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Abstrac t -  Two iterative methods for the calculation of acous- 
tic reflection and transmission at  a rough interface between 
two media are compared. T h e  methods are based on a con- 
tinuous version of the conjugate gradient technique. One 
method is based on plane-wave expansions while the other 
method is based on boundary integral equations and Green’s 
functions. The  methods are compared with regard t o  compu- 
tational efficiency, rate of convergence, and residual error. 

INTRODUCTION 

In echographic imaging, phase aberrations are often the 
major cause for image distortions if large array transducers 
are used. Phase aberrations are caused by irregular interfaces 
between tissue layers with a different propagation speed. In 
order to  test the applicability and limits of phase aberration 
correction methods, :.he availability of an accurate computa- 
tional tissue model is important. If the medium parameters 
within each layer are assumed to  be constant, the compu- 
tational problem can be reduced to  the problem of finding 
the acoustic variables on the interfaces of the layered config- 
uration. The  discretization of the problem leads to  a large 
number of unknowns. Due to  the size of the  numerical prob- 
lem, iterative methods are essential. Iterative methods can 
lead t o  dramatically reduced storage requirements and total 
computation time. We will describe two iterative methods 
for the calculation of reflection and transmission a t  a rough 
interface between two media. Both methods are based on a 
continuous version of the conjugate gradient technique [l]. 
One method is based on plane-wave expansions [2]  while the 
other method is based on boundary integral equations and 
free-space Green’s functions [ 3 ] .  Although the application 
deals with pulse-echo mode ultrasound, the domain of analy- 
sis is the frequency domain. An analysis in the frequency do- 
main has the  advantage that  the strong frequency-dependent 
absorption and dispersive sound speed can be incorporated 
quite easily. Time-domain results can be obtained by ana- 
lyzing the problem a t  several frequencies and subsequently 
calculating the inverse (temporal) Fourier transform. Wave 
propagation through random interfaces can be analyzed by 
evaluating a large number of interfaces [4]. 

FORMULATION OF THE PROBLEM 

I t  is assumed that  the roughness of the interface is a local 
deformation of an otherwise plane boundary a t  z = 0, where 
a point in space is specified by its right-handed, orthogonal 
coordinates z , y , z .  The analysis is carried out in the tem- 
poral frequency domain with angular frequency w where the 

1051-0117/94/0000-1797 $4.00 0 1994 IEEE 

complex time factor e-’Wt is suppressed. The  two fluid-like 
media occupy the domains D1 and D2, respectively, and are 
assumed to  be linear, homogeneous and isotropic with re- 
spective mass densities p~ and p z  and compressibilities XI 

and ~ 2 .  Furthermore, both media exhibit some losses and 
the real and imaginary parts of p and ti satisfy the Kramers- 
Kronig causality relations. The interface is denoted by S, and 
the pressure and the particle velocity vector by P and V,  re- 
spectively. In DI, a source of finite extent, generates a wave 
incident upon S. T h e  incident wave is denoted by {Pt ,Ve} .  
The total field in ’DI is written as the superposition of the 
incident field and the reflected field {PP,Vr}. The total field 
in ’D2 is the transmitted field {P,,Vt}. 

INTEGRAL EQUATION METHOD 

Solution of the problem 

Employing the acoustic reciprocity theorem and assuming 
that  the contribution from the parts of the contour integrals 
at infinity vanish, leads, a t  the interface S, to  the simultane- 
ous integral equations [3] 

1 -P(x) + [rz(xlx’)v(x’) + A~(x~x’)P(x’ ) ]  . v ( ~ ’ ) d ~ ’  = 0, 

(2)  
2 L’,, 

which relate the pressure P at a point x on the interface S to 
contour integrals along S involving pressure and the normal 
component of the particle velocity. The  outward normal of 
the surface S a t  x, pointing into ’Dl, is denoted by v(x). The 
functions rl and r2 contain the free-space Green’s functions 
of D1 and V2, respectively. Similarly, AI and A2 contain the 
spatial derivatives of the free-space Green’s functions of ’D1 

and V2, respectively. Equations (1) and ( 2 )  constitute a sys- 
tem of two integral equations with two unknown quantities, 
viz., P(x) and v(x) .V(x)  on S. I t  is noted that  the integrals 
in the left-hand sides of (1) and ( 2 )  have to  be interpreted as 
their principle values, i.e., the integrals are, when necessary, 
calculated by a limiting procedure that excludes the singu- 
larity a t  x = x’ in a symmetrical manner. Once the solution 
to  P(x) and v ( x ) .  V(x) has been found, the reflected field in 
’Dl and the transmitted field in VZ follow from integrals over 
S [3]. The numerical solution to (1) and (2)  can be obtained 
by discretizing the integral equations, evaluating the singu- 
lar parts of the integrals, and solving the resulting system of 
linear equations by matrix inversion. This method will be 
called the Direct Integral Equation method (DIE). 
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Iterative solution of the problem 

The technique described in [l] is used t o  arrive a t  an 
iterative method for the solution of the two coupled integral 
equations. This method will be called the Iterative Integral 
Equation method (IIE). Normalizing the unknowns P ( x )  and 
V ( x )  = V ( x )  . V ( X )  according t o  

P ( x )  = z ; ' 2 x p ( x ) ,  (3) 

V ( x )  = Y ; ' 2 x v ( x ) ,  (4) 
with ZO and YO a reference impedance and admittance, re- 
spectively, the integral equations (1) and (2) can be written 
as 

+ K i v ( x , x ' ) X v ( x ' ) ]  dx', ( 5 )  

ITERATIVE PLANE-WAVE METHOD 

The solution of the reflection/transmission problem can 
also be found by expanding the field in a sum (or integral) 
of plane waves [2]. We assume the existence of an iterative 
procedure, in which n steps have been carried out. The  iter- 
ative procedure has led t o  the plane-wave components dp) 
and q5:n) of the reflected and transmitted velocity potentials, 
respectively. The  corresponding field values are 

{P$"',V!")} = / l I { p r ) , v ~ ) ) e ' k :  X d k , d k y ,  x E D1, 

{ P,'"', Vj")} = /l, {pj"', vjn)je'k; x d k z d k y ,  x E D2, 

We assume the existence of an iterative procedure, in which R. 

steps have been carried out. The  iterative procedure has led 
t o  the values X g ) ( x )  and X p ' ( x ) .  The integrated squared 
error after n steps of iteration is 

ERR(") = / (lFfn)(x)12 + IF$")(x)12) dx,  (7) 
X E S  

in which 

F,(")(x)  = Y 1 ( X ) -  

! K V ( X ,  x ' ) X p ( n ) ( x ' )  + K I V ( X ,  x ' ) X ~ ) ( x ' ) ] d x ' ,  ( 8 )  
X ' E S  

F,'"'(x) = K ( x ) -  

[ K ~ P ( x ,  x ' ) X ~ ' ( X ' )  + K Z V ( X ,  xl)X:)(x')]dx' .  (9) LS 
In going from the (n - 1)st s tep t o  the nth,  we take 

(10) 
( n) n) (n) 

where q(") is a variational parameter to  minimize ERR(") 
and g$'$ = &,?; ( x )  are the conjugate gradient directions [ 5 ] ,  

xp,v = xj.:;l' + 17( Q p , v ,  

T h e  directions s'p:), = s',:?(x) are the steepest-descent direc- 
tions and A(") is a scalar. It c m  be shown that  the conjugate- 
gradient directions always give better convergence than the 
steepest-descent directions. Taking these directions, the error 
decreases a t  each iteration step according t o  

where B(") is real and positive. We have a decrease of the 
error: ERR(") < ERR("-1) ,  provided A(") # 0. I t  can 
be shown [l] that  A(") is real and positive, unless s(pL1) 
vanishes. However, in the latter case, we have arrived at the 
exact solution in the iteration n-1. 

T h e  plane-wave vectors k: and k; indicate plane waves trav- 
elling away from S: 

k: = ( k x ,  k y ,  + k , , i ) ,  (16) 

with 

~ Z , I  = Jw'pini - - k$ R ( k z , i ) , 3 ( k z , i )  > 0, (17) 

and 
k, = (kz, k y ,  - k z , z ) ,  (18) 

with 

kz ,2  = J w 2 p 2 ~ z  - kZ - k$ R ( k z , 2 ) , 9 ( k = , 2 )  > 0.  (19) 

The integrated squared error ERR(") in the boundary con- 
ditions after n steps of iteration is 

ERR(") = 1 (p,)lz + ppjI2) d x ,  (20) 
X E S  

in which the  deviations F g )  = F g ) ( x ) ,  F$') = Fp)(x) are 
given by 

In going from the (n-1)st step to  the n th ,  we take 

(22) (n) - ("-1) (n) (n) 

where v(") is a variational parameter to  minimize ERR(") 

dr,t  - 4r,t + v gr,t 1 

and g(n) r , t  = g,,t ("1 ( I C z ,  k y )  are the conjugate gradient directions 

while 
(24) 

g(') r,t - - p) r,t . 

$2 = ,(") r,f  (kZ, I C , )  represent the steepest-descent directions 
As with the iterative integral equation method, the directions 
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and A(") is a scalar. I t  can be shown that  the conjugate- 
gradient directions always give better convergence than the 
steepest-descent directions. Again we have a decrease of the 
error: ERR(") < ERR("-'), provided A(") # 0. I t  can 
be shown [2] that  A(") is real and positive, unless s$-') 
vanishes. However, in the latter case, we have arrived a t  the 
exact solution in the iteration n-  1 .  

NUMERICAL IMPLEMENTATION 

Some details of the 2 D  implementation are presented now. 
All the integrations were performed as simple summations of 
the discrete function values. The  integrations over x were 
replaced by integrations over the  path length 1 along the sur- 
face. Experiments with the s tep size showed that  the calcu- 
lations gave consistent results for a spatial integration step 
size AZ 5 0.2X, where X is the smallest wavelength in both 
media. T h e  singular parts of the  integrals occuring in the in- 
tegral equation methods (direct and iterative) were evaluated 
analytically [6]. The Hankel functions of the integral equation 
methods were calculated by using the results of section 9.4 
in [7]. Although the  latter expressions are intended for real- 
valued arguments, complex arguments with relatively small 
imaginary parts can also be used. The  calculations were run 
on a 40 MHz Sun-Sparc IPC in Matlab 4.2. 

RESULTS 

Configuration 

T h e  irregular interface consists of a Hamming-weighted 
sinusoidal deviation from a plane interface, with a peak-to- 
peak height of 2.3 mm, i.e. about 8 wavelengths. The pe- 
riod of the interface irregularity is 7.7 mm, i.e. about 25.5 
wavelengths. An array transducer is positioned a t  depth 
z = 10 mm and the mean of the interface is a t  z = 0. The  
transducer consists of 128 radiating elements, each having a 
width of 0.15mm, positioned a t  a grid distance of 0.2mm. The  
electronic focus is at depth t = -40mm (that  is, a t  a distance 
of 50 mm from the  array), in a medium with the parameters 
p1 and 61. The array elements radiate with equal magni- 
tudes of normal surface velocity. T h e  frequency is 5 MHz and 
the sound speeds are: c1 = 1550 m/s and c2 = 1473 m/s,  
i.e. a sound speed contrast of 5 percent. The  densities are 
pl = pz  = lo3  kg/m3. The  attenuation is 0.5 dB/cm/MHz. 
Note that due to the attenuation the  compressibilities are 
complex valued. 

Numerical parameters 

T h e  number of points on the surface S was 512 with a 
spacing of Ax = 0.2X, with X = 2 7 r / u m ,  the wavelength 
in medium 2. T h e  values for the reference admittance YO and 
the reference impedance ZO were taken t o  be the geometric 
means of the  admittances and impedances of both media. 
T h e  number of plane waves for the IPW-method, i.e., the  
number of discrete k, values, was 512. T h e  maximum value of 
Jk,J was chosen to  be the largest value for which all the plane 
waves in both media are non-evanescent, i.e, max{lk,I} = 
min(k1, k 2 ) .  

Performance 

The sound propagation through the irregular interface 
was analyzed with both the iterative integral equation 
method (IIE) and the iterative plane-wave method (IPW). In 
addition, the results of the direct integral equation method 
(DIE) were used as a reference. For a finite number of itera- 
tions the IIE-method always converges to  the results obtained 
with the DIE-method. The  beam pressure plot for the plane 
interface is shown in Fig. 1. The  beam pressure plots show 
the incident pressure field P , ( x )  and the transmitted pres- 
sure field P, (x ) .  The interface is shown as a dark line in the  
figures. T h e  beam pressure plots for the  irregular interface 
obtained with IIE (Fig. 2)  and I P W  (Fig. 3)) agree closely. 
For the accuracy we desire, the total computation time of IIE 
is larger than the computation time of IPW (Fig. 4). There 
are two reasons for this. Firstly, for the first few iteration 
steps, the convergence of IIE is not as fast as the  convergence 
of IPW. Secondly, the computation of the Hankel functions 
for IIE requires much more time than the computation of 
the exponentials in IPW. However, the error obtained with 
the IPW-method reaches a steady value after a number of 
iterations, wheras the error obtained with IIE can be driven 
to  an arbitrarily small value. For the numerical implementa- 
tion described in this paper, the convergence becomes worse 
if evanescent waves are included. Evanescent waves would be 
required for approximating sound fields with arbitrarily small 
error. I t  should be possible to  include evanescent waves in 
combination with more accurate integrations. In our opin- 
ion, however, the resulting decrease of the error is not worth 
the additional computational effort. Our interest is in simu- 
lation of interfaces of moderate roughness separating media 
with low contrast. Then, the final error value which can be 
obtained with I P W  is sufficiently small. 

CONCLUSION 

Two iterative methods for the 2D simulation of wave 
propagation through aberrating interfaces were compared. 
The iterative plane-wave method seems to  be sufficiently ac- 
curate for different media with low contrast and moderate 
surface roughness. T h e  iterative integral equation method is 
more accurate but requires longer computation times. 
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Fig. 3: Beam profile of array transducer for an irregular in- 
terface separating two media with parameters as in Fig. 1, 
IPW-method, initial guess: d t J ( k z )  E 0, no. of iterations: 
n = 10, resulting error: (ERR(")/ERR(0))1'2 = 0.017. 
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Fig. 1: Beam profile of array transducer for a plane interface 
separating two media, IPW-method. T h e  array transducer is 
positioned a t  z = 0.01 m and radiates into a medium with 
parameters c1 = 1550 m/s, pl = 103kg/m3 a t  a frequency of 
of 5 MHz. T h e  parameters of the  second medium are: c2 = 
1473 m/s, p2 = 103kg/m3. T h e  attenuation in both media is 
0.5 dB/cm/MHz. The  focus is a t  z = -0.04 m. 
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Fig. 2:  Beam profile of array transducer for an irregular in- 
terface separating two media with parameters as in Fig. 1 .  
IIE-method, initial guess: X g l ( x )  3 0, no. of iterations: 
n = 20, resulting error: (ERR(") /ERR(0))"2 = 0.013. 
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Fig. 4: Field error versus computation time on a 40 hlHz 
Sun-Sparc for the IIE-method and the IPW-method. 
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