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Abstract

We propose and discuss a number of extensions to quasi-
birth-death models (QBDs) for which CSL model checking
is still possible, thus extending our recent work [12] on CSL
model checking of QBDs. We then equip the QBDs with
rewards, and discuss algorithms and open research issues
for model checking CSRL for QBDs with rewards.

1 Introduction

Over the last few years, considerable progress has been
made in model checking algorithms for finite Markov
chains. The logic CSL (continuous stochastic logic) has
been shown to be suitable for the specification of perfor-
mance or dependability measures for finite Markov chains
[4, 1, 7]. Furthermore, efficient uniformization-based al-
gorithms have been proposed to make such model check-
ing practically feasible [2]. The logic CSRL (continuous
stochastic reward logic) has been proposed to reason about
time and rewards in finite Markov chains [3]. As such,
CSRL comprises a natural way of specifying performabil-
ity properties of systems. In [6] we proposed a number
of numerical algorithms to efficiently model check finite
Markov-reward models. Recently, we considered the step
of applying CSL model checking algorithms for infinite-
state Markov chains, in particular for so-called quasi-birth-
death models (QBDs) [12]. We showed under which re-
strictions we can automatically model check performance
or dependability properties specified in CSL for QBDs.
Matrix-geometric methods were used to evaluate CSL prop-
erties involving the steady-state operator, as well as an
uniformization-based procedure to evaluate CSL properties
involving the time-bounded until operator. In the current pa-
per we propose a number of extensions for the model check-
ing of QBDs. First of all, we extend the QBD model class
such that we can still apply the procedures we have derived
so far. This encompasses the case where we allow the QBD
to have transitions from any level to the boundary level, e.g.,
modeling a complete loss of buffer content due to failures,
as well as the case where transitions can take place between
non-neighboring levels, albeit in a regular way. We also al-
leviate a limitation we previously had in CSL model check-
ing of QBDs: we can allow for atomic properties that are
not level-independent as long as they are periodic. These

extensions make the CSL model checking framework for
QBDs more versatile. The second group of extensions we
propose relates to the inclusion of rewards, that is, in the use
of the logic CSRL (including a number of earlier-proposed
extensions) instead of just CSL for model checking QBDs
with rewards. This will result in a model checking that al-
lows for performability evaluation of QBDs.

2 Background: QBDsand CSL

Quasi-birth-death models The infinite state space of a
QBD can be viewed as a two-dimensional strip, which is
finite in one dimension and infinite in the other. Figure 1(a)
gives a graphical representation of a QBD. Formally, a la-
beled QBD Q of order (Ny, N) (with Ny, N € NT) is a
labeled infinite-state CTMC. The set of states is composed
as S ={0,---,Ng — 1} x {0} U {0,--- , N — 1} x N+,
where the first part represents the boundary level with N,
states, and the second part the infinite number of repeating
levels, each with IV states. The block-tridiagonal generator
matrix Q is composed out of eight finite matrices describing
the inter- and intra-level transitions as shown in Figure 1(b).
Q describes an infinite-state CTMC, {X,; € S | t/geq0}.
The steady-state probabilities of a QBD can be calculated in
a level-wise fashion, using e.g., matrix-geometric methods
[9, 11], which exploit the repetitive structure in the genera-
tor matrix. To compute transient state probabilities for the
infinite-state QBDs, we developed an uniformization-based
approach [12].

Continuous stochastic logic The logic CSL [2] allows
for state formulas ® of the form

Qu=tt|ap| @ | PAP|Sp(P) | Pop(9),

where ¢ is a so-called CSL path formula, which may take
the following form: ¢ ::= X1® | ® U’ ®. The next operator
X1 states that a transition to a ®-state is made at some
time instant ¢ € I. The until operator ® 2/ ¥ asserts that
U is satisfied at some time instant in ¢ € I and that at all
preceding time instants ® holds. For a CSL formula ®, the
satisfaction set contains all states that fulfill .

CSL modd checking of QBDs We have applied the
logic CSL to QBDs with so-called level-independent atomic
propositions: an atomic proposition that is valid in a certain
state of an arbitrary repeating level, has to be valid in the
corresponding states of all repeating levels. Even though
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Figure 1. Quasi-Birth-Death Process

we require level-independent atomic propositions, CSL for-
mulas are not level-independent in general. Considering
CSL properties that contain path formulas, no two repeat-
ing levels can a priori be considered the same as we need
to examine all possible paths in a level-wise fashion. For
CSL formulas, we therefore generalized the idea of level
independence: we only require the validity of an atomic
proposition in a state to be level-independent as of (repeat-
ing) level k. Using this notion, we arrive at a situation in
which “only” some finite boundary portion of the QBD may
exhibit irregularities, which can be exploited in the further
verification process. For model checking the CSL steady-
state operator, we need to compute the steady-state proba-
bilities in a QBD. As the steady-state probabilities are inde-
pendent of the starting state, it follows that either all states
satisfy a steady-state formula or none of the states does.
That is, a steady-state formula is always level-independent
as of level 1. For S..,(®) we first determine the satisfac-
tion set Sat(®) and then compute the accumulated steady-
state probability. If the accumulated steady-state probability
meets the bound p, we have Sat(Syq,y (P)) = S, otherwise,
Sat(Swp(®)) = @. For model checking the CSL time-
bounded until operator, i.e., Po,(® UIT), we adapt the
general approach as proposed for finite CTMCs [2]. This
approach encompasses a transient analysis of an adapted
CTMC,; the adaptation depends on the subformulas ® and ¥
in the until formula. For an allowed numerical error e, uni-
formization requires a finite number n of steps to be taken
into account in order to compute these transient probabili-
ties. This fact, combined with the repetitive structure of the
QBD, allows us to distill a finite portion of the QBD from
which we can compute all relevant transient probabilities.

3 Resets

In standard QBDs, transitions can only occur between
states of the same level or between states of neighboring
levels. In QBDs with resets we additionally allow for tran-
sitions that lead from any repeating level to the boundary
level. This is useful to model situations where all jobs in
a system are lost due to some special event (like a server
breakdown). The lower block-tridiagonal generator matrix
as in Figure 2(b) is then composed out of nine matrices,
where C, denotes the jumps from the repeating levels to
the boundary level. Again, considering level-independent
atomic propositions, CSL formulas on QBDs with buffer
resets are not level-independent in general. Even though it
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Figure 2. QBD with resets

is now possible to reach the boundary level from every re-
peating level in one step, there still is the possibility to reach
the boundary level via repeating levels. Due to this, the tran-
sient probabilities differ from level to level and, hence, we
again have to apply the concept of level independence as of
level k. The steady-state probabilities can be computed with
known techniques [13, 9, 11]; the only difference to apply-
ing matrix-geometric methods on standard QBDs is that the
boundary equations must now account for the newly intro-
duced matrix Cy, yielding vy = v0B0’0+Z;’il v,;Cyp, with
m = (vo,v1,ve, - - - ) being the steady-state vector. As Cy is
a constant matrix, this equation can easily be solved due to
the geometric structure of the solution vectors v;. Comput-
ing the transient probabilities can again be done with uni-
formization. As we require the transition matrix Cy to be
constant, we still have a finite number of different diagonal
entries so that the uniformization rate can be determined.
Model checking the until operator on QBDs with resets thus
has the same complexity as on standard QBDs. In conclu-
sion, model checking of QBDs with buffer resets can be
done exactly as for standard QBDs [12].

4 Batches

For modeling the case that jobs enter or leave a system
not only in single instances but also in finite batches, we
need transitions between non-neighboring levels. We dis-
tinguish between (a) batch arrivals, (b) batch departures,
and (c) the general case, which contains (a) and (b). The
batches can have different size distributions. To describe a
QBD with batch arrivals we need additional transition ma-

trices Aéi), for every possible batch size i. Aél) just equals
A,. The additional transition matrices for batch departures

are denoted as Ag). Since we allow only for finite batches,
the number of extra matrices is finite as well. The generator
matrix of a QBD with batch arrivals, see Figure 3, has an
upper block-tridiagonal from and can be seen as a special
M|G|1 process, the generator matrix of a QBD with batch
departures has lower block-tridiagonal form and can be seen
as a special G|M]|1 process. In the case of both batch ar-
rivals and departures, the generator matrix takes a block-
banded form. By regrouping as many states into one level
as necessary to guarantee that transitions entering or leav-
ing a level are restricted to neighboring levels only, we can
transform the QBD with batches to a standard QBD. This
procedure always works, as long as the maximum batch
size is finite [8]. With regrouping, the level size is multi-
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Figure 3. QBD with batch arrivals

plied with the maximum batch size. If the QBD with batch
arrivals or departures has level-independent atomic proposi-
tions than the regrouped QBD has level-independent atomic
propositions as well, because only complete levels are re-
grouped. The regrouped QBD can then be model-checked
with the standard procedure. We just have to make sure
that the left and right level-diameter (that is, the number
of state-transitions that are need to “step through” to the
neighboring lower, resp. higher level) are adapted accord-
ingly to keep uniformization efficient. As reducing QBDs
with batch arrivals/departures to standard QBDs might lead
to a considerable increase of the QBD order, it might be ad-
vantageous to model check these QBDs, without regroup-
ing. This can be done with specialized matrix-geometric al-
gorithms algorithms for M |G|1 and G| M |1 processes with
batch arrivals and services [9], [13], or with the spectral ex-
pansion method [10]. Whether this is computationally more
attractive has to be established. Uniformization can be done
as for standard QBDs, we just have to consider that one uni-
formization step possibly crosses more than one level. That
is, the amount of reachable levels to the right and to the left
grows according to the maximum batch size for arrivals and
departures. Thus, for model checking the until operator and
the notion of level independence, the batch sizes have to be
taken into account accordingly.

5 Periodic atomic propositions

Until now we always required QBDs with level-
independent atomic propositions for model checking CSL.
However, we are able to check QBDs with so-called peri-
odic atomic propositions as well. An atomic proposition is
called periodic with period p, iff its validity repeats every
p levels. Atomic propositions with period p = 1 are called
level-independent, with period 1 < p < oo are called pe-
riodic, and with period p = oo are called level-dependent.
For example an atomic proposition odd which is valid in
states with odd level index, is periodic with period 2. QBDs
with periodic atomic propositions with period p can be re-
grouped to QBDs with level-independent atomic proposi-
tions by combining p levels to one. In the case of several pe-
riodic atomic propositions with different periods the num-
ber of levels that need to be combined is given by the least
common multiple of all periods. As far as we know, re-
grouping is the only possibility to model check QBDs with
periodic atomic propositions.

6 Model checking CSRL

The continuous stochastic reward logic (CSRL) is a
specification formalism for performability measures over
CTMCs extended with a reward structure (Markov reward
models) [6]. We can also extend QBDs with a reward struc-
ture p : S — R that assigns a reward p(s) to each state s.
The syntax of a CSRL state formula is defined as follows:

Di=ap| =P DAD| Puple),

where ¢ is a path formula constructed by ¢ ::= Xffq) |

® US! ®. The key difference to CSL is that the path-
operators are equipped with two parameters. The additional
parameter r represents a bound on the accumulated reward.
We will consider three different types of rewards: level-
independent, level-dependent and periodic rewards (see be-
low). In doing so, we will concentrate on the four possi-
ble variations of the until operator, with and without time
and with and without reward constraint, as presented in [3]
and [6]. We are currently investigating how to exploit the
regular QBD structure in the infinite size equation system
that is necessary to check an until formula without time-
nor reward constraint; this equation system follows directly
from the finite-state case discussed in [6]. The until oper-
ator with only a time constraint ® /< is just the usual
CSL until and can be checked as proposed in [12]. For
checking the until operator with only a reward constraint,
i.e., ® U<, VU, for finite CTMCs the Duality Theorem cab be
used. This theorem states that the progress of time can be
regarded as the earning of reward and vice versa [3]. For-
mulas with only a reward constraint can then be checked
as formulas with just a time constraint on a transformed
CTMCS. On QBDs, the Duality Theorem is applicable only
in case of level-independent rewards. As the transition rates
are rescaled by the reward rates, the QBD structure would
be destroyed otherwise. For level-independent rewards the
QBD structure does not change by this transformation and
the QBD can be checked as stated ian]. For the case with
both time and reward constraint, ® Z/=!¥, we consider how
to check the formula for only one starting state. In doing so,
we can use well-known algorithms as only a finite number
of steps is considered on the uniformized or discretized vari-
ant of the MRM. In order to compute the satisfaction set we
have to distinguish between the three different reward types,
as distinguished above.

In the case of level-dependent rewards we require an in-
creasing function of the level-index, the satisfaction set is
then always finite, as from a certain level onwards the re-
ward constraint cannot be fulfilled anymore. This is the
case for level j, when the states of the leftmost reachable
level (reachable in the sense of the maximum number of
steps taken in uniformization) have a reward r;,.,, such that
Tlow + t > 7. The number of states with level index smaller
than 7 is finite, which allows for a direct verification.

In the case of level-independent rewards we require the
same reward for corresponding states in different levels, the
satisfaction set is potentially of infinite size. Fortunately we
will eventually find a level from which onwards the validity
of the formula will be the same in all corresponding states of



the repeating levels. This is just a straightforward extension
of the ideas presented in [12], that can be used because of
the special reward structure.

In the case of periodic rewards with reward period p the
QBD with periodic reward structure can be transformed to a
QBD with level-independent rewards by regrouping of lev-
els, as discussed previously.

7 Extensionsof CSRL

There are several extensions of CSRL [3]; here we will
discuss how to apply the expected reward (€<.,.(®)) and the
instantaneous reward (E%,.(®)) operator on QBDs. The se-
mantics of the expected reward operator is:

) iff > o

s'€Sat(P)

skEE< (P p(s) <,

where 7 (s, s') is the steady-state probability to be in state s’
when having started in state s. In case of a finite satisfaction
set Sat(®), we have a possibly large but finite summation,
that can be dealt with. For level-independent rewards and
an infinite satisfaction set Sat(®), we do not know how to
check the expected reward operator. The iterative approach
that has been used in [12] to check the steady-state opera-
tor cannot be used as the probability mass is modified by
the reward. In the special case, where the reward equals
the level-index we can derive a closed-form solution for the
expected reward (by applying a geometric argument to the
infinite sum), hence, model checking seems feasible. As
the steady-state probabilities in a QBD are independent of
the starting state, we immediately know the satisfaction set
after checking the reward operator for one starting state.
The semantics of the instantaneous reward operator is:

s EL(®) iff Z

s’e€Sat(®

(s, s, t)p(s") <7,

where 7 (s, s’,t) is the transient probability to reach state
s’ from state s in time ¢. To calculate the transient proba-
bilities in a QBD we always consider only a finite number
of steps. That is, the instantaneous reward operator can al-
ways be checked for a single starting state s, regardless of
the reward structure. To calculate the satisfaction set we
distinguish between level-independent and level-dependent
rewards. We will eventually find a level from which on-
wards the transient probabilities do not change anymore.
With level-independent rewards the validity of the instan-
taneous reward operator does not change anymore from this
level onwards. We do not know how to check the instanta-
neous reward operator with level-dependent rewards and an
infinite satisfaction set in all cases as the reward modifies
the transient probabilities.

8 Conclusions

We have shown that for QBDs with resets, batches,
and periodic atomic propositions, the algorithms for model
checking CSL as presented in [12] still apply, after an ap-
propriate modification of the QBD. Furthermore, we dis-
cussed how we can extend the model checking approach for

QBDs toward CSRL (and its extensions), so that we can
model check for combined performance and dependability,
that is, performability measures. We discussed a number
of cases for which this is possible, and we conjecture two
cases for which we think CSRL model checking will not be
possible for QBDs.
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