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1 I n t r o d u c t i o n  

In the PRISMA-project, a large multi-processor system has been built, is be used to study the per- 
formance gains from parallelism. A parallel, main-memory relational database system (PItlSMA/DB) 
runs on this so-called POOMA-machine. This paper studies the possibilities of using parallelism to 
improve the performance of relational database management systems. Because the equi-join is an 
important, and time-consuming operation, queries consisting of a number of equi-joins are used to 
describe how different forms of parallelism can speed up the execution of such queries. 

This paper is organized as follows: First, a brief introduction into PRISMA and the DBMS running 
on it is given. After that, different forms of parallelism are described and the ways in which they can 
be used is identified. Using this knowledge, the possible parallelism in the execution of join-queries 
is discussed. Special attention is paid to pipelining. It is shown, that pipelining needs a new hash- 
join algorithm and that using this algorithm may yield effective parallelism over a pipeline of join 
operations. Finally, we discuss the implications of using pipelining as a source of parallelism for the 
optimization of join queries. The paper is concluded with our plans for future work. 

2 P R I S M A  

The PaRallel Inference and Storage MAchine PRISMA is a highly parallel machine for data and 
knowledge processing. 

The PRISMA-ma~hine contains 100 nodes that each contain a data  processor, a communication 
processor and 16 Mbyte of local memory. 50 nodes have a disk a~d some nodes have an ethernet 
card that  provides an interface with a host computer. Each communication processor connects a 
node to 4 other nodes. In this way a fast, high-bandwidth network is provided. This hardware can 
be classified as a shared-nothing multi-processor system. 

The maz~ine is designed to support a relational main memory database management system 
PRISMA/DB. An extensive introduction to this system can be found in [Kers87] and in [Wils89]. 
Here, only the features that are important for this paper are summarized. 

PRISMA/DB stores the entire database in main memory. Disks are used for backup only. To 
gain performance and to make storage in main memory feasible, the tuples belonging to one relation 
are fragmented over more than one node. A fragment is a set of tuples that belong to the same 
relation and that reside on the same node. A relation does not necessarily use all available nodes. 
The fragmentation is disjoint and complete, so each tuple belongs to exactly one fragment. 

*The work reported in thisdocument was conducted as part of the PPASMA project, a joint effort with Philips 
Research Eindhoven, partially supported by the Dutch "Stimuleringsprojectteam Informaticaonderzoek (SPIN)". 
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A fragment has a process associated with it, that executes operations on that fragment. Such 
a process is called a One-Fragment Manager (OFM). Both base data and intermediate data are 
managed by OFMs. OFMs for base-fragments are created at system startup; OFMs for intermediate 
data are created during query execution. The result of an operation is sent to the OFM that needs it 
for further processing, if it  is an intermediate result, or to the user, if it is an end result. Intermediate 
results may be fragmented. In that case, the output of an operation is distributed over more than 
one OFM. After finishing a transaction, the OFMs managing intermediate results are disposed of. 
The base OFMs stay alive waiting for a next transaction that needs their data. 

OFMs are allocated to processors when they are created. Process migration is not supported on 
the POOMh-machine. In this paper, it  is assumed that eac~ OFM has its private processor, because 
we want to understand the behavior of such a system before the more difficult situation in which 
different OFMs share one processor is tackled. This assumption implies that each base fragment 
resides on a private processor, because they each have an OFM. In this way, the data  allocation 
problem is solved for this moment. Data allocation is one of our future research issues though. 

3 P a r a l l e l i s m  

Before discussing the possibilities of using parallelism for query execution, we start with the definition 
of some useful concepts: Two sorts of parallelism are relevant to this paper [Born85, Wils89]: 

t a s k - s p r e a d i n g  A task is decomposed into a number of similar subtasks that are each executed 
independently on different parts of the data on different processors. The results of the subtasks 
are eventually combined to form the result. Task-spreading requires a coordinating process 
that hands out the subtasks and collects the results if necessary. If the subtasks consist of 
equal amounts of work, the speedup of task-spreading is expected to be proportional to the 
number of processors involved. This form of parallelism is called (pure) parallelism in [Born85]. 

p ipe l in ing  A task is decomposed into a number of different subtasks that have to be executed con- 
secutively on the same datastreazn. The subtasks can be assigned to different processors. Every 
subtask reads its input from its predecessor and sends its output to its successor. Subtasks are 
activated, when the first data reach them. When the first data reach the last subtask before the 
first subtask is done, all subtasks work simultaneously until the first subtask is done. Because 
of this staging in the execution it is hard to predict the performance gain from pipelining. 

Orthogonal to this distinction, the sorts of parallelism that are defined above, can be used in different 
ways for query execution [Wils89, Schn90]: 

i n t r a - o p e r a t o r  pa ra l l e l i sm One operation in a query tree is distributed over more than one pro- 
cessor. 

i n t e r - o p e r a t o r  pa r a l l e l i sm  Different operations in one query tree are executed concurrently. 

i n t e r - q u e r y  pa ra l l e l i sm Different queries are executed concurrently. This form of parallelism is 
not considered in this paper. 

Intra-operator task-spreading has been studied extensively during the last few years [Brat89, Schn89, 
Rich87]. This paper concentrates on using inter-operator pipelining and inter-operator task-spreading, 
assuming that each individual operation can be implemented effÉciently using intra-operator task- 
spreading. The next section describes how potential inter-operator parallelism in a query can be 
identified. 
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4 Possible Parallelism in Join-queries 

In order to describe the possibilities of using inter-operator parallelism for query execution, two query 
representations are discussed in this section. A join-ffuery can be represented in the following ways. 

A join-graph is a non-procedural representation of a join-query [Ceri84]. The nodes of the graph 
represent the relations that participate in the join. Two nodes are connected by an edge if a join 
criterion connects the relations represented by the edge. Edges are labeled with the selectivity of the 
corresponding join criterion. 

A join-tree is a procedural representation of a join-query. The leaves of a join-tree represent the 
relations that participate in the query. Intermediate nodes are operations on their incoming edges; 
they send their output via the outgoing edge to the next operation. The root of the tree produces 
the result of the query. In this way, a join-tree describes an execution plan for a query. Like there 
are many execution plans for a single join-query, one join-graph can be mapped to several different 
join-trees. 

Figure I shows a join-query with its join-graph and two join-trees corresponding with this graph. 
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Figure 1: A join-query with its join-graph and two corresponding join-trees. 

A join-tree can easily be mapped to the dataflow execution model [Alex88, DeWi88]. In such a 
model, the data is assumed to flow along the various operation processes, that start processing their 
input as soon as it is available. The OFMs in PRISMA/DB correspond to operation processes and 
thus to nodes in a join-tree. 

In a join-tree, the potential inter-operation parallelism can easily be identified. Operations that 
are "next to each other" can be parallelized via task-spreading. Nodes that have a parent-child 
relationship can possibly execute concurrently via pipelining. Inter-operation task-spreading is used a 
lot in parallel DBMSs [Ceri84]. In the next section, the possibilities of using inter-operation pipelining 
to execute join-queries are studied. 

5 Pipelining in Join Queries 

To find out whether pipelining yields a significant performance gain in join queries, the execution 
characteristics of the join-tree in figure 2 are considered. This figure shows a join-tree for the four- 
way join between selections on A, B, C and D. First, the characteristics of the well known hash-join 
algorithm are described, and then a new version of this algorithm is proposed. 
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Figure 2: tree representation of (eA M aB) ~ (aC MaD). The operaads are equal in size, the 
selections have a selectivity of 10%, and the joins operations match one tuple of one operand to 
exactly one of the other. The operations are executed on a private processor. 
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Figure 3: Common main-memory hash-join. 

5.1 The common hash-join algorithm 

A hash-join algorithm is assumed, because hashing algorithms have proven to perform good compared 
to other join algorithms [Schn89]. Different hash-join algorithms have been proposed, but they differ 
mainly in the way in which operands are fetched from disk. The main-memory version of these 
hash-join algorithms, called common hash.join in this text, works as follows (see figure 3): 

In the common hash-join algorithm two phases can be distinguished. First, an in-memory 
hash-table for one entire operand is built. In the second phase, the tuples of the other operand 
are hashed and compared to the tuples in the corresponding bucket of the first operand one 
by one. If a match is found, an output tuple is produced. This algorithm does not need a 
hash-table for the second operand. 

The following can be remarked about this algorithm. Firstly, it is clear that output tuples are 
only produced during the second phase of the algorithm. Secondly, the algorithm is asymmetric in 
its operands. This implies that the execution characteristics of A N B can be very different from 
the execution characteristics of B t~ A. Both these properties have important implications for the 
chara~:teristics of the execution of join queries' when the common hash-join algorithm is used. The 
next paragraph describes the implications of the staging in the algorithm; the asymmetry is discussed 
further below. 

Fig 4 shows the execution characteristics of the join-tree in figure 2, assuming the common hash- 
join algorithm. The diagrams in this figure plot the processor utilization of an operation against 
the time. The two phases in the join operation can easily be distinguished in the join-diagrams. It 
is clear, that the topmost join operation in the tree can only start building its hash-table during 
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Figure 4: Execution characteristics of the common main-memory hash-join algorithm. 
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Figure 5: Pipelining main-memory hash-join. 

the second phase of the other two join operations. The second phase of the topmost join operation 
is executed after the other two join operations have finished executing, and so this phase cannot 
work concurrently with the other two join-operations. So, in a pipeline of join operations that are 
implemented via this join algorithm, the first phase of a parent join can be executed concurrently 
with the second phase of the child join operation. Therefore, if a pipeline consists of more than two 
join operations, at any moment at most two operations can execute concurrently. This means that 
the staging in the common hash-join algorithm reduces the effective parallelism from pipelining. 

5.2 A pipelining hash-join algorithm 
To increase the amount of effective parallelism in the execution of the join-tree in figure 2, a new 
main-memory hash-join algorithm, called pipelining hash-join is proposed [Wils90] (see figure 5): 

The pipelining hash-join consists of only one phase in which a hash-table for both operands is 
built. When a tuple arrives of one of the operands, it is hashed and compared to the tuples in 
the corresponding bucket of the other operand that have already arrived. If a match is found 
an output-tuple is formed. Finally, independant of the match, the input-tuple is inserted in its 
own hash-table. As soon as one entire operand has reached the join process, the tuples of the 
other operand do not need to be inserted in their own hash-table, because this hash-table is 
not used in the rest of the join process anymore• 
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Figure 6: Execution characteristics of the pipelining main-memory hash-join algorithm. 

The following properties of this algorithm are important: Firstly, this algorithm already produces 
its first output tuple as soon as two matching tuptes have re~ched the join operation. Secondly, the 
algorithm is symmetric in its operands. Finally, if one entire operand reaches the join-process before 
the first tuple of the other operand is available, this algorithm degenerates to the common hash-join 
algorithm. 

The next paragraph describes how the first property of this algorithm influences the effective 
parallelism from pipelining. The next subsection is on the (a)symmetry of the hash-join algorithms 
that are presented in this paper. 

Figure 6 shows the execution characteristics of the join-tree in figure 2 using the pipelining hash- 
join. From this figure it is clear, that all three join operations work concurrently, resulting in a shorter 
response time for the execution of the complete query. This increased concurrency (with respect to 
the execution of this join-query using the common hash-join algorithm) is possible, because the result 
tuples are produced early on the join process. Using the pipelining hash-join algorithm, it is feasible 
to build join pipelines that consist of several join operations that can all work concurrently. So, using 
the pipeli~aing hash-join algorithm, both task-spreading and pipelining yield effective inter-operator 
parallelism. 

5 . 3  T h e  a d v a n t a g e  o f  a s y m m e t r i c  j o i n  a l g o r i t h m  

This subsection is a deviation of the main topic of this paper. In the next section, the discussion on 
parallel query execution is continued with the implications of the pipeliuing hash-join algorithm for 
query execution strategies. Here, the advantages of the symmetry of the pipeliuing hash-join over 
the asymmetry of the common hash-join are described. It should be realized, that the join operation 
is a symmetric one in theory; the asymmetry of the common hash-join is merely a consequence of 
the way in which the tuples of the operands are matched. 

The asymmetry of the common hash-join has disadvantages for the determination of a suitable 
plan for a join-query. Usage of an asymmetric algorithm requires that the decision which operand has 
to be the left one and which one the right, has to be made thoughtfully. Taking the wrong decision 
can result in bad execution chararteristics: If for a certain join operation, a common hash-join is 
planned in which a hash-table is built for the left operand, and the right operand is available earlier 
than the left one, than the join process sits waiting for the left operand, not doing anything with 
the tuples of the right operand, that are available for processing. If the pipelining hash-join is used 
instead, the algorithm itself adapts to the availability of tuples of the operands, because the tuples 
are processed in the order in which they are available. This adaptation of the algorithm to the 
availability of the operands makes the task of determination of a suitable query execution strategy 
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easier. 
In a paper on query execution strategies, DeWitt and Schneider [Schn90] compare the effective 

inter-operator parallelism during the execution of linear left-deep and linear right-deep join trees. 
They conclude that right-deep linear join trees are weU suited to process multiway joins. The 
difference in the execution characteristics of these two strategies is caused by the asymmetry in 
the hash-join algorithm they use. In a main-memory environment, usage of the symmetric pipelining 
hash-join algorithm probably yields the same effective parallelism, regardless of the shape of the 
query tree. In the next section, the implications of the fact that arbitrary shaped query trees can be 
used for parallel query execution, are discussed. 

6 Query Execution Strategies 
In this section, the impact of using the pipelining hash-join algorithm on the design of a query 
execution strategy is considered. 

Choosing an execution plan for a query implies that the following two decisions (among others) 
have to be taken: 

• An algorithm has to be chosen for each individual join operation. This choice implies determi- 
nation of the degree of intra-operation parallelism for each operation. 

• A join-tree that corresponds to the join-graph for the query has to be selected from the numerous 
possible join-trees. 

These choices can be fixed (e.g. some systems always use a hash-join algorithm that is distributed 
over all available processors), or they are made by a query optimizer. To select a join-tree, usually 
a part of the vast space of join-trees that corresponds to a join-graph is traversed more or less 
exhaustively searching for the tree that has the best value for some goal-function. The goal-function 
calculates some execution characteristic of the join-tree using estimates of the costs of the individual 
operations. Of course, the cost estimates are influenced by the algorithms that are assumed for 
individual operations. 

Many papers on query optimization discuss the process of traversing the space of join-trees and 
cost functions that are used to estimate the costs of operations and the size of results. In this paper, 
we assume suitable cost functions to be available and we only try to identify the characteristics of 
the join-tree that has to be chosen, leaving the way to find that tree for further research. 

Now, we will discuss two query execution strategies that are known from the literature, and then 
an alternative strategy that takes inter-operation pipelining into account, is proposed. 

6 .1  GAMMA. 

GAMMA [DeWi86] uses the approach that is known from System-R [Seli79]. It can be characterized 
as follows: 

• A (non-pipelining) hash-join algorithm is used in which each operation is dectustered over all 
8 available processors. 

• The linear tree that has minimal accumulated estimated processing costs is chosen as execution 
plan for the query. 

This strategy has a fixed choice for the join algorithm and for the degree of intra-operator parallelism 
that is used. The query optimizer only considers linear join trees. Also, this strategy does not use 
any inter-operator parallelism: each operation occupies all available processors. Therefore, using 
inter-operator parallelism wilt not yield any performance gain. 
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6 .2  T h e  B o d o r i k  a p p r o a c h  

Bodorik et al.[Bodo88] propose an optimization strategy that chooses a general (not necessarily 
linear) join-tree in which the accumulated processing time along the longest path is minimal with 
respect to other join-trees. It is clear, that such an algorithm tends to select wide query-trees that 
have many possibilities for task-spreading, which is the main source of parallelism in the execution 
model that is used in this paper. The Bodorik query execution strategy is characterized as follows: 

• A (non-pipelining) hash-join algorithm is used in which the degree of para~elism in each in- 
dividual operation depends only on the fragmentation of the join operands. Before each join 
operation, one operand is reconstructed and broadcast to the fragments of the other operand. 

• The optimization algorithm selects the join-tree in which the total execution time of the oper- 
ations on the longest path is minimal. 

In this strategy, the join algorithm is fixed, and the degree of parallelism in each operation is taken 
according to the fragmentation of the join operands. The strategy uses both intra-operator and 
inter-operator task-spreading. 

6 .3  T h e  PI:tISMA a p p r o a c h  

In PRtSMA yet another strategy is used. The execution strategy that is proposed here assumes usage 
of the pipelining hash-join algorithm. The idea behind it is the following: 

• First, the total amount of work that has to be done to evaluate the query is minimized. 

• Then, we try to distribute that minimal amount of work equally over the available processors. 

If all processes that result from this strategy really execute concurrently, it is clear that this strategy 
is likely to yield a good response time to the query. 

In the previous section, it was stated that both inter-operator task-spreading and inter-operator 
pipelining yield concurrent join processes, if the pipelining join algorithm is used. So, the idea that 
is described above can be applied in the following way. 

• First, the join-tree is chosen that has the minimal accumulated processing time over all joins 
that have to be executed. 

• Now, the work in the chosen join-tree has to be distributed equally over the available processors. 
This is achieved by assigning more processors to expensive operations: The available processors 
are assigned to join operations proportionaly to the costs of those join operation. 

So, the PRISMA approach can be characterized as follows: 

• A main-memory pipelining hash-join algorithm is assumed. The degree of intra-operation 
parallelism in each join is determined by the estimated costs for each operation. 

• The minimal total estimated processing costs general tree is chosen. 

Comparison of the three optimization strategies that are described above leads to the following ob- 
servations. Firstly, GAMMA only exploits intra-operator parallelism, Bodorik et al. use intra-operator 
task-spreading and inter-operator task-spreading, and PRISMA exploits intra-operator task-spreading, 
inter-operator task-spreading and inter-operator pipelining. Secondly, GAMMA and Bodorik set the 
degree of intra-operator task-spreading heuristically and PRISMA chooses this degree during the op- 
timization process. Finally, different sorts of query trees are chosen. Experiments will have to show 
which strategy works best. 

Of course, the PRISMA optimization strategy has some problems as well. It is clear that two 
pipelined processes do not yield full concurrency. The effect of the intrinsic delay over a pipeline and 
the tuning of the speeds in which tuples are generated and consumed need further study. 
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7 S u m m a r y  and plans for future work 

In this paper, the possibilities for parallel query execution in PRISMA/DB were reviewed. Join queries 
were considered throughout the paper. It was shown that inter-operator pipelining may yield a source 
of parallelism in query execution. Exploitation of this form of parallelism affects the characteristics 
of query execution. An adjusted query execution strategy was proposed. 

The material presented in this paper is still is the stage of ideas that need experimental justifica- 
tion. Also, many detMls of new the algorithms that were proposed need further research. Experiments 
are carried out in two ways. Firstly, PRISMA/DB is an excellent experimentation platform for the 
ideas that were presented in this paper. We plan to compare the characteristics of the execution of 
different query trees for one query on PRISMA/DB. Secondly, a simulator for query execution was 
developed with which the influence of changes in algorithms can easily be studied. (Figure 4 and 6 
were produced by this simulator.) Both PRISMA/DB and the simulator will be used to adjust and 
validate the algorithms that are presented in this paper. 

After that more general queries than just join queries will be considered. Also, process and data 
allocation will be studied. For that purpose the possibility that more than one data fragment or 
more than one operation process share one processor is taken into account. 
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