LIQUID PHASE EPITAXY AND SPECTROSCOPIC INVESTIGATION OF OPTICALLY ACTIVE KYb(WO₄)₂ THIN LAYERS

A. Aznar^{a,b}, D. Ehrentraut^a, <u>Y.E. Romanyuk</u>^a, R. Solé^b, M. Aguiló^b, P. Gerner^c, H.U. Güdel^c, M. Pollnau^a

- ^a Advanced Photonics Laboratory, Institute for Biomedical Imaging, Optics and Engineering, EPF Lausanne, Switzerland, presenting author: yaroslay.romanyuk@epfl.ch
- ^b Física i Cristal.lografia de Materials, Universitat Rovira i Virgili, Tarragona, Spain
- ^c Department of Chemistry and Biochemistry, University of Bern, Switzerland

In recent years, Yb^{3+} has attracted much attention as an activating ion because of its small quantum defect for laser emission from ${}^{2}F_{5/2}$ to ${}^{2}F_{7/2}$ at ~1.03 µm, which provides high efficiency and reduced heat generation. A promising material for Yb³⁺ lasers is KYb(WO₄)₂ (KYbW) [1]. It can be grown from high-temperature solutions [2]. A suitable substrate material for the growth of single-crystalline layers with thicknesses in the range of the absorption length of ~13 µm at 981 nm is KY(WO₄)₂ (KYW).

We demonstrate the liquid phase epitaxy (LPE) of KYbW layers at start temperatures as low as 520°C from the chloride solvent KCl-NaCl-CsCl. This temperature is favorable in order to decrease the thermal stresses due to the differences in the thermal expansion coefficients of substrate and layer. Moreover, the choice of [010]oriented KYW substrates bypasses the large difference in the thermal expansion coefficient along the [010] direction. Our spectroscopic investigations show that the fluorescence lifetime of ~250 µs measured in our LPEgrown KYbW layers is dominated by radiative decay and is very similar to that measured in top-seeded-solutiongrown bulk samples [2]. Fast energy migration among the Yb³⁺ ions and energy transfer to small amounts of Tm³⁺ and Er³⁺ ions present in the YbCl₃ reagent lead to visible upconversion luminescence in the layers under 981-nm excitation.

- P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, *Appl. Phys. B* 2002, 74, 185
- [2] M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, *Phys. Rev. B* 2002, 65, 165121