
TOPYDE: A Tool for Physical Database Design 

Sunil Choenni 1, Henk Wagterveld 1, Henk M. Blanken 1, and Thiel Chang 2 

1 University of Twente, Dept. of Computer Science, P.O. Box 217, 
7500 AE Enschede, The Netherlands 

2 GAK, Dept. of P~ & D, P.O. Box 8300, 1005 CA Amsterdam, The Netherlands 

Abstrac t .  We describe a tool for physical database design based on a 
combination of theoretical and pragmatic approaches. The tool takes as 
input a relational schema, the workload defined on the schema, and some 
additional database characteristics and produces as output a physical 
schema. For the time being, the tool is tuned towards Ingres. 

1 I n t r o d u c t i o n  

The design of databases takes place on several levels. One of these levels is the 
physical level. Typical subproblems on this level are, among others, selection of 
storage structures, secondary index selection, vertical fragmentation, material- 
ization, etc. Solving these subproblems requires a sophisticated understanding 
of physical design options and query optimization strategies of the optimizer, 
and involve estimating query costs, which is a tedious and error-prone process 
when done manually. Moreover, several subproblems are NP-complete, such as 
the selection of an optimal set of secondary indices. Research in this area has 
been shifted to the problem of determining a good physical design instead of 
an optimal design [2, 5]. A physical design is considered as good if a competent 
human database designer would produce the same or a worse design with the 
same available information. 

We present a tool, called TOPYDE, that takes as input, among others, a re- 
lational schema, the workload defined on the schema, and other database char- 
acteristics, such as page size, cardinality of a relation, etc., and produces for 
each relation a storage structure (including an ordering attribute or clustering 
index) and a set of secondary indices. This is called a physical schema. An overall 
physical schema is obtained by the union of the physical schema of each relation 
involved in the relational schema. For the time being, ordering attributes and 
indices concern single attributes, and a secondary index is stored as a Btree. 

Although TOPYDE does not cover the overall problem of physical design, 
it covers the most crucial parts. Moreover, TOPYDE can be easily extended 
with vertical fragmentation and materialization. We agree with Navathe et al. 
[7] that vertical partitioning precedes the selection of a physical schema. In [7], 
vertical fragmentation algorithms are presented that partition a relation into a 
set of fragments. Such algorithms can serve as a preprocessor for TOPYDE. In 
practice, materialization is often done as last; this means after the selection of 
a physical schema. So, TOPYDE can be extended by a postprocessor that aims 
to improve the physical schema selected by it. 



503 

The body of TOPYDE is built on the efforts reported in [3, 4, 5, 11] and 
is tuned towards Ingres [6]. Roughly, TOPYDE is based on the following two 
principles, which contribute to the control of the complexity involved in the 
selection of physical schemas. 

- For each relation involved in a relational schema, a physical schema is sepa- 
rately generated. In [2], we justify the use of this principle for Ingres. 

- For each relation a storage structure is selected followed by the selection of 
a set of secondary indices. This is justified in [2]. The selection of storage 
structures is performed by applying knowledge rules. The selection of sec- 
ondary indices is performed by applying an algorithm, which is also tuned 
towards Ingres [2], and if necessary knowledge rules are used as well. 

TOPYDE is based on the so-called integrated approach, which can be considered 
as a combination of a knowledge-based and an optimizer-based approach. 

In a knowledge-based approach, physical schemas are selected on the basis 
of knowledge rules. These rules are mainly based on heuristics used by human 
experts. The motivation for a knowledges-based approach is, among others, that 
experts can formulate rich sets of heuristics to reduce substantially the number of 
physical schemas to be considered [4]. In an optimizer-based approach, physical 
schemas are selected on the basis of information extracted from the optimizer, 
such as estimated processing cost for a database operation [5, 8]. 

As thoroughly discussed in [2], both approaches have their strong points and 
flaws. The integrated approach combines the strong points of knowledge-based 
and optimizer-based approaches [2, 3]. 

The remainder of this paper is organized as follows. Section 2 is devoted 
to the architecture of TOPYDE. A knowledge system and Ingres are two main 
components of TOPYDE. In two consecutive sections, we discuss these compo- 
nents. Implementation decisions with regard to TOPYDE and experiments with 
TOPYDE are discussed in Section 5. Finally, Section 6 concludes the paper. 

2 A r c h i t e c t u r e  o f  T O P Y D E  

TOPYDE is based on the integrated approach [2, 3]. The integrated approach 
produces physical schemas by combining knowledge of (human) experts, infor- 
mation extracted from optimizers, and mathematical properties. Due to space 
restrictions we will not discuss the integrated approach but the results of apply- 
ing the approach in designing TOPYDE. 

TOPYDE selects a good physical schema, given a relational schema, the 
workload defined on the schema, and other database characteristics available 
in a data dictionary. The user has the possibility to specify a set of storage 
structures from which a storage structure for a relation should be selected and 
other requirements. The architecture of TOPYDE is given in Figure 1. 

TOPYDE generates on the basis of a set of knowledge rules and an algorithm 
a number of physical schemas for each relation. The knowledge rules are derived 
from heuristics used by human database designers. The algorithm is based on 
mathematical properties, which are also stored as knowledge rules, and is used 



504 

for the selection of secondary indices. The mathematical properties are derived 
by investigating a number of cost functions for secondary index selection. 

~hema 
relational 

INPUT PARAME'I~RS: 
database permitted 

workload characteristics storage requirements 
stracOlrcs 

selected 
knowledge system physical schema 

t with 

physical schema I [ cost estimation 

lngms 

Fig. 1. Architecture of TOPYDE 

With each physical schema generated for a relation by TOPYDE, a belief 
value is associated, expressing the confidence in the schema as being a good one. 
TOPYDE passes a number of physical schemas with 'high' belief values to the 
Ingres optimizer. The Ingres optimizer estimates for each schema the cost in 
processing the workload with this schema. Finally, the schema with the lowest 
cost is selected for a relation. The overall physical schema is obtained by the 
union of the physical schema of each relation involved in a relational schema. 

Let us discuss the reason for passing a number of physical schemas to Ingres 
and not only the physical schema with the highest belief value. Since belief values 
are estimations, it may occur that the highest belief value is not the actually 
highest belief value, e.g., because the estimations are too rough. By passing 
a number of physical schemas (with high beliefs) to the Ingres optimizer, the 
chances are better to find a good physical schema [2]. 

3 Knowledge system 

In this section, we discuss how knowledge rules are obtained from heuristics and 
mathematical properties. First, we give a brief background in the principles used 
for modelling heuristics and mathematical properties into knowledge rules. 

In [3, 4], it is observed that heuristics used by (human) database designers 
have an uncertain character and contain some degree of ignorance. For example, 
if a database designer uses a heuristic that says that a subset of the available 
storage structures will be good in 80% of all cases, this does not automatically 
implies that in the remaining 20% the subset will be bad. It rather implies that 
the heuristic can not predict what the scenario will be in 20% of the cases, 
implying ignorance. These heuristics demand an adequate way of modelling. In 
[3, 2], it is motivated that the Dempster-Shafer theory [9] is most suitable, since 



505 

it offers the possibility to express uncertainty and ignorance by means of belief 
functions, and it has a rule to combine different belief functions. 

In the following, knowledge rules consist of an antecedent and a consequent 
part. To the consequent part a so-called basic probability assignment (bpa) is 
associated, i.e., a belief value between 0 and 1 expressing the confidence in the 
consequent. Full confidence to a consequent is expressed by belief value 1, while 
no confidence is expressed by 0. For more details, we refer to [2, 3]. 

Knowledge  rules based  on heur is t ics  A number of knowledge rules (with 
bpa) obtained from heuristics are reported in [10]. These knowledge rules are the 
result of interviewing 6 experts in the field of physical design of Ingres databases 
and studying literature focussed towards the design of Ingres databases (e.g. [6]). 

We performed the interviews in two phases. In the first phase, we gathered 
about 48 heuristics used by experts for physical database design. After analysing 
these heuristics, it appeared that experts select physical schemas on the basis of 
a limited number of criteria, which is summarized below. Criteria 1-3 are based 
on database characteristics and criteria 4-6 on workload characteristics. 

1. Number of pages required to store a relation. Depending on the required 
number of pages to store a relation, several storage structures are supported 
for a relation. For example, if the number of pages required to store a relation 
is small (<_ 5 pages), then a Heap is often supported as storage structure. 

2. The selectivity factor of an attribute. This criterion appears in heuristics to 
select ordering attributes and indices. In general, an attribute aj  of a relation 

R~ Ri that has a very small selectivity factor --i.e., Sajntu p < 2, in which sat 
is the selectivity factor of c~j and n~u p is the cardinality of relation R~-- 
belongs to the serious candidates that are eligible as hashing attribute. In 
heuristics for secondary index selection, the selectivity factor of an attribute 
a j  plays a role in combination with the selectivity factors of other attributes 
that are candidates for secondary indices. 

3. The ratio of the length of an attribute to the length of a tuple. This criterion 
is used to reduce the number of candidates for ordering attributes and in- 
dices. For example, if the ratio of the length of an attribute of relation R~ to 
the length of a tuple of Ri is greater than 10%, then the attribute is neither 
a serious candidate for an ordering attribute nor for an index. 

4. The ratio of maintenance to retrieval operations on an attribute. This cri- 
terion is used in heuristics to select storage structures, ordering attributes, 
and indices. For example, if the ratio of maintenance to retrieval operations 
on an attribute ~j is more than 10%, then aj  is neither a candidate for an 
ordering attribute nor for a clustering index. On the other hand, if the ratio 
is less than 10%, then depending on the ratio different storage structures 
(with a j  as ordering attribute) are supported. 

5. The ratio of equality to range predicates on an attribute aj .  This criterion 
appears in heuristics that choose between Hash and Btree or Isam storage 
structure. For example, if there are 'few' range predicates defined on an 
attribute a j ,  i.e., the ratio of range to equality predicates is less than 1%, 
then Hash as storage structure is supported with aj  as ordering attribute. 



506 

6. The result of an operation. This criterion is used to select storage structures. 
For example, if the ratio of queries having as constraint that the result should 
be ordered on an attribute aj to the total number of queries in a workload is 
greater than 20%, then the storage structures Btree and Isam with ordering 
attribute a j  or a clustering index on ~j, are supported. 

In the second phase, we transformed the heuristics into production rules (i.e., in 
the form of IF condition(s) THEN conclusion(s)). Then, we asked two experts 
to associate a basic probability assignment (bpa) with each production rule, 
i.e., to assign a value between 0 and 1 to each consequent, if they agreed with a 
production rule. We observed that the experts had no difficulties in associating a 
bpa to a production rule. Finally, we asked another expert to judge the associated 
bpa to each production rule assigned by the two experts. This expert globally 
agreed with the associated bpa to each production rule. 

In order to combine the obtained knowledge rules, it is demanded that these 
rules are Dempster-Shafer independent. In [2], it is argued that the obtained 
knowledge rules are independent for two reasons. First, the conditions in the 
antecedent part of a knowledge rule do not concern physical schemas. Conse- 
quently, a knowledge rule is independent of the results of other knowledge rules. 
Second, the criteria on which the conditions of a knowledge rule are based are 
totally different, for example, the number of pages required to store a relation 
does not influence the selectivity factor at all. [] 

Knowledge  rules  ba sed  on m a t h e m a t i c a l  p r o p e r t i e s  The knowledge rules 
that are based on mathematical properties are derived by investigating 3 gen- 
erally accepted cost functions for secondary index selection. Each cost function 
estimates the cost of processing a workload defined on a single relation with a 
given secondary index set, taking into account the benefits and drawbacks of 
secondary indices. The investigation of these functions resulted into a number 
of mathematical properties. On the basis of these properties, we have devised 
an algorithm for secondary index selection. The algorithm is tuned towards the 
cost function as probably used by Ingres [2]. We briefly sketch the algorithm and 
the knowledge rules corresponding to the mathematical properties. 

The algorithm divides a workload defined on a relation into a number of 
disjunctive groups of operations, and selects for each group an advantageous and 
a disadvantageous set of secondary indices. The advantageous set of secondary 
indices of a group speeds up retrievals, while the disadvantageous set slows down 
maintenance with regard to the operations of that group. The division of the 
workload into groups is based on the required number of tuple retrievals in 
processing an operation with a given secondary index set and the used cost 
function. 

On the basis of the number of operations with their weighted frequencies in 
a group G, a belief value is assigned to the advantageous and disadvantageous 
set of G. The belief value for an advantageous and disadvantageous set of G is 
the quotient of the weighted frequencies of the operations in G and the weighted 
frequencies of all operations in the workload. 

The knowledge base contains 3 knowledge rules that are based on mathemat- 



507 

ical properties. The first rule says that if a secondary index ih is dropped from 
a secondary index set I and the processing cost of the operations in a group G 
increases, then ih belongs to the advantageous set of G. The second rule says 
that if an index ih is added to a set I and the processing cost of the operations 
in G does not decrease, then ih belongs to the disadvantageous set of G. The 
last rule is used to divide a workload into groups. It determines the operations 
that may benefit from a set of candidate secondary index sets. For an exact 
description of these rules and the algorithm, we refer to [2]. [] 

4 Ingres 

In this section, we describe the storage structures and join techniques offered by 
Ingres and how to obtain the processing cost of an operation from Ingres. 

S torage  s t r u c t u r e s  and  jo in  techniques  To store a relation in Ingres we can 
choose among Heap, Hash, Isam, and Btree [6]. Ingres provides the possibility to 
have ordering attributes or indices consisting of more than one attribute. Since 
we have assumed in Section 1 that ordering attributes and indices consist of single 
attributes, we will not make use of this possibility. For a detailed discussion with 
regard to the storage structures the reader is referred to [6]. 

To process joins in which two relations are involved, the Ingres optimizer uses 
several techniques: 2 variants of sort-merge, nested-loop, and Cartesian product 
[6]. To process joins in which more than two relations are involved, the Ingres 
optimizer determines the join order at a logical optimization step. Once the or- 
der has been determined, the join is processed in pairs [2]. [] 

P rocess ing  cost  The optimizer is responsible for the generation of an evalua- 
tion plan for a given operation. An evaluation plan specifies the actual (basic) 
operations (joins, projection, etc.) that should be performed in order to process 
a database operation. In Ingres, such an evaluation plan is called a Query Exe- 
cution Plan (QEP). QEPs are produced for queries and not for other database 
operations. 

From a QEP we may read the basic operations that should be performed in 
order to process a database operation and the cost entailed by performing each 
(basic) operation. A QEP is represented as a binary tree and at the top node 
we can read the total processing cost of a query. Since Ingres does not produce 
QEPs for insertions, deletions, or updates, we apply the following technique. 

To perform deletions and updates, relevant tuples to be deleted or updated 
should be selected first and in case of insertions the proper location should be 
selected first. The selection cost of relevant tuples or location can be forced from 
Ingres by formulating a proper query. Suppose we have the following deletion: 
DELETE FROM relation WHERE name = 'Tutiram'. We force the selection cost 
from Ingres by offering the query SELECT * FROM relation WHERE name =~Tu- 
tiram'. After selecting the relevant tuples or proper location, the following steps 
are performed in order to complete an insertion, a deletion, or an update. 



508 

In an insertion, the selected tuples are inserted, in a deletion these tuples 
are deleted, and in an update the values of specified attributes in these tuples 
are updated. Since these steps are independent of chosen physical schemas and 
QEPs, and the cost of these steps is a constant, they do not play a role in deter- 
mining whether a physical schema is better than another one or not. Therefore, 
we neglect the cost of these steps in the estimation of the processing cost of a 
deletion, an insertion, or an update. 

Insertions, deletions, and updates entails main tenance  cost of indices. We 
have derived cost formulas to estimate the maintenance cost in [2]. [] 

5 Implementation and experiments 

I m p l e m e n t a t i o n  Currently, TOPYDE is running in a VAX/VMS environment 
at GAK. The knowledge system of TOPYDE is implemented in an expert system 
shell, called Aion Development System (ADS) [1]. We choose for ADS because 
ADS is available at GAK, it supports knowledge rules as knowledge representa- 
tion technique, and it provides the possibility to reason with uncertainty. Despite 
the fact that ADS does not support the Dempster-Shafer theory as formalism for 
reasoning with uncertainty, the combination rule of Dempster and basic proba- 
bility assignments have been implemented without much effort [10]. 

The implementation of the algorithm to select secondary indices has been 
realized in ADS. 

In Section 4, we have noted that additional cost formulas are required in or- 
der to estimate the processing cost of insertions, deletions, and updates. These 
formulas, presented in [2], are implemented in C. Finally, the interface between 
TOPYDE and Ingres has been realized in C and Embedded SQL [2]. [] 

E x p e r i m e n t s  Two test cases have been passed to TOPYDE and the results are 
good. The first case, called Case I, consists of 3 relations on which 10 database 
operations are defined, and is adopted from [8]. The relations, database charac- 
teristics and workload are given in Figure 2. We note that s stands for selectivity 
factor and ] for frequency. The second case, called Case II, consists of 14 relations 
and 47 operations. Case II is derived from a "large" problem at GAK consisting 
of about 60 relations and 2000 operations. A closer look at this "large" problem 
learns us that it can be split into a number of smaller subproblems, since some 
groups of relations are hardly (or not) related with other groups of relations. 
Furthermore, a number of operations could be taken together into one operation 
[2]. We discuss the results produced by TOPYDE for the two cases. 

Case  I TOPYDE selects the following overall physical schema for the input 
given in Figure 2. The cost to handle the workload with this overall physical 
schema is 22624 page accesses. 

- Par t  is hashed on attribute partno and the secondary index set is empty. 
- Order is stored as Heap with secondary indices on orderno, date, and suppno. 

- Quote  is hashed on attribute partno with a secondary index on suppno. 



509 

Relations ~- Database characteristics: 
Part(pa~tno, qonhand, descrip), Order(orderno, partno, suppno, date, qty, oinfo) 
Quote(suppno, par~no, minqty, mazqty, price, remarks) 

~p~m~rg_mmw~ 

Part: ~ tuples is 8000 
partno qonhand descrip 

type integer integer char(184) 
1/s  8000 4000 8000 

�9 ange (0, 7999) (0, 7999) ("0", "Z...Z") 

Order: # tuples is ~000 
suppno date I qty I oinfo 
char(3) integer l integer l char(71) 
100 400 12000 24000 

F ' A ~ ] [ ~  (' A. . .A ' , 'Z . . .Z ' )  (19850101, 19930101) (0,999999) ( '0","Z.. .Z") 

Quote: # tuples is 7f2000 
~ s  suppno partno minqty mazqty price remarks 

char(3) integer integer integer money char(15) 
100 8000 4000 4000 32000 72000 

("0","Z...Z")I(0,7999) (0,999999) (0,999999) (0.10,1000) "0","Z...Z") 

Workload: 

(.fl : 5,w1: SELECT Quote.suppno, Quote.price FROM Quote 
WHERE Quote.partno : :partno AND Quote.minqty < 1000 
AND Quote.mazqty > 2000) 

(.f2 : 5,w2: SELECT Order.orderno, Order.par~no, Order.date, Order.qty, Part.descrip 
FROM Order, Part 
WHERE Order.date ~_ 19871216 AND Order.date ~_ 19870000 
AND Order.suppno = :suppno AND Order.partno = Part.partno) 

(f3 : 5,w3: SELECT MIN(Quote.price), MAX(Quote.price) FROM Quote 
WHERE Quote.partno = :partno AND Quote.suppno = :suppno) 

(.f4 : 20,w4: INSERT INTO Order 
VALUES (:orderno, :partno, :suppno, :date, :qty, :oinfo)) 

(f5 : 10,Ws: SELECT DISTINCT Order.partno, Order.qty, FROM Order 
WHERE Order.orderno = :orderno ORDER BY qty ) 

(re : 20,w6: UPDATE Quote SET Quote.price = :price 
WHERE Quote.partno = :partno AND Quote.suppno = :suppno 
AND Quote.minqty = :minqty) 

(f7 : 20,w7: DELETE FROM Order 
WHERE Order.orderno = :orderno AND Order.suppno = :suppno 
AND Order.partno = :partno) ~ 

(f8 : 10,w8: SELECT Part.partno, Part.descrip, Quote.price FROM Part, Quote 
WHERE Quote.suppno = :suppno AND Part.partno = Quote.partno) 

(f9 : 2,w9: SELECT Order.suppno, Order.orderno, Part.partno, Part.descrip 
FROM Order, Par~, Quote 
WHERE Order.date = :date AND Quote.price < 1000.00 
AND Order.suppno = Quote.suppno AND Order.par~no -- ParLpartno) 

(YlO : 5,w10: DELETE FROM Order 
WHERE Order.date > 19921201 AND Order.orderno = :orderno 
AND Order.suppno = :suppno AND Order.partno = :partno) 

Fig. 2. Input for Case I 



510 

TOPYDE assigned high belief factors (about 0.9) to the selected storage 
structure of each relation. Therefore, we do not investigate other storage struc- 
tures for each relation. The algorithm described in Section 3 could decide for 
each attribute in a relation whether the corresponding index was advantageous 
or disadvantageous with regard to the whole workload. For example, for re- 
lation Order the algorithm resulted into the advantageous set {orderno, date, 
suppno} and disadvantageous set {partno, qty, oinfo} for the whole workload, 
which means that { orderno, date, suppno} is an optimal secondary index set. 

A qualitative analysis of the above-mentioned physical schema shows that it 
is a good schema. For example, the fact that Order is stored as a Heap can be 
understood, because there are 2 delete operations and 1 insert operation on the 
relation, each with a relatively high frequency. Since there are relatively many 
selections on orderno, date, and suppno, the secondary indices on these attribute 
can be understood. 

In [8], the input given in Figure 2 has been passed to a tool for physical 
database design, called DAD-I. A fair comparison between the results produced 
by TOPYDE and DAD-I is not possible, since DAD-I offers multi-attribute 
indices, while TOPYDE does not offer multi-attribute indices yet. Furthermore, 
how to compute maintenance cost for multi-attribute indices is not reported in 
[8]. The overall physical schema produced by DAD-I for Case I is: 

- Part is hashed on attribute partno and the secondary index set is empty. 
- Order is stored as Btree and clustered on orderno. A multi-attribute index 

to date, orderno, partno, qty, suppno is allocated and stored as Btree. Note, 
orderno is indexed twice. 

- Quote is hashed on partno. A multi-attribute index to suppno, partno, price 
and a secondary index to maxqty is allocated, both stored as Isam. 

Ingres estimates for this physical schema 14726 page accesses as processing cost. 
However, the maintenance cost is not included in these 14726 page accesses. [] 

Case II  As noted before, Case II is derived from a real-life problem at GAK, 
which could be divided into a number of smaller subproblems. The biggest sub- 
problem consists of 14 relations and 47 operations. On 12 of these relations 5 
or less operations are defined. On one relation 8 and on another 12 operations 
are defined. We pass the two last mentioned relations to TOPYDE with their 
database characteristics and the operations defined on them. The proposed solu- 
tions for these relations by TOPYDE can be considered as good. This statement 
is based on a qualitative analysis of the solutions and a comparison with the 
solutions produced by database designers at GAK. [] 

It is not sensible to draw conclusions about TOPYDE on the basis of the two test 
cases, because both test cases are relatively small and TOPYDE does not offer 
multi-attribute indices. Since database administrators often use multi-attribute 
indices in a physical schema, a fair and precise comparison is not possible. How- 
ever, it is shown that a tool based on the integrated approach, as described in 
[2, 3], can be implemented and that it may be viable. 

With regard to the two test cases, we conclude that they are not adequate 
to evaluate TOPYDE, since the solutions for the test cases have been easily 



511 

found. The algorithm for selection of secondary indices was sufficient to select 
a secondary index set for almost each relation (except one), since there was no 
need to split the workload into groups. The assigned storage structure to each 
relation was generated with a high belief factor. As a consequence, there was no 
need to pass other storage structure for a relation to Ingres. 

From the two test cases, we have also learnt that a reliable evaluation of 
TOPYDE will be a laborious task for two reasons. First, we have to find a 
representative number of non-trivial problems from real-life to pass to TOPYDE 
and database administrators who are competent to solve these problems too. 
Second, the input of relations, database characteristics, workload, and physical 
schemas in Ingres is a time consuming process. [] 

6 Conclusions 

The design and implementation of TOPYDE can be marked as successful. We 
have passed two test cases to TOPYDE, one adopted from the literature and 
the other derived from a real-life problem at GAK. The results produced by 
TOPYDE for these test cases can be considered as good. However, the test cases 
are not adequate to draw conclusions about TOPYDE self for two reasons. First, 
the results have been easily found by TOPYDE for these cases. Second, even 
though the test cases would be adequate, it is irresponsible to draw conclusions 
on the basis of just two test cases. In Section 5, we have argued that a reliable 
evaluation of TOPYDE, and, in general, for each tool for physical database 
design, will be a laborious task. However, we feel that a reliable evaluation of 
tools for physical database design is useful, since there is a need for such tools. 

References  
1. ADS-manuals version 6.0, Aion Corporation, 1991. 
2: Choenni, It., On the Automation of Physical Database Design, Ph.D thesis, Uni- 

versity of Twente, The Netherlands, 1995. 
3. Choenni, it., Blanken, H.M., Chang, S.C., On the Automation of Physical Database 

Design, In: Proc. ACM/SIGAPP Syrup. on Applied Computing 93, 1993, 358-368. 
4. Dabrowski, C.E., Jefferson, K.J., A Knowledge-Based System for Physical Database 

Design, NBS Special Publication 500-151, 1988, 51p. 
5. Finkelstein, S., Schkolnick, M., Tiberio, P., Physical Database Design for Relational 

Databases. ACM Trans. on Database Systems 13(1), 1988, 91-128. 
6. Ingres DBA-guide, Alameda, Relational Technology Inc., 1990. 
7. Navathe, S., Ceri, S., Wiederhold, G., Dou, J., Vertical Partitioning Algorithms for 

Database Design. A CM Trans. on Database Systems 9(~), 1989, 680-710. 
8. Itozen, S., Automating Physical Database Design, Ph.D thesis, University of New- 

York, USA, 1993. 
9. Shafer, G., A Mathematical Theory of Evidence, Princeton University Press, 1976. 
10. Wagterveld, H., TOPYDE: Een Kermissysteem voor een tool ter ondersteuning 

van fysiek database ontwerp, M.Sc. thesis, University of Twente, The Netherlands, 
1994. 

11. Whang, K., Wiederhold, G., Sagalowicz, D., Separability - An approach to physical 
database design, In: Proc. 7th Int. Conf on Very Large Data Bases, 487-500, 1981. 


