
Implementing PRISMA/DB in an OOPL *

A n n i t a N. Wilschut Pau l W .P . J . Grefen Pe te r M.G. Apers
Univers i ty of Twen te

Mar t in L. Kers ten

Cent re for M a t h e m a t i c s and C o m p u t e r Science

Abstract

PRISMA/DB is implemented in a parallel object-oriented language to gain insight in
the usage of parallelism. This environment allows us to experiment with parallelism
by simply changing the allocation of objects to the processors of the PRISMA
machine. These objects are obtained by a strictly modular design of PRISMA/DB.
Communication between the objects is required to cooperatively handle the various
tasks, but it limits the potential for parallelism. From this approach, we hope
to gain a better understanding of parallelism, which can be used to enhance the
performance of PRISMA/DB.

1 I n t r o d u c t i o n

The PRISMA project is a large scale research effort in which the development of a
multi-computer and the implementation of non-trivial applications on top of this multi-
computer are research issues. The project comprises the development of parallel hard-
ware, the implementation of an operating system, the implementation of a parallel object-
oriented language, and the implementation of applications, such as a database manage-
ment system and an expert system shell, in this language. In this paper, we discuss our
experiences with the implementation of a main memory DBMS (PRISMA/DB) in the
parallel object-oriented language, called POOL lAmer88].

Because the hardware, the operating system, the language implementation, and the
DBMS are developed in parallel, many design decisions in PRISMA/DB were taken with-
out knowledge of the performance behavior of the underlying system. The potential for
parallel execution, a phenomenon that is not yet well-understood, makes it even harder
to obtain a DBMS architecture that fully exploits the capacity of the multi-computer
system. To alleviate the problems, we have heavily used the facilities in POOL to set up
PRiSMA/DB in a modular way as a set of rather independent objects (processes), which
each perform certain tasks, such as query processing, concurrency control, etc. This

*The work reported in this document was conducted as par t of the PRISMA project, a joint effort
with Philips Research Eindhoven, partially supported by the Dutch "Stimuleringsproject team Informat-
icaonderzoek (SPIN)".

98

modular design leads to potential parallelism between those objects. On the other hand,
communication between the objects is needed to synchronize the global query handling
process. This communication may reduce the potential parallelism. Also, communi-
cation between different processors may cause a large amount of network traffic with
obvious consequences for the performance of the system. Hence, both modularization
and communication influence the potential for parallelism.

When splitting up PRISMA/DB into functional components, it is not clear what
grain size to choose and which tasks to execute in parallel. Our approach is to design
PRISMA/DB in a strictly modular way into gradually smaller objects. The language
POOL allows us to dynamically control the allocation of objects to processors. In this
way, we can decide which objects can execute in parallel and which messages really have
to go over the network. As a first approach, objects that form a functional component of
PR/SMA/DB, such as a parser or a query optimizer, are allocated to the same processor.
As soon as the multi-computer system is available, we intend to experiment with the
allocation of objects to study parallelism and to enhance the performance.

The paper is organized as follows. The remainder of this section gives an overview of
the architecture of PRISMA/DB and a short introduction to the object-oriented language
POOL. Sections 2, 3, and 4 deal with modularity, communication, and parallelism and
their interaction. Section 5 is about the possibilities we have to experiment with the
architecture of PPO[SMA/DB when the multi-computer system is available.

1.1 A n o v e r v i e w o f P R I S M A / D B

PR/SMA/DB is a database mangement system with the following features:

• Main memory storage of the entire database. Main memory storage improves per-
formance, because no disk I/O is needed for retrieval. Furthermore the design of
the data manager becomes simpler, because there is only one level in the stor-
age hierarchy. Secondary storage is used only for logging and back-up to enable
recovery.

• Dislribution of relations allows parallelism in the execution of simple ralational op-
erations like a selection or a join. By dynamically allocating fragments of relations
to different processors, performance is gained.

• Support of two user interface languages: standard SQL as data definition and data
manipulation language, and a logic retrieval language called PRISMAIog [tlout88],
which is comparable with languages like Datalog and LDL [Morr86] [Tsur86]. An
implementation of the SQL standard has been chosen to accommodate existing
application environments relatively easy. A logic programming interface is chosen
to have the possibility to integrate data and knowledge processing on the PRISMA
machine.

The system has a modular structure with well-defined interfaces. An important role
in these interfaces is played by the internal language XRA (eXtended Relational Alge-
bra), which is a relational algebra extended with recursion, iteration, and transaction and
session management. This language provides a uniform way to express queries through-
out the whole DBMS. The architecture of PRISMA/DB is sketched in figure 1. For a

99

Figure 1: Architecture of PRISMA/DB

comparison with other systems we refer to [Kers87]. The components of PRISMA/DB
are briefly described below.

The Data Dictionary (DD) is the central storage of all system information. The
Data Allocation Manager (DAM) constructs fragmentation and allocation schemes for
relations. The Concurrency Controller (CC) is responsible for the serializability of con-
current transactions; currently a standard two-phase locking protocol with exclusive and
shared locks is used, because such a protocol has proven to perform well [Care88]. The
locking granularity is that of relation fragments.

The User Interface (UI) is the terminal server between user and one of the parsers.
The SQL Parser (SQL) translates SQL programs into XRA. The PRISMAlog Parser
(PL) translates PRISMAIog programs into XRA. In particular, the parser translates
the prolog-like recursion of PRISMAlog into/~-calculus expressions in XRA [Aper86b]
[Aper86c].

The Query Optimizer (QO) deals with fragmentation transparency, removal of views,
translation of ~u-calculus expressions into iterations and transitive closure expressions,
and, of course, the traditional optimization of queries.

The Transaction Manager (TM) manages the execution of schedules produced by the
query optimizer. This involves requesting locks from the CC, creation of new OFMs
to store intermediate results and controlling the OFMs involved in the execution of a
transaction.

A One-Fragment Manager (OFM) controls a single fragment in the database. The
OFMs form the smallest granularity for parallelism. There is a separate manager for
each fragment, because this approach allows us to generate specilized OFMs to control
a specific schema or to execute a specific XRA operation.

The components listed above can be divided into two groups: permanent and tem-
porary components. The permanent components are the Data Dictionary, the Data
Allocation Manager, the Concurrency Controller, and the One-Fragment Managers that

100

manage the fragments of the permanent relations in the database; they are created when
the DBMS is initialized and they remain accessible during the lifetime of the DBMS. The
temporary components are created dynamically to support user sessions and transactions
during a session. For example, for each user session a new User Interface is created. For
each language session within a user session, either a SQL or a PRISMAlog parser and
a Query Optimizer are created. Finally, for each transaction within a language ses-
sion, a new Transaction Manager is created; this TM controls the creation of temporary
One-Fragment Managers for the management of intermediate results of queries. These
temporary objects are garbage collected, when not needed anymore.

1 .2 T h e i m p l e m e n t a t i o n l a n g u a g e P O O L - X

POOL stands for Parallel Object-Oriented Language lamer87] lamer88]. Our DBMS
has been implemented in POOL-X, an extended version of POOL which has specially
been designed for the implementation of a DBMS. POOL-X has many features in common
with other object-oriented languages; inheritance, however, is not supported, because the
semantics of the concept inheritance is not yet fully understood. Below we will highlight
the most important features of the language.

POOL-X is a strongly typed object-oriented language. Objects are the basic building
blocks in the language. They are instances of Classes. All objects in one Class have the
same data and routines acting on these data. Objects can be created dynamically. Con-
ceptually, objects are independent, active entities; objects behave as processes. Hence,
parallelism can be modeled simply by creating objects.

Class definitions are grouped into Units. A Unit is a functionally coherent part of a
system. A Unit consists of two parts: The Specification Unit describes the features of the
Classes in the Unit that are visible to other Units. The Implementation Unit contains
the implementation of the Classes in the Unit; the implementation details are not visible
to other Units.

Objects communicate by sending each other messages. A receiver will only accept a
message if it has explicitly stated that it is ready for it. While performing the action
requested in the message, the receiver may send messages to other objects or even to the
sender of the original message.

POOL-X messages come in two sorts: synchronous and asynchronous. When a syn-
chronous message is sent, the sender is blocked, until an answer arrives. When an asyn-
chronous message is sent, the sender just goes on with its own activities after sending
the message.

The language POOL-X is designed for programming a multi-computer system. Ob-
jects are, by default, allocated to some processor by the operating system. POOL-X
provides allocation pragma's that overrule the default allocation. Using these pragma's
the DBMS programmmer can control the allocation of objects to processors, and thus
influence the parallelism within the DBMS.

2 Modularity

When building a large and complex system, one should split up the system into a number
of functionally independent modules with precisely defined interfaces. There are two
aspects to this: firstly, the architecture of the system should have a structure that makes

101

TM 1__

Figure 2: Transaction Manager Architecture

a modular decomposition feasible; secondly, the implementation language should provide
thorough support for constructing a modular system. These two aspects are discussed
in the following two subsections. Furthermore, the modular structure of a system has a
great impact on the communication structure within the system and, consequently, on
the possibilities for exploiting parallelism. These issues are addressed in sections 3 and
4.

2 . 1 D e s i g n i n g a m o d u l a r D B M S

PRISMA/DB is designed according to a strictly modular approach. Applying this ap-
proach to all design levels resulted in the following hierarchical structure of the system.

At the highest level we identify the components of PtLISMA/DB as described in
section 1. These components make up the architecture of the DBMS at the highest level
of abstraction.

One level lower, we use a modular structure to describe the internal architecture of
each component. The component is further decomposed into a number of modules each
having a well-defined functionality. As an example, the Transaction Manager is split up
into the following four modules (figure 2):

• the Query Optimizer Interface Module, which takes care of some preprocessing tasks on
incoming queries;

• the Central Module, which does all central administration and synchronisation of
(sub)queries;

• the Concurrency Control Unit Interface Module, which does the local lock administration
and handles the two-phase locking protocol;

• the One-Fragment Manager Interface Module, which takes care of the actual execution of
queries, the transport of data between One-Fragment Managers, the two-phase commit
protocol, and the integrity constraint handling.

At the lowest level we have the internal structure of modules; here we find local da ta
structures for instance.

102

2 . 2 I m p l e m e n t i n g a m o d u l a r s y s t e m i n P O O L

Modularity can be viewed at a number of abstraction levels. POOL provides three
abstraction levels to do so.

* At the highest level is the notion of System, consisting of an entire application.

• At the second level the language provides the notion of Units. As described before,
a Unit is a functionaly coherent piece of software with a strictly defined interface
to the outside world. As such it is a good tool to model modularity at the highest
abstraction level of the system being implemented.

• Below the unit level, POOL provides the notion of Classes. A Class can be seen
as an active abstract data type. As such, it can be used to model modularity on
lower abstraction levels and to provide data abstraction.

It can be concluded here, that POOL provides the means for a well-structured ar-
chitecture of a system into three layers, supported by the notions of System, Unit, and
Class. If one wants to add more layers to the system hierarchy, POOL does not offer
language support in the sense of scoping (nesting of Units or Classes is not allowed). The
notion of Classes however, is a good aid for well-structured program design. So a multi-
level hierarchical structure of the application must both rely on the language facilities as
on good programming discipline. To conclude, we should keep in mind that one of the
goals of modularization is to make explicit where potential parallelism is available.

3 Communication in P R I S M A / D B

In the preceding section, we have seen that PRISMA/DB can be viewed as a collection of
fairly independent components (objects). On the one hand, these objects all have their
internal activity; on the other hand, several components have to cooperatively handle the
global processes such as query processing. The latter requires communication between
the components.

To keep the design of the global communication structure manageable, the communi-
cation between the components (and also on the lower levels of the system) should comply
with the following restrictions: The communication protocol must be well-defined, oth-
erwise it is hard to agree on it. The communication must be correct in the sense that
it may not result in deadlock or livelock problems. The communication may not have
more negative impact on the amount of possible parallelism than necessary; this means
that no unnecessary serialization of processes may be caused by communication protocol.
This last aspect of communication is dealt with in the next section.

In this section, we first make the distinction between interfaces and protocols. Sec-
ondly, we discuss our strategy to handle the complexity of the communication protocols.
Thirdly, we give an example of a communication protocol. Finally, some protocol prob-
lems are discussed.

3 .1 I n t e r f a c e s a n d P r o t o c o l s

As stated in the introduction on POOL, objects are grouped into Classes. All objects
belonging to one Class have the same external interface, which is specified in the speci-

103

fication of the Class. The interface between an object of Class A and an object of Class
B consists of the set of messages A can send to B and vice versa.

It is possible that the interface between two objects contains synchronous messages
in two directions. If no agreement exists on the protocol that should be used, the two
objects could simultaneously start sending a synchronous message to each other, which
would leave them waiting for answer for ever. We use the word protocol for an agreement
on how the interface should be used. It is clear that a good protocol is needed to let the
components of PRISMA/DB work cooperatively and to prevent the problems mentioned
above. POOL supplies a formal way to specify interfaces; there is, however, no way to
formalize protocols on a higher abstraction level than the code in the Implementation
Units, which makes reasoning about their correctness (e.g. deadlock freedom) difficult.

3 .2 C o m m u n i c a t i o n d r i v e n s o f t w a r e e n g i n e e r i n g

For PRISMA/DB we decided to implement the communication protocols before actually
implementing the components. The primary reason for this is, as stated above, that
getting the protocols right is extremely important. This is even more so in our situation,
where PRISMA/DB is implemented by a group of people working at 2 different locations.
Integrating the work of several people may cause many problems, due to all sorts of
misunderstanding. By integrating the "empty shells" of the components before adding
internal functionality to them, we expected to have fewer problems at integration time.
This approach has already proven to work. Assembling our very first working DBMS
from its functional components only took less than a week.

The second reason for our strategy is a modeling one. The typical activity of a
component can be described by the following pseudo-code:

i n i t i a l i z e ;
WHILE still_uork_to_do
DO wait_for_request ;

receive_request;
handle_request; ~ may include sending answer

~ or sending messages
~ to other objects

internal_administrat ion;
OD

As shown by code, the communication layer is the top layer of each component. There-
fore, it seems natural to start here.

In PtLISMA/DB we can distinguish various types of communication. Firstly, queries
have to be transported through the system. A User Interface, a Parser, a Query Opti-
mizer, a Transaction Manager, and some One-Fragment Managers each work on query
execution; so, queries have to be sent down this chain of components. Secondly, if an
error occurs during query execution, an error message has to be sent in opposite di-
rection through the chain of components. Finally, all sorts of control messages have to
be sent through the system (e.g. information from the data dictionary may be asked,
the transaction manager has to request locks on fragments from the concurrency con-
troller, transactions need a two-phase commit protocol to guarantee atomic execution of
transactions).

104

~ Q u e r y O p t i m i z e r

Figure 3: Interface between Query Optimizer and Transaction Manager

We use a uniform protocol for query and error handling, between all components
involved, which reduces the number of different interfaces in the system. As an example,
the protocol between the query optimizer and the transaction manager is described in
the next subsection. Each type of control information needs its own protocol. The same
issues are important in all these protocols, however, so one example will give a good idea
of the communication in PI~ISMA/DB.

3 . 3 A n e x a m p l e p r o t o c o l

The interface between the query optimizer and the transaction manager consists of 4
methods (see figure 3).

• The query optimizer (QO) can send an optimized query to the transaction manager (TM),
using the method accept.

• The TM can tell the QO that the transaction is aborted (due to some error or a concur-
rency control problem) using the method abort.

• The TM can tell the QO that the execution of a transaction is ready using the method

• The QO can tell the TM that the transaction is ready using the method end.

These methods are asynchronous.
The protocol over (and rationale behind) this interface is as follows. In the normal

flow of control (without errors or concurrency problems) the QO will (after creating a
TM) star t sending optimized parts of a transaction to the TM. The last s ta tement of
every transaction is "commit" or "abort" , so the TM knows when a transaction ends.
The QO may never use a method accept of the TM anymore after sending a "commit"
or "abort" (also using accept).

I f nothing ever went wrong, an interface consisting of one method would do here. But
unfortunately errors do occur. In case of an error, the TM sends an abort message to the
QO, which may still be busy optimizing the rest of the query. Some parts of the query
may be on their way from the QO to the TM, while the abort message is sent in the
opposite direction. The TM will have to wait for these messages before it can terminate.

105

For this reason the method end is added to the interface. End has to be the last message
from the QO to the TM.

On the other hand, the QO must know when the execution of a transaction is ready,
because it could get an abort message from the TM while the transaction is still executing.
The TM sends a ready message to the QO after succesful completion of the transaction,
so the QO knows no abort can come from this transaction anymore.

3 . 4 A p r o t o c o l p r o b l e m

The various protocols between objects have been designed in the way stated above.
We are confident that all individual protocols are fine. But, if all protocols between the
components are depicted in one picture, a complex structure emerges. Research was done
in modeling the communication protocols in the DBMS as a Petri-net. This approach
appeared infeasible though, because of the size of the resulting Petri-net, and because of
the fact that if-then-else statements cannot properly be modeled in a Petri-net [Voor89].
Though this is considered a serious problem, it turns out that system deadlocks do not
seem to occur anymore after an initial phase.

4 Paral le l i sm

4 . 1 A s i m p l e t a x o n o m y o f p a r a l l e l i s m i n a D B M S

Before giving a discussion on parallelism, we start with a simple taxonomy of the forms
of parallelism. Three different forms can be identified (figure 4):

m u l t l - t a s k l n g By multi-tasking we mean the ability of a system to execute several
independent transactions at the same time. This concept is closely related to the
multi-tasking notion in operating systems.

p lpe - l i n ing The execution of a transaction is performed in a number of consecutive
stages: parsing, query optimization, interpretation of the schedules, and execution
at the lowest level of the DBMS. If a transaction is broken into pieces that are sent
one after another through the consecutive stages of processing in such a way that
several components are working simultaneously, we speak of pipe-lining.

t a s k s p r e a d i n g If the processing of a (sub)transaction at a certain level is decomposed
into a number of sub-processes that are executed at the same time, we speak of
task spreading. Task spreading involves three steps: firstly, splitting the task into
subtasks, creating processes for the execution of the subtasks, and sending the
subtasks to the appropriate objects; next, parallel execution of the subtasks; finaly,
sending the results of the subtasks to a central process and creating the final result.

We can identify two types of task-spreading (see for example [Kahn87]):

a n d - p a r a l l e l l s m The result of the task is made up out of the results of all sub-
tasks. Hence the task can be completed after all subtasks are completed.

o r - p a r a l l e l i s m The result of the task is made up out of the result of one or more
subtasks. Hence the task may be completed before completion of all subtasks.

106

User User User

Data Manager

(multi-tasking)

(pipe-lining)

(t a s k s p r e a d i n g)

Figure 4: Forms of parallelism

Note that these concepts can be applied in a sort of recurrent way: within a subtask
at certain level of the DBMS we can have pipe-lining again. A related description of
parallelism in a DBMS can be found in [Bora85].

4 .2 M o d e l i n g p a r a l l e l i s m in P O O L

The language POOL gives much freedom in exploiting parallelism. New parallel processes
can be created by simply creating new objects each having their own local process. To
make use of parallelism, however, we have to synchronize all these processes is some way.
This can be achieved in two ways: the creation of new objects and the communication
between objects. We briefly discuss this for the various forms of parMlelism.

mul t i - task lng Each task is executed by a collection of POOL objects. The objects
belonging to one task communicate with each other; there is no communication
between objects that belong to different tasks. Note that all tasks use the central
resources of the system, which are objects too. Therefore, the communication
between an object O1 belonging to a task and an object O2 belonging to a central
resource, should be designed in such a way, that O1 cannot block or delay 02. For
this reason, synchronous method calls from 02 to O1 should not be used.

pipe-l ining In pipe-lining the objects (processes) are arranged into a sequence O1--- On.
Each object Oi in principle only needs to send messages to its successor in the
pipe-line Oi+i. Because we want the objects to execute independent of each other
in time, we need both non-blocking communication and some means of message

107

task

buffering between Oi and Oi+x; both concepts are offered by POOL asynchronous
methods. The most natural way of creating a pipe-line is by letting an object Oi
create its successor Oi+l.

s p r e a d i n g Task spreading needs a coordinating object, say C. Defining n as
the number of subtasks, this objects creates objects $1 .. • Sn for carrying out the
subtasks. After creation, each Si gets its task via an asynchronous method from C.
Upon completion of its task, each Si sends its result to C. Note that synchronous
communication between C and Si is not suitable since this would not allow C to
go on after having activated the first subtask.

4.3 Para l l e l i sm in P R I S M A / D B

Looking at the architecture of PRISMA/DB at the highest abstraction level (the com-
ponent level), we can easily identify all three forms of parallelism.

The multi-tasking occurs where several autonomous global query processes are run-
ning at the same time. A global query process consists of a User Interface, a Parser, a
Query Optimizer, a Transaction Manager, and a set of One-Fragment Managers to hold
intermediate results. All global query processes are independent of each other apart from
sharing the same central resources of PRISMA/DB.

Pipe-lining is found in the sequence of components in the global query process as
decribed above. Parts of transactions are transported and processed in a pipe-line manner
through the various levels of the transaction processor. Further, pipe-lining is used in
processing query trees at the One-Fragment Manager level. Here a Transaction Manager
builds an execution structure out of OFM's to process intermediate results and channels
for tuple transport. The layout of this structure is the same as that of the query tree.
Processing is done in a data flow manner, resulting in a high degree of pipe-lining between
the levels of the query tree.

Task spreading is possible at all levels of PRISMA/DB, so also within every compo-
nent. It should only be used for computation-intensive work, however. The most obvious
use here is at the lowest level, where the data storage is handled. Instead of having one
manager for all the data in the entire database, we chose to have separate managers
for fragments of relations. Each One-Fragment Manager process can be thought of as a
subtask of the data manager task. Task spreading may also occur in a single component;
an example could be the Query Optimizer, where we could split up the optimization
process into a number of sub-processes each doing part of the optimization.

When looking at task spreading in a DBMS we notice that or-parallelism can hardly
be ever used. An example of possible or-parallelism can be found in the standard two-
phase commit protocol (see [Date83]). When we execute the local pre-comrnit decisions in
parallel at the One Fragment Manager level, we can use or-parallelism in deciding about
global commit; this is possible because a single negative pre-commit decision always
results in a global abort. Note however, that we gain only in an abort situation here.

4.4 Logical versus operat ional p a r a l l e l i s m

When talking about parallelism it is important to distinguish between two concepts:

logical pa r a l l e l i sm By logical parallelism we mean the parallelism that we model into
the software system; this is closely related to the modular structure chosen for the

108

system. The amount of potential parallelism here is only limited by the number of
processes (objects) existing at the same time.

opera t iona l paral lel lsm As soon as we execute a system on real hardware, it is obvious
that there cannot be more processes running in parallel than there are processors
in the system. The number of active processes running concurrently is called oper-
ational parallelism. It should be clear that the possible amount of parallelism here
is limited both by the available number of processors and by the amount of logical
parallelism.

Developing a large system in POOL gives the freedom to look at these two appearances
of parallelism in truly independent steps. When designing system, attention is paid to
logical parallelism only; concern is focused on a good software structure, the underlying
hardware is not important. In a second stage of the development process, the allocation
pragma's in POOL can be used to bind the various processes (objects) to processors in
the system. By grouping objects on the various processors in the system, we determine
which processes will be running in operational parallelism (on different processors) and
which not (on the same processor).

Determining a good allocation of the objects of PRISMA/DB is difficult. Therefore,
we need a great deal of experimenting with the allocation to obtain a high degree of
parallelism and thus a good performance. This problem is discussed in the next section.

5 Experiments

As stated before, we plan to do experiments to gain understanding of the behavior of
parallel systems. If the ratio between transmission costs and the costs for local processing
is unknown, it is hard to decide whether sending some amount of work to another node
for parallel execution wilt speed up some process as a whole.

The section on modularity showed the possibilities for a modular design of the
database system in POOL. This modular design makes it possible to experiment with the
allocation of components and to move certain subtasks from one component to another.
The section on parallelism explains that logical and operational parallelism are indepen-
dent in POOL. So, the design for the PRISMA database can be made with all sorts
of possible parallelism in mind, from very coarse (e.g. multi-tasking) to very fine (e.g.
task spreading in the optimization of one query). The possibility to move subtasks and
to change the parallelism gives us a nice opportunity to experiment with the database
system, to gain knowledge on parallel execution of programs and to get the best possible
performance from our system. Below some examples of possible experiments are given.

5.1 S e q u e n t i a l v e r s u s P a r a l l e l e x e c u t i o n o f q u e r i e s

Consider the following Relational Algebra expression:

(~ra="PI~ISMA" EMPLOYEE) ~5=1 (Trl,6CITY)

Calculating the result of this expression requires the calculation of a selection and a
projection, and after those of a join. The selection, the projection and the join are each
executed by a separate OFM. There are several schemes to organize this calculation.

109

* The calculation can be done sequentially on one processor. In this case there are
no transmission costs, but the processor has to be shared among three OFMs.
This scheme can only be chosen if the OFMs for base relations E M P L O Y E E and
C I T Y reside on the same processor.

• The calculation of the selection and the projection can be done in parallel on two
nodes followed by the join on one of the two nodes that are already involved. In
this case, the result of either the projection or the selection has to be sent to the
other node.

• The calculation of the selection and the projection can be done in parallel on two
nodes followed by the join on a third node. This gives an extra possibility for
parallelism: the result of the selection and the projection can be pipe-lined to the
join. In this case both the result of the selection and the result of the projection
have to be sent to another node.

It is not at all clear which of the three schemes is most efficient. If the transmission
overhead is high, the first one is probably best. The implementation of PRISMA/DB in
POOL gives the possibilty to experiment. Going from one scheme to another only involves
changing some allocation pragmas. Nothing else in the program has to be changed; the
potential for parallel execution is available, but it does not need to be exploited. Once
the behavior of such executions is understood, the query optimizer can be programmed
to dynamically generate the right allocation pragma's.

5 . 2 A n e x p e r i m e n t w i t h t h e b o u n d a r y b e t w e e n c o m p o n e n t s

As shown in figure 1, there is an interface between the Transaction Manager and the
Concurrency Controller. In general, a TM is located on another node than the CC.
If a TM wants to use the same fragment several times, it may repeatedly request the
same lock. This strategy is simple for the TM: it does not have to do its own lock
administration. Every use of a fragment requires transmission of a request over the
network though. On the other hand, the TM may have its local lock administration.
Before requesting a lock, it finds out whether it already holds a lock on the fragment. If
so, no request needs to be sent over the network; if not, the lock has to be requested from
the CC. This strategy saves transmission costs at the expense of some local overhead in
the TM.

The implementation of the system in POOL gives us the possibilty to postpone the
decision on such issues until after implementing the system. In the modular design it is
easy to switch between the two ways of handling the problem. Our current implemen-
tat ion has a local lock administration in the TM. The central module of the TM has an
interface with its lock administrator. It does not take much time to eliminate this object
from the TM and adjust the interface of the CC to what the central TM expects from
its local lock administration. Nothing has to be changed to the the central TM or to the
main part of the CC.

These two examples show that the object-oriented approach allows us to postpone
some of the design decisions or to changed them quite easily.

110

6 Conc lus ions and a Look into the Future

Currently we have a first prototype of PRISMA/DB running on an interpreter on a se-
quential machine. The status of this prototype shows that it is well possible to implement
a complex DBMS in a modern (and even experimental) object-oriented language. POOL-
X offers a programming environment that makes implementat ion of complex parallel
processes possible in a reasonably short time. The parallel object-oriented programming
environment has shown to be a good basis for modeling modularity, communication, and
parallelism into a complex system. One of the strong points, is the flexibility of the
system, which allows us to experiment with the architecture to s tudy parallelism and to
enhance the performance.

Our major concern at this time is the performance of the system on the target ma-
chine, which is still being developed. The high level features of POOL-X may cause some
loss of performance when a straight-forward implementation of the language is used.
Therefore, we expect that the performance of P R I S M A / D B on the multi-processor ma-
chine will highly depend on the optimization qualities of a POOL-X compiler. However,
we are confident that with the modular structure of PI~ISMA/DB, it is relatively easy
to tune or adjust the system at a later step in this project.

A c k n o w l e d g e m e n t s
We wish to thank the project members for providing a challenging environment and productive coopera-
tion with the teams from Philips Research Laboratories Eindhoven, the University of Amsterdam and the
Centre for Mathematics and Computer Science Amsterdam in the development of our DBMS. In particu-
lar, we wish to thank dr. A.J.Nijman for bringing academia and industry together, dr. H.H.Eggenhuisen
for providing good project management and for stimulating the interaction between the various subpro-
jects, P.America for his work on the definition of POOL-X, M.Beemster and J.v.d.Spek for their work
on the realization of the POOL-X interpreter and finally the other members of the database group for
their cooperation.

References

[Amer87]

[Amer88]

[Aper86a]

[AperS6b]

[Aper86c]

[Aper88]

P. America, An introduction to object-oriented programming, Doc.nr. 364, Esprit
Project 415A, Philips Research Laboratories, Eindhoven, The Netherlands, 1987.

P. America, Language definition oJ POOL-X, Doc.nr. 350, PRISMA Project,
Philips Research Laboratories, Eindhoven, The Netherlands, 1988.

P.M.G. Apers, J.A. Bergstra, tt.H. Eggenhuisen, L.O. Hertzberger, M.L. Kersten,
P.J.F. Lucas, A.J. Nijman, G. Rozenberg, A Highly Parallel Machine for Data
and Knowledge Base Management: PRISMA, Doc.nr. 1, PRISMA Project, Philips
Research Laboratories, Eindhoven, The Netherlands, 1988.

P.M.G. Apers, M.A.W. Houtsma, F. Brandse, Extending a Relational Interface with
Recursion, Proceedings of the 6th Advanced Database Symposium, Tokyo, Japan,
1986.

P.M.G. Apers, M.A.W. Houtsma, F. Brandse, Processing Recursive Queries
in Relational Algebra, in Data and Knowledge (DS-2), Ed. R.A.Meersman,
A.C.Sernadas, Elsevier Science Pubhshers, IFIP, 1988.

P.M.G. Apers, M.L. Kersten, H.C.M. Oerlemans, PRISMA Database Machine: A
Distributed, Main-Memory Approach, Proceedings of the International Conference
on Extending Database Technology, Venice, Italy, 1988.

111

[Bora85]

[CareSS]

[Date83]

[Hour88]

[Kahn87]

[Kers87]

[Mort86]

[TsurS6]

[Voor89]

H. Boral, S. Redfield, Database Machine Morphology, Proceedings of the 11th In-
ternational Conference On Very Large Data Bases, Stockholm, Sweden, 1985.

M.J. Carey, M. Livny, Distributed Concurrency Control Performance: A Study o]
Algorithms, Distribution and Replication, Proceedings of the 14th International
Conference on Very Large Data Bases, Los Angeles, USA, 1988.

C.J. Date, An Introduction to Data Base Systems Part 11, Addison Wesley, 1983.

M.A.W. Houtsma, H.J.A. van Kuyk, J. Flokstra, P.M.G. Apers, M.L. Kersten, A
Logic Query Language and its Algebraic Optimization for a Multiprocessor Database
Machine, Memorandum INF-88-52, University of Twente, 1988.

K. Kahn, E.D. Tribble, M.S. Miller, D.G. Bobrow, Vulcan: Logical Concurrent
Objects, Research Directions in Object-Oriented Programming, MIT Press, Cam-
bridge, Massachusetts, 1987.

M.L. Kersten, P.M.G. Apers, M.A.W. Houtsma, H.J.A. van Kuijk, R.L.W. van
de Weg, A Distributed, Main Memory Database Machine, Proceedings of the 5th
International Workshop on Database Machines, Karuizawa, Japan, 1987.

K. Morris, J.D. Ullman, A.V. Gelder, Design overview of the NAIL! system, Stan-
ford University, STAN-CS-86-1108 Stanford, CA, 1986.

S. Tsur, C. Zaniolo, LDL: A Logic-Based Data-Language , Proceedings of the 12th
International Conference on Very Large Databases, Kyoto, Japan, 1986.

L.v.d.Voort, A qualitative analysis of the Prisma//DB Empty Shell, Centre for Math-
ematics and Computer Science, Amsterdam, The Netherlands, 1989.

