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Abstract

This paper presents and discusses some architectural concepts for distributed sys-
tems design. These concepts are derived from an analysis of limitations of some cur-
rently available standard design languages. We conclude that language design should
be based upon the careful consideration of architectural concepts. This paper aims at
supporting designers by presenting a methodological design framework in which
they can reason about the design and implementation of distributed systems. The pa-
per is also meant for language developers and formalists by presenting a collection
of architectural concepts which deserve consideration for formal support.

1 Introduction

Architectural concepts are abstractions (models) of frequently occurring aspects of tech-
nical objects. Such concepts are manipulated during the design and implementation proc-
ess. Examples are service, service access point, service primitive, service primitive pa-
rameter, service data unit, protocol, protocol data unit, abstract interface, real interface,
etc. Naturally such concepts should find a straightforward reflection in the design lan-
guage that is used.

Once a design language is introduced, however, one easily runs the risk of only consider-
ing the characteristics of a technical object in the light of the design model imposed by
this language. As a result, architectural concepts may be obscured by pre-conceived lan-
guage limitations or even unintended design decisions may be forced.

Furthermore, attempts to enhance the expressive power of a design language that are pure-
ly based on the manipulation of the semantic model, though resulting in sound mathemat-
ical solutions, may be of no practical use. Enhancement in expressive power must also fol-
low from careful consideration of the architectural concepts involved, in order to result in
a coherent design model.

The relevance of the work reported in this paper resides in the fact that it concentrates on
architectural concepts to provide engineering support for the design of distributed sys-
tems, whereas a design language is merely considered as a means to represent and manip-
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ulate these concepts. Available standard design languages for distributed systems design
show severe limitations in the representation of architectural concepts, possibly forcing
designers to take improper design decisions. Sometimes these limitations are confused
with abstraction. However, when a certain language model does not allow us to formally
represent characteristics directly, it is not fair to simply state that we abstract from these
characteristics. Rather one should acknowledge the language limitations and find ways to
compensate for them.

When investigating the expressive power of LOTOS we noticed that more attention
should be given to architectural design concepts. This paper gives account of some results
of this research. It introduces and justifies a set of architectural concepts for designing dis-
tributed systems, and shows how these concepts can be used to make design choices ex-
plicit in the design trajectory. The paper addresses some design and structuring techniques
and some refinement options that are useful implementation notions.

This paper is structured as follows: section 2 introduces the notion of design culture, as a
framework in which the importance of architectural design concepts is acknowledged;
section 3 discusses the architectural concepts which are supported by some currently
available design languages, and identifies some of their limitations; section 4 introduces
a collection of basic architectural concepts; section 5 discusses the representation of be-
haviours of interaction systems; section 6 addresses some structuring facilities for behav-
iour definition; section 7 indicates how the architectural concepts introduced in section 4
can be manipulated in realistic instances of design. Conclusions are drawn in section 8.

2 Framework: Design Culture

The purpose of the design process is to produce a technical object: a real system. At the
beginning of the design process the system does not exist. Yet it must be conceived, ana-
lysed, manipulated and communicated among designers. This means that, at each stage in
the design process, the technical object has to be represented by describing only those
characteristics that are relevant at that stage in the design process and abstracting from de-
tails that are irrelevant at that stage.

Architectural (design) concepts, being abstractions of aspects of technical objects, can be
used to design technical objects, by making a composition of such concepts. To conceive,
manipulate, analyse and communicate designs, designers should be able to express them
in a comprehensive, complete and unambiguous way. This implies that a design language,
as a notation forrepresenting designs, is necessary. Elements of a design language (e.g.
syntax and semantics elements) must be derived from generic design concepts related to
the technical area of concern, making the language general purpose in its application area.
Formal models cater for the unambiguous interpretation of a design, since they are based
on precise mathematical models.

This means that a distinction must be made between a design as an architectural notion
and its specification, the latter being merely a representation of a design in a chosen de-
sign language.

A design language is only suitable for representing designs if there can be made a clear
relationship between design concepts and compositions of language elements to represent
them. We define the termarchitectural semantics as the relationship between architectur-
al concepts and their possible representations in a design language. A design language
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should allow a designer to concentrate on the design and the architectural concepts, and
use the design language merely as a vehicle to represent design characteristics.

Design languages should also serve to support a design methodology. Effective design
methodologies are based on the concept of separation of concerns and abstraction. While
at a certain level of abstraction we recognize a relationship between a design and its rep-
resentation, designs also relate to each other at different abstraction levels. This means
that a design at a certain level of abstraction has to be elaborated according to specific de-
sign objectives, which are consistent with the design methodology. Examples of such de-
sign objectives are the incorporation of design decisions that manipulate some architec-
tural concept, and the application of qualitative design principles.

Another important aspect is the use of design supporting tools. Formally sound design
languages in combination with well-defined design methodologies allow the development
of software tools for (partly or fully) automation of verifications, transformations, simu-
lations, etc. of designs.

Designs are formulated by humans acting as designers, who have personal preferences or
styles. General purpose specification styles can be derived from qualitative design princi-
ples and design objectives, being the representation of a design methodology in terms of
the elements of a design language. Furthermore the design language should support the
use of the specification styles dictated by the design methodology.

The collection of conventions, concepts, tools, methods, etc., determine the way systems
are developed in a certain environment of designers, characterizing what we call thede-
sign cultureof that environment ([17]). Figure 1 depicts the relationship between the el-
ements of a design culture and how these relate to a design and its specification.

In Figure 1 we notice the central position of architectural concepts: they influence the def-
inition of the design language, and the design methodology, and constitute the objects to
be manipulated in the elaboration of designs. Therefore architectural concepts form the
foundation of a design culture.

Figure 1: Application of the Elements of a Design Culture
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3 Architectural Concepts in Current Design Languages

This section recalls some of the basic design concepts of current standard design languag-
es and identifies a few of their limitations. Since these aspects have already been men-
tioned in a whole range of other publications (see [7] for example), we keep it short here.

We consider only two groups of formal design languages: (i) those based on finite state
automata with asynchronous interactions via queues, such as SDL and Estelle, and (ii)
those based on process algebra, i.e. labelled transition systems with synchronous interac-
tions, such as LOTOS.

3.1 SDL and Estelle

SDL and Estelle define a system in terms of a set of modules which are interconnected by
channels. The behaviour of each module is defined by a finite state automaton which re-
ceives and sends messages via channels to other modules. Channels are modelled as infi-
nite queues.

The benefits of this model are at the level of software implementation. Many commercial-
ly available operating systems, for example, present facilities for interprocess communi-
cation using channels and messages. Implementations of SDL and Estelle specifications
under these operating systems can be rather straightforward.

The limitations of this model are that designers are forced to put queues between any two
communicating modules. Even in situations where queues are not necessary nor desirable,
for example when one module is decomposed in two modules, this model has already im-
posed this design choice. Certain behaviour patterns such as backpressure, negotiation of
interaction values, disruption of behaviour, etc. cannot be represented, unless one uses
complicated message exchanges via the queues, which obscure the interpretation of these
behaviours. Complex behaviours are hard to structure in terms of finite state automata,
which forces designers to take early implementation decisions that may be hard to justify
at that level of abstraction.

We conclude that the design concepts used in SDL and Estelle are at a too low level of
abstraction, are based on specific technological arguments, and targeted to specific imple-
mentation structures. Consequently SDL and Estelle have less expressive power and
structuring facilities to support design at higher levels of abstraction. Designs in these lan-
guages have to be structured considering a lot of irrelevant internal details from the be-
ginning of their elaboration.

3.2 LOTOS

LOTOS defines a system in terms of a process, or a composition of processes, such that
each process interacts with its environment via synchronous events. More than two proc-
esses can participate in an event (multi-way synchronization). Events are not restricted to
message passing, but they can also represent other forms of interaction such as value
matching and value generation.

The interaction concept in LOTOS appears to be a powerful expressive element. Limita-
tions in LOTOS are however in its too elementary basic semantics: the eventual execution
of an event once it is enabled, non-deterministic choice, and interleaving. Expression of
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explicit timing, real parallelism, probabilistic features, and modality are lacking. Some of
these limitations will be illustrated in the sequel with small examples.

3.2.1 Real Parallelism versus Interleaving

Consider a bi-directional data buffer, with capacity one in each direction of communica-
tion. In order to simplify the discussion, we consider only one instance of communication
per direction. We also consider two interaction pointsa andb where interactionsin and
out with data values occur, representing insertion and retrieval of data respectively. Figure
2 depicts this example.

Suppose the behaviour of the buffer is informally defined as follows: in case data is intro-
duced ata (b) through an interactionin, it can be retrieved atb (a) through an interaction
out; all interactions ata (b) are interleaved.

This behaviour could be described in LOTOS in the following way:

process BiBuff [a, b] :noexit :=
Buff [a, b] ||| Buff [b, a]
where
 process Buff[x, y] :noexit :=
 x !in ?v: Data; y !out !v ; stop
 endproc (* Buff *)
endproc (* BiBuff *)

By inspecting the behaviour tree of the example, which is depicted in Figure 3, we notice
that the formal semantics of LOTOS1 has introduced an extra property to the behaviour,
namely that some interactions that were supposed to be independent are also interleaved.
The consequence is that a designer cannot infer from the specification if the interactions
must be interleaved, which is the case for the pairs<a !in ?v , a !out ?v>and<b !in ?v ,
b !out ?v>, or if the interactions are independent of each other, which is the case for the
pairs< a !in ?v , b !in ?v>and< a !out ?v , b !out ?v>.

In case the final implementation of a specification is mapped onto sequential processes
that do not support parallelism anyway, interleaving semantics does not present a draw-
back. However in the design of complex distributed systems, our area of concern, the in-
troduction of extra constraints due to interleaving semantics is very undesirable, and it is
in practice either informally relaxed or unnecessarily built. In the former it corrupts the

1. In this paper we only consider the formal semantics as it has been published in the International Standard
IS 8807. Extensions, such as the one proposed in [11], are not being considered here.

Figure 2: Bi-directional Buffer Example

a b

in ?v1: Data out !v1

out !v2 in ?v2 :Data

?v :Data denotes a variable of
typeData

!v denotes a specific value
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objective of unambiguous interpretation of using a formal language, and in the latter it
may generate low quality solutions (e.g. bad performance).

Figure 4 depicts in an ad hoc notation the desired behaviour, by representing only the es-
sential relationships between the interactions.

3.2.2 Timing

Now suppose we take the informal specification above and modify it to include some tim-
ing requirements, in the following way: in case data is inserted ina (b), it must be re-
trieved inb (a) within 10 seconds.

Suppose we would have some extension of LOTOS in which the time of interaction oc-
currences could be explicitly represented. In this case we could define the behaviour of
the bi-directional buffer such thatout in b (a) occurs within 10 seconds afterin in a (b),
but this might not be enough. According to the model of LOTOS we also have tosuppose,

a !in ?v1

b !out !v1

b !in ?v2

a !out !v2b !in ?v2 a !in ?v1

a !out !v2 a !out !v2

b !out !v1

b !out !v1

b !out !v1

a !out !v1

b !in ?v2

a !out !v2

b !out !v1 a !in ?v1

b !out !v1 a !out !v2

Figure 3: Behaviour Tree of the Bi-directional Buffer Example

a !in ?v1: Data b !out !v1

b !in ?v2:Dataa !out !v2

represents that the interactions are interleaved,
i.e. they do not happen at the same time

represents that the interaction  of the side without arrow
causes the interaction at the side of the arrow

Figure 4: Example in True Concurrency Semantics

represent an interactionsand
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for example, that the environment of the buffer is always ready to acceptout’s, after their
correspondingin’s have taken place. The odd thing here is rather subtle: we would de-
scribeonly the system formally, and at the same time impose restrictions on the environ-
mentinformally, corrupting in this way the objective of unambiguous interpretation of us-
ing a formal language.

We conclude that, although LOTOS supports the representation of interactions at a rather
high level of abstraction and has elegant formal semantics and structuring mechanisms, it
lacks expressive power to represent important aspects of realistic distributed systems.

A lot of work has been done to improve the expression power of LOTOS along the lines
mentioned in this section (see for example [1, 3, 11]). Most of this work, however, con-
sists of manipulations of the LOTOS formal semantics and syntax. This inspired us to
rather concentrate our research on the necessary architectural design concepts.

4 Basic Architectural Concepts

This section introduces some basic architectural concepts for the design and implementa-
tion of distributed systems. The novelty of our approach is to consider bothactions and
interactions in a single framework for achieving specific design objectives. Our language
approach, though, is kept quite elementary. We represent behaviours of functional entities
in terms of causality relations between its actions and interactions. Problems such as the
ones caused by interleaving semantics are in this way avoided.

4.1 Actions and Interactions

Usual interpretations of a (behavioural) system specification can be found in [9]. A sys-
tem specification either (i) constrains the behaviour of its environment or (ii) it does not
state what happens in the unspecified cases. In other words a system specification defines
what the system does under pre-defined conditions which should be known and respected
by the system’s environment, and says nothing about the unknown pieces of behaviour.

In LOTOS a system is defined as a componentseparately from its environment. This is
done in terms of possible orderings ofinteractions, value establishment in these interac-
tions, and the constraints on these values,as imposed by the system. The system’s envi-
ronment can be defined in the same way. The definitions of the system and its environ-
menttogether determine acommon behaviour: what interactions inwhat order and with
what value attributes are actually established. This common behaviour is what the user is
really interested in, and therefore it should be specified first and be used later to derive the
behaviour of the system. For the latter there are many possible combinations of system
and environment definitions that result in the same common behaviour, leading to design
freedom for choosing these definitions.

We call this common behaviour theinteraction system between the system and its envi-
ronment. In the definition of the interaction system only the result of each interaction is
defined but not the different ways in which the system and its environment may contribute
to the establishment of these results. The interaction system defines at a high level of ab-
stractionwhat happens in terms of established interactions, nothow it happens.
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Taking the example mentioned before (in case data is established ina (b), it must be re-
trieved inb (a) within 10 seconds) it could be accomplished in amongst others the follow-
ing ways:

1. the buffer has a certain delay shorter than 10 seconds and the environment has no
constraints for the acceptance of data (interactionout) in a andb;

2. the buffer has no measurable delay and the environment reads the data within 10
seconds after it is stored.

This means that restrictions can be placed in the participants of an interaction quite freely,
under the condition that the desired integrated behaviour is implemented. The required
implementation notions in this case are expected to be rather different than the ones de-
fined so far for process algebras.

An integrated interactionis an interaction viewed in such a way that the distribution of
individual responsibilities and constraints amongst the involved functional entities (sys-
tem, environment or system parts) is ignored. Anaction is an occurrence inside a func-
tional entity. Since we have abstracted from the individual responsibilities of involved
functional entities when defining an integrated interaction, an integrated interaction of an
interaction system can be considered as an action of an interaction system.

From now on we use the term action to denote integrated interactions. It is interesting to
remark that although all integrated interactions are actions, some actions cannot be called
integrated interactions, since one may have actions that in the course of the design process
are not distributed over system parts.

The possibility of having both actions and interactions explicitly represented in a design
model seems to be one of the innovative elements in our approach.

We use the neutral termevent to refer to an action or an interaction in the sequel.

4.2 Observability: Description versus Prescription

Behaviour is inherently related to observability. We can only define behaviour in terms
of what we can observe. The aspects being observed, how observation is performed, and
the purpose of the behaviour definitions are what actually make the difference.

In the design model of LOTOS, observability exists by means of interaction, thus an en-
vironment observes the system by interacting with it. The purpose of observability in this
case has been todescribe the behaviour of the system.

Alternatively, we can consider observability from the point of view of designers, such that
actions and interactions are observed at a meta-level with respect to the system and its en-
vironment. The purpose of observability in this case is toprescribe the behaviour of the
system, which can be used to construct the system.

4.3 Event Attributes

We expect events to have the following attributes: location, time, value(s) of information,
functionality, and probability. These attributes are introduced in order to allow events and
their relationships to be defined. Each of these attributes is briefly discussed below:
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• location attribute: this attribute can be used as a reference for the system parts that
perform an event. It may be used in lower abstraction levels to delimit these system
parts. This attribute can be also called(inter)action point;

• time attribute: this attribute indicates the moment or period of time when an event
occurs or can occur. It also determines the moment of time when the value(s) of in-
formation established in the event can be referred to by other events. Time attributes
have been understood and represented in many different ways in different design
models (absolute or relative time, continuous or discrete time, global time, local
time, etc.). In our design model we consider that time is always relative, and that
events may refer directly to time attributes of other events if necessary;

• values of information: the purpose of defining events is to use them as means to es-
tablish values of information. Values of information established in an event can be
of arbitrary complexity (a single value, a set of values, a list of values, etc.), defining
complex information or data structures. In order to be manipulated effectively, only
those characteristics of these values of information which are relevant at the level
of abstraction being considered must be represented. Furthermore values of infor-
mation which are defined as complex data structures should be defined as a hierar-
chy of more elementary data structures. An example of technique that supports ab-
stract representation and structuring of data is theAbstract Data Type (ADT) theo-
ry;

• functionality attribute: this attribute defines the set of values of information passed
to this event by previous events and that may be referred to by successive events.
This set of values of information may refer to other attributes of other events that
have taken place before, becoming the representation of therelevant history for an
event. Roughly comparing, this attribute is implicitly defined in programming or
specification languages through the definition of scope rules, which define which
language elements may refer to specific variables and values established earlier;

• probability attribute: this attribute defines the probability that an event occurs ac-
cording to its definition, once this event isenabled. We say that an event is enabled
if all conditions for this event to occur are satisfied.

Event attributes are important for the definition of behaviours. Fundamental design steps
of a design process can be defined in terms of the manipulation of events and their at-
tributes. Implementation notions can also be defined in terms of relationships between
these attributes at consecutive levels of abstraction.

5 Interaction System Behaviour

We define the behaviour of an interaction system by a set of relationships amongst
actions that altogether determine the possible ways an interaction system can function.
Similarly, the behaviours of a system, its environment and its parts can be defined in
terms of relationships and dependencies between events. Section 6.2 addresses these
behaviour definitions.

We assume that we always can distinguish between actions in behaviours. The identifica-
tion of such distinct actions is guided by the technical needs to distinguish them. Distinct
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actions are supposed to be unique, even if two or more distinct actions have identical
attributes. This implies that each distinct action of a behaviour can be identified by a
uniqueaction identifier for the purpose of this discussion. An action identifier is used
here to represent that an action happens, while action attributes precisely define the char-
acteristics of this action.

5.1 Behaviour Elements

Behaviour definitions should be able to represent the following elements: (i) initial
actions, (ii) causality dependencies amongst actions, and (iii) exit and termination condi-
tions. Each of these elements is briefly discussed in the sequel:

• initial actions: are those actions which are allowed to occur independently of the oc-
currence of other actions of that behaviour. These actions may refer to an initial set
of attribute values (time reference, initial values for functionality variables, etc.),
which have been established before the behaviour is activated. They may occur
spontaneously as the behaviour is instantiated (start actions), or may be enabled by
other behaviours (entry points);

• causality contexts: the causality context of an action defines the role of this action
in a behaviour. Possible time orderings of actions are implicitly defined by their
causality contexts;

• exit and termination conditions: a behaviour is said toexit if conditions of its behav-
iour enable initial actions of another behaviour. This enabled behaviour is then al-
lowed to start, possibly receiving timing references, values of information and func-
tionality. An action is said to terminate a behaviour if no more actions or other be-
haviours are enabled by it, characterizingdeadlock.

The conditions for the occurrence of an action of a behaviourB are defined in acausality
relation between the other actions ofB and this action. We say that a causality relation
defines the conditions which enable and constrain the occurrence of an action. The rea-
son for using causality as the basis for defining behaviour is based on the fact that a dis-
tributed behaviour should not have a global state, but rather a collection of ‘sub-states’
depending on the relationships between actions and action occurrences. These ‘sub-
states’ are defined in the causality relations.

5.2 Basic Causality Relations

The occurrence of an action may depend on the occurrence of a previous action, charac-
terizingcausality. For example, suppose an actiona2 is only allowed to happen if another
actiona1 has happened before.

We define the causality relationa1 -> a2 as:

the occurrence of an action a1 is a condition for the occurrence
of action a2. If a1 occurs then a2 is allowed to occur.

The causality relation above says nothing about the conditions for the occurrence ofa1.
These are defined in the causality relation ofa1, which is not part of the causality relation
of a2.
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The occurrence of an action may depend on the non-occurrence of another action, char-
acterizing a special type of causality, which is often calledconflict. For example, suppose
an actiona2 is only allowed to happen if another actiona1 does not happen. Since this
condition has to be evaluated at the moment we decide whethera2 takes place or not, we
consider thata1 does not happen before nor at the timea2 happens.

We define the causality relation¬ a1 -> a2 as:

the non-occurrence of an action a1 (before or at the same time a2
happens) is a condition for the occurrence of a2.

These two basic causality relations are used as building blocks to build arbitrarily com-
plex causality relations.

5.3 Generic Causality Relations

Causality relations define the patterns of behaviour that enable an action to occur. These
patterns of behaviour can be represented by logical combinations of occurrence or non-
occurrence of actions, or both, usingand (∧) andor (∨) logical operators. This allows one
to compose causality relations of arbitrary complexity.

We consider some typical examples below.

5.3.1 Conjunction of Occurrences

a1 ∧ a2 -> a3

This causality relation states that the occurrences of botha1 anda2 is a condition for the
occurrence ofa3.

Considering thata1 and a2 have no relationship with each other, the behaviour above
could be expressed in the following way in LOTOS:

( a1; exit ||| a2; exit ) >> a3; stop

This comparison only holds modulo interleaving semantics, and disregards the fact
that in LOTOS we actually describe interactions. It has been included here only in
order to illustrate our ideas to the reader familiar with LOTOS. These remarks also
apply to the next comparisons.

5.3.2 Disjunction of Occurrences

a1 ∨ a2 -> a3

This causality relation states that the occurrence ofa1 or a2 is a condition for the occur-
rence ofa3. Notice that in this casea1 and a2 may even both happen, but the occurrence
of one of them is sufficient for the occurrence ofa3. In case botha1 and a2 happen before
a3, there is a (non-deterministic) choice on which of these actions have causeda3. In
casea3 refers to attributes of eithera1 or a2, this choice determines which attributes are
used (from a1 or froma2, but not from both).

Considering thata1 and a2 have no relationship with each other, the behaviour above
could be expressed in the following way in LOTOS:
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hide sync in
 ( a1; sync; stop ||| a2; sync; stop ) |[sync]| sync; a3; stop

Notice that a LOTOS definition of this behaviour in a rather structured way requires
the introduction of some form of internal communication through internal gates. Re-
calling that internal gates characterize a resource-oriented style (see [18]), which
should be used to represent internal structure, this internal gate only obscures the in-
terpretation of the specification. Another possibility would be to explicitly include
all the traces which result in the desired condition. In this case the structure of the
specification would have been completely flattened.

Disjunction of occurrences is useful in the definition of some kinds of error handling be-
haviours, where many errors may happen, but only one of them in a non-deterministic
way causes some reaction. Being a relevant behaviour pattern, it should be better support-
ed by the design model.

5.3.3 Conjunction of Occurrence and Non-occurrence

a1 ∧ ¬ a2 -> a3

This causality relation states that occurrence ofa1 and the non-occurrence ofa2 are both
conditions for the occurrence ofa3.

Considering thata1 and a2 have no relationship with each other, the behaviour above
could be expressed in the following way in LOTOS:

( a1; a3 ; stop ) |[a3]| ( a3 ; stop [> a2; stop )

5.3.4 Disjunction of Occurrence and Non-occurrence

a1 ∨ ¬ a2 -> a3

This causality relation states that occurrence ofa1 or the non-occurrence ofa2 are condi-
tions for the occurrence ofa3.

Considering thata1 and a2 have no relationship with each other, the behaviour above
could be expressed in terms of the possible traces in the following way:

a1; ( a2; stop ||| a3; stop )
[] a2; a1 ; a3; stop
[] a3 ; ( a1; stop ||| a2; stop)

A more structured specification does not seem to be possible in this case

Figure 5 depicts these causality relations. The graphical notation used in this figure will
be used consistently throughout this text.

We call the left hand side of a causality relation the (action) conditions. The symbol->  is
thecausality operator. The right hand side of a causality relation is called theresult or
resulting action.

Consistently with our interpretation of the basic causality relations, all the prescribed con-
ditions have to be fulfilled at the moment when an action occurs. Generalizing, a causality
relation in a behaviourB with actionsAB has the formF(A) -> aj, A ⊆ AB - {aj}, and where
F is a formula using∨, ∧ and conditions of the formak and¬ ak, representing the occur-



Advances in Architectural Concepts to support Distributed Systems Design 13

rence and non-occurrence ofak ∈ A, respectively. The formulaF(A) has to be evaluated
to true at the momentaj occurs.

5.4 Conditions and Constraints on Attributes

Action attributes can play two distinct roles, depending whether an action is a condition
or a resulting action in a causality relation:

1. attribute conditions: premises (boolean functions) involving attributes of actions in
a condition of a causality relation can be used to define additional conditions for the
resulting action to occur;

2. attribute constraints: attributes of a resulting action can be constrained by premises
(boolean functions). These premises possibly involve attributes of the actions which
are present in the conditions for the resulting action, thus determining a set of al-
lowed attribute values for this action.

This section further illustrates, by means of examples, some possible ways in which
action attributes can be used to define conditions and constraints. The discussion here is
far from complete. Due to size limitations, probability and functionality aspects are not
discussed.

5.4.1 Conditions on Values of Information

The occurrence of an action may depend on the occurrence of another action with spe-
cific values of information. Suppose we have the following causality relation:

a1 (v1: Data) [v1 < 10] -> a2

This causality relation states that only in casea1 happens with valuev1 smaller than 10,
a2 is allowed to happen. In casea1 does not happen or happens withv1 greater or equal to
10, the condition fora2 is false, anda2 is not allowed to happen.

We may need to express that the occurrence of an action depends on the non-occurrence
of another action with specific attribute values. Suppose that an actiona2 can only hap-

a1

a1 a1

a1

a2

a2

a2

a2

a3

a3
a3

a3a1 ∧ a2 -> a3 a1 ∨ a2 -> a3

a1 ∨ ¬ a2 -> a3
a1 ∧ ¬ a2 -> a3

Figure 5: Some Causality Relations and their Graphical Notation
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pen if an actiona1 with value v1 < 10 has not happened. In order to make references only
attributes of occurrences of actions, we indicate this in the following way:

a1 (v1: Data) [v1 ≥ 10] ∨ ¬ a1 -> a2

This means that if and if only (i)a1 happens with valuev1 greater than or equal to 10 or
(ii) a1 does not happen,a2 is allowed to happen. The statement above also means that if
botha1 with v1 < 10 anda2 both ever happen in a run of the system, thena1 with v1 < 10
happens sometime aftera2.

5.4.2 Constraints on Value and Time Attributes

Attributes of an action can be also constrained in its causality relation, defining in this
way a set of allowed values. Suppose an actiona1 is a condition for another actiona2, but
that the possible attribute values ofa2 are constrained. These constraints may be defined
in terms of references to attributes ofa1.

Some examples are:

a1 (v1: Nat, t1: Time) ->
a2 (v2: Nat, t2: Time) [v2 = v1 + 2 ∧ t2 < t1 + 10]

Action a2 can only happen forv2 equal tov1 + 2, and fort2 smaller thant1 + 10. For val-
ues that do not comply to these conditions,a2 does not happen.

a1 (v1: Nat, t1: Time) ->
a2 (v2: Nat, t2: Time) [v1 < v2 < 100∧ t2 = t1 + 1]

Action a2 can only happen forv2 greater thanv1 and smaller than100, and fort2 equal to
t1 + 1. For values that do not comply to these conditions,a2 does not happen.

It is also possible to have conditions involving attributes of different actions. We illus-
trate this with the following example: suppose that we have 4 actions,a1, a2, a3 anda4,
and thata3 is only allowed to happen ifa1 anda2 happen in this order, and thata4 is only
allowed to happen ifa2 anda1 happen in this order. This can be specified in the following
way:

(a1 (t1: Time)∧ a2 (t2: Time)) [t2 > t1] -> a3
(a1 (t1: Time)∧ a2 (t2: Time)) [t2 < t1] -> a4

Notice that in this example the conditions for the occurrence ofa3 anda4 have been
described using boolean functions involving time attributes of botha1 anda2.

In causality relations of the forma1 ∨  a2 -> a3 we may need to refer to different values
and in different ways in case the cause isa1 or a2. Supposea1 has valuev1, anda2 has
valuev2, and that in casea1 is the cause ofa3, v3 is a functionf of v1, and in casea2 is the
cause ofa3, v3 is a functiong of v2. We could then define it in the following way:

a1 (v1: Data) ∨  a2 (v2: Data) ->
a3 (v3: Data) [ if a1 then v3 = f(v1)

if a2 then v3 = g(v2) ]
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5.5 Generic Finite Behaviour

Finite behaviour can be represented by a set of causality relations, one relation per action
of the behaviour. Some actions may be enabled from the beginning of the behaviour (ini-
tial actions), while some others depend on occurrences of other actions in order to be
enabled.

Consider the following example:

B := { start -> a0,
¬ a0 -> a1,
a1 ∨ a0 -> a2,
a1 ∧ ¬ a2 -> a3,
a2 -> a4 }

start -> a0 states thata0 is enabled from the beginning of the behaviour, i.e. it does not
have to wait for other actions.¬ a0 -> a1 implies that while a0 does not happena1 is
allowed to happen, therefore at the beginning of the behavioura1 is also enabled. This
means that botha0 and a1 are initial actions ofB. The behaviour definitionB also deter-
mines the causality context of all its actions. For example,a2 is the resulting action in the
causality relationa1 -> a2 and appears in the causality relations {a1 ∧ ¬ a2 -> a3, a2 ->
a4}, which completely defines the role ofa2 in B.

Figure 6 depicts this example using our graphical notation.

In this form of behaviour definition, all the conditions for the occurrence of an action are
stated in a single statement. All necessary and sufficient conditions for a certain action to
take place are stated once and for all in its causality relation. This form of behaviour def-
inition is comparable to themonolithic specification style of [18], in which behaviours
are described as monolithic wholes, without any structuring.

6 Structured Interaction System Behaviour

Experience has shown that complex systems cannot always be represented in a mono-
lithic fashion. We anticipate that the description of an interaction system between a sys-
tem and its environment must be structured, in the case of complex systems, in order to
be developed, understood, manipulated and maintained.

a0

a2

a1

a3a4

Figure 6: Graphical Representation of the Example
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Causality relations, as presented so far, are a compact and parsimonious notation to
define relationships between actions, but lack structuring. Furthermore this notation is
restricted to finite behaviours. Therefore this section builds on the previous section, pre-
senting some mechanisms to structure designs and to represent repetitive and infinite
behaviour.

6.1 Sequential Composition

Sequential compositions of behaviours are characterized by the fact that conditions inside
an instance of behaviour enable actions of another instance of behaviour, in a similar way
as conditions on actions enable result actions in causality relations.

6.1.1 Entries and Exits

Entries and exits are introduced in our design model as mechanisms to represent sequen-
tial composition of behaviours. SupposeB1 andB2 are behaviours, defined as sets of cau-
sality relations, and thatB1 has one exit andB2 has one entry. A sequential composition
betweenB1 andB2 can be defined by combining the conditions of the exit ofB1 and the
action(s) of the entry ofB2, such that the conditions of the exit ofB1 become conditions
to the action(s) of the entry ofB2. This can be generalized to more than one entry, more
than one exit, or both.

We illustrate this with the following example:

B1 := { start -> a1, start -> a2,
a1 ∧ a2 -> a3,
a3 -> a4,
a3 -> a5,
a4 ∧ a5 -> exit }

B2 := { entry -> a6, entry -> a7,
a6 ∧ a7 -> a8 }

The statementsentry -> a6, entry -> a7 mean thata6 anda7 can be enabled by coupling a
condition to thisentry. a4 ∧ a5 -> exit means that ifa4 and a5 happen, the exit condition
is true. We can define a sequential composition betweenB1 andB2 in the following way:

B := { B1 (exit) -> B2 (entry) }

This means thatB1 is coupled toB2 such that the conditions of theexit of B1 become the
conditions for the actions of theentry of B2. The resulting behaviour can be obtained by
the ‘short-circuit’ of theexit of B1 and the actions of theentry of B2.

Figure 6 depicts this example, showing that the conditions of the exit ofB1 have turned
into conditions for the occurrence ofa6 and for the occurrence ofa7.

Exits can also be used to refer to negation of conditions. Consider the following example:

 B1 := { start -> a1, start -> a2, a1 ∨ a2 -> exit }

 B2 := { entry -> a3 }
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The behaviour definition ¬ B1 (exit) -> B2 (entry)makes the negation of the exit ofB1, i.e
the non-occurrence of both actionsa1 anda2, a condition for the occurrence ofa3.

6.1.2 Attributes in Entries and Exits

Entry/exit constructs can be also used to pass information from theexiting behaviour to
the resulting behaviour. Taking for exampleB1 andB2 above, we can use this construct
to relate attributes of actions of the exit ofB1 to the attributes of actions of the entry ofB2.
A requirement for the exit/entry coupling between two behaviours is that there must be a
matching between the values defined in the exit conditions and the values expected in the
corresponding entry condition.

For example, we could have:

B1 := { ..., a4 (v1 : T1) ∧ a5 (v2 : T2) -> exit (v1, v2), ...}

B2 := { entry (a: T1, b: T2) -> a6, entry (a: T1, b: T2) -> a7, ... }

In this case the behaviourB := { B1 (exit) -> B2 (entry) }would have been sound, because
there is a matching between the list of parameters in the exit ofB1 and the list of param-
eters in the entry ofB2.

Summarizing, the entry/exit constructs can be used in the following way:

1. anexit is declared in the result of causality relations. For each exit we can assign a
conditionC(B(exit)), which is the condition of the causality relation in which the
exit is defined;

2. anexit can be used to define sequential composition of behaviours in order to indi-
cate thatC(B(exit)) is valid. This can be done by explicitly referring to the exit in
the condition of a causality relation (such as inB(exit));

3. anexit can be used to define sequential composition of behaviours to indicate that
C(B(exit)) is not valid (¬ C(B(exit)) ). This can be done by explicitly referring to the
negation of the exit in the condition of a causality relation (as in¬B(exit));

a3

a5

Figure 7: Example of Sequential Composition of Behaviours
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4. anentry can be declared in the condition of one or more causality relations. For each
entry we assign a set of actions, namely the actions which are result in the causality
relations where this entry is declared. We call this setA(B(entry));

5. anentry can be used to define sequential composition of behaviours to indicate that
the conditions of a causality relation apply to each action ofA(B(entry)). This is
done by referring to the entry in the result of a causality relation (as inB(entry));

Considering again the example depicted in Figure 6, notice thatA(B2(entry)) = {a6, a7}
andC(B1(exit)) = a4 ∧ a5. The statementB1 (exit) -> B2 (entry) means that for each action
ai of A(B2(entry)), there will be a causality relation of the typeC(B1(exit)) -> ai.

6.1.3 Multiple Entries and Exits

We generalize the exit/entry constructs, by considering that a behaviour may have more
than one exit conditions or entry points or both. The consequence is that, in order to allow
a proper combination of exit/entry pairs, exits and entries must be identified.

We illustrate this with an example:

B1 := { start -> a4, start -> a5, start -> a7,
a4 ∧ a5 -> exit1
a7 -> exit2 }

B2 := { entry1 -> a8,
entry2 -> a9 }

The behaviour definition{B1 (exit1) -> B2(entry1), B1 (exit2) -> B2 (entry2)} means that
exit1 of B1 is connected toentry1 of B2, and thatexit2 of B1 is connected toentry2 of B2.
It is important to remark thatB1 (exit1), B1 (exit2) andB2(entry1), B2 (entry2) refer to the
same instance ofB1 andB2, respectively.

Figure 8 illustrates the effect of this combination mechanism with generic behavioursB1,
B2, B3 andB4. Notice that the exit/entry constructs define a line that delimits the behav-
iours by decomposing the causality relations. This mechanism allows us to structure a
monolithic behaviour in sub-behaviours, in such a way that compositions of behaviour
definitions can be created.

6.2 Composition of Constraints

An important structuring technique identified in [18] for the representation of behaviours
is theconstraint-oriented style. According to this style, a behaviour is represented as a
conjunction of constraints on events, which are described in separate processes.

The consideration of this approach in our design model forces us to represent some ac-
tions in a distributed form. This happens since the global causality relation of each action
to be distributed among multiple constraints is defined as a collection of causality rela-
tions in the different behaviours that represent these constraints. The combination of this
collection of causality relations determine the desired global causality relation for each
distributed action.
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After the global causality relation of the distributed actions has been defined in separate
behaviours, these behaviours can be assigned to the system and to its environment. Actu-
ally only at this point an action is transformed to an interaction.

Figure 9 depicts these two design steps, relating them to the two levels of abstraction of
system structuring (interaction system, and system and environment) identified before.

We consider as an example a behaviourB, which contains a causality relationa ∧ b -> c.
We also suppose thata, b andc may be or may be not distributed over behavioursB1 and
B2. Actions which are not distributed are represented in this example withbold, while ac-
tions which are distributed are represented initalics when they turn into interactions. This
analysis concentrates exclusively on the causality relation ofc without loss of generality.

Figure 8: Generalized Exit/Entry Constructs
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We spare the reader from the boring exercise of considering all possibilities for the de-
composition ofa, b andc, but rather present one of them below:

Distribute condition a (or b) and the result c

The correct options for the decomposition of the causality relationa ∧ b -> c by distrib-
uting conditiona and resultc overB1 andB2 should preserve the original causality rela-
tion.

These options are presented and illustrated below. The illustrations also show the relation-
ships between the distribution of causality relations and the design forms of Figure 9.

1. the whole causality relation is placed in one of the behaviours. In the illustration be-
low we place the original causality relation inB2.

B B1 B2
a ∧ b -> c * -> c a ∧ b -> c

In the illustration above * -> c indicates thatc must be enabled inB1 at the moment
thata andb occur. Sincea belongs to B1, c may be enabled inB1 from the begin-
ning, either an initial action, or by any other conditions which are also necessary
conditions ofa.

2. the whole causality relation is placed in one of the behaviours, but part of the cau-
sality relation is duplicated in the other behaviour. In the illustration that follows we
have placed the original causality relation inB2 and the causality betweena and c
is duplicated inB1.

B B1 B2
a ∧ b -> c a -> c a∧ b -> c

Although the duplication of constraints inB1 and B2 may seem technically undesir-
able, in the more general case, where references to attributes are possible, this kind
of decomposition may be used to expressseparation of concerns.
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Suppose for example that ina two values of informationv1 andv2 are established,
and that both of them are used for the determination of the values ofc. In this case
we can useB1 to constrain the dependencies with respect tov1 andB2 to constrain
the dependencies with respect tov2. If v1 andv2 characterize two distinct aspects of
the functions of behaviourB, this structuring in constraints shall be preserved in lat-
er phases of design and may be found back in the implementation of the system.

3. the original causality relation is distributed over both behaviours. In the illustration
below the causality betweena andc is placed inB1 and the causality betweenb and
c is placed inB2. The combination of these constraint yield the original causality
relation.

B B1 B2
a ∧ b -> c a -> c b -> c

The mirror images in whichB1 andB2 are exchanged, and the distribution ofb instead of
a are also considered here.

Similar reasoning can be applied to other distributions ofa, b andc, and to other forms
of causality relations. It is left to the reader to find out that the distribution of disjunctions
has less correct possibilities than the distribution of conjunctions.

Figure 8 illustrates the effect of composition of constraints with four generic behaviours
B1, B2, B3 andB4.
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Figure 10: Generalized Composition of Constraints
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6.3 Formal Semantics

The definition of a formal semantics for this notation is outside the scope of this paper.
However we indicate here some directions of research and related work.Causality autom-
ata, which are comparable to our causality relations, have been discussed in [4, 5]. An-
other causality model, in which occurrences (positive conditions) and non-occurrence
(negative conditions) are grouped in separate conditions that have to be true and false re-
spectively in order to enable events, is presented in [6]. None of these paper however treat
event attributes formally. In [12] a lot of useful ideas on how to formally represent (real)
concurrent behaviour are presented, and some preliminary discussions on the interpreta-
tion and representation of event attributes are found.

7 Design Applications

This section briefly discusses the application of our design model on the design and im-
plementation of distributed systems. A forthcoming paper ([15]) will address the applica-
tion of these concepts in the scope of ODP (Open Distributed Systems).

We identify and illustrate below some possible design transformations, based on the ma-
nipulation of aspects of the architectural concepts discussed in the previous sections.

• actions to interactions: this design transformation consists of transforming actions
into interactions, aiming at defining the behaviour of interacting functional entities.
Conditions and constraints of the original actions are distributed over the different
functional entities. This design transformation can be a step in the decomposition of
a functional entity into multiple functional entities.

• event refinement: events are replaced by compositions of events, while the function-
ality, established values and causality relations of the original events are preserved.
This criterion shall be used to define implementation notions. Event refinement can
be performed in order to (i) decompose location attributes into sub-locations, (ii) de-
compose the representation of values of information, e.g. to distribute the decom-
posed values over different events, or (iii) introduce intermediate events for the pur-
pose of decomposition of functional entities.

• making states explicit: the behaviour of some functional entity, probably containing
independent events, can be explicitly made interleaved. This can be useful in later
phases of design, when functional entities which operate in a single computer sys-
tem or processor are identified. The behaviour of these functional entities can be at
this point represented as finite state automata, e.g. for the purpose of software im-
plementation.

Figure 11 illustrates the use of some design transformations mentioned above to decom-
pose a functional entity into two functional entities. The example in Figure 11 shows that
once we have a (monolithic) behaviour (a), we can introduce intermediate actions that do
not disturb the original causality relations (b), transform these newly introduced actions
into interactions (c), and assign the decomposed causality relations to the newly generated
functional entities (d).
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8 Conclusions

This paper identified some architectural concepts for distributed systems design which
deserve formal support. We have shown the importance of architectural concepts in the
establishment of a design culture, and we have concluded that language development
should follow a careful choice and consideration of the architectural concepts.

In the light of the architectural concepts we have introduced (actions, interactions, causal-
ity relations and behaviours), we have given some indications on how designs can be
structured and manipulated during the design process, so that design decisions can be in-
corporated.

Some novel concepts of this paper seem to be the disjunction of conditions, the combina-
tion of occurrence and non-occurrence of events in a single causality relation statement,
the explicit representation of actions and interactions in a single design model and the en-
try/exit structuring mechanisms. This framework also allows the combination of timing
and performance modeling with (functional) behaviour definitions. The relationships be-
tween traditional performance modeling and our design model should be further investi-
gated.
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a2a1

a4

(a) functional entityF

Figure 11: Example of Functional Entity Decomposition
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We have refrained in this paper from discussing the specific ways behaviours may share
interactions. Our view is that behaviours should be able to explicitly define the character-
istics of the interactions they wish to participate in, for example based on the location at-
tributes of these interactions, or based on specific values of information. This would avoid
the need for void processes just for synchronization when using constraint-oriented style
to specify complex behaviours in LOTOS, which has been reported in [8]. This will be
subject of further work.

Further work should be done on the development of a (formal) language to support these
design concepts, and on the development of implementation notions to support design
transformations.
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