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Vehicle routing is a complex daily task for businesses such as logistic service 
providers and distribution firms. Planners have to assign many orders to many 
vehicles and, for each vehicle, assign a delivery sequence. The objective is to 
minimize total transport costs. These costs typically include the number of 
vehicles used and the total travel distance or time. Two general timing 
restrictions make vehicle routing particularly difficult: traffic congestion and 
driving hours regulations. As a result of traffic congestion, travel times depend 
on the time of departure. Therefore, vehicle routing also involves the subtask of 
optimizing each vehicle’s departure times (both from the depot and from the 
customers). Driving hours regulations - which pose restrictions on driving and 
working times (between breaks) - have to be taken into account, making 
departure time optimization particularly difficult.

In this research, we study the Vehicle Routing Problem under time-dependent 
travel times and driving hours regulations. We propose a generic solution 
method for Vehicle Routing Problems that can handle various restrictions, such 
as vehicle capacities and service time windows. Furthermore, we demonstrate 
that this method performs very well on problems which include driving hours 
regulations.

Test results on Vehicle Routing Problems with traffic congestion are also very 
promising. Most delays caused by traffic congestion can be avoided by 
considering them when developing vehicle route plans. This is done by 
avoiding predictably busy areas during problematic hours.

The solution methods proposed in this thesis are not limited to the problems 
they were initially designed for. We illustrate how they can be used in other 
studies, such as policy making, by analyzing vehicle routing from a distributed 
decision making perspective. In conclusion, there are various applications of 
the solution methods proposed in this thesis and they may allow for substantial 
improvements in practice.
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Chapter 1

Introduction

Vehicle routing problems have been extensively studied over the past decades.
On the one hand, efficient vehicle route plans lead to substantial cost savings
for businesses such as logistic service providers and distribution firms. On
the other hand, constructing efficient vehicle route plans is a complex daily
task. Therefore, vehicle routing is a challenging problem in practice, and has
drawn a lot of attention from the scientific community. In the last decades,
vehicle routing models have evolved towards more and more realistic ones. Two
common real life restrictions, however, have been generally ignored: 1) traffic
congestion, and 2) driving hours regulations. In this thesis, we consider vehicle
routing problems with these two timing restrictions.

This chapter is organized as follows. Section 1.1 motivates this research.
In Section 1.2, we provide an overview of related literature on this topic and
identify gaps between practice and literature. Section 1.3 provides the outline
of this thesis.

1.1 Research motivation

Each year 1,721 billion ton kilometers of goods are transported over the Eu-
ropean road networks. The total turnover of these transports varies between
0.8% and 7.9% of the national turnovers of the various countries in the Euro-
pean Union. In 2008, the turnover of the entire road transport sector in the
Netherlands was 23 billion euro. Furthermore, transport costs constitute 4 to
10% of a product selling price (Coyle et al., 1996). Therefore, efficient vehicle
route plans that reduce travel distances and travel times to a minimum have a
large impact on the profitability of businesses in the transport sector, and has
a substantial impact on national economies.

1



2 Chapter 1. Introduction

Vehicle routing is a complex daily planning problem for businesses such as
logistic service providers and distribution firms. In practice, planners have to
deal with many vehicles and have to assign large numbers of customer requests
to these vehicles. When making these assignments, various restrictions have
to be taken into consideration, such as vehicle capacities and compatibilities.
Their objective within this task is generally to minimize the number of vehicles
used to serve all customer requests, or to assign as many requests as possible to
the available vehicles. Next, planners have to assign a delivery sequence for each
vehicle. Their objective is then generally to minimize the total travel distance.
Other restrictions such as time windows for customer service and precedence
relations between customer visits have to be taken into consideration. This
problem is generally known as the Vehicle Routing Problem (VRP).

In practice, two real life timing restrictions have a large impact on the qual-
ity of vehicle route plans: time-dependent travel times and driving hours regula-

tions. Over the past decades, the problem of traffic congestion has been growing
considerably. For example, in the USA the annual travel delay has grown from
2.5 billion delay hours in 1995 to 4.2 billion delay hours in 2005 (Schrank and
Lomax, 2007). Another example is the loss of travel times1 on highways in the
Netherlands, which has grown with 53% over the period 2000-2007 (Jorritsma
et al., 2008). Due to traffic congestion, travel times between customers depend
on the time of departure. If traffic congestion is not accounted for in the vehicle
route plans, vehicles may arrive too late at customers and truck drivers’ hiring
costs may very well become larger than expected. The Dutch Organization for
Transport and Logistics (TLN) estimated that the total direct traffic conges-
tion costs for the Dutch transport sector in 2002 amounts to 1.2 billion euro.
TLN estimated that over 10% of the truck drivers’ working hours are lost due
to delays as a result of traffic congestion. To increase delivery reliability and
avoid large truck drivers’ hiring costs due to congestion delays, vehicle route
plans must account for time-dependent travel times.

Within the European Union, there are about 1.5 million road accidents a
year with over 40 thousand fatalities. Driver fatigue is considered as a major
cause of such road accidents. To avoid driver fatigue, drivers should regu-
larly take breaks and rest periods. Therefore, the European Union introduced
Regulation (EC) No 561/20062 on driving hours for people working in road
transport (European Union, 2006). This regulation poses restrictions on the
amount of driving and non-rest times before breaks or rests of sufficient length
must be taken. The regulation, which is valid for all member countries of the
European Union, has to be taken into account by schedulers when establishing

1The loss of travel time is measured against a reference speed of 100 km/h, which is
considered as the average free-flow travel speed on highways in the Netherlands.

2The European Community (EC) social legislation on driving and working hours for
people working in road transport basically comprises two legal acts: 1) Regulation (EC)
No 561/2006, which poses restrictions on truck drivers’ driving hours, and 2) Directive
2002/15/16, which poses restrictions on drivers’ working hours. For an extensive descrip-
tion of the rules in the EC social legislation we refer to Chapter 4.
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vehicle tours. Since their negligence can be fined severely, and not only drivers
but also their employees are held responsible for violations, vehicle route plans
must account for these driving hours regulations.

Time-dependent travel times and driving hours regulations have a large
impact on the VRP models and proposed solution methods. The main reason
is that, next to the assignment and sequencing problem, also a scheduling
problem appears: the scheduling of all departure times for each vehicle. These
departure times have a large impact on the quality of the vehicle route in terms
of truck drivers’ hiring costs and the times vehicles are unavailable for other
services. This quality can be measured in terms of truck drivers’ duty times

(which is, in practice, a better quality measure than the, in the literature,
commonly used quality measure travel distance). Duty time is defined as the
time a truck driver is on duty, i.e., the total time from the moment he starts
working until he completes his work. In addition to the quality of vehicle routes,
the chosen departure times also determine the feasibility of vehicle routes with
respect to driving hours regulations.

The practical applicability of scheduling departure times is emphasized by
the fact that time-dependent travel times can now be better estimated, because
more information is available on historical travel speeds during each time of the
day. This information is already used by several route-planners on the Internet
to provide travel time estimations depending on travel date and time of the
day. An example is the route planner of the Dutch Motorists’ Organization
(ANWB). This planner provides travel time estimations based on historical
information on time and location dependent travel speeds using a travel time
estimator developed by the Netherlands Organization for Applied Scientific Re-
search (TNO). Another example that demonstrates the applicability in practice
of using historical travel time data to construct vehicle routes is of Eglese et al.
(2006). For their analysis, they use a so-called Road TimetableTM produced
by the UK road networking system ITIS Floating Vehicle Data. This Road
TimetableTM contains information on time-dependent travel times for a road
network based on a record of past road conditions so that travel times can be
related to time of the day, day of the week, and season of the year.

In Chapter 2, we demonstrate that existing vehicle routing methods fail in
case either time-dependent travel times or driving hours regulations are ignored.
Therefore, we design a new solution method for the VRP that accounts for both
timing restrictions. In the remainder of this section, we define the scope of this
thesis (Section 1.1.1) and we state our research objective (Section 1.1.2) from
which we extract our research questions (Section 1.1.3).
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1.1.1 Scope

In this thesis, we focus on off-line vehicle route planning. This means that all
relevant information for constructing the vehicle routes is already known in ad-
vance and not dynamically revealed during planning or execution of the vehicle
routes. The off-line planning problem is important in practice, since customer
requests are often already known at least one day in advance. Moreover, good
estimations of traffic congestion delays can often already be made one day in
advance (e.g., based upon historical travel time data), since crucial information
for such estimations such as good weather forecasts are already available then.

Next, we restrict ourselves to the deterministic planning problem, which
means that we model all relevant information for the planning problem as de-
terministic. Although the exact delays as a result of traffic congestion are
sometimes hard to predict, the majority of the delays caused by traffic conges-
tion are well-predictable, since they are recurrent because of commuter traffic
(Skabardonis et al., 2003). In this thesis, we extend existing deterministic vehi-
cle routing models. Considering stochastic elements such as stochastic demand
quantities or stochastic presence of customer requests is beyond the scope of
this thesis.

Furthermore, considering time-dependent travel times, we focus in our nu-
merical experiments on delays caused by peak hour traffic congestion. As
demonstrated by Skabardonis et al. (2003), the major part of traffic conges-
tion delays are recurrent occurrences during the peak hours. Therefore, taking
into account time-dependent travel times in off-line vehicle routing has a large
impact if peak hour traffic congestion is considered. However, the solution
methods proposed in this thesis that account for time-dependent travel times
can handle delays at any moment of the day; they are not restricted to peak
hour delays.

In addition, considering driving hours regulations, we propose our solu-
tion methods for vehicle routing problems taking into account the EC social

legislation. Since the EC social legislation is more restrictive than the US
Hours-Of-Service Regulations (Federal Motor Carrier Safety Administration,
2008) are, our solution methods can also be applied to problems taking into
account the US Hours-Of-Service Regulations. Moreover, our solution methods
handle restrictions on driving and working hours in a generic way, such that
new restrictions can easily be included.

Finally, we focus on solution methods that can solve problem instances
of realistic sizes within practical computation times. This implies that the
method should be fast enough to solve large problem instances within practical
computation times, but also that the method should be flexible with respect to
additional real life restrictions. Since quality of the vehicle route plans is the
major concern, we evaluate the solution method to be developed in terms of
solution quality, computation time, and flexibility.
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1.1.2 Research objective

The research objective of this thesis is

To design an off-line vehicle routing approach that improves delivery reliabil-

ity and reduces transport costs by avoiding traffic congestion whenever possible

taking into account the EC social legislation on driving and working hours.

In Section 1.1.3, we extract a number of research questions from this objective
which we use as guidelines throughout this thesis.

As mentioned previously, ignoring traffic congestion causes unreliable route
plans and higher costs than expected. If traffic congestion is accounted for in
off-line vehicle route plans, then not only the reliability of these plans increases,
but also traffic congestion could be avoided by, e.g., visiting customers in a
different sequence. Next, if the EC social legislation is ignored, violations of
this legislation might appear during the execution of the plans, or vehicles might
arrive too late at customers if unscheduled breaks must be taken before service.
Therefore, accounting for this legislation in off-line vehicle routing can avoid
such costly events during the execution of the plans, resulting in substantial
cost savings.

1.1.3 Research questions

We pose a number of research questions to guide us in reaching the research ob-
jective. We briefly elucidate each research question and state in which chapters
we will study it.

1. What is the state of the art in the literature on VRPs with time-dependent

travel times and driving hours regulations?

Before designing new solution methods for a new VRP model, we need
to get familiarized with the state of the art in the literature on this
topic. Section 1.2 discusses the existing literature on the VRP with time-
dependent travel times and driving hours regulations. Since the literature
on this topic is scarce, we also discuss the literature on the standard VRP.
This gives us the necessary background for designing solution methods
for a new VRP model.

2. What impact do traffic congestion and driving hours regulations have on

the performance of vehicle routes constructed with state of the art vehicle

routing methods?

In order to motivate a new approach for solving vehicle routing problems,
we study the impact of traffic congestion and driving hours regulations on
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existing vehicle routing methods. Chapter 2 demonstrates these impacts
and the necessity of a new approach.

3. What type of solution framework is suitable for handling different types

of vehicle routing problems and incorporating complex timing restrictions

such as time-dependent travel times and driving hours regulations?

Chapter 3 proposes a general framework for solving vehicle routing prob-
lems that 1) can be applied to various VRP types and 2) is a route
construction method which is suitable for incorporating complex timing
restrictions such as driving hours regulations and time-dependent travel
times.

4. How can driving hours regulations be incorporated in off-line vehicle rout-

ing methods?

We first focus on including driving hours regulations in the framework.
Chapter 4 demonstrates how to incorporate the full EC social legislation
on driving and working hours within our solution framework.

5. What impact do different congestion avoidance strategies in off-line vehi-

cle route plans have on the real-time performance of these plans?

The solution framework proposed in Chapter 3 already incorporates time-
dependent travel times. However, there are different ways and aggrega-
tion levels for incorporating time-dependent travel times within off-line
vehicle routing. Chapter 5 formalizes these ways and aggregation levels in
four strategies which contain different levels of congestion avoidance, and
quantifies the impact of these strategies on the quality of off-line vehicle
route plans in practice. These impacts show to what extent congestion
avoidance within off-line vehicle routing can be profitable in practice.

6. How can we account for both time-dependent travel times and driving

hours regulations during the construction of vehicle routes with duty time

minimization as the objective function?

Although Chapter 4 and 5 propose algorithms for VRPs with driving
hours regulations and time-dependent travel times, respectively, combin-
ing these two timing restrictions in one algorithm is still a difficult task.
This is particularly the case when duty time minimization, which is an
important objective in practice, is part of the objective function. Duty
time minimization is much more involved than travel distance or travel
time minimization when both time-dependent travel times and driving
hours regulations are considered. Chapter 6 studies the VRP with time-
dependent travel times and driving hours regulations and proposes a so-
lution method based on the solution framework proposed in Chapter 3.
This solution method has duty time minimization as the objective func-
tion.
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1.2 Related literature

Vehicle routing problems have received a lot of attention in the literature. The
first paper that considered the vehicle routing problem is of Dantzig and Ramser
(1959). The VRP can be formally stated as the problem of optimally routing a
fleet of vehicles such that all customer demands are satisfied and some objective
function is optimized. It is a generalization of the Traveling Salesman Problem
(TSP), because the TSP is a VRP with only one vehicle. Various variants of the
VRP have been introduced in which different restrictions have to be satisfied
and different objectives are stated. For an extensive overview on VRP variants
and solution methods, we refer to Toth and Vigo (2002). In this section, we
give an overview of the literature on vehicle routing problems and its variants,
in which we focus on the VRP with time-dependent travel times and driving
hours regulations, and we identify gaps between practice and literature.

Section 1.2.1 describes the basic VRP and the most common extensions of
the VRP. Section 1.2.2 gives an overview of proposed solution methods for the
VRP. Section 1.2.3 and 1.2.4 discuss the VRP with time-dependent travel times
and the VRP with driving hours regulations, respectively, and Section 1.2.5
concludes this literature review.

1.2.1 VRP variants

The most basic variant of the VRP is the capacitated vehicle routing problem
(CVRP). Within the CVRP, a homogeneous fleet of vehicles, located at a depot,
has to serve a set of customers. Each vehicle has a capacity and each customer
has a demand. The problem is to find for each vehicle a tour, starting and
ending at the depot, such that the total travel distance is minimal and the
total demand in each tour does not exceed the capacity of the vehicle.

The most studied extension of the CVRP is the vehicle routing problem
with time windows (VRPTW). Within the VRPTW, each customer is given a
time window in which its service must start. In case a vehicle arrives early at
a customer, it has to wait until the time window opening time. Furthermore,
a vehicle is not allowed to arrive later than the time window closing time. A
special case is when soft time windows are considered. In this case, late arrivals
are allowed, but they are penalized at certain costs. Different objectives have
been considered for the VRPTW, but the general objective is to minimize the
number of vehicle routes as the primary objective and the total travel distance
as the secondary objective. The resulting problem is to find for each vehicle at
most one route, starting and ending at the depot, such that all customers are
visited by exactly one vehicle, the total demand in each vehicle route does not
exceed the capacity of the vehicle, and each customer service starts within the
given time window.
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Another type of vehicle routing problem that has received a lot of attention
in the literature in the last 30 years is the Pickup and Delivery Problem (PDP).
Within the PDP, each customer request is given by a location pair (i, j) where a
quantity must be picked up at location i and it must be delivered at location j.
Each pickup and delivery pair must be served by the same vehicle and each
pickup location must be visited before its corresponding delivery location can
be visited. The total quantity present in each vehicle at each moment of time
may not exceed the capacity of the vehicle. For an extensive overview of PDP
variants and solution methods we refer to Parragh et al. (2008b).

Many other extensions to the basic VRP have been proposed. In case
there are multiple depots and each vehicle has to start and end at the depot
where it is located, then the Multi-Depot Vehicle Routing Problem (MDVRP)
is considered. Another extension is when the vehicle fleet is heterogeneous, e.g.,
each vehicle k has a capacity Qk. When a vehicle can perform more than one
route, the Multi-Route Vehicle Routing Problem is considered. When customer
demands can be split over different vehicles, then the Split-Delivery Vehicle
Routing Problem (SDVRP) is considered. Sometimes some customers can only
be served by a subset of the available vehicles, which is referred to as the
Site-Dependent Vehicle Routing Problem. When vehicles are not required to
return to the depot after their last customer visit, we consider the Open Vehicle
Routing Problem (OVRP). The Periodic Vehicle Routing Problem (PVRP)
considers a VRP with multiple time-periods (e.g., days), and in which each
customer has a set of feasible demand schedules for the planning horizon. For
example, a customer i may have a demand qi which should be delivered before
the end of the planning horizon, but it should be delivered all in one visit.
Then the number of feasible demand schedules equals the number of days in
the planning horizon. The resulting problem consists of selecting a demand
schedule for each customer, and solving a CVRP for each day in the planning
horizon with the demands corresponding to the selected demand schedules.

Within these VRP variants, it is generally assumed that travel times are
time-independent and proportional to the travel distances. Therefore, the gen-
eral secondary objective is to minimize the total travel distance, with minimiz-
ing the number of vehicles as the primary objective. For these problems, many
solution methods have been developed. Since the literature on the VRP with
time-dependent travel times and driving hours regulations is scarce, we first
give an overview of solution methods for VRPs in general to obtain a good
insight in successful solutions methods for (variants of) the VRP.

1.2.2 Solution methods for the VRP

The solution methods for the VRP can be categorized in exact methods and
heuristics. Exact methods are designed to solve the problems to optimality.
However, since the VRP is a generalization of the TSP, which is N P-hard
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(Garey and Johnson, 1979)3, only small problem instances can be solved to op-
timality within practical computation times. Therefore, various heuristics have
been designed to solve larger problem instances of the VRP. These heuristics
do not guarantee to find the optimal solution, but they are designed to find
good - possibly near-optimal - solutions within practical computation times.
We first present some well-known exact methods for the VRP. Then we discuss
heuristics for the VRP.

Exact methods

Laporte and Nobert (1987) classify the exact methods for the VRP in three
categories: branch & bound methods, dynamic programming (DP), and integer
linear programming (ILP). These are the three main categories of exact meth-
ods for the VRP and its variants. For extensive overviews on these algorithms
we refer to Laporte and Nobert (1987), Laporte (1992), and Toth and Vigo
(2002).

Branch & bound (Land and Doig, 1960) is a method based on complete
enumeration. However, by using clever bounds on (partial) solutions and sys-
tematic enumeration, large sets of candidate solutions can be discarded. For
example, the cost of any solution is an upper bound for the cost of the optimal
solution. If a subset of solutions can be proven to have costs exceeding this up-
per bound, then the whole subset can be discarded. Branch & bound methods
for the VRP are based on sequentially building vehicle routes by means of a
branch and bound tree. The first such method for the VRP was proposed by
Christofides and Eilon (1969).

Dynamic Programming (Bellman, 1957) for the VRP is also based on se-
quentially building vehicle routes. However, complete enumeration is avoided
by only expanding optimal partial vehicle routes. Dynamic Programming for
the TSP was independently developed by Bellman (1962) and Held and Karp
(1962). In Chapter 3, we extend this DP formulation to the VRP, and demon-
strate that this formulation contains a flexible framework for solving various
VRP types. Another DP formulation for the VRP was proposed by Eilon et al.
(1974).

Several integer linear programming formulations have been proposed for the
VRP. Set partitioning and column generation have proved to be a successful
combination in solving various VRP types (Laporte, 1992). The set partition-
ing formulation is based on defining binary decision variables for each feasible
vehicle route. The difficulty of such formulations is that they lead to a huge
amount of binary decision variables. However, this is generally resolved by
using a clever column generation (Ford and Fulkerson, 1958) scheme. Rao and
Zionts (1968) were the first to apply column generation to the VRP.

3For readers unfamiliar with the notion of N P-hardness we refer to Appendix A which
gives an introduction to complexity theory.
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Heuristics

Since exact methods generally fail in solving realistic problem instances in
practical computation times, the focus of solution methods for vehicle routing
problems has moved to heuristic approaches. Heuristic algorithms (Pearl, 1984)
aim to produce good solutions for different realistic problem instances, but have
no guarantee for the solution quality.

Heuristic algorithms for the VRP can be categorized in constructive meth-
ods and improvement methods. Constructive methods are greedy approaches
that are, in general, very fast and they construct a solution. Improvement
methods are usually more sophisticated methods that typically require a solu-
tion as input. These improvement methods belong to the class of local search
methods (Aarts and Lenstra, 1997). Extensive overviews of heuristics for ve-
hicle routing problems can be found in Toth and Vigo (2002), Cordeau et al.
(2002b), and Cordeau et al. (2005). We give a short overview of constructive
and improvement methods for the VRP.

Constructive Heuristics

Probably the best known constructive heuristic for the VRP is the nearest
neighbor heuristic. Menger (1930) already considered the nearest neighbor
heuristic for the TSP. The sequential version of this heuristic constructs vehicle
routes sequentially. The heuristic initializes the first route with the customer
located nearest to the depot, and it extends this route each time with the
nearest of all customers that can feasibly be added to the route. When no such
extensions are possible anymore, the next vehicle route is initialized by the
nearest of the remaining customers to the depot. There are several variants of
the nearest neighbor heuristic, e.g., parallel nearest neighbor, route initiation
with the farthest neighbor.

Another well-known greedy method is the savings heuristic of Clarke and
Wright (1964). This heuristic is based on the fact that combining two vehicle
routes into one route, such that the last customer of the first route is directly
succeeded by the first customer of the second route, saves one vehicle and the
additional distance for a detour through the depot. The heuristic is initialized
by one-customer routes for each customer and it ends when no two routes can
be combined anymore.

Next, we have the sweep algorithm of Gillett and Miller (1974). With this
method, customer routes are constructed by drawing a straight line originating
from the depot and rotating the line around the depot location. Each time the
line intersects a customer location, the customer is added to the current vehicle
route if there is enough capacity remaining. Otherwise, a new vehicle route is
initialized.
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Finally, there are the two-phase constructive methods such as the cluster-
first route-second and the route-first cluster-second method. The first method,
proposed by Fisher and Jaikumar (1981), creates a number of customer-clusters
such that customers in the same cluster are located close to each other and the
total demand of such customers does not exceed the vehicle’s capacity. Next,
through each cluster a vehicle route is determined, which yields solving a TSP
for each cluster. The route-first cluster-second method was proposed by Beasley
(1983) and basically yields solving a TSP through the depot and all customers,
and then optimally partitioning the solution in feasible vehicle routes.

Improvement Heuristics

Improvement heuristics are designed to improve existing solutions to VRPs:
they require a VRP solution as input. Several improvement strategies have
been developed, some already in the early sixties (e.g. Lin, 1965). The im-
provement strategies iteratively move from one solution A to a new solution
B by some (in general small) modification of A. If solution B can be reached
in one improvement step from solution A, then we refer to solution B as a
neighborhood solution of solution A.

The earliest improvement structures were only applied to single routes, the
so-called intra-route improvement methods. These methods were originally
designed for the TSP. The methods are based on edge exchanges that change
the customer sequence within a route. Examples of these methods are r-opt
(Lin, 1965), Or-opt (Or, 1976), and 4-opt* (Renaud et al., 1996). For extensive
numerical analysis of these methods we refer to Johnson and McGeoch (1997).

The improvement methods involving different vehicle routes, so-called inter-
route improvement methods, enhance a richer class of improvement strategies.
Many different edge exchange schemes have been proposed for the VRP such
as chain exchanges (Fahrion and Wrede, 1990) and λ-interchange mechanisms
(Osman, 1993). We refer to Thompson and Psaraftis (1993), van Breedam
(1994), and Kinderwater and Savelsbergh (1997) for extensive overviews and
numerical analysis of these improvement methods.

Applying these improvement strategies to some solutions obtained by a
constructive method leads to a local optimum, meaning that applying the im-
provement strategies again does not lead to any further improvement. However,
in general, a local optimum does not coincide with the global optimum, i.e.,
the optimal solution. Therefore, several improvement mechanisms, so-called
metaheuristics, have been proposed to escape from local optima and find bet-
ter overall solutions. We describe the most successful metaheuristics proposed
for the VRP.

Simulated annealing is a metaheuristic in which deteriorations of a solution
are accepted with a certain probability. By allowing such deteriorations, solu-
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tions can escape from local optima. The probability of accepting deteriorations
is initially set relatively high and is lowered each time a predetermined number
of iterations has passed. Simulated annealing has been applied to the VRP by,
amongst others, Robuste et al. (1990), Alfa et al. (1991), and Osman (1993).
We refer to van Breedam (1995) for a numerical analysis of several different
implementations of simulated annealing for the VRP.

Deterministic annealing is similar to simulated annealing, however, a deter-
ministic threshold is used for accepting solutions. Two variants of deterministic
annealing are threshold accepting (Dueck and Scheuer, 1990) and record-to-
record travel (Dueck, 1993). In case of threshold accepting, the threshold value
consists of some user specified value that is added to the solution value of the
last accepted solution. In case of record-to-record travel, the threshold value is
a value (in general slightly larger than 1) multiplied with the solution value of
the last accepted solution.

Within tabu search, the best neighborhood solution is chosen, where neigh-
borhood solutions are all solutions that can be reached within one step from
the last accepted solution using some improvement heuristics. However, to
avoid returning to solution structures that actually have just been changed, a
tabu list is maintained of a specified number of most recently accepted changes.
Each time a new solution is accepted, the part of the old solution that has been
changed (e.g., an edge in the old solution that has been removed) is inserted
in the first position of the tabu list, while the last position of the tabu list is
removed. Tabu search has been widely applied to the VRP. Sophisticated and
successful applications of tabu search, amongst others, are the ones of Gen-
dreau et al. (1994), Rochat and Taillard (1995), Cordeau et al. (2001), and
Semet and Taillard (1993).

Next to these metaheuristics, several other metaheuristics have been applied
to the VRP. Amongst these are genetic algorithms (Reeves, 2003), memetic
algorithms (Moscato and Cotta, 2003), ant algorithms (Kawamuro et al., 1998),
and neural networks (Ghaziri, 1991). These methods have received only limited
attention in the VRP literature.

1.2.3 The VRP with time-dependent travel times

Due to the growing amount of traffic congestion in the past decades, vehicle
routing models assuming time-independent travel times fail in many applica-
tions. Therefore, Malandraki and Daskin (1992) introduce the time-dependent
vehicle routing problem (TDVRP). They propose an ILP-formulation for this
problem and discuss a cutting plane method and a nearest-neighbor heuristic
to solve the problem. They model the time-dependent travel times with travel
time step functions. However, this model results in the unrealistic situation
that a vehicle might overtake another vehicle by departing a bit later, but in a
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time interval with a smaller travel time. If a model does not allow overtaking
then it has the so-called non-passing property .

Several travel time models have been proposed to satisfy the non-passing
property. The one that has been used most is a speed step function, such that
two vehicles traveling along the same route at the same time always drive at
the same speed (Hill and Benton, 1992; Ichoua et al., 2003; Eglese et al., 2006;
Van Woensel et al., 2008; Donati et al., 2008). Others allow more complex
travel time functions, but only if the slope of these functions is never smaller
than -1 (Haghani and Jung, 2005; Hashimoto et al., 2006, 2008) (note that
speed step functions never allow travel time functions with slopes smaller than
-1). A special model is of Fleischmann et al. (2004), who obtain travel time
step functions from a large database with historical travel times, and apply
a smoothing procedure to these functions, resulting in continuous piecewise
linear travel time functions that satisfy the non-passing property.

The solution methods for the TDVRP focus on local search methods. Tabu
search has been applied by Ichoua et al. (2003), Eglese et al. (2006), and
Van Woensel et al. (2008). Ichoua et al. (2003) propose an adaptation of
the tabu search algorithm of Taillard et al. (1997) for the VRP with soft time
windows. They develop an estimation function for the cost of neighborhood
solutions, such that these costs can be estimated in constant time, instead of
determining the exact costs in linear time. This method, however, fails when
hard time windows are considered, since then the exact arrival times for each
neighborhood solution must be determined in order to determine whether a
neighborhood solution is feasible. Eglese et al. (2006) demonstrate how a road
time table can be developed based on floating vehicle data to aid vehicle routing
in scheduling. They provide a real life case in which several timing improve-
ments (e.g., reductions of the number of time window violations) could be
achieved. Van Woensel et al. (2008) demonstrate how a queuing model can be
used to derive realistic travel times. They also propose a method to optimize
departure times; however, they do not consider time windows.

Also some construction methods for the TDVRP have been proposed. Ma-
landraki and Dial (1996) propose a restricted dynamic programming heuristic
for the TSP with time-dependent travel times. The method is a generalization
of the nearest-neighbor heuristic, and a restricted version of the DP algorithm
for the TSP of Bellman (1962) and Held and Karp (1962). The unrestricted
version of the algorithm is an exact approach if the non-passing property is
satisfied. Fleischmann et al. (2004) propose adaptations of several savings and
insertion algorithms. They also apply the 2-opt method and demonstrate that
this method substantially improves the TDVRP solutions. Hsu et al. (2007)
propose a nearest neighbor heuristic for the TDVRP with perishable food, in
which not only the travel times are time-dependent, but also the amount of
fresh perishable food in the vehicle.

Other methods for the TDVRP are the ant colony optimization algorithm
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of Donati et al. (2008), the iterated local search methods of Hashimoto et al.
(2006, 2008), and the genetic algorithm of Haghani and Jung (2005). Further-
more, Ahn (1991) develops feasibility checks for several improvement methods
(customer insertion, concatenating two routes, customer exchange) in case of
time-dependent travel times.

Within these methods, the general primary objective is to minimize the
number of vehicles used and the general secondary objective is to minimize
the total travel time. However, in practice, duty time minimization is often
more important than travel time minimization. Especially when hard time
windows are considered, duty times become an important cost factor, since
large waiting times cause large hiring costs for the truck drivers and make the
vehicles lengthy unavailable for other services. Minimizing travel times does
not account for waiting times. The only paper we are aware of that considers
minimal duty time as objective is of Savelsbergh (1992). We consider minimal
duty times as the objective in Chapter 6.

Furthermore, many solution methods are based on local search. However, in
a setting with time-dependent travel times, local updates have up- and down-
stream effects on the routes under consideration, which makes the evaluation of
such updates much more computationally expensive than in VRP models with-
out time-dependent travel times. We propose a general solution framework for
VRPs in Chapter 3 and demonstrate in Chapter 5 and 6 how time-dependent
travel times can be incorporated with only minor impacts on the running time
of the algorithm.

Finally, the majority of the models consider customer networks and ig-
nore the underlying road network. In practice, traffic congestion is time- and

location-dependent. Therefore, determining time-dependent shortest paths
may already resolve some of the delays caused by traffic congestion. In Chap-
ter 5, we consider both the time-dependent shortest path problem and the
TDVRP in a realistic setting.

1.2.4 The VRP with driving hours regulations

In all member countries of the European Union and in many other countries,
driving and working hours of persons engaged in road transportation is leg-
islated. In the European Union, driving hours are restricted by Regulation
(EC) No 561/2006. Moreover, Directive 2002/15/EC restricting drivers’ work-
ing hours has been implemented into national laws in most member countries
of the European Union. These legal acts have to be taken into account by
schedulers when establishing vehicle tours. As their negligence can be fined
severely, these acts have an enormous impact on the design of vehicle tours in
practice. The problem that arises here is a problem of combined vehicle routing
and break scheduling. In the literature, however, only a few papers on vehicle
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routing including breaks and rest periods can be found. All these papers only
include parts of the mandatory legislation, which results in vehicle schedules
that do not comply with the legal requirements.

Gietz (1994) investigates a VRP with breaks modeled as fictitious cus-
tomers. Rochat and Semet (1994) use a similar approach. Stumpf (1998)
includes driving time restrictions specified by the former Regulation (EEC)
No 3820/85 into a tabu search metaheuristic, a great deluge algorithm, and a
threshold accepting algorithm. Savelsbergh and Sol (1998) include breaks and
daily rest periods into a branch and price algorithm for a pickup and delivery
problem. Cordeau et al. (2002a) suggest the use of a multi-stage network for
the inclusion of breaks in a VRP. Xu et al. (2003) present a column generation
algorithm and some heuristics to solve a pickup and delivery problem which
includes restrictions on driving times specified by the US Department of Trans-
portation. They conjecture that finding driver schedules complying with these
driving time restrictions is N P-hard in the presence of multiple time windows.
Archetti and Savelsbergh (2009) present a polynomial time algorithm for this
problem in the presence of single time windows that runs in O

(

n3
)

time with n
the number of customers the driver has to visit. Goel and Kok (2009b) present
an algorithm for this problem that runs in O

(

n2
)

time. Goel and Kok (2009a)
present a polynomial time algorithm for a similar problem of scheduling team
drivers in the European Union that runs in O

(

n2
)

time. Also the case with
modified rules on daily driving times, which allows truck drivers to extend their
daily driving times for a limited number of times a week, is included in this
algorithm. Campbell and Savelsbergh (2004) modify an insertion heuristic in
such a way that it considers maximum shift times for drivers. Goel and Gruhn
(2006) introduce a large neighborhood search algorithm for a VRP which takes
into account maximum driving times according to the former Regulation (EEC)
No 3820/85. Goel (2009) considers parts of the current Regulation (EC) No
561/2006 in a large neighborhood search algorithm. He presents computational
results for modified problem instances of the Solomon (1987) test instances for
the VRPTW. However, Goel (2009) concentrates on a set of basic rules of Reg-
ulation (EC) No 561/2006 and neglects some important modifications of these
rules, which allow more flexibility. Additionally, Goel ignores the restrictions
on working times set by Directive 2002/15/EC. Zäpfel and Bögl (2008) present
a mixed-integer model for a combined vehicle routing and crew pairing prob-
lem, which considers breaks after 4.5 hours. To solve the model they apply
a tabu search metaheuristic and a genetic algorithm. Bartodziej et al. (2009)
use a column generation approach and some local search based metaheuristics
for solving a combined vehicle and crew scheduling problem which incorporates
rest periods for drivers. Kopfer and Meyer (2009) present an integer program-
ming model for a TSP that considers all relevant rules of Regulation (EC) No
561/2006 for a weekly period.

In Chapter 2, 4, and 6 we consider Regulation (EC) no 561/2006. In Chap-
ter 4, we also consider the impacts of Directive 2002/15/EC and the modifica-
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tions of the rules in both the regulation and the directive.

1.2.5 Conclusions

Over the past decades, many variants of the VRP have been considered and
many solution methods have been proposed. However, the TDVRP and the
VRP with driving hours regulations have received only minor attention in the
VRP literature. Despite the fact that these restrictions are common (i.e., each
company in the European Union has to respect the EC social legislation, and
traffic congestion has become a familiar concept in almost every urban area in
the world), VRP models considering both these timing restrictions have - to
the best of our knowledge - not been proposed so far.

Another observation we draw from the VRP literature is that almost every
new variant of the VRP requires the development of a new solution method.
Practice, however, is a dynamic environment in which problems and restric-
tions often change. Therefore, in practice there is a call for VRP models and
solution methods that can easily adapt to new or modified problems. An ex-
ception seems the powerful pickup and delivery model and solution method
of Pisinger and Ropke (2007), which can solve various different VRP types.
However, this model does not include time-dependent travel times or driving
hours regulations.

Finally, most solution methods for VRPs are based on local search. How-
ever, for VRPs with complex timing restrictions (e.g., time-dependent travel
times, driving hours regulations), local search methods are less suitable, since
neighborhood evaluations require substantially more computational effort un-
der such timing restrictions. In Chapter 3, we propose a solution approach
that forms a flexible framework for solving VRPs. This framework covers all
variants of the VRP mentioned so far. Moreover, this solution approach is a
constructive heuristic that is suitable for incorporating complex timing restric-
tions such as time-dependent travel times and driving hours regulations. In
this thesis, we evaluate this solutions framework in terms of solution quality,
computation time, and flexibility.

1.3 Outline of the thesis

As mentioned previously, timing restrictions such as time-dependent travel
times and driving hours regulations introduce a new problem within vehicle
routing: the departure time scheduling problem. Chapter 2 proposes an ILP
model for this problem, which determines for a vehicle route (i.e., a customer
visit sequence) whether there exists a feasible departure schedule. We apply
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this ILP model to routes obtained by state of the art VRP models and so-
lution methods to investigate the impact of time-dependent travel times and
driving hours regulations on these routes. This impact shall motivate the de-
velopment of new VRP models and solution methods for the vehicle routing
problem considered in this thesis.

Chapter 3 proposes a new solution framework for solving VRPs based on
restricted dynamic programming. We show that this framework is flexible
with respect to solving a number of variants of the VRP. Furthermore, we
demonstrate that the heuristic constructs solutions of acceptable quality for
these VRP variants within practical computation times. Therefore, the solu-
tion framework fulfills all requirements on solution quality, computation time,
and flexibility. Moreover, the framework provides a basis for Chapter 4, 5, 6,
and 7, in which we incorporate time-dependent travel times and driving hours
regulations in the framework.

Chapter 4 proposes a solution method for the VRPTW with driving hours
regulations based on the restricted dynamic programming heuristic of Chap-
ter 3. We design a break scheduling algorithm to account for all regulations in
the EC social legislation on driving and working hours. This break scheduling
algorithm takes a local perspective on scheduling breaks and rest periods. The
major advantage of such a local perspective is that the running time complexity
of the restricted dynamic programming heuristic is the same for the VRPTW
and the VRPTW with driving hours regulations. The planning horizon consid-
ered in Chapter 4 is one week, such that the solution method can also handle
complex requirements in the EC social legislation on, e.g., night rests. More-
over, we show how the method can be extended to longer planning horizons,
and how it can be used in a rolling horizon framework.

As mentioned previously, there are several strategies and aggregation levels
for incorporating time-dependent travel times in vehicle routing. These strate-
gies allow different levels of congestion avoidance to reduce transport costs.
Chapter 5 proposes four strategies in which different levels of traffic conges-
tion avoidance are adopted by determining (time-dependent) shortest paths
and solving (time-dependent) vehicle routing problems. We also propose a
time-dependent speed model that we use to obtain a representative set of VRP
instances on real road networks. We investigate the impact and profitability of
the different strategies on these problem instances. The results show to what
extent congestion avoidance within off-line vehicle route plans can be profitable
in practice. To solve the time-dependent vehicle routing problems, we apply
the restricted dynamic programming heuristic of Chapter 3.

Chapter 6 proposes a solution method for the VRPTW with time-dependent
travel times and the EC social legislation. Duty time minimization is used as
the secondary objective. In this chapter, we consider one-day planning, since
this is the most relevant planning horizon to minimize duty times (e.g., for on-
duty night rests other costs apply than for working times). Moreover, reliable
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information on customer requests and time-dependent travel times is typically
available one day in advance. In particular, time-dependent travel times are
less reliable in case of longer planning horizons due to larger uncertainties in,
e.g., weather forecasts. Certain rules in the EC social legislation that consider
longer planning horizons than one-day planning may still have an impact on
one-day planning. An example is the modified rule on the daily driving time,
which allows to extend this driving time to 10 hours at most twice a week. The
solution method in Chapter 6 is flexible with respect to such rules, since the
application of these rules require a small modification of the parameters for the
planning of that day.

In practice, vehicle routing and break scheduling often involves a distributed
decision making process in which both planners and drivers are responsible
for certain parts of the planning process. A centralized planning in which
all decisions are taken by the planner may therefore not always be realistic.
Chapter 7 analyzes combined vehicle routing and break scheduling from this
alternative distributed decision making perspective. With this perspective,
planning is decentralized such that decisions concerning customer clustering,
routing, and break scheduling is distributed over planners and drivers. We
use the restricted DP heuristic of Chapter 4 to solve the different problems
encountered in the decision process. We also analyze the realistic setting in
which planners and drivers may have conflicting objectives4.

Chapter 8 presents the main conclusions of the research in this thesis and
poses recommendations for further research.

4The material of Chapter 2 to 7 has also appeared, or will appear, as articles in the
scientific literature. Although they build on each other, important notations and definitions
are sometimes repeated in each chapter, to make them self-contained. In order to facilitate
reading, we have decided to maintain that structure throughout the thesis, possibly at the
cost of some repetition.



Chapter 2

Scheduling departure times

2.1 Introduction

When time-dependent travel times and driving hours regulations are considered
within vehicle routing, a new set of decision variables is introduced to the
problem: the departure times of each vehicle. Since travel times in practice
depend on the times of departure, and the amount of driving and duty time
available to a truck driver is limited by driving hours regulations, the feasibility
of a vehicle route depends on the chosen departure times.

As pointed out in Chapter 1, scheduling departure times is applicable in
practice, since information is available on historical travel speeds during each
time of the day. Furthermore, explicit break scheduling (which follows from
explicit departure time scheduling) is required by law, since the vehicle route
plans proposed by schedulers to the truck drivers must comply with the EC
social legislation on driving and working hours. Violations can be fined, some-
times even if they are within the plans and not (yet) in the execution of the
plans. Therefore, there is a strong call from practice for methods that sched-
ule departure times within vehicle routes such that all timing restrictions are
satisfied.

Scheduling departure times is difficult in an integrated solution method for
the VRP. The reason is that a change in departure time at one customer may
have large effects up- and downstream a partial vehicle route. This is caused,
on the one hand, by the time-dependency of the travel times, and, on the
other hand, by the fact that driving hours regulations restrict the amount of
accumulated driving times until a break has to be scheduled. Therefore, we
first propose a decomposition approach, in which the departure time scheduling
problem is approached as a post-processing step of solving a VRPTW. This
implies that departure times are scheduled after the customers are assigned to

19
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vehicles and the customer visit sequences for each vehicle are determined.

We propose an ILP formulation for the departure time scheduling problem,
which determines for a given vehicle route whether a feasible set of departure
times exists. Note that we restrict ourselves to the feasibility problem; so far we
do not handle an optimization problem. However, we propose some extensions
of the ILP formulation that somehow ‘quantifies the infeasibility’ of the problem
by, e.g., minimizing the number of late arrivals or minimizing the maximum late
time. We apply the ILP model to a set of vehicle routes obtained by state of the
art vehicle routing methods applied to well-known benchmark instances. These
experiments shall demonstrate that algorithms that neglect time-dependent
travel times and driving hours regulations construct vehicle routes that cannot
be made feasible with respect to time-dependent travel times and driving hours
regulations without changing the customer-vehicle assignments or customer
visit sequences. Therefore, new solution methods for vehicle routing problems
with time-dependent travel times and driving hours regulations have to be
developed.

This chapter1 is organized as follows. Section 2.2 formally introduces the
departure time scheduling problem. Next, Section 2.3 proposes an ILP formu-
lation for the departure time scheduling problem and discusses the modeling of
the time-dependent travel times in the ILP formulation. We test the ILP for-
mulation in Section 2.4 on vehicle routes obtained by state of the art solution
methods from well-known benchmark instances. Section 2.5 shows that our
approach is flexible with respect to several practical extensions and Section 2.6
summarizes the main findings in this chapter.

2.2 The departure time scheduling problem

We approach the departure time scheduling problem as a post-processing step
of the VRPTW, i.e., the input of the problem is a set of nodes i = 0, ..., n+12,
which need to be visited in this order and service must start within given time
windows. Nodes 0 and n + 1 both represent the depot in this case, while the
other nodes represent customer locations. In general, however, all nodes may
represent different locations. For now, we assume that all customers have to
be served on one day. Next, since in practice breaks are usually scheduled at
customers, we assume that breaks can only be taken at customers. There are
exceptions, especially in long distance (international) transports, where breaks
are also scheduled at parking lots along the routes. In Section 2.5, we show
how our ILP formulation can be extended to the case where breaks can also be
scheduled at parking lots, and we show how to extend the ILP formulation to
multi-day planning.

1This chapter is based on Kok et al. (2008)
2Appendix C provides a glossary of symbols that are used in this thesis
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Each customer i has given a time window [ei, li] in which its service has
to start. The service time of each customer is given by si. The travel time
between two successive customers i and i + 1 is given by ci(X

d
i ), where Xd

i is
the chosen departure time from customer i. The chosen departure times at the
customers are restricted by driving hours regulations.

Since driving hours regulations are country dependent, it might be hard to
propose a general formulation covering the driving hours regulations of each
country in the world. Since the European driving hours regulations (European
Union, 2006) are more restrictive than the North-American ones (Federal Motor
Carrier Safety Administration, 2008) and they are valid for all member coun-
tries in the European Union, we base our formulation on the European driving
hours regulations. Considering one-day planning, these regulations consist of
four components:

1. A truck driver is not allowed to drive more than 9 hours (tmax) on a day.

2. A period between two breaks of at least 0.75 hours (btotal) is called a
driving period. The accumulated driving time in each driving period may
not exceed 4.5 hours (tdp). The break that ends a driving period may be
reduced to 0.5 hours (b1

min) if an additional break of at least 0.25 hours
(b2

min) is taken anywhere during that driving period. We call a break of
at least b1

min (b2
min) hours a break of type 1 (2). Therefore, each type 1

break is also a type 2 break.

3. The driving hours regulations do not allow service times at customers to
be considered as break time. Therefore, if a truck driver takes a break at
a customer, he can do that before or after serving the customer, or both.
However, each waiting period before and after serving a customer should
be checked separately whether it can be considered a break of type 1 or
2.

4. A truck driver is not allowed to be on duty for more than 13 hours (dmax).

These regulations apply throughout the entire European Union and they are
hard constraints. In order to control the regulations, each vehicle is equipped
with a tachograph that records all driving and working activities of the current
truck driver. The regulations are so restrictive that companies often need costly
solutions to fulfill their appointments with customers, while respecting the
driving hours regulations. For example, there are cases in which truck drivers
drive by car to a certain location to take over the vehicle of another truck driver
who has reached his driving limit for that day or week. The regulations allow
for a few modifications, such as an extension of the total driving time to 10
hours or an extension of the duty time to 15 hours. However, these modifcations
are only allowed for a limited number of times (e.g., the extension to 10 hours
of driving time is only allowed 2 times a week). We show in Section 2.5 how to
extend our ILP model to also handle these modifications.
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2.3 ILP formulation

Since breaks can be taken both before and after serving a customer, we have
to decide for every customer i at what time service starts and at what time the
vehicle leaves the customer. We introduce the decision variables Xs

i and Xd
i to

indicate the time to start service at customer i and the departure time from
customer i, respectively. In addition, we introduce the decision variables W s

i

and W d
i to indicate the waiting time of the vehicle directly before and after

serving customer i.

There are two types of breaks: those of at least b1
min hours and those of

at least b2
min hours. We introduce the decision variables Bp,l

i to indicate the
break time at customer i = 1, ..., n, before (p = s) or after (p = d) serving
the customer, and of type l = 1, 2. To check whether a waiting time can
be considered a break, we also introduce binary decision variables Y p,l

i . If a

realization of W p
i does not exceed bl

min, then the corresponding variables Y p,l
i

and Bp,l
i are set to 0. Otherwise, the corresponding variable Y p,l

i can take value

1, allowing Bp,l
i to take the value of W p

i .

Finally, to ensure that enough breaks are taken during and at the end of
each driving period, we introduce binary decision variables Vij (j > i). If a
driving period starts at customer i and ends at customer j, then Vij is set to
1. In that case, the break time at customer j must be at least b1

min, and the
total break time at customers k (i < k ≤ j) must be at least btotal. This results
in the following ILP formulation:

Xs
i = Xd

i−1 + ci−1(X
d
i−1) + W s

i (i = 1, ..., n + 1) (2.1)

Xd
i = Xs

i + si + W d
i (i = 0, ..., n) (2.2)

Xs
i ≥ ei (i = 0, ..., n + 1) (2.3)

Xs
i ≤ li (i = 0, ..., n + 1) (2.4)

W p
i ≥ bl

minY p,l
i (i = 1, ..., n, l = 1, 2, p = s, d) (2.5)

Bp,l
i ≤ MY p,l

i (i = 1, ..., n, l = 1, 2, p = s, d) (2.6)

Bp,l
i ≤ W p

i (i = 1, ..., n, l = 1, 2, p = s, d) (2.7)

j
∑

k=0

ck(Xd
k ) ≤ tdp + M

j
∑

k=1

V0k (j = 1, ..., n) (2.8)

j
∑

k=i

ck(Xd
k ) ≤ tdp + M

(

j
∑

k=i+1

Vik + 1 −
i−1
∑

k=0

Vki

)

(2.9)

(i = 1, ..., n − 1, j = i + 1, ..., n)
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n
∑

j=1

V0j ≤ 1 (2.10)

n
∑

j=i+1

Vij ≤

i−1
∑

k=0

Vki (i = 1, ..., n − 1) (2.11)

Bs,1
j + Bd,1

j ≥ b1
minVij (i = 0, ..., n − 1, j = i + 1, ..., n) (2.12)

j
∑

k=i+1

(

Bs,2
k + Bd,2

k

)

≥ btotalVij (i = 0, ..., n − 1, j = i + 1, ..., n) (2.13)

n
∑

k=0

ck(Xd
k ) ≤ tmax (2.14)

Xs
n+1 − Xd

0 ≤ dmax (2.15)

All variables ≥ 0 (2.16)

Y p,l
i ∈ {0, 1} (i = 1, ..., n, l = 1, 2, p = s, d) (2.17)

Vij ∈ {0, 1} (i = 0, ..., n − 1, j = i + 1, ..., n) (2.18)

There is no objective within the ILP formulation, since we focus on the
feasibility problem. Section 2.5 describes how more information on the feasi-
bility of the problem instances (e.g., number of late arrivals) can be obtained
by setting a certain objective.

Constraints (2.1) and (2.2) define the time to start service at and the depar-
ture time from each customer. Constraints (2.3) and (2.4) ensure that service
starts in the given time window. Note that within a VRPTW nodes i = 0
and i = n + 1 represent the depot, such that these constraints also ensure that
the vehicles depart and return within the given time horizon. Constraints (2.5)
check whether a waiting period is enough to be considered a break. If not, then
Y p,l

i is set to 0 and Constraints (2.6) become tight. These constraints are only
defined for customers i = 1, ..., n since taking a break before leaving the depot
or after returning at the depot does not make sense. Constraints (2.7) ensure
that the break time never exceeds the waiting time. Constraints (2.8) ensure
that the first driving period does not exceed tdp. If the total driving time

between customers 0 and j + 1 exceeds tdp

(

∑j

k=0 ck

(

Xd
k

)

> tdp

)

, then the

first driving period must end at a customer k, 0 < k < j + 1
(

∑j

k=1 V0k = 1
)

.

Constraints (2.9) ensure that the succeeding driving periods end in time. If a

driving period starts at customer i
(

∑i−1
k=0 Vki = 1

)

and the total driving time

between customers i and j + 1 exceeds tdp

(

∑j
k=i ck

(

Xd
k

)

> tdp

)

, then this

driving period must end at a customer k, i < k < j + 1
(

∑j
k=i+1 Vik = 1

)

.

Constraints (2.10) ensure that the first driving period ends at most once and



24 Chapter 2. Scheduling departure times

Constraints (2.11) ensure that each succeeding driving period ends at most
once. Constraints (2.12) ensure that a break of at least b1

min hours is taken
at a customer where a driving period ends and Constraints (2.13) ensure that
in each driving period the total break time is at least btotal. Finally, Con-
straints (2.14) and (2.15) ensure that the total driving time does not exceed
tmax and the total duty time (the difference between the arrival at the end
node and the departure at the start node) does not exceed dmax, respectively.
Note that a sufficiently large and tight value for M is ln+1 − e0.

So far, we have modeled the travel time function as a general function that
depends on the time of departure. However, in general such a function cannot
be written in proper ILP form. In Section 2.3.1, we model the time-dependent
travel times as a continuous piecewise linear travel time function, and show
how to write it in ILP form.

2.3.1 Travel time modeling

Several ways of modeling the time-dependent travel times have been proposed
in the literature. Malandraki and Daskin (1992) propose a travel time step
function. A disadvantage of this approach is that the non-passing property is
not satisfied, i.e., if vehicles A and B traverse the same link in the network,
and vehicle B departs later than vehicle A, but with a smaller travel time,
then vehicle B could arrive earlier than vehicle A. Haghani and Jung (2005)
propose a continuous travel time function in which the slope is always greater
than -1. In that case, departing later can never result in an earlier arrival. The
disadvantage of an arbitrary continuous travel time function is that it does not
need to be (piecewise) linear. Therefore, we choose to follow the approach of
Ichoua et al. (2003), who propose a travel speed step function for each link in
the network. This approach results in a continuous piecewise linear travel time
function. Since two vehicles traversing the same link drive with the same speed
at any moment of time, the non-passing property is satisfied. Figure 2.1 shows
an example of a speed function; Figure 2.2 presents the resulting travel time
function.

Speed

Time of the day

Figure 2.1: Speed function

Travel Time

Time of departure

Figure 2.2: Travel time function

Since the travel time function is piecewise linear, we can write it as mi
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different functions ai,r +bi,r

(

Xd
i − gi,r

)

, where each gi,r, r = 1, ...,mi indicates
a time at which the slope of the travel time function changes. Furthermore,
ai,r is the travel time at time gi,r and bi,r is the slope of the rth linear function.
To determine in which interval [gi,r, gi,r+1] the chosen departure time Xd

i falls,
we introduce binary variables Ui,r which can take value 1 only if gi,r ≤ Xd

i ≤
gi,r+1. Next, we introduce variables Xd

i,r which take the value of Xd
i if the

corresponding variable Ui,r is 1, and 0 otherwise. By replacing the function
ci

(

Xd
i

)

by the variable Ci we derive the following ILP formulation to determine
the travel time for departure time Xd

i :

mi
∑

r=1

Ui,r = 1 (i = 0, ..., n) (2.19)

gi,rUi,r ≤ Xd
i,r (i = 0, ..., n, r = 1, ...,mi)

(2.20)

gi,r+1Ui,r ≥ Xd
i,r (i = 0, ..., n, r = 1, ...,mi)

(2.21)
mi
∑

r=1

Xd
i,r = Xd

i (i = 0, ..., n) (2.22)

Ci ≥ ai,r + bi,r

(

Xd
i − gi,r

)

+ M (Ui,r − 1) (i = 0, ..., n, r = 1, ...,mi)
(2.23)

Constraints (2.19) ensure that exactly one Ui,r takes value 1. The Ui,r

with value 1 and Constraints (2.20) and (2.21) force the corresponding variable
Xd

i,r to be in the interval [gi,r, gi,r+1], and all other variables Xd
i,r to be 0.

Constraints (2.22) force the only Xd
i,r greater than 0 to equal Xd

i , and therefore

Ui,r can only take value 1 if gi,r ≤ Xd
i ≤ gi,r+1. Finally, if Ui,r equals 1 then

Constraints (2.23) present the right travel time functions. If Ui,r equals 0 then
Constraints (2.23) are non-restrictive.

2.4 Computational experiments

We test our ILP formulation on a set of routes obtained from best known solu-
tions to the well-known Solomon (1987) instances for the VRPTW. The com-
putational experiments demonstrate the necessity of developing a new vehicle
routing method that constructs vehicle routes accounting for time-dependent
travel times and driving hours regulations. We implemented the ILP formula-
tion in Delphi 7 and solved it using CPLEX 11 on a Pentium 4, 3.40GHz CPU
and 1.00 GB of RAM.

We test our ILP formulation on a selection of the 100-customer problem
instances developed by Solomon (1987). We use those problem instances for
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which best known solutions identified by heuristics can be obtained from the
literature. The routes obtained from these solutions form the problem instances
for the departure time scheduling problem. Our preference was to test the
departure time scheduling problem on routes obtained from good solutions
to TDVRP instances, since these routes already account for time-dependent
travel times. Unfortunately, the involved authors can no longer provide these
routes (Ichoua et al., 2003; Fleischmann et al., 2004; Haghani and Jung, 2005).
However, we shall demonstrate that even if one of the timing restrictions - time-
dependent travel times or driving hours regulations - is neglected during the
construction of the vehicle routes, then in many cases it is not possible to find
feasible departure schedules. This implies that the routes are not applicable in
practice.

The Solomon problem instances are categorized into 3 types of instances:
1) c-instances, where customer locations are clustered, 2) r-instances, where
customers are uniformly randomly located, and 3) rc-instances, where 50 per-
cent of the customers are clustered and 50 percent are uniformly randomly
located. Each customer is given a hard time window in which its service must
start. The time window at the depot indicates the earliest feasible departure
time and the latest feasible return time at the depot. Furthermore, some of the
problem instances have a relatively large time window at the depot and vehicles
with a relatively large capacity, resulting in large vehicle routes (25 up to 50
customers), while other instances have a relatively small time window at the
depot, resulting in small vehicle routes (about 10 customers). Since the number
of customers visited in a vehicle route defines the input size of the departure
time scheduling problem, we discern small and large vehicle routes. This dis-
tinction allows us to investigate the impact of the input size of the problem on
the required computation time. The number of customers visited in a vehicle
route ranges from 4 to 51 customers. We categorize the problem instances into
small (≤ 20 customers) and large (> 20 customers) problem instances.

The travel speed in the networks of the Solomon instances equals 1. As a
result, the travel times in the Solomon instances equal the euclidean distance
between the customer locations. Since the travel speed is time-independent,
we develop speed patterns, such that the average travel speed remains 1. This
methodology is similar to the one proposed by Ichoua et al. (2003). We define
the time window at the depot from 6:30 am until 7:30 pm (i.e., corresponding
to a 13 hour working day which equals the maximum available duty time dmax

for each driver) and we assume that the morning traffic peak causes congestion
from 7:00 am until 9:00 am, and the evening traffic peak from 5:00 pm until 7:00
pm. Furthermore, we distinguish between light, medium, and heavy congestion.
These three types of congestion cause speed drops during the peak hours of 25,
50, and 75 percent, respectively. Table 2.1 presents the resulting speed patterns.
Note that with these speed patterns, speed drops during the peak hours are
the same in the whole network. These speed patterns serve the purpose of
the experiments in this section, which is to determine the impact of driving
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Type of Congestion\Time 6:30-7 7-9 9-17 17-19 19-19:30

Light 1.08 0.81 1.08 0.81 1.08
Medium 1.18 0.59 1.18 0.59 1.18
Heavy 1.30 0.33 1.33 0.33 1.30

Table 2.1: Speed Patterns

hours regulations and different levels of traffic congestion on the feasibility
of individual vehicle routes constructed with time-independent travel times.
Chapter 5 proposes a more elaborate speed model for real road networks, in
which speed patterns depend both on time and location.

The problem instances are composed of the vehicle routes resulting from the
best known solutions to the Solomon instances and the travel speed patterns
in Table 2.1. Furthermore, we set bmin = 0.25, btotal = 0.75, tdp = 4.5, and
tmax = 9, corresponding with the European driving hours regulations (note
that dmax = 13 is already enforced by the depet opening hours). We investigate
whether the developed routes allow feasible departure schedules. Since we
are testing the impact of two different realistic factors in vehicle routing, we
consider two test scenarios: in Scenario 1 we do not consider driving hours
regulations and in Scenario 2 we do consider driving hours regulations. In
both scenarios, we apply the ILP model for each of the three speed drops as
described before, as well as the case in which there is no speed drop at all. This
allows us to investigate the impact of driving hours regulations on vehicle routes
in congestion free networks. Table 2.2 and 2.3 present results on computation
times and percentage of infeasible VRP routes by scheduling the departure
times for Scenarios 1 and 2, respectively.

The computation times are small enough for practical use. The maximum
computation time over all instances is less than 2.1 seconds (for Scenario 1 even
less than 0.2 seconds) and the average is less than 0.1 seconds. Therefore, our
approach to determine feasible departure schedules as a post-processing step
of a VRPTW is fast enough for practical use.

The solution methods for the original VRP instances do not account for
time-dependent travel times and driving hours regulations, and as a conse-
quence the obtained routes are often too tight with respect to the time win-
dows to schedule mandatory breaks. It generally holds that heavier traffic
congestion results in fewer feasible vehicle routes. Therefore, vehicle routing
methods should account for time-dependent travel times. However, this is not
sufficient to obtain vehicle routes that can be used in practice under driving
hours regulations.

For the cases with medium and heavy congestion, Table 2.2 and 2.3 look
rather similar in terms of percentage of infeasible VRP routes. This may indi-
cate that these infeasibilities are mainly caused by the time-dependent travel
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Problem # Instances Congestion CPU (ms) VRP route
Size Type Infeasible

No 8 0.00%
Smalla 164 Light 13 18.90%

Medium 9 48.78%
Heavy 6 71.95%

No 37 0.00%

Largeb 25 Light 51 16.00%
Medium 45 44.00%
Heavy 31 68.00%

No 12 0.00%
Average 189 Light 18 18.52%

Medium 14 48.15%
Heavy 10 71.43%

aAll routes in the best known solutions of instances r103 and rc106 (Li and Lim, 2003),
r104, r107, r109, r111 and rc107 (Shaw, 1997), r108, r110 and rc105 (Berger and Barkaoui,
2004), and rc101, rc102, rc103, rc104 and rc108 (Czech and Czarnas, 2002)

bAll routes in the best known solutions of instances r211 (Rochat and Taillard, 1995), and
rc201, rc204, rc205, rc206, rc202, rc203 and rc207 (Czech and Czarnas, 2002)

Table 2.2: Results Scenario 1: no driving hours regulations

Problem # Instances Congestion CPU (ms) VRP route
Size Type Infeasible

No 13 59.76%
Small 164 Light 27 63.41%

Medium 27 76.83%
Heavy 19 85.98%

No 134 24.00%
Large 25 Light 179 36.00%

Medium 310 56.00%
Heavy 283 68.00%

No 29 55.03%
Average 189 Light 47 59.79%

Medium 64 74.07%
Heavy 53 83.60%

Table 2.3: Results Scenario 2: with driving hours regulations

times and not so much by the driving hours regulations. This raises the ques-
tion whether existing solution methods for the VRPTW with time-dependent
travel times produce routes that can feasibly adopt breaks to comply with the
driving hours regulations. To test whether this is the case, we test for the
feasible routes in Table 2.2 (i.e., feasible with respect to time-dependent travel
times) whether there also exists feasible departure schedules for these routes
with respect to driving hours regulations.
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Table 2.4 presents the percentage of the vehicle routes that are feasible with
respect to time-dependent travel times, but turn out to be infeasible when also
driving hours regulations are respected. Therefore, some 30 to 50 percent of
the routes that are feasible with respect to time-dependent travel times, but
that ignore driving hours regulations, fail in practice. This problem is clearly
caused by the methods that build the vehicle routes; it does not affect the
applicability of the departure time scheduling problem in practice. As we shall
argue in the remainder of this section, it is not straightforward to overcome
this problem.

Congestion Reduction of #
Type feasible vehicle routes

No 55.03%
Light 50.65%

Medium 50.00%
Heavy 42.59%

Table 2.4: Relative decrease of # feasible vehicle routes when driving hours
regulations have to be respected

First, slack time could be added to the original problem instances, such that
time is reserved for scheduling mandatory breaks after the vehicle routes have
been developed. To keep the proposed solution methods in the VRP literature
directly applicable, this slack time should be spread evenly over the travel
times between (or service times at) the customers. We tested this approach
by adding one sixth of slack travel time. At least one sixth of slack travel
time is required, because the total travel time in a driving period does not
exceed 4.5 hours, while 45 minutes of break time needs to be scheduled in
this period. Computational experiments show that this approach works well
for light congestion (the percentage of infeasible vehicle routes reduces from
59.79% to 0.53%). However, with medium and heavy congestion the percentage
of infeasible routes remains rather large (14.29% and 50.79%, respectively). A
drawback of this approach is that built-up slack might be lost when truck
drivers have to wait at customers before they can start service. This is one of
the reasons that many routes remain infeasible in case of medium and heavy
congestion. Moreover, slack travel time is often lost such that the minimal
number of vehicle routes will generally not be attained.

Second, one might argue that the departure time scheduling problems are
infeasible because of the ‘tightness’ of the optimal solutions. We therefore also
tested less sophisticated methods to develop the vehicle routes, resulting in
worse VRP solutions with respect to the overall objective, but with possibly
less tight routes with respect to the time windows. We tested this approach
with a straightforward nearest neighbor heuristic. The results show that the
percentage of infeasible vehicle routes decreases (from 68.12% to 49.14%, on
average), but the number of vehicle routes increases dramatically (from 189 to
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263). Moreover, the number of feasible vehicle routes may increase, but the
total number of customers in all feasible vehicle routes decreases (from 777 to
724, of the 2300 customers in total).

Therefore, since decomposition methods in which driving hours regulations
and time-dependent travel times are only handled in a post-processing step
fail, the need arises to develop new vehicle routing methods that account for
these two timing restrictions. Chapter 6 proposes a solution method for the
VRPTW with time-dependent travel times and driving hours regulations.

2.5 Model extensions

In this section, we describe various model extensions that may better suit
particular cases. First, we propose two objective functions to ‘quantify the
infeasibility of the problem instance’. Second, we describe how to extend the
formulation to multi-day planning. Third, we describe how to account for the
modification of the rule on the daily driving times, which allows to extend this
driving time to 10 hours twice a week. Fourth, we describe how to incorporate
the possibility of taking breaks at parking lots, in addition to taking breaks at
customer sites.

2.5.1 Objective functions

Solving the ILP formulation tells us whether a feasible departure schedule ex-
ists, and if such a schedule exists it provides us a set of feasible departure times.
However, when the problem is infeasible, there is no information on the ‘degree
of infeasibility’. For example, in case of infeasibility it might be interesting to
know whether removing only one customer visit allows for a feasible departure
schedule. In order to get insight in the ‘degree of infeasibility’, we have to allow
late arrivals at customers. In order to keep the number of late arrivals as small
as possible, we propose the following two objective functions: 1) minimize the
number of late arrivals, 2) minimize the maximum late time.

For the first objective, we have to allow late arrivals, which can be controlled
by introducing binary decision variables Li, i = 0, ..., n + 1. Li takes value 1
if the vehicle arrives late at customer i, and can take 0 otherwise. We adjust
Constraints (2.4) and add Objective (2.24) as follows:

Min

n+1
∑

i=0

Li (2.24)

Xs
i ≤ li + MLi (i = 0, ..., n + 1) (2.4’)
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In case the objective value is greater than zero, the problem is infeasible
with respect to the customer time windows. The Li with value 1 indicate at
which customers it is impossible to arrive in time. Note that late arrivals at
nodes 0 and n + 1 may not make sense or may even not be allowed (e.g., in
case of strict opening hours at the depot). This situation is easily controlled
by adding constraints on the values of the corresponding Li.

For the second objective, we have to account for the amount of late time at
customers. We introduce decision variables Ai ∈ [0,M ], i = 0, ..., n + 1, which
take the value of the late time at customer i, or take value 0 in case there is no
late time. We introduce decision variable Amax to account for the maximum
late time. Then, we add Objective (2.25) and Constraint (2.26), and adjust
Constraints (2.4) as follows:

Min Amax (2.25)

Amax ≥ Ai (i = 0, ..., n + 1) (2.26)

Xs
i ≤ li + Ai (i = 0, ..., n + 1) (2.4”)

2.5.2 Multi-day planning

The ILP formulation proposed in Section 2.3 assumes one-day planning. There
are several practical cases in which it is more convenient to extend the formu-
lation to multi-day planning. We demonstrate that this extension can easily
be incorporated in our ILP formulation.

For multi-day planning, some extra restrictions are imposed by the driving
hours regulations. Both the European and North American driving hours reg-
ulations impose a maximum on the total driving time and the total working
time on a day, after which a rest has to be taken. More formally, after driving
at most tmax hours and being on duty for at most dmax hours, a rest of at
least 11 hours (trest) has to be taken. Also, a maximum is imposed on the
total driving and working time in an entire week. We illustrate how the ILP
formulation of Section 2.3 can be extended to one-week planning.

First, in Constraint (2.14), tmax must be replaced by the maximum driving
time in a week. Next, to check whether a waiting time at a customer can be
considered a rest, we introduce variables Bp,rest

i , p = s, d and binary variables
Y p,rest

i , and we add the following constraints to the ILP formulation:

W p
i ≥ trestY

p,rest
i (i = 1, ..., n, p = s, d) (2.27)

Bp,rest
i ≤ MY p,rest

i (i = 1, ..., n, p = s, d) (2.28)

Bp,rest
i ≤ W p

i (i = 1, ..., n, p = s, d) (2.29)
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Next, we need to check whether the driving (duty) time does not exceed
the maximum driving (duty) time on each day before a night’s rest is taken.
Therefore, we introduce the notion of daily period which has the following three
properties: 1) Each daily period ends with a night’s rest, 2) in each daily period
the driving and duty time do not exceed the maximum driving and duty time,
and 3) each time a daily period ends, a new daily period is initiated. Next, we

introduce binary variables V daily
ij which are set to 1 if a daily period starts at

customer i and ends at customer j. To ensure that the driving time does not
exceed the maximum driving time in each daily period, and each daily period
ends with a rest of at least trest hours, we add the following constraints:

j
∑

k=0

ck(Xd
k ) ≤ tmax + M

j
∑

k=1

V daily
0k (j = 1, ..., n) (2.30)

j
∑

k=i

ck(Xd
k ) ≤ tmax + M

(

j
∑

k=i+1

V daily
ik + 1 −

i−1
∑

k=0

V daily
ki

)

(2.31)

(i = 1, ..., n − 1, j = i + 1, ..., n)
n
∑

j=1

V daily
0j ≤ 1 (2.32)

n
∑

j=i+1

V daily
ij ≤

i−1
∑

k=0

V daily
ki (i = 1, ..., n − 1) (2.33)

Bs,rest
j + Bd,rest

j ≥ trestV
daily
ij (i = 0, ..., n − 1, j = i + 1, ..., n) (2.34)

Ensuring that the duty time does not exceed the maximum duty time dur-
ing each daily period can be done with similar constraints. The only difference
is that waiting times and service times also add to the total duty time. There-
fore, both the arrival time and the end of service time at each customer is a
possible moment for exceeding the total duty time. Since there are two pos-
sible moments at each customer for starting (ending) a daily period, the total
number of possible daily periods is four times the number of possible daily pe-
riods for the case with maximum driving time. Therefore, we need four times
the number of binary variables V daily

ij to indicate when a daily period starts
and when it ends. Similarly, we need two times the constraints of type (2.30)
and (2.33), and four times the constraints of type (2.31) and (2.34), to ensure
that each daily period ends with a break of trest, the total duty time in the
daily period does not exceed dmax, and each time a daily period ends, a new
daily period is initiated.
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2.5.3 Modification of rule on daily driving times

To account for the possibility of extending the driving time twice a week, we
add binary variables Ei, i = 0, ..., n, which take value 1 if a new daily driving
period starts at customer i, and the total driving time of this period can be
extended to 10 hours. To ensure that the total number of daily driving time
extensions does not exceed 2, we add Constraint 2.35. Next, Constraints 2.36
ensure that Ei, i > 0 can only take value 1 if a new daily driving period starts
at customer i. Finally, to allow for the driving time extensions of 1 hour, we
adjust Constraints (2.30) and (2.31).

n
∑

i=0

Ei ≤ 2 (2.35)

Ei ≤

i−1
∑

k=0

V daily
ki (i = 1, ..., n) (2.36)

j
∑

k=0

ck(Xd
k ) ≤ tmax + E0 + M

j
∑

k=1

V daily
0k (j = 1, ..., n) (2.30’)

j
∑

k=i

ck(Xd
k ) ≤ tmax + Ei + M

(

j
∑

k=i+1

V daily
ik + 1 −

i−1
∑

k=0

V rest
ki

)

(2.31’)

(i = 1, ..., n − 1, j = i + 1, ..., n)

2.5.4 Breaks at parking lots

To incorporate the possibility of taking breaks at parking lots along the route,
we can simply model these parking lots as customers with zero service time and
maximum time window (i.e., [eo, ln+1]). We assume that these parking lots are
along the route and that the time needed to park the vehicle and to leave the
parking lot are negligible.

2.6 Conclusions

We introduced the departure time scheduling problem and approached it as a
post-processing step of solving a VRPTW. We proposed an ILP formulation
for the departure time scheduling problem which is flexible with respect to
several practical extensions. This flexibility was demonstrated while writing
this thesis, as the European driving hours regulations changed and we were
able to quickly adapt the ILP formulation to the new regulations.
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The computational experiments show that the departure times can be sched-
uled within practical computation times. Furthermore, they demonstrate that
VRP routes will only be of practical use if driving hours regulations and time-
dependent travel times are accounted for during the development of these
routes. Existing solution methods fail in practice when these two common
timing restrictions are considered. We argued that the most appropriate way
to solve this problem is to develop new vehicle routing methods. In Chap-
ter 3, we propose a solution framework which is flexible with respect to various
variants of the VRP, and forms a suitable framework for incorporating com-
plex timing restrictions such as time-dependent travel times and driving hours
regulations, as we shall demonstrate in the remaining chapters of this thesis.



Chapter 3

Dynamic programming for
the vehicle routing problem

3.1 Introduction

As pointed out in Chapter 2, growing traffic congestion problems and strict
regulations on drivers’ driving and working hours cause existing VRP solution
methods to fail in practice. Therefore, new solution methods accounting for
these timing restrictions should be developed. In this chapter1, we propose a
solution method for the VRP based on restricted dynamic programming. This
solution approach is a constructive heuristic, as opposed to the majority of the
VRP literature in which the focus is on route improvement heuristics. The
main reasons for relying on constructive methods are the following.

Local search methods have proved to be very successful in solving large
vehicle routing problems. They develop high quality solutions for for a wide
range of VRP extensions. However, they are not suitable for including com-
plex timing restrictions such as time-dependent travel times and driving hours
regulations. When such timing restrictions are considered, neighborhood eval-
uations are much more involved, since local changes can have major effects
up- and downstream the vehicle routes under consideration. As a result, local
updates become much more computationally expensive.

In addition, many different extensions of the VRP, besides time-dependent
travel times and driving hours regulations, appear in practice. Companies such
as logistic service providers and distribution firms often have their own set of
restrictions of which a certain part may be general to most companies, but other
parts being unique for a specific company. As a consequence, each company

1This chapter is based on Gromicho et al. (2008)
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requires a uniquely adapted solution method. Adapting solution methods is
necessary, since extra constraints may turn an initially close to optimal solution
into a bad or even infeasible one if these constraints are not accounted for when
constructing the vehicle routes, as demonstrated in Chapter 2. Therefore,
solution strategies for the VRP that are flexible with respect to the addition of
new restrictions and still produce good solutions are highly valuable in practice.

In general, solution methods based on local search lack this flexibility. It
is difficult to generalize one local search method to solve many different exten-
sions of the VRP. Adapting local search methods when new restrictions are
introduced to the problem is generally a difficult task. If such a restriction
is added, then the neighborhood structure and the search strategy need to be
carefully redesigned in order to obtain high quality solutions again. Therefore,
adding a single restriction requires the development of a new algorithm, as the
extensive lists in Parragh et al. (2008a,b) show.

We demonstrate that our solution approach forms a flexible framework for
solving large vehicle routing and scheduling problems. This framework covers
a wide range of VRP extensions. The constructive way of creating vehicle
routes will prove to be very suitable for including difficult timing restrictions
such as time-dependent travel times and driving hours regulations, as we shall
demonstrate in the remaining chapters of this thesis.

The solution approach is a generalization of the restricted dynamic pro-
gramming heuristic for the TSP of Malandraki and Dial (1996), which can be
seen as a form of beam search (Bisiani, 1987). We apply restricted dynamic
programming to the VRP through the giant-tour representation of vehicle rout-
ing solutions (Funke et al., 2005). The giant-tour representation allows us to
handle single tour and multiple tour problems in a similar way.

We test our solution approach on benchmarks for different VRP extensions.
For the Capacitated VRP (CVRP), the VRP with time windows (VRPTW),
the pickup and delivery problem (PDP) with time windows (PDPTW), and the
multi-depot VRP (MDVRP), our heuristic produces solutions with acceptable
quality within practical computation times. Therefore, this new framework
constitutes a promising approach for solving VRPs in practice.

This chapter is organized as follows. Section 3.2 first describes dynamic pro-
gramming for the TSP, then describes the giant-tour representation of VRP
solutions, and finally describes our solution approach for the VRP. Section 3.3
describes a way to reduce the state space of this dynamic programming for-
mulation to obtain solutions within practical computation times. Section 3.4
demonstrates that our solution approach forms a flexible framework for solv-
ing VRPs in practice by showing how a wide range of VRP extensions can
be solved with our solution approach. Section 3.5 presents the results of the
computational experiments and Section 3.6 summarizes the main findings in
this chapter.
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3.2 Dynamic programming

Our solution approach for solving VRPs is based on the restricted dynamic
programming (DP) heuristic for the TSP of Malandraki and Dial (1996), and
applied to the VRP through the giant-tour representation (GTR) of vehicle
routing solutions. Therefore, we first describe the DP for the TSP and the
GTR of vehicle routing solutions. Then we describe the DP for the VRP.

3.2.1 Dynamic programming for the TSP

The restricted dynamic programming heuristic for the TSP is based on the
exact dynamic programming algorithm for the TSP of Held and Karp (1962)
and Bellman (1962). This exact dynamic programming algorithm for the TSP
can be described as follows.

The TSP considers the problem of visiting a set V = {0, 1, ..., n − 1} of
n cities exactly once, starting and ending at city 0, and minimizing the total
traveling costs. The costs of traveling between a pair of cities i, j ∈ V are given
by cij .

A state (S, j) , j ∈ S, S ⊆ V \0 in the DP algorithm represents a path
starting at city 0, visiting all cities in S exactly once, and ending in city j. The
costs C (S, j) of a state are given by the minimal costs over all such paths. In the
first stage, the costs of the states are determined by C ({j} , j) = c0j ,∀j ∈ V \0.
Next, in each successive stage the costs of the states are calculated with the
recurrence relation C (S, j) = mini∈S\j {C (S\j, i) + cij}. Finally, the costs of
the optimal TSP tour are given by minj∈V \0 {C (V \0, j) + cj0}.

Since there are 2n−1−1 nonempty subsets S ⊆ V \0 = {1, ..., n − 1} subsets
S and each subset S contains |S| ≤ n possible end nodes, the total number of
states is bounded by O (n ∗ 2n). Next, each state is calculated by comparing
at most n − 1 additions, resulting in an algorithm with a running time of
O
(

n2 ∗ 2n
)

. The optimal TSP tour can be backtracked by saving for each
state (S, j) the city i ∈ S\j that minimizes C (S\j, i) + cij .

Since this approach constructs only one route, it cannot be applied directly
to the VRP. We propose to apply it to the VRP through the GTR of vehicle
routing solutions.

3.2.2 Giant-tour representation

Funke et al. (2005) introduce the GTR of vehicle routing solutions, because it
allows to handle single and multiple route problems in a similar way. Besides,
it is a ‘natural’ representation of vehicle routing solutions. We use the GTR
for the development of our DP algorithm for solving VRPs. The GTR can be
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described as follows.

The basis of any routing problem is a directed graph G = (V,A), in which
the node set V consists of request nodes R ⊂ V , origin nodes O ⊂ V , and
destination nodes D ⊂ V , and the arc set A represents feasible travels between
these nodes. For a VRP, the request nodes R correspond to all customer
requests. Furthermore, for each vehicle there is one origin and one destination
node, which all may represent the same location. Therefore, if m is the number
of available vehicles, we get |O| = |D| = m. If we order the vehicle routes
k = 1, ...,m in a routing solution, then the GTR of this solution is a cycle in
the graph G in which each route end node dk is connected to the route start
node of the next vehicle route ok+1. Finally, the cycle is closed by connecting
dm with o1. In Figure 3.1, we present an example of a vehicle routing solution
with three vehicles, two depots (A and B) and nine customers. vehicle 1 starts
at depot A and ends at depot B, vehicle 2 starts and ends at depot B, and
vehicle 3 starts and ends at depot A. Figure 3.2 presents the same solution
with its corresponding GTR.
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Figure 3.1: Example of a solution to a VRP with three vehicles
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Figure 3.2: The giant-tour representation of a solution to the VRP of Fig. 3.1



3.2. Dynamic programming 39

3.2.3 Dynamic programming for the VRP

By using the GTR, we transform the VRP into a sequencing problem and we
can use the DP formulation for the TSP to solve it. However, we need to ensure
that the DP solution is the GTR of a feasible VRP solution. A general way to do
this is by checking the feasibility of a partial solution while expanding a state.
We call an expansion feasible if it represents the giant-tour of a feasible partial
VRP solution. For example, each state (S, dk), where the partial solution ends
with node dk, can only be expanded with node ok+1. Furthermore, ok+1 can
only be an expansion of a state with end node dk. Therefore, unlike the TSP,
not every expansion is feasible for the VRP and we must perform a feasibility
check when expanding a state. This seems a downside, but it actually gives
us the power to use this algorithm for almost every extension of the VRP,
providing a general framework for solving VRPs in practice.

To derive the running time complexity of the DP algorithm for the VRP,
observe that we have to add 2m nodes to the |R| nodes for the customers
to apply the DP to the VRP. This would lead to a total of 2m + |R| nodes.
However, each end node of a vehicle and start node of the following vehicle
can be merged, leaving only m extra nodes in consideration (i1, i2, . . . , im):
n = m + |R|. Furthermore, these nodes have a fixed order in the GTR, which
reduces the state space considerably. We first describe this reduction before we
derive the running time complexity of the DP algorithm.

The ordering of the vehicles imposes a serial precedence relation of m
nodes i1 → i2 → . . . → im. For every state (S, j) for which holds that ia 6∈ S,
ib ∈ S and ia → ib, there exists no feasible partial solution, because the prece-
dence relation is not satisfied. Therefore, for every (S, j) that does have a
feasible partial solution, there exists a k, 1 ≤ k ≤ m, such that ia ∈ S if a ≤ k
and ia 6∈ S if a > k. We first derive the fraction of the total number of subsets
that have this property, since this fraction equals the fraction of states that
contain feasible partial solutions.

Suppose |S| = l and let i1, ..., ik ⊆ S. Then it must hold that k ≤ l and
l − k ≤ n − m, with l − k request nodes in S and n − m request nodes in
total. The total number of such subsets S equals

(

n−m
l−k

)

. If we sum this over

all k and l, we get
∑m

k=0

∑n−m+k
l=k

(

n−m
l−k

)

= (m + 1)2n−m subsets. If we divide

this by the total number of subsets S ⊆ V , we get (m+1)2n−m

2n = m+1
2m , which

is the fraction of states that can contain feasible partial solutions given the
precedence relations i1 → i2 → . . . → im. This implies that each independent
precedence relation i → j reduces the state space by 1

4 (in this case m = 2 such
that the fraction of states that contain feasible partial solutions is 3

4 ).

Finally, observe that any given state can possibly end in |R|+ 1 = n nodes
and be expanded to |R| + 1 nodes (because of the serial precedence relation).
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Therefore, the running time of the DP algorithm for the VRP is

O

(

(|R| + 1)(|R| + 1)
m + 1

2m
2|R|+m

)

= O
(

n2m2n−m
)

.

3.3 Restricting the state space

Although dynamic programming has the best running time complexity of all
exact algorithms for the TSP proposed so far (Woeginger, 2003), it is still
not fast enough to solve problems of realistic sizes in practical computation
times. Therefore, Malandraki and Dial (1996) propose a restricted version of
this algorithm, in which the number of states in each stage is bounded by a
parameter H. This bounding procedure works as follows.

In each stage, we select the H states with the smallest costs to expand to
the next stage. Since each state represents a partial tour and in each stage
all partial tours visit the same number of customers, a state with low costs is
more likely to yield the first part of a good TSP solution than a state with
high costs. Therefore, continuing the algorithm with only the H states with
smallest costs will - although it does not guarantee to find the optimal TSP
tour - probably result in a good TSP solution. Next, each of these H states
is expanded in all possible ways. If certain states are reached multiple times
(e.g., expanding (S, j) with customer k results in the same state as expanding
(S, i) with customer k: (S ∪ k, k)), then, according to the original recurrence
relation, only the one with lowest costs is maintained.

Instead of selecting the H states with the smallest costs (with respect to
the objective function), we could use other criteria for selecting the H most
promising states in each stage. For example, we may include a lower bound
for the costs of completing the partial TSP tour represented by a state. In
the remainder of this thesis, unless otherwise stated, we select the H most
promising states in each stage according to the objective value of the partial
solution a state represents.

Malandraki and Dial (1996) show that restricted dynamic programming is
a flexible approach for solving TSPs by applying it to the TSP with time-
dependent travel times. They also show that increasing the value of H results
in better solutions, but also in substantial higher computation times. Note
that setting H = 1 results in the nearest neighbor heuristic and setting H = ∞
results in the exact dynamic programming algorithm for the TSP.

We can restrict the state space even further - using the general idea of beam
search (Bisiani, 1987) - by expanding each state (S, j) only to the E nearest
unvisited nodes. We think this is reasonable, because edges in the optimal
solution will most likely be between two nodes that are near neighbors of each
other, as observed by Rego and Glover (2002).
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The same principle can be applied to the DP algorithm for the VRP. How-
ever, we choose to expand each state (S, j) to at most E feasible states. From
the feasible expansions, we select the ones that extend to the nearest nodes.
We observe that our search through the state space will require a polynomial
effort. For each fixed H and E we expand to O (EH) states in each stage. Since
we search for E feasible state expansions, the number of state expansions (both
feasible and infeasible ones) that are investigated in each stage is O (nH). Each
such investigation can be done in O(1). However, since we need to select the
H best states in each of n stages, we get a running time of O

(

n2H log(H)
)

.

3.4 The flexibility of our solution approach

To demonstrate the flexibility of the DP algorithm, we show how it can solve
the CVRP and the VRPTW by adding more state dimensions, and the PDP
by adding precedence relations. Furthermore, we show how other realistic con-
straints such as multiple depots, a heterogeneous vehicle fleet, the open vehicle
routing problem, and multiple routes per vehicle can be incorporated within
the framework. Note that any conceivable combination of these problems is
equally suited. Our generic approach is unique in comparison with the large
variety of approaches found in the literature (see Parragh et al., 2008a,b), all
of which are diverse and specific for some variants of the VRP.

3.4.1 Adding more dimensions

For the CVRP, as well as the VRPTW, we add state dimensions on capacity
or time. When expanding a state, we perform a feasibility check to ensure
that there is enough slack in capacity or time. However, we have to be careful
not to lose the optimality guarantee of the (unrestricted) DP algorithm for the
VRP. We demonstrate this by the following example. Suppose two states (S, j)
and (S, i) can be feasibly expanded with the same node k such that the first ex-
pansion results in a partial solution with lower cost than the second expansion,
but with less slack in capacity or time. According to the original recurrence
relation, the first expansion will be selected. However, it may prove impossi-
ble to complete the first expansion to a feasible complete solution, while the
second expansion can be completed to a feasible solution. This is resolved by
making two copies of this state such that one represents the partial solution
with lower cost, while the other represents the partial solution with more slack.
This is formalized in dominance rules as in Dumas et al. (1995), which can
result in several copies of a single state. However, in practice costs and slack
are correlated, such that for all states with the same visited node set S and
end node j ∈ S it is unlikely that no state is dominated by another one. We
apply the bounding procedures E and H to all non-dominated states, meaning
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that after each stage we have at most H states which differ in the subset S, or
in the end node j ∈ S, or in one of the other state dimensions.

3.4.2 Adding precedence relations

To apply our model to the PDP, we add precedence constraints to the pickup
and delivery pairs, thereby reducing the state space. Furthermore, we need
to add a feasibility check when a vehicle returns to a depot to ensure that
the vehicle only returns if it has visited all the deliveries corresponding to the
pickups that it has visited. These precedence relations also have a big effect on
the running time, because every independent precedence relation of a pickup
and delivery reduces the state space by 1

4 (see Section 3.2.3). Note that the
state space reduces even further, since each pickup i introduces a precedence
relation j → dk between its corresponding pickup j and the destination node dk

of the vehicle route k that is currently being constructed.

3.4.3 Other realistic constraints

Several other realistic constraints fit within our algorithmic framework. State
dimensions and input characteristics allow for various extensions of the VRP.
Table 3.1 presents an overview of known VRP extensions and how they fit
within our algorithmic framework.

VRP extension Inclusion within DP framework
Open VRP a we solve this by setting all distances to route end

nodes to 0
Heterogeneous fleet different capacities or times the vehicles are available

can be controlled with feasibility checks
Multiple depots different depot locations for different vehicles are

controlled with the input
Multiple routes can be modeled by separate vehicles for each route

and a flexible time window for the secondb vehicle
depending on the return time of the first vehicle

aIn the open VRP, vehicles do not have to return to the depot.
bWe assume w.l.o.g. two routes per vehicle.

Table 3.1: Overview of VRP extensions that fit within the DP framework

3.5 Computational experiments

We test our solution approach on well-known benchmark instances. We apply
the DP heuristic on benchmark instances for the CVRP, VRPTW, PDPTW,
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and MDVRP. As the results shall indicate, the DP heuristic produces good
solutions for these benchmark instances. There are tailored solution methods
that produce better results for these problem instances, like the adaptive large
neighborhood search of Pisinger and Ropke (2007). However, it is not our aim
to compete with these tailored solution methods, but to apply our framework
to more realistic extensions of the VRP, such as the VRP with time-dependent
travel times and driving hours regulations, without losing solution quality. Lo-
cal search based solution methods are not well suitable for such extensions.
We implemented the DP heuristic in Delphi 7 and ran our experiments on a
Pentium 4, 3.40GHz CPU and 1.00 GB of RAM.

3.5.1 CVRP

We first test the performance of the DP heuristic on a set of benchmark in-
stances for the CVRP developed by Augerat (1995). The CVRP is the least
restricted variant of the VRP and, therefore, has the largest solution space.
Additional restrictions reduce this solution space. The objective within the
CVRP is to minimize the total travel distance, while the number of vehicles
that can be used is limited. Note that when we have a homogeneous fleet and
impose no restrictions at all, the solution to a general VRP will be equal to a
TSP, because returning to the depot and starting with a new vehicle makes no
sense. Furthermore, even if it is required to use all vehicles, while the objec-
tive is still to minimize the total travel distance, it can be reduced to a TSP.
This is a well-known reduction from the m-TSP to the TSP, which amounts
to replicating the depot with as many copies as the number of salesman and
forbidding direct transitions from copy to copy by setting the inter-depot costs
to infinity. We demonstrate that our restricted dynamic programming heuristic
produces good results for the CVRP benchmark instances.

Within the basic DP formulation, the cost of each state (S, j) is defined as
the distance of a shortest path visiting each node in S, ending in node j ∈ S.
For the CVRP, this cost definition may cause some problems when we restrict
the state space. For example, in the second stage, the state that represents the
path of visiting first the node nearest to the depot and then directly returning
to the depot is likely to have a quite small cost compared to the other states
in the same stage. However, since the number of vehicles within the CVRP is
limited, returning low filled trucks to the depot may lead to infeasible solutions.
We avoid this problem by only allowing a vehicle to return to the depot if
the percentage of demand served so far is at least as much as the percentage
of vehicles used so far. This extra restriction does not exclude the optimal
solution, since for each solution there always exists an ordering of the vehicles,
such that the average demand served by the first k vehicles is at least k times
the average demand over all vehicles (k = 1, ...,m).

If states A and B visit the same customer set S and end in the same
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node j ∈ S, then state A only dominates state B if its cost is not larger
than the cost of state B and its remaining capacity is not smaller than the
remaining capacity in state B. This dominance criterion ensures that we do
not exclude the optimal solution. If in a certain stage the number of states
exceeds its maximum H, then only the H states with the lowest costs are
maintained. Possible ties are broken by selecting the state with the highest
remaining capacity. Finally, we first set E to its maximum value n. Recall that
H and E apply to all non-dominated states, so there are at most H states after
each stage, which differ in at least one of the state dimensions (in this case S,
j ∈ S, and the remaining capacity).

Table 3.2 presents the average gaps of the solutions found by the DP heuris-
tic with the optimal solutions (all problem instances and optimal solutions are
available at Ralphs, 2003). The Augerat instances, which are standard bench-
mark instances for the CVRP and for which all instances the provably optimal
solution has been found, consist of three problem sets: A, B, and P. Customer
locations and demands are random in the A-instances, the customer locations in
the B-instances are clustered, and the P-instances are modified instances from
the literature. There are 27 A-instances, 23 B-instances, and 24 P-instances.
The number of customers in the A-, B-, and P-instances varies from 32 to 80,
31 to 78, and 16 to 101, respectively. In the column ‘All’, we also report, be-
tween brackets, the maximum gaps over all problem instances. The last column
presents the average computation times over all problem instances in seconds.

H \ Problem Set A B P All cpu(s)
10 23.96 20.80 18.78 21.40 (43.53) 0.063
100 14.71 16.73 10.14 13.95 (36.43) 0.171
1,000 10.11 10.56 6.12 9.01 (21.59) 1.29
10,000 6.79 6.99 4.54 6.16 (21.15) 12.9
100,000 4.59 5.68 3.41 4.58 (17.68) 151
1,000,000 3.11 3.77 2.55 3.15 (15.86) 1727

Table 3.2: Gaps (%) with optimal solutions

The results show that if we set H = 1,000, we get results within 10% of
the optimum, on average. For this value of H, computation times are still very
small (1 second on average). If we increase H to 100,000, then the average gaps
drop below 5 percent with computation times around 2.5 minutes.

The maximum gaps are rather large even for large values of H. However,
the number of instances with a gap larger than 10% reduces rapidly when H in-
creases, as we can see in Table 3.3. If H = 1,000,000, then still 2 instances have
a gap larger than 10%. However, although these instances are very challenging
from a theoretical perspective, their structure may not be realistic for prac-
tice. For example, customers are randomly located in the 2 instances for which
the optimality gaps remain larger than 10%. We propose the DP heuristic for
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solving realistic extensions of the VRP, such as the VRP with time-dependent
travel times and driving hours regulations. Therefore, it is promising that the
DP heuristic finds good solutions, on average, even if it has some difficulties
with solving some extreme problem instances. Table 3.3 also presents the num-
ber of problem instances for which the optimal solution is found. As can be
seen, this number increases substantially with H.

Gap > 10% Optimal
H # Instances Percentage # Instances Percentage
10 63 91.3% 0 0.00%
100 54 73.0% 2 2.70%
1,000 30 40.6% 4 5.41%
10,000 10 13.5% 7 9.46%
100,000 5 6.76% 8 10.81%
1,000,000 2 2.70% 9 12.16%

Table 3.3: Instances with gap larger than 10% and optimal solutions

Table 3.4 and 3.5 present the impact of different E values, limiting the
number of expansions of each state, on the performance of the DP heuristic.
We set the values of E to n, 0.5n, 0.25n, 0.125n, and 0.05n (we round in case of
fractional values) and we present average gaps and average computation times
over all problem instances. Since E = 0.05n results in an E value of 1 for
problem instances with less than 30 customers, yielding the nearest neighbor
heuristic, we set the minimum of E to 2. The results indicate that it is possible
to decrease E such that computation times also decrease, while the solution
quality is maintained. However, when E is getting smaller than 0.125n, the
solution quality starts to reduce substantially, especially for large H. For ex-
ample, in case E = 0.05n and H = 1,000,000 the average gap is larger than
when E = 0.25n and H = 100,000, while computation times are substantially
smaller in the latter case (533 seconds versus 127 seconds).

H \ E n 0.5n 0.25n 0.125n 0.05na

10 21.40 21.40 21.48 21.49 21.89
100 13.95 14.11 14.13 13.86 12.86
1,000 9.01 9.22 9.03 9.23 9.47
10,000 6.16 6.21 6.16 6.85 6.96
100,000 4.58 4.68 4.67 5.03 5.80
1,000,000 3.15 3.12 3.19 3.59 4.83

afor one instance no feasible solution could be found with E = 0.05n and all H values

Table 3.4: Impact of different E values: average gaps (%)

We conclude that the DP heuristic solves the CVRP benchmark instances
to an acceptable quality within practical computation times. The number of
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H \ E n 0.5n 0.25n 0.125n 0.05n
10 0.063 0.063 0.079 0.060 0.066
100 0.171 0.187 0.178 0.133 0.107
1,000 1.29 1.19 1.02 0.874 0.574
10,000 12.9 12.5 11.1 9.08 5.26
100,000 151 145 127 103 56.2
1,000,000 1727 1636 1409 1076 533

Table 3.5: Impact of different E values: cpu (s)

problem instances with a gap larger than 10% reduces substantially when H
increases. These results are particularly interesting, since restricted dynamic
programming is a construction heuristic, such that no other methods are needed
to get some initial solutions. Finally, increasing H will eventually result in
an optimal algorithm for the CVRP, implying a guarantee for finding better
solutions if H is raised enough.

3.5.2 VRPTW

We test the performance of the DP heuristic on the VRP with time windows
by solving the well-known set of benchmark instances proposed by Solomon
(1987). In order to comply with the time window constraints, we add a state
dimension t indicating the departure time from the last visited customer. We
add to the dominance criterion of the CVRP that the departure time of state A
is not larger than the departure time of state B (the dominated state).

We set E = n and H = 1,000,000. Within the VRPTW, the generally used
objective is to minimize the number of vehicles as primary objective and to
minimize the total travel distance is secondary objective. Therefore, we select
the H best states using the following hierarchical criteria: 1) number of vehicles
used, 2) total distance traveled.

Table 3.6 presents the results for the six Solomon problem sets. The first
column indicates the different problem sets and, between brackets, the number
of problem instances. The three columns on the DP heuristic present the
average number of vehicles used, the average travel distance, and the cpu time
in seconds, respectively. The last two columns present the objective values for
the best known solutions identified by heuristics.

On average, the DP heuristic results in 21.7% more vehicle routes than the
best known solutions for the VRPTW. The total travel distance is on average
8.83% larger. The results on the c-instances are better than the results on
the r- and rc-instances. For these problem instances, the DP heuristic finds
solutions with the same number of vehicle routes as the best known solutions,
and the average difference in travel distance is only 1.8%. This is of particular
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Problem DP Heuristic Best Known Solutions
Set # Veh. Dist. cpu (s) # Veh. Dist.
c1 (9) 10.00 843.35 4730 10.00 828.38
c2 (8) 3.00 600.29 5019 3.00 589.86
r1 (12) 13.92 1326.73 4829 11.92 1205.39
r2 (11) 4.00 1095.94 7174 2.73 951.91
rc1 (8) 14.13 1500.04 8417 11.50 1384.16
rc2 (8) 4.25 1249.46 8690 3.25 1119.35

Table 3.6: results for the VRPTW

interest for practice, since customer locations are often clustered.

The average computation time per problem instance is 6365 seconds, which
is almost 4 times more than with the same parameter settings for the CVRP
instances. This increase in computation time can be explained as follows.
Within the VRPTW instances, the dominance criteria are stronger, hence less
states are dominated than within the CVRP instances. Therefore, it happens
more often that a new state has to be inserted in the list of H smallest cost
states, requiring O (log H) time. This is much more than when a state is
dominated, which can be checked in constant time.

Increasing H results in substantial reductions of the gaps with the best
known solutions. For example, increasing H from 100,000 to 1,000,000 re-
duces the gaps in number of vehicles and total travel distance from 23.84% and
11.18%, respectively, to 21.7% and 8.83%, respectively.

3.5.3 PDPTW

To apply the DP heuristic to the PDPTW, we ensure that delivery nodes
can only be selected when the corresponding pickup node has already been
selected. Next, we only allow a vehicle to return to the depot when it is empty,
i.e., when all deliveries corresponding to its pickups have been carried out.
Furthermore, we add a feasibility check to ensure that each separate delivery
that the vehicle still contains can be executed in the next stage. This obviously
does not guarantee that all deliveries can still be executed within the given time
windows (to guarantee this we need to solve a TSP with time windows on the
remaining deliveries), but it is a quick check for removing infeasible expansions.
We test the DP on the set of modified Solomon instances proposed by Li and
Lim (2001). The primary objective is to minimize the number of vehicles used
and the secondary objective is to minimize the total travel distance. Table 3.7
presents our results and the best known solutions for these problem instances.

On average, the DP heuristic requires 0.5 more vehicles than the best known
solutions, and the travel distance is on average 6.98% larger. The precedence
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Problem DP Heuristic Best Known Solutions
Set # Veh. Dist. cpu (s) # Veh. Dist.
lc1 10.00 849.79 8340 9.67 874.12
lc2 3.00 612.97 11551 3.00 589.16
lr1 12.42 1271.28 7908 11.92 1219.62
lr2a 3.80 1183.90 14949 2.80 994.44
lrc1 12.00 1436.09 7279 11.50 1386.74
lrc2 3.75 1240.23 12899 3.25 1133.12

aOne problem instance did not return a feasible solution. We resolved this by setting
E = 5 for this problem instance.

Table 3.7: results for the PDPTW

relations in the PDPTW substantially reduce the state space, which results in
smaller gaps with the best known solutions than for the VRPTW, especially
considering the primary objective (the gap reduces from 1.2 to 0.5 vehicles).

3.5.4 MDVRP

In the MDVRP, vehicles are located at different depots. When we apply the
unrestricted version of the DP algorithm, the ordering of the vehicles is not of
importance. However, when we do restrict the state space different orderings
of the vehicles may have substantial impacts on the resulting vehicle routes.
As an extreme case, it may be possible that certain vehicles are not required
at all to serve customers. With the DP heuristic, it is likely that such vehicles
are the last vehicles to be selected. So when fixing the order of the vehicles we
could unintentionally determine which vehicles will be used to serve customers
and which not. To avoid this, we only fix the order of the vehicles located at
the same depot, since these vehicle all have the same characteristics. We do
not impose precedence relations between vehicles located at different depots.
This implies that the DP heuristic is initialized with a number of states equal
to the number of depots, in which the last visited node is the origin node of
the first vehicle at the corresponding depot. Next, when a vehicle returns to its
depot, i.e., its destination node is added to the state, then, in the next stage,
expansions are possible to the origin node of the first unused vehicle (if any)
at each depot.

We test the DP heuristic on the set of MDVRP instances proposed by
Cordeau et al. (1997). Within these benchmark instances, the number of vehi-
cles per depot is fixed and the objective is to minimize the total travel distance.
To ensure that we do not return low-filled trucks to their depots, we add a large
vehicle cost M to a state when a vehicle returns, which we multiply with its
relative remaining capacity (if the vehicle’s capacity is Q and the total load is
γ, then the relative remaining capacity is 1− γ

Q
). Some problem instances also
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have a limitation L on the duration of each route. For these instances, we in-
crease the cost for returning a vehicle with the vehicle cost M , multiplied with
the relative remaining travel time of that vehicle (if the total route duration is
λ, then the relative remaining travel time is 1 − λ

L
). We set the maximum ve-

hicle cost M to the maximum distance of a customer to its nearest depot. The
total vehicle costs (i.e., the sum of the weighted vehicle costs over all returned
vehicles) are reduced each stage, such that vehicle usage is the leading criterion
in the first stages, but travel distance becomes leading in the final stages. We
do this by multiplying the total vehicle costs with the fraction of stages left (if
n is the total number of stages and ν the index of the current stage then this
fraction equals n−ν

n
).

Preliminary tests indicated that some problem instances were hard to solve:
some customers located far away from any depot could not be visited. There-
fore, we included a bonus for visiting ‘far away’ customers in early stages, which
we subtract from the costs of a state. We set this bonus to the distance from
the customer to it’s nearest depot. To reduce the impact of this bonus at later
stages, we multiply it with the fraction of stages left.

Since there are less precedence relations than within the single depot prob-
lem instances (we do not fix the orderings of vehicles located at different de-
pots), and some problem instances are much larger than within the single depot
benchmark instances (the maximum number of customers is 360 versus 101 for
the single depot benchmark instances), computation times are substantially
larger for the MDVRP than for the single depot benchmark instances. There-
fore, we set H = 100,000 and we run the problem instances for E = 5, E = 10,
E = 20, and E = n. Table 3.8 presents the average gaps of the DP solutions
with the best known solutions. The computation times are on average 3 hours
per problem instance.

E Gap
5 17.43%
10 18.23%
20 18.38%
n 18.58%
best 15.82%

Table 3.8: results for the MDVRP

Surprisingly, smaller values for E give better results, on average, for these
problem instances. These results can be explained as follows. Smaller E-values
allow a more diverse search through the state space. This may be particularly
beneficial for multi-depot problems. For example, if one depot has some very
near customers, starting a vehicle at this depot and going first to these cus-
tomers results in very promising states in terms of state costs. When setting
E high, all expansions of such states will be investigated, while states repre-
senting vehicle routes starting at other depots are not considered, because of
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the bound H on the stage width. However, it is hard to compare states that
represent vehicle routes starting at different depots and, therefore, restricting
the number of expansions of a single state may prevent losing promising other
states that represent vehicle routes that start at other depots.

Increasing H substantially reduces the gaps with the best known solutions
(increasing H from 10,000 to 100,000 reduces the gap from 18.80% to 15.82%).
The larger gaps in comparison with the benchmarks of other VRP extensions
are caused by the unfixed order of vehicles located at different depots. This
causes the state space to increase, because there are less precedence relations
imposed. However, it is promising that the DP heuristic finds feasible solutions
- even with the limited number of available vehicles - for all problem instances.

3.5.5 Discussion of the results

We showed that the DP heuristic can solve various variants of the VRP and
finds solutions of acceptable quality. In general, the solution quality produced
by our solution approach improves when more restrictions are introduced. Al-
though the DP heuristic obtains good results for all benchmark instances, it
does not produce the formidable results as the adaptive large neighborhood
search framework of Ropke and Pisinger (2006) (for their results on the CVRP,
VRPTW, and MDVRP, see Pisinger and Ropke, 2007). However, the main
strength of our solution approach is that it is a constructive heuristic that can
incorporate many more constraints, such as time-dependent travel times and
driving hours regulations (see Chapter 4 and 5), which are hard to incorporate
in a local search heuristic.

3.6 Conclusions

We proposed a flexible solution approach for solving realistic vehicle routing
problems. The solution approach is based on dynamic programming and allows
for a trade-off between solution quality and computation time by restricting the
state space. We demonstrated the flexibility of the solution approach by de-
scribing how to apply it to various practical extensions of the VRP, providing a
new algorithmic framework for solving realistic VRPs. Computational experi-
ments on benchmark instances for the CVRP, the VRPTW, the PDPTW, and
the MDVRP demonstrated that the solutions obtained by the DP heuristic are
of acceptable quality.

An important property of this solution approach is that it is a constructive
heuristic that suits much better for including timing restrictions such as time-
dependent travel times and driving hours regulations than improvement heuris-
tics. Therefore, the algorithmic framework presented in this chapter forms a
basis for the solution algorithms in the remaining chapters in this thesis.



Chapter 4

Vehicle routing with
driving hours regulations

4.1 Introduction

This chapter1 addresses the VRPTW while accounting for driving hours regula-
tions imposed by national or European policy. In the European Union, driving
hours are restricted by Regulation (EC) No 561/2006. In addition, Directive
2002/15/EC, which restricts drivers’ working hours, has been implemented into
national laws in most member countries of the European Union. These legal
acts together comprise the EC social legislation on driving and working hours.
The EC social legislation has to be taken into account by schedulers when es-
tablishing vehicle tours. As neglecting it can be fined severely, these acts have
an enormous impact on the design of vehicle tours in practice.

As pointed out in Chapter 1, only a few papers in the literature have con-
sidered vehicle routing and break scheduling problems. However, none of them
considers Directive 2002/15/EC and none of them considers the entire set of
rules laid down in Regulation (EC) No 561/2006: only a set of basic rules in
this regulation has been considered, while a set of modifications of the basic
rules that increase flexibility has been generally neglected. The extension to the
complete legal act implies some additional restrictions laid down by Directive
2002/15/EC. However, exploiting the entire set of rules of Regulation (EC) No
561/2006 may also allow for considerable improvements of the resulting vehicle
schedules, since the modifications increase the flexibility of the planning.

In this chapter, we propose a solution method for the VRPTW with EC so-
cial legislation (VRPTW-EC) in which all legal rules for a weekly planning pe-

1This chapter is based on Kok et al. (2009b)
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riod are considered. The solution method is based on the restricted DP heuris-
tic proposed in Chapter 3. The results generated with our solution method
comply with the rules of the EC social legislation. We compare our method
with the solution method proposed by Goel (2009), which is the state of the
art for this problem. We conduct computational experiments on the modified
Solomon benchmark instances that Goel proposes for the VRPTW-EC. The
results show that our solution approach, which is a route construction heuris-
tic, substantially improves the results of Goel (2009) with substantially less
computational effort, whereas Goel’s results are obtained with a large neigh-
borhood search heuristic and an auction method to create some initial solution
for the large neighborhood search.

This chapter is organized as follows. Section 4.2 presents all restrictions
of the EC social legislation that have an impact on vehicle routing and break
scheduling. Section 4.3 describes our restricted DP heuristic for the VRPTW-
EC including all legal rules for a weekly planning period. We test the perfor-
mance of our solution method for the VRPTW-EC on the modified Solomon
instances proposed by Goel (2009) in Section 4.4. Finally, Section 4.5 summa-
rizes the main findings in this chapter.

4.2 EC social legislation

The EC social legislation on drivers’ driving and working hours mainly com-
prises two legislative acts, which we describe in Section 4.2.1 and 4.2.2. Reg-
ulation (EC) No 561/2006 restricts driving hours of persons engaged in road
transportation, and Directive 2002/15/EC gives restrictions on drivers’ working
hours.

4.2.1 Regulation (EC) No 561/2006 on Driving Hours

Regulation (EC) No 561/2006 lays down rules for maximum driving hours and
for the required breaks and rest periods. It postulates that transport under-
takings have to organize the work of their drivers in such a way that the drivers
are able to adhere to the restrictions set by this regulation. For infringements
of the regulation committed by the driver his employer is held responsible, too.
Furthermore, the regulation demands that every party involved in the trans-
portation process, i.e. the transport undertakings, consignors, forwarders, tour
operators, principal contractors, subcontractors, and even driver employment
agencies ensure that the schedules of the drivers comply with the legal require-
ments. Therefore, the regulation’s impact on vehicle routing and scheduling in
real life applications is enormous.

Regulation (EC) No 561/2006 covers different but interconnected time hori-
zons: single driving periods, daily driving times, and weekly driving times.
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Figure 4.1: Relation of the different time horizons (Kopfer et al., 2007)

These time horizons are ended by breaks, daily rest periods, and weekly rest
periods. Figure 4.1 depicts their relationship. We describe the rules on the du-
rations of these time horizons and breaks in detail below. Some modifications
of these rules have been introduced to allow for more flexibility for the drivers.
We will indicate these cases by the distinction between basic and modified rules.

Driving periods: A driving period may contain at most 4.5 hours of accu-
mulated driving time.

Breaks to end driving periods: A break of at least 45 minutes ends a driv-
ing period (basic rule). The duration may be reduced to 30 minutes if
an additional break of 15 minutes has been taken anywhere during the
same driving period (modified rule). Since the total break time of 45
minutes is now divided into two parts, we refer to this modified rule as
splitting breaks. This may be beneficial, for example, if waiting time at
a customer site allows a 15 minute break, but not a 45 minute break. If
in such a case a 15 minute break is scheduled during the waiting time,
then only a 30 minute break is required when the 4.5 hour driving limit
is reached.

Daily driving times: The total daily driving time may not exceed 9 hours
(basic rule). Twice a week, i.e. twice between Monday 0:00 am and
Sunday 23:59 pm, the daily driving time can be extended to 10 hours
(modified rule). We refer to this modified rule as extending driving times.
A daily driving time ends when a daily or weekly rest period starts.

Daily rest periods: The duration of a daily rest period is at least 11 hours
(basic rule). Any daily rest period may be reduced to 9 hours if an
additional rest of 3 hours has been taken anywhere after the end of the
previous daily rest period (modified rule). We refer to this modified rule
as splitting rests. Moreover, drivers are allowed to reduce their daily
rest periods to 9 hours without an additional rest of 3 hours up to three
times between two weekly rest periods (modified rule). We refer to this
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modified rule as reducing rest periods. Within 24 hours after the end of a
daily rest period, a new daily rest period must have been taken, allowing
a nonrest period (a period between two daily rest periods) to last for
at most 13 hours (15 hours in case the nonrest period is ended with a
reduced rest period).

Weekly driving times: The total driving time during a week, i.e. from Mon-
day 0:00 am until Sunday 23:59 pm, may not exceed 56 hours. The ac-
cumulated driving time in any two consecutive weeks must not exceed 90
hours.

Weekly rest periods: The duration of a weekly rest period is at least 45 hours
(basic rule). Drivers are allowed to reduce one weekly rest period to 24
hours in any two consecutive weeks (modified rule). This reduction has to
be compensated by an equal extension of another rest period before the
end of the third week following the week considered. Within 144 hours
(6 days) after the end of a weekly rest period, drivers have to start a new
weekly rest period.

4.2.2 Directive 2002/15/EC on Working Hours

Directive 2002/15/EC supplements the restrictions on driving times laid down
by Regulation (EC) No 561/2006. As driving times are part of the total work-
ing time, these legal acts are interdependent and therefore both have to be
considered in vehicle routing and scheduling. Besides driving times, also times
for loading and unloading, time to assist passengers while boarding and dis-
embarking from the vehicle, cleaning and maintenance times, and other times
in which a driver cannot freely dispose of his time, such as unforeseen waiting
times, are included in the working time. Since in the remainder we will ad-
dress a deterministic vehicle routing problem, only driving and service times
are taken into account as working times. Waiting times need not be considered
as working times, since in deterministic problems all waiting times are known
in advance.

The directive comprises the following restrictions on working periods and
weekly working times:

Working period : A working period may contain at most 6 hours of accumu-
lated driving time.

Breaks to end working periods: A break of at least 30 minutes ends a
working period (basic rule). If the total working time between two daily
rest periods exceeds 9 hours, the total break time in this period has to
be extended to at least 45 minutes (basic rule). The total break time can
be divided into parts of at least 15 minutes each (modified rule).
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Weekly working time: The total working time during a week may not ex-
ceed 60 hours. The average weekly working time must not exceed 48
hours over a period of four months.

In order to observe the law, both legal acts have to be respected by drivers.
Therefore, each basic rule or its modification must be respected and both are
considered of equal importance in practice. In the literature, however, the mod-
ified rules have been neglected so far, and Directive 2002/15/EC on working
hours has been completely neglected.

4.3 Solution method

We propose a solution method for the VRPTW including the EC social leg-
islation for the planning horizon of one weekly driving period. However, this
solution method can be extended to longer planning horizons and a rolling
horizon framework (see Section 4.3.3). We use the restricted DP framework of
Chapter 3 to design a solution method for the VRPTW-EC.

To determine whether partial solutions represented by a state are feasible,
we have to determine whether there exists break schedules that comply with
the EC social legislation. Whether efficient algorithms exist for this problem is
still an open question. Goel and Kok (2009b) present an O

(

n2
)

algorithm for
scheduling rest periods according to the U.S. hours of service regulations for a
truck driver visiting n locations. However, these regulations do not require the
scheduling of short breaks and have no set of modified rules. Goel and Kok
(2009a) present an O

(

n2
)

algorithm for scheduling breaks and rest periods for
team drivers according to the EC social legislation. However, in case of team
drivers also no short breaks have to be scheduled.

We propose a break scheduling algorithm that decides locally when breaks
are scheduled. This means that once we schedule a break, it is fixed and we
do not change its duration or start time. When a new customer is added to
the end of a partial vehicle route, we may only schedule new breaks along the
route to this customer and at this customer. There are two main reasons to
use a local view for scheduling breaks and rest periods.

First, it allows us to schedule breaks in constant time. Therefore, the
running time complexity of the DP heuristic does not increase. This even
holds when the modifications of the basic rules, which are generally ignored in
the literature, are incorporated.

Second, a local scheduling algorithm is much easier to implement in practice.
The rules we propose for scheduling breaks are intuitive and, therefore, they are
both easy to implement, as well as easily acceptable by planners and operations
managers. If a global scheduling algorithm is used, then breaks and rests may
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be scheduled and extended prematurely, such that the benefits are less clear.
For example, it may turn out that we arrive early at a customer j and that the
13 hour non-rest period reaches its maximum before his time window opens,
requiring a rest period before serving customer j. If, due to this rest period his
time window cannot be met, customer j cannot be added to the vehicle route.
However, if there is waiting time at some predecessor i, then it might be possible
to schedule an early rest partially during this waiting time without violating
any of the time windows between customers i and j. This may decrease the
start time of the active non-rest period when arriving at customer j, allowing to
serve customer j before having to schedule a new rest period. This global view
in which also breaks and rests at predecessors are considered requires at least
linear time (instead of constant time in case of a local view), which increases
the running time complexity of the restricted DP heuristic. Note that this also
implies that the local view for scheduling breaks does not guarantee finding all
feasible schedules.

We propose two break scheduling methods: a basic method and an extended
method. The basic method is an extension of the naive label setting method
proposed by Goel (2009), in which breaks and rests are scheduled as late as
possible and as short as possible. We improve this method by increasing local
flexibility for customer additions as follows. We minimize the time to start
service at the added customer. Next, for this minimal start time, we minimize
the accumulated time since the last rest, and the accumulated driving and
working time since the last break, by trying to schedule rests or breaks in
waiting time caused by hard time windows. We refer to the DP heuristic with
the basic break scheduling method as DP basic.

The extended break scheduling method extends the basic method by ex-
ploiting the modifications of the basic rules. We apply the same methodology
of optimizing local flexibility at the added customer. We refer to the DP heuris-
tic with the extended break scheduling method as DP ext.

4.3.1 Basic break scheduling method

For the basic break scheduling method, we make the simplification that after
no more than 6 hours of working time, we schedule a break of 45 minutes
(instead of 30 minutes). This ensures that the second requirement of Directive
2002/15/EC on the break length between working periods, which states that
the total break time on a day should be at least 45 minutes if that day contains
more than 9 hours of working time, is also satisfied. Moreover, it fulfills the
requirements of Regulation (EC) No 561/2006 on the break length between two
driving periods, such that also a new driving period is initiated.

To include the legislation on driving and working hours into our DP heuris-
tic, we have to ensure that the partial route represented by each state is feasible
with respect to these restrictions. For this purpose, we introduce six state di-
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mensions: non-break driving time, non-break working time, daily driving time,
non-rest time, weekly driving time, and weekly working time.

tnbw: accumulated non-break working time. Denotes the total amount of work-
ing time since the last break of at least 45 minutes.

tnbd: accumulated non-break driving time. Denotes the total amount of driving
time since the last break of at least 45 minutes.

tnr: accumulated non-rest time. Denotes the total amount of time passed by
since the last rest period of at least 11 hours.

tdd: accumulated daily driving time. Denotes the total amount of driving time
since the last rest period of at least 11 hours.

tww: accumulated weekly working time. Denotes the total amount of working
time since the last rest period of at least 45 hours.

twd: accumulated weekly driving time. Denotes the total amount of driving
time since the last rest period of at least 45 hours.

We first consider one-week planning from Monday 0:00 am until Sunday
23:59 pm. Furthermore, we first assume that the planning starts right after
a weekly rest period has been taken by all drivers. This results in all state
dimensions tnbw, tnbd, tnr, tdd, tww, and twd being zero for all vehicles at the
start of the planning period. Section 4.3.3 discusses extensions to longer plan-
ning horizons and state dimensions not being zero at the start of the planning
period, allowing for a rolling horizon framework.

When we start a new vehicle, we check for the first customer to be visited
whether it can be reached from the depot. This might not be the case if a vehicle
starts from the depot at time zero and requires a break or rest period before
starting service, since this might violate the time window. If the customer
cannot be served by a vehicle leaving the depot at time zero, we delay the
departure time of the vehicle such that the vehicle arrives at the customer
node exactly at the start of the time window.

Within our basic approach, we do not consider the modifications of the
basic rules. Whenever we want to expand a state (S, i) with a customer j, then
we first determine the arrival time aj at this customer, considering possible
breaks and rest periods that have to be scheduled along the travel from i to j.
The calculation of aj is an iterative process, in which we determine in each
iteration the maximum driving time until a break or rest must be scheduled,
or customer j is reached. The iterative process stops when the latter happens.
For this purpose, we first set aj to the departure time (service completion
time) from customer i, and we introduce a variable δij , denoting the remaining
driving time to customer j. This variable is initially set to the total driving
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time cij from customer i to customer j. We define ∆ = min(δij , 6− tnbw, 4.5−
tnbd, 13− tnr, 9− tdd), which represents the minimal driving time until a break
or rest period must be scheduled, or the next customer is reached. Next, we
recursively check whether the following holds:

δij = ∆ (4.1)

If (4.1) does not hold, two cases may appear: 1) we are forced to schedule
a break along the route, 2) we are forced to schedule a rest period along the
route. Case 1 appears if ∆ = 6 − tnbw or ∆ = 4.5 − tnbd, and 9 − tdd > ∆ and
13 − (tnr + 0.75) > ∆ (note that scheduling a break increases tnr with 0.75,
which we have to account for to avoid scheduling a break and a rest period
directly after each other). After scheduling the break, we set tnbw and tnbd to
zero. Case 2 appears otherwise and after scheduling the rest period we set all
values tnbw, tnbd, tnr, and tdd to zero.

After scheduling a rest or break, we update the remaining driving time δij ,
and in case of a break also the values of tnr and tdd, as follows:

δij := δij − ∆

tdd := tdd + ∆

tnr := tnr + ∆ + 0.75

Furthermore, in each iteration of (4.1), we update the value of aj with the
driving, break, and rest times that are scheduled. After deriving aj , we check
whether the accumulated non-break working time and the accumulated non-
rest time allow to serve the customer without scheduling another break or rest
period before service. To check this, we need the service time sj of customer j
and the time window {ej , lj} in which service must start at customer j. If
tnbw + sj > 6, then we schedule a break and update aj , tnr, tnbw, and tnbd.
Next, if tnr + max {0, ej − aj} + sj > 13, then we schedule a rest period.
However, if both inequalities hold, then we extend the 45 minute break forced
by the non-break working time to an 11 hour rest period to avoid scheduling a
45 minute break and an 11 hour rest period directly after each other. Finally,
if aj ≤ lj , then we can arrive in time to add customer j to the partial route.

To decide whether the addition of customer j is feasible with respect to all
rules of the social legislation, we also need to check whether the vehicle can
still return to the depot without violating the restrictions on the weekly driving
and working times. In order to avoid including infeasible states, we forbid the
expansion if after visiting the customer a return to the depot is infeasible.
Consequently, we only allow an expansion if (4.2) and (4.3) are satisfied.

cij + cj0 ≤ 56 − twd (4.2)

cij + sj + cj0 ≤ 60 − tww (4.3)



4.3. Solution method 59

To improve the basic break scheduling method by increasing the local flexi-
bility at customer j, we introduce a number of scheduling features that reduce
the values of tnbw, tnbd, tnr, and tdd without delaying the time to start service
at customer j. We give the highest priority to reducing the accumulated non-
rest time, since in VRPTWs with large waiting times, this variable reaches its
maximum more often than the accumulated daily driving time. Moreover, it
requires the scheduling of rest periods, which take much longer than the breaks
required by the accumulated non-break working and driving times. We propose
the following three hierarchical procedures to increase local flexibility.

Schedule a rest period : If after arriving at customer j there is at least 11
hours of waiting time until the time window opens, then we schedule a
rest period in this waiting time. We reset all values tnr, tdd, tnbw, and
tnbd to zero, without delaying the time to start service at customer j.
If there is more than 11 hours of waiting time, then we extend the rest
period until the time window opens, such that tnr is not increased before
service starts at customer j.

Extend a rest period : If there is a rest period scheduled along the route to
customer j, then we extend this rest by the waiting time at customer j (if
any). This reduces the value of tnr at the start of service at customer j
without affecting the other state dimensions. This procedure may even
reduce the time to start service. This happens if the waiting time that
results from not extending the rest period would increase the value of tnr

so much that another rest period must be scheduled before service. Since
this rest period does not fit in the waiting time at customer j, it delays
the time to start service beyond ej , and may even make the expansion
infeasible. We postpone the departure time from the depot for traveling
to the first customer in a similar way as we extend a rest along a route
between two customers.

Schedule a break : If there is at least 45 minutes of waiting time at cus-
tomer j, then we schedule a 45 minute break and reset tnbw and tnbd to
zero. This increases the flexibility for adding customers afterwards.

4.3.2 Extended break scheduling method

To make the above presented solution method more suitable for realistic plan-
ning purposes and to allow for an enlargement of the solution space, we incor-
porate all modifications of the basic rules of Regulation (EC) No 561/2006 and
Directive 2002/15/EC. In line with the DP approach, we only exploit these
modifications if they allow for a local improvement of the current partial solu-
tion. The general approach for exploiting the modifications is as follows.

When adding a customer, we try to improve local flexibility by: 1) mini-
mizing the time to start service of the customer to be added, 2) minimizing the
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values of tnbw, tnbd, tnr, and tdd. Each time a break or rest must be scheduled
and each time the arrival time at the customer is derived, we check whether
one of the modifications of the basic rules may help to increase local flexibility.
Since certain modifications can only be applied a limited number of times, we
only apply them if they increase local flexibility. Local flexibility is maximal
when service starts at the earliest feasible time to start service and all values
tnbw, tnbd, tnr, and tdd are minimal.

Extending Driving Times

Regulation (EC) No 561/2006 allows drivers to extend their daily driving time
up to 10 hours twice a week, while the basic rule restricts the daily driving
time to no more than 9 hours. When 9 hours of accumulated driving time is
reached, an extension to 10 hours may increase local flexibility if the remaining
driving time to the next customer is not more than 1 hour. However, the
extension may also require an additional 45 minute break, thereby postponing
the arrival time. Therefore, we only schedule a driving time extension if it
reduces the time to start service at the customer to be added, or if the driving
time extension increases the waiting time at this customer, such that a rest
period can be scheduled without postponing the time to start service. When
the 9 hour driving time limit is reached, we calculate both the arrival time in
case of extending the driving time and in case of not extending the driving time
to derive whether a driving time extension is profitable.

To account for the fact that only 2 driving time extensions may be sched-
uled, we add the following state dimension:

ndte: number of driving time extensions taken by the active driver.

The variable ndte is not allowed to exceed 2, and it is reset to 0 each time a
new vehicle is used.

Reducing Rest Periods

A rest reduction allows to decrease the start time of the next non-rest period
by 2 hours. Within 24 hours after a rest period the next rest period must
have been taken. Therefore, reducing the latter rest period by 2 hours also
allows to increase the end time of the current non-rest period by 2 hours. Note
that this is only possible if all other restrictions, such as the daily driving time
limit, also allow this extension. Combining a decrease of the start time of the
next non-rest period and an increase of the end time of the current non-rest
period is also possible, but only if the sum is at most 2 hours. We follow
the same methodology as with the driving time extensions to derive whether
exploiting a rest reduction increases local flexibility. A special case is when
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extending a driving time limit is equally profitable as reducing a rest period.
In that case, we choose to extend the driving time, since we can only apply each
modification a limited number of times and rest reductions are in general more
valuable than driving time extensions. That is, driving time extensions allow
additional driving times, while a rest reduction may allow additional driving
and working times.

After determining the arrival time at a customer, we also check whether it
is beneficial to reduce the next rest period. The time to start service may be
substantially reduced by extending the current non-rest period to 15 hours (by
allowing to serve the customer before having to schedule the next rest period),
thereby even making the expansion feasible. Therefore, we reduce the next rest
period if this reduces the time to start service.

To account for the fact that only 3 reduced rest periods may be scheduled,
we add the following state dimension:

nrr: number of rest reductions taken by the active driver.

This variable is not allowed to exceed 3, and it is reset to 0 each time a new
vehicle is used.

Splitting Breaks

Both Regulation (EC) No 561/2006 and Directive 2002/15/EC allow drivers to
split breaks. We exploit this rule whenever there is sufficient waiting time at a
customer (but not sufficient for a full break), thereby allowing shorter breaks
whenever the non-break driving or working time limit is reached. Whenever the
non-break driving time limit is reached, either a 45 minute break is scheduled,
or a 30-minute break in case a break of at least 15 minutes has already been
taken since the start of the driving period. Whenever the non-break working

time limit is reached, either a 30 minute break is scheduled, or a 15-minute
break in case a break of at least 15 minutes has already been taken since the
start of the working period.

To account for the rule in Directive 2002/15/EC, stating that at least 45
minutes of break time must be taken if the daily working time exceeds 9 hours,
we introduce the state dimension tdw, which denotes the daily working time:

tdw: daily working time of the active driver.

Whenever this state dimension reaches its maximum of 9 hours, and the total
break time since the last rest period does not add up to at least 45 minutes
yet, then we schedule another break of at least 15 minutes.
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Modification Implementation

Extend driving time If it reduces the time to start service;
if it increases the waiting time, allowing for a rest
period before service

Reduce rest period If it reduces the time to start service;
if it increases the waiting time, allowing for a rest
period before service

Split breaks If there is enough waiting time for a 15 minute break
Split rest periods If there is enough waiting time for a 3 hour rest;

if a 3 hour rest makes service without taking a full
rest before possible and there is no rest reduction
left

Table 4.1: Implementation of the modifications of the basic rules into the break
scheduling method

Splitting Rest Periods

Splitting rests may increase local flexibility, since it allows an extension of the
non-rest period to 15 hours. Therefore, we schedule a split rest whenever there
is sufficient waiting time (but not sufficient for a (reduced) rest period). We
also schedule a split rest if there is not sufficient waiting time, but the extension
of the non-rest period to 15 hours reduces the time to start service. This case
only applies if there are no reduced rest periods available anymore.

Table 4.1 summarizes all implementations of the modifications of the basic
rules into the break scheduling method.

4.3.3 Extensions to Other Time Horizons

So far, we considered a weekly planning horizon and a situation in which all
drivers have just completed a weekly rest period. However, our algorithm can
be extended to longer planning horizons and to a rolling horizon framework.

In case a longer planning horizon is considered, a state dimension (tnwr)
must be added to account for the maximum period of 144 hours between two
weekly rest periods. When one of the state dimensions tww, twd, or tnwr reaches
its maximum value, a weekly rest period must be scheduled. Afterwards, all
state dimensions are reset to 0. To use the modified rules on the weekly rest
period, the weekly driving time, and the weekly working time, we can follow a
similar methodology as described with the extended break scheduling method.

In case drivers have not just completed a weekly rest period at the start of
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the planning period - which is typically the case in a rolling horizon framework -
then we set the initial state dimensions for each vehicle to the initial conditions
of the corresponding drivers. Therefore, the algorithm can also be used in a
rolling horizon framework.

4.4 Computational experiments

We test the two DP heuristics DP basic and DP ext on the modified Solomon
instances proposed by Goel (2009) for the VRPTW-EC. We ran our experi-
ments on a Pentium M, 2.00 GHz CPU and 1.0 GB of RAM. We first report
on the results of DP basic, in which the modifications of the basic rules are not
included. We compare our results with the best results found by Goel (2009).
Since the method proposed by Goel does not consider Directive 2002/15/EC
on drivers’ working hours, we relax our break scheduling method by setting
the maximum non-break working period to 13 hours, i.e., the maximum period
between two rests with DP basic. Next, we present computational results on
the impact of Directive 2002/15/EC. Finally, we present computational results
on the impact of the modifications of the basic rules by applying DP ext. Goel
(2009) proposes the following modification of the Solomon instances for the
VRPTW with the EC social legislation.

Goel considers the depot’s opening hours as a period of 144 hours, corre-
sponding to a weekly working period, and to scale the customer time windows
accordingly. Next, Goel suggests a driving speed of 5 distance units per hour,
and to set all service times to 1 hour. Due to the required breaks and rest
periods, it may be impossible to reach certain customers before their closing
time, or the vehicle may not be able to return in time to the depot after serving
a customer at its opening time. Therefore, Goel suggests to adjust such time
windows in such a way that the opening time equals the earliest time the ve-
hicle can reach the customer, and the closing time is such that starting service
at this closing time and directly returning to the depot results in a return time
at the depot’s closing time, respectively.

As described in Chapter 3, the value of H, which restricts the stage width
after each iteration of the DP heuristic, has a large impact on computation
time and solution quality. We set the value of H to 10,000, because it turned
out that this value results in an average computation time of 65 seconds (with a
maximum of 107 seconds) per problem instance, which is practically acceptable.
Furthermore, we do not restrict the number of state expansions of a single state
(we set the maximum number of state expansions E of a single state to n, the
number of customers). As in Goel (2009), we minimize the number of vehicles as
the primary objective and the total travel distance as the secondary objective.
Therefore, state A dominates state B if they visit the same subset S and end
in the same node j ∈ S, the costs (in terms of the objective function) of state A
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do not exceed the costs of state B, and state A is at least as good as state B
in all other state dimensions.

Table 4.2 presents the results of DP basic with the relaxation of Directive
2002/15/EC and the best results found by Goel (2009). Note that in Goel
(2009) substantially larger computation times are allowed: these results are
the best out of five runs of half an hour each per problem instance.

Table 4.2 clearly shows that our method outperforms the large neighbor-
hood search heuristic proposed by Goel. Only one problem instance (r103) out
of 56 requires one more vehicle with our method, while for 47 problem instances
a smaller number of vehicles is found. On average over all problem instances,
our method finds solutions requiring 18.26% less vehicles.

Also the results on the travel distances show substantial improvements by
our solution method. Only for the r1 problem instances no improvement is
found, on average. In total, our method reduces the travel distances of 37 prob-
lem instances with an average reduction over all problem instances of 5.41%.

Table 4.2: Results DP basic without Directive 2002/15/EC

DP basic Best in Goel (2009) Change
Problem vehicles distance vehicles distance vehicles distance

c101 11 923.66 13 1,143.32 -15.38% -19.21%
c102 11 1,097.97 13 1,198.82 -15.38% -8.41%
c103 10 1,080.04 11 971.11 -9.09% 11.22%
c104 10 1,053.27 10 1,101.42 0.00% -4.37%
c105 10 839.99 11 908.29 -9.09% -7.52%
c106 11 900.10 11 1,079.24 0.00% -16.60%
c107 10 874.03 10 1,023.77 0.00% -14.63%
c108 10 892.71 10 975.20 0.00% -8.46%
c109 10 1027.19 11 1,088.87 -9.09% -5.66%

c1 10.33 965.44 11.11 1,054.45 -7.00% -8.44%

c201 6 941.60 9 1,064.57 -33.33% -11.55%
c202 5 866.09 9 990.03 -44.44% -12.52%
c203 5 810.74 9 982.49 -44.44% -17.48%
c204 4 768.19 8 873.22 -50.00% -12.03%
c205 5 711.96 8 973.53 -37.50% -26.87%
c206 5 677.79 7 838.91 -28.57% -19.21%
c207 5 709.36 9 966.19 -44.44% -26.58%
c208 5 677.62 8 948.21 -37.50% -28.54%
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Table 4.2 (Cont’d.)

DP basic Best in Goel (2009) Change
Problem vehicles distance vehicles distance vehicles distance

c2 5.00 770.42 8.38 954.64 -40.30% -19.30%

r101 13 1,483.95 15 1,413.43 -13.33% 4.99%
r102 13 1,398.59 13 1,296.16 0.00% 7.90%
r103 11 1,256.53 10 1,251.81 10.00% 0.38%
r104 8 1,023.47 10 1,024.13 -20.00% -0.06%
r105 11 1,207.87 12 1,276.23 -8.33% -5.36%
r106 9 1,162.18 11 1,150.95 -18.18% 0.98%
r107 9 1,068.90 10 1,098.62 -10.00% -2.71%
r108 8 1,011.90 9 1,047.53 -11.11% -3.40%
r109 9 1,094.14 11 1,058.01 -18.18% 3.42%
r110 8 1,061.92 10 1,062.43 -20.00% -0.05%
r111 9 1,085.39 10 1,008.31 -10.00% 7.64%
r112 8 973.86 10 1,043.10 -20.00% -6.64%

r1 9.67 1,152.39 10.92 1,144.23 -11.45% 0.71%

r201 10 1,337.07 13 1,335.17 -23.08% 0.14%
r202 10 1,258.97 12 1,215.88 -16.67% 3.54%
r203 9 1,130.86 10 1,122.58 -10.00% 0.74%
r204 6 913.46 9 1,013.70 -33.33% -9.89%
r205 8 1,136.25 12 1,183.14 -33.33% -3.96%
r206 7 1,084.71 9 1,068.91 -22.22% 1.48%
r207 7 1,024.53 11 1,064.22 -36.36% -3.73%
r208 6 918.88 8 1,088.12 -25.00% -15.55%
r209 7 1,104.62 10 1,067.09 -30.00% 3.52%
r210 7 1,185.38 10 1,076.23 -30.00% 10.14%
r211 6 1014.32 9 943.45 -33.33% 7.51%

r2 7.55 1,100.83 10.27 1,107.14 -26.55% -0.57%

rc101 12 1,454.01 13 1,599.01 -7.69% -9.07%
rc102 11 1,403.06 11 1,434.52 0.00% -2.19%
rc103 10 1,278.33 11 1,268.81 -9.09% 0.75%
rc104 9 1,188.22 9 1,263.25 0.00% -5.94%
rc105 12 1,426.29 12 1,405.72 0.00% 1.46%
rc106 10 1,253.11 12 1,297.67 -16.67% -3.43%
rc107 9 1,189.06 11 1,243.08 -18.18% -4.35%
rc108 9 1,212.69 10 1,269.90 -10.00% -4.50%



66 Chapter 4. Vehicle routing with driving hours regulations

Table 4.2 (Cont’d.)

DP basic Best in Goel (2009) Change
Problem vehicles distance vehicles distance vehicles distance

rc1 10.25 1,300.60 11.13 1,347.75 -7.87% -3.50%

rc201 10 1,554.93 11 1,510.67 -9.09% 2.93%
rc202 9 1,356.14 10 1,415.67 -10.00% -4.21%
rc203 8 1,295.72 10 1,274.45 -20.00% 1.67%
rc204 6 975.56 9 1,264.73 -33.33% -22.86%
rc205 9 1,437.07 11 1,521.10 -18.18% -5.52%
rc206 8 1,220.06 11 1,418.40 -27.27% -13.98%
rc207 8 1,234.27 10 1,171.94 -20.00% 5.32%
rc208 7 1.059.39 8 1,201.13 -12.50% -11.80%

rc2 8.13 1,266.64 10.00 1,347.26 -18.75% -5.98%

This remarkably large improvement with respect to the solutions found
by the large neighborhood search heuristic of Goel can be explained as follows.
Determining the feasibility of neighborhood solutions which respect Regulation
(EC) No 561/2006 requires substantially larger computation times than when
this regulation is neglected. Therefore, the number of neighborhood solutions
that can be evaluated reduces substantially when respecting this regulation.
In contrast, the running time complexity of our DP heuristic does not increase
by respecting Regulation (EC) No 561/2006. Therefore, the number of states
that can be investigated during a fixed amount of computation time does not
substantially decrease when this regulation is respected.

If a practical application allows more computation time, this is beneficial for
our method. For example, if H is set to 100,000 then the average computation
time increases to 11 minutes (which is still much smaller than the computation
times allowed in Goel (2009)), but with an average additional reduction of the
number of vehicles and travel distance of 1.46% and 1.90%, respectively.

The restrictions on drivers’ working hours that are imposed by Directive
2002/15/EC are generally ignored in the literature. However, they do reduce
the solution space and, therefore, may have a substantial impact on the solu-
tion quality. We tested this impact by solving the benchmarks of Goel with
DP basic. Table 4.3 presents the average results for the six problem sets of
DP basic including Directive 2002/15/EC. Columns 4 and 5 present the relative
changes in objective value when Directive 2002/15/EC is included. As can be
observed, these changes are substantial (3.89% more vehicle routes, on average,
and 0.96% more travel distance, on average). Therefore, Directive 2002/15/EC
has a substantial impact on the resulting vehicle routes.

Finally, we tested the impact of exploiting the modifications of the basic
rules on the quality of the resulting vehicle routes. Table 4.4 reports the average
objective values for the six problem sets using DP ext. In columns four and five
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Without Directive With Directive Changea

Problem vehicles distance vehicles distance vehicles distance
c1 10.33 965.44 10.33 949.31 0.00% -1.67%
c2 5.00 770.42 5.75 834.47 15.00% 8.31%
r1 9.67 1,152.39 9.67 1,155.89 0.00% 0.30%
r2 7.55 1,100.83 7.91 1,097.26 4.82% -0.32%
rc1 10.25 1,300.60 10.25 1,300.14 0.00% -0.04%
rc2 8.13 1,266.64 8.50 1,264.52 4.62% -0.17%

aChange with respect to the results without Directive 2002/15/EC

Table 4.3: Results DP basic including Directive 2002/15/EC

DP basic DP ext Changea

Problem vehicles distance vehicles distance vehicles distance
c1 10.33 949.31 10.11 937.08 -2.15% -1.29%
c2 5.75 834.47 5.25 773.80 -8.70% -7.27%
r1 9.67 1,155.89 9.33 1,142.62 -3.45% -1.15%
r2 7.91 1,097.26 7.36 1,084.70 -6.90% -1.15%
rc1 10.25 1,300.14 10.00 1,322.41 -2.44% 1.71%
rc2 8.50 1,264.52 8.13 1,247.37 -4.41% -1.36%

aChange with respect to the results with DP
basic

Table 4.4: Results DP ext

we compare the results with the results of ignoring the modifications of the basic
rules (see Table 4.3). These columns indicate the profitability of exploiting the
modifications.

On average, the results are improved for all problem sets. There is a sub-
stantial reduction in the number of vehicles used (4.28% on average) and in the
total distance traveled (1.54% on average). Therefore, the benefits of exploit-
ing the modifications are substantial and they should be accounted for when
constructing vehicle routes.

4.5 Conclusion

We proposed a solution method for the VRPTW-EC. The method satisfies
both the European legislation on drivers’ driving hours and on drivers’ working
hours, formalized in Regulation (EC) No 561/2006 and Directive 2002/15/EC,
respectively. It also considers all modifications of the basic rules in these laws.

We proposed a basic break scheduling method without the modifications
of the basic rules, which we embedded in the restricted DP heuristic. The
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methodology for scheduling the breaks is to maximize local flexibility at the
last visited customer of the partial routes: we minimize the time to start service
and we maximize the available driving and working time after service until a
rest or a break has to be scheduled. This methodology fits well both in the DP
framework and in practice. We extended the basic break scheduling method
with exploiting the modifications of the basic rules, such that local flexibility
is increased even further.

The computational results show that the basic method outperforms the
state of the art local search method for the VRPTW-EC. The average number
of vehicle routes is reduced by more than 18% and the average travel distance
by more than 5%. On top of that, the computational effort of our approach is
much smaller than for the local search method. One reason for this remarkable
performance is that complex timing restictions can be incorporated in the DP
heuristic without increasing its running time complexity, as opposed to evalu-
ating moves in approaches based on local search. The running time complexity
of the DP heuristic remains the same, because estimating the quality of partial
routes is done locally.

The results also show that Directive 2002/15/EC on the drivers’ working
hours has a substantial impact on the VRPTW-EC solutions and, therefore,
cannot be ignored when constructing the vehicle routes. Finally, the results
show that the modifications of the basic rules allow substantial cost reductions
by reducing the number of vehicles by more than 4%, and the total travel
distance by more than 1.5%, on average. Therefore, we recommend to exploit
these modifications in practice.



Chapter 5

The impact of congestion
avoidance

5.1 Introduction

Due to a growing amount of traffic and a limited capacity of the road network,
traffic congestion has become a daily phenomenon. Since traffic congestion
causes considerable delays, it is very costly for intensive road users such as
logistic service providers and distribution firms. In particular, such delays
cause large costs for hiring the truck drivers and the use of extra vehicles, and
if they are not accounted for in the route plans, they may cause late arrivals at
customers and violations of driving hours regulations. Therefore, accounting
for and avoiding traffic congestion has a large potential for cost savings.

Traffic congestion may have several causes. Some of these causes are well-
predictable, such as the large amount of commuter traffic during the daily peak
hours, and others are less predictable, such as the weather or road accidents.
Since the delays caused by peak hour traffic congestion are well-predictable and
they constitute a large part (70 to 87%) of all traffic congestion delays (see, e.g.,
Skabardonis et al., 2003), we focus on avoiding peak hour traffic congestion.

Given a certain realization of the factors causing traffic congestion, peak
hour traffic congestion depends on location and time of the day. Therefore,
congestion avoidance is all about not being at the wrong place at the wrong
time. There are several strategies to achieve this. For example, changing the
visit sequence of a vehicle may avoid a large traffic jam. Another example is
to remove a customer from one vehicle route and insert it into another. These
congestion avoidance strategies can be optimized by solving a VRP with time-
dependent travel times (TDVRP).

69
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Another strategy to avoid traffic congestion is to select an alternative route
between two customers during problematic hours. This strategy implies that
the route between two customers depends on the chosen departure time, which
can be optimized by solving a shortest path problem with time-dependent travel
times (TDSPP). Orda and Rom (1990) show that a time-dependent shortest
path problem for a given departure time can be solved with a modified Dijkstra
(1959) search if the non-passing property, which states that overtaking is not
possible, is satisfied.

The objective of this chapter is to determine to what extent congestion
avoidance in off-line vehicle routing is profitable in practice. For this purpose,
we propose four strategies of congestion avoidance to an increasing extent. Each
strategy consist of two phases: 1) determining (time-dependent) shortest paths
between all customer locations, and 2) solving a (TD)VRP. Phase 1 provides
the input for phase 2. In each phase, congestion can be avoided to some
extent. The congestion avoidance strategies may be further improved with on-
line routing methods using real-time travel time information. However, on-line
congestion avoidance strategies are beyond the scope of this thesis.

To test the impact of the congestion avoidance strategies in a realistic set-
ting, we develop a number of VRP instances on real road networks and a speed
model that represents peak hour traffic congestion. This speed model reflects
the key elements of peak hour traffic congestion, based on observations of the
Dutch motorists’ organization ANWB (ANWB Reisinformatie, 2010) of peak
hour traffic congestion in the Netherlands: large delays in urban areas, large
delays on road lanes towards urban areas during the morning peak and in the
opposite direction during the evening peak, and large delays on roads with a
high speed limit (highways). We assume that these key elements are similar
for other road networks with similar densities. We determine for each VRP
instance an off-line vehicle route plan for each congestion avoidance strategy.
Then, we evaluate the quality of these plans by executing them with the actual
speeds in the road network obtained from the speed model. This methodology
evaluates the impact of the different levels of congestion avoidance in a realistic
setting.

This chapter1 is organized as follows. Section 5.2 proposes four strategies
with different levels of congestion avoidance for solving off-line vehicle routing
problems. Section 5.3 proposes a general solution approach to solve the prob-
lem instances with these four congestion avoidance strategies. In Section 5.4,
we propose a speed model that represents the key elements of peak hour traffic
congestion. Section 5.5 presents the impacts of the different congestion avoid-
ance strategies and Section 5.6 summarizes the main findings in this chapter.

1This chapter is based on Kok et al. (2009a)



5.2. Strategies 71

5.2 Strategies

In this chapter, we consider realistic vehicle routing problems on real road
networks with speed patterns for each arc. Section 5.4 describes a speed model
to derive these speed patterns. We solce each VRP in two phases. In phase
one, we determine the (time-dependent) shortest paths between all locations.
In phase two, we solve a (time-dependent) VRP, using the travel times resulting
from phase one. In each phase, traffic congestion can be avoided. We propose
four strategies in which congestion is avoided to an increasing extent. The
first two strategies are closest to the VRP literature, in which we model the
travel times as time-independent. The only difference between these strategies
is that Strategy 2 accounts for traffic congestion to some extent, while Strategy
1 completely ignores traffic congestion. The other two strategies consider time-
dependent travel times and, therefore, traffic congestion can be avoided. We do
this to a greater extent with Strategy 4 than with Strategy 3. We now describe
the four strategies in more detail.

Strategy 1 is the base strategy in which traffic congestion is completely
ignored. In phase one, we determine all free-flow shortest paths between the
customers. For this purpose, we set the speed of each arc in the road network
to the maximum in its speed pattern. We calculate the travel times along the
paths using these maximum speeds. In phase two, we solve a VRP based on
the resulting free-flow travel times between the customers. This strategy does
not account for traffic congestion to any extent, and, therefore, congestion is
not avoided.

With Strategy 2, we account for traffic congestion by solving a VRP based
on average travel times. As with Strategy 1, we determine the free-flow shortest
paths in phase one by setting each arc to its maximum speed. We fix these
paths and use them if the corresponding origin-destination pair is selected in
phase two. Next, we determine the average travel times along these paths by
calculating the exact travel times for a large number of different departure
times. We set the inter-departure time to 15 minutes, meaning that we set
the first departure time equal to the depot opening time, the second departure
time 15 minutes later, etc. We continue this process until the departure time
exceeds the depot closing time. For each departure time, we calculate the travel
times using the time-dependent arc speeds resulting from the speed model. We
use the averages over these time-dependent travel times as input for a VRP in
phase two. With this strategy, we account for traffic congestion by averaging
the delays along a route over the entire day.

With Strategy 3, we avoid traffic congestion by solving a TDVRP. Phase one
with this strategy is similar to phase one with Strategy 2. The only difference
is that we do not average the time-dependent travel times (with inter-departure
times of 15 minutes) in phase one, but we use them as input for the TDVRP
in phase two. We use interpolation each time the TDVRP solver requires
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the travel time between two customers for a given departure time. Note that
with this strategy the route between each pair of customers is fixed at the
free-flow shortest path, as with Strategy 1 and 2. This strategy accounts for
traffic congestion to a large extent and aims at avoiding traffic congestion by
selecting alternative customer visit sequences and alternative customer-vehicle
assignments.

Strategy 4 adopts the highest level of congestion avoidance. With this
strategy, we determine time-dependent shortest paths for a large number of
different departure times in phase one (we again set the inter-departure time
to 15 minutes). Next, we determine the time-dependent travel times for all
these different departure times along the corresponding time-dependent short-
est paths and use them as input for solving a TDVRP in phase two. Again,
we use interpolation to estimate the travel time for a given departure time
when the TDVRP is being solved. Finally, since the resulting planned de-
parture times generally do not coincide with a departure time for which the
time-dependent shortest path has already been determined in phase one, we
determine the shortest paths for the planned departure times in a final step.
This strategy accounts for traffic congestion to the same extent as Strategy
3, but adopts a higher level of congestion avoidance: at problematic hours we
choose alternative routes between customers. Table 5.1 gives an overview of
the four strategies.

Strategy Shortest Travel time Accounting for Avoiding
paths input for VRP congestion congestion

1 free-flow free-flow no no
2 free-flow average a small extent no
3 free-flow time-dep. yes yes
4 time-dep. time-dep. yes yes

Table 5.1: Strategy overview

After we solve the VRP instances with each strategy, we evaluate the per-
formances of the resulting vehicle route plans using the speeds resulting from
the speed model. Note that with each strategy we use travel time estimations
to solve a (TD)VRP. The reason for using travel time estimations with Strat-
egy 3 and 4 is that calculating the exact travel times while solving a TDVRP
is too time-consuming (shortest paths generally contain hundreds of arcs - de-
pending, among other things, on the size of the road network - along which
the travel time calculation needs to be propagated). In practice, however, the
TDVRP often needs to be solved within limited computation times. Therefore,
the proposed travel time estimations, which are independent of the size of the
road network, are suitable for practice.
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5.3 Solution methods

With each strategy, we need to solve a (TD)SPP and a (TD)VRP. To make
a fair comparison between the different strategies, we solve the problems with
solution methods that do not need to be tailored for each specific problem. This
means that the shortest path algorithm can solve both SPPs and TDSPPs,
and the VRP solution method can solve both VRPs and TDVRPs. We solve
the (TD)VRPs with the restricted dynamic programming heuristic proposed in
Chapter 3. This DP heuristic can solve VRPs and TDVRPs within comparable
computation times. Therefore, the computation times for the (TD)VRPs are
(approximately) the same for each strategy, such that this does not affect the
applicability of the different strategies in practice. For the computation times
of the shortest path algorithms we can be less restrictive, since shortest path
calculations are generally done as a pre-processing in practice.

We solve the (TD)SPPs with a modified Dijkstra (1959) algorithm. The
only adaptation we make is that we initiate the searches with a given departure
time from the source node, and we keep track of the departure times from each
reached node. This is necessary to determine the time-dependent travel times
when the labels of the nodes need to be updated. This approach allows us to
solve the shortest path problems with Strategy 1, 2, and 3 in (approximately)
the same computation times. Only with Strategy 4, the computation time in-
creases, since we have to rerun the algorithm for each possible departure time.
However, this is all done in phase one, a pre-processing phase in which compu-
tation times play a minor role in practice. Note that to guarantee optimality of
Dijkstra’s algorithm, the non-passing property - which states that overtaking is
not possible - must be satisfied, since violations of this property may allow an
optimal path to contain non-optimal subpaths. The speed model in Section 5.4
satisfies this property.

5.4 Speed model

To investigate the impact of the different congestion avoidance strategies in a
realistic setting, we propose a speed model for real road networks that reflects
the key elements of peak hour traffic congestion, as observed by the Dutch mo-
torists’ organization ANWB. The speed model is designed for the road network
data used in this chapter, but the methodology can be applied to any other
road network data. Note that the speed model is based on the key elements of
peak hour traffic congestion; it is not based on real (historical) travel time data.
There is no empirical evaluation of the performance of this speed model on real
road networks in particular. To apply vehicle routing methods in practice, the
speed model should be tailored to the road networks under consideration. This
tailoring is beyond the scope of this study: the objective of this study is to get a
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good estimation of the performance of different congestion avoidance strategies
in a broad and realistic setting.

Our road network data is a selection of the TIGER/Line files (Tiger/line,
2002), which consist of road network data of each of the 50 US states. We select
the states Rhode Island, Connecticut, Maryland, Massachusetts, and New Jer-
sey, because they have a high degree of urbanization, resulting in many traffic
congestion problems during the peak hours. Moreover, the sizes of these states
are comparable to some smaller countries in Europe such as the Netherlands
and Belgium, which are also densely populated. Furthermore, we select Ken-
tucky for comparison reasons: in addition to a relatively small urban area it
also has large rural areas.

The TIGER/Line data contain geoinformation on nodes in the road net-
work (each node represents an intersection of different roads or a change in
average speed on the same road), and distance and road category information
on directed arcs connecting these nodes. There are four road categories with
the following free-flow time-independent travel speeds: 1 for road category 1,
0.8 for road category 2, 0.6 for road category 3, and 0.4 for road category 4.

We propose a time-dependent speed model that incorporates peak hour
traffic congestion. This speed model defines for each arc a travel speed during
the peak hours and a travel speed outside the peak hours. We assume the
morning peak to last from 6:30AM until 9:30AM and the evening peak from
3:30PM until 7PM, since observations of the Dutch motorists’ organization
ANWB indicate the peak periods as such. The speed outside the peak hours is
set to the speed provided by the TIGER/Line files. We base the speed drops
during the peak hours on the key elements of peak hour traffic congestion as
follows.

Peak hour traffic congestion is mainly caused by a large amount of commuter
traffic. Since commuter traffic needs to be at the same time (at the start of
the working day) at the same place (large cities), the most common roads get
congested during the peak hours. With respect to peak hour traffic congestion,
the following elements are relevant:

1. Degree of urbanization. Within urban areas, there is much more traffic
congestion than in rural areas. Therefore, there is a positive correlation
between the degree of urbanization and the amount of speed drop during
the peak hours.

2. Direction of commuter traffic. During the morning peak, commuter traffic
is traveling towards working areas. Therefore, during the morning peak,
much more traffic congestion appears on road lanes directed to urban
areas than on road lanes in the opposite direction (and during the evening
peak vice versa).

3. Speed limit. In general, roads with a high speed limit (highways) are
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more heavily used than roads with a lower speed limit (rural roads). Since
roads with a high speed limit lie on many (free-flow) shortest paths, there
is a positive correlation between a road’s speed limit and the amount of
traffic congestion during the peak hours.

We propose the following approach to quantify the speed drops during the
peak hours on each arc in the road network, based on the three observations
described above. First, we determine the degree of urbanization of the source-
and destination-node of the arc under consideration by counting the number of
network nodes in the proximity area of each node. We refer to such nodes as
proximity nodes. In Section 5.4.1, we explain in detail how this proximity area
is defined and how we use it to determine the degree of urbanization of each
node. We set the degree of urbanization of each arc to the maximum of the
degrees of its source- and destination-node. Next, we determine the direction
of the arc, i.e., towards or from an urban area. If the destination-node has a
higher number of proximity nodes than the source-node, then the arc is directed
towards an urban area. Finally, the speed limit on the arc is given by the road
category of the arc under consideration. In this way, all three elements relevant
to peak hour traffic congestion are considered.

Using the calculated degree of urbanization, the arc direction, and the road
category, we calculate the speed drops as follows. Table 5.2 presents the max-
imum (relative) speed drops, expressed as a percentage of the free-flow speed,
during the morning peak for each road category (for the evening peak the two
rows are swapped). These maximum speed drops depend both on the arc di-
rection and on the road category. In Section 5.5.1, we conduct a sensitivity
analysis of these speed drops by repeating all computational experiments for a
selected number of alternative maximum speed drop patterns. For each arc, we
multiply the maximum speed drop with a fraction, depending on the degree of
urbanization. Table 5.3 presents these fractions. Degree 1 represents the lowest
degree of urbanization. For example, the speed drop during the morning peak
on an arc with road category 2, a degree of urbanization of 3, and directed
towards an urban area equals 2/3 ∗ 0.65 ≈ 43% of the free-flow speed on this
arc.

road cat. 1 road cat. 2 road cat. 3 road cat. 4
Arcs towards 0.9 0.65 0.4 0.15
urban areas
Arcs from 0.3 0.25 0.2 0.15
urban areas

Table 5.2: Maximum speed drop during the morning peak as a percentage of
the free-flow speed

Using this approach, the speed model reflects the three key elements of
peak hour traffic congestion. Table 5.2 presents the dependency of the speed



76 Chapter 5. The impact of congestion avoidance

Degree of urbanization Fraction of speed drop
1 0
2 1/3
3 2/3
4 1

Table 5.3: Degree of urbanization and corresponding speed drop fraction

drops on the road direction and the speed limit, and Table 5.3 shows that arcs
located in high degrees of urbanization encounter larger speed drops than arcs
in low degrees of urbanization.

5.4.1 Determining the degree of urbanization of a node

We propose the following methodology for determining the degree of urban-
ization of each node in the road network. In general, nodes that lay in highly
urbanized areas contain more proximity nodes than nodes that lay in rural
areas. If a node lies in such a highly urbanized area, we say that it has a
high degree of urbanization. We define the proximity area of a node to a circle
centered at this node with a radius of 10 km. This implies that if we approach
a highly urbanized area, we may identify it when we are in a 10 km range of
this area. To get an indication of the number of proximity nodes for a node
that lies in a highly urbanized area, we determine for each state the maximum
number of proximity nodes over all nodes in that state (each state contains at
least one highly urbanized area).

State Max # proximity
nodes (×1,000)

Connecticut 15
Kentucky 19
Rhode Island 24
Maryland 28
New Jersey 32
Massachusetts 38

Table 5.4: Maximum # proximity nodes in each state

Table 5.4 shows that nodes that lay in highly urbanized areas, typically
contain 15 thousand or more proximity nodes. Therefore, we set the degree
of urbanization of a node to 1 if it contains at least 15 thousand proximity
nodes. The numbers of proximity nodes corresponding to the other degrees of
urbanization are evenly spread between 0 and 15 thousand. Table 5.5 presents
the resulting correspondence between the number of proximity nodes and the
degree of urbanization.
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# proximity nodes degree of urbanization
(×1,000)

0 - 5 1
5 - 10 2
10 - 15 3
15+ 4

Table 5.5: Number of proximity nodes and degree of urbanization

5.5 Computational experiments

We test the impact of the four congestion avoidance strategies on a large num-
ber of VRP instances. These VRP instances are developed on the road networks
of the six selected states and the speeds resulting from the speed model. The
customer locations are randomly selected from the nodes in the road network.
Clustering of the customer locations is a natural result, since the road network
is denser in urban areas. Furthermore, the first selected node is considered to
be the depot.

We develop 15, 50, and 100 customer problem instances. The 15 customer
problem instances are small enough to be solved to optimality in practical
computation times (3 to 8 minutes). The 100 customer problem instances
are approximately the largest instances for which we can still run a sufficient
number of experiments within practical computation times.

We add time windows to 50 percent of the customers indicating the period
in which service must start. We set the time window of the depot to [0, 14],
indicating a working day of 14 hours from 6AM until 8PM. The morning and
evening peak last from 6:30AM until 9:30AM and from 3:30PM until 7PM,
respectively. The width of the time windows at the selected customers are
randomly drawn from {2, 3, 4, 5, 6} quarters of an hour. The customer service
times are randomly drawn from {1, 2} quarters of an hour and the demands
are randomly drawn from {1, 2, ..., 10}. If the vehicle capacities are set too low,
then the length of vehicle routes are only restricted by these capacities. If they
are set too high, then the length of the routes are only restricted by the time
windows. Preliminary tests indicated that a capacity of 55 results in a fair
trade-off. Therefore, we used this capacity in our experiments. We generate
20 problem instances for each combination of state and number of customers,
resulting in 360 VRP instances in total.

The primary objective is set to minimize the total number of vehicle routes,
and the secondary objective to minimize the total duty time (sum of travel, ser-
vice, and waiting times) of the truck drivers. We choose to minimize duty times
as a secondary objective instead of travel times or travel distances, since small
duty times are generally more important in practice. We choose to dispatch
the trucks at time zero. Although postponing the departure times at the depot
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may substantially reduce duty times, as we shall demonstrate in Chapter 6, it
is beyond the scope of this chapter to also optimize the departure times of each
vehicle. Chapter 6 discusses duty time minimization through departure time
optimization within VRPs with time-dependent travel times and driving hours
regulations.

We implemented the data-structures and solution algorithms in Delphi 7 on
a PC with a Core 2 Quad, 2.83 GHz CPU and 4 GB of RAM. Table 5.6 presents
the average results for the four strategies over all problem instances (we scale
the results of the 15- and 50-customer instances to 100-customer instances),
except for the problem instances generated on Kentucky. We scale and average
the results, since the results of the 15-, 50-, and 100-customer problem instances
are similar. All performance measures are derived by evaluating the developed
route plans with each strategy against the speeds resulting from the speed
model. Next to the two objectives ‘minimizing number of vehicle routes’ and
‘minimizing duty times’ we also report on the following performance measures:
total travel distance, total number of late arrivals at customers, total number
of late return times at the depot, maximum late time over all customers, and
total late time over all customers. Although we do not optimize on travel
distances, we also report the impacts of the strategies on this performance
measure. For practice, both measures are relevant, since they imply different
transport costs. The last four performance measures indicate the reliability
of the route plans. Note that all performance measures present averages over
all problem instances, except for ‘maximum late time’, which is the maximum
over all problem instances and all vehicle routes.

Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 11.70% 0.55% 0.36%
Total duty time (hrs) 153.2 3.34% -6.59% -7.69%
Total travel distance 58.56 -0.60% -0.59% -1.24%
# late arrivals 16.47 -77.37% -99.86% -99.72%
# late return times 0.328 -66.10% -100.00% -100.00%
Maximum late time (hrs) 3.051 -67.56% -99.96% -99.95%
Total late time (hrs) 15.28 -88.58% -100.00% -100.00%

aabsolute figures
brelative change with Strategy 1

Table 5.6: Main results, aggregated over all problem instances.

The number of vehicle routes is larger with Strategy 2, 3, and 4 than with
Strategy 1. This can be explained by the low travel time estimations based
on free-flow travel conditions with Strategy 1, which are lower bounds to the
travel time estimations with all other strategies. However, the results indicate
that avoiding traffic congestion to an increasing extent reduces the number of
vehicles again and approaches the number of vehicles required with Strategy 1.
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The duty times show a similar pattern, which can be partially explained
by the number of vehicle routes. Furthermore, the additional congestion infor-
mation with Strategy 2, 3, and 4 with respect to Strategy 1 reduces the total
duty time. This even results in an overall decrease of total duty time for Strat-
egy 3 and 4 with respect to Strategy 1, despite the larger number of vehicle
routes. Note that the estimated duty time with Strategy 1 is the best (optimal
for the 15-customer instances) for flee-flow travel conditions. Therefore, if we
subtract the estimated duty times found with Strategy 1 from the real duty
times with each strategy, then we obtain estimations of the additional duty
times caused by traffic congestion. Table 5.7 presents the average amount of
additional duty time for each strategy with respect to the estimated duty time
found with Strategy 1. The results show that with Strategy 1 about 8.8% of
the total duty time is due to traffic congestion delays. Strategy 2 results in an
even larger additional duty time than Strategy 1. Strategy 3 and 4, however,
reduce the additional duty time of Strategy 1 substantially by 75% and 87%,
respectively.

Strat. 1 Strat. 2 Strat. 3 Strat. 4
Additional duty time (hrs) 13.49 18.61 3.403 1.711

Table 5.7: Average additional duty time (hours) caused by traffic congestion.

The travel distances are similar with each strategy. Only with Strategy 4
some smaller travel distances are obtained. This can be explained by choosing
alternative paths between customer locations at bad hours with this strategy.
Such alternative paths typically contain arcs with smaller speed drops than
arcs on the free-flow shortest paths due to, e.g., arcs with lower maximum
speeds. However, such lower speeds have to be compensated by smaller travel
distances.

The reliability of the route plans strongly increases if the level of congestion
avoidance increases. All reliability measures show a strong reduction with
respect to Strategy 1. This is not surprising, since the strategies account for
traffic congestion to an increasing extent. However, the huge improvement
of Strategy 2 with respect to Strategy 1 in comparison with the additional
improvements of the other two strategies is less obvious. The explanation for
this is that an underestimation of a travel time at the start of a vehicle route
with Strategy 1 propagates along all arrival times at successive customers of
that vehicle route. With Strategy 2, such an underestimation is generally
compensated by an overestimation of later travel times.

Table 5.8 presents the results for the sixth state: Kentucky. As mentioned
before, Kentucky contains a large rural area compared to the other 5 states.
Therefore, the main part of the routes of the problem instances generated on
this state do not contain heavy delays caused by traffic congestion. Table 5.8
shows that this has a strong impact on the results. The increase in number
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of vehicle routes with Strategy 2 with respect to Strategy 1 is much smaller
than for the other states. Moreover, with Strategy 4 almost the same number
of vehicle routes is attained as with Strategy 1.

The differences in duty times are also much smaller. With Strategy 1, only
about 1 hour of duty time is caused by congestion delays, as opposed to the 13.5
hours for the other states. Congestion avoidance strategies lead to reductions of
this additional duty time up to 84% with Strategy 4. The reliability measures
show similar results as at the other states. In conclusion, Kentucky leads to
much less congestion problems than highly urbanized states, but high levels of
congestion avoidance still substantially increase the realiability of the vehicle
route plans.

Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.48 1.69% 0.93% 0.11%
Total duty time (hrs) 135.4 0.67% -0.08% -0.61%
Total travel distance 52.50 0.93% 2.27% -0.98%
# late arrivals 2.011 -68.51% -100.00% -92.82%
# late return times 0.000c -c -c -c

Maximum late time (hrs) 0.349 -80.24% -100.00% -99.93%
Total late time (hrs) 0.558 -88.29% -100.00% -99.94%
Additional duty time (hrs) 0.992 91.65% -10.75% -83.94%

aabsolute figures
brelative change with Strategy 1
cthere were no late return times with each strategy

Table 5.8: Results for Kentucky

5.5.1 Sensitivity analysis of the speed model

The actual speed drops on specific road networks depends on several factors,
such as landscape (hilly or flat), urban organization (companies centered at
one city or dispersed across many cities), difference in speed limit between
trucks and cars, and even culture. Therefore, we conduct a sensitivity analysis
of the speed model we proposed in this study by repeating the computational
experiments for a selected number of alternatives. We selected the following
four alternatives for the maximum speed drops, which can be seen as extreme
cases of the key elements of peak hour traffic congestion:

1. Only speed drops on highways. In this alternative, there are no speed
drops during the peak hours on secondary roads, but only on the high-
ways. This alternative can be seen as a case in which the majority of the
road users does not consider alternative paths through secondary roads
as an option to avoid peak hour traffic congestion. It may also be the case
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that secondary roads are less sensitive to traffic congestion due to better
traffic flows as a result of a lower maximum driving speed. Table 5.9a

presents the maximum relative speed drops for this alternative.

2. All roads the same maximum relative speed drop. This alternative is
basically the opposite of Alternative 1. It represents the case in which
many road users choose alternative paths during the peak hours, such
that also secondary roads get congested. Therefore, the maximum relative
speed drops depend no longer on the road category. Table 5.9b presents
the maximum relative speed drops for this alternative.

3. Similar speed drops during the morning and evening peak. Some cities
lay between two areas that both attract much commuter traffic. Such
an urban organization may imply that roads passing these ‘in-between
cities’ get congested in both directions, and both during the morning
and evening peak. To account for this alternative, we set the maximum
relative speed drops independent of the road direction (which also implies
that they are the same for the morning and evening peak), as Table 5.9c

presents.

4. Small speed drops. To investigate the sensitivity of the amount of the
relative speed drops, we propose a fourth alternative in which the max-
imum relative speed drops are half the original maximum relative speed
drops. Table 5.9d presents the resulting maximum relative speed drops.

We run all computational experiments again for all alternatives. We com-
pare the results of the different alternatives with the original speed pattern.

Table 5.10 presents the results for Alternative 1 in which speed drops during
the peak hours only appear on highways. Strategy 2 results in a larger number
of vehicle routes than Strategy 1, but this increase is smaller than with the
original speed drops. This can be explained by the smaller speed drops, on
average, in this alternative. The same holds for the increase in duty time with
Strategy 2 with respect to Strategy 1. The reduction in the number of vehicles
needed with Strategy 4 with respect to Strategy 3 is almost twice as big as this
reduction with the original speed drops. This can be explained by the free-
flow travel times on secondary roads, which are only exploited with Strategy
4. The higher reliability of the route plans when higher levels of congestion
avoidance are adopted is similar to the results with the original speed drops.
The reduction in additional duty time caused by traffic congestion is even
more impressive than with the original speed drops: 95% instead of 87% with
Strategy 4. This larger reduction is due to the bigger opportunities for selecting
alternative paths during the peak hours.

Table 5.11 presents the results for Alternative 2 in which all roads have
the same maximum relative speed drop. For this alternative, the reliability
measures with Strategy 1 are worse than with the original speed drops because
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(a)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.9 0.0 0.0 0.0
urban areas
Arcs from 0.3 0.0 0.0 0.0
urban areas

(b)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.9 0.9 0.9 0.9
urban areas
Arcs from 0.3 0.3 0.3 0.3
urban areas

(c)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.9 0.65 0.4 0.15
urban areas
Arcs from 0.9 0.65 0.4 0.15
urban areas

(d)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.45 0.325 0.2 0.075
urban areas
Arcs from 0.15 0.125 0.1 0.075
urban areas

Table 5.9: Maximum speed drop during the morning peak as a percentage of
the free-flow speed for the four alternatives: a) only speed drops on highways,
b) all roads the same maximum relative speed drop, c) similar speed drops
during the morning and evening peak, d) small speed drops.

of the bigger speed drops, on average. As a consequence, the increase in number
of vehicle routes with Strategy 2, 3, and 4 with respect to Strategy 1 is larger
than for the original speed drops, especially with Strategy 2 (18% vs. 12%).
Also the changes in duty times are more extreme than with the original speed
drops: a larger increase with Strategy 2, and a larger decrease with Strategy 3
and 4. Although the maximum relative speed drops are the same for each road
category, Strategy 4 still results in better vehicle route plans than Strategy 3.
This can be explained by simply having more alternatives to choose from, but
also by the fact that the same relative speed drop results in smaller absolute

speed drops on roads with lower maximum speeds, which typically appear more
often on alternative paths.
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Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 9.43% 0.59% 0.10%
Total duty time (hrs) 154.8 1.75% -7.64% -9.31%
Total travel distance 58.56 -0.24% -0.26% -1.44%
# late arrivals 17.15 -62.83% -100.00% -97.82%
# late return times 0.490 -67.35% -100.00% -100.00%
Maximum late time (hrs) 3.244 -57.08% -100.00% -99.22%
Total late time (hrs) 18.05 -79.74% -100.00% -99.92%
Additional duty time (hrs) 15.10 17.94% -78.29% -95.46%

aabsolute figures
brelative change with Strategy 1

Table 5.10: Results Alternative 1: only speed drops on highways.

Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 18.23% 1.18% 0.65%
Total duty time 158.8 5.73% -8.57% -9.90%
Total travel distance 58.56 0.08% 0.60% 0.05%
# late arrivals 20.42 -83.64% -99.54% -99.85%
# late return times 0.823 -84.35% -97.30% -100.00%
Maximum late time 4.878 -82.36% -98.60% -99.96%
Total late time 23.48 -94.48% -99.87% -100.00%
Additional duty time 19.08 47.72% -71.32% -82.36%

aabsolute figures
brelative change with Strategy 1

Table 5.11: Results Alternative 2: all roads have the same maximum relative
speed drop.

Table 5.12 presents the results for Alternative 3 in which speed drops during
the morning and evening peak are similar. Due to the larger speed drops,
on average, the reliability measures for Strategy 1 are worse than with the
original speed drops. As a consequence, the increase in number of vehicle
routes with Strategy 2, 3, and 4 with respect to Strategy 1 is larger than for
the original speed drops. The larger speed drops in Alternative 3 offer, on the
other hand, more possibilities for avoiding them, which results in larger duty
time reductions with Strategy 3 and 4 with respect to Strategy 1 than with
the original speed drops. The other results are similar to the results with the
original speed drops.

Table 5.13 presents the results for Alternative 4 in which speed drops are
half the original speed drops. Due to the smaller speed drops, there are fewer
late arrivals than with the original speed drops, and the additional duty time
caused by traffic congestion is also smaller. As a consequence, Strategy 3 and 4
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Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 15.31% 0.78% 0.57%
Total duty time 159.4 4.20% -9.20% -10.82%
Total travel distance 58.56 -0.29% -0.94% -1.70%
# late arrivals 20.97 -75.79% -99.92% -99.70%
# late return times 0.752 -63.96% -97.05% -100.00%
Maximum late time 3.589 -68.74% -100.00% -99.97%
Total late time 23.71 -89.06% -100.00% -100.00%
Additional duty time 19.67 33.99% -74.52% -87.66%

aabsolute figures
brelative change with Strategy 1

Table 5.12: Results Alternative 3: speed drops during the morning and evening
peak are similar.

find solutions with approximately the same number of vehicle routes as Strategy
1. Note that the smaller number of vehicle routes with Strategy 3 than with
Strategy 1 and 4 is due to the heuristic solution method: for the 15 customer
problem instances (which are solved to optimality) the number of vehicle routes
is the same for all strategies.

Even with the small speed drops in Alternative 4, the reductions of the
additional duty time caused by traffic congestion with Strategy 3 and 4 with
respect to Strategy 1 are still substantial (more than 60%). We noticed this
also in the results on Kentucky, for which also the average congestion delays are
much smaller than for the other states and alternatives. This strongly indicates
that high levels of congestion avoidance leads to substantial cost savings for a
broad range of different road networks. The reliability improvements with
respect to Strategy 1 are similar to the improvements with the original speed
drops.

5.6 Conclusions

We proposed four strategies in which traffic congestion is accounted for and
avoided to an increasing extent. Next, we proposed a speed model on real
road networks that reflects the key elements of peak hours traffic congestion.
This speed model provided us a platform for testing the impact of the different
strategies in a realistic setting.

The results indicated that the reliability of route plans strongly increase if
traffic congestion is accounted for. However, if VRPs are modeled with time-
independent travel times, then this reliability increase is achieved against more
vehicle routes and larger duty times. By adopting higher levels of congestion
avoidance such as solving VRPs with time-dependent travel times and solving
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Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 2.97% -0.06% 0.02%
Total duty time (hrs) 141.2 1.72% -0.67% -0.68%
Total travel distance 58.56 -0.25% 0.40% -1.26%
# late arrivals 3.394 -87.33% -99.41% -97.94%
# late return times 0.000c -c -c -c

Maximum late time (hrs) 0.328 -87.34% -99.79% -99.22%
Total late time (hrs) 0.494 -95.26% -99.98% -99.93%
Additional duty time (hrs) 1.528 158.94% -62.11% -63.07%

aabsolute figures
brelative change with Strategy 1
cthere were no late return times with each strategy

Table 5.13: Results Alternative 4: the speed drops are half the original speed
drops.

time-dependent shortest path problems, these cost measures can be reduced
substantially. Solving a combination of these two problems is particularly ef-
fective, resulting in huge reliability improvements, substantial duty time re-
ductions (almost 87% of the additional duty times caused by traffic congestion
can be eliminated), and substantially reducing the number of vehicles needed
(almost all extra vehicles needed due to congestion delays can be eliminated).

We conducted a sensitivity analysis of the speed model, which indicated
that under various scenarios the improvements with the higher levels of con-
gestion avoidance remain. Even in case of small speed drops during the peak
hours congestion avoidance results in substantially more reliable route plans
and reductions of duty times. In certain extreme cases, such as only speed
drops on highways, congestion avoidance is even more powerful resulting in
reductions of additional duty time caused by traffic congestion of almost 95%.





Chapter 6

Vehicle routing with traffic
congestion and break
scheduling

6.1 Introduction

As discussed in Chapter 1, for companies that practice vehicle routing, having
compact driver duty times leads to substantial savings regarding, e.g., truck
driver hiring costs and the time vehicles are unavailable for other services.
Compact duty times are often even needed to obey the law: the EC social
legislation on driving and working hours, for example, limits the daily driving
and working times of truck drivers.

To obtain compact driver duty times, the departure times within vehicle
routes must be optimized within the applicable regulations. As indicated in
Chapter 2, time-dependent travel times and driving hours regulations make de-
parture time optimization within vehicle routes particularly difficult. The com-
bination of duty time minimization within the construction of vehicle routes,
accounting for time-dependent travel times, and obeying driving hours regula-
tions is a highly complex problem, which has - to the best of our knowledge
- not been addressed so far. The objective of this chapter is to develop a so-
lution method for the VRPTW with time-dependent travel times and the EC
social legislation on driving and working hours (TDVRP-EC). Following the
promising results for the VRPTW with the EC social legislation in Chapter 4,
we propose a solution method for the TDVRP-EC based on the DP heuristic
of Chapter 3.

87
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In this chapter, we consider one-day planning. The choice for one-day
planning is motivated by practice, since duty time minimization is applied to
one-day schedules because the costs applied for night rests on duty differ from
those for working times. Note that certain rules concerning one-week planning
may also have an impact on one-day planning (e.g., extending the daily driving
time to 10 hours at most twice a week). The solution method we propose
in this chapter is flexible with respect to such rules, since the method is also
applicable with other input parameters, such as extended daily driving times
and reduced daily rest periods.

In the VRP literature, generally, the primary objective is to minimize the
number of vehicles used and the secondary objective is to minimize the total
distance traveled. However, within the VRPTW this secondary objective may
lead to large waiting times, which are costly in practice. Moreover, traffic con-
gestion makes the duration of travels (and thus also the costs of these travels)
depend on the time of the day, while the distance remains the same. Therefore,
a more relevant secondary objective is to minimize the total duty time (Savels-
bergh, 1992). We numerically analyze both travel distance and duty time as
the secondary objective. Moreover, we quantify the impact of extending the
depot opening hours such that traveling before the morning peak and after the
evening peak becomes possible.

This chapter1 is organized as follows. Section 6.2 formally introduces the
TDVRP-EC. Section 6.3 discusses some important assumptions considering
waiting times at customers that have a strong impact on the complexity of
departure time optimization. Section 6.4 proposes a solution approach for
the TDVRP-EC, based on the DP heuristic of Chapter 3. In Section 6.5,
we report on computational experiments to analyze the impact of different
objective functions (minimize travel distance vs. minimize duty time) on the
overall solution quality, and the impact of extending the depot opening hours.
In Section 6.6, we summarize our main findings.

6.2 Problem description of the TDVRP-EC

We consider an extension of the classical VRPTW for which we first introduce
some notation that we require throughout this chapter. Within the VRPTW
we are given a set of vehicles K = {1, ...,m} and a set of nodes V = {0, ..., n}
in which node 0 represents the depot. Nodes i > 0 represent customer requests
with demands qi and service time windows [ei, li]. The problem is to find a set
of routes, each starting and ending at the depot, such that the total demand
along each route does not exceed the vehicle capacity Q, each service starts in
the given time window, and some objective is satisfied.

1This chapter is based on Kok et al. (2010)
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We extend the VRPTW by considering time-dependent travel times and
driving hours regulations. We assume that (aggregated) data is available for
time-dependent travel speeds along customer-to-customer routes. In other
words, we do not consider the underlying road network in which time-dependent
shortest paths should be determined. The calculation of time-dependent short-
est paths can be done in a pre-processing step and from these paths the re-
quired aggregated travel data for customer-to-customer routes can be obtained,
as demonstrated in Chapter 5. To model the time-dependent travel times, we
apply the time-dependent speed model of Ichoua et al. (2003) (see Chapter 2),
which satisfies the non-passing property. There are two main reasons for this
approach: 1) the non-passing property is a realistic assumption, 2) a more de-
tailed travel time function (e.g., any differentiable travel time function) is hard
to deduce from, e.g., historical travel time data.

In this chapter, we consider Regulation (EC) 561/2006 on driving hours
(European Union, 2006), which is valid for all member countries of the Euro-
pean Union. Since we consider one-day planning, we assume that breaks and
rests have to be scheduled at customer locations. Recall that, considering one-
day planning, Regulation (EC) 561/2006 poses the following requirements per
driver:

1. A period between two breaks of at least 45 minutes is called a driving

period. The accumulated driving time in a driving period may not exceed
4.5 hours. The break that ends a driving period may be reduced to 30
minutes if an additional break of at least 15 minutes is taken anywhere
during that driving period. The driving hours regulations do not allow
service times at customers to be considered as break time.

2. The total accumulated driving time may not exceed 9 hours.

3. The total accumulated duty time may not exceed 13 hours.

The TDVRP-EC comprises three types of decisions: assigning customers to
vehicles, sequencing customer visits for each vehicle, and selecting departure
times for each vehicle. Departure times need not only be determined for the
departure at the depot, but also at each customer to account for the driving
hours regulations and the time windows. The possibility to schedule waiting
times at customers makes this departure time scheduling problem particularly
difficult, as we shall illustrate in Section 6.3. Therefore, we choose the non-

delay property for scheduling departure times, meaning that we do not schedule
waiting time at customers (i.e, delay the departure time) when this is not
necessary. We discuss in the next section the scheduling of waiting times and
our underlying assumptions in detail.
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6.3 Waiting time assumptions

In order to construct feasible vehicle routes, we need a method that finds fea-
sible departure times for these routes. Furthermore, the costs of such routes
have to be determined in terms of duty times. In Chapter 2, we have proposed
an ILP model to determine feasible vehicle departure times given the customer
visit sequence of a vehicle route. Using the objective to minimize the difference
between the start and completion time of a vehicle, we can use the ILP for-
mulation to optimize a vehicle’s departure times. We refer to this problem as
the vehicle departure time optimization problem (VDO). When constructing
vehicle routes in the restricted DP heuristic, however, computation times to
solve this ILP are too large to apply it for each (partial) vehicle route that is
considered.

A complicating factor for the determination of the minimum duty time in
the DP heuristic is the use of unforced waiting time. We define unforced waiting
time as waiting time that is not forced by either time windows or by driving
hours regulations induced breaks. For example, if departing at time 0 from the
depot leads to an arrival time of 2 at the first customer, but the time window
opening time at this customer is 5, then a waiting time of 3 is introduced.
We call this unforced waiting time, because it can be avoided by departing
at time 3 from the depot (assuming time-independent travel times in this ex-
ample). However, if departing from customer i at its latest feasible departure
time (i.e., starting its service at its deadline li and departing directly after this
service) still results in an early arrival at the next customer j, we call this
forced waiting time. As an illustration of how to profitably introduce unforced
waiting time, suppose that direct continuation from a customer results in a
total driving time of slightly more than 4.5 hours, which requires an additional
45 minute break before completing the vehicle route. However, if postponing
the departure time by a small amount of time (unforced waiting) reduces the
total driving time below 4.5 hours (e.g., due to less traffic), then no additional
break is required and we end up with an earlier completion.

The problem of exploiting unforced waiting time is that its advantage is
difficult to measure, since it requires for each customer addition (or customer
insertion, customer removal, etc.) a recheck at each visited customer for intro-
ducing unforced waiting time. To keep track of all possibly profitable unforced
waiting times is thus computationally expensive. Moreover, the DP framework
does not suit well for considering unforced waiting time, since we cannot de-
termine locally whether this waiting time is profitable. Therefore, we consider
the variant of the VDO in which introducing unforced waiting time is not con-
sidered. This implies that we choose the non-delay property for scheduling
departure times. In addition, we choose not to schedule early breaks (which
means that we also do not split up breaks in a 15 minute part and a 30 minute
part), even not when there is sufficient forced waiting time.
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To test the solution quality of the VDO algorithm, we numerically analyze
in Section 6.5 the effect of choosing the non-delay property and not considering
early breaks. We do this by optimizing the departure times in each constructed
vehicle route by solving the ILP model for the VDO in which unforced waiting
time and early breaks are considered. Note that we optimize each VDO in a
post-processing step. Solving the ILP model for the VDO for partial solutions
in the DP heuristic may lead to different results. Optimizing such partial
solutions may lead to different states to be expanded in the next stage and,
therefore, to different vehicle routes. However, computation times for solving
the ILP model for the VDO are too large to be applied to such partial solutions.
In the next section, we propose a solution method for the TDVRP-EC and for
the VDO subproblem in which unforced waiting time and early breaks are not

considered.

6.4 Solution approach

We solve the TDVRP-EC using the restricted dynamic programming heuristic
of Chapter 3. As illustrated in Chapter 4, this heuristic can easily be extended
to incorporate complex timing restrictions such as driving hours regulations.

In order to apply the DP heuristic to our problem, we need a method that
checks for each state expansion whether there exists a feasible departure sched-
ule for the corresponding partial vehicle route. Furthermore, the costs of such
an expansion have to be determined in terms of duty times. In the remainder
of this section, we propose a polynomial time algorithm for the VDO with-
out unforced waiting time and early breaks. This VDO algorithm develops a
time-dependent duty time function for the entire vehicle route under consider-
ation. We describe how a duty time function based on time-dependent driving
speeds can be represented in a duty time record with O(p) elements, with p
the maximum number of times the speed changes on a route. Section 6.4.1
describes how to update the duty time record each time a node is added to
a partial vehicle route. We show that each such node addition introduces at
most O(p) new elements, resulting in O(np) elements for the duty time record
of the composite duty time function of an entire route. For simplicity, we first
assume that service times are zero, no service time windows are given, and no
driving hours regulations are present. Section 6.4.2 and 6.4.3 then, respectively,
describe how service times and time windows can be incorporated whilst main-
taining O(np) running time complexity. Section 6.4.4 describes how breaks can
be incorporated in order to respect the driving hours regulations. Section 6.4.5
derives the resulting running time complexity of the VDO algorithm.
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6.4.1 Adding a node to a partial vehicle route

For simplicity reasons, we assume in this section that service times are zero,
and time windows and driving hours regulations do not exist, which implies
that driving times equal duty times. However, for reasons of generality, we
set up an algorithm at the end of this section that remains valid when time
windows are present.

Suppose that the number of speed changes on each route between two nodes
is limited by p. These speed changes result in a piecewise linear duty time
function. Figure 6.1a presents such a speed step function for a route 0 → i
with distance 2, and Figure 6.1b presents the resulting duty time function for
that route as a function of the departure time. Each speed change causes the
slope of the duty time function to change at most two times: 1) when the
arrival time at node i equals the moment that the speed changes, 2) when the
departure time from node 0 equals the moment that the speed changes. For
example, the speed change at time 4 causes the slope of the duty time function
to change at departure times 3 and 4. Therefore, the number of linear pieces
of the duty time function is O(p).

We define the function T z (d) as the function that gives the duty time needed
to visit all nodes in route z for a given departure d from the first node in route z.
Each duty time function T z (d) of a route z can be represented by a duty time
record rz = (rz

1 , ..., rz
Uz ) of O(p) elements, in which Uz indicates the number

of speed changes of the duty time function of route z. Each record entry rz
u =

(dz
u, tzu) contains two elements: the start time dz

u of the u-th linear piece of the
duty time function and the initial height of this piece (i.e., the duty time tzu
required to (completely) travel route z when departing at time dz

u from the first
node in route z). We assume that for each route i → j, the travel speeds are
given for the entire planning horizon, i.e., for the depot opening hours [e0, l0].
Therefore, for each route i → j we have di→j

0 = e0 and di→j

Ui→j + ti→j

Ui→j = l0.
This allows us to construct the duty time records for each route i → j in a pre-
processing step without knowing the actual nodes that will be visited before
arriving at node i in a solution. Note that when time windows are present,
departing at e0 from node i may not make sense, even when we do not consider
the nodes that may be visited before node i in a solution. Section 6.4.3 describes
how to include time windows at customers in the construction of the duty time
records during the pre-processing step, which may then result in di→j

0 > e0 and

di→j

Ui→j + ti→j

Ui→j < l0 for certain routes.

The duty time record for the duty time function in Figure 6.1b is:

r0→i = ((0, 1) , (3, 1) , (4, 2) , (5, 2) , (7, 1) , (9, 1))

The minimum duty time equals the minimum of all duty time entries. The
duty time for a given departure time can be calculated by interpolation.



6.4. Solution approach 93

�
�

� HHHHHH












``̀
bb HHHHHH












b
b

b
b

b
b

bb

1

2

0 3 4 5 7 9
Time of departure

(b)

1

2

0 3 4 9
Time of departure

6.52

1

2

0 3 4
Time of departure

21

3

4.5 5 7 8

1

0

2

4 7 10

(a)

Time of the day

1

0

2

10
Time of the day

(c)

(d)

(e)

3 6.5

Duty Time

0 → i → j

Duty Time

i → j

Speed

i → j

Duty Time

0 → i

Speed

0 → i

Figure 6.1: (a) speeds route 0 → i, (b) duty times route 0 → i, (c) speeds
route i → j, (d) duty times route i → j, (e) duty times route 0 → i → j.
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The duty time for a given arrival time a at the last node in route z can
also be calculated using the duty time record rz. Each departure time dz

u from
the first node in route z results in an arrival time of az

u = dz
u + tzu at the last

node in route z. This arrival time az
u corresponds to a duty time of tzu. We

can determine the duty time for a given arrival time a at the last visited node
in route z by interpolation. We define the function F z (a) as the function that
gives the departure time d from the first node in route z that exactly results in
an arrival time of a at the last node in route z (i.e., the difference between arrival
time a at the last node in route z and the corresponding duty time). A call to
this function requires a run through the duty time record. However, the calls
we make in Algorithm 1 are with non-decreasing arrival times a. Therefore,
we only require one run through the duty time record for all calls to F z (a) in
Algorithm 1. We can do this by storing for each call the required positions in
the duty time record to calculate F z (a), and to continue the search from these
positions for the successive call.

We now describe how to derive a new duty time record when a node is added
to the end of a partial vehicle route. Suppose that we add a node j to the end
of a partial vehicle route corresponding to a state (S, i), i.e., route i → j is
added to the partial vehicle route. Then, we need to determine the duty time
record rnew of the new partial vehicle route, which is the composite record of
the duty time record rold of the old partial vehicle route from node 0 to node i
and the duty time record radd of route i → j. The duty time function of the
new route is the composite function of two piecewise linear functions, which in
our case is again a piecewise linear function.

Suppose that rold is the duty time record of the duty time function in
Figure 6.1b (i.e., the old partial vehicle route is route 0 → i). Furthermore,
suppose that the distance of route i → j is 2.5 with a speed step function as in
Figure 6.1c, and resulting duty times as in Figure 6.1d. Then we get:

rold = ((0, 1) , (3, 1) , (4, 2) , (5, 2) , (7, 1) , (9, 1))

radd = ((0, 1) , (2, 1) , (3, 2.5) , (4, 2.5) , (6.5, 1) , (9, 1))

The earliest feasible departure time from the first node in the new route 0 →
i → j equals dold

0 (an earlier departure is not possible and departing at this
time does not lead to any waiting time at node i). Therefore, dnew

0 := dold
0 = 0.

This departure time from node 0 results in an arrival time of 1 at node i.
Then, departing at node i at time 1 results in an additional duty time of 1 for
traveling from node i to node j (since dadd

0 = 0, dadd
1 = 2, and tadd

0 = tadd
1 = 1),

which results in a total duty time for route 0 → i → j of tnew
0 := 2. Next,

we need to determine the first departure time from node 0 after dnew
0 at which

the slope of the duty time function of the new route changes. This happens
at min

{

dold
1 , F old

(

dadd
1

)}

. We have dold
1 = 3 and F old

(

dadd
1

)

= F old (2) = 1.
Therefore, dnew

1 := 1 with corresponding duty time tnew
1 := 2.
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We continue this process, each time determining which departure time is
the first to change the slope of the duty time function and calculating the cor-
responding duty time. This process continues until either dold

Uold or F old
(

dadd
Uadd

)

has been added. This leads to:

rnew = ((0, 2) , (1, 2) , (2, 3.5) , (3, 3.5) , (4, 3.3) , (4.5, 3) , (5, 3) , (7, 2) , (8, 2))

Figure 6.1e presents the duty time function of the new route.

Algorithm 1 describes a general procedure for determining the composite
duty time record rnew of the duty time records of the old route rold and the
route to be added radd. Recall that when time windows are present, dadd

0 does
not need to be equal to 0. We already account for such cases in Algorithm 1.
Note that F old (a) is only defined for the interval

[

dold
0 + told

0 , dold
Uold + told

Uold

]

.
We now describe the steps of the algorithm.

In the initialization, we abort if no feasible departure time from the first
node in the new route exists (Line 1 to 3). Next, we check whether departing
at the latest feasible departure time from the first node in the old route, i.e.
dold

Uold , still results in an early arrival at the first node of the route to be added
(Line 4). If this is the case, then the only feasible departure time from the first
node in the new route without unforced waiting time is dold

Uold . The duty time
is then the difference between the earliest completion time at the last node in
the new route (which equals dadd

0 + tadd
0 ) and the latest feasible departure time

from the first node in the new route (Line 5 and 6). For the remainder, we
know that there are multiple feasible departure times without unforced waiting
time from the first node in the new route. The earliest of such departure times
is either dold

0 or F old
(

dadd
0

)

(Line 9 to 13). Note that we cannot use F old
(

dadd
0

)

in the check in Line 9, since it is not defined when dold
0 + told

0 > dadd
0 . The duty

time tnew
0 is equal to the sum of the duty time needed for visiting the nodes in

the old route and the duty time needed for visiting the nodes in the route to
be added (Line 14). The next step is to determine the latest feasible departure
time from the first node in the new route (Line 15 to 19). This departure
time equals either dold

Uold or F old
(

dadd
Uadd

)

. The final step in the initialization is
to initialize v and uadd (Line 21 and 22). Index v represents the index of the
current entry in rnew. Index uadd is the index of the entry in radd that contains
the earliest departure time from the first node in the route to be added that
requires a new record entry for rnew (i.e., when departing later than dnew

v from
the first node in the new route, arrival time dadd

uadd at the first node in the route
to be added is the earliest arrival time at this node that changes the slope of
the duty time function of the new route).

The main procedure adds record entries to rnew for each change in the
slope of the duty time function of the new route until an entry with departure
time dnew

max is added. A later departure time than dnew
v may cause a change in

the slope of the duty time function of the new route both because of a change
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Algorithm 1 VDO algorithm

// Initialization
1: if dold

0 + told
0 > dadd

Uadd then

2: STOP
3: end if

4: if dold
Uold + told

Uold < dadd
0 then

5: dnew
0 ⇐ dold

Uold

6: tnew
0 ⇐ dadd

0 + tadd
0 − dold

Uold

7: STOP
8: end if

9: if dold
0 + told

0 ≥ dadd
0 then

10: dnew
0 ⇐ dold

0

11: else

12: dnew
0 ⇐ F old

(

dadd
0

)

13: end if

14: tnew
0 ⇐ T old (dnew

0 ) + T add
(

dnew
0 + T old (dnew

0 )
)

15: if dold
Uold + told

Uold ≤ dadd
Uadd then

16: dnew
max ⇐ dold

Uold

17: else

18: dnew
max ⇐ F old

(

dadd
Uadd

)

19: end if

20: v ⇐ 0
21: uadd ⇐ 0

// Main procedure
22: while dnew

v < dnew
max do

23: uold ⇐ arg minu

{

dold
u |dold

u > dnew
v

}

24: while dadd
uadd ≤ dnew

v + T old (dnew
v ) do

25: uadd ⇐ uadd + 1
26: end while

27: v ⇐ v + 1
28: if dnew

max + T old (dnew
max) ≥ dadd

uadd then

29: dnew
v ⇐ min

{

dold
uold , F old

(

dadd
uadd

)}

30: else

31: dnew
v ⇐ dold

uold

32: end if

33: tnew
v ⇐ T old (dnew

v ) + T add
(

dnew
v + T old (dnew

v )
)

34: end while
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in the slope of the duty time function of the ‘old’ part of the new route and
because of a change in the slope of the duty time function of the ‘added’ part
of the new route. Therefore, we determine the earliest departure time from
the first node in the old route later than dnew

v that changes the slope of the
duty time function of the old route (Line 23) and we determine uadd (Line
24 to 26). Next, we increase index v (Line 27), and we determine dnew

v (Line
28 to 32). Note that we have to be careful again with the usage of F old (a).
If dnew

max + T old (dnew
max) < dadd

uadd , then F old
(

dadd
uadd

)

is not defined. When this
situation appears, only departure times corresponding to dold

uold will be added
until uold = Uold.

6.4.2 Incorporating service times

Service times can be incorporated by adding them to the driving times. Since
service times are constant, they do not affect any of the calculations described
before. What typically happens is that the duty time function for a route i → j
is shifted up and to the left by the service time at node i. By doing this, the
duty times include both driving times and service times.

6.4.3 Incorporating time windows

Suppose we have a route i → j with corresponding duty time function (e.g., as
in Figure 6.1d), and given time windows [ei, li] and [ej , lj ] for starting service
at node i and node j, respectively. For ease of explanation, we again assume
that service times are zero. Then, three cases may appear.

Case 1: ei + T i→j (ei) > lj . In that case, the route i → j is infeasible, since
the time window opening time at node i is already too late to arrive ultimately
at lj at node j.

Case 2: li + T i→j (li) < ej . This means that, even if we start service at
node i as late as possible, we arrive before the time window opening time at
node j. In this case, the only way to avoid introducing unforced waiting time
is to start serving node i as late as possible, implying one feasible departure
time from node i: li. The corresponding duty time is equal to the travel time
plus the forced waiting time: T i→j (li) +

(

ej −
(

li + T i→j (li)
))

= ej − li.

Case 3: the interval of possible arrival times at node j intersects with [ej , lj ].
We then restrict the feasible departure times from node i to the interval in
which we arrive in time at node j (i.e., before or at lj) and we do not introduce
unforced waiting time (i.e., we do not arrive before ej). This implies that for the
earliest feasible departure time from node i without unforced waiting time at
node j we get di→j

0 := ei if ei+T i→j (ei) ≥ ej , and di→j
0 := F i→j (ej) otherwise.

Furthermore, we get di→j

Ui→j := li if li + T i→j (li) ≤ lj , and di→j

Ui→j := F i→j (lj)
otherwise.
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Suppose in our example node i has a time window [2, 9] and node j has a
time window [6, 10] and the duty time record without time windows is:

ri→j = ((0, 1) , (2, 1) , (3, 2.5) , (4, 2.5) , (6.5, 1) , (9, 1))

The time window at node i causes the feasible departure time interval to be
restricted to [2, 9], such that:

ri→j := ((2, 1) , (3, 2.5) , (4, 2.5) , (6.5, 1) , (9, 1))

Next, the time window at node j causes that departing from node i earlier than
time 3.5 will result in unforced waiting time at node j, resulting in:

ri→j := ((3.5, 2.5) , (4, 2.5) , (6.5, 1) , (9, 1))

Figure 6.2a presents the resulting duty time function.

We construct the duty time records for each route between two nodes in
this way during the pre-processing step. Then, we apply Algorithm 1 again
to obtain the duty time records for the (partial) vehicle routes. Note that
the time windows may substantially reduce the number of record entries. In
the extreme case, only one feasible departure time remains, which implies that
there is forced waiting time on the route and continuing ASAP is the best we
can do in the remainder. Figure 6.2b presents the duty time function of the
new route in our example. The number of record entries reduces from 9 to 7.
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Figure 6.2: duty time records with time windows: (a) duty times route i → j,
(b) duty times route 0 → i → j
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6.4.4 Scheduling breaks

To comply with the EC social legislation, we have to schedule a 45 minute
break whenever the accumulated driving time of a partial vehicle route is about
to exceed 4.5 hours. To account for the accumulated driving time, we add an
element taz

u to each duty time record entry rz
u, indicating the total accumulated

driving time in route z since the last break taken at a customer. Note that
the accumulated driving time depends on the chosen departure time dz

u from
the first node in route z. Therefore, we have to account for the accumulated
driving time taz

u for each departure time dz
u from the first node in route z. For

simplicity reasons, we again assume all service times to be zero. Since we only
allow breaks at customer sites, the values of tai→j

u for the duty time records of
each route i → j equal the driving times ti→j

u .

We assume that driving times between node pairs do not exceed 4.5 hours.
In case a route i → j has a departure time that results in more than 4.5 hours
of driving time, we assume this route is infeasible. Note that such a route is
very unlikely to be selected in a good VRP solution, since the shortest vehicle
route in such a solution would be the tour depot → i → j → depot and the total
driving time in this tour is likely to exceed its maximum of 9 hours. Within
the problem instances used for the computational experiments in Section 6.5
the driving time between each pair of nodes and for each departure time does
not exceed 4.5 hours. If VRPs with a long planning horizon are considered, or
VRPs with only few customers per vehicle, then it might become necessary to
include also routes between two nodes exceeding 4.5 hours of driving time. This
can be done by, e.g., modeling parking lots along such routes, or by assuming
that breaks can be taken anywhere along the routes. These model assumptions
do not affect the algorithmic framework, they only affect the calculation of the
duty time records.

Now, suppose we add a node j to a partial vehicle route represented by
a state (S, i), again with duty time records rold, radd, and rnew for the duty
time functions of the old route, the route to be added, and the new route,
respectively. Let r̃new be the duty time record of the new route in which
we ignore that a break may have to be scheduled at node i. Each record
entry r̃new

u contains a departure time d̃new
u , a corresponding duty time t̃new

u ,
and a corresponding accumulated driving time t̃a

new

u without a possibly needed
break at node i. We can derive r̃new by applying Algorithm 1 in which we can
calculate each t̃a

new

u in a similar way as how we calculate each t̃new
u . Then,

three cases may appear:

1. After adding route i → j, t̃a
new

u ≤ 4.5 for all u = 0, ..., Unew.

2. After adding route i → j, t̃a
new

u > 4.5 for all u = 0, ..., Unew.

3. After adding route i → j, t̃a
new

u > 4.5 for some, but not all u =
0, ..., Unew.
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In Case 1, we do not need to schedule a break for any feasible departure
time and we get rnew = r̃new. We describe the other two cases in detail.

In Case 2, a break is required at node i regardless of the departure time
from the first node in the old route, since we assume that breaks are only taken
at customers. With this break, the departure time from node i is delayed by 45
minutes. The same procedure as in Algorithm 1 can be applied to determine
the duty times of the new route, but with 45 minutes added to all duty times
in rold. Since a break is taken at node i, such that the accumulated driving
time is reset to 0 when departing from node i, all tanew

u are set to ti→j
u .

In Case 3, we have to split the new duty time record, such that for each
partial duty time record either a break is scheduled at node i for each departure
time, or no break is scheduled for any departure time. Therefore, we first
determine the series of departure times δw at which the new duty time record
should be split. This is the case if departure time δw results in exactly 4.5
hours of accumulated driving time (when no break is scheduled at node i),
while departing directly before or directly after δw results in more than 4.5
hours of accumulated driving time. Suppose that uw is such that d̃new

uw
is

the earliest departure time larger than δw (if δw = d̃new
Unew , we set d̃new

uw
:=

δw). Then, each departure time δw results in exactly 4.5 hours of accumulated
driving time, while t̃a

new

uw−1 > 4.5 or t̃a
new

uw
> 4.5. This leads to a series of

strictly increasing departure times {δ1, ..., δW new} at which the new duty time
record should be split. Let’s set δ0 := d̃new

0 and δW new+1 := d̃new
Unew . Then, we

split the duty time record of the new route in duty time records rneww , w =
0, ...,Wnew with earliest and latest departure times δw and δw+1, respectively.
Now, for each duty time record rneww either Case 1 applies, such that we follow
the procedure described in Case 1 for this duty time record, or we follow the
procedure described in Case 2. There is one exception: when t̃a

new

uw−1 > 4.5 and

t̃a
new

uw
> 4.5. In that situation, we apply the procedure described in Case 2

to the departure intervals [δw−1, δw] and [δw, δw+1]. However, we also have to
consider departing exactly at δw without scheduling a break at node i. We
resolve this by creating an additional duty time record with only one feasible
departure time (δw) for which Case 1 applies.

For example, suppose a node k is added to the route 0 → i → j presented
in Figure 6.2b. Furthermore, suppose that all service times are 0 such that
the duty times in Figure 6.2b equal the accumulated driving times. Finally,
suppose that the travel time from node j to node k is 1.5 hours, independent of
the time of departure. Then, for departure times 2.5 until 4.5 from node 0, the
accumulated driving times exceed 4.5 hours. This results in 2 duty time records
with departure intervals [2.5, 4.5] and [4.5, 8], respectively. For the first interval
we have to apply the procedure described in Case 2, for the second interval we
have to apply the procedure described in Case 1. Figure 6.3a and 6.3b present
the resulting duty times and accumulated driving times, respectively.

Note that, for example, departing at time 4 from node 0 leads to a later
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Figure 6.3: duty time records with time windows and breaks: (a) duty times
route 0 → i → j → k, (b) accumulated driving times route 0 → i → j → k

arrival time at node k than departing at time 4.5. Time windows might allow
departure at time 4.5, but not at time 4. Therefore, there might be gaps
between succeeding feasible departure intervals.

To account for the total driving time available for each day, we add an
element to each duty time record entry accounting for the total accumulated
driving time over the entire route. If this element exceeds the total available
driving time of 9 hours for a certain departure time, then we determine a similar
series of departure times as described in Case 3 above. However, the intervals
corresponding to total accumulated driving times exceeding 9 hours are left out
of consideration, thereby possibly introducing gaps between departure intervals.
We follow a similar strategy for the total duty times, such that non-feasible
departure times are left out of consideration.
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6.4.5 Running time complexity

The procedure for adding the breaks increases the running time complexity of
the VDO algorithm. To derive this complexity, it is crucial to know how many
breaks could maximally be scheduled in a route for a certain departure time
from the first node in that route. In Appendix B, we derive that this number
equals 4. We now derive how many additional duty time record entries each
break might introduce.

Suppose that after adding a route i → j to a partial solution we would
have t̃a

new

u < 4.5 for some entry r̃new
u and t̃a

new

u+1 > 4.5 for the next en-
try r̃new

u+1. Then, the break requirement introduces two duty time record en-
tries (rneww

Uneww , r
neww+1

0 ) for two successive duty time records rneww and rneww+1 ,
both with the same departure time, but with different duty times and accumu-
lated driving times. The first entry rneww

Uneww represents the case where no break
is scheduled at node i, while the second entry r

neww+1

0 represents the case
where a break is scheduled at node i. Suppose next that t̃a

new

u+2 < 4.5. Then,
again the break requirement introduces two duty time record entries: r

neww+1

Uneww+1

and r
neww+2

0 . When another node is added to the route, a similar procedure
may apply to the successive record entries

(

rneww

Uneww−1, r
neww

Uneww

)

and the succes-

sive record entries
(

r
neww+2

0 , r
neww+2

1

)

. In the worst case, each node addition
results in four new duty time record entries caused by the break requirement
for the original duty time record entries r̃new

u and r̃new
u+1, because of ascending

(descending) t̃a
new

u that cross the 4.5 hours driving limit. Since there are at
most n + 1 node additions per vehicle route, this leads to at most 2(n + 1)
additional entries for the original entry r̃new

u (and 2(n + 1) additional entries
for the original entry r̃new

u+1).

Since the number of existing entries without considering breaks is O (np),
the total number of entries with at most one break scheduled is O

(

n2p
)

. The
same procedure applies for each additional break, i.e., introducing at most 2n
entries for each existing entry. Therefore, given that at most 4 breaks will be
scheduled for each departure time, the running time complexity of the algorithm
with scheduling breaks is O

(

n5p
)

.

6.5 Computational experiments

In this section, we test the solution approach described in Section 6.4. We ran
our experiments on a PC with a Core 2 Quad, 2.83 GHz CPU and 4 GB of
RAM. Section 6.5.1 describes our test instances, Section 6.5.2 describes our
test approach, and Section 6.5.3 presents the results.
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6.5.1 Test instances

To test our heuristic, we use a modification of the set of benchmark instances
for the VRPTW with time-dependent travel times proposed by Figliozzi (2009).
These Figliozzi benchmark instances are themselves modifications of the well-
known Solomon (1987) benchmark instances for the VRPTW. We selected these
instances, because the Solomon benchmarks are standard reference in the VRP
literature and they represent an extensive set of VRPTW instances with various
characteristics. Moreover, Figliozzi’s modification of the Solomon instances for
the VRPTW with time-dependent travel times is - to the best of our knowledge
- the only set of benchmark instances available in the literature for this type
of problem. Below we explain both (Figliozzi’s and our) modifications with
respect to the Solomon instances.

Figliozzi proposed the following modification of the Solomon instances to
make them applicable to the VRPTW with time-dependent travel times. The
opening hours of the depot ([e0, l0]) are divided in 5 equally spread time in-
tervals. The first and the last time interval correspond to the morning and
evening peak with a reference speed of 1.00. In the remaining intervals, the
speeds are higher. Figliozzi proposed the following three speed patterns, rep-
resenting traffic congestion during the peak hours to an increasing extent:

TD1 = [1.00, 1.60, 1.05, 1.60, 1.00]

TD2 = [1.00, 2.00, 1.50, 2.00, 1.00]

TD3 = [1.00, 2.50, 1.75, 2.50, 1.00]

We add one speed pattern (TD0) in which speeds are constant (1.00) over the
day.

Since these benchmarks do not include driving hours regulations, we modify
them for the TDVRP-EC as follows. We assume that the opening hours of the
depot correspond to a working day of 12 hours: from 7AM until 7PM. With
Figliozzi’s speed patterns, this implies that the morning and evening peak last
from 7AM until 9:24AM and from 4:36PM until 7PM, respectively. To obtain
these depot opening hours, we scale the time windows and travel distances in
each problem instance. In summary, the resulting problem instances for the
TDVRP-EC consist of the scaled modified Solomon instances with the speed
patterns proposed by Figliozzi, and the EC social legislation on driving and
working hours. We refer to this test set as Set 1.

The speed patterns in Set 1 do not allow driving before the morning peak
or after the evening peak. Moreover, since the depot is open for 12 hours,
the EC regulation on daily duty times - which restricts daily duty times to 13
hours - is always satisfied. In order to quantify the benefits of allowing travels
before the morning peak and after the evening peak, we propose a second
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test set in which driving before and after the morning peak is possible, and
for which the EC regulation on daily duty times can be restrictive. For this
purpose, we introduce Set 2 in which we extend the depot opening hours to 16
by advancing the opening time by 2 hours and by postponing the closing time
by 2 hours. The speeds during these new periods represent free-flow speeds
before the morning peak and after the evening peak, respectively. Therefore,
we set the speed during these periods to the maximum speed for each speed
pattern, i.e., we get the following speed patterns:

TD0′ = [1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00]

TD1′ = [1.60, 1.00, 1.60, 1.05, 1.60, 1.00, 1.60]

TD2′ = [2.00, 1.00, 2.00, 1.50, 2.00, 1.00, 2.00]

TD3′ = [2.50, 1.00, 2.50, 1.75, 2.50, 1.00, 2.50]

Note that the first and the last speed last for 2 hours, while the other speeds
last for 2.4 hours.

In addition to these extra depot opening hours, we adjust a selection of the
customer service time windows in Set 2. If the opening (closing) time of a time
window is non-restrictive in the original Solomon instance, we make it also
non-restrictive in the new problem instance. This implies that if the opening
time in the original Solomon instance equals the opening time of the depot,
then we set this opening time accordingly in Set 2. The closing times in the
original Solomon instances are integer and they are constructed such that they
always allow a direct return to the depot after starting service at this closing
time. Therefore, we consider closing times non-restrictive if starting service at
this closing time and directly returning to the depot results in an arrival time
(after rounding up) equal to the closing time of the depot. In our new test set,
we set such closing times equal to the closing time of the depot. We refer to
this test set as Set 2. Note that Set 2 is less restrictive than Set 1, since some
time windows are increased and the average travel speed is increased (every
feasible solution in Set 1 is also a feasible solution in Set 2). However, the EC
regulation on daily duty times can be restrictive in Set 2 as opposed to Set 1.

6.5.2 Test approach

Our test approach is as follows. We solve all problem instances twice. Both
times we set the primary objective to minimize the number of vehicles used.
However, the first time we set the secondary objective to minimize the total
travel distance, and the second time we set it to minimize the total duty time.
In the remainder we refer to the DP heuristic with minimizing travel distance as
secondary objective as DP dist, and we refer to the DP heuristic with minimizing
duty time as secondary objective as DP duty. We compare the results of these
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two heuristics in terms of all relevant cost factors (number of vehicles, travel
distance, duty time).

For both DP heuristics we set H = 10,000, which means that in each stage
in the DP heuristic only the 10,000 best states are selected to be expanded in
the next stage. For this selection procedure, we use the following hierarchical
criteria: 1) number of vehicles used, 2) earliest completion time of vehicle
route being constructed, 3) secondary objective. We added the secondary cost
criterion ‘earliest completion time’, because preliminary tests showed that this
criterion has a positive impact on minimizing the number of vehicles used.
Within the DP heuristic, the primary criterion ‘number of vehicles used’ starts
to play a role when a node representing the depot is about to be added to a
state. However, when a customer with a late window opening time is selected,
there is little room for adding customers to the end of this partial vehicle route,
such that extra vehicles may be needed in the complete solution. Setting the
secondary selection criterion to ‘earliest completion time of the partial vehicle
route being constructed’ increases the room for adding customers such that
less vehicles are needed in the complete solution. In our experiments we set
the dominance criteria to these 3 criteria together with the remaining capacity
(state A should be at least as good as state B in all 4 criteria to dominate
state B).

6.5.3 Test results

Table 6.1 presents the results for the two heuristics on Set 1 in terms of number
of vehicles used, total travel distance, total duty time, and the required cpu
time (in seconds). DP dist leads to better results than DP duty in terms of
travel distance (-4.1%, on average), and in terms of number of vehicles used
(-5.7%, on average). The latter result can be explained as follows. If the
secondary objective is set to minimize the total duty time, then routes that
start late and complete early are preferable. Therefore, customers with either
an early or late time window are not preferable with this objective. The first
two criteria (number of vehicles used and earliest completion time of the route
being constructed) for selecting the H best states in each stage tries to avoid
missing such customers, but only for the route that is being constructed. These
criteria do not have any effect on the routes that have already been completed
in the partial solution. Therefore, for those completed routes only the tertiary
criterion plays a role. Since for DP duty this criterion is ‘total duty time’, it is
likely that only few customers with either an early or a late time window are
in the completed routes in a partial solution. Therefore, such customers have
to be selected at a later stage in which they may not combine well and extra
vehicles are needed.

The duty times are substantially smaller with DP duty than with DP dist

(-3.5%, on average, but against an increase in the number of vehicle routes
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of 5.7%, on average). This is of particular interest, since the total duty time
defines the total amount of vehicle hours that is needed to serve all customers.
Since transport costs are directly related to this amount of vehicle hours, any
reduction in duty time leads to costs savings. Note that the computation times
are much smaller for the TD0 speed pattern. Speeds are constant with TD0,
such that the number of duty time record entries is substantially smaller with
this speed pattern (this number is either 1 in case there is forced waiting time
along the route, or 2: the earliest and latest feasible departure time without
introducing unforced waiting time).

Speed DP dist DP duty

pattern # veh dist duty cpu(s) # veh dist duty cpu(s)

TD0 9.18 1294 4992 148 9.34 1314 4860 148
TD1 8.23 1261 4730 397 8.82 1318 4540 397
TD2 7.75 1265 4501 407 8.18 1326 4352 408
TD3 7.48 1258 4413 415 8.18 1330 4228 415

average 8.16 1269 4659 342 8.63 1322 4495 342

Table 6.1: Results of heuristics DP dist and DP duty on problem Set 1

Table 6.2 presents the results for Set 2. Allowing travels before the morning
peak and after the evening peak substantially reduces the number of vehicles
needed (-4.4% and -3.1% for DP dist and DP duty, respectively). The total
travel distance (2.5% and 3.5%, respectively) and total duty time (2.0% and
0.8%, respectively), however, increase.

Computation times are a bit larger for Set 2 than for Set 1. This difference
can be explained by the average number of duty time record entries, which is
larger for Set 2 than for Set 1. The longer planning horizon in Set 2 allows
for more possible departure times for each partial vehicle route. In addition,
longer routes are allowed, such that more breaks have to be scheduled.

Speed DP dist DP duty

pattern # veh dist duty cpu(s) # veh dist duty cpu(s)

TD0 8.68 1297 5096 161 9.00 1340 4902 160
TD1 7.96 1304 4847 645 8.55 1369 4575 582
TD2 7.45 1298 4556 584 8.11 1370 4389 592
TD3 7.13 1304 4515 612 7.79 1394 4261 618

average 7.80 1301 4753 500 8.36 1368 4532 488

Table 6.2: Results of heuristics DP dist and DP duty on problem Set 2

We also tested the solution quality of the VDO algorithm with the non-delay
property. For this purpose, we optimize the departure times of the vehicle
routes in the solutions for Set 2 using the ILP model of Chapter 2, which
includes unforced waiting times and early breaks. We choose the solutions for
Set 2, because in the problem instances in set 2 all restrictions considering one-
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day planning (e.g., maximum daily duty time) may play a role. We solved the
ILP model with CPLEX 11.0 for each vehicle route obtained from the solutions
for Set 2 and compared the minimum duty times with the duty times found
by our VDO algorithm. Table 6.3 presents the average improvements in duty
time by solving the ILP models.

Speed DP dist DP duty

pattern Improvement Improvement

TD0 0.29% 0.11%
TD1 0.50% 0.43%
TD2 0.61% 0.34%
TD3 0.28% 0.19%

average 0.42% 0.27%

Table 6.3: Improvements by solving ILP model for the VDO

We observe that the improvements are very small (smaller than 0.5%, on
average). The improvements are slightly larger for DP dist. This can be ex-
plained by less tight routes when travel distance is the secondary objective than
routes when duty time is the secondary objective. For less tight routes it is
more likely that there is room for improvement by introducing unforced wait-
ing time. Although the improvements are small on average, there are problem
instances for which the average improvement over all routes is more than 3.7%.
Therefore, optimizing departure times using the ILP model of Chapter 2 as
a post-processing step of solving a TDVRP-EC may lead to substantial cost
savings.

6.6 Conclusions

We extended the DP heuristic of Chapter 3 to a solution method for the
TDVRP-EC. To the best of our knowledge, this is the first solution approach
that considers both time-dependent travel times and driving hours regulations
within one vehicle routing model.

We proposed a heuristic for the vehicle departure time optimization problem
to estimate the minimum duty time of partial vehicle routes. This heuristic is
an exact polynomial-time algorithm for the VDO with the non-delay property
and without early breaks. Computational results show that this heuristic finds
close to optimal solutions for the VDO.

The DP heuristic is flexible with respect to various extensions of the VRP.
Therefore, the solution approach proposed in this chapter can also be applied
to those extensions of the VRP. The DP heuristic is also flexible with respect
to different objective functions. This is demonstrated with the computational
experiments in which duty time minimization as the secondary objective, which
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is often considered in practice, is compared with travel distance minimization,
which is often considered in the VRP literature. Therefore, this solution ap-
proach is very promising for real life vehicle routing problems.

The computational results show that duty time minimization as the sec-
ondary objective leads to substantial reductions of duty times, but against the
cost of more vehicle routes and longer travel distances. Moreover, the results
show that extending the depot opening hours, such that traveling before the
morning peak and after the evening peak becomes possible, may result in sub-
stantial cost savings.



Chapter 7

An alternative: distributed
decision making

In the VRP literature, vehicle routing problems have been generally approached
from a central planning perspective. In practice, however, a centralized plan-
ning in which all decisions are taken by the planner may not always be realistic.
For example, drivers are often responsible for scheduling their own breaks, and
in certain cases they also partially decide upon their routes. In such cases,
drivers may have their own objective, which may deviate from the company’s
objective. The question that arises is whether putting a lot of effort in a very
detailed centralized planning pays off if drivers change their routes according
to their own objectives.

In this chapter1, we analyze the problem of combined vehicle routing and
break scheduling from a distributed decision making perspective. We approach
this problem with a hierarchical planning process, in which both planners and
drivers are responsible for parts of the planning process. The main question
we attempt to answer is whether it pays off to make a very detailed centralized
vehicle route plan if subsequently each driver optimizes his own route according
to his own objectives.

7.1 Introduction

The problem of combined vehicle routing and break scheduling basically com-
prises three subproblems: clustering the customer requests, routing, and break
scheduling. In practice, these subproblems are distributed among different de-
cision makers: the planner and the drivers. Semi-structured interviews with 5

1This chapter is based on Meyer et al. (2009a,b)

109



110 Chapter 7. An alternative: distributed decision making

medium-sized logistic service providers in Germany (Onken, 2009) pointed out
that in practice planners are typically responsible for the clustering of the cus-
tomer requests, while the drivers schedule their breaks. Whether the routing
is done by the planner or the driver depends on the application at hand.

In the literature, various strategies have been proposed to deal with the
problem of break scheduling within vehicle routing. Some authors propose ex-
plicit break scheduling in which the rules of Regulation (EC) No 561/2006 are
explicitly considered in the VRP (our DP heuristic of Chapter 4; Goel, 2009;
Zäpfel and Bögl, 2008). Others propose implicit break scheduling, in which
slack travel time is created by using a lower average speed (e.g., Bartodziej
et al., 2009). This latter approach to account for breaks is often used in prac-
tice (Onken, 2009). Explicit break scheduling is more complex, but allows for
finding better results and guarantees feasible break schedules for the resulting
vehicle routes. This trade-off between complexity and solution quality has, to
the best of our knowledge, never been analyzed and quantified so far.

To account for a situation in which different decision makers are involved,
we analyze the problem of combined vehicle routing and break scheduling from
a distributed decision making (DDM) perspective. For this purpose, we apply
the framework for DDM proposed by Schneeweiss (2003). In this framework,
two types of decision makers are considered: in our case the (central) planner
and the drivers. The planner’s main task is to determine the customer clusters.
His decision results in an instruction to each driver to visit a certain customer
set, thereby implying a hierarchical planning framework. In order to account
for the fact that the drivers have to find feasible routes and break schedules, the
central planner attempts to anticipate the driver’s behavior to a certain extent.
As we argue in Section 7.3.1, we consider all relevant degrees of anticipation for
the problem of combined vehicle routing and break scheduling. The planner’s
decision is based on the clustering problem and his anticipation of the drivers’
behavior.

We assume the planner’s objectives to meet the company’s objectives: the
primary objective is to minimize the number of clusters and the secondary
objective is to minimize the total travel distance. We select minimizing travel
distance as secondary objective in this chapter, because we consider one-week
planning for our analysis. As mentioned previously, minimizing duty times is
typically applied to one-day schedules. Travel distance is a good measure for
evaluating week schedules and using this objective also suffices for the analysis
in this chapter. For similar reasons, we do not include time-dependent travel
times in this chapter.

For the drivers’ behavior, we consider two different cases. In the first case,
the drivers’ objective meets the company’s secondary objective, e.g., the mini-
mization of the total travel distance. In the second case, which in our opinion
better represents practice in many cases, the drivers apply their own objective,
e.g., the minimization of the return time. This objective may conflict with
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the company’s objective. The practical problem of conflicting objectives is an-
other motivation to study the problem of combined vehicle routing and break
scheduling from a distributed decision making perspective.

By proposing different anticipation functions of the drivers’ behavior, we
can compare different strategies for break scheduling, e.g., implicit and explicit
break scheduling. We perform computational experiments to quantify the qual-
ity of these alternative strategies. Clearly, some of the strategies are more
complex (explicit break scheduling) than others (implicit break scheduling).
By quantifying the quality of these strategies, we demonstrate the trade-off
between complexity and solution quality.

This chapter is organized as follows. In Section 7.2, we discuss the distri-
bution of tasks between planners and drivers within the problem of combined
vehicle routing and break scheduling. In Section 7.3, we show how the problem
can be embedded into a framework for DDM. We will consider two different set-
tings. In the first setting, the drivers act in a way that fits within the planner’s
objective, while in the second setting the drivers deviate from the planner’s
objective, following their own criterion. In Section 7.4, we analyze the impacts
of various anticipation functions of the drivers’ behavior using computational
experiments. We consider both the setting in which drivers’ and planner’s ob-
jectives coincide and the setting in which these objectives conflict. Finally, in
Section 7.5, we summarize our main findings.

7.2 Problem description

The problem of combined vehicle routing and break scheduling from a central
planning perspective basically involves a VRPTW-EC. From a distributed de-
cision making perspective, it comprises three interconnected partial planning
problems: the clustering of customer requests, the routing of vehicles, and the
planning of breaks and rest periods. These problems can be solved either si-
multaneously - which involves solving a VRPTW-EC - or in sequence. Since
in our case the tasks are divided among different decision makers, we consider
the case in which these problems are addressed sequentially by planners and
drivers. First, the planner clusters the customer requests, thereby attempting
to minimize the number of vehicles used to serve the customers in order to save
costs for the company. His secondary objective is to minimize the total travel
distance to serve all customers. The customer clusters are then passed on to
the drivers. Within their assigned set of customers, each driver carries out the
routing and break scheduling such that the EC social legislation is satisfied on
his route. We choose this division of the three partial planning problems, be-
cause Onken (2009) indicated that this division is more often used in practice
than, e.g., the case in which the planner is also responsible for the routing.

To avoid infeasible problems in the drivers’ subsequent planning, the central
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planner might take into account the drivers’ planning approach when generat-
ing customer clusters. This means that when performing their planning task,
planners anticipate the routing and break scheduling that will be performed
subsequently. However, since the legislation on driving and working hours is
rather complex, planners might not anticipate the exact planning process but
instead use some simplified approach to anticipate the drivers’ planning model.
We will propose different degrees of anticipation and analyze their impact on
the resulting vehicle schedules.

The drivers may follow different objectives. If they act according to the
company’s objectives, they will try to minimize the travel distance in order to
save costs. Schneeweiss (2003) refers to this situation as the team situation
between planner and drivers. However, since the drivers may freely decide on
their route, they might also follow their own objectives, even if these are not
in line with the company’s objectives. For example, instead of minimizing the
travel distance, each driver may try to minimize his return time to the depot in
order to maximize his leisure time. This hidden action cannot be observed by
the planner. We refer to this non-compliant setting as the non-team situation.

7.3 Framework for distributed decision making

The framework for DDM presented by Schneeweiss (2003) was first introduced
as a framework for hierarchical planning by Schneeweiss (1995). This frame-
work for hierarchical planning has been applied successfully to investigate prob-
lems in various areas, such as production planning (Gfrerer and Zäpfel, 1995),
resource planning (Pesenti, 1995), supply chain management (Schneeweiss and
Zimmer, 2004), managerial accounting (Eichin and Schneeweiss, 2001), contract
design (Schenk-Mathes, 1995), and financial planning (Goedhart and Spronk,
1995).

The framework for DDM presented by Schneeweiss (2003) considers two de-
cision making units (DMUs). In the case of hierarchies in distributed decision
making, these DMUs are situated on different levels: the top-level and the base-
level. The top-level uses a planning model MT (CT , AT ) and takes its decision
in such a way that it optimizes its criterion CT over all possible actions aT

within its decision field AT . The top-level’s criterion consists of a private cri-
terion CTT and a top-down criterion CTB (which depends on the base-level’s
behavior), i.e., CT =

{

CTT , CTB
}

. The top-level derives an optimal instruc-
tion IN∗ = IN(aT∗) and communicates it to the base-level. Subsequently,
the base-level takes its decision based on the top-level’s instruction using its
planning model MB(CB , AB) such that its criterion CB is optimized.

To improve the overall planning results, the top-level can try to anticipate
the base-level’s subsequent planning in order to avoid giving an infeasible in-
struction or to account for the base-level’s influence on the top-down criterion.
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Figure 7.1: Coordination in Hierarchical Systems (Schneeweiss, 2003)

Therefore, the top-level can apply an anticipation function AF (IN), which
is a function of the top-level’s instruction and gives possible reactions of the
expected base-level’s behavior. The anticipation function does not need to
be a precise representation of the base-level’s reaction but can also be an ap-
proximation of the expected base-level’s planning model Exp(MB(CB , AB)).
Figure 7.1 depicts this hierarchical coordination structure.

Schneeweiss (2003) distinguishes four different degrees of anticipation: per-
fect reactive anticipation, approximately perfect reactive anticipation, implicit
reactive anticipation, and non-reactive anticipation. Perfect reactive antici-
pation means that the base-level’s planning model is exactly known and it is
anticipated by the top-level without any approximations. In the case of approx-
imately perfect reactive anticipation, the base-level’s planning model is taken
into account only approximately, e.g. by making simplifying assumptions. Im-
plicit reactive anticipation means that only some features of the base model
are considered and the anticipation function does no longer explicitly describe
the base-level’s decision model. These three degrees of anticipation incorporate
the base-level’s planning behavior as a reaction to the top-level’s instruction.
In the case of non-reactive anticipation, such an anticipation function does not
exist, but only some general features of the base-level may be included in the
top-level’s criterion.

7.3.1 Planner’s and Drivers’ Models

In the problem of combined vehicle routing and break scheduling, the planner
constitutes the top-level and the drivers constitute the base-level. In the pure
top-down hierarchy where the planner does not account for the drivers’ plan-
ning, the planner’s criterion CT is to minimize the number of vehicles required
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to serve all customer requests. Since the planner does not account for the
drivers’ planning, the planner’s criterion only comprises his private criterion,
i.e., CT = CTT . The top-down criterion CTB plays a role when the planner
anticipates the driver’s planning problem, which we describe in Section 7.3.2
and 7.3.3. Without any anticipation of the driver’s planning (neither of his
planning behavior, nor of his planning objectives, nor of his planning prob-
lem, the planner’s decision field AT comprises all possible customer clusters
satisfying the capacity restrictions of the vehicles. All other restrictions (time
windows, driving hours regulations) relate to the drivers’ planning problem,
which can only be considered by the planner if he anticipates (to some extent)
the drivers’ planning problem. Therefore, in the case that the planner does
not anticipate the drivers’ planning problem, the planner’s decision problem
results in solving the following assignment problem with capacity restrictions:

CT : Minimize
∑

k∈K

zk (7.1)

AT :
∑

k∈K

xik = 1, ∀i ∈ V (7.2)

Qzk ≥
∑

i∈V

qixik, ∀k ∈ K (7.3)

where

V = {1, ..., n} : set of customers, index i

K = {1, ...,m} : set of vehicles, index k

xik ∈ {0, 1} : takes value 1 iff customer i is served by vehicle k

zk ∈ {0, 1} : takes value 1 iff vehicle k is used

Q : capacity of one vehicle

qi : demand of customer i

After deriving the customer clusters CLk ⊆ {1, ..., n} for each vehicle k, the
planner passes them on to the drivers who constitute the base-level. Therefore,
the instruction equals the customer clusters, i.e., IN∗ = {CL∗

k|k ∈ K}, with
CL∗

k = {i ∈ V |x∗
ik = 1} and x∗

ik the optimal assignments in (7.1) - (7.3).

The drivers have to perform the routing and break scheduling within their
customer clusters. Therefore, each driver k has to solve a traveling salesman
problem with time windows and EC social legislation (TSPTW-EC) for his cus-
tomer cluster CL∗

k. A mathematical description of this problem can be found
in Kopfer and Meyer (2009) who propose a position based ILP-formulation for
the TSPTW-EC.

When performing the routing and break scheduling, we assume that drivers
try to exploit the modified rules of the EC social legislation in order to better
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Figure 7.2: Decision structure of the DDM problem

fulfill their objectives. This results in the decision field AB , which comprises the
set of all possible routes for the customer clusters CLk, such that the customer
time windows are met and the legislation is fulfilled, including all modified legal
rules.

Clearly, for a given set of customers derived by the planner, AB could be
empty (e.g., in (7.1) - (7.3) the time windows are not considered). In order to
avoid infeasible customer clusters, the planner anticipates the drivers’ planning
behavior through an anticipation function AF (IN). We propose three such
anticipation functions below. We only consider reactive anticipation, since non-
reactive anticipation does not make sense in this case (in case of non-reactive
anticipation, the time windows and the EC social legislation are not considered,
such that AB is very likely to be empty). Figure 7.2 depicts the entire planning
situation arising in combined vehicle routing and break scheduling.
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7.3.2 Team Situation

If we assume a team situation between planner and drivers, then the planner
rightfully expects each driver k to use the criterion of minimizing the total
travel distance within their customer cluster:

Exp(CB) = Min
∑

i∈CLk∪{0}

∑

j∈CLk∪{n+1}

dijx
k
ij

where

i ∈ {0, n + 1} : depot

xk
ij ∈ {0, 1} : takes value 1 iff vehicle k serves customer j directly after

customer i

dij : travel distance from customer i to customer j

Now, the planner is able to account for the drivers’ criterion. The planner’s
private criterion CTT is to minimize the number of vehicles needed. If there
are different customer clusters resulting in the minimal number of vehicles,
he will select the best ones using his top-down criterion CTB , which is to
minimize the expected total travel distance. However, to estimate the total
travel distance, he needs to anticipate the routing that is performed by the
drivers. We propose the following anticipation functions for the three relevant
degrees of anticipation.

1. Perfect reactive anticipation. In this case, the planner considers the full
planning model used by the drivers, which means that he expects each
driver to solve a full TSPTW-EC, i.e., Exp(MB) = MB . By anticipating
this driver model, the planner is able to instruct customer clusters that
allow feasible routes and break schedules for the drivers.

2. Approximately perfect reactive anticipation. In this case, the planner
simplifies the drivers’ planning model. We propose to do this by leaving
out the modified rules of the legislation. This means that the planner’s
anticipated base model is reduced to a TSPTW-EC without the modified
rules. By including only the basic rules of the legislation, the planner
can still guarantee that the clusters he instructs to the drivers allow for
feasible routes and break schedules.

3. Implicit anticipation. In this case, the planner only considers some fea-
tures of the base model. We model this planning approach by assuming
that the planner does not explicitly consider the task of break scheduling.
However, since the planner knows that the drivers require breaks and rest
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periods, he considers a lower travel speed than the average travel speed
in order to create slack travel time that can be used to schedule breaks
and rest periods. Consequently, the anticipated base model is a basic
TSPTW.

7.3.3 Non-Team Situation

In practice, the drivers’ objective may deviate from the company’s objective,
which results in a principal-agent setting. In this case, the drivers follow their
own objective C ′B , instead of following the company’s objective, represented
by CTB . To model this case, we assume that instead of minimizing the travel
distance, the drivers try to minimize their return time in order to finish their
duty as early as possible:

C ′B = Min tkreturn,

where tkreturn is the return time to the depot of driver k. In this case, we assume
that the drivers’ planning behavior is not correctly observable by the planner.
The drivers’ objective differs from the planner’s anticipated base criterion, im-
plying Exp(CB) 6= C ′B . However, since this is a situation in which the drivers
have some hidden action, the planner cannot account for the drivers’ behavior
correctly and will still use the minimization of the travel distance as the antic-
ipated base criterion. Therefore, in this situation the planner’s model MT and
also his anticipation functions AF (IN) are maintained. Moreover, the drivers’
decision space AB still comprises all vehicle routes within their assigned cus-
tomer clusters such that the EC social legislation is fulfilled. Applying the new
base criterion, the base model MB changes to M ′B = (C ′B , AB).

7.4 Computational experiments

We conduct various computational experiments to quantify the impacts of the
three anticipation functions. This quantification allows us to compare different
strategies to schedule breaks and rest periods within vehicle routing. We test
both the team- and the non-team situation. To solve the planner’s and drivers’
problems, we use the following approach.

In all scenarios, each driver has to solve a TSPTW-EC. Only the objective
is depending on the team character of the situation considered. The planner’s
problem is a clustering problem, in which the decision space AT is restricted
by the anticipation function of the drivers’ behavior; also the top-down cri-
terion CTB is estimated through the anticipation function. For each degree
of anticipation, we describe the resulting problem that is to be solved. After
describing the different problems, we describe the solution algorithm.
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In the case of perfect anticipation, while minimizing the number of cus-
tomer clusters, the planner expects each driver to solve a TSPTW-EC with
the objective of minimizing the travel distance. The planner’s problem can be
addressed by solving a VRPTW-EC with minimizing the number of vehicles
as the primary objective. All rules of the EC social legislation are considered.
The planner’s secondary objective is to minimize the total travel distance.

In the case of approximately perfect reactive anticipation the planner also
considers a TSPTW-EC for each driver. However, he ignores the modified
rules. Therefore, the planner’s problem is a VRPTW-EC without considering
the modified rules of the EC social legislation.

With implicit anticipation the planner considers a TSPTW for each driver,
but with driving time estimations based on a lower travel speed than the av-
erage travel speed. Therefore, in this case the planner’s problem can be solved
by solving a VRPTW with minimizing the number of vehicles as the primary
objective and minimizing the travel distance as the secondary objective.

We solve all problems (VRPTW-EC, VRPTW-EC without modified rules,
VRPTW, TSPTW-EC) with the restricted dynamic programming (DP) heuris-
tic of Chapter 4. We use this approach, since the DP heuristic can solve all prob-
lem types and is currently the only heuristic available to solve the VRPTW-EC
with the full EC social legislation. In Chapter 4 we described how to solve the
VRPTW-EC and the VRPTW-EC without modified rules with this DP heuris-
tic. Furthermore, to solve a VRPTW we can simply relax all break scheduling
constraints by setting the allowed accumulated driving and working times very
high (e.g., to the time horizon of the problem instance). Finally, since the
VRPTW-EC is a generalization of the TSPTW-EC, the DP heuristic can also
solve the TSPTW-EC.

We test the different anticipation functions on the benchmark instances
proposed by Goel (2009), who adjusted the well-known Solomon benchmark
instances (Solomon, 1987) for the VRPTW to the VRPTW-EC. For each prob-
lem instance and anticipation function, we first solve the planner’s problem as
described above and then the resulting drivers’ problem for each driver. We
ran our experiments on a Pentium 4, 3.40GHz CPU and 1.00 GB of RAM and
set H = 10,000 for all experiments.

7.4.1 Team Situation

We first describe the results of the team situation in which the drivers’ objective
is to minimize his travel distance. For perfect and approximately perfect antic-
ipation the planner’s solution results in feasible vehicle routes for the drivers.
We assume that a driver only changes the route and break schedule found by
the planner if the driver finds a better route and break schedule in terms of his
objective.
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Table 7.1 presents the results on perfect and approximately perfect antic-
ipation. The first column indicates the different problem sets and, between
brackets, the number of problem instances. Next, the results on the situation
with perfect anticipation and the situation with approximately perfect antic-
ipation contain three columns each: the average (over all problem instances
in each problem set) number of clusters found by the planner, the average
travel distance if the routes found by the planner are followed, and the average
distance of the final routes found by the drivers. Note that, even in case of
perfect anticipation, the drivers may find better routes than the planner, since
the state space of each driver’s problem is smaller than the state space of the
planner’s problem, while the state space restrictions for both problems are the
same (H = 10,000).

Problem Perfect Ant. Approx. Perfect Ant.
Set # clust. Pl. Dist. Dr. Dist. # clust. Pl. Dist. Dr. Dist.

c1 (9) 10.00 947 946 10.33 952 950
c2 (8) 5.50 787 785 5.63 817 811
r1 (12) 9.42 1158 1154 9.75 1159 1153
r2 (11) 7.27 1093 1091 7.73 1106 1102
rc1 (8) 10.25 1333 1332 10.13 1298 1290
rc2 (8) 7.88 1220 1219 8.50 1270 1261

Table 7.1: Results for team situation: perfect and approximately perfect an-
ticipation

The results demonstrate that perfect anticipation clearly outperforms ap-
proximately perfect anticipation. For all but one problem set, the average
number of clusters is smaller in case of perfect anticipation. On average over
all problem instances, perfect anticipation results in 3.5% less clusters than ap-
proximately perfect anticipation. Also the travel distances are smaller in case
of perfect anticipation than in case of approximately perfect anticipation. On
average, the difference is 0.90% for the routes found by the planner, and 0.56%
for the final routes found by the drivers.

The improvements found by the drivers with respect to the routes found by
the planner in terms of reduced travel distance are not too big. However, for a
substantial number of customer clusters, the drivers find better routes than the
planner: 7.7% in case of perfect anticipation and 19% in case of approximately
perfect anticipation. The larger portion in case of approximately perfect antic-
ipation is due to the larger solution space that the drivers consider by including
the modified rules, which are ignored by the planner in this case. The average
reductions of the travel distances for these customer clusters are 1.4% and 2.4%
in case of perfect and approximately perfect anticipation, respectively.

Table 7.2 presents the results for implicit anticipation. We tested different
speeds applied by the planner to account for the breaks that the drivers have
to schedule. We conducted experiments for the speeds of 2, 3, 4, and 5 distance
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units per hour, where 5 is the reference speed in each problem instance. The
case in which the speed is set to the reference speed is the extreme situation in
which the planner neglects all breaks and rest periods that the drivers have to
schedule. However, since the planner still does account for the routing including
time windows, this is also a case of implicit anticipation.

Since with implicit anticipation certain customer clusters may not allow for
feasible routes and break schedules, we have to consider such infeasibilities.
Therefore, we report for each problem set the average number of clusters found
by the planner (column 3), the average number of routes found by the planner
that allow feasible break schedules (column 4), and the average number of clus-
ters for which the drivers can find feasible routes and break schedules (column
6). Next, to make a fair comparison between the travel distances found by the
planner and by the drivers, we present for each problem set the average travel
distance of those customer clusters for which the routes found by the planner
allow feasible break schedules. We present these travel distances both for the
routes found by the planner (column 5), and for the routes found by the drivers
(column 7). We do not include the travel distances of the routes found by the
planner and the drivers for those customer clusters for which the routes found
by the planner do not allow feasible break schedules, because it does not make
sense to compare travel distances of infeasible vehicle routes.

The results indicate that higher speeds result in less clusters, but also in
many infeasible clusters. For example, speeds 4 and 5 result in 13% and 30%
infeasible clusters, respectively, and for the rc2 instances these values are even
22% and 46%, respectively. Therefore, these speeds are not suitable for prac-
tice. Speed 2 is also clearly not suitable, since this speed results in 84% more
clusters than with perfect reactive anticipation, and 78% more clusters than
with approximately perfect reactive anticipation. Speed 3 seems better than
the other speeds, but still results in 16% more clusters than perfect reactive
anticipation of which 4% is infeasible. Therefore, in practice breaks should
explicitly be scheduled, also on a central planning level.

7.4.2 Non-Team Situation

We now consider the non-team situation in which the drivers’ (hidden) objective
is to optimize their return time. This case can be easily implemented within
the DP heuristic, since we only need to adjust the objective function for the
TSPTW-EC. This objective can be set by changing the secondary cost criterion
of each state from the total distance traveled to the completion time of the
last visited customer. We only run the experiments in the non-team situation
for perfect and approximately perfect reactive anticipation, since the results
in Section 7.4.1 indicated that implicit anticipation does not meet practical
requirements.

Table 7.3 presents the results for the non-team situation with perfect and
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Problem Planner Drivers

Speed Set # clust. Feas. a Dist.b Feas.c Dist.d

c1 13.89 13.89 1220 13.89 1220
c2 14.38 13.00 1285 13.50 1285

2 r1 14.25 13.50 1229 14.00 1229
r2 13.82 13.18 1212 13.82 1210
rc1 18.75 18.63 1841 18.75 1840
rc2 19.38 19.13 1894 19.38 1890

c1 10.00 9.89 891 10.00 891
c2 8.00 6.88 764 7.25 764

3 r1 10.08 7.92 897 9.42 896
r2 9.00 6.64 805 8.91 804
rc1 11.00 9.13 1075 10.75 1073
rc2 10.50 8.63 1030 9.88 1028

c1 10.00 9.22 876 9.78 875
c2 6.00 4.25 575 5.00 575

4 r1 9.08 5.25 622 7.58 621
r2 7.64 3.64 492 6.09 491
rc1 10.13 6.75 845 9.63 843
rc2 8.38 3.50 439 6.50 437

c1 10.00 8.22 802 9.22 799
c2 5.25 3.75 510 4.13 510

5 r1 8.58 3.67 454 5.92 452
r2 6.55 1.82 270 3.18 270
rc1 9.50 4.63 629 7.88 629
rc2 7.63 2.25 273 4.13 273

aAverage number of routes found by the planner that allow feasible break schedules
bAverage travel distance of the feasible routes found by the planner
cAverage number of customer clusters for which the drivers could find feasible routes and

break schedules
dAverage travel distance of the routes found by the drivers for those customer clusters for

which the routes found by the planner allow feasible break schedules

Table 7.2: Results for team situation: implicit anticipation

approximately perfect anticipation. The number of clusters is the same as in
the team situation, since the planner’s problem does not change. Table 7.3
presents the average total travel distance and the average return time for the
routes found by the planner, and for the routes found by the drivers.

The results indicate that drivers can improve the routes found by the plan-
ner with respect to the drivers’ (hidden) objective. The average return time
reductions over all problem instances are 1.9% and 3.9% in case of perfect and
approximately perfect anticipation, respectively. However, by improving the
routes according to their private criterion, the drivers deteriorate the planner’s
secondary objective, the total travel distance, by 7.1% and 11%, respectively.
The percentage of routes that could be improved by the drivers in terms of their
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Anticipation Problem Planner Drivers
Function Set Dist. Ret. Dist. Ret.

c1 947 979 1045 957
c2 787 684 792 681

Perfect r1 1158 960 1257 938
r2 1093 821 1152 806
rc1 1333 1041 1473 1012
rc2 1220 922 1279 914

c1 952 1009 1056 966
c2 817 702 851 689

Approximately r1 1159 1014 1350 960
Perfect r2 1106 879 1201 848

rc1 1298 1065 1473 1021
rc2 1270 1015 1390 985

Table 7.3: Results for non-team situation: perfect and approximately perfect
anticipation

objective is 30% in case of perfect anticipation and 57% in case of approx-
imately perfect reactive anticipation. Since the planner’s top-down criterion
(minimizing travel distance) conflicts with the base level’s criterion (minimiz-
ing return time), there is much more room for improvement by the drivers than
in the team situation in which these criteria are in line (both minimizing travel
distance).

Another interesting observation for the non-team situation is that the dif-
ference between perfect and approximately perfect anticipation is bigger with
respect to the company’s secondary objective than in the team situation. The
difference between perfect and approximately perfect anticipation in terms of
travel distance for the routes found by the drivers is 4.71%. This is much
larger than the 0.56% in case of the team situation, because perfect anticipa-
tion results in tighter routes found by the planner than approximately perfect
anticipation. Therefore, if drivers find other routes, better with respect to their
objective, it is unlikely that the total travel distance is much bigger. However,
in case of less tight routes with approximately perfect anticipation there may
be larger increases in the travel distance. The difference in return time between
perfect and approximately perfect anticipation is also substantial: 5.2% for the
routes found by the planner and 3.0% for the routes found by the drivers.
These results indicate that a more precise representation of the base level’s
model within a non-team situation has a positive impact on the quality of the
planning, both in terms of the top-down criterion and in terms of the base-
level’s criterion. Within a non-team situation, this impact is even larger than
within a team situation.

Note that the number of clusters and the total return time is less with per-
fect anticipation than with approximately perfect anticipation. However, the
average return time is larger with perfect anticipation than with approximately
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perfect anticipation, because of the fewer customer clusters with perfect antic-
ipation. Therefore, on average, the drivers’ objective value is larger (0.63%)
with perfect anticipation than with approximately perfect anticipation.

7.5 Conclusions

In practice, vehicle routing and break scheduling often involves a distributed
decision making process, in which planners and drivers are both responsible for
parts of the planning process. Therefore, the in the VRP literature generally
used approach of centralized planning may not always be realistic in practice.
Drivers may mess up the centrally planned routes by trying to optimize them
according to their own objectives. Therefore, the main question in this chapter
is whether it pays off to make a very detailed centralized plan, when drivers
subsequently change their planned routes according to their own objectives.

To answer this question, we analyzed the problem of combined vehicle rout-
ing and break scheduling from a distributed decision making perspective. We
investigated the impact of both a team and a non-team situation between
planners and drivers on the resulting vehicle schedules. We proposed different
degrees of anticipation for the drivers’ planning behavior. The computational
experiments showed that the explicit anticipation functions are superior to the
implicit anticipation functions, both in terms of the planner’s objectives and
the drivers’ objectives. Even when only a small reduction in travel speed is
applied, the average number of customer clusters is still substantially larger
than in case of perfect anticipation. Moreover, small speed reductions result
in many infeasible customer clusters. Therefore, in practice planners should
explicitly account for break scheduling already on a central planning level.

In the case that the drivers do not follow the company’s objectives, but
instead optimize their own hidden criterion, the planner’s main objective -
minimize the number of vehicles used - is not affected. However, the planner’s
secondary objective - minimize the total travel distance - is deteriorated sub-
stantially by the drivers’ hidden actions. Here it turns out that a more precise
anticipation of the drivers’ planning model results in a less severe deterioration
of the planner’s top-down criterion. This is due to the fact that drivers do not
have so many possibilities for deviating from the routes found by the planner.

Our results indicate that, even though drivers may try to improve on their
routes, it pays off to make a detailed centralized planning by the planner. The
benefit of having a detailed centralized planning is even stronger in case drivers’
objectives deviate from the company’s objective. This is explained by the fact
that a detailed centralized planning results in tight vehicle routes, such that
drivers have few possibilities to change their routes according to their private
criterion. Therefore, detailed vehicle routing methods are highly valuable in
practice.





Chapter 8

Conclusions and
Recommendations

In this chapter, we discuss the main findings of this thesis in view of the research
questions we pose in Chapter 1. Next, we give some recommendations for
further research.

8.1 Conclusions

In this thesis, we consider vehicle routing problems with two common real life
restrictions: time-dependent travel times and driving hours regulations. Time-
dependent travel times result from traffic congestion, which regularly appears
in urban areas. Driving hours regulations are imposed by law (partly to prevent
accidents) and have to be respected by all persons involved in road transport.
Since European law poses a set of driving hours regulations that is valid for all
member countries in the European Union and traffic congestion forms a major
problem for all these countries, solution methods that consider these timing
restrictions are highly valuable in practice. Therefore, the research objective
of this thesis is

To design an off-line vehicle routing approach that improves delivery reliabil-

ity and reduces transport costs by avoiding traffic congestion whenever possible

taking into account the EC social legislation on driving and working hours.

Three key elements indicate the value of such a solution method in practice:
solution quality, computation time, and flexibility. The solution quality of
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a VRP solution method is important, since it has a direct impact on trans-
portation costs. Next, the computation time for solving problem instances of
realistic sizes should be small enough for practical use. Finally, the solution
method should be flexible towards the adaptation of new restrictions, since
practice is a dynamic environment in which problem restrictions depend on the
application at hand and may even change over time. Within such a dynamic
environment, computation time becomes even more important. We discuss the
research questions in view of these three key elements.

8.1.1 Research question 1

What is the state of the art in the literature on VRPs with time-dependent

travel times and driving hours regulations?

Chapter 1 reveals that both the literature on the VRP with time-dependent
travel times and the literature on the VRP with driving hours regulations is
scarce. Moreover, there is - to the best of our knowledge - no literature that
considers the VRP with both time-dependent travel times and driving hours
regulations. The literature on the VRP with time-dependent travel times does
not consider hard time windows. Moreover, duty time minimization as the
objective function has been ignored. The literature on the VRP with driving
hours regulations does not consider the full Regulation (EC) No 561/2006 on
driving hours, and Directive 2002/15/16 on working hours has been completely
ignored. Moreover, duty time minimization as the objective function has again
been ignored. The proposed solution methods in both research areas focus on
local search (improvement) methods. However, constructive methods are more
suitable for including complex timing restrictions such as time-dependent travel
times and driving hours regulations.

8.1.2 Research question 2

What impact do traffic congestion and driving hours regulations have on the

performance of vehicle routes constructed with state of the art vehicle routing

methods?

Chapter 2 shows that state of the art vehicle routing methods fail in practice
when traffic congestion and driving hours regulations are present. In Chapter 2,
we propose an ILP model for the departure time scheduling problem that de-
termines for a given customer visit sequence whether there exists a feasible set
of departure times respecting time-dependent travel times and driving hours
regulations. Computational experiments show that for many routes developed
by state of the art vehicle routing methods that ignore time-dependent travel
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times or driving hours regulations, no feasible departure schedule can be found.
This is not only the case for tight routes obtained by state of the art vehicle
routing methods, but also for routes obtained by less sophisticated methods,
and in case some slack on the driving times is introduced to gain more flexibility
in scheduling the departure times. Therefore, the main conclusion of Chapter 2
is that new vehicle routing methods should be developed that account for both
time-dependent travel times and driving hours regulations.

8.1.3 Research question 3

What type of solution framework is suitable for handling different types of ve-

hicle routing problems and incorporating complex timing restrictions such as

time-dependent travel times and driving hours regulations?

In Chapter 3, we propose a restricted DP heuristic for solving vehicle routing
problems. We demonstrate that this heuristic is a flexible solution method by
illustrating how various VRP extensions can be incorporated in the solution
framework. Computational experiments demonstrate a trade-off between solu-
tion quality and computation time, which is controlled by 2 parameters (H and
E) that restrict the state space in order to obtain practical computation times.
The solution method is a constructive method as opposed to the majority of
the solution approaches proposed in the VRP literature, which are focused on
improvement methods. Complex timing restrictions such as time-dependent
travel times and driving hours regulations are hard to incorporate in improve-
ment methods. Therefore, the restricted DP heuristic suits better to include
these timing restrictions than most solution approaches in the VRP literature.

8.1.4 Research question 4

How can driving hours regulations be incorporated in off-line vehicle routing

methods?

Chapter 4 extends the restricted DP heuristic proposed in Chapter 3 with
a break scheduling algorithm that checks for (partial) vehicle routes whether
feasible break schedules exist. This break scheduling algorithm considers all
relevant rules of the EC social legislation for one-week planning. The break
scheduling algorithm decides locally whether breaks or rest periods should be
scheduled, i.e., no time consuming checks downwards the partial vehicle routes
are done to find other break schedules. This approach may miss some feasible
break schedules, but has the advantage that the running time complexity of
the DP heuristic does not increase. The quality of the solution method is
demonstrated by substantially improving the solutions for a set of benchmark
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instances obtained by the state of the art solution method for this problem,
which is based on local search. Moreover, these improved results are obtained
with substantially smaller computation times. In addition, Chapter 4 indicates
that exploiting the modified rules in the EC social legislation (which allow for
more flexibility) is beneficial, and that Directive 2002/15/EC on working hours
has a substantial impact on the VRP solutions, which shows that this directive
cannot be ignored.

8.1.5 Research question 5

What impact do different congestion avoidance strategies in off-line vehicle

route plans have on the real-time performance of these plans?

In Chapter 5, we propose four strategies to avoid traffic congestion to an in-
creasing extent within off-line vehicle routing. These congestion avoidance
strategies are all based on not being at the wrong place at the wrong time.
Within each strategy, we solve a (time-dependent) shortest path problem and
a (time-dependent) VRP. To investigate the impact of these strategies in a
realistic setting, we propose a time-dependent speed model for real road net-
works based on the three key elements of peak hour traffic congestion: heavy
congestion in urban areas, heavy congestion on roads towards urban areas in
the morning peak (and vice versa in the evening peak), and heavy congestion
on roads with a high maximum speed (highways). We develop a set of TD-
VRP instances with time windows on these road networks using the proposed
speed model. Computational experiments demonstrate that avoiding traffic
congestion to a large extent results in substantial cost savings in terms of,
e.g., number of vehicles used and total duty time, and substantial reliability
improvements in terms of, e.g., number of late arrivals. Solving a TDVRP
(for which we use the DP heuristic of Chapter 3) instead of a standard VRP
increases delivery reliability and reduces the number of vehicles and the to-
tal duty time substantially. If, in addition, time-dependent shortest paths are
calculated in a pre-processing phase, then the number of vehicles and the to-
tal duty time reduce even further. Therefore, solving a TDVRP instead of a
VRP and a TDSPP instead of an SPP substantially increases the quality of the
off-line vehicle route plan. Since the DP heuristic always adds new customers
to the end of partial vehicle routes, the computation time for solving VRPs
does not substantially increase when time-dependent travel times are consid-
ered. The computation time for solving SPPs does substantially increase when
time-dependent travel times are considered, since in that case we must solve
an SPP for multiple departure times. However, since SPPs can be solved in a
pre-processing phase, computation times play only a minor role in practice for
these problems.
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8.1.6 Research question 6

How can we account for both time-dependent travel times and driving hours

regulations during the construction of vehicle routes with duty time minimiza-

tion as the objective function?

In Chapter 6, we extend the DP heuristic of Chapter 3 with a VDO heuristic
that checks for a (partial) vehicle route whether feasible departure schedules
exist and what the minimal costs of these departure schedules are in terms of
total duty time. The VDO heuristic is in fact an exact approach for the vari-
ant of the VDO in which unforced waiting times - waiting times that are not
required by obligatory breaks and that can be reduced by postponing depar-
ture times - and early breaks are not considered. The VDO heuristic runs in
polynomial time, so the running time complexity of the restricted DP heuristic
remains polynomial. Computational experiments demonstrate that substantial
duty time reductions can be achieved by setting the objective to minimize total
duty time, but at the cost of more travel distance and vehicles. Moreover, they
illustrate the benefits of extending the depot opening hours such that traveling
before the morning peak and after the evening peak becomes possible. We
also demonstrate that the VDO heuristic obtains good results by solving the
ILP formulation of Chapter 2 (which does consider unforced waiting times)
with duty time minimization as the objective function for each obtained ve-
hicle route, which results in only minor improvements in total duty time, on
average.

8.1.7 An alternative: distributed decision making

In the VRP literature, vehicle routing problems have been generally approached
from a centralized planning perspective in which the planner makes all the
decisions. In practice, however, combined vehicle routing and break scheduling
often involves a distributed decision making process, in which both planners
and drivers are responsible for parts of the planning process. The question that
arises is whether it pays off to put effort in obtaining high quality and detailed
solution methods for the central planning level, when drivers may subsequently
change their route according to their own objectives.

In Chapter 7, we analyze combined vehicle routing and break scheduling
from this alternative distributed decision making perspective. We consider
the planner to be responsible for the clustering of the customer requests, and
the drivers to be responsible for their routing and break scheduling. We ana-
lyze both a team situation, in which planner’s and drivers’ objectives coincide
(with the company’s objectives), and a non-team situation in which they con-
flict. The latter may better represent practice, for example if the planner’s
objective is to minimize travel distance (corresponding to the company’s ob-
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jective), while a truck driver tries to complete his work as early as possible.
When performing his main task ‘clustering the customer visits’, the planner
anticipates the drivers’ behavior. The main conclusion of Chapter 7 is that
the more precise this anticipation is, the better the overall planning is, both

in terms of the planner’s and the drivers’ objectives, and both in the team
and the non-team situation. Nevertheless, it may be difficult for planners to
have such precise anticipations, since they make the planning problem much
more complex. Therefore, putting effort in improving VRP solution methods
that include many precise restrictions, e.g., the modified rules of the EC social
legislation, is highly valuable for practice.

8.2 Recommendations for further research

The restricted DP heuristic we propose in Chapter 3 is a new and flexible
approach for solving vehicle routing problems. Since we propose it for including
difficult timing restrictions, it is beyond the scope of this thesis to make an in-
depth investigation on improvements of this method for existing vehicle routing
problem variants. For example, the criteria for selecting the most promising
states to take to the next stage in order to restrict the state space has only been
based on some properties of the partial solutions represented by the states (e.g.,
total distance traveled, number of vehicles used). However, good estimations of
the costs of completing these partial solutions may further improve the selection
process in each stage. Such estimations can be based on lower bounds by solving
a relaxation of the problem of completing the partial solution, or on upper
bounds by generating a complete solution through some fast procedure (e.g.,
by applying a nearest neighbor heuristic in each state to the nodes that still
have to be visited). Lower bounds not only help in selecting the most promising
states when performing a restricted DP search, but may also speed up the exact
version of the DP algorithm. Namely, instead of computing all states, the DP
algorithm may also perform a shortest path search through the state network.
Since there are several speed up techniques available for shortest path searches
that guarantee optimality, they may also be applied within the DP algorithm.
An example is the A* algorithm of Hart et al. (1968), which is applied to
routing problems by Fabri (2008). Note that the quality and computation time
of such bounding procedures may depend on the VRP variant at hand.

In general, when restrictions are added to the problem (e.g., time windows),
also state dimensions need to be added to account for these extra restrictions.
These additional state dimensions may increase the state space, since different
partial solutions represented by the same visited node set S and end node j ∈ S
may be non-dominated by each other, resulting in multiple non-dominated
states. This seems contrary to the fact that additional restrictions reduce the
solution space. Therefore, an in-depth investigation of the impacts of additional
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restrictions on the size of the state space and the size of the solution space is
an interesting topic for further research. The question arises whether the DP
formulation is still helpful when many restrictions are added to the problem,
or whether it suffices to perform a search through the solution space instead of
the state space.

In Chapter 5, we investigate the impact of several congestion avoidance
strategies on VRP instances generated on real road networks, but with a theo-
retical speed model. This speed model allows an in-depth investigation of the
impacts of the strategies for different parameter settings. However, a case study
with real travel times would be a welcome addition to this study. Since histori-
cal travel speeds on highways are available in the Netherlands (the Department
of Waterways and Public Works collects data through so-called Inductive Loop
Detectors) and more information on travel speeds for secondary roads is ex-
pected in the near future (e.g., through floating vehicle data), a case study on
the congestion avoidance strategies with real life travel speeds is a promising
direction for further research.

Robustness of the different congestion avoidance strategies is another im-
portant topic for further research. In this thesis, we focus on constructing
good vehicle route plans in a deterministic setting. However, disturbances that
appear in practice (i.e., an unexpected event such as a car accident), may
substantially change the performance of vehicle route plans when they are ex-
ecuted. Such disturbances cause delays and may propagate downstream the
vehicle routes. Different congestion avoidance strategies may also have differ-
ent impacts on the robustness of the resulting vehicle route plans. For example,
avoiding traffic congestion by choosing alternative routes (i.e., solving a TD-
SPP) aims at avoiding the location of the congestion. Therefore, a disturbance
at the beginning of the day may not have too big impacts on the travel times
at later times of the day. Choosing alternative visit sequences and alternative
customer-vehicle assignments by solving a TDVRP, however, may result in traf-
fic congestion avoidance by traversing routes sensitive to traffic congestion at
favorable hours. Such plans may be sensible to disturbances and, therefore,
may be less robust.

The research topic of robustness is of particular importance for the VDO
method we propose in Chapter 6. VDO only avoids traffic congestion by better
timing of the departure times. Therefore, disturbances may have large impacts
on the resulting performances of the vehicle route plans while being executed.
An in-depth investigation of the impact of disturbances on vehicle route plans
optimized by solving a VDO is an interesting topic for further research, espe-
cially when these disturbances are based on real life data.

The solution methods we propose in this thesis consider either one-day or
one-week planning. Most solution methods are flexible with respect to adap-
tations to other planning horizons. For example, the dynamic programming
framework we propose suits well for a rolling horizon framework, since the
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state dimensions can be set such that they meet the conditions at the start of
the planning horizon. This is an interesting property since, e.g., truck drivers
at logistic service providers are often on duty for several days, while not all
customer demands for these days are known in advance. Therefore, a VRP
with certain initial conditions (e.g., driver states: driver location, amount of
remaining driving/working time until next daily/weekly rest period) has to be
solved in such applications. The difficulty in this research may not be how
to account for such initial conditions, but by obtaining good results using the
best search strategy through the state space. Since the size of the state space
is restricted and initial driver conditions basically changes the vehicle fleet in
a heterogeneous vehicle fleet, different orderings of the vehicles may result in
different solutions. Therefore, adapting the solution methods to other planning
horizons is an important topic for further research.

Our final recommendation is the usage of our solution methods on a strate-
gic level. For example, the DP heuristic of Chapter 4 can be easily adapted
to modifications of the EC social legislation. The impacts of such modifica-
tions can be analyzed through some sensitivity analysis using (adaptations of)
our solution methods. Another example is the idea of separate road lanes for
trucks, which has been proposed as a solution for the traffic congestion prob-
lems the transport sector has to face with every day. A sensitivity analysis of
such strategic decisions is now possible with the solution methods we propose
in this thesis.
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Appendices

A Complexity theory

This appendix gives a short introduction in complexity theory. Complexity
theory plays a major role in the search for efficient algorithms for problems
such as the VRP. Complexity theory can be used to determine whether it
is likely that an efficient exact algorithm exists for a problem. If such an
algorithm does not exist, then finding a provable optimal solution for practical
problem instances often becomes computationally expensive. In general, to
solve practical instances of such problems requires to resort to heuristic solution
methods. For a detailed introduction on complexity theory, we refer to Garey
and Johnson (1979).

The VRP belongs to the class of combinatorial optimization (CO) problems.
Each CO problem has two properties: 1) there is a finite number of possible
solutions and 2) there is some function that gives a value to each solution.
The objective is to find the solution for which the value is optimal (minimal or
maximal, depending on whether it is a minimization or maximization problem,
respectively).

Each CO problem has a corresponding decision problem. The solution of
a decision problem is either yes or no. For the TSP, for example, the corre-
sponding decision problem is: ‘Does there exist a solution with value at most
K’, where K can be any given value.

The complexity of a problem depends on the most efficient algorithm that
exists for this problem. The efficiency of algorithms is determined by the
running time of an algorithm. The running time is measured by the maximum
number of arithmetic operations as a function of the input size of a problem
instance. The input size of a problem instance is the number of symbols needed
to represent the input. For the TSP, the input size of a problem is in general
measured by n, the number of nodes in the problem. The running time of an
algorithm is then represented by O (f (n)), which means that there exists values
k and n0, such that the number of arithmetic operations of the algorithm is
never greater than k · f (n) for all instances with n ≥ n0.
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The most straightforward way to solve the TSP is complete enumeration.
Since the total number of visit sequences for a TSP with n nodes and a fixed
start and end node is (n − 1)!, the running time of complete enumeration is
O ((n − 1)!). This algorithm is a so-called exponential time algorithm. If the
running time is bounded by some polynomial function f (n), then the algorithm
is a polynomial time algorithm.

Within complexity theory, problems for which a polynomial time algorithm
exists are considered easier than problems for which no polynomial time al-
gorithm exists. If a polynomial time algorithm exists for a certain problem
then it belongs to the complexity class P. A superset of the problems in
P are the problems belonging to the complexity class N P. The problem
classes P and N P are defined for decision problems. A problem belongs to
the class N P if for every yes-instance of the problem a certificate exists that
can be verified in polynomial time. A certificate for a yes-instance of the TSP
is a list of the nodes in visit sequence. Verifying that this visit sequence has
value at most K can be done in O (n) arithmetic operations.

A special class of problems in N P are the N P-complete problems. A
problem is N P-complete if and only if it belongs to N P and every problem
in N P is polynomially reducible to it. A problem A is polynomially reducible

to problem B if and only if there exists a polynomial-time function τ that
transforms A-instances into B-instances such that x is a yes-instance for A if
and only if τ (x) is a yes-instance for B. N P-complete problems are consid-
ered the hardest problems in N P, since a polynomial time algorithm for any
N P-complete problem can be transformed into a polynomial time algorithm
for any other problem in N P. Note that if such a polynomial time algorithm
exists, this would imply P = N P. Although the question whether P = N P

is still an open question, it is widely believed that P 6= N P. This belief is
strengthened as over several decades, despite tremendous efforts, nobody has
found a polynomial time algorithm for an N P-complete problem.

A combinatorial optimization problem is N P-hard if the corresponding
decision problem is N P-complete. The TSP is an N P-hard problem (Garey
and Johnson, 1979). Since the VRP is a generalization of the TSP, it is at least
as hard as the TSP. Since the VRP also belongs to the class N P (a certificate
that can be checked in polynomial time is, e.g., a sequence of visit sequences
by concatenating the visit sequences of the vehicles) the VRP is an N P-hard
problem.
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B Maximum number of breaks per day

We show that the maximum number of breaks required for a certain departure
time for one vehicle route and one-day planning equals 4. We first construct
an example where exactly 4 breaks are required and next, we show that there
cannot exist departure times which require more than 4 breaks.

Suppose that the first break, say at customer i, must be scheduled after a
very small amount of accumulated driving time, say ǫ > 0. This happens if the
driving time to the next customer j equals 4.5 (see Figure 1a). Next, assume
that the driving time from i to j reduces to 3.75 + ǫ if a break of 0.75 is taken
at customer i (see Figure 1b). This is possible under the non-passing property.
Then, after 3.75+2ǫ of total driving time, and 3.75+ ǫ of accumulated driving
time since the last break, we arrive at customer j. If the driving time to the next
customer k equals 0.75, then we also have to schedule a break at customer j.
Under the non-passing property, it is possible that after the break of 0.75, the
driving time to customer k has reduced to ǫ (see Figure 1c). Therefore, when
arriving at customer k, 3.75+3ǫ of total driving time has passed. Furthermore,
the accumulated driving time is ǫ, which is the same as at customer i. Next,
we repeat the procedure to schedule two other breaks. By making ǫ arbitrarily
small, the fourth break is required after 7.5 of total driving time.

i j

i

i k

k

j

j

(a)

(b)

(c)

D

D = driving

B = break

D D

4.5

BD D

0.75ǫ

DB

ǫǫ

D

0.75

0.75

3.75 + ǫ

3.75 + ǫ

B D

0.75

ǫ

Figure 1: (a) route 0 → i → j with no break at i, (b) route 0 → i → j → k
with a break at i and no break at j, (c) route 0 → i → j → k with breaks at i
and j.

A fifth break may never be required because of the following. Observe that
when the second break is taken, at least 3.75 of total accumulated driving
time must have passed. This is, because the accumulated driving time before
the first break at customer i, added to the driving time of the next travel,
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say to customer j, must exceed 4.5 (otherwise no break would be required).
The non-passing property allows this total accumulated driving time to reduce
by at most 0.75 during the first break. Therefore, before the second break is
taken, at least 3.75 of total driving time must have passed. Next, after the
second break is taken, the accumulated driving time is 0 again. With the same
reasoning, we can derive that before the fourth break is taken, at least 7.5 of
total driving time must have passed. Since the remaining driving time after
this fourth break is 1.5, while the accumulated driving time directly after the
fourth break is 0, a fifth break can never be required.
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C Glossary of symbols

C.1 parameters

V set of customers (index i = 0, ..., n + 1)
K set of vehicles (index k = 1, ...,m)
Q capacity of a vehicle
Qk capacity of vehicle k
ei time window opening time at customer i
li time window closing time at customer i
si service time at customer i
qi demand of customer i
ci

(

Xd
i

)

travel time from customer i to customer i+1 at departure
time Xd

i

tmax maximum daily driving time (9 hours)
tdp maximum accumulated driving time in a driving period

(4.5 hours)
b1
min minimum duration break of type 1 (0.5 hours)

b2
min minimum duration break of type 2 (0.25 hours)

btotal minimum total duration of breaks to end a driving period
(0.75 hours)

dmax maximum daily duty time (13 hours)
gi,r indicate the times at which the slope of the travel time

function from customer i to customer i + 1 changes (r =
1, ...,mi)

ai,r travel time from customer i to customer i + 1 at time gi,r

bi,r slope of the travel time function from customer i to cus-
tomer i + 1 between gi,r and gi,r+1

cij travel costs from customer i to customer j
dij travel distance from customer i to customer j
p maximum number of times the speed changes on a route
rz duty time record of route z
rzw partial duty time record w = 0, ...,W z of route z
rz
u duty time record entry u = 0, ..., Uz

r̃z
u duty time record entry u when no break is scheduled at

the last but one visited node in route z
dz

u departure time from the first visited node in route z
tzu duty time for visiting all nodes in route z with departure

time dz
u

continued on next page
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continued from previous page

az
u arrival time at the last node in route z corresponding to

departure time dz
u

T z(d) duty time needed to visit all nodes in route z when de-
parting at time d from the first node in route z

F z(a) departure time from the first node in route z correspond-
ing to arrival time a at the last node in route z

taz
u total accumulated driving time since the last break for

departure time dz
u

CLk customer cluster k
S subset of customer set V \0
O set of origin nodes (index o = o1, ..., om)
D set of destination nodes (index d = d1, ..., dm)
R set of request nodes (index r = r1, ..., rn)
A arc set representing feasible travels between nodes
H maximum stage width
E maximum number of state expansions per state

C.2 variables

tnbw accumulated non-break working time
tnbd accumulated non-break driving time
tnr accumulated non-rest time
tdd accumulated daily driving time
tww accumulated weekly working time
twd accumulated weekly driving time
ai arrival time at customer i
δij remaining driving time from customer i to customer j
ndte: number of driving time extensions taken by the active ve-

hicle
nrr: number of rest reductions taken by the active vehicle
tdw: accumulated daily working time

C.3 decision variables

Xs
i time to start service at customer i

Xd
i departure time from customer i

W s
i waiting time before time to start service at customer i

W d
i waiting time before departure from customer i

Bp,l
i indicates the break time of break type l = 1, 2 before

(p = s) or after (p = d) serving customer i
continued on next page
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continued from previous page

Y p,l
i binary variable that can only take value 1 if the waiting

time W p
i is sufficient to be considered a break of type l

Vij binary variable that takes value 1 if a driving period starts
at customer i and ends at customer j > i

Ui,r binary variable that takes value 1 if and only if the depar-
ture time Xd

i from customer i is between gi,r and gi,r+1

Xd
i,r takes the value of Xd

i if the corresponding Ui,r takes value
1, and 0 otherwise

Ci travel time from customer i to customer i + 1
Li binary variable that takes value 1 if service start late at

customer i, and can take value 0 otherwise
Ai late time at customer i
Amax maximum late time

Bp,rest
i indicates the rest time before (p = s) or after (p = d)

serving customer i

Y p,rest
i binary variable that can only take value 1 if the waiting

time W p
i is sufficient to be considered a rest

V daily
ij binary variable that takes value 1 if a driving period starts

at customer i and ends at customer j > i
Ei binary variable that takes value 1 if the daily driving time

starting at customer i can be extended to 10 hours
xik binary variable that takes value 1 if and only if customer i

is served by vehicle k
xk

ij binary variable that takes value 1 if and only if customer i
is succeeded by customer j with vehicle k

zk binary variable that takes value 1 if and only if vehicle k
is used

tkreturn return time of vehicle k

C.4 dynamic programming

(S, j) state: minimal cost route through customers S ⊆ V (0),
ending at customer j ∈ S

C (S, j) costs of state (S, j)

C.5 framework for DDM

AT top-level’s decision field with actions aT ∈ AT

AB base-level’s decision field with actions aB ∈ AB

CT top-level’s criterion
CTT top-level’s private criterion

continued on next page
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continued from previous page

CTB top-level’s top-down criterion
CB base-level’s criterion
MT

(

CT , AT
)

top-level’s planning model
MB

(

CB , AB
)

base-level’s planning model
IN

(

aT
)

top-level’s instruction to base level depending on top
level’s action aT

IN∗
(

aT∗
)

optimal top-level’s instruction to base level with top level’s
optimal action aT∗

AF (IN) top-level’s anticipation function of top-level’s instruction
Exp(MB) approximation of the expected base-level’s planning model

C.6 abbreviations

VRP vehicle routing problem
TSP traveling salesman problem
GTR giant-tour representation
CVRP capacitated vehicle routing problem
VRPTW vehicle routing problem with time windows
PDP pickup and delivery problem
PDPTW pickup and delivery problem with time windows
MDVRP multi-depot vehicle routing problem
SDVRP split-delivery vehicle routing problem
OVRP open vehicle routing problem
PVRP periodic vehicle routing problem
VRPTW-EC vehicle routing problem with time windows and the EC

social legislation
TSPTW-EC traveling salesman problem with time windows and the

EC social legislation
TDVRP time-dependent vehicle routing problem
SPP shortest path problem
TDSPP time-dependent shortest path problem
TDVRP-EC time-dependent vehicle routing problem with time win-

dows and the EC social legislation
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Samenvatting

Routeplanning is een complex probleem waar bedrijven als logistieke dienst-
verleners en distributiebedrijven dagelijks mee te maken hebben. Het hebben
van een goede planning is noodzakelijk om de transportkosten laag te houden
en om de leveringen op tijd plaats te laten vinden. Het realiseren van een der-
gelijke planning is echter niet eenvoudig. Planners hebben te maken met grote
aantallen orders die ze moeten toewijzen aan de voertuigen. Ook moeten ze
voor elk voertuig bepalen in welke volgorde de toegewezen orders uitgevoerd
moeten worden. Hierbij moeten planners rekening houden met vele restricties,
zoals tijdsvensters voor de leveringen, voertuigcapaciteiten en productcompa-
tibiliteiten. Twee restricties die het planningsprobleem in het bijzonder lastig
maken zijn de dagelijkse files en het rijtijdenbesluit opgesteld door de Europese
Unie. In dit proefschrift onderzoeken we routeplanningsproblemen onder deze
twee tijdsrestricties en ontwikkelen efficiënte oplossingsmethoden hiervoor.

In 2002 berekende Transport Logistiek Nederland dat 10% van de werktijd
van chauffeurs verloren gaat als gevolg van de dagelijkse files. De totale directe
transportkosten als gevolg van files bedroegen in dat jaar ongeveer 1,2 miljard
euro. Sindsdien is het fileprobleem alleen maar toegenomen. Doordat files
tijdelijk zijn, hangen reistijden sterk af van het gekozen vertrektijdstip. Dit
veroorzaakt een nieuw probleem binnen de routeplanning: het bepalen van het
optimale vertrektijdstip van elk voertuig.

In 2006 introduceerde de Europese Unie een vernieuwd rijtijdenbesluit met
als doel de Europese wegen veiliger te maken. Elk jaar vinden er namelijk
ongeveer 1,5 miljoen ongelukken plaats op de Europese wegen, waarvan meer
dan 40 duizend met dodelijke afloop. Vermoeidheid bij chauffeurs wordt gezien
als een belangrijke oorzaak van deze ongelukken. Daarom stelt het rijtijdenbe-
sluit restricties aan de totale rij- en werktijd, waarna een pauze moet worden
genomen. Deze pauzes vinden vaak bij klanten plaats, waardoor niet alleen het
vertrektijdstip van elk voertuig aan het begin van de dag, maar ook bij elke
klant bepaald moet worden.

Bestaande oplossingsmethoden voor routeplanningsproblemen houden geen
rekening met files of met het rijtijdenbesluit. Er wordt vanuit gegaan dat er
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na het bepalen van de routes genoeg speling is om de verplichte pauzes in te
plannen en vertragingen als gevolg van files op te vangen. Hoofdstuk 2 van
dit proefschrift laat echter zien dat dit in het algemeen niet zo is, waardoor er
allerlei kostbare acties ondernomen moeten worden (zoals het inhuren van een
extra voertuig) om toch alle leveringen op tijd plaats te laten vinden.

Het merendeel van de oplossingsmethoden voor routeplanningsproblemen
zijn zogeheten verbetermethoden. Deze methoden proberen een bestaande
planning telkens te verbeteren door middel van kleine aanpassingen, zoals het
verplaatsen van een order van de ene route naar de andere. Het voordeel van
zulke kleine aanpassingen is dat ze in het algemeen erg snel doorgerekend kun-
nen worden, zodat in korte tijd veel oplossingen geëvalueerd kunnen worden.
Deze methoden zijn echter minder geschikt voor lastige tijdsrestricties als files
en het rijtijdenbesluit. Het invoegen van een order in een route bijvoorbeeld ver-
andert de vertrektijdstippen bij alle klanten die na deze order bezocht moeten
worden (en daarmee mogelijkerwijs ook de reistijden). Daarom is het evalueren
van een dergelijke aanpassing onder deze tijdsrestricties erg rekenintensief.

In dit proefschrift ontwikkelen wij een oplossingsmethode voor routeplan-
ningsproblemen gebaseerd op dynamisch programmeren. Deze methode breidt
op een efficiënte manier bestaande deelroutes uit door telkens een order aan
het eind van één van deze deelroutes toe te voegen. Het voordeel van deze
constructieve manier van het creëren van de routes is dat lastige tijdsrestricties
gemakkelijk meegenomen kunnen worden. Daarnaast is de methode ook zeer
flexibel met betrekking tot vele andere restricties, zoals volgorderelaties, ver-
schillende trailercompartimenten, meerdere depots en heterogene voertuigen.

De kwaliteit van onze oplossingsmethode demonstreren we in hoofdstuk 4,
waar we het routeplanningsprobleem onder het rijtijdenbesluit (maar zonder
rekening te houden met files) onderzoeken. Onze methode vindt veel betere op-
lossingen (gemiddeld 18% minder voertuigen en 5% minder reisafstand) voor
een uitgebreide verzameling standaardproblemen dan de state-of-the-art oplos-
singsmethode voor dit probleem.

Door tijdens de routeplanning al rekening te houden met files, kun je ze
ook vermijden, bijvoorbeeld door dagelijks drukke trajecten te mijden tijdens
de spitsuren. Dit kan op verschillende manieren: kies een andere route tussen
twee locaties, verander de volgorde waarin een voertuig orders uitvoert, of wijs
een order toe aan een ander voertuig. In hoofdstuk 5 analyseren we de impact
van 4 verschillende strategieën om files te vermijden. Voor deze analyses maken
we gebruik van echte wegennetwerken en ontwikkelen we een snelheidsmodel dat
gebaseerd is op observaties van de ANWB over de dagelijks drukke trajecten.
De resultaten laten zien dat met de beste filevermijdingsstrategieën niet alleen
de betrouwbaarheid van de planning substantieel toeneemt, maar dat ook bijna
alle extra kosten (in de vorm van extra reistijd of extra voertuigen) als gevolg
van files vermeden kunnen worden.
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Een speciale manier van filevermijding is vertrektijdoptimalisatie. Door
later te vertrekken bijvoorbeeld kun je een dagelijks druk traject na de spits
passeren. Doordat er binnen de routeplanning rekening moet worden gehouden
met het rijtijdenbesluit en andere tijdsrestricties zoals klantspecifieke tijdsven-
sters, is vertrektijdoptimalisatie een complex probleem. Het bepalen van de
optimale vertrektijdstippen voor een voertuig kan daarom soms erg lang duren.
In hoofdstuk 6 ontwikkelen wij een snelle heuristiek voor het vertrektijdopti-
malisatieprobleem dat oplossingen vindt die gemiddeld minder dan 0.5% van
de optimale oplossing verwijderd zijn. Ook laten we zien dat het rijden voor
de ochtend- en na de avondspits fors op de kosten kan besparen.

De toepassingen van de oplossingsmethoden ontwikkeld in dit proefschrift
beperkingen zich niet tot de problemen waarvoor ze ontwikkeld zijn. De oplos-
singsmethoden zijn erg flexibel met betrekking to nieuwe restricties. Daarom
zijn ze uitermate geschikt voor de praktijk: een dynamische omgeving waarin
restricties snel kunnen veranderen. Daarnaast laat deze flexibiliteit het ge-
bruik van de oplossingsmethoden binnen andere studies toe. Hoofdstuk 7 geeft
hier een voorbeeld van, waarin routeplanning geanalyseerd wordt vanuit een
gedistribueerd beslissingsproces. In een dergelijk beslissingsproces zijn zowel
de planner als de chauffeurs verantwoordelijk voor een deel van het plannings-
proces. In de praktijk gebeurt het bijvoorbeeld vaak dat de planner verant-
woordelijk is voor de toewijzing van de orders aan de voertuigen, terwijl elke
chauffeur zelf de volgorde bepaalt waarin hij zijn toegewezen orders uitvoert
en zijn eigen pauzes inplant. Om ervoor te zorgen dat de chauffeurs overal
op tijd kunnen zijn, moet de planner wel rekening houden met de beslissingen
die de chauffeurs nog moeten maken. Hoofdstuk 7 laat zien dat een gedetail-
leerde planning, waarin zoveel mogelijk restricties meegenomen worden door de
planner, tot de beste resultaten leidt.

Dankzij de flexibiliteit van de oplossingsmethoden uit dit proefschrift kun-
nen deze ook gebruikt worden bij belangrijke beleidsmatige beslissingen, zoals
veranderingen in het rijtijdenbesluit of het aanleggen van een aparte rijstrook
voor vrachtwagens om files te vermijden. Met deze methoden is het voor het
eerst mogelijk om op brede schaal de impact van zulke beslissingen te evalueren.
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