of the max-ai team automaton overT2 andTopφ
C is

included in the expected observational behaviorαint(TP ) of TP with respect to integrity,

Lemma 6.5.3 T2 ∈ GNDCαint(TP )
⊆ .

Proof. Recall that the behavior ofT2 coincides withTR when it interacts with the intruder. Let
us concentrate on the observable (output) behavior ofTR in T2 .

If TR shows an empty output behavior∅, the theorem is trivially satisfied. Otherwise the
output behavior ofTR is a sequence of messages. From Remark 6.5.1 the first message of this
sequence must be eitherReveal′(m′

last) or Reveal′(m′
last−1). We treat only the case in which

the first message isReveal′(m′
last); the other case is analogous. In the following we omit the

predicateReveal′( ), for sake of conciseness.
First we prove the following statement:

Claim 6.5.4 Let P0, . . . , Plast, Psign be the correct packets sent byTS . If TR is in state where
verifiedi = true and{P ′

i , Psign} ⊆ received thenP ′
i = Pi.

Proof of Claim6.5.4 By induction overi = last, . . . , 0, in which the base case isi = last.

base case:(i = last). By the precondition ofXtractMlast, verifiedlast = true implies thathlast ∈
xtractedH, h(P ′

last) ∈ hashed andhlast = h(P ′
last). By the precondition ofVerify, hlast ∈

xtractedH implies thatP ′
sign ∈ received andverifiedsign = true. From the hypothesis we

know thatPsign = 〈h(Plast), h(Plast−1)〉 has been received (inP ′
sing), so (by the precondition

of Verify) verifiedsign = true implies thathlast is indeedh(Plast) i.e., it coincides with the
hash of the correct packetPlast. For the properties of hash functions in cryptography this
means thatP ′

last = Plast.

inductive step: assume that the hypothesis holds forj > i. By the precondition ofXtractMi,
verifiedi = true provided thathi ∈ xtractedH, h(P ′

i ) ∈ hashed andhi = h(P ′
i ). Since

hi ∈ xtractedH, either the precondition ofXtractHi,1 or the precondition ofXtractHi,2)
must hold. Assume that the precondition ofXtractHi,1 holds (the other case is analogous).
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We have that{P ′
i , P

′
i+1} ⊆ received andverifiedi+1 = true. By hypothesis,Psign is received

and, by the inductive hypothesis,P ′
i+1 = Pi+1 i.e.,P ′

i+1 is authentic. By the precondition of
XtractHi,1 and by the hypothesis thatverifiedi = true it follows that the hashhi, extracted
from P ′

i+1 = 〈mi+1, hi, hi−1〉, is h(Pi) i.e.,hi coincides withh(Pi), the hash of the correct
packetPi. For the properties of hash functions in cryptography this means thatP ′

i = Pi.
End of the proof of Claim6.5.4.

Now the result follows from the fact that: (a) the intruder is not able to forgePsign because
it doesn’t know the private keysk(TS ) of TS ; (b) by the precondition of actionsm′

i (for i =
0, . . . , last) in TR, messages are revealed byTR (hence byT2 ) in reverse order (with respect to the
packet number).

Finally, after an observation on the composition of team automata that have no internal actions,
we can show that integrity is guaranteed in the instance of the EMSS protocol under scrutiny.

Remark 6.5.5 If {T,T} is a composable system, then clearlyB ||| {T,T} = BT.

Theorem 6.5.6 TP ∈ GNDCαint(TP )
⊆ .

Proof. From Lemma 6.5.2 and 6.5.3 and Theorem 6.4.8 it follows that

||| {T1 ,T2} ∈ GNDC
||
{ΣT1 ,ΣT2 }

{OC
T1

,OC
T2

}

⊆

= GNDC
|| {Reveal′} {∅,αint(TP )}
⊆

= GNDCαint(TP )
⊆

Then by Corollary 6.4.6.OC
hideC( ||| { ||| {T1 ,T2 },Topφ

C})
⊆ αint(TP ). SinceTIC has no inter-

nal actions,{TIC ,TIC } forms a composable system, the from Remarks 6.2.8 and 6.5.5 it fol-
lows thatB ||| { ||| {T1 ,T2 },Topφ

C}
= B ||| {TS ,TR,TIC ,Topφ

C}
= B ||| {TP ,Topφ

C}
and consequently, that

OC
hideC( ||| { ||| {T1 ,T2 },Topφ

C})
= OC

hideC( ||| {TP ,Topφ
C})

by Definition 6.4.1.

HenceOC
hideC( ||| {TP ,Topφ

C})
⊆ αint(TP ), and thus, by Corollary 6.4.6,TP ∈ GNDCαint(TP )

⊆ .

6.6 Conclusions and Future Work

We use team automata to define a framework for security analysis by constructing a general in-
secure communication scenario for team automata and by reformulating the GNDC schema in
terms of team automata. We also define some effective compositional analysis strategies for this
insecure communication scenario. We also investigate strategies of analysis in our framework. We
Firstly, we define the most general intruder in terms of team automata. By the use of the most
general intruder we are able to avoid the universal quantification presents in the re-formulation
of the GNDC schema for team automata. Secondly, we define a compositional analysis strategy
for team automata, and we show how security properties are preserved by composition over an
initiator and a responder. We use the framework to prove that integrity is guaranteed in a case
study in which team automata models the EMSS protocol.
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A goal for the future is to try to automate the current manual verification process. Since
team automata are an extension of I/O automata, theIOA Language and Toolset[91] may be of
help when trying to achieve this goal. Another goal for the future is to extend the team automata
framework with time, probability, or both. Such extensions of automata-based formalisms are well
studied in the literature,e.g.,for I/O automata [141, 183]. In this respect, also the well-developed
theory oftimed automataneeds to be mentioned [11, 129]. Like their I/O automata counterparts,
timed team automata could consider time in the systems they model, whereas probabilistic team
automata would allow a probabilistic choice of the next state.
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Conclusions and Future Work

In this thesis we answer the following questions:

Question 1: can security protocol analysis and fault-tolerance analysis benefit from a common
background and common strategies?

Question 2: which are the differences and similarities between the various strategies used for
security protocol analysis?

We answer question 1 by identifying logic-based model checking as a strategy common to both
fault-tolerance analysis and security protocol analysis (Chapter 1 and Chapter 4). In the context
of industrial applications, we also show how existing tools can be used effectively in both fields
(Chapter 1 and Chapter 2). We prove that a scheme developed in security protocol analysis, the
Generalized Non Deducibility on Compositions (GNDC), can be re-formulated in the framework
of fault-tolerance analysis (Chapter 3). This result implies that any verification strategy used in
the GNDC for security analysis can be applied to fault-tolerance analysis as well. In particular,
we show that the “fault-tolerant” property is an instance of GNDC known as BNDC (Bisimulation
Non Deducibility on Compositions), and this implies that the existing tools for checking BNDC
can be used to check fault-tolerance as well.

Question 2 is answered in two different ways. Firstly, we prove that a bisimulation-like relation
exists between security protocols modeled as process in a process algebras and as a theory in
multiset rewriting systems (Chapter 5). To obtain this result, we use restricted versions of both
formalisms. Those versions are specifically tailored to security protocols. Secondly, we consider
Team Automata – an emerging automata-based formalism – and we show that the GNDC scheme
can be re-formulated in terms of Team Automata (Chapter 6).

7.1 Conclusions

We formulate the conclusions of this thesis in terms of some general principles and subsidiary,
specific statements. Statements are valid throughout this thesis, and generally summarize the
lessons learned during the experiences reported in this thesis. Principles have a wider validity.
Figure 7.1 shows principles and statements in a graphical form.

From Part I and Part II we learn a lesson concerning the concept of attack in security and the
concept of fault in fault-tolerance.
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Principles & Statements
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Figure 7.1: The five Principles (in light grey boxes) and the three Statements (in dark boxes) of
Integration in Security Protocol Analysis and Fault Tolerance Analysis.

Principle I The Intruder (in security protocol analysis) and the Fault Injector (in fault-tolerance
analysis) are essentially the same entity.

The intruder and the fault-injector share a fundamental characteristic: they can be modeled
as a malicious and active environment trying to subvert system goals. The understanding of this
principle is at the basis of the idea of applying techniques from security analysis to fault-tolerance.

The similarities between the intruder and the fault-injector become evident as soon as we
make clear the separation between the system model and the environment with which the system
interacts. In Chapter 1, where this separation is missing and where the faults are embedded in
the system model, this principle is not immediately clear. Contrastingly, in Chapter 3, where this
separation is applied to a fault-tolerant system, this similarity is evident; this allows us to bring
some strategies from one field to the other. In particular, we are able to characterize fault-tolerance
as a logic validation problem in theµ-calculus; in addition, we are able to reformulate the GNDC
scheme in the context of fault-tolerant systems. Figure 7.2 illustrates the intersection between
security protocol and fault-tolerance analysis that emerges from Principle 1.

From Part II, we learn an important lesson concerning the correct identification of a certain
role.

Principle II In engineering security critical applications, it is essential to realize when an object
plays the role of an encryption key.

This principle emerges from our study of OSA/Parlay architecture (Chapter 2). The simple
yet crucial step that leads to the correct analysis is the understanding that interfaces in web ap-
plications may play the role of protecting access to a secret: this is exactly the role encryption
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Figure 7.2: Meeting Points between Fault Tolerance Analysis and Security Protocol Analysis

keys have. Every security system has key-like elements, that are sometimes difficult to identify.
The application of this principle says that recognizing the “being-key” property in an object is
essential, and objects of this kind have to be carefully protected.

We underline also that, while this principle is obvious in theory, in practice things are non-
trivial: informal specifications, resulting from long, cooperative development processes, can easily
hide a violation of this principle.

Principle III The use of too much expressive power in a formal modelling notation is counter-
productive to the development of analysis strategies .

This principle says that high expressive power in a formal modelling notation is attractive only
when we focus on the modeling activity. High expressiveness hinders when we try to develop
effective analysis strategies.

This principle emerges from Chapter 4 and Chapter 5, and it becomes even more evident
in Chapter 6. In the following we list three specific statements supporting the principle, each
concerning the formal models studied in this thesis:

Statement 1 Multiset rewriting contains more inherent parallelism than it is required to analyze
security protocols.

Multiset rewriting is a powerful formalism for modeling and analyzing concurrent systems.
We do not need all of its power in expressing concurrency when describing and analyzing security
protocols. This statement emerges from Chapter 5, where a restricted version of multiset rewriting
proves to be sufficient to describe a large class of security protocols.

Statement 2 Most of the power of process algebras and multiset rewriting is unused when mod-
eling security protocols.

This statement stems from both Chapter 4 and Chapter 5. In the first, we model traditional
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Process Algebras

Security Protocol Analysis

Multiset RewritingStrand Spaces

Figure 7.3: Meeting Points between Process Algebra and Multiset Rewriting in Security Protocol
Analysis

security protocols without using features like mobility and intra-agent parallelism; security pro-
tocols are a parallel composition of sequential agents. Because of this, we are able to build an
optimized and more specific model checker. In Chapter 5 we restrict process algebra and multiset
rewriting to the security protocol context to obtain a strong result of correlation between (subsets
of) the two formalisms.

Statement 1 and Statement 2 are illustrated in Figure 7.3. Here, strand spaces [78] are placed in
the intersection. Strand spaces is a formalism that has been proved to be equivalent to a restricted
version of multiset rewriting [44]. Indirectly, we prove that strand spaces and process algebras are
related as well in the context of security protocol analysis.

Statement 3 Team Automata models are too complex for the effective support of security protocol
analysis.

Team Automata provides flexible models for the specification of communication in systems,
but the flexibility hinders when developing effective strategies of analysis. The possibility of defin-
ing different modalities of synchronization among automata brought us to study their application
in security protocol analysis. Peer-to-peer and multicast/broadcast communications can be ex-
pressed elegantly in team automata. Initially we were thinking of a potential unification between
strategies of analysis for security protocols and broadcast/multicast protocols [197]. What seemed
an advantage proved to be a disadvantage as soon as we started to develop the GNDC theory re-
quired for the development of strategies of security protocol analysis. In the end, in an attempt to
control the growth of the number of cases to be considered we were forced to use the very subset
of Team Automata required to describe traditional (unicast) security protocols.

Other calculi for the analysis of specific systems – likeπ-calculus [161] for mobility and (from
a certain point of view) spi-calculus [7] for security protocols – show their strength just in their
conciseness.

Figure 7.4 depicts the relation between process algebras and Team Automata with respect to
the validation of security protocols. GNDC can also be defined in Team Automata terms. Since
I/O automata are a special class of Team Automata it follows that GNDC can be re-defined in
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terms of I/O automata as well.

Principle IV In the analysis of security protocols, automata-based languages are more effective
in quantitative (real-time and probabilistic) than qualitative analysis of security protocols.

This principle emerges from our experience of modeling security properties using Team Au-
tomata. For example, the flexibility of Team Automata helps in expressing advanced commu-
nication paradigms, such as multicast and broadcast [197]. However, in the domain of security
protocol analysis, Team Automata tools and analysis techniques are not competitive.

On the other hand, a significant amount of work on automata in timed security (e.g.,see [103]),
and the existing associated tools (e.g.,the real-time model checker UPPAAL) make them suitable
for studying timing attacks to security (e.g.,see [61]). For what concerns the probabilistic analysis
of security, automata based models are, at present, as promising as process-algebraic approaches
(e.g.,see [131, 130] for automata, and [9] for process algebras).

Security Protocol Analysis

Process Algebras

I/0 automata

Team Automata

Figure 7.4: Meeting Points between Team Automata and Process Algebra in Security Protocol
Analysis

Principle V Formal schemes of analysis are essential for the unification of analysis techniques.

Creating a scheme of analysis requires an effort of abstraction, whose goal is to identify the
essential entities and their relationships that are required by the analysis. Redefining a scheme
in a different formal model requires (only) the modeling of its entities and its relationships in the
new formal model. The modeling activity can be technically complex, but the theoretical effort of
unification is, in essence, contained in the scheme itself.

For example, for the GNDC scheme, the entities are the system under analysis, its malicious
environment, an agent showing the expected behavior of the system, and a notion of “observ-
ability” relation. In Chapter 3 we apply the GNDC scheme to fault-tolerance, by identifying the
malicious environment with a fault-injector; in Chapter 6 we instantiate GNDC in terms of team
automata showing how to model the entities of the scheme as automata. In both cases we reuse
analysis techniques that are established for the GNDC scheme.
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7.2 Future Work

The research of this thesis can be developed further in at least two different directions: to improve
the techniques of analysis, and to extend the principles of integration to emerging disciplines.

First Direction. The analysis techniques developed in each chapter of the thesis can be improved
further as follows:

• In Chapter 3 we study a formal specification of fail safe, fail silent, fail stop and fault-
tolerance properties in the GNDC scheme. We prove that the “fault-tolerance” property en-
joys a precise classification in terms of GNDC, whereas the other properties are completely
expressible in GNDC only when we consider their instances in our running examples. A
complete formal characterization of these properties is still missing. A goal for the future
is to understand better the formal characteristics of fail silent, fail stop and fail safety prop-
erties and to conclude the classification of fault-tolerant properties as instances of security
(non-interference) properties, by following what has been done in security, for example by
Gorrieri and Focardi in [81, 83].

• In Chapter 4 we design a logic based model checker for the analysis of security protocols.
Our implementation runs in exponential time in the size of the longest message involved in
the protocol. This matches the expected theoretical computational complexity, so it is the
best we can expect. We think that our tool performance can be significantly improved by the
use of partial order reduction techniques. Moreover, we think that a (front-end module of)
static type analysis of the message flow along a protocol specification may help in defining
significant transformations, that in turn are used by our tool to improve the efficiency of the
dynamic analysis. It is interesting to investigate this area as future work.

• In Chapter 5 we relate process algebras and multiset rewriting in the restricted setting of
security protocol analysis. We find a bisimulation-like relation between security protocol
models in the two formalisms, that maintains secrecy and authenticity properties. It would
be interesting to identify other area of research in where such a ‘bisimulation-like” relation
can be defined.

• In Chapter 6 we provide Team Automata with a framework for the analysis of security
protocols. In this domain, a goal for the future is to automate the current manual verification
process. Since team automata are an extension of I/O automata, theIOA Language and
Toolset[91] may be of help when trying to achieve this goal. Another goal for the future is to
extend the team automata framework with time, probability, or both. For this we can benefit
from many previous experiences reported in the literature (e.g.,see [141, 183, 11, 129])
where such extensions are proposed for different automata-based formalisms.

Second Direction. The principles of integration identified in this thesis have general validity
and can be applied to other fields of research as well. One of the possible contexts is privacy
control, which we started to investigate in [60]. In this emerging field, the need of instruments
for the specification and analysis of privacy policies is compelling. We hope that the usage of the
integration principles we have identified in this thesis can help in identifying techniques of process
specification and verification techniques also supported by verification tools.
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