
Moa and the multi-model architecture:
a new perspective on NF2

M. van Keulen1, J. Vonk1, A.P. de Vries2, J. Flokstra1, and H.E. Blok1

1 Center for Telematics and Information Technology (CTIT)
University of Twente, Enschede, The Netherlands

{keulen,vonk,flokstra,blok}@eemcs.utwente.nl
2 Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands

arjen@cwi.nl

Abstract. Advanced non-traditional application domains such as geographic in-
formation systems and digital library systems demand advanced data manage-
ment support. In an effort to cope with this demand, we present the concept of a
novel multi-model DBMS architecture which provides evaluation of queries on
complexly structured data without sacrificing efficiency. A vital role in this ar-
chitecture is played by the Moa language featuring a nested relational data model
based on XNF2, in which we placed renewed interest. Furthermore, extensibil-
ity in Moa avoids optimization obstacles due to black-box treatment of ADTs.
The combination of a mapping of queries on complexly structured data to an ef-
ficient physical algebra expression via a nested relational algebra, extensibility
open to optimization, and the consequently better integration of domain-specific
algorithms, makes that the Moa system can efficiently handle complex queries
from non-traditional application domains.

1 Introduction

Advanced non-traditional applications, such as digital library systems (DL) and ge-
ographic information systems (GIS), place high demands on their data management
components. Data in these areas is intrinsically complex and voluminous in nature and
queries are computationally intensive. Researchers have sought to cope with these de-
mands in different directions. In section 2, we explore these directions focussing on data
model and DBMS architecture as a motivation for our multi-model DBMS architecture,
as well as the particular role the logical algebra Moa plays in this architecture.

The multi-model DBMS architecture consists of three layers each supporting a dif-
ferent data model. In this way, the top conceptual layer provides a data model sup-
porting complexly structured data, while in the logical and physical layers, a query on
complexly structured data is gradually transformed to efficient storage-level operations.
To be able to bridge the gap between a conceptual-level data model (e.g., a hierarchi-
cal or object-oriented data model) and a storage-level data model, we place renewed
interest in Non First Normal Form (NF2) data models, which were popular in the 80s,
but proved difficult to support efficiently with then available technology. The Moa data
model, used in the logical layer of the architecture, is an adaptation and extension of

2

(X)NF2 for which we developed an approach towards efficient query evaluation. An-
other key feature of our approach is extensibility on all layers to be able to integrate
domain-specific algorithms such that certain optimization obstacles concerning ADTs
are avoided.

The strength of the Moa system lies in the combination of architecture, data models,
the mappings between them, and the way extensibility is handled. This paper provides
an overview of the entire concept necessarily leaving out much detail and focussing on
architecture and data models. The more interested reader is referred to [20].

In Section 3, we present Moa’s approach to query processing. The Moa language
is illustrated by means of an example in Section 4. The ideas behind Moa have been
validated and fine-tuned in various advanced application domains, such as GIS and
multi-media retrieval, an overview of which is given in Section 5. Finally, we present
our conclusions and future work in Section 6.

2 Motivation and related research

In the past decade, the following trade-off particularly eluded researchers when trying
to make DBMS technology better suitable to non-traditional applications. On the one
hand, it concerns data model expressiveness. The suitability of a DBMS for an appli-
cation is closely related to the expressiveness of its data model. The data model of the
conceptual level should fit the universe of discourse, since end-users have to understand
this model of the real world in order to formulate their queries. To support the inher-
ently complexly structure data of many application areas, advanced data models were
proposed, such as the object-oriented and object-relational data models. On the other
hand, performance is expected from the DBMS, which typically means that it should
be able to effectively optimize queries. The more complex the data model, however, the
harder it is to develop an effective optimizer, as research on OODBMSs clearly showed.

Garlic [8] is an example of a system that integrates special-purpose data servers us-
ing object wrappers. Unfortunately, even with its advanced optimizer that uses statistics
from the wrappers, performing such processing outside the scope of the database system
may cause serious performance degradation, see, e.g., [11]. Full-fledged OODBMSs do
not meet demands either. Often data independence is not handled well: the application
class structure dictates physical layout of data and user-interfaces were non-declarative.
As known from RDBMSs, data independence is essential for scalability and data distri-
bution. But even with a declarative query language and the ability to convert OO item-
oriented thinking into set-oriented query plans, which O2 [1] both mastered, OODBMSs
never became the success as anticipated.

Module

meta interface
nnnn
vv

meta-
program

_ _ _ _�

�

�

�
_ _ _ _

base interface

��
��
�

��

base-
program

_ _ _ _ _�

�

�

�
_ _ _ _ _

Fig. 1.
Open implementation.

In the DBMS market today, the object-relational (OR)
data model dominates claiming to be simple enough for query
optimization, but expressive enough to handle advanced appli-
cation areas. As Date and Darwen point out in [10], extensi-
bility with user-defined data types does not require a new data
model per se. However, as the Bucky benchmark has shown,
room for improvement concerning performance exists [7]. De-
signed to evaluate especially the extra features of the OR data

3

model, it showed that a pure relational schema performed better in most cases than a
schema using OR features such as set-valued attributes.

Furthermore, encapsulation of data and operations inside objects or ADTs affect
query evaluation: optimization by the DBMS becomes infeasible, and query process-
ing too often results in object-at-a-time evaluation. Predator’s E-ADT concept [15] im-
proves upon this by implementing an optimization interface to facilitate optimization
of a query plan using its own algebraic operations. The E-ADT approach adheres to the
open implementation approach, known from the software engineering field [13]. Instead
of building an ADT as a black box, it provides a meta-interface (see Figure 1) allow-
ing a client of the ADT to make certain performance choices. A typical example is a
program’s advice to the operating system to adjust its caching strategy to a (sequential)
memory access pattern.

Logical
layer

E
xt

en
si

on
1�� ��

�� ��

. . .

E
xt

en
si

on
n�� ��

�� ��

Physical
layer

E
xt

en
si

on
1�� ��

�� ��

. . .

E
xt

en
si

on
n�� ��

�� ��

Storage layer

Conceptual layer

Moa language:
adaptation

and extension
of XNF2

ccHHHHHHH

(flat) 1NF

ffMMMMMMMMMM

XQuery + XML

iiSSSSSSSS

Fig. 2. The multi-model DBMS archi-
tecture and our choice for data models.

Multi-model DBMS architecture To be able
to deal with the trade-off between com-
plex data model and performance, [21] in-
troduces the multi-model DBMS architecture
with different data models on different lay-
ers (see Figure 2) as opposed to ordinary
relational systems, which use the relational
model throughout the DBMS architecture.
The conceptual layer typically has an OO data
model or a hierarchical semi-structured one
(e.g., XML). We choose other, ‘simpler’ data
models for the logical and physical layers.
Obviously, this comes at a cost, namely ad-
ditional mappings between layers, that map
a query expression from one language to an-
other. A typical choice for a data model and algebra on the physical level, is one close
to the machine, for example, relational algebra, or, what we have used in some cases,
the binary relational data model of main-memory DBMS MonetDB [4].

The XNF2-data model [14] is very suitable as intermediary data model for bridging
the gap (logical layer) between a complex data model and a simple relational one. It
handles complex data structures as nested relations, but still comes with an algebra that
is not much more complex than an ordinary relational one. The idea of a DBMS based
on XNF2 [9] lost interest when it appeared too difficult to build one that performed well.
In the sequel, we show our adaptation of the XNF2 data model and its effective use in
our multi-model DBMS prototype, called Moa.

Summarizing, the Moa DBMS prototype with its multi-model architecture has the
potential of better meeting the demands of advanced application domains. By using dif-
ferent data models on different layers, it is possible to provide a complex data model at
the top and still be able to evaluate queries efficiently. We achieve the latter through sev-
eral provisions: (1) by utilizing an XNF2-based algebra as an intermediary, queries on
complexly structured data are gradually and effectively translated to efficient storage-
level operations, (2) extensibility at all layers allows to better integrate domain-specific
algorithms into the DBMS, thus improving the performance of domain-specific opera-

4

tions, and (3) extensibility in Moa is defined such that extensions are not black-boxes,
but are open to the optimizer, hence, possible optimizations can be better exploited.

In the following section, we present Moa’s approach to XNF2-based query process-
ing within the multi-model architecture.

3 Query processing in Moa

As early as 1982, Schek and Pistor argued that the relational data model is inconvenient
for a domain like information retrieval [14]. To overcome these shortcomings, they
propose a NF2 data model dropping the first normal form (1NF) requirement to allow
non-atomic attribute domains such as sets of values. Many theoretical properties of the
relational model also hold for NF2. The main difference between NF2 and eXtended
NF2 (XNF2) data models such as that of the AIM DBMS [9], is that XNF2 supports
additional data types such as lists and allows for arbitrary nesting of type constructors.

The main part of the work on NF2 concerns the definition of algebras, not their
function: facilitate efficient query evaluation. With the latter, problems are encountered
including inefficient nested-loop processing, data redundancy, restructuring overhead
and the infamous COUNT-bug [17], since in the presence of empty subsets, unnest is not
the inverse of nest. [16] has made a large contribution to the area of query optimization
of nested relational algebras with, e.g., the introduction of a special nestjoin-operator.

�� ��
�� ��SET

�� ��
�� ��SET

�� ��
�� ��TUPLE

ID1

SI
⊆

ID1 × ID2

A1

⊆
ID2 × v1

A2

⊆
ID2 × v2

ID1

1
2
3

1 5
1 6
3 7

5 a
6 b
7 c

5 11
6 12
7 13

1
2
3

Fig. 3. Nested data and flat data.

Moa is an extension of XNF2, where not only
type constructors can be arbitrarily nested, but
also new type constructors can be added. Moa ad-
ditionally incorporates a solution to the mentioned
NF2 query processing problems. It does this by
keeping an explicit structure definition in the form
of type constructors connected to unnested (flat)
data, and by having both nest/unnest operators as
well as navigators, such as map. Furthermore, it
deals with the COUNT-bug by explicitly generat-
ing counteracting operations where needed.

Example (see Figure 3). Suppose, our
database db is structured as a set of sets of n-
tuples: db ∈ P P V1 × . . .×Vn where P is the powerset operator and Vi are domains of
atomic values. Choosing subsets of Vi as v1 = {a,b,c} and v2 = {11,12,13}, a concrete
db can look like db = {{(a,11),(b,12)},{},{(c,13)}}. Our generic mapping repre-
sents db as type constructors (rounded rectangles) connected to the following flat data:

ID1 = set of as many unique id’s as there are subsets in the database. (1)

ID2 = set of as many unique id’s as there are n-tuples in the database. (2)

SI = subset index as a set of pairs ⊆ ID1 × ID2 (3)

Ai = columns as a set of pairs ⊆ ID2 × vi (i ∈ {1,2}) (4)

The figure furthermore illustrates the distinction between a value and an identified
value set (or ivs). A column does not represent one atomic value, but a set of atomic val-
ues. The TUPLE structure constructed from A1 and A2 represents a set of tuples, called

5

��
��
��
��
��
��
��
��
��
��
��
��
��

//
//

//
//

//
//

//
//

//
//

//
//

//

Moa
expr.

Columns

Tables

Moa
rewrite step

//

��
��
��
��
��
��
��
��
��
��
��
��
��

//
//

//
//

//
//

//
//

//
//

//
//

//

Moa
result

structure

Column
operations

Columns

Tables

Column
rewrite step

//

��
��
��
��
��
��
��
��
��
��
��
��
��

//
//

//
//

//
//

//
//

//
//

//
//

//

Moa
result

structure

Columns

Table
operations

Tables

Execution //

��
��
��
��
��
��
��
��
��
��
��
��
��

//
//

//
//

//
//

//
//

//
//

//
//

//

Moa
result

structure

Columns

Result tables

Retrieve
and

format
result

//

Fig. 4. Moa query evaluation steps.

an ivs, rather than one tuple value. The SET structure above it introduces a partitioning
of this set of tuples according to SI, hence representing a set of sets, rather than one set,
so it too is an ivs. The top-most SET doesn’t introduce another partitioning, but only
wraps things in a proper (nested) value and, therefore, is a value. All structures in Moa
have a value and an ivs form.

Note that, based on SI alone, it is impossible to determine that one or more empty
subsets exists. Part of solving the COUNT-bug is the representation of an empty subset
as an occurrence in the third argument of SET ivs (ID1) and no occurrence in the first
(SI).

Each operator in our language is defined on structure and data level. For exam-
ple, the count has the effect of converting a set-of-set-structured argument to a set-of-
atomic-structured result (structure level), while at the same time generating a grouped
count operation on the flat data connected to that result structure (data level). In other
words, a query in Moa is translated into both a physical algebra expression on flat data,
and an explicit conversion from argument to result structure.

This two-level approach to query evaluation is illustrated in Figure 4. The general
form of a query is a Moa expression which uses columns from underlying tables3 (the
leftmost pyramid). In the first rewrite step, Moa operations are mapped onto their re-
spective column operations and result structure (second pyramid). This step converts a
query on a nested structure to operations on flat data, which, being a rewrite operation
independent of data volume, causes only minimal overhead. In the third pyramid, the
column operations have been translated to the table operations of the physical layer.
The third step performs the actual execution of the table operations producing result
tables connected to a Moa result structure.

4 Moa logical language

As explained, the Moa logical language is based on XNF2and is described here by
means of the well-known example of an organisation that has departments and employ-
ees that work in those departments. In terms of XNF2, an organisation consists of a set
of departments, which in turn consist of sets of employees.

3 Until now, we have used relational tables as physical storage representation of a column, but
this is theoretically not obligatory.

6

Name: Computer Science
Address: Park lane 5

Name: Jones
Salary: 175.000

Name: Field
Salary: 275.000

Name: Technical Healthcare
Address: Ocean Drive 20

Name: Smith
Salary: 100.000

Name: Johnson
Salary: 75.000

Name: Bing
Salary: 150.000

Name: Mathematics
Address: Park lane 5

University

Fig. 5. Example organisa-
tion structure.

A specific instantiation of such an organisation is
shown in the organisation diagram presented in Figure 5.
It contains three departments, one with three, another
with two employees, and the technical healtcare depart-
ment has no employees (yet), as it is a newly founded
department. Each department has a name and address at-
tribute and each employee has a name and a salary at-
tribute.

In traditional 1NF relational terms, the department
entity has a multi-valued attribute (i.e., the employ-
ees), which requires a transformation into a seperate en-
tity and relationship if stored in a strict 1NF relational
database. In the Moa system however, the nested struc-
ture of the schema can be preserved. Figure 6 shows the
entire structure specification of the example organisa-
tion in the Moa logical language. At first glance, without
knowing the Moa language, one sees that the organisa-
tion is modeled more naturally, since the nesting is pre-
served and not flattened as in 1NF.

The structures Atomic, TUPLE, and SET in Figure 6 together form the kernel struc-
tures available in the Moa system. They constitute the NF2 data model. Moa is open to
the definition of additional structures, called extensions, that may support NF2’s arbi-
trary nesting. An example is the FV structure representing a feature vector intended for
multimedia retrieval applications.

SET〈 |Department : _key| ,
TUPLE〈 Atomic〈 |Department : DName| 〉 : dname,

Atomic〈 |Department : DAddress| 〉 : daddress,
SET〈 |DepEmp : _match| ,

TUPLE〈 Atomic〈 |Employee : EName| 〉 : ename,
Atomic〈 |Employee : Salary| 〉 : salary
〉 : Employee,

|Department : _key|
〉 : Employees

〉 : Department
〉 : University

Fig. 6. Schema of University.

The syntax for type construction is a struc-
ture identifier, followed by a number of argu-
ments, and an optional label. The argument for
Atomic is a column identifier which directly
references the data stored in the underlying
DBMS (cf., A1 and A2 in Figure 3). For exam-
ple, |Department : DName| refers to the dname
column of the Department table in an RDBMS.
The label of the structure is used as a conve-
nience mechanism to be able to reference the
structure.

The |TUPLE| type constructor represents the theoretical notion of a product struc-
ture that consists of one or more Moa structures that can be of any type.

The |SET| type constructor represents a collection of Moa structures. The possibility
of unrestricted nesting of type constructors makes it, in particular with this type con-
structor, possible to support the arbitrary nesting of the NF2 data model. The arguments
of SET include an index4 mapping, the structure of the elements of this set, and the
index of the set that encloses the specified set (cf., SI, TUPLE〈 A1, A2 〉, and ID1 in
Figure 3).

4 In relational terms, an index is the same as the primary key of a table.

7

Fig. 7. Screendump of Moa System

In the example above, the index mapping and enclosing set index are represented
by |DepEmp : _match| and |Department : _key|, respectively. Those are special column
identifiers disclosing database schema information. In this case, it maps primary keys of
departments to primary keys of employees. Thus, the |DepEmp : _match| column con-
tains the relationship (CS,Smith), (CS,Johnson), (CS,Bing), (M,Jones), and (M,Field),
where CS is ‘Computer Science’ and M is ‘Mathematics’.

Several operations are defined on the kernel structures, of which the most important
ones are listed below.

– select[m] (op); The select-operation is similar to the select-operation of relational
algebra. The modifier m specifies the selection criterion and the operand op speci-
fies the argument on which the selection should be applied.

– attr(op,l); The attr-operation is Moa’s equivalent of projection, i.e., it evaluates to
the attribute referenced by label l of its tuple-valued argument. In a modifier, it can
be abbreviated by ‘%l’.

– map[m] (op); The map-operation is a navigational operator: it evaluates modifier
m for each of the elements of operand op and collects the results in a SET structure.

– join[m1,m2] (op1, op2); The join-operation joins the two operands op1 and op2

based on equality of the modifiers m1 and m2, similar to the join-operation in rela-
tional algebra.

– flatten(op); The flatten-operation converts a set of subsets to one set by taking the
union of all subsets, i.e., it removes one level of nesting.

– count(op); This is an example of an aggregate function and shown in the example
of Figure 7 to illustrate that Moa correctly handles the COUNT-bug as explained in
Section 3.

Note that the structure specification of Figure 6 is stored in the data dictionary of
the system under the name “University” and can be used in queries directly.

Figure 7 shows a screen dump of the graphical user interface (GUI) of the Moa
system. In the figure, the top-part of the GUI represents the input area and shows

8

a number of example queries. The results of a query execution are presented in the
bottom-part of the GUI. In this case, Query 4 has been executed. The resulting ele-
ment 〈"Technical Healthcare",0〉 illustrates the correct handling of the COUNT-
bug, which would otherwise be missing from the result. Although without showing
results, query 5 shows the use of the join-operation, and query 6 illustrates two equiv-
alent expressions for the same query, hence offering an optimization opportunity. The
underlying database used here is a relational DBMS.5

Besides the operations and structures described in this section, others are available
in the Moa system, e.g., the nest and unnest operations. However, due to space limita-
tions, it is infeasible to present an exhaustive list. The reader is referred to [20].

5 Application areas and context

The validity of the Moa concept described so far, can best be seen by looking at the
various projects in which Moa played a central role.

The ideas for Moa and multi-model architecture originate from the Magnum-project
[6, 5]. In this project, a structurally object-oriented DBMS was developed for the pur-
pose of efficiently integrating spatial and thematic data in a single data manager. Re-
seach has shown in the early nineties, that full and efficient integration of GIS func-
tionality in an extensible relational or an OODBMS based on ADT-like GIS extensions,
is difficult. Therefore, decomposition and extensibility were the key features of this
project. In terms of the multi-model architecture, the Magnum system consisted of two
layers: the main-memory DBMS MonetDB as physical layer and Moa as logical layer.
This architecture could be extended in two ways. First, new base types could be defined
in MonetDB, e.g., polygon, together with a large set of spatial operators on these prim-
itive base types. Secondly, Moa’s structural extensibility was used to support structures
like polygonal maps, triangulations, and rasters, next to the conventional tuple, set, and
list. Moa mapped these structures to MonetDB’s binary data model, meaning that the
highly structured data was decomposed in binary tables. Experiments showed that the
Magnum system performed well on the Sequoia benchmark [18].

RDBMS MonetDB

Physical layer

column algebra

Moa algebra

Logical layer

Conceptual layer

New applications
�� _ _ _ _ _ _ _ _ _ ��
�� _ _ _ _ _ _ _ _ _ ��

E
xi

st
in

g
ap

pl
ic

at
io

ns

�� _ _ ��
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�

�
�� _ _ ��

::
::

:]]

��

Fig. 8. SUMMER fed-
erated architecture.

The good experiences with the Moa/MonetDB combina-
tion, especially with the combination of base type and struc-
tural extensibility, sparked off new efforts. In the Mirror and
AMIS projects, the ideas for a highly extensible DBMS ar-
chitecture based on Moa and MonetDB were further devel-
oped in the realm of text and multimedia retrieval. Mirror
concentrated on a generic multimedia retrieval framework
based on belief networks. Experiments showed its feasibility
for content-based retrieval for text, images (based on color
and texture features), and music (based on rhythm features)
[12, 21]. Since parallelisation and fragmentation in the phys-
ical layer is orthogonal to the logical layer, the architecture
design seems to be better prepared to scale up. The AMIS-project explored this idea by
studying the optimization of top-N IR-queries in a fragmented context [2, 3].

5 The Moa system currently supports IBM DB2, PostgreSQL, MySQL, and MonetDB.

9

In all three projects described above, the integration of data and algorithms from
non-traditional application domains in a single data manager was a central theme.
Much thematic (tabular) data related to GIS or multimedia objects, however, resides
in RDBMSs with existing applications running on them. Therefore, in the SUMMER-
project [19], the multi-model architecture was taken one step further by using Moa as a
kind of data management middleware, driving both MonetDB and ‘normal’ RDBMSs
(see Figure 8) simultaneously. This allows the ‘addition’ of, for example, multimedia
retrieval functionality to an existing federated information system. Also in SUMMER,
we developed an XML-based conceptual layer providing a subset of XQuery [22]. This
will make the DBMS suitable to be used in web-based environments, providing a more
convenient way of managing large XML data volumes with, among others, integrated
and efficient multimedia retrieval.

6 Conclusions and future work

In this paper, we presented the concepts behind the Moa system: the multi-model DBMS
architecture and the Moa logical algebra which plays an important role therein. In order
to support demanding applications like GIS or digital libraries, one needs an expressive
conceptual data model supporting complexly structured data. Expressiveness, however,
is not the only requirement. Since the managed data is often voluminous and queries
are complex in nature, performance is an important aspect as well. The multi-model
architecture supports extensibility in all three layers thus enabling to integrate domain-
specific algorithms in an effective way. Furthermore, the extensibility mechanism of
the Moa language used in the logical layer of this architecture, has been designed in
such a way that optimization across extensions is possible. This alleviates the problem
with usual mechanisms that an ADT is a black-box for the optimizer, thus prohibiting
pushing, for example, projections and selections through ADT-operators.

To be able to bridge the gap between an expressive conceptual data model at the
top and an efficient simple physical data model at the bottom, the nested relational
intermediary proved effective. We placed renewed interest in XNF2 algebra, adapted
and extended it, and worked on new ways for efficient query evaluation. This resulted
in the Moa language. We regard its role to be vital in the success of the multi-model
architecture.

In several projects, a prototype DBMS evolved into what is now called the Moa
system. The genericity, extensibility, and performance of the system were put to the test
in real-life applications.

In current and future projects, we will continue the work on the DBMS prototype
and the ideas and languages applied therein. In all these projects, the Moa system con-
tinues to be used as our experimentation platform, which imposes a continuous demand
for perfecting the extensibility and efficiency of the system. Moreover, we are explor-
ing the realm of category theory in search for ways to fundamentally improve the Moa
and column algebra. Further effort on distribution support is aimed at facilitating the
construction of federated systems in more advanced ways. Finally, the focus of the
CIRQUID-project is the integration of information retrieval and databases to provide
support for full text search in XQuery.

10

References

1. F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-Oriented Database
System : The Story of O2. Morgan Kaufmann Publishers, 1992.

2. H.E. Blok, A.P. de Vries, H.M. Blanken, and P.M.G. Apers. Experiences with IR Top N
optimization in a main memory DBMS: Applying ‘the database approach’ in new domains.
In Procs of BNCOD 18, LNCS 2097, pages 126–151, July 2001.

3. H.E. Blok, D. Hiemstra, S. Choenni, F. de Jong, and et al. Predicting the cost-quality trade-
off for information retrieval queries: Facilitating database design and query optimization. In
Procs of ACM CIKM, Atlanta, USA, pages 207–214, November 2001.

4. P.A. Boncz and M.L. Kersten. MIL primitives for querying a fragmented world. VLDB
Journal, 8(2):101–119, 1999.

5. P.A. Boncz, W. Quak, and M.L. Kersten. Monet and its geographic extensions: A novel
approach to high performance GIS processing. In Procs of EDBT’96, Avignon, France,
LNCS 1057, pages 147–166, March 1996.

6. P.A. Boncz, A.N. Wilschut, and M.L. Kersten. Flattening an object algebra to provide per-
formance. In Procs of ICDE’98, Orlando, USA, pages 568–577, February 1998.

7. M.J. Carey, D. J. DeWitt, J.F. Naughton, M. Asgarian, and et al. The BUCKY object-
relational benchmark (experience paper). In Procs of ACM SIGMOD’97, Tucson, Arizona,
USA, pages 135–146, May 1997.

8. W.F. Cody, L.M. Haas, W. Niblack, M. Arya, and et al. Querying multimedia data from mul-
tiple repositories by content: the Garlic project. In Procs of VDB 3, Lausanne, Switzerland,
IFIP 34, pages 17–35, March 1995.

9. P. Dadam, K. Küspert, F. Andersen, H.M. Blanken, and et al. A DBMS prototype to support
extended NF2 relations: An integrated view on flat tables and hierarchies. In Procs of ACM
SIGMOD’98, Washington, D.C., USA., pages 356–367, May 1986.

10. C.J. Date and H. Darwen. Foundation for Object/Relational Databases: the Third Manifesto.
Addison-Wesley, 1998.

11. A.P. de Vries, B. Eberman, and D.E. Kovalcin. The design and implementation of an in-
frastructure for multimedia digital libraries. In Procs of IDEAS’98, Cardiff, U.K., pages
103–120, July 1998.

12. A.P. de Vries, M.G.L.M. van Doorn, H.M. Blanken, and P.M.G. Apers. The Mirror
MMDBMS architecture. In Procs of VLDB’99, Edinburgh, U.K., pages 758–761, Sep. 1999.

13. G. Kiczales, J. Lamping, C. Videira Lopes, C. Maeda, and et al. Open implementation design
guidelines. In Procs of ICSE’97, Boston, USA., pages 481–490, 1997.

14. H.-J. Schek and P. Pistor. Data structures for an integrated data base management and infor-
mation retrieval system. In Procs of VLDB’82, Mexico City, pages 197–207, Sep. 1982.

15. P. Seshadri and M. Paskin. PREDATOR: An OR-DBMS with enhanced data types. In Procs
of ACM SIGMOD’97, Tucson, USA, pages 568–571, May 1997.

16. H. Steenhagen. Optimization of Object Query Languages. PhD thesis, Uni. of Twente, 1995.
17. H.J. Steenhagen, P.M.G. Apers, and H.M. Blanken. Optimization of nested queries in a

complex object model. In Procs of EDBT’94, Cambridge, U.K., pages 337–350, 1994.
18. M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The Sequoia 2000 benchmark. In

Procs of ACM SIGMOD’93, Washington, D.C., USA., pages 2–11, May 1993.
19. The SUMMER project website, 2003. http://www.cs.utwente.nl/s̃ummer.
20. M. van Keulen, J. Vonk, A.P. de Vries, J. Flokstra, and H.E. Blok. Moa: extensibility and

efficiency in querying nested data. Technical Report 02-19, Centre for Telematics and Infor-
mation Technology, University of Twente, The Netherlands, 2002.

21. A.P. de Vries. Content and Multimedia Database Management Systems. PhD thesis, Univer-
sity of Twente, 1999.

22. XQuery 1.0: An XML query language, 2003. http://www.w3.org/TR/xquery/.

