Verification of Loop Parallelisations *

S.C.C. Blom, S. Darabi, and M. Huisman

University of Twente, the Netherlands

Keywords: Formal verification, Hoare Logic, Permission-based separation logic, Parallel
loops, Parallelising compilers.

Writing correct parallel programs becomes more and more difficult as the complexity and
heterogeneity of processors increase. To address this issue, parallelising compilers aim to detect
loops that can be executed in parallel. However, this detection is not perfect. Therefore developers
can typically also add compiler directives to declare that a loop is parallel. Any loop annotated
with such a compiler directive will be assumed to be parallel by the compiler.

This work addresses the correctness of such compiler directives for loop parallelisation. This is
achieved by adding specifications to the program that when verified guarantee that the program
can be parallelised without changing its behaviour. Our specifications stem from permission-based
separation logic [3, 4], an extension of Hoare logic. This has the advantage that we can easily
combine the specifications related to loop parallelisation with functional correctness properties.

Concretely, for each loop body we add an iteration contract, which specifies the iteration’s
resources, i.e., the variables read and written by one iteration of the loop. We prove that if
the iteration contract can be proven correct without any further annotations, the iterations are
independent and the loop is parallelisable. If a loop has dependences, we can add additional anno-
tations that capture these dependences. These annotations specify how resources are transferred
to another iteration of the loop. We then identify a class of annotation patterns for which we can
prove that the loop can be vectorised because they capture forward dependences.

Listing [1| shows an example of an independent loop with its iteration contract. This contract
requires that at the start of iteration 4, permission to write afi] is available, as well as permissions
to read b[i]. Further, the contract ensures that these permissions are returned at the end of
iteration ¢. The iteration contract implicitly requires that the separating conjunction of all iteration
preconditions holds before the first iteration of the loop, and that the separating conjunction of
all iteration postconditions holds after the last iteration of the loop. For example, the contract
in Listing[T]implicitly specifies that upon entering the loop, permission to write the first N elements
of a must be available, as well as permission to read the first N elements of b.

We formally prove the correctness of our approach by showing that a correct iteration con-
tract capturing a loop independence or a forward dependence indeed implies that a loop can be
parallelised or vectorised, while preserving the behaviour of the sequential loop. To construct the
proof, we first define the semantics of the three loop execution paradigms: sequential, vectorised,
and parallel. We also define the instrumented semantics for a loop specified with an iteration
contract. Next, to prove the soundness of our approach we show that the instrumented semantics
of an independent loop is equivalent to the parallel execution of the loop, while the instrumented
semantics of a loop with a forward dependence is an extension of the vectorised execution of
the loop. Functional equivalence of two semantics is shown by transforming the computations in
one semantics into the computations in the other semantics by swapping adjacent independent
execution steps.

Moreover, we provide automated tool support for our technique as provided by the VerCors tool

*The full version of this work has been submitted to the FASE 2015 conference.



for(int i=0; i < N; i++4) /+@
requires Perm(a[i],1) *x Perm(b[i],1/2);
ensures Perm(ali],1) xx Perm(bli],1/2);
@x/ { ali]= 2 * b[i]; }

Listing 1: Iteration contract for an independent loop

set. The VerCors tool set was originally developed to reason about multi-threaded Java programs,
but it has been extended to support verification of OpenCL kernels [2] and parallel loops.

Finally, we also support translation of a verified iteration contract (including possibly functional
property specifications) into a verifiable contract for the parallelised or vector program, written
as a kernel. As an extra benefit, the iteration contract can help parallelsing compilers to reveal
where synchronisation is needed in the parallelised program.

Our approach is motivated by our work on the CARP projectﬂ As part of this project the
PENCIL language has been developed [I]. It is a high-level programming language designed to
ease the programming of many-core processors such as GPUs. Its core is a subset of sequential
C, imposing strong limitations on pointer-arithmetic. However, it should be noted that our ap-
proach also is applicable to other programming languages or libraries that have a similar parallel
loop construct, such as OpenMP [5], parallel_for in C++ TBB [7] and Parallel.For in NET TPL [6].

The main contributions of our work are the following:

e a specification technique, using iteration contracts and dedicated transfer annotations that
can capture loop dependences;

e a soundness proof that loops respecting specific patterns of iteration contracts can be either
parallelised or vectorised; and

e compilation of iteration contracts to kernel contracts for the parallelised or vectorised pro-
gram.

References

[1] R. Baghdadi, A. Cohen, S. Guelton, S. Verdoolaege, J. Inoue, T. Grosser, G. Kouveli,
A. Kravets, A. Lokhmotov, C. Nugteren, F. Waters, and A. F. Donaldson. PENCIL: To-
wards a Platform-Neutral Compute Intermediate Language for DSLs. CoRR, abs/1302.5586,
2013.

[2] S. Blom, M. Huisman, and M. Mihel¢ié. Specification and verification of GPGPU programs.
Science of Computer Programming, 2014.

[3] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting in separation
logic. In J. Palsberg and M. Abadi, editors, POPL, pages 259-270. ACM, 2005.

[4] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static
Analysis Symposium, volume 2694 of LNCS, pages 55-72. Springer, 2003.

[5] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory program-
ming. Computational Science & Engineering, IEEE, 5(1):46-55, 1998.

[6] Microsoft TPL. http://msdn.microsoft.com/enus/library/dd460717.aspx.

[7] Threading Building Blocks. http://threadingbuildingblocks.org,.

1See http://www.carpproject.eu/!


http://threadingbuildingblocks.org
http://www.carpproject.eu/

