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ABSTRACT
We consider a model consisting of two fluid queues driven by
the same background continuous-time Markov chain, such
that the rates of change of the fluid in the second queue de-
pend on whether the first queue is empty or not. We analyse
this tandem model using operator-analytic methods.

Keywords: tandem, stochastic fluid model, Markov
chain, Laplace-Stieltjes transform, transient analysis, limit-
ing distribution.

1. INTRODUCTION
Stationary distributions of Markov-modulated fluid queues

have been studied extensively, first using spectral meth-
ods [3], later via more efficient matrix-analytic methods [8,
9, 10, 11, 13, 17]. The analysis of networks of fluid queues is
much harder, and only for a few special two-node cases the
stationary joint distribution of both queue contents and the
regulating Markov chain could be obtained.

However, a promising approach to find further results is
the use of operator-analytic methods, studied in Bean and
O’Reilly [4, 5], where a tandem model is considered, and also
in Margolius and O’Reilly [16], where a time-varying queue
is analysed. The operator-analytic methods generalise the
matrix-analytic methods for single queues. In this work we
show that this can indeed lead to good results.

The main difference with the tandem model in [4] is that
here we consider fluid queues that have a lower bound, i.e.,
they can become empty but the content cannot become neg-
ative. The tandem model in [5] also considers queues with a
lower bound, but the assumptions are slightly different and
the results derived there are largely theoretical. Here, we
derive numerical methods for a generalization of the tan-
dem model in [14], for which the analytical results could be
obtained by considering an embedded M/G/1 queue.

2. TANDEM FLUID QUEUE: MODEL AND
PRELIMINARIES

In this section we first describe the model of interest and
then give the stability condition. We end with some prelim-
inary statements about the sample paths that can be taken
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by the model, and the implications for the shape (in partic-
ular the support) of the stationary distribution.

2.1 Model description
We consider two fluid queues, collecting fluid in buffers X

and Y , with level variables recording the content at time t
denoted byX(t) and Y (t), respectively, that are being driven
by the same background continuous-time Markov chain {ϕ(t) :
t ≥ 0} with some finite state space S and irreducible gener-
ator T. The first queue behaves as a standard fluid queue
{(ϕ(t), X(t)) : t ≥ 0} studied in [10], with a lower bound-
ary at level 0, and real-valued fluid rates ri collected in a
diagonal matrix R = diag(ri)i∈S . Thus, the content X(t)
increases at rate ri when ϕ(t) = i, unless ri is negative and
X(t)=0. More precisely,

d

dt
X(t) = rϕ(t) when X(t) > 0,

d

dt
X(t) = max(0, rϕ(t)) when X(t) = 0.

We partition the state space S as S = S+ ∪ S− ∪ S#,
where ri > 0 when i ∈ S+ (states in S+ will be called
upstates), ri < 0 when i ∈ S− (states in S− will be called
downstates), and ri = 0 when i ∈ S# (states in S# will
be called zero-states). With the behaviour at X(t) = 0 in
mind it will sometimes be helpful to use additional notation
S	 = S− ∪S# for the set of “zero-states at X(t) = 0”. After
appropriately ordering the states in S we can write T as
3× 3 block matrix,

T =

 T++ T+− T+#

T−+ T−− T−#
T#+ T#− T##

 . (1)

Further, we assume that the behaviour of the second fluid
queue depends on both ϕ(t) and X(t) in the following way.
Assuming fluid rates ĉi > 0 and ĉi < 0 for all i ∈ S, collected

in Ĉ = diag(ĉi)i∈S and Ĉ = diag(̂ci)i∈S , we have

d

dt
Y (t) = ĉϕ(t) > 0 when X(t) > 0,

d

dt
Y (t) = ĉϕ(t) < 0 when X(t) = 0, Y (t) > 0,

d

dt
Y (t) = ĉϕ(t) · 1{ϕ(t) ∈ S+} when X(t) = 0, Y (t) = 0.

Thus, the fluid level Y (t) increases when X(t) > 0, and
decreases when X(t) = 0, unless both levels are at 0; in the
latter case Y (t) (and X(t)) increases as soon as ϕ(t) makes
a transition from S	 to S+.



Throughout we denote by 1, 0, I and O a column vector
of ones, a row vector of zeros, an identity matrix, and a
zero matrix of appropriate sizes, respectively. Also, for any
matrix A = [Aij ], we use notation |A| for a matrix collecting
absolute values of the elements of A, with |A| = [ |Aij | ].

2.2 Stability condition
The stability condition for the first queue, {(ϕ(t), X(t)) :

t ≥ 0}, is well-known to be∑
i∈S

riP (ϕ = i) < 0, (2)

where the random variable ϕ is distributed according to the
stationary distribution of ϕ(t). Assuming this condition is
satisfied, the second queue (buffer Y ) will be stable when
the expected increase rate of Y (t) is less than the expected
decrease rate, i.e.,∑

i∈S

ĉiP (ϕ = i,X > 0) <
∑
i∈S	

|̂ci|P (ϕ = i,X = 0), (3)

where the random vector (ϕ,X) is distributed according to
the stationary distribution of (ϕ(t), X(t)).

2.3 Qualitative behaviour
In this subsection we give a short discussion of how the

process {(ϕ(t), X(t), Y (t)) : t ≥ 0} behaves and what the
stationary distribution looks like. Here, and in the sequel,
we will sometimes write e.g. ‘the process hits x = 0’, which
will be short for ‘the process (ϕ(t), X(t), Y (t)) hits the set
S × {0} × [0,∞)’, or we will speak of ‘the probability mass
at x = 0, y > 0’ meaning ‘the stationary probability that
the process (ϕ(t), X(t), Y (t)) is in the set S ×{0}× (0,∞)’.

Typically the process alternates, between:

(i) periods on x = 0, with Y (t) decreasing, possibly being
halted at x = 0, y = 0, and ϕ(t) in S	; such a period
starts at x = 0, y > 0, with ϕ(t) in S− and ends at
x = 0, y > 0 or at x = 0, y = 0 as soon as ϕ(t) makes
a transition from S	 to S+;

(ii) periods on x > 0, with Y (t) increasing, while X(t)
can either increase and decrease. Such a period starts
where the previous type (i) period ended with ϕ(t) ∈
S+ and X(t) increasing, and ends at x = 0, y > 0 with
ϕ(t) in S− as soon as X(t) decreases to 0.

Note that in stationarity, the process can not be at y = 0,
x > 0, since Y (t) = 0 implies X(t) = 0 (or alternatively,
X(t) > 0 implies Y (t) > 0). In fact when a type (ii) period
starts from x = 0, y = 0, due to a transition of ϕ(t) to
some phase i ∈ S+, the process will move with d

dt
X(t) =

ri > 0 and d
dt
Y (t) = ĉi > 0, so it will stay on the line

{(x, y) : y = xĉi/ri} until some future transition of ϕ(t) to
some other state i′. Note that the slope of any such path
leaving the origin is at least mini∈S+{ĉi/ri}, and also after
the path has been left, the slope of the ensuing path can
never be less than this value (assuming i′ ∈ S+, otherwise
X(t) will not increase). Thus, after the process has hit the
origin for the first time (which it will, due to stability), the
set {(x, y) : y < x ·mini∈S+{ĉi/ri}} can never be reached.

As a consequence of the above, the stationary distribution
will have the following form.

• Corresponding to (i), there will be a (one-dimensional)
density at x = 0, y > 0, denoted by π(0, y), and a
probability point mass at (0, 0), denoted by p(0, 0).

• Corresponding to (ii), there will be a two-dimensional
density on {(x, y) : x > 0, y > x · mini∈S+{ĉi/ri}},
denoted as π(x, y), and there will be one-dimensional
densities on each of the lines y = xĉi/ri, i ∈ S+, de-
noted as πi(x, xĉi/ri). Also, define πj(x, xĉj/rj) =
[δijπ

j(x, xĉj/rj)]i∈S for all j ∈ S. There will be no
other probability masses or densities, in particular there
is no density at y = 0, x > 0.

It is important to realize that the one- and two-dimensional
densities just mentioned, as well as the point mass at (0,0),
are all vectors with |S| components, where the i-th compo-
nent corresponds to ϕ(t) = i. Some of these components will
be zero; in particular for i ∈ S+ we will have [p(0, 0)]i = 0
and [π(0, y)]i = 0. Also [πj(x, xĉj/rj)]i = 0 for all i 6= j.

In the next section we show how to proceed to find the
stationary distribution.

3. TANDEM FLUID QUEUE: ANALYSIS
Roughly speaking, our analysis is based on the alterna-

tion between (i) stages during which X(t) = 0 and hence
Y (t) decreases, and (ii) stages during which X(t) > 0 and
hence Y (t) increases, as detailed in Section 2.3. For (parts
of) both of these stages we will apply ideas from [4, 18], in
order to keep track of the amount by which Y (t) increases
(or decreases), in much the same way as we can keep track of
the amount of time that passes. We will review this in Sec-
tion 3.1. In Section 3.2 we will look at the state (ϕ(t), X(t))
when the process hits the line x = 0, so that with these
building blocks we can in Section 3.3 establish expressions
for the stationary distribution.

3.1 Replacing time by shift
We are interested in certain behaviour of buffer X, not

during some amount of time, but while buffer Y experiences
a certain (downward/upward, virtual) shift. For a moti-
vation of the expressions below we refer to [4], where the
concept of shift was introduced, as well as to [18], where a
generalization of this idea is discussed. We will consider two
cases.

(i) The behaviour at x = 0, when the level in buffer Y is

strictly decreasing, according to the rates in Ĉ;

(ii) The behaviour at x > 0, when the level in buffer Y is

strictly increasing, according to the rates in Ĉ.

First, consider the behaviour at x = 0, when the level in

buffer Y is strictly decreasing, according to the rates in Ĉ.

Below we define matrices Q̂		 and Q	+ which are the key
components of the analysis for this case.

Suppose X(0) = 0 and ϕ(u) ∈ S	 for 0 ≤ u ≤ t. Define
the random variable D(t),

D(t) =

∫ t

u=0

|̂cϕ(u)|du, (4)

interpreted as the total downward shift Y (0)−Y (t) in buffer
Y at time t when Y (t) > 0. Also, for any z > 0 define

tz = inf{t > 0 : D(t) = z}, (5)



which we interpret, for any y ≥ 0, as the first time at which
the level in the buffer Y shifts from level Y (0) = y+ z to y.

Denote

T		 =

[
T−− T−#
T#− T##

]
(6)

and

T	+ =

[
T−+

T#+

]
, T±# =

[
T+#

T−#

]
, (7)

and let Ĉ	 = diag(̂ci)i∈S	 be a diagonal matrix partitioned
according to S	 = S− ∪ S#.

We define the generator matrix

Q̂		 = (|Ĉ	|)−1T		, (8)

which has the following physical interpretation. By the anal-
ysis in [10, Lemmas 1-2], for i, j ∈ S	, and z > 0, we have

[eQ̂		z]ij = P (ϕ(tz) = j, ϕ(u) ∈ S	, 0 ≤ u ≤ tz
| ϕ(0) = i,X(0) = 0), (9)

which, for any y > 0, we interpret as the probability that
the process is in phase j at time tz and the phase remains
in the set S	 at least until time tz, given the process starts
from phase i with empty buffer X and level y+z in buffer Y .

Also, define

Q̂	+ = (|Ĉ	|)−1T	+, (10)

which by [10, Lemma 2], is a matrix of transition rates,
w.r.t. level, to phases in S+, corresponding to the moments
at which the level in buffer Y begins to increase.

Second, consider the behaviour at x > 0, when the level

in buffer Y is strictly increasing according to the rates in Ĉ.

The key components of the analysis are matrices Q̂(s) and

Ψ̂(s) to be defined below and interpreted afterwards.
Let

θ = inf{t > 0 : X(t) = 0}, (11)

be the first time at which the level in buffer X reaches 0.
Suppose X(0) > 0, or X(0) = 0 and ϕ(0) ∈ S+; and t ≤ θ.

Define the random variable U(t),

U(t) =

∫ t

u=0

ĉϕ(u)du, (12)

interpreted as the total upward shift Y (t)−Y (0) in buffer Y
at time t.

We define the key generator matrix Q̂(s),

Q̂(s) =

[
Q̂(s)++ Q̂(s)+−

Q̂(s)−+ Q̂(s)−−

]
, (13)

with

Q̂(s)++ = (R+)−1
(
T++ − sĈ+ −T+#(T## − sĈ#)−1T#+

)
,

Q̂(s)+− = (R+)−1
(
T+− −T+#(T## − sĈ#)−1T#−

)
,

Q̂(s)−+ = (|R−|)−1
(
T−+ −T−#(T## − sĈ#)−1T#+

)
,

Q̂(s)−− = (|R−|)−1
(
T−− − sĈ− −T−#(T## − sĈ#)−1T#−

)
,

Ĉ+ = diag(ĉi)i∈S+ , Ĉ− = diag(ĉi)i∈S− , Ĉ# = diag(ĉi)i∈S# .

The physical interpretation of Q̂(s) was established in [4,
Theorem 2]. For completeness, we state this result in Theo-
rem 1 below. Now, for any s > 0, we can find the minimum

nonnegative solution Ψ̂(s) of the Riccati equation

Q̂(s)+−+Q̂(s)++Ψ̂(s)+Ψ̂(s)Q̂(s)−−+Ψ̂(s)Q̂(s)−+Ψ̂(s) = O,
(14)

which has the following interpretation, by the analysis in [4,
Theorem 3]. For all i ∈ S+ and j ∈ S−,

[Ψ̂(s)]ij = E(e−sU(θ)1{ϕ(θ) = j} | ϕ(0) = i,X(0) = 0),
(15)

is the Laplace-Stieltjes transform of the distribution of the
upward shift in buffer Y at the moment the level in buffer X
first returns to 0 and does so in phase j, given start from
phase i and empty buffer X. We can write

Ψ̂(s) =

∫ ∞
z=0

e−szψ̂(z)dz, (16)

where the entry [ψ̂(z)]ij , for i ∈ S+ and j ∈ S−, is the
corresponding probability density, which can be derived by

numerically inverting [Ψ̂(s)]ij using the algorithm by Abate

and Whitt [1], for any z > 0. That is, the matrix ψ̂(z) is
an |S+| × |S−| matrix of densities, the (i, j)-th component
of which records the density of an upward shift of z in the
buffer Y , from some y to y + z, during a busy period of the
buffer X, ending in phase j ∈ S−, starting at phase i ∈ S+.

In the remainder of this section we will give a slightly en-
hanced proof of Theorem 2 in [4]. This theorem gives the
matrix recording the Laplace-Stieltjes transforms of the dis-
tribution of the shift in buffer Y , during the time that an
amount x has flown into or out of the buffer X, ending up
in phase j given that it starts in i. In [4] this matrix was

called1 ∆̃y(s), while in the current paper we will write it as

U(x)(s). But more importantly, we will modify its definition
somewhat, to reflect the fact that the value of the shift in
buffer Y does not only depend on the initial phase i, the
ending phase j, and the time duration, but on the whole
sample path of ϕ(t) in between. For the moment we will
assume that, in our current context, Y (t) can only increase,
so that the shift in buffer Y , expressed as Y (t) − Y (0), is
always nonnegative2.

Let, as in [4], f(t) =
∫ t

0
|rϕ(u)|du be the total amount

of fluid that flowed into or out of buffer X during (0, t),
referred to as the in-out fluid of X, and let ω(x) = inf{t >
0 : f(t) = x} be the first time this in-out fluid reaches level x.
Moreover, let now V x = {ϕ(u), 0 ≤ u ≤ ω(x)} denote the
whole path of ϕ(t) during this interval, and let V xi be the set
of all such paths that can be taken, starting from ϕ(0) = i,
such that the total in-out fluid in buffer X is precisely x.

Denoting the duration of any path v by |v|, let U(|v|) be
the total shift in the second buffer during (0, |v|); note that
this random variable is completely determined by the path v.
Then we formally define the matrix U(x)(s) via its (i, j)-th

1with superscript y rather than x, since unfortunately the
monotonously increasing (or decreasing) buffer, in which the
shift is measured, was there called X, so the notations for
X and Y are interchanged.
2i.e. we only consider the case X(t) > 0; the case X(t) = 0
is similar, except that we should replace the word ‘shift’ by
‘virtual shift’, as if the buffer Y had no lower boundary at 0.



entry as follows,

[U(x)(s)]ij =

∫
v∈V x

i

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v),

(17)
where the integral incorporates the (countable) number of
all possible successive states that ϕ(t) visits, as well as all
the corresponding sojourn times during all of these visits
(adding up to ω(x)). Using this definition we can prove the
following result.

Theorem 1. (Theorem 2 in Bean and O’Reilly [4])

U(x+h)(s) = U(x)(s)U(h)(s),

from which it follows that

U(x)(s) = eQ̂(s)x.

Proof. First note that any path v ∈ V x+h
i can be seen

as a concatenation of two paths, v1 ∈ V xi , ending in some
phase k, and v2 ∈ V hk representing the in/outflow increase
in buffer X from x to x + h. Due to the Markov property
these paths are independent, conditional on v2 starting in
the same phase k as where v1 finished. Since in that case
clearly we also have U(|v|) = U(|v1|) +U(|v2|), we arrive at

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v)

=
∑
k

e−sU(|v1|)1{ϕ(|v1|) = k}dP (V = v1)

×e−sU(|v2|)1{ϕ(|v2|) = j}dP (V = v2),

from which we find∫
v∈V x+h

i

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v)

=
∑
k

∫
v∈V x

i

e−sU(|v|)1{ϕ(|v|) = k}dP (V = v)

×
∫
v∈V h

k

e−sU(|v|)1{ϕ(|v|) = j}dP (V = v),

and hence the first statement follows. For the proof of the
second statement we can simply refer to [4].

3.2 Embedded discrete-time Markov chain
Let θk be the k-th time that (ϕ(t), X(t), Y (t)) hits the

line x = 0, and let the discrete-time Markov chain Jk =
(ϕ(θk), Y (θk)) with discrete/continuous state space S− ×
(0,∞), record the position of (ϕ(t), Y (t)) at time θk. Also,
let τk > θk be the k-th time the process leaves the boundary
x = 0.

Lemma 1. The transition kernel of Jk is given by

Pz,y =

∫ z

u=[z−y]+

[
I O

]
eQ̂		uQ̂	+ψ̂(y − z + u)du

+
[

I O
]
eQ̂		z(−Q̂		)−1Q̂	+ψ̂(y). (18)

where [x]+ denotes max(0, x), and
[

I O
]

is a |S−|×|S	|
matrix.

Proof. We apply the physical interpretations of the quan-
tities analysed in Section 3.1. Essentially, the process Jk
satisfies a Lindley-type recursion, since for its second com-
ponent Y (θk) we can write

Y (θk+1) = [Y (θk)−Dk]+ + Uk, (19)

where

Dk =

∫ τk

u=θk

|̂cϕ(u)|du, Uk =

∫ θk+1

u=τk

ĉϕ(u)du (20)

are appropriately chosen random variables. More precisely,
starting from time θk, with X(θk) = 0 and ϕ(θk) = i ∈ S−,
we recall the two consecutive stages described in Section 2.3.

First, (i) the process Y (t) will make a negative shift of size
−D, say, as long as ϕ(t) ∈ S	 (while X(t) remains at zero
during this stage). Then, after a transition of ϕ(t) from S	
to S+, the second stage (ii) commences, during which the
process Y (t) will make a positive shift of size U , say, during
a busy period of the first queue (i.e., during a first return
time of X(t) back to level zero, starting at level zero).

There are two alternatives. The first alternative is that
the chain Jk transitions from (i, z) to (j, y) without the level
in the buffer Y returning to 0 during time interval (θk, θk+1).
Assume y ≥ z. In this case,

• first the phase remains in the set S	 at least until
the level in buffer Y shifts down by u units (from z
to z − u), for some u with 0 ≤ u ≤ z; this occurs

according to the probability matrix eQ̂		u;

• then the process makes a transition to some phase in
S+, which starts the busy period in buffer X; this oc-

curs according to the rate matrix Q̂	+;

• finally, the busy process in buffer X ends and the level
y is observed in buffer Y ; this occurs according to the

density matrix ψ̂(y− z+ u) since the shift in buffer Y
during the busy period in X must be exactly y − (z −
u) = y − z + u.

The transition kernel of the first alternative, when y ≥ z, is
therefore

I(y ≥ z)
[

I O
] ∫ z

u=0

eQ̂		uQ̂	+ψ̂(y − z + u)du, (21)

and by analogous argument, when y < z,

I(y < z)
[

I O
] ∫ z

u=z−y
eQ̂		uQ̂	+ψ̂(y− z+u)du. (22)

The second alternative is that the chain Jk transitions
from (i, z) to (j, y) with the level in the buffer Y returning
to 0 some time during time interval (θk, θk+1). In this case,

• first the phase remains in the set S	 at least until
the level in buffer Y shifts down by z units (from z
to 0); this occurs according to the probability matrix∫∞
u=z

eQ̂		udu = eQ̂		z(−Q̂		)−1;

• then the process makes a transition to some phase in
S+, which starts the busy period in buffer X; this oc-

curs according to the rate matrix Q̂	+;

• finally, the busy process of buffer X ends at level y;

this occurs according to the density matrix ψ̂(y).

The transition kernel of the second alternative is[
I O

]
eQ̂		z(−Q̂		)−1Q̂	+ψ̂(y), (23)

and so the result follows by summing (21)–(23).



We could work with the above directly, but in Section 4
we prefer to determine the following Laplace-Stieltjes trans-
forms, which can then be inverted using the algorithm in
Abate and Whitt [1]. We note that Pz,y is continuous
w.r.t. y > 0, and it is easy to check that

∫∞
y=0

Pz,ydy1 = 1.

Corollary 1. The Laplace-Stieltjes transform of Pz,y

w.r.t. y is given by the matrix

Pz,·(s) =
[

I O
]
e−sz

(
Q̂		 + sI

)−1 (
e(Q̂		+sI)z − I

)
×Q̂	+Ψ̂(s)

+
[

I O
]
eQ̂		z(−Q̂		)−1Q̂	+Ψ̂(s). (24)

Proof. By straightforward computation of
∫∞
y=0

e−syPz,ydy,

or by using (19) directly as follows. Letting Yk = Y (θk) and
ϕk = ϕ(θk) for notational convenience, we have

E[e−sYk+11{ϕk+1 = j} | Yk = z, ϕk = i]

= E[e−s(z−Dk+Uk)1{ϕk+1 = j}1{Dk ≤ z} | Yk = z, ϕk = i]

+ E[e−sUk1{ϕk+1 = j}1{Dk > z} | Yk = z, ϕk = i].

By conditioning on the phases m and ` just before and after
the time when the process leaves x = 0, we rewrite the first
term as

E[e−s(z−Dk+Uk)1{ϕk+1 = j}1{Dk ≤ z} | Yk = z, ϕk = i]

=
∑
m∈S	

∑
`∈S+

e−sz · E[esDk1{ϕ(τk−) = m}

×1{Dk ≤ z} | Yk = z, ϕk = i]

×E[1{ϕ(τk) = `} | ϕ(τk−) = m]

×E[e−sUk1{ϕk+1 = j} | ϕ(τk) = `]

=
∑
m∈S	

∑
`∈S+

e−sz
∫ z

u=0

[[
I O

]
eQ̂		u

]
im

×esudu [Q̂	+]m` [Ψ̂(s)]`j

=
[ [

I O
]
e−sz

(
Q̂		 + sI

)−1

×
(
e(Q̂		+sI)z − I

)
Q̂	+Ψ̂(s)

]
ij
.

A similar expression can be given for the second term, by
which the statement follows.

We denote the stationary distribution of Jk by a row vec-
tor ξz = [ξi,z]i∈S− of densities, satisfying

∫∞
z=0

ξzPz,ydz = ξy∫∞
y=0

ξydy1 = 1,
(25)

and proceed in the next section to express the stationary
distribution of the process (ϕ(t), X(t), Y (t)) at level x = 0
in terms of ξz.

Remark 1. Instead of (19) we could also have worked
with the true Lindley recursion

Y (τk+1) = [Y (τk) + Uk −Dk+1]+. (26)

This is the approach that was followed in [14]. There, the
stationary distribution of the chain, embedded at these times,
in fact gave immediately also the stationary distribution of
the whole process at x = 0, due to a PASTA-like argument

related to the workload in an M/G/1 queue. However, in the
more general model at hand, with possibly multiple phases
being visited while X(t) = 0, this need not be true; e.g.
there may be phases in S	 from which it is impossible to
jump to a state in S+. Moreover, one disadvantage would
be that the stationary distribution of the embedded Markov
chain besides having a density for y > 0, also has a mass at
y = 0. Hence we decided to embed at hitting times of x = 0,
in a manner similar to the analysis in [5].

3.3 Stationary distribution
In the following subsections we show how to find the var-

ious densities and probability masses that define the joint
stationary distribution of the process.

3.3.1 Density at x = 0,y > 0 and mass at x = 0,y = 0

Recall from Section 2.3 that we need expressions for the
vectors π(0, y) and p(0, 0), which we give in the following.

Lemma 2. We have π(0, y) =
[

0 π(0, y)	
]
, where

π(0, y)	 = α

∫ ∞
z=y

[
ξz 0

]
eQ̂		(z−y)(|Ĉ	|)−1dz, (27)

and p(0, 0) =
[

0 p(0, 0)	
]
, where

p(0, 0)	 = α

∫ ∞
z=0

[
ξz 0

]
eQ̂		zdz(−T		)−1. (28)

Here, α is a normalization constant that satisfies

1 = p(0, 0)1 +

∫ ∞
y=0

π(0, y)dy1 +
∑
j∈S+

∫ ∞
x=0

πj(x, xĉj/rj)dx

+

∫ ∞
x=0

∫ ∞
y=0

π(x, y)dydx1, (29)

given by

α =

{[
ξ 0

]
(−T		)−1

(
1

+T	+K−1 [ (R+)−1 Ψ(|R−|)−1
]

×
(
1 + T±#(−T##)−11

))}−1

, (30)

where, ξ =
∫∞
z=0

ξzdz, Ψ = Ψ̂(s)|s=0 and K = K̂(s)|s=0

with

K̂(s) = Q̂(s)++ + Ψ̂(s)Q̂(s)−+. (31)

Proof. In (i)–(iii) we prove (27)–(30) respectively.
(i) Observe the process whenever the level in buffer X hits

0. Denote by α the corresponding rate such that E∗ = α−1

is the average time between two hits.
Let E∗z,i(j, 0, u) be the derivative w.r.t. y of the expected

time in phase j, x = 0 and y ≤ u until the next hit given
start from state (i, 0, z).

Consider the process {(ϕ(t), X(t), Y (t)) : t ≥ 0} in sta-
tionarity. By the argument analogous to [15, Theorem 4.1],

P (φ = j,X = 0, Y ∈ dy) = α
∑
i∈S−

∫ ∞
z=y

ξz,iE
∗
z,i(j, 0, y)dz · dy,

(32)

where the integral starts at y since for z < y it is not pos-
sible to reach (j, 0, y) from (i, 0, z) without leaving x = 0 in



between. Since, by adapting the argument in [2, Theorem
3.2.1] to the analysis here,

E∗z,i(j, 0, y) = 1 · [eQ̂		(z−y)]ij/|̂cj |, (33)

equation (27) for π(0, y) follows.
(ii) Similar arguments show the expression for (28); for

ending up in (j, 0, 0) from (i, 0, z) with i ∈ S− and z ≥ 0,
the process ϕ(t) now needs to stay in S	 for an amount of
‘shift’ (rather than time) of z + w for some w ≥ 0, and end
up in phase j ∈ S	. We have

[p(0, 0)]j = α
∑
i∈S−

∫ ∞
z=y

ξz,i

∫ ∞
w=0

[eQ̂		(z+w)]ij/ĉjdwdz

= α
∑
i∈S−

∫ ∞
z=y

ξz,i[e
Q̂		z(−T		)−1]ijdz.

(34)

(iii) To find α, since this is a constant that does not de-
pend on buffer Y , we only need to consider the process
(ϕ(t), X(t)), together with the distribution of {ϕ(t)} upon
hitting x = 0, which is ξ =

∫∞
z=0

ξzdz. The vector ξ is
the stationary distribution of the corresponding discrete-
time Markov chain with state space S− which records the
position of ϕ(t) at time θk. The vector ξ is is the unique
solution of the set of equations[

ξ 0
]

(−T		)−1 T	+Ψ = ξ,

ξ1 = 1. (35)

The stationary distribution for the SFM has been derived
in the literature in [5, 6, 11, 13, 15, 17] in slightly different
contexts. For completeness, we summarize here the results
required for the derivation of the stationary distribution of
(ϕ(t), X(t)), including the probability mass vector at level
zero, p =

[
0 p− p#

]
, and the probability density vec-

tor, π(x) =
[
π(x)+ π(x)− π(x)#

]
, for all x > 0. By

conditioning on the last time the SFM (ϕ(t), X(t)) hits level
zero from above, in a manner similar to [5, Theorem 2],[

p− p#
]

= α
[
ξ 0

]
(−T		)−1 , (36)

and[
π(x)+ π(x)−

]
=

[
p− p#

]
T	+e

Kx

×
[

(R+)−1 Ψ(|R−|)−1
]
,

π(x)# =
[
π(x)+ π(x)−

]
T±#

×(−T##)−1. (37)

Alternatively, (36) can be found by integrating (27) w.r.t. y
and adding to (28). Similarly, (37) can be found by inte-
grating π(x, y) w.r.t. y and adding

∑
j∈S+ π

j(x, xĉj/rj);

the expressions for these quantities will be derived in sec-
tions that follow.

Since α is a normalizing constant that solves

p1 +

∫ ∞
x=0

π(x)dx1 = 1, (38)

we have

α−1 =
[
ξ 0

]
(−T		)−1

(
1

+T	+K−1 [ (R+)−1 Ψ(|R−|)−1
]

×
(
1 + T±#(−T##)−11

))
, (39)

and so the expression (30) for α follows.
Note that α can also be interpreted as the total (station-

ary) rate of leaving x = 0, since by (36),[
p− p#

]
T	+1 = −

[
p− p#

]
T		1

= α
[
ξ 0

]
1

= α, (40)

and also as the total (stationary) rate of hitting x = 0, since
by (37) and Ψ1 = 1,

lim
x→0+

π(x)−|R−|1 =
[

p− p#
]
T	+1

= α, (41)

with the two forms equivalent, as expected in stationarity.
For the Laplace-Stieltjes transform vector of the density

part, denoted as π(0, ·)(s) =
∫∞
z=0

e−syπ(0, y)dy, we have
the following.

Corollary 2. We have π(0, ·)(s) =
[

0 π(0, ·)(s)	
]
,

where

π(0, ·)(s)	 = α

∫ ∞
z=0

[
ξz 0

]
eQ̂		z(Q̂		 + sI)−1

×
(
I− e−(Q̂		+sI)z

)
(|Ĉ	|)−1dz. (42)

Proof. Since

π(0, ·)(s)	 =

∫ ∞
y=0

e−syα

∫ ∞
z=y

[
ξz 0

]
×eQ̂		(z−y)(|Ĉ	|)−1dzdy

= α

∫ ∞
z=0

[
ξz 0

]
eQ̂		z

×
∫ z

y=0

e−(Q̂		+sI)y(|Ĉ	|)−1dydz

= α

∫ ∞
z=0

[
ξz 0

]
eQ̂		z

×

−e−(Q̂		+sI)y(Q̂		 + sI)−1

∣∣∣∣∣
z

y=0

 (|Ĉ	|)−1dz,

the result follows.

3.3.2 Density at x > 0,y > 0

We now proceed to the density vector π(x, y) as a function
of y for fixed value of x.

Define the Laplace-Stieltjes transform π(x, ·)(s) such that,
[π(x, ·)(s)]i =

∫∞
y=0

e−sy[π(x, y)]idy for i ∈ S	, and [π(x, ·)(s)]i =∫∞
y=0

e−sy[π(x, y)]idy + e−sxĉi/riπi(x, xĉi/ri) for i ∈ S+.

Lemma 3. We have

π(x, ·)(s) =
[
π(x, ·)(s)+ π(x, ·)(s)− π(x, ·)(s)#

]



with [
π(x, ·)(s)+ π(x, ·)(s)−

]
= (π(0, ·)(s)	 + p(0, 0)	)

×T±#e
K̂(s)x ×

[
(R+)−1 Ψ̂(s)(|R−|)−1

]
, (43)

and

π(x, ·)(s)# =
[
π(x, ·)(s)+ π(x, ·)(s)−

]
×T±#(sĈ# −T##)−1. (44)

Proof. The result follows immediately by a partitioning
of the sample paths argument, analogous to the one used in
the derivation of (37).

Corollary 3. Letting π(·, ·)(v, s) =
∫∞
x=0

e−vxπ(x, ·)(s)dx,
we have

π(·, ·)(v, s) =
[
π(·, ·)(v, s)+ π(·, ·)(v, s)− π(·, ·)(s)#

]
with[
π(·, ·)(v, s)+ π(·, ·)(v, s)−

]
= (π(0, ·)(s)	 + p(0, 0)	)

×
[

T−+

T#+

]
(−K̂(s) + vI)−1 [

(R+)−1 Ψ̂(s)(|R−|)−1
]
,

(45)

and

π(·, ·)(s)# =
[
π(·, ·)(s)+ π(·, ·)(s)−

]
T±#

×(sĈ# −T##)−1. (46)

3.3.3 Density at y = xĉi/ri

Finally, we state the result for the one-dimensional densi-
ties on each of the lines y = xĉi/ri, i ∈ S+.

Lemma 4. For all i ∈ S+,

πi(x, xĉi/ri) =
∑
j∈S	

pj(0, 0)Tji exp(−(Tii/ri)x)/ri. (47)

Proof. This result essentially follows by arguments analo-
gous to the proof of the first equation in (37), in a slightly
different environment.

By conditioning on the most recent time the process leaves
the point (0, 0), in order to observe the process in station-
arity at the point (x, xĉi/ri), the following must occur.

• First, the process starts from state (j, 0, 0) for some
j ∈ S	, with probability pj(0, 0), and instantaneously
transitions to phase i at a rate Tji.

• Next, the process remains in phase i at least for the du-
ration of time x/ri, with probability exp(−(Tii/ri)x).

Denote by E(i, x, xĉi/ri) the expected number of visits to
state (i, x, xĉi/ri) given the process starts in state (i, 0, 0)
and avoids returning to level 0 in both buffer X and Y .
Clearly, E(i, x, xĉi/ri) = 1 · exp(−(Tii/ri)x).

Further, we note that, by [2, Theorem 3.2.1],

πi(x, xĉi/ri) =
∑
j∈S	

pj(0, 0)TjiE(i, x, xĉi/ri)/ri, (48)

and the result (47) follows.

3.4 Main Result
We now summarize the results for the stationary distri-

bution of the process {(ϕ(t), X(t), Y (t)) : t ≥ 0}.

Theorem 2. The probability mass components of the sta-
tionary distribution, corresponding to x = 0, are

π(0, y) and p(0, 0),

given in Lemma 2. The Laplace-Stieltjes transforms of π(0, y)
w.r.t. y are given in Corollary 2.

The one-dimensional density components of the stationary
distribution, corresponding to y = xĉj/rj, are

πj(x, xĉj/rj) = [δijπ
j(x, xĉj/rj)]i∈S , j ∈ S+,

given in Lemma 4.

The Laplace-Stieltjes transforms of the two-dimensional
density components of the stationary distribution, π(x, y),
corresponding to x > 0, w.r.t. y, are

[π(x, ·)(s)]i, i ∈ S	

and

[π(x, ·)(s)]i − e−sxĉi/riπi(x, xĉi/ri), i ∈ S+,

given in Lemma 3. The corresponding Laplace-Stieltjes trans-
forms w.r.t. x and y are given in Corollary 3.

4. TANDEM FLUID QUEUE: NUMERICAL
TREATMENT

In order to evaluate the stationary distribution of the
model using the theoretical results of Section 3, we apply
discretization and truncation with appropriate parameters
∆u, and L, ` = 0, 1, 2, . . . L. The key points of the method-
ology are summarized below.

Step 1. Construct discretized version of the process Jk
discussed in Section 3.2, with a truncated level variable as
follows.

Fix some small ∆u > 0 and some large integer L > 0, and
consider a discrete-time Markov chain {J̄k : k = 0, 1, 2, . . .}
with state space {(i, `) : i ∈ S−, ` = 0, 1, 2, . . . L}, with
the interpretation that when Jk = (j, z) for some z with
`∆u ≤ z < (` + 1)∆u, ` = 0, 1, 2, . . . (L − 1), then we have
J̄k = (j, `), and when Jk = (j, z) with z ≥ L∆u, we let
J̄k = (j, L).

(i). Approximate the corresponding one-step transition
probabilities Pi,`;j,m = P (J̄k+1 = (j,m)|J̄k = (i, `)), which
are collected in matrix P = [P`m]`,m=0,1,2,...,L made of block
matrices P`m = [Pi,`;j,m]i,j∈S−as follows.

First, for `,m = 0, 1, 2, . . . L, evaluate

P̃`m =

∫ (m+1)∆u

y=m∆u

P`∆u,ydy, (49)

and then normalize P̃`m to obtain P`m so that

L∑
m=0

P`m1 = 1. (50)

(ii). Next, with the notation limk→∞ P (J̄k = (j, `)) =
ξ̄j;` whenever the limits exist, denote by ξ̄ = [ξ̄`]`=0,1,2,...L,
ξ̄` = [ξ̄j;`]j∈S− , the stationary distribution vector of the



process {J̄k : k = 0, 1, 2, . . .}. Derive ξ̄ by solving the set of
equations, using standard methods,

ξ̄P = ξ̄, ξ̄1 = 1. (51)

Step 2. Approximate the values of stationary distribu-
tion of the process {(ϕ(t), X(t), Y (t)) : t ≥ 0} as follows.

(i). For any z with `∆u ≤ z < (`+1)∆u, ` = 0, 1, 2, . . . L,
approximate

ξz ≈
ξ̄`
∆u

. (52)

(ii). Using (28), apply

p(0, 0)	 = α

∫ ∞
z=0

ξze
Q̂		zdz(−T		)−1

= α

∞∑
`=0

∫ (`+1)∆u

z=`∆u

ξze
Q̂		zdz(−T		)−1

≈ α

L∑
`=0

∫ (`+1)∆u

z=`∆u

ξ̄`
∆u

eQ̂		zdz(−T		)−1

≈ α

L∑
`=0

ξ̄`e
Q̂		`∆u(−T		)−1. (53)

Apply analogous approximation idea to calculating π(0, y),
y > 0, and π(x, y), x > 0, y > 0, using (42), (45)-(47) and
the inversion method of Abate and Whitt in [1].

Work on the numerical application of the above method-
ology is in progress.

5. CONCLUSION
We considered a tandem fluid queue model consisting of

two queues, in which the first queue, {(ϕ(t), X(t)) : t ≥ 0},
is a standard stochastic fluid model with a finite buffer and
real rates ri, and the second queue, {(ϕ(t), Y (t)) : t ≥ 0}, is
a stochastic fluid model with a finite buffer and rates ĉi > 0
and ĉi < 0, such that the rates of change of level depend
on whether the first queue is empty or not. Specifically, we
assumed that the rates of change of level in the second queue
are negative (dY (t)/dt = ĉi) when the first queue is empty,
and positive (dY (t)/dt = ĉi) otherwise.

We derived theoretical results for the stationary analysis
of such tandem fluid queue, and summarized the key points
of the methodology for the numerical evaluation of the sta-
tionary distribution of the process based on these results.

As future work we are also interested in the analysis of
a dual tandem fluid queue model, with the difference that
the rates of change of level in the second queue are positive
(dY (t)/dt = ĉi) when the first queue is empty, and negative
(dY (t)/dt = ĉi) otherwise. Work on the theoretical analysis
of the dual model is in progress.
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