On Region Algebras, XML Databases,
and Information Retrieval

Vojkan Mihajlovi¢, Djoerd Hiemstra, and Peter Apers*

Database Group, University of Twente, The Netherlands
{vojkan,hiemstra,apers}@cs.utwente.nl

Abstract This paper describes some new ideas on develop-
ing a logical algebra for databases that manage textual data
and support information retrieval functionality. We describe
a first prototype of such a system.

1. INTRODUCTION

In this document we will share some thoughts on building a
database management system for textual, semi-structured,
data. A simple, but often adequate way to manage textual
data is to take an of-the-shelf information retrieval (IR) sys-
tem. Typically, the system administrator has to tell the
system what the documents are, and what fields, if any, can
be used to search on additionally. We will use the word
document here to denote the ‘unit of retrieval’: Documents
are the only data type that can be returned by the system
(usually the document’s metadata and a reference to the ac-
tual location of the document). For instance, to search Web
data, it is customary to consider a single web page as ‘the
document’ and to index a fixed number of additional fields
like domain name and title. Such a set-up has proven to be
very useful on the Web, but once the decision is made to
index Web pages, it usually impossible to search for com-
plete Web sites that contain the query contents (assuming
there is a way to infer what a web site is). Building a sys-
tem that supports searching of complete web sites, or even
both searching of single pages and web sites, would require
a serious amount of reprogramming. Similarly, if we would
like to add search services, like e.g. the option to search for
Dublin Core metadata fields in web documents, then again
some serious reprogramming is needed, as well as a change
to the system’s query language.

So, IR systems support the retrieval of documents, but
whatever constitutes a document has to be determined by
the application programmer at development time. Further-
more, many IR systems support the search and retrieval of
some small fixed number of fields in a document (e.g. title,

*Thanks to the Netherlands Organisation for Scientific Re-
search (NWO) for funding the research (grant 612.061.210).
We’d like to thank Torsten Grust of U. Konstanz for making
their XML loader available, Maurice van Keulen, Maarten
Fokkinga and Mila Boldareva for helpful discussions.

DIR 2003,4th Dutch-Belgian Information Retrieval Workshop.
(© 2003 the author/owner.

author). However, they lack the notion of data indepen-
dence: any change in what constitutes a document, or any
change in which fields need to be searchable, will lead to
system developers having to get back at the programming
code, or at least at rebuilding the entire database. In this
paper we will show some ideas and approaches to build-
ing a textual retrieval system that does provide this kind of
data independence. The system can insert documents that
are specified in some standard format (i.e. XML), and sup-
port querying of any part of the data. Documents (i.e. the
unit of retrieval) and additional search fields do not have to
be determined at application development time, but can be
specified by some declarative query language (e.g. XQuery
with full-text search extensions [3]).

<SCENE>
<STAGEDIR>Enter HAMLET</STAGEDIR>
<SPEECH>
<SPEAKER>HAMLET</SPEAKER>
<LINE>So, let me say the famous quote
again: <LINE>to be, or not to be</LINE>
that’s the question.
</LINE>
<LINE>Whether ’tis nobler in the mind</LINE>
</SPEECH>
<SPEECH>
<SPEAKER>OPHELIA</SPEAKER>
<LINE>Good my lord,</LINE>
</SPEECH>
<SPEECH>
<SPEAKER>HAMLET</SPEAKER>
<LINE>I humbly thank you;
<LINE>well, well, well.</LINE>
</LINE>
</SPEECH>

Figure 1: Example XML data

Figure 1 contains some (rather freely interpreted) exam-
ple data from Shakespeare’s plays [19]. Depending on the
application, we might want to search for complete plays us-
ing some textual queries, we might want to search for scenes
referring to speakers, we might want to retrieve speeches by
some speaker, we might want to search for single lines using
quotations and referring to speakers, etc., etc. The database
system should operate relatively independent from the data
and the kind of searches we want to do. A single database
should support all kinds of queries — and more — without the
need to rebuild it, or the need to have several copies of the
data that each support a different kind of query.

The paper is organised as follows. In Section 2, we intro-
duce region algebras. In Section 3 we extend the algebra
to support requirements from XPath and XQuery. Finally,

Section 4 describes a prototype implementation of a system
that supports XPath with extensions for full-text querying
and ranking.

2. ALGEBRAS

An important aspect of developing systems that manage tex-
tual data is the definition of an algebra to manipulate data
and mark-up. An algebra is a formal framework for manipu-
lation based on operators and a domain of values. The oper-
ators map values taken from the domain into other domain
values: every expression involving operators and values pro-
duces again a value in the domain. If we take as our domain
all integers, and as the operators the sum + and product x,
then examples of algebraic expressions are: (3+1)*(2+4),
or: (3%2)+ (3%4)+ (1%2)+ (1x4), or: 4%6, etc. Algebras
might have certain properties. For instance, the arithmetic
operator * distributes over +.

A well-known algebra for data manipulation is the re-
lational algebra [7] where the domain consists of all rela-
tions and examples of operators are selection o, projection
7, product X, etc. Expressions are referred to as queries.

2.1 Boolean algebra for information retrieval

In the old days, of-the-shelf retrieval systems used the Boolean
model of IR (see e.g. [15]). As said in the introduction, IR
systems reason about documents. Not surprisingly, the do-
main of Boolean algebra for IR is sets of documents. Sup-
pose we want to use a Boolean IR system to manage Shake-
speare’s plays. We might decide that useful units of retrieval
(i.e. the documents) are the speeches, so in the example of
Figure 1 everything between the first occurrences of <SPEECH>
and </SPEECH> would be document 1, the speech by Ophelia
would be document 2, etc. The operators of the Boolean
algebra are AND, OR and NOT, and example Boolean expres-
sions (queries) are: honour AND (hamlet OR ophelia), or:
famous AND quote.

Here we will use a mathematical notation that is close to
the relational algebra notation, using set intersection N for
AND, set union U for OR and set difference \ for NOT. As in
relational algebra, we will make select statements explicit, so
the query hamlet which means “select all documents about
hamlet”, will get an explicit select operator o: o(’hamlet’).

Some properties of Boolean algebra

Equations 1 and 2 show some properties of Boolean algebra.
It is good to realise that there are many expressions/queries
that give exactly the same results. However, some expres-
sions might require more processing power and more mem-
ory requirements for intermediate results when executed in
a system. Avoiding expressions that require a lot from the
system is called query optimization in relational database
systems. For Boolean IR systems however, query optimiza-
tion is hardly an issue.

(e(’a’) N

(’a o(’b?)) U o(’c’) = (1)
o(’a’)Uo(’ ’)ﬂ (0(’®’)Ua(’c?))
(c(’a’)Uo(’®’)) N o(’c’) = @)
(e(’a’)no(’c’)) U (e(’b’)No(’c’))

Properties like the above might be important for another
reason. When extending algebras to enable ranked retrieval,
it is problematic that expressions that give exactly the same
matching results, are producing different document rank-
ings. If we base a query optimizer on the properties of
the original algebra, then the system would produce dif-
ferent rankings depending on the query plan chosen. Well-
known extended Boolean models [16] and fuzzy set models

\.//-\ v/-\

[14] show exactly this kind of unpredictable behaviour. We
will continue this discussion in Section 2.3, but first we will
introduce an algebra that provides us with the kind of data
independence we described above.

2.2 Region algebras for information retrieval

Region algebras [2, 5, 6, 12] are an extension of Boolean alge-
bras that reason about arbitrary parts (regions) of textual
data. Region algebras model textual data as a linearized
string of tokens: Instead of assigning nominal document
identifiers to documents (as done by the Boolean algebra),
region algebras assign ordinal identifiers to each token in the
database. This is shown in Figure 2 for the first part of our
example database.

<SCENE>'
<STAGEDIR>’Enter® HAMLET*</STAGEDIR>®
<SPEECH>®
<SPEAKER>7HAMLET8</SPEAKER>9
<LINE>’So!! 1et!? me! say the15fa.mousl'3quote17
again®<LINE>'?t*be’! or??not?*to**be’® </LINE>6
that’s?” the?® question 2
</LINE>

<LINE>3!

Figure 2: Position numbering of example data

Numbering schemes for XML data have been studied ex-
tensively (see e.g. [8, 9, 17]). The above scheme combines
a so-called stretched pre-post numbering scheme [9] with a
positional IR index [18]. A region is defined by a starting
position and an ending position. For instance, region 10,30
defines the first line, and region 20,25 specifies the text “to
be, or not to be”. In the remainder, the starting position is
called pre and the ending position is called post.

The operators containing and contained. by, for which
we will use the symbols > and <, are essential for reason-
ing about regions. The expression A > B returns all regions
from A that contain at least one region from B. The expres-
sion A < B returns all regions from A that are contained by
a region from B. Both operators can easily be defined by
conditions on the region’s pre and post. Section 3 will define
them more formally.

Some properties of region algebras

Equation 3 shows the region algebra expression of the Boolean
query a AND b, that is, select all documents (<doc>) that

contain both ’a’ and ’b’. Note that instead of the <doc>

tag, we could have specified a query on any other XML el-

ement. Equation 4 shows the region algebra expression of

the Boolean query a OR b.

(0(’<doc>?’) > o(’a’)) N (o(’<doc>’) >
o(’<doc>’) > o(’a’) > o(’b’
(

(o(?<doc>’) > 0(’a’))U (o
o(’<doc>’) > (o(’a

o(’b’))
) ®3)
’<doc>’) > a(’b

)Ua(’b?))
Both expression can be simplified as shown. It is interesting
to note that properties of the union U are no longer similar
to those of the intersection N, as is the case in Eq. 1 and 2.

) = (4)

Related work

The algebra described above is similar to the region alge-
bra proposed by Burkowski [2]. Burkowski implicitly distin-
guishes mark-up from content. In later publications Clark

et al. [5] and Jaakkola et al. [12] describe region algebras
that do not distinguish mark-up from content. In their al-
gebra, o(’<doc>’) returns all regions that start and stop
on the position of the opening doc tags, and o(’</doc>?)
returns regions that start and stop on the position of the
closing doc tags (i.e. tags and words are not treated differ-
ently). In order to get all speeches from the database, their
algebras use the followed by operator (denoted here as —).
The expression A — B returns all regions that start with
some region from A and end with some region from B. The
following query would retrieve all speeches that contain the
word ‘hamlet’.

o(’<speech>’) — o(’</speech>’) > o(’hamlet’) (5)

It is easy to show that, by the definition of the — op-
erator given above, the expression A — B will return a
large number of regions (there are 6 regions that satisfy
o(’<speech>’) — o(’</speech>’ in Figure 1). Clark et
al. [5] limit the number of regions by putting an additional
constraint on sets of regions. Each set of regions must be a
“generalized concordance list”, that is, a set of regions for
which no region is nested in another region in the same set.
Their approach cannot handle nested data very well. For
instance, because of nested <line> tags, the following query
will not match any of the lines in Figure 1, although the first
line (region 10,30) obviously matches the query.

o(’<line>’) — o(’</line>’) > o(’quote’) (6)

Jaakkola et al. [12] limit the number of regions by defining
A — B such that A and B define nested regions. This solves
the problem above, but introduces a similar problem if A
and B are arbitrary text regions. For instance, one would
expect the following query to match region 20,25 (“to be, or
not to be”, see Fig. 2), but their system will not retrieve it.

o(’to’) — o(’be’) > o(’not?) (7

We believe that the examples above show it is important
to distinguish mark-up from content explicitly, that is, the
system should know which tokens in the linearized string
(see Figure 2) are mark-up, and which are textual units.

Another problem of region algebras is the fact that they
cannot deal with direct inclusion [6], that is, the the parent
and child access steps of XPath are not easily defined as
manipulation of regions. Section 3 shows some extensions
of the algebra that deal with this.

2.3 Requirements for ranked retrieval

Ranking of search results is important for systems that man-
age textual data. Users are interested in text containing cer-
tain information, which is not necessarily text containing a
specific word or textual data item. In order to reason about
ranking of search results, we extend the region algebra to a
probabilistic region algebra, where a probabilistic region is
defined by the triple pre, post and probability. When a rank-
ing is needed, regions are sorted by their probability (or
score). The probability /score reflects how well the found
element (region) matches the query.

We distinguish three types of approaches to extending
region algebras with score functions for ranked retrieval.
These three types of approaches are also applicable to e.g.
extending XQuery and XPath with score functions for ranked
retrieval as described by Buxton and Rys [3].

1. Orthogonal Ranking and matching are defined (and
possibly also implemented) as black box functions, where
one does not affect the other.

2. Matching Consistent The properties of the original
algebra are partially preserved. Some matching se-
mantics of the original operators are preserved, e.g. a
score of 0 being the same as no match, but other prop-
erties are not. Rewriting a query expression might
produce a different ranking of regions (nodes).

3. Ranking Consistent The properties of the original al-
gebra (see e.g. Equations 3 and 4) are fully preserved,
and the semantics of the score are completely defined.
If a query expression can be rewritten to another query
that retrieves the same region sets (or node sets), then
it will also define the same ranking of regions (nodes).

We aim at developing a Ranking Consistent extension of
XQuery / XPath. This will allow us to benefit from alge-
braic properties for query optimization, without the dan-
ger of producing different rankings for different query plans.
Furthermore, we believe that a Ranking Consistent exten-
sion will produce the best search quality achievable on the
basis of the data, but of course, this has to be evaluated
empirically. We will follow a language modeling approach
to IR [10] for developing extensions, because this approach
defines the semantics of document scores quite clearly.

Note that the World Wide Web consortium aims at ex-
tensions of XQuery / XPath that are Orthogonal or possi-
bly Matching Consistent [3]. Algorithms for ranking will be
mostly implementation-defined. These are probably realis-
tic goals considering the current status of theory in infor-
mation retrieval and database research, and considering the
wish of industry to include their own (proprietary) ranking
algorithms.

3. XMLSTORAGE AND QUERY ALGEBRA

The logical query algebra developed with the aim of pre-
serving the ranked retrieval properties is described in this
section. We begin with the explanation of the relational
model used for storing XML collection in a database. The
information about the tree structure of XML documents is
stored in Region Index (RI) relational table, shown in Ta-
ble 1, where we used information obtained from Figure 2.
This table is formed using the XML mark-up information.
The key of the relational table used for binding this basic
relational table to all other relational tables describing XML
structure and content (see text below), is a unique pre index.

In Table 1, pre and post attributes are positive integer
values assigned to an XML node using the stretched pre-post
indexing scheme explained in subsection 2.2. The column
identified as par is used for fast access to parent and child
nodes of a context nodes, thus enabling the direct inclusion
expressions. It serves as a foreign key and represents the
key pre index of a parent node.

In addition to the three columns which represent indexes
obtained during the XML tree traversal, the columns type
and name represent the information about XML mark-up.
Therefore, type information denotes whether the entity is
an element node (’node’), a text node (’text’), a process-
ing instruction node (’proc_ins’), or a comment node (’com-
ment’). The name column is used for element and process-
ing instruction nodes only, and is defined by element name
or processing instruction name, as specified by mark-up.

The information about element attributes is stored in a
table with columns for the pre (attr_pre) and post index
(attr_pst), a pointer to the element node which has an at-
tribute (attr-own), the attribute name (attr_name), and the
attribute value (atér_val). For the storage of textual infor-
mation an extra relational table is introduced. The table

[pre [post | par [type [name |

1 3924 - node | SCENE

2 5 1 node | STAGEDIR
3 4 2 text | -

6 62 1 node | SPEECH

7 9 6 node | SPEAKER

Table 1: Region index relational table

[pre | word | [word [prob |

3 enter again | 0.000866
4 HAMLET and 0.00528

8 HAMLET arms | 0.000328
11 | So be 0.000456

Table 2: Word location index and word statistics

describes Location Indexes (LI) and is depicted in in Ta-
ble 2. Here the pre identifier represents the unique location
index of a word.

Additional tables (not shown here) are used to store the
information about processing instruction and comment nodes.
In these tables we introduce two columns, namely p_i and
comm, which represent the target values used in processing
instructions and the textual information that defines com-
ments’ content, respectively. Thus, the result is the exis-
tence of two relational tables of following type: (pre,p-i) for
processing instruction nodes, and (pre,comm) for comment
nodes. Note that the exact name of processing instruction
is stored in the region index table.

Furthermore, since our goal is to enable IR on XML col-
lections we introduced a relational table that stores word
background probabilities. It is formed during the XML col-
lection loading procedure, and is stored along with all the
other information in the XML database. The background
probability relational table has the form of (word,prob) and
is depicted in Table 2.

For the actual storage of XML data we have chosen the
Monet database kernel [1] since it gives promising opportu-
nities for efficient XML storage and querying. It is a fact
that main memory-oriented database systems, like Monet,
outperform traditional DBMSs by using CPU and cache op-
timized execution. Furthermore, Monet can be easily ex-
tended with new data types and operators. A good exam-
ple of the power of Monet is the staircase join algorithm
aimed at speeding-up the execution of descendant and an-
cestor XPath axis steps which is implemented as a Monet
extension (for details see [9]).

The Monet database kernel stores the data in Binary As-
sociation Tables (BATs), and all the operations are executed
on BATs. BATs are relational tables with a head (key) and
a tail column only. This fits very well in our relational struc-
ture, since almost all tables have pre as a key value (except
(word,prob) table). Thus, we are able to split all tables that
have more than two columns into a number of tables that
have the form BAT (pre,tail), where tail can be one of:

tail = {post, par, type, name, word, attr_pre, attr_pst,

attr_own, attr-name, attr-val, p_i, comm, prob }

3.1 Query Algebra Domain

For defining query algebra operators on the logical level of
an XML database we will first set the domain. The domain
is defined following the relational model on physical level,
explained in previous subsection. Based on relational model
we identified four different sets on the logical level: the re-

gion index set - R, the Basic Index (BI) set - B, the word lo-
cation set - L, and the background probability set - P. Each
of these sets contains a specific type of information about
XML elements or XML elements’ content, with respect to
the data stored in relational tables. Thus, the information
about XML elements (r € R) stored in the region index ta-
ble with additional prob information entity that stores the
probability of a current region in a probabilistic database
model defines the RI set: r = (pre,post,par,type,word,prob).
Word location indexes (I € L) and word background proba-
bilities (p € P) are defined based on their relational counter-
parts: | = (pre, word) and p = (word, prob). Basic indexes
(b € B) are an abstraction of LIs used to define text regions
with a certain probabilistic values assigned to them: b =
(pre,post,prob).

In these definitions, each attribute of the index structure
has its specific domain. Thus, attributes pre, post, and par
are integer numbers. The type attribute is a subset of a
character set that represents the type of a node in XML
(e.g. ’a’ for attribute). Attribute word is a set of strings
representing words or processing instruction, attribute, and
tag names. The probabilities (foreground and background)
are stored as real numbers ranging from 0.0 to 1.0 using the
prob attribute.

Considering all the information present in the tables from
the previous subsection, we can consider the region index
to be the basic entity for our new region algebra. Using
the RIs as a basic construct in our algebra together with
Bls and LlIs as its subsets, we are able to address arbitrary
parts (elements) of an XML tree (collection) or arbitrary
terms in each text node. Furthermore, various operators
can be introduced that will stay in the domain of region or
basic indexes with respect to the operand types and used
operators. These operators will be defined in next subsec-
tion, while the core implementation of algebraic operators
will be explained using an example in the next section.

3.2 CIRQAI

The four sets that define the domain of the algebra are used
for the definition of all the operators in the Complex Infor-
mation Retrieval Algebra (CIRQAI) on the logical level of
a database. Algebraic operators are defined to enable exe-
cution of CIRQuL queries whose syntax is described in [13].
Given the high complexity of CIRQuL queries, here we will
explain only the most important operators that in the same
time form the core of the logical algebra and enable the ex-
ecution of a great variety of queries over XML documents.

The basic framework for describing CIRQAI will be intro-
duced using the XPath properties and specifications accord-
ing to the XPath 1.0 standard [4]. In general, the XPath
language can be defined as a sequence of consecutive steps
starting from the root node, which guide us through the
XML tree structure. Furthermore, after introducing context
elements, i.e. the resulting set of context nodes obtained af-
ter the execution of the previous XPath step, we can define
each XPath step independently. We will use C' to denote the
set of RIs that represents the whole XML collection, and R,
to denote the set of current context elements. Thus, we can
define each XPath expression in a functional manner using
the following abstract step operations:

X Path(root, C) := rootostep: (C)ostepa(C)o...ostepn(C),
where each step operation is executed on the result set from
the previous one (stepi(Rc, C)). According to the XPath
specification [4] each XPath step can be subdivided into azis,
node-test, and predicate part. Therefore, the step operation
can be further decomposed into basic operations used for

axis operator

self(Re,C) Re

child(Re,C) {s:C;r:Rc|s.pre = r.par e s} node-test result

parent(Rc,C) {s:C;r:Rc|s.par = r.pre e s} operator

descendant(Re,C) {s:C;r:Rc|r.pre < s.pre < r.post @ s gname(Rc,word) | {s: Rc|s.word = word}
descendant_or_self(Rc,C) | {s:C;r:Rc|r.pre < s.pre < r.post e s star(Rc,type) {s: R.|s.type = type}
ancestor(Rc,C) {s:C;r:Rc|s.pre < r.pre A s.post > r.post @ s} text(Rc) s:Rc[s.type = "t’}
ancestor_or_self(Rc,C) {s:C;r:Rc|s.pre < r.pre A s.post > r.post} comment(Rc) s:Rc[s.type = ¢’}
preceding(Re,C) {s:C;r:Rc|s.post < r.pree s} p-i(Rc) {s:R¢|s.type ="p'}
preceding_sibling(Rc,C) {s:C;r:R.|s.post < r.pre A s.pre = r.par ® s} p-i(Re,target) {s: Re¢|s.type ="'p’ A
following(Rc,C) {s:C;r:Rc|s.pre > r.post ® s} s.word = target}
following_sibling(Rc, C) s:C;r:Rc[s.pre > r.post A\ s.par = r.pre @ s} node(Rc) {s:Rc|s.type ='n’}
attribute(Re,C) s:C;r:Rc|s.type =’a’ Ar.pre = s.pre e s}

namespace(Re,C) s:C;r:Rc|s.type =’s’ Ar.pre = s.pre e s}

Table 3: Axis and node-test operators

defining axis, node-test, and predicate parts:

stepi(R¢, C) := R o azisi(C) o node_test; o predicate;(C)
Axis and node test steps can be defined using the intro-
duced domain sets and the operator notation, and we will
specify them in the logical algebra using the operators with
the same names as in the XPath standard. Axis and node
test operators are described in Table 3, where R, represents
the context node-set (R. C C), and s (€ C) is the element
of the result node-set after the selection'. We can exert
that the operators descendant and ancestor have the same
functionality as the operators that define the containment
relation in region algebra. Therefore, CIRQAI can be con-
sidered as a more general algebra than region algebra, since
it contains information about the tree structure organiza-
tion of documents (not just on two dimensions like in region
algebra approaches). Moreover, CIRQAI includes the prob-
abilistic calculus in defining some of the operators, as we
will see below.

Along with the 13 standard XPath operators used for
XML tree traversal (axis operators) we introduced seven op-
erators for type and name node tests (defined based on the
XPath specification [4]). Two of them are used for node
tests by name (gname and star) and five for node tests by
type (text, comment p_i, and node). All these operators are
defined in Table 3. Here we will not define operators for
predicate due to their number and complexity, we will only
introduce operators for the IR extension to XPath instead.

IR operators are introduced to enable ranking and ranked
retrieval of XML elements or documents. As a starting
point for defining IR operators we considered the proposal
for a new query language for IR on XML databases, called
CIRQuL [13]. As we already stated we will explain only the
basic operators, which are defined in Table 4. These opera-
tors are explained in more details in next section’s example.

In Table 4 we used ind as a shorthand notation for region
index attributes, defined as follows:

ind = {pre, post, par, type, word},
and two additional operators, namely > and | | (size of a
region), which are defined in next equations:

r 1> B :={b:Blb.pre > r.pre A b.post < r.post b} (8)

|z| := z.post — z.pre + 1 9)

Using the operators defined in Table 4 we are in position
to express numerous IR tasks. Together with the algebraic
operators for axis and node test steps we are able to form
the foundation for the complex information retrieval on the

L A notation like {s: C;r: R|Prede s} denotes the set of all s, when
s ranges over C' and r over R, constrained by the predicate Pred that
must hold [20].

XML database consisting of an arbitrary number of indexed
XML documents.

4. EXECUTING COMPLEX QUERIES

In this section we will explain the transformation from CIRQuL

query to core database functions using the execution plan
on logical level. The XML data presented in the first section
will be used for describing the execution of a query on top
of the physical level of a database (Monet). To query the
data we will take the next query example:

//speech[IR((’famous’ adj ’quote’)[0.8] and be[0.2])]

If we consider logical algebra operators given in the previ-
ous section we can come up with the execution plan that is
given in Figure 3. In defining the execution plan, we distin-
guished between four different expression levels, where each
level corresponds to an expression of different complexity
in CIRQuL. Furthermore, we can distinguish between the
XPath expression part, which is a part responsible for the
execution of plain XPath steps (axis and node test steps),
and the IR expression that describes the execution of IR
functions, for which we differentiate between three layers:
basic, region, and complex expression layer.

The basic expression layer is responsible for finding the
location (the pre index) of a selected word (interval opera-
tor), a group of words (or_term operator), or the phrase re-
gion formed using the adjacent (adj operator) or near (near
operator) operation on terms. These operators work on the
domain of BI sets, where input parameters for interval oper-
ators are the term location set (L) and the set of background
probabilities of terms (P). The resulting set is again in the
domain of Bls.

Region expression operators are aimed at computing the
probability of a term (or phrase expression) in a complex
region, as defined with the probab operator in Table 4. Fur-
thermore, the ’importance’ parameter is resolved here us-
ing the scale operator, which scales the significance (impor-
tance) of a single basic expression in a complex one. All
these operators work on the RI domain, while probab oper-
ator takes as an input two sets, one RI set that is a result of
XPath expression operators, and one BI set that is a result
of application of basic expression operators.

Finally, complex expression operators combine the prob-
abilities on regions in region expression and give the result
which is ranked according to the probabilistic values of Rls.
Thus as a resulting set we obtain a set of RIs which is or-
dered in descending order with respect to the prob attribute.

Since we used Monet database system as a database plat-
form, the prototype implementation of execution engine over
XML database was done in Monet Interpreter Language -
MIL. The MIL algebra consists of numerous operators which

operator | Definition

interval(term)

{b: B;l: L;p: P|l.word = term A p.word =" term’ A'b.(pre, post) = l.pre A b.prob = p.probeb}

or_term(B1,B2)

{b: B;by : B1;bs : B2|(b.(pre, post) = b1.(pre, post) V b.(pre, post) = ba.(pre, post)) A
b.prob = by.prob + ba.prob e b}

adj(B1,B2)

{b1 : B1; bz : Balba.pre = by.post + 1 e (by.pre, ba.post, by.prob X ba.prob)}

near(B1,B2,n)

{b: B;by : B1;by : Ba|ba.pre > by.pre — n A ba.post < bi.post +n A
b.pre = min(bi.pre, ba.pre) A b.post = maz(bi.post, ba.post) A b.prob = n X by.prob X ba.prob e b}

probab(R,B) {s: R;r: R;b: B|(s.ind = r.ind A s.prob =)\% + (1 = A)b.prob e s}

scale(R,imp) {s: R;r: R|(s.ind = r.ind A s.prob = r.prob x imp e s}

or(R1,R2) {s: R;r1: Ri;7r2 : Ra|(s.ind = r1.ind V s.ind = ra.ind) A s.prob = r1.prob + ra.prob e s}
and(R1,R2) {s: R;r1 : R1;7r2 : Rals.ind = r1.ind A s.ind = ra.ind A s.prob = r1.prob X ra.prob e s}
order(R) for any 71,72 € R:7r1 < ro < r1.prob > ra.prob

Table 4: CIRQAI operator definitions

descendant_or_self(C,root)

node(R1)

E» child(R2)
Xpeath . name(R3, speech’)
expression

B11 B12 R4
B22
Basic
_&xpression yB2 T N NUYoo.-
prob(R4,B2) prob(R4,B22)
¢ R51 ¢ R52
] scale(R51,0.8) scale(R52,0.2)
Region
_epresion R D
and(R61,R62)
¢ R7
Complex
expression order(R7)

Figure 3: Query execution plan

are defined over simple variables and over sets. Further-
more, it can be easily extended with new user-defined oper-
ators. Using built-in and user defined operators we were able
to perform straightforward mapping from logical algebra to
MIL operators. Moreover, we used the string notation for
defining operators in query execution plan given in Figure 3
to exert the simplicity of transforming algebraic operators
on logical level on MIL operators that work on Monet sets
and tuples. Thus, for each operator in the logical algebra we
made a corresponding MIL operator (or two in some cases)
that perform the same operation as defined by logical opera-
tors. The result of transforming execution plan for previous
query into MIL code is depicted in Figure 4.

R4:=root.descendant_or_self.node.child.qname(‘speech’);

R4.init_IR;
R51:=R4.prob(interval(‘famous’).adj(interval(‘quote’)));
R61:=R51.scale(0.8);
R62:=R4.prob(interval(‘be’)).scale(0.2);
R7:=R61.and (R62);

RR:=end_IR(R7);

Figure 4: MIL operations for the query plan

5. DISCUSSION

The current prototype system supports most functionality
of the query language proposed in [13] and the W3C require-

ments for full-text search [3]. The system will be tested on
the INEX 2003 data [11]. At the moment, the system is
not fast enough for on-line, interactive, applications. This
is partly due to inefficient query plans, and partly due to
inefficient definition/implementation of single operators. In
the near future, we will speed-up the system, and we will
redefine (some) operators such that the probabilistic alge-
bra will form a Ranking Consistent extension of the XPath
version of the algebra.

6. REFERENCES

[1] P.A. Boncz. Monet - A Next-Generation DBMS Kernel for Qu-
ery-Intensive Applications. PhD thesis, U. of Amsterdam, 2002.

[2] F.J. Burkowski. Retrieval activities in a database consisting of
heterogeneous collections of structured text. In Proceedings of
ACM SIGIR’92, pp. 112-124, 1992.

[3] S. Buxton and M. Rys. XQuery and XPath full-text require-
ments. Technical report, W3C, 2003. http://www.w3.org/TR/

[4] J. Clark, S. DeRose. XML Path Language (XPath) Version 1.0
TR, W3C, 1999, http://www.w3.org/TR/xpath.

[5] C.L.A. Clarke, G.V. Cormack and F.J. Burkowski. An algebra
for structured text search and a framework for its
implementation. Computer Journal 38:43-56, 1995.

[6] M.P. Consens and T. Milo. Algebras for querying text regions.
In Proceedings of ACM PODS’95, pp. 11-22, 1995.

[7] C.J. Date. An Introduction to Database Systems, 6th edition.
Addison-Wesley, 1995.

[8] D. Florescu and D. Kossmann. A performance evaluation of
mapping schemes for storing XML data in a relational
database. Technical report, INRIA, 1999.

[9] T. Grust, M. van Keulen, and J. Teubner. Accelerating XPath
Evaluation in Any RDBMS. ACM Transactions on Database
Systems (TODS), 2003.

[10] D. Hiemstra. Using language models for information
retrieval. PhD thesis, University of Twente, 2001.

[11] Initiative for the Evaluation of XML Retrieval. April 2003 -
December 2003,
http://www.is.informatik.uni-duisburg.de/projects/inex03/.

[12] J. Jaakkola and P. Kilpeldinen. Nested text-region algebra.
Technical report, University of Helsinki, 1999.

[13] V. Mihajlovié¢, D. Hiemstra, P.M.G. Apers. CIRQuL - Complex
Information Retrieval Query Language. In Proc. of the VLDB
2003 PhD Workshop, 2003.

[14] C.P. Paice. Soft evaluation of Boolean search queries in

information retrieval systems. Information Technology:

Research and Development, 3(1):33-42, 1984.

C.J.van Rijsbergen. Information Retrieval. Butterworths, 1979.

[16] G. Salton, E.A. Fox and H. Wu. Extended Boolean information
retrieval. Communications of the ACM, 26:1022—-1036, 1983.

[17] A.R. Schmidt, M.L. Kersten, M.A. Windhouwer and F. Waas.
Efficient relational storage and retrieval of XML documents. In
The WWW and Databases, Springer-Verlag, pp. 137-150, 2000.

[18] F. Scholer, H. Williams, J. Yiannis and J. Zobel. Compression
of inverted indexes for fast query evaluation. In Proceedings of
ACM SIGIR’02, pp. 222-229, 2002.

[19] W. Shakespeare. Hamlet. 1600. http://www.ibiblio.org/bosak

[20] J. M. Spivey. The Z Notation: A Reference Manual.
Prentice-Hall, 1992.

=
)

