
A Theorem Prover-Based Analysis Tool for
Object-Oriented Databases

David Spelt and Susan Even?

University of Twente
Centre for Telematics and Information Technology

P.O. Box 217, Enschede, The Netherlands

Abstract. We present a theorem-prover based analysis tool for object-oriented
database systems with integrity constraints. Object-oriented database specifica-
tions are mapped to higher-order logic (HOL). This allows us to reason about
the semantics of database operations using a mechanical theorem prover such as
Isabelle or PVS. The tool can be used to verify various semantics requirements
of the schema (such as transaction safety, compensation, and commutativity) to
support the advanced transaction models used in workflow and cooperative work.
We give an example of method safety analysis for the generic structure editing
operations of a cooperative authoring system.

1 Introduction

Object-oriented specification methodologies and object-oriented programming have be-
come increasingly important in the past ten years. Not surprisingly, this has recently led
to an interest in object-oriented program verification in the theorem prover commu-
nity, mainly using higher-order logic (HOL). Several different approaches to modelling
object-oriented features in HOL have been presented [13,8]. These approaches empha-
sise the methods and behaviour of a single object. For an object-oriented database, a
different viewpoint is needed: a database typically includes integrity constraints over
collections of objects that have a lifetime beyond an application program. Operations
on the database transform it from one consistent state to another. In this paper, our point
of view is the database state itself, and the persistent collection of objects it contains.
We give a formal model for a persistent object store in HOL, which simulates the type-
tagged memory structure of an implementation. This model is sufficient to describe the
operational semantics of the typical features of an object-oriented database program-
ming language, such as heterogeneous collections, inheritance, late binding, and nil
values.

Many recently proposed database systems rely on transaction models that require
designers to provide various assertions about the semantics of their schema. Examples
include (but are not limited to), consistency requirements (i.e., a method/transaction
has to preserve a number of static integrity constraints) [4], the correctness of undo
methods (i.e., for each method another method has to be specified which compensates
the effects of the method) [9], and commutativity tables (i.e., for each method pair,

? Research supported by SION, Stichting Informatica Onderzoek Nederland.

W.R. Cleaveland (Ed.): TACAS/ETAPS’99, LNCS 1579, pp. 375–389, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

376 David Spelt and Susan Even

it has to be specified when two methods commute) [17]. Such knowledge about the
semantics of a schema is used by so-called advanced transaction models to provide more
flexible mechanisms for concurrency control [12]. This is essential for many modern
applications of database technology, such as workflow management and cooperative
work. It is often assumed that database designers provide the required knowledge about
the schema. This, however, is problematical, since people will make mistakes in their
specifications: a seemingly trivial line of code, such as a nil-check, is easily forgotten,
and it may lead to inconsistency of persistent data.

In this paper, we describe a tool which can assist database designers to verify
the correctness of assertions about an object-oriented database schema. We outline a
method (transaction) safety analysis framework based on theorem proving in higher-
order logic (HOL). We show how to adapt the Isabelle/HOL theorem prover [10] for
this task. We first define a general Isabelle theory of object-oriented systems. Using this
theory, we show (1) how specific object-oriented schemas can be encoded in HOL, and
(2) how proofs about these schemas can be performed using the Isabelle system.

The paper is organised as follows. An overview of our analysis framework, includ-
ing a brief introduction to the Isabelle system, is given in Section 2. Section 3 introduces
a database specification language, called OASIS, and a case study. Section 4 discusses
the formal model of the persistent object store, in HOL, which is used to encode the se-
mantics of specific database schemas. This model includes a number of generic (higher-
order) operations and theorems about their combination for term-rewriting. The actual
representation of database-specific schema information in terms of these operations is
discussed in Section 5. We show how typical object-oriented language features, such
as heterogeneous collections, methods, late binding, and transactions, can be encoded.
Section 6 shows how to extend the Isabelle tools to assist in reasoning about these
schema representations. An example proof is discussed, which uses the framework for
transaction safety analysis. Section 7 discusses related work on object-oriented analysis
that makes use of theorem prover technology. Section 8 gives a summary and discusses
future work.

2 Architecture of the OASIS tool

Our schema specification language is called OASIS (for Object AnalySIS). It includes
facilities for constraint and query definition, object manipulation, and transaction defi-
nition. The features of the object manipulation language are common to object-oriented
database technology (e.g., late binding, inheritance, and heterogeneous collections [1]).
The structure of the OASIS tool is similar to that of the LOOP tool [8]. The OASIS
specification language is mapped by a schema translator to a simple formal model of
objects in higher-order logic (HOL). This model resembles the type-tagged memory
structure of an implementation and is sufficient to describe the operational semantics of
the specification language. The reasoning component of the tool is implemented using
the higher-order logic incarnation of the Isabelle theorem prover [10]. The two major
components of the OASIS tool are described in more detail below:

A Theorem Prover-Based Analysis Tool for Object-Oriented Databases 377

Isabelle

OO Theory

.ML

.thySchema
Translator

OASIS
specification

Extended Isabelle Theorem Prover. Isabelle is an open system, implemented in ML. Its
HOL theory provides a formal theory of the standard data types one finds in databases,
such as booleans, integers, characters, strings, tuples, lists, and sets. To reason about
heterogeneous collections of objects with shared subcomponents, we extend these stan-
dard theories with a Generic OO Theory that simulates the type-tagged memory of
an implementation. The theory defines functions that describe the effects of primitive
update and retrieval operations on the object-store (e.g., attribute update and attribute
selection). We have derived a number of theorems about the interactions of these oper-
ations, which are used for the analysis of database methods and transactions.

Schema Translator. The schema translator is directly implemented in ML. It maps a
specific object-oriented schema to a low-level representation, defined in terms of the
operations of the generic theory of objects. The input is an OASIS schema, in ascii
form, which is parsed and converted to an internal abstract syntax tree in ML. The
output consists of two Isabelle files: a file with extension ‘.thy’ that gives definitions
for the database-specific class structures, methods, transactions, and constraints; and an
ML file with extension ‘.ML’ that contains some standard lemmas about the schema.
These files can be loaded into an Isabelle session, and proofs about the schema can be
initiated.

3 An example OASIS specification

An OASIS database schema consists of a number of class definitions, named persis-
tent roots, integrity constraints, and transactions. Classes (which can also be abstract)
contain definitions of methods, written in a simple procedural update language. OASIS
supports single inheritance. Persistent roots provide named entry points to the database;
they can be used as global variables in methods, transactions, and integrity constraints.
OASIS provides facilities for associating constraints with a schema. These constraints
are boolean-valued query expressions over the database state. For queries, we use OQL
(Object Query Language) [5].

Figure 1 shows part of a generic graph schema, which includes some basic struc-
ture editing operations. This example is based on the implementation of the SEPIA
document authoring system [16]. The schema defines abstract classes for Elements and
Nodes. Atomic nodes (class ANode) and composite nodes (class CNode) are concrete
classes, which are extensions of class Node. Link is another concrete class, which ex-
tends the abstract class Element. If a class does not extend any other class, it implicitly
extends the abstract class Object. The schema defines three named persistent roots:
cnodes, links, and anodes. These are analogous to the attributes of the main class in
object-oriented programming languages.

Figure 1 also gives some example integrity constraints over the contents of the per-
sistent roots. Constraints c1, c2, and c3 assert non-nil requirements. Constraint c4 asserts

378 David Spelt and Susan Even

abstract class Element {

attribute string name;

attribute int position;

abstract boolean isConnectedTo(Element n);

};

abstract class Node extends Element {

attribute set<Link> inLinks;

attribute set<Link> outLinks;

};

class ANode extends Node {

attribute set<string> content;

};

class CNode extends Node {

attribute int size;

attribute set<Element> elements;

CNode(string s, int p, int z);

boolean removeNodeOrLink(Element n);

CNode createCNodeIn(int p, int z, string s);

};

class Link extends Element {

attribute Node from;

attribute Node to;

};

name set<CNode> cnodes;

name set<Link> links;

name set<ANode> anodes;

constraints {

c1 : forall n in cnodes : n!=nil and (forall e in n.elements : e!=nil);

c2 : forall n in links : n!=nil;

c3 : forall n in anodes : n!=nil;

c4 : forall cn in cnodes :

forall e in cn.elements :

((e instanceof Link) implies

(((Link)(e).from in cn.elements) and

((Link)(e).to in cn.elements)));

c5 : forall n1 in cnodes : forall n2 in cnodes :

n1 == n2 or (forall n in n1.elements: not(n in n2.elements));

};

Fig. 1. Classes, Persistent Roots, and Constraints of the SEPIA Schema

A Theorem Prover-Based Analysis Tool for Object-Oriented Databases 379

that all links in a composite node should link nodes within that same composite node.
Constraint c5 asserts that elements are nested within at most one “parent” CNode object.

The command language we use consists of a small number of commonly used con-
structs. Atomic updates are object creation, and variable and attribute update. There
is no object deletion, because persistence by reachability is used (as in Java and the
O2 database system [1]): that is, an object is in the database as long as it is directly
or indirectly reachable from one of the roots. Compound commands are formed using
sequential composition, bounded iteration, conditional branch, collection iteration, and
(at present) non-recursive update method call.

Method bodies are defined using a command statement. A method can apply up-
dates to the receiving (i.e., this) object, as well as to the objects referenced by this,
the persistent roots, and the attributes of objects passed in as actual parameters. An
OASIS schema also declares a number of named transactions. Transactions are simi-
lar to methods, but there is no receiver object. A transaction typically executes a se-
quence of method applications. Traditionally, the notion of database integrity is tied to
database transactions, but our system also allows one to verify integrity at the method
level (which is often preferred). In this paper, we focus on methods rather than transac-
tions.

Figure 2 gives some example method definitions for the schema. Method removeN-
odeOrLink on composite nodes will be used as an example in later sections. This
method removes an Element from the elements component of the receiver CNode ob-
ject, provided that it is not connected to any other Element (within the same CNode).
This condition is tested by applying the abstract method isConnectedTo of class El-
ement, which has different concrete implementations in classes Node and Link. Late
binding selects the appropriate implementation of the method, based on the run-time
type of the receiver object. Method removeNodeOrLink respects the integrity con-
straints on the schema. In Section 6, we show how the OASIS system proves this au-
tomatically. Constraint c4 is non-trivial with respect to this method; both address the
elements attribute of a CNode.

4 A generic Isabelle theory of objects

Isabelle specifications are called theories. A theory consists of a collection of defini-
tions and axioms. Our system extends the default collection of Isabelle/HOL data type
theories that are available. In this section, we define a generic theory of objects, which
describes schema-independent knowledge about object-oriented databases. Database-
specific knowledge can be expressed in terms of this theory (this is the subject of Sec-
tion 5). Isabelle/HOL syntax is similar to ML syntax and is for the most part self-expla-
natory. We give annotations to clarify its more cryptic symbols.

The database state (object store) is modelled as a partial function from object iden-
tifiers to values. In Isabelle, we represent such functions using the predefined ‘option’
data type, as ‘oid => ’b option.’ Isabelle/HOL function types (=>) are total; par-
tial function types can be modelled using options. The option data type includes the
constructors None (to represent undefined function results) and Some (to represent de-
fined function results—the actual value is supplied as an argument). The type variable

380 David Spelt and Susan Even

CNode CNode::createCNodeIn(int p, int z, string s) {

var n:CNode {

n = new CNode(s, p, z); elements += set(n); cnodes += set(n)

} returns (n) };

boolean CNode::removeNodeOrLink(Element n) {

if (n != nil) and (n in elements) and

(forall x in elements : not(x.isConnectedTo(n))) then {

elements -= set(n) } returns (true)

else { skip } returns (false) };

boolean Node::isConnectedTo(Element n) {

(n in inLinks) or (n in outLinks) };

boolean Link::isConnectedTo(Element n) { (from == n) or (to == n) };

Fig. 2. Example Method Definitions for the SEPIA Schema

β (written ’b) in the co-domain type of ‘oid => ’b option’ will be instantiated with
a concrete type that describes the schema-specific class structures (see Section 5). The
type of object identifiers (oid) is defined as a datatype, which we omit here.

On this abstract notion of database state, we define several higher-order functions
for database retrieval and update. Figure 3 lists these operations with their signatures.
These functions are modelled as schema-independent operations, which take (functions

oids :: (oid ⇒ β option) ⇒ oid set

eval :: [β option, β ⇒ bool] ⇒ bool

get :: [β option, β ⇒ α] ⇒ α
set :: [(oid ⇒ β option), oid, β ⇒ β] ⇒ (oid ⇒ β option)
smash :: [(oid ⇒ β option), (oid ⇒ β option)] ⇒ (oid ⇒ β option)
apply :: [α set, [α, oid] ⇒ β option] ⇒ (oid ⇒ β option)
new :: [oid, β] ⇒ (oid ⇒ β option)
skip :: (oid ⇒ β option)

Fig. 3. Generic Operations on Objects

as) parameters to make them specific. The operations oids, get, and eval are used
to retrieve information from the state. For example, the operation get is used for the
translation of attribute selection. The other operations in the figure are used to update
the state; they result in a “little” object store (called a delta value [6]), which comprises
local changes to the state. For example, the operation set is used for the translation of
attribute assignment. The smash operation is used to encode sequential compositions
(‘;’) of commands. It is defined as a functional override, where the bindings in the

A Theorem Prover-Based Analysis Tool for Object-Oriented Databases 381

second argument take precedence over those in the first. The smash operation is also
used to apply method changes to the object store.

Isabelle can be used to prove abstract properties (theorems) about the operations in
Figure 3, based on their definitions in HOL. At present, the generic theory of objects
includes 49 theorems. First-order rules are derived for the associativity and reflexivity
of smash. Second-order rewrite rules (with functions in arguments) are derived for ap-
plications of eval and get to modified object store values. Below, we give an example
of one of these theorems (rule r1):

get ((smash os1 (set os2 idb f)) ida) g =

(if idb=ida & idb:oids os2 then get (os2 ida) (g ◦ f)

else get (os1 ida) g)

This rule illustrates how a get operation is “pushed through” an updated object store.
Such theorems are used as rewrite rules during proofs, in a left-to-right manner.

5 Modelling database-specific knowledge

The OASIS schema translator supplements the generic theory discussed in the previous
section with database-specific information. For an input database schema, the schema
translator generates an Isabelle ‘.thy’ file that contains the database-specific HOL def-
initions of class structures, methods, transactions, and integrity constraints. In effect,
the schema translator implements a semantics mapping, where the output is HOL no-
tation. The schema translation has been defined and implemented for all of the OASIS
constructs we show in this paper (as well as a few others, such as foreach, which we do
not discuss here).

The previous section introduced an abstract notion of database state as a partial
function from oids to values of generic type ’b. For a specific database schema, the
type variable ’b should be instantiated with type information that reflects the database-
specific class hierarchy. This is done using a data type definition:

datatype object = ANode string int (oid set) (oid set) (string set)

| CNode string int (oid set) (oid set) int (oid set)

| Link string int oid oid

The above data type is a disjoint union type, with a case for each of the concrete classes
in the schema; the abstract classes Element and Node are not included, because they do
not have concrete instantiations. Structural information of objects (i.e., attribute values)
is supplied as an argument to the data type constructors. This information includes all
attributes inherited from superclasses. Class references in compound objects appear as
“pointer” references in the form of oid-values. This accommodates object sharing and
heterogeneous sets: representations of objects from different classes can be grouped in
one and the same set, since they all have the same Isabelle type oid.

The constructors of type object provide for the required run-time type information.
In object-oriented systems with inheritance, this information is needed to model run-
time type-based decisions, such as late-binding. Using our Isabelle representation, these

382 David Spelt and Susan Even

decisions can be conveniently encoded using case-splits to examine the type tag. The
following sections show how to encode OASIS features in terms of the generic theory
of objects, enhanced with schema-specific information.

Queries and constraints. The schema translator maps OASIS query expressions to
functions in Isabelle/HOL. These functions take the input object store as an argument.
The Isabelle predefined data types support most commonly used OQL query language
constructs [5]. For example, set expressions in OQL (e.g., union, select-from-where,
except, and intersect) are available in the Isabelle syntax. The translation of most OQL
expressions is straightforward. However, the translation of operations on objects (e.g.,
attribute selection and nil comparisons) is complicated by the introduction of object
identifiers. For these constructs, explicit lookups on the object store are needed. We en-
code these using the generic retrieval operations get and eval of the theory of objects.

To represent nil comparisons in Isabelle, we make use of the function eval. For
example, the expression ‘n!=nil’, where n is of type Node, amounts to a check that n is
in the object store, with the right type. The following Isabelle code accomplishes this:

eval (os n) (%val. case val

of ANode name position inLinks outLinks content => True

| CNode name position inLinks outLinks size elements => True

| Link name from to => False)

The expression (os n) looks up the object-typed value associated with oid n. The
second argument to eval is a boolean-valued function (the symbol % is HOL syntax
for λ-abstraction). This function returns True if the type tag on the value is ANode or
CNode; otherwise, if n does not have a binding in os, or is bound to a Link value, then
False is returned. In the examples, we abbreviate the case-split function with a name,
such as isNode for the above.

Attribute selections are coded using the get operation. For example, the OASIS
expression ‘n.elements’, where n is of type CNode, is represented as follows:

get (os n) (%val. case val

of ANode name position inLinks outLinks content => arbitrary

| CNode name position inLinks outLinks size elements => elements

| Link name from to => arbitrary)

Observe that an arbitrary value is returned for the wrongly typed cases; this is a
common way of dealing with undefined function results in HOL [7].

Constraints are boolean-valued queries. Constraint c4 of the Sepia schema is repre-
sented in Isabelle as follows:

c4 os cnodes links anodes ==

! cn:cnodes. ! e:(get (os cn) elementsOf).

(eval (os e) isLink) -->

((get (os e) fromOf):(get (os cn) elementsOf)) &

((get (os e) toOf):(get (os cn) elementsOf))

In Isabelle syntax, the forall quantifier is written as ‘!’. The type cast in the original
constraint falls away in the translation to HOL.

A Theorem Prover-Based Analysis Tool for Object-Oriented Databases 383

Update methods, late binding, and transactions. Update methods are represented as
named functions in HOL. Such functions map an input object store, persistent roots, an
oid this, actual parameter values and any required new oids to a tuple. The tuple includes
the modifications to the object store, persistent roots, and method parameters; the return
value of the method is given in the last position of the tuple. The removeNodeOrLink
method of class CNode has the following HOL representation:

CNode_removeNodeOrLink os cnodes links anodes this n ==

if (eval (os n) isElement) & n:(get (os this) elementsOf) &

(! x:(get (os this) elementsOf).

~ (if (eval (os x) isLink)

then Link_isConnectedTo os cnodes links anodes x n

else Node_isConnectedTo os cnodes links anodes x n))

then (set os this f , True)

else (skip, False)

The right-hand side is a conditional expression that reflects the structure of the original
method body. Within the conditional, the application of the isConnectedTo method to
element object ‘x’ in the if-clause involves late binding: based on the actual run-time
type of ‘x’, the correct implementation of the method is applied. In our framework, such
a run-time type-based decision is easily expressed using an if-then-else clause, and
the eval predicate. The inner conditional expression yields a boolean value, which is
negated with the operator ‘~’. It is important to realise that nothing is computed by a
conditional expression; it is only used as an assumption in the then and else branches
of the proof.

The first component of the tuple returned by the then branch is a set expression,
which describes the effects of the assignment to the elements attribute of the this object,
in an algebraic manner. The function f abbreviates a case-split for the actual update:

(%val. case val of ANode name position inLinks outLinks content =>

ANode name position inLinks outLinks content

| CNode name position inLinks outLinks size elements =>

CNode name position inLinks outLinks size (elements - {n})
| Link name position from to => Link name position from to)

The second component of the tuple is the return value of the method, which is a boolean
value. We omit changes to the persistent roots and parameters in the above example.

Our schema translator generates less “efficient” code than that shown above; this is
inherent in automatic code generation. However, we easily obtain the above simplified
form, using term rewriting (see Section 6).

A transaction is not the same as a method: a transaction is a sequence of updates,
whose changes are not propagated to the database until the transaction commits. A
transaction is further distinguished by not having a receiver object. Transaction seman-
tics is provided by applying an additional smash to the input object store and the delta
value that represents the transaction body’s updates. A method can be “lifted” to the
transaction level by putting code to lookup the receiver object in the transaction, and

384 David Spelt and Susan Even

then applying the method. The next section uses an example in which we give transac-
tion semantics to the removeNodeOrLink method.

6 Using the system

The OASIS tool currently provides support for automated transaction safety analysis.
The tool implements an automated proof strategy, which is comprised of the following
four successive steps: (i) specification of an initial proof goal; (ii) normalisation of the
goal using rewriting; (iii) safe natural deduction inference steps; and (iv) exhaustive
depth-first search. This strategy can verify many non-trivial combinations of transac-
tions and constraints, although the search is inherently incomplete [2]. The automated
proof procedure returns any goals that it cannot solve. We now explain in detail each of
these steps.

Starting a transaction safety proof. To start a transaction (or method) safety proof, an
Isabelle proof goal should first be constructed. Our schema translator defines the ML
functions start_proof and method_safety_goal, which automate this process for
a given method and constraint. For example, to verify that method removeNodeOrLink,
defined in class CNode, is safe with respect to constraint c4, we type the following:

- start_proof(method_safety_goal("removeNodeOrLink","CNode","c4",["c1"]));

Verification of a method or transaction with respect to an individual constraint predicate
may depend on additional constraints on the schema. In this example, constraint c1 is
necessarily assumed, since in order to extract the elements attribute from a CNode
object, that object must be non-nil. Additional assumptions are given as parameters to
the start_proof command. Isabelle now responds with the following initial proof
goal:

Level 0

...

(eval (os this) isCNode) &

c4 os cnodes links anodes & c1 os cnodes links anodes -->

(let (delta,result) =

CNode_removeNodeOrLink os cnodes links anodes this n

in c4 (smash os delta) cnodes links anodes)

The goal is in the form of an implication, where the constraints are assumed to hold
in the initial state os (as seen in the premise); the conclusion is in the form of a let
expression, which substitutes the modifications resulting from the method application
into the constraint expression. Recall that our running example ignores modifications to
the persistent roots. Observe that the new database state in which the constraint is eval-
uated takes the form (smash os delta). The smash “implements” the transaction-
level commit of the changes in the little object store delta to the input object store os,
as mentioned in Section 5.

A Theorem Prover-Based Analysis Tool for Object-Oriented Databases 385

Normalisation of the proof goal. The actual proof starts by unfolding the database-
specific definitions (of methods, constraints, and transactions) in the initial goal. This
is done using the Isabelle Simplifier. The Simplifier performs term-rewriting with a
set of theorems of the following form: [|H1 ; · · · ; Hn|] ==> LHS = RHS. Such
theorems are read as conditional rewrite rules: a term unifying with the expression on
the left-hand side of the equality sign (LHS) is rewritten to the term that appears on the
right-hand side (RHS), provided that the hypotheses (H1, . . . , Hn) hold. The default
Isabelle Simplifier installs a large collection of standard reduction rules for HOL; new
rules are easily added to customise the Simplifier to particular tasks. We have extended
the Simplifier by adding a number of rewrite rules for simplifying expressions involving
the constructs of the generic theory of objects. In addition to these, the ‘.ML’ file that
is generated by the schema translator asserts all database-specific definitions as rewrite
rules. Thus definitions are automatically unfolded by the normalisation step.

Unfolding the database-specific definitions rewrites the initial goal into a more com-
plex form, in which every occurrence of the input object store os in the goal’s conclu-
sion is replaced by an expression that reflects the modifications to os. During normali-
sation, one of the subterms for the example is:

(get ((smash os (set os this f)) e) fromOf) :

(get ((smash os (set os this f)) cn) elementsOf)

This subterm represents the condition ‘e.from in cn.elements’ (in constraint c4), in
the context of the updated object store. At this point, patterns such as the above can
be reduced using the rewrite rules of the generic theory of objects. The above term is
rewritten (in several steps) to:

(get (os e) fromOf):(if na=this then (get (os cn) elementsOf)-{n}
else (get (os cn) elementsOf)

The rewriting “pushes” the attribute selection through the algebraic update operations
(smash, set). For example, the update of the elements attribute is irrelevant with re-
spect to the selection of the from field. This is identified by the Simplifier by application
of rule r1 from Section 4. Observe that, in the result term, all attribute selections are ex-
pressed directly in terms of the input object store.

During the normalisation phase, constraints that are irrelevant with respect to a part
of the proof goal can be detected. (For example, straightforward term rewriting can
already prove that method removeNodeOrLink does not interact with constraint c2.)
The example proof above requires more analysis, because updates are applied to the
same parts of the database (i.e., the elements attribute).

Safe natural deduction inference steps. In addition to term rewriting with the Simplifier,
Isabelle also uses natural deduction. Its Classical Reasoner uses a set of introduction
and elimination rules (i.e., theorems) for higher-order logic to automate natural de-
duction inferences. The default configuration of the tool includes machinery to reason
about sets, lists, tuples, booleans, etc. The tool implements a depth-first search strat-
egy; variables introduced by the use of quantifiers can be automatically instantiated,
and backtracking is performed between different alternative unifiers. The tool requires

386 David Spelt and Susan Even

a distinction to be made between so-called safe and unsafe rules. Safe rules can be
applied deterministically; they do not introduce or instantiate variables, so there is no
need to undo any of these steps at later stages in the proof. For example, introduction of
universal quantification is safe, whereas its elimination is unsafe. Safe steps get rid of
trivial cases. The Classical Reasoner interleaves these steps with further simplification.

As we did for the Simplifier tool, some extensions have to be made to the Classical
Reasoner. The extensions include a database-specific rule for the introduction (and its
converse rule for elimination) of the predicate eval. These rules (and their proof scripts)
are generated automatically by the OASIS schema translator and reside in the ‘.ML’ file;
they provide a mechanism for case-based reasoning for the database-specific object
type. For example, for an expression of type Node, cases are generated for types ANode
and CNode; simplification immediately discards the other cases, which are irrelevant.
Applying safe inference steps to our example goal generates a list of 12 subgoals. These
goals require more in-depth analysis.

Exhaustive depth-first search. Once the safe steps have been performed, any remaining
goals are subject to an exhaustive depth-first analysis [7]. Safe inference steps are now
interleaved with unsafe steps. This may involve backtracking, and undoing of unifica-
tion steps. Isabelle allows a limit to be imposed on the search depth. This guarantees
termination of the search tactics. In our practical experiments, a depth of 2 was suffi-
cient for most cases.

Steps (ii) to (iv) of the automated proof strategy are packaged as a single Isabelle
tactic (oasis_tac, which is a customization of Isabelle’s auto_tac). A tactic is a
proof procedure (i.e., proof instructions for the system) that may implement a heuristic.
The oasis_tac tactic takes as a parameter a limit on the search depth. Calling this
tactic with a depth of 2 on the example’s initial goal produces the following output:

> by (oasis_tac (claset()) (simpset()) 2);

Applying simplification steps...

Applying safe inference steps...

Now trying : 12...Done!

Now trying : 11...Done!

...

No subgoals!

The oasis_tac tactic automatically finds the required proof, using exhaustive depth-
first search. Isabelle prints the just-proved theorem (omitted from the output), and the
message “No subgoals!”�

Practical results. The OASIS schema translator consists of approximately 2029 lines
of ML code. At present, the generic OO theory is 632 lines of Isabelle/HOL code, and
49 theorems. The input SEPIA schema currently includes 6 class definitions, 18 method
definitions, and 5 constraints.1 The Isabelle/HOL theory and ML files generated for this
schema comprise 162 lines of code.

Table 1 shows experimental results for verifying the safety of two methods of class

1 Only parts of the SEPIA schema are shown in this paper.

A Theorem Prover-Based Analysis Tool for Object-Oriented Databases 387

METHOD CONSTRAINT PROOF TIME

CNode::removeNodeOrLink c1 3.35s.
CNode::removeNodeOrLink c2 1.04s.
CNode::removeNodeOrLink c3 1.06s.
CNode::removeNodeOrLink c4 161.77s.
CNode::removeNodeOrLink c5 109.63s.
CNode::createCNodeIn c1 10.93s.
CNode::createCNodeIn c2 2.89s.
CNode::createCNodeIn c3 2.88s.
CNode::createCNodeIn c4 222.46s.
CNode::createCNodeIn c5 551.49s.

Table 1. Some Experimental Results for Method Safety

CNode, with respect to the constraints in Figure 1. All proof times are in seconds, with
Isabelle running on a SUN 296 MHz Ultra-SPARC-II, under Solaris. The times given
are only a rough guide of the efficiency of the automated method safety proofs. The
times indicate that the trivial proofs are immediately solved by the theorem prover. For
example, the combination of constraint c2 and method removeNodeOrLink operate on
different attributes. As discussed in the previous section, the proof is trivial and is done
using straightforward term rewriting, by the Simplifier. The real power of the theorem
prover reveals itself in the cases where the constraint and method operate on the same
attributes and/or persistent roots. For example, the combination of constraint c4 and
method removeNodeOrLink (illustrated in the previous sections) takes 161.77 seconds.
In this case, the proof involves many tedious steps.

7 Related work

Theorem prover techniques have been applied in the context of relational databases
using formalisms such as Boyer-Moore logic [14] and Hoare logic [11], for the veri-
fication ([14]) and deductive synthesis ([11]) of transactions that respect a number of
static integrity constraints. Our work shares similarities with these approaches, but it
is based on an object-oriented framework and uses a modern theorem prover. At the
time the above authors published their work, theorem prover technology was still in an
early stage of development. For example, in [14], higher-order extensions are made to
a first order theorem prover, and standard data types such as natural numbers and sets
are defined from scratch. Nowadays, these modelling capabilities are available “off the
shelf,” using a standard HOL theorem prover.

Within an object-oriented database framework, Benzaken et al [3] study the prob-
lem of method verification with respect to static integrity constraints, using abstract
interpretation. A tableaux reasoner is used to analyse some properties of application
code using first-order logic. However, important issues such as transactions, type infor-
mation, and object sharing are not addressed.

Theorem prover techniques that use higher-order logic are applied in the context of
object-oriented programming in [13,8]. Santen [13] uses Isabelle/HOL to reason about

388 David Spelt and Susan Even

class specifications in Object-Z. A trace semantics is encoded to support reasoning
about behavioural relations between classes. Jacobs et al study the verification of Java
code, using the PVS theorem prover [8]. A tool called LOOP (Logic of Object-Oriented
Programming) translates Java classes into the higher-order logic of the PVS system.
The semantics of their approach is based on coalgebras, in particular to support proofs
about refinement relations. Jacobs et al address a number of issues that we do not, such
as exceptions, termination, and recursion. In contrast to the work on object-oriented
programming, we study database transactions on a persistent object store, rather than
the behaviour of individual objects.

The work in this paper extends our previous work ([15]) by considering additional
topics such as inheritance and heterogeneity. Here, emphasis is placed on modelling an
object-oriented database schema in HOL, and on the extensions to the Isabelle system
to provide automated reasoning for such a database schema. We build on the ideas of
Doherty and Hull [6] in which database state changes are encoded as delta values (a
difference between database states). In their work, delta values are used to describe
proposed updates in the context of cooperative work; whereas in our work, delta values
are used to cope with intra-transaction parallelism due to set-oriented updates.

8 Conclusions and future work

We have shown how to represent the constructs of an object-oriented database speci-
fication language in the higher-order logic of the Isabelle theorem prover. To achieve
this, we defined an Isabelle theory of objects, which resembles the type-tagged memory
of a persistent object store. The constructs of the specification language are defined as
generic higher-order operations in this theory. Higher-order logic allows us to achieve
schema-independent reasoning: we have proved theorems about the generic operations
that are used in reasoning about specific database operations.

We presented some of our experimental results on the static analysis of database in-
tegrity. The example proof shown in Section 6 involves a combination of typical object-
oriented features (namely, heterogeneous collections, abstract methods, down-casting,
late binding, and nil references). This example is representative of the interaction of lan-
guage features encountered in many object-oriented applications. The example schema
we are working with is based on the generic graph editing functionality of a real system
(the SEPIA system [16]). All 90 method safety requirements in the case study could
be verified automatically, using the Isabelle tool. It is worth mentioning that our initial
specification contained a few bugs, such as forgotten nil-checks. These kinds of errors
in the schema are easily overlooked by the specifier, but immediately spotted by the
theorem prover.

Our tool is not limited to transaction safety analysis. Because the theory used by the
tool is based on very general semantics properties of the update language, we expect
our experimental results to be extendible to the kinds of proof requirements encountered
in other application areas, where reasoning about the semantics of database operations
is needed. We are currently looking at applications of the OASIS reasoning tool in
the areas of workflow and cooperative work, for the verification of e.g., compensation
requirements (that is, proofs that one method compensates the results of another).

A Theorem Prover-Based Analysis Tool for Object-Oriented Databases 389

References

1. F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-oriented Database
System: The Story of O2. Morgan Kaufmann, 1992.

2. M. Benedikt, T. Griffin, and L. Libkin. Verifiable properties of database transactions. In
Proceedings of Principles of Database Systems (PODS), pages 117–127, 1996.

3. V. Benzaken and X. Schaefer. Static management of integrity in object-oriented databases:
Design and implementation. In Extending Database Technology (EDBT), March 1998.

4. A. J. Bernstein, D. S. Gerstl, W.-H. Leung, and P. M. Lewis. Design and performance of an
assertional concurrency control system. In Proceedings of ICDE, pages 436–445, Orlando,
Florida, February 1998.

5. R. G. G. Cattell and Douglas K. Barry, editors. The Object Database Standard: ODMG 2.0.
Morgan Kaufmann Publishers, San Francisco, California, 1997.

6. M. Doherty, R. Hull, M. Derr, and J. Durand. On detecting conflict between proposed up-
dates. In International Workshop on Database Programming Languages (DBPL), Gubbio,
Italy, September 1995.

7. Isabelle. http://www.cl.cam.ac.uk/Research/HVG/isabelle.html.
8. B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews. Reasoning

about Java Classes (Preliminary Report). In Proceedings of OOPSLA, 1998. To appear.
9. Cris Pedregal Martin and Krithi Ramamritham. Delegation: Efficiently rewriting history. In

Proceedings of ICDE, pages 266–275, Birmingham, U.K., April 1997.
10. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS. Springer-

Verlag, 1994.
11. Xiaolei Qian. The deductive synthesis of database transactions. ACM Transactions on

Database Systems, 18(4):626–677, December 1993.
12. Marek Rusinkiewicz, Wolfgang Klas, Thomas Tesch, Jürgen Wäsch, and Peter Muth. To-

wards a cooperative transaction model—The Cooperative Activity Model. In Proceedings of
the 21st VLDB Conference, Zurich, Switzerland, September 1995.

13. Thomas Santen. A theory of structured model-based specifications in Isabelle/HOL. In
Proc. of the 1997 International Conference on Theorem Proving in Higher Order Logics
(TPHOLs97), Lecture Notes in Computer Science. Springer-Verlag, 1997.

14. Tim Sheard and David Stemple. Automatic verification of database transaction safety. ACM
Transactions on Database Systems, 14(3):322–368, September 1989.

15. David Spelt and Herman Balsters. Automatic verification of transactions on object-oriented
databases. In Proceedings of the Workshop on Database Programming Languages (DBPL),
Estes Park, Colorado, 1997.

16. N. Streitz, J. Haake, J. Hannemann, A. Lemke, W. Schuler, H. Schuett, and M. Thuering.
SEPIA: A cooperative hypermedia authoring environment. In ACM Conference on Hypertext
(ECHT), pages 11–22, Milano, Italy, 1992.

17. Jürgen Wäsch and Wolfgang Klas. History merging as a mechanism for concurrency control
in cooperative environments. In IEEE Workshop on Research Issues in Data Engineering:
Interoperability of Nontraditional Database Systems, pages 76–85, 1996.

10.1007/b107031130026

	Introduction
	Architecture of the OASIS tool
	An example OASIS specification
	A generic Isabelle theory of objects
	Modelling database-specific knowledge
	Using the system
	Related work
	Conclusions and future work

