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Abstract 

PRISMA/DB is implemented in a parallel object-oriented language to gain insight in 
the usage of parallelism. This environment allows us to experiment with parallelism 
by simply changing the allocation of objects to the processors of the PRISMA 
machine. These objects are obtained by a strictly modular design of PRISMA/DB. 
Communication between the objects is required to cooperatively handle the various 
tasks, but it limits the potential for parallelism. From this approach, we hope 
to gain a better understanding of parallelism, which can be used to enhance the 
performance of PRISMA/DB. 

1 I n t r o d u c t i o n  

The PRISMA project is a large scale research effort in which the development of a 
multi-computer and the implementation of non-trivial applications on top of this multi- 
computer are research issues. The project comprises the development of parallel hard- 
ware, the implementation of an operating system, the implementation of a parallel object- 
oriented language, and the implementation of applications, such as a database manage- 
ment system and an expert system shell, in this language. In this paper, we discuss our 
experiences with the implementation of a main memory DBMS (PRISMA/DB) in the 
parallel object-oriented language, called POOL lAmer88]. 

Because the hardware, the operating system, the language implementation, and the 
DBMS are developed in parallel, many design decisions in PRISMA/DB were taken with- 
out knowledge of the performance behavior of the underlying system. The potential for 
parallel execution, a phenomenon that is not yet well-understood, makes it even harder 
to obtain a DBMS architecture that fully exploits the capacity of the multi-computer 
system. To alleviate the problems, we have heavily used the facilities in POOL to set up 
PRiSMA/DB in a modular way as a set of rather independent objects (processes), which 
each perform certain tasks, such as query processing, concurrency control, etc. This 

*The work reported in this document was conducted as par t  of the PRISMA project,  a joint  effort 
with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsproject team Informat- 
icaonderzoek (SPIN)". 
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modular design leads to potential parallelism between those objects. On the other hand, 
communication between the objects is needed to synchronize the global query handling 
process. This communication may reduce the potential parallelism. Also, communi- 
cation between different processors may cause a large amount of network traffic with 
obvious consequences for the performance of the system. Hence, both modularization 
and communication influence the potential for parallelism. 

When splitting up PRISMA/DB into functional components, it is not clear what 
grain size to choose and which tasks to execute in parallel. Our approach is to design 
PRISMA/DB in a strictly modular way into gradually smaller objects. The language 
POOL allows us to dynamically control the allocation of objects to processors. In this 
way, we can decide which objects can execute in parallel and which messages really have 
to go over the network. As a first approach, objects that form a functional component of 
PR/SMA/DB, such as a parser or a query optimizer, are allocated to the same processor. 
As soon as the multi-computer system is available, we intend to experiment with the 
allocation of objects to study parallelism and to enhance the performance. 

The paper is organized as follows. The remainder of this section gives an overview of 
the architecture of PRISMA/DB and a short introduction to the object-oriented language 
POOL. Sections 2, 3, and 4 deal with modularity, communication, and parallelism and 
their interaction. Section 5 is about the possibilities we have to experiment with the 
architecture of PPO[SMA/DB when the multi-computer system is available. 

1.1 A n  o v e r v i e w  o f  P R I S M A / D B  

PR/SMA/DB is a database mangement system with the following features: 

• Main memory storage of the entire database. Main memory storage improves per- 
formance, because no disk I/O is needed for retrieval. Furthermore the design of 
the data manager becomes simpler, because there is only one level in the stor- 
age hierarchy. Secondary storage is used only for logging and back-up to enable 
recovery. 

• Dislribution of relations allows parallelism in the execution of simple ralational op- 
erations like a selection or a join. By dynamically allocating fragments of relations 
to different processors, performance is gained. 

• Support of two user interface languages: standard SQL as data definition and data 
manipulation language, and a logic retrieval language called PRISMAIog [tlout88], 
which is comparable with languages like Datalog and LDL [Morr86] [Tsur86]. An 
implementation of the SQL standard has been chosen to accommodate existing 
application environments relatively easy. A logic programming interface is chosen 
to have the possibility to integrate data and knowledge processing on the PRISMA 
machine. 

The system has a modular structure with well-defined interfaces. An important role 
in these interfaces is played by the internal language XRA (eXtended Relational Alge- 
bra), which is a relational algebra extended with recursion, iteration, and transaction and 
session management. This language provides a uniform way to express queries through- 
out the whole DBMS. The architecture of PRISMA/DB is sketched in figure 1. For a 
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Figure 1: Architecture of PRISMA/DB 

comparison with other systems we refer to [Kers87]. The components of PRISMA/DB 
are briefly described below. 

The Data Dictionary (DD) is the central storage of all system information. The 
Data Allocation Manager (DAM) constructs fragmentation and allocation schemes for 
relations. The Concurrency Controller (CC) is responsible for the serializability of con- 
current transactions; currently a standard two-phase locking protocol with exclusive and 
shared locks is used, because such a protocol has proven to perform well [Care88]. The 
locking granularity is that of relation fragments. 

The User Interface (UI) is the terminal server between user and one of the parsers. 
The SQL Parser (SQL) translates SQL programs into XRA. The PRISMAlog Parser 
(PL) translates PRISMAIog programs into XRA. In particular, the parser translates 
the prolog-like recursion of PRISMAlog into/~-calculus expressions in XRA [Aper86b] 
[Aper86c]. 

The Query Optimizer (QO) deals with fragmentation transparency, removal of views, 
translation of ~u-calculus expressions into iterations and transitive closure expressions, 
and, of course, the traditional optimization of queries. 

The Transaction Manager (TM) manages the execution of schedules produced by the 
query optimizer. This involves requesting locks from the CC, creation of new OFMs 
to store intermediate results and controlling the OFMs involved in the execution of a 
transaction. 

A One-Fragment Manager (OFM) controls a single fragment in the database. The 
OFMs form the smallest granularity for parallelism. There is a separate manager for 
each fragment, because this approach allows us to generate specilized OFMs to control 
a specific schema or to execute a specific XRA operation. 

The components listed above can be divided into two groups: permanent and tem- 
porary components. The permanent components are the Data Dictionary, the Data 
Allocation Manager, the Concurrency Controller, and the One-Fragment Managers that 
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manage the fragments of the permanent relations in the database; they are created when 
the DBMS is initialized and they remain accessible during the lifetime of the DBMS. The 
temporary components are created dynamically to support user sessions and transactions 
during a session. For example, for each user session a new User Interface is created. For 
each language session within a user session, either a SQL or a PRISMAlog parser and 
a Query Optimizer are created. Finally, for each transaction within a language ses- 
sion, a new Transaction Manager is created; this TM controls the creation of temporary 
One-Fragment Managers for the management of intermediate results of queries. These 
temporary objects are garbage collected, when not needed anymore. 

1 .2 T h e  i m p l e m e n t a t i o n  l a n g u a g e  P O O L - X  

POOL stands for Parallel Object-Oriented Language lamer87] lamer88]. Our DBMS 
has been implemented in POOL-X, an extended version of POOL which has specially 
been designed for the implementation of a DBMS. POOL-X has many features in common 
with other object-oriented languages; inheritance, however, is not supported, because the 
semantics of the concept inheritance is not yet fully understood. Below we will highlight 
the most important features of the language. 

POOL-X is a strongly typed object-oriented language. Objects are the basic building 
blocks in the language. They are instances of Classes. All objects in one Class have the 
same data and routines acting on these data. Objects can be created dynamically. Con- 
ceptually, objects are independent, active entities; objects behave as processes. Hence, 
parallelism can be modeled simply by creating objects. 

Class definitions are grouped into Units. A Unit is a functionally coherent part of a 
system. A Unit consists of two parts: The Specification Unit describes the features of the 
Classes in the Unit that are visible to other Units. The Implementation Unit contains 
the implementation of the Classes in the Unit; the implementation details are not visible 
to other Units. 

Objects communicate by sending each other messages. A receiver will only accept a 
message if it has explicitly stated that it is ready for it. While performing the action 
requested in the message, the receiver may send messages to other objects or even to the 
sender of the original message. 

POOL-X messages come in two sorts: synchronous and asynchronous. When a syn- 
chronous message is sent, the sender is blocked, until an answer arrives. When an asyn- 
chronous message is sent, the sender just goes on with its own activities after sending 
the message. 

The language POOL-X is designed for programming a multi-computer system. Ob- 
jects are, by default, allocated to some processor by the operating system. POOL-X 
provides allocation pragma's that overrule the default allocation. Using these pragma's 
the DBMS programmmer can control the allocation of objects to processors, and thus 
influence the parallelism within the DBMS. 

2 Modularity 

When building a large and complex system, one should split up the system into a number 
of functionally independent modules with precisely defined interfaces. There are two 
aspects to this: firstly, the architecture of the system should have a structure that makes 
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Figure 2: Transaction Manager Architecture 

a modular decomposition feasible; secondly, the implementation language should provide 
thorough support for constructing a modular system. These two aspects are discussed 
in the following two subsections. Furthermore, the modular structure of a system has a 
great impact on the communication structure within the system and, consequently, on 
the possibilities for exploiting parallelism. These issues are addressed in sections 3 and 
4. 

2 . 1  D e s i g n i n g  a m o d u l a r  D B M S  

PRISMA/DB is designed according to a strictly modular approach. Applying this ap- 
proach to all design levels resulted in the following hierarchical structure of the system. 

At the highest level we identify the components of PtLISMA/DB as described in 
section 1. These components make up the architecture of the DBMS at the highest level 
of abstraction. 

One level lower, we use a modular structure to describe the internal architecture of 
each component. The component is further decomposed into a number of modules each 
having a well-defined functionality. As an example, the Transaction Manager is split up 
into the following four modules (figure 2): 

• the Query Optimizer Interface Module, which takes care of some preprocessing tasks on 
incoming queries; 

• the Central Module, which does all central administration and synchronisation of 
(sub)queries; 

• the Concurrency Control Unit Interface Module, which does the local lock administration 
and handles the two-phase locking protocol; 

• the One-Fragment Manager Interface Module, which takes care of the actual execution of 
queries, the transport of data between One-Fragment Managers, the two-phase commit 
protocol, and the integrity constraint handling. 

At the lowest level we have the internal structure of modules; here we find local da ta  
structures for instance. 
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2 . 2  I m p l e m e n t i n g  a m o d u l a r  s y s t e m  i n  P O O L  

Modularity can be viewed at a number of abstraction levels. POOL provides three 
abstraction levels to do so. 

* At the highest level is the notion of System, consisting of an entire application. 

• At the second level the language provides the notion of Units. As described before, 
a Unit is a functionaly coherent piece of software with a strictly defined interface 
to the outside world. As such it is a good tool to model modularity at the highest 
abstraction level of the system being implemented. 

• Below the unit level, POOL provides the notion of Classes. A Class can be seen 
as an active abstract data  type. As such, it can be used to model modularity on 
lower abstraction levels and to provide data  abstraction. 

It can be concluded here, that POOL provides the means for a well-structured ar- 
chitecture of a system into three layers, supported by the notions of System, Unit, and 
Class. If one wants to add more layers to the system hierarchy, POOL does not offer 
language support in the sense of scoping (nesting of Units or Classes is not allowed). The 
notion of Classes however, is a good aid for well-structured program design. So a multi- 
level hierarchical structure of the application must both rely on the language facilities as 
on good programming discipline. To conclude, we should keep in mind that  one of the 
goals of modularization is to make explicit where potential parallelism is available. 

3 Communication in P R I S M A / D B  

In the preceding section, we have seen that PRISMA/DB can be viewed as a collection of 
fairly independent components (objects). On the one hand, these objects all have their 
internal activity; on the other hand, several components have to cooperatively handle the 
global processes such as query processing. The latter requires communication between 
the components. 

To keep the design of the global communication structure manageable, the communi- 
cation between the components (and also on the lower levels of the system) should comply 
with the following restrictions: The communication protocol must be well-defined, oth- 
erwise it is hard to agree on it. The communication must be correct in the sense that  
it may not result in deadlock or livelock problems. The communication may not have 
more negative impact on the amount of possible parallelism than necessary; this means 
that  no unnecessary serialization of processes may be caused by communication protocol. 
This last aspect of communication is dealt with in the next section. 

In this section, we first make the distinction between interfaces and protocols. Sec- 
ondly, we discuss our strategy to handle the complexity of the communication protocols. 
Thirdly, we give an example of a communication protocol. Finally, some protocol prob- 
lems are discussed. 

3 .1  I n t e r f a c e s  a n d  P r o t o c o l s  

As stated in the introduction on POOL, objects are grouped into Classes. All objects 
belonging to one Class have the same external interface, which is specified in the speci- 
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fication of the Class. The interface between an object of Class A and an object of Class 
B consists of the set of messages A can send to B and vice versa. 

It is possible that the interface between two objects contains synchronous messages 
in two directions. If no agreement exists on the protocol that should be used, the two 
objects could simultaneously start sending a synchronous message to each other, which 
would leave them waiting for answer for ever. We use the word protocol for an agreement 
on how the interface should be used. It is clear that a good protocol is needed to let the 
components of PRISMA/DB work cooperatively and to prevent the problems mentioned 
above. POOL supplies a formal way to specify interfaces; there is, however, no way to 
formalize protocols on a higher abstraction level than the code in the Implementation 
Units, which makes reasoning about their correctness (e.g. deadlock freedom) difficult. 

3 .2  C o m m u n i c a t i o n  d r i v e n  s o f t w a r e  e n g i n e e r i n g  

For PRISMA/DB we decided to implement the communication protocols before actually 
implementing the components. The primary reason for this is, as stated above, that 
getting the protocols right is extremely important. This is even more so in our situation, 
where PRISMA/DB is implemented by a group of people working at 2 different locations. 
Integrating the work of several people may cause many problems, due to all sorts of 
misunderstanding. By integrating the "empty shells" of the components before adding 
internal functionality to them, we expected to have fewer problems at integration time. 
This approach has already proven to work. Assembling our very first working DBMS 
from its functional components only took less than a week. 

The second reason for our strategy is a modeling one. The typical activity of a 
component can be described by the following pseudo-code: 

i n i t i a l i z e ;  
WHILE still_uork_to_do 
DO wait_for_request ; 

receive_request; 
handle_request; ~ may include sending answer 

~ or sending messages 
~ to other objects 

internal_administrat ion; 
OD 

As shown by code, the communication layer is the top layer of each component. There- 
fore, it seems natural to start here. 

In PtLISMA/DB we can distinguish various types of communication. Firstly, queries 
have to be transported through the system. A User Interface, a Parser, a Query Opti- 
mizer, a Transaction Manager, and some One-Fragment Managers each work on query 
execution; so, queries have to be sent down this chain of components. Secondly, if an 
error occurs during query execution, an error message has to be sent in opposite di- 
rection through the chain of components. Finally, all sorts of control messages have to 
be sent through the system (e.g. information from the data dictionary may be asked, 
the transaction manager has to request locks on fragments from the concurrency con- 
troller, transactions need a two-phase commit protocol to guarantee atomic execution of 
transactions). 
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~ Q u e r y  O p t i m i z e r  

Figure 3: Interface between Query Optimizer and Transaction Manager 

We use a uniform protocol for query and error handling, between all components  
involved, which reduces the number of different interfaces in the system. As an example,  
the protocol between the query optimizer and the transaction manager  is described in 
the next subsection. Each type of control information needs its own protocol. The same 
issues are important  in all these protocols, however, so one example will give a good idea 
of the communication in PI~ISMA/DB. 

3 . 3  A n  e x a m p l e  p r o t o c o l  

The interface between the query optimizer and the transaction manager  consists of 4 
methods (see figure 3). 

• The query optimizer (QO) can send an optimized query to the transaction manager (TM), 
using the method accept. 

• The TM can tell the QO that the transaction is aborted (due to some error or a concur- 
rency control problem) using the method abort. 

• The TM can tell the QO that the execution of a transaction is ready using the method 

• The QO can tell the TM that the transaction is ready using the method end. 

These methods are asynchronous. 
The protocol over (and rationale behind) this interface is as follows. In the normal 

flow of control (without errors or concurrency problems) the QO will (after creating a 
TM)  star t  sending optimized parts  of a transaction to the TM. The  last s ta tement  of 
every transaction is "commit" or "abort" ,  so the TM knows when a transaction ends. 
The  QO may never use a method accept of the TM anymore after sending a "commit" 
or "abort"  (also using accept). 

I f  nothing ever went wrong, an interface consisting of one method would do here. But 
unfortunately errors do occur. In case of an error, the TM sends an abort message to the 
QO, which may still be busy optimizing the rest of the query. Some parts  of the query 
may be on their way from the QO to the TM, while the abort message is sent in the 
opposite direction. The  TM will have to wait for these messages before it can terminate.  



105 

For this reason the method end is added to the interface. End has to be the last message 
from the QO to the TM. 

On the other hand, the QO must know when the execution of a transaction is ready, 
because it could get an abort message from the TM while the transaction is still executing. 
The TM sends a ready message to the QO after succesful completion of the transaction, 
so the QO knows no abort can come from this transaction anymore. 

3 . 4  A p r o t o c o l  p r o b l e m  

The various protocols between objects have been designed in the way stated above. 
We are confident that  all individual protocols are fine. But,  if all protocols between the 
components are depicted in one picture, a complex structure emerges. Research was done 
in modeling the communication protocols in the DBMS as a Petri-net. This approach 
appeared infeasible though, because of the size of the resulting Petri-net, and because of 
the fact that  if-then-else statements cannot properly be modeled in a Petri-net [Voor89]. 
Though this is considered a serious problem, it turns out that  system deadlocks do not 
seem to occur anymore after an initial phase. 

4 Paral le l i sm 

4 . 1  A s i m p l e  t a x o n o m y  o f  p a r a l l e l i s m  i n  a D B M S  

Before giving a discussion on parallelism, we start with a simple taxonomy of the forms 
of parallelism. Three different forms can be identified (figure 4): 

m u l t l - t a s k l n g  By multi-tasking we mean the ability of a system to execute several 
independent transactions at the same time. This concept is closely related to the 
multi-tasking notion in operating systems. 

p lpe - l i n ing  The execution of a transaction is performed in a number of consecutive 
stages: parsing, query optimization, interpretation of the schedules, and execution 
at the lowest level of the DBMS. If a transaction is broken into pieces that  are sent 
one after another through the consecutive stages of processing in such a way that  
several components are working simultaneously, we speak of pipe-lining. 

t a s k  s p r e a d i n g  If the processing of a (sub)transaction at a certain level is decomposed 
into a number of sub-processes that  are executed at the same time, we speak of 
task spreading. Task spreading involves three steps: firstly, splitting the task into 
subtasks, creating processes for the execution of the subtasks, and sending the 
subtasks to the appropriate objects; next, parallel execution of the subtasks; finaly, 
sending the results of the subtasks to a central process and creating the final result. 

We can identify two types of task-spreading (see for example [Kahn87]): 

a n d - p a r a l l e l l s m  The result of the task is made up out of the results of all sub- 
tasks. Hence the task can be completed after all subtasks are completed. 

o r - p a r a l l e l i s m  The result of the task is made up out of the result of one or more 
subtasks. Hence the task may be completed before completion of all subtasks. 
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( t a s k  s p r e a d i n g )  

Figure 4: Forms of parallelism 

Note that these concepts can be applied in a sort of recurrent way: within a subtask 
at certain level of the DBMS we can have pipe-lining again. A related description of 
parallelism in a DBMS can be found in [Bora85]. 

4 .2  M o d e l i n g  p a r a l l e l i s m  in  P O O L  

The language POOL gives much freedom in exploiting parallelism. New parallel processes 
can be created by simply creating new objects each having their own local process. To 
make use of parallelism, however, we have to synchronize all these processes is some way. 
This can be achieved in two ways: the creation of new objects and the communication 
between objects. We briefly discuss this for the various forms of parMlelism. 

mul t i - task lng  Each task is executed by a collection of POOL objects. The objects 
belonging to one task communicate with each other; there is no communication 
between objects that belong to different tasks. Note that all tasks use the central 
resources of the system, which are objects too. Therefore, the communication 
between an object O1 belonging to a task and an object O2 belonging to a central 
resource, should be designed in such a way, that O1 cannot block or delay 02. For 
this reason, synchronous method calls from 02 to O1 should not be used. 

pipe-l ining In pipe-lining the objects (processes) are arranged into a sequence O1--- On. 
Each object Oi in principle only needs to send messages to its successor in the 
pipe-line Oi+i. Because we want the objects to execute independent of each other 
in time, we need both non-blocking communication and some means of message 
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task 

buffering between Oi and Oi+x; both concepts are offered by POOL asynchronous 
methods. The most natural way of creating a pipe-line is by letting an object Oi 
create its successor Oi+l. 

s p r e a d i n g  Task spreading needs a coordinating object, say C. Defining n as 
the number of subtasks, this objects creates objects $1 .. • Sn for carrying out the 
subtasks. After creation, each Si gets its task via an asynchronous method from C. 
Upon completion of its task, each Si sends its result to C. Note that  synchronous 
communication between C and Si is not suitable since this would not allow C to 
go on after having activated the first subtask. 

4.3 Para l l e l i sm in P R I S M A / D B  

Looking at the architecture of PRISMA/DB at the highest abstraction level (the com- 
ponent level), we can easily identify all three forms of parallelism. 

The multi-tasking occurs where several autonomous global query processes are run- 
ning at the same time. A global query process consists of a User Interface, a Parser, a 
Query Optimizer, a Transaction Manager, and a set of One-Fragment Managers to hold 
intermediate results. All global query processes are independent of each other apart from 
sharing the same central resources of PRISMA/DB. 

Pipe-lining is found in the sequence of components in the global query process as 
decribed above. Parts of transactions are transported and processed in a pipe-line manner 
through the various levels of the transaction processor. Further, pipe-lining is used in 
processing query trees at the One-Fragment Manager level. Here a Transaction Manager 
builds an execution structure out of OFM's to process intermediate results and channels 
for tuple transport.  The layout of this structure is the same as that  of the query tree. 
Processing is done in a data flow manner, resulting in a high degree of pipe-lining between 
the levels of the query tree. 

Task spreading is possible at all levels of PRISMA/DB,  so also within every compo- 
nent. It should only be used for computation-intensive work, however. The most obvious 
use here is at the lowest level, where the data storage is handled. Instead of having one 
manager for all the data in the entire database, we chose to have separate managers 
for fragments of relations. Each One-Fragment Manager process can be thought of as a 
subtask of the data manager task. Task spreading may also occur in a single component; 
an example could be the Query Optimizer, where we could split up the optimization 
process into a number of sub-processes each doing part  of the optimization. 

When looking at task spreading in a DBMS we notice that  or-parallelism can hardly 
be ever used. An example of possible or-parallelism can be found in the standard two- 
phase commit protocol (see [Date83]). When we execute the local pre-comrnit decisions in 
parallel at the One Fragment Manager level, we can use or-parallelism in deciding about  
global commit; this is possible because a single negative pre-commit decision always 
results in a global abort. Note however, that we gain only in an abort situation here. 

4.4 Logical  versus  operat ional  p a r a l l e l i s m  

When talking about parallelism it is important  to distinguish between two concepts: 

logical  pa r a l l e l i sm  By logical parallelism we mean the parallelism that  we model into 
the software system; this is closely related to the modular structure chosen for the 
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system. The amount of potential parallelism here is only limited by the number of 
processes (objects) existing at the same time. 

opera t iona l  paral lel lsm As soon as we execute a system on real hardware, it is obvious 
that there cannot be more processes running in parallel than there are processors 
in the system. The number of active processes running concurrently is called oper- 
ational parallelism. It should be clear that the possible amount of parallelism here 
is limited both by the available number of processors and by the amount of logical 
parallelism. 

Developing a large system in POOL gives the freedom to look at these two appearances 
of parallelism in truly independent steps. When designing system, attention is paid to 
logical parallelism only; concern is focused on a good software structure, the underlying 
hardware is not important. In a second stage of the development process, the allocation 
pragma's in POOL can be used to bind the various processes (objects) to processors in 
the system. By grouping objects on the various processors in the system, we determine 
which processes will be running in operational parallelism (on different processors) and 
which not (on the same processor). 

Determining a good allocation of the objects of PRISMA/DB is difficult. Therefore, 
we need a great deal of experimenting with the allocation to obtain a high degree of 
parallelism and thus a good performance. This problem is discussed in the next section. 

5 Experiments 

As stated before, we plan to do experiments to gain understanding of the behavior of 
parallel systems. If the ratio between transmission costs and the costs for local processing 
is unknown, it is hard to decide whether sending some amount of work to another node 
for parallel execution wilt speed up some process as a whole. 

The section on modularity showed the possibilities for a modular design of the 
database system in POOL. This modular design makes it possible to experiment with the 
allocation of components and to move certain subtasks from one component to another. 
The section on parallelism explains that logical and operational parallelism are indepen- 
dent in POOL. So, the design for the PRISMA database can be made with all sorts 
of possible parallelism in mind, from very coarse (e.g. multi-tasking) to very fine (e.g. 
task spreading in the optimization of one query). The possibility to move subtasks and 
to change the parallelism gives us a nice opportunity to experiment with the database 
system, to gain knowledge on parallel execution of programs and to get the best possible 
performance from our system. Below some examples of possible experiments are given. 

5.1 S e q u e n t i a l  v e r s u s  P a r a l l e l  e x e c u t i o n  o f  q u e r i e s  

Consider the following Relational Algebra expression: 

(~ra="PI~ISMA" EMPLOYEE) ~5=1 (Trl,6CITY) 

Calculating the result of this expression requires the calculation of a selection and a 
projection, and after those of a join. The selection, the projection and the join are each 
executed by a separate OFM. There are several schemes to organize this calculation. 
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* The calculation can be done sequentially on one processor. In this case there are 
no transmission costs, but the processor has to be shared among three OFMs. 
This scheme can only be chosen if the OFMs for base relations E M P L O Y E E  and 
C I T Y  reside on the same processor. 

• The calculation of the selection and the projection can be done in parallel on two 
nodes followed by the join on one of the two nodes that  are already involved. In 
this case, the result of either the projection or the selection has to  be sent to the 
other node. 

• The calculation of the selection and the projection can be done in parallel on two 
nodes followed by the join on a third node. This gives an extra  possibility for 
parallelism: the result of the selection and the projection can be pipe-lined to the 
join. In this case both the result of the selection and the result of the projection 
have to be sent to another node. 

It is not at all clear which of the three schemes is most efficient. If the transmission 
overhead is high, the first one is probably best. The implementation of PRISMA/DB in 
POOL gives the possibilty to experiment. Going from one scheme to another only involves 
changing some allocation pragmas. Nothing else in the program has to be changed; the 
potential for parallel execution is available, but it does not need to be exploited. Once 
the behavior of such executions is understood, the query optimizer can be programmed 
to dynamically generate the right allocation pragma's. 

5 . 2  A n  e x p e r i m e n t  w i t h  t h e  b o u n d a r y  b e t w e e n  c o m p o n e n t s  

As shown in figure 1, there is an interface between the Transaction Manager and the 
Concurrency Controller. In general, a TM is located on another node than the CC. 
If a TM wants to use the same fragment several times, it may repeatedly request the 
same lock. This strategy is simple for the TM: it does not have to do its own lock 
administration. Every use of a fragment requires transmission of a request over the 
network though. On the other hand, the TM may have its local lock administration. 
Before requesting a lock, it finds out whether it already holds a lock on the fragment. If 
so, no request needs to be sent over the network; if not, the lock has to be requested from 
the CC. This strategy saves transmission costs at the expense of some local overhead in 
the TM. 

The implementation of the system in POOL gives us the possibilty to postpone the 
decision on such issues until after implementing the system. In the modular design it is 
easy to switch between the two ways of handling the problem. Our current implemen- 
tat ion has a local lock administration in the TM. The central module of the TM has an 
interface with its lock administrator. It does not take much time to eliminate this object 
from the TM and adjust the interface of the CC to what the central TM expects from 
its local lock administration. Nothing has to be changed to the the central TM or to the 
main part  of the CC. 

These two examples show that  the object-oriented approach allows us to postpone 
some of the design decisions or to changed them quite easily. 
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6 Conc lus ions  and a Look into the  Future  

Currently we have a first prototype of PRISMA/DB running on an interpreter on a se- 
quential machine. The status of this prototype shows that  it is well possible to implement 
a complex DBMS in a modern (and even experimental) object-oriented language. POOL- 
X offers a programming environment that  makes implementat ion of complex parallel 
processes possible in a reasonably short time. The parallel object-oriented programming 
environment has shown to be a good basis for modeling modularity, communication, and 
parallelism into a complex system. One of the strong points, is the flexibility of the 
system, which allows us to experiment with the architecture to s tudy parallelism and to 
enhance the performance. 

Our major  concern at this time is the performance of the system on the target  ma- 
chine, which is still being developed. The  high level features of POOL-X may cause some 
loss of performance when a straight-forward implementation of the language is used. 
Therefore, we expect that  the performance of P R I S M A / D B  on the multi-processor ma- 
chine will highly depend on the optimization qualities of a POOL-X compiler. However, 
we are confident that  with the modular structure of PI~ISMA/DB, it is relatively easy 
to tune or adjust the system at a later step in this project. 
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