ON THE COVERING OF LEFT RECURSIVE GRAMMARS.

A. NIJHOLT

Free University Department of Mathematics Amsterdam, The Netherlands

Abstract

.

In this paper we show that some prevailing ideas on the elimination of left recursion in a contextfree grammar are not valid. An algorithm and a proof are given to show that every proper contextfree grammar is covered by a non-left-recursive grammar.

Keywords: cover, left-recursion, context-free grammar, parsing.

1. INTRODUCTION.

There exists a well-known method for eliminating left recursion in a context-free grammar. The motivation for eliminating left recursion is for example that certain parsing algorithms do not work for left-recursive grammars. However with this usual method the parses of the original grammar cannot, in general, be reconstructed in a simple way from the parses of the non-left-recursive grammar obtained by this method. That is, the new grammar does not cover the original grammar.
There has been some research on the covering of gramnares by grammers which are in a certain normal form. In general the possibility to cover a grammar depends on the definition of cover which is used. Examples of those definitions can be found in [1,p.276], [2] and [3], and we will discuss them as far as necessary for our purposes in the next section.
In [1] en [2] some remarks can be found from which one could conclude that elimination of left
recursion changes the structure of a grammar in such a way that there is no covering grammar. However, in our opinion, and not only in the case of elimination of left recursion, the relation between changes of structure (whatever is meant by structure) and covers is not so close as suggested. This point is also discussed, though rather informally, in the next section. In the case of elimination of left recursion we show in section 3 that this can be done in such a way that the grammar obtained covers the original grammar.

In the remainder of this introduction we give some definitions and notational conventions. In section 2 we discuss the definition of cover and the usual algorithm for eliminating left recursion. In section 3 we give our algorithm for eliminating left recursion, which is fust a slight variation of the usual method, and prove its correctness and its covering property. Moreover we give an example of the use of this algorithm and we conclude in section 4 with a result which was inspired by a more practical consideration of the elimination of left recursion.

Preliminaries.
We review some basic concepts concerning formal grammars. This material can also be found in [1].

DEFINITION 1.1. A context-free-grammar (cfg for short) is a four-tuple $G=(N, \Sigma, P, S)$, where N is the alphabet of nonterminals, Σ is the alphabet of terminals, $\mathbb{N} \cap \Sigma=\phi$ (the empty set), $\mathbb{N} \cup \Sigma=V, S \in \mathbb{N}$, and the set of productions P is a finite subset of $N \times V^{*}$.

Instead of writing $(A, \alpha) E P$, we write $A \rightarrow \alpha$ in P. Let $u, v=V^{*}$, then $u \Rightarrow v$ holds if there exist $x, y, w=V^{*}$ and $A=N$ such that $u=x A y, v=x w y$ and $A \rightarrow w$ is in P. If $x \varepsilon^{*} \Sigma^{*}$ we write $u \underset{\ell}{\Rightarrow} v$ and if $y \in \Sigma^{*}$ we write $u \underset{r}{\Longrightarrow}$ v.

The reflexive-transitive closures on V^{*} of these relations are written as $\stackrel{\star}{\Longrightarrow}, \stackrel{\star}{\neq}$ and $\xlongequal[r]{\star}$ respectively, while the transitive closures are written as $\stackrel{+}{\Longrightarrow}, \stackrel{+}{\Longrightarrow}$ and $\stackrel{+}{\stackrel{+}{\Longrightarrow}}$.
The set $L(G)=\left\{x \in \Sigma^{*} \mid S \xlongequal{*} x\right\}$ is the language generated by G. If $u_{0} \Longrightarrow u_{1} \Longrightarrow u_{2} \Longrightarrow \ldots \Longrightarrow u_{r}$, then this sequence is called a derivation of u_{r} from u_{0}. If instead of \Longrightarrow the relation \Longrightarrow or the relation $\Longrightarrow \underset{r}{\Longrightarrow}$ is used, then this sequence is said to be a leftmost demivation or a mightmost derivation respectively. If in a leftmost or a rightmost derivation of u_{r} from u_{0}, for each $0 \leq i \leq r, u_{i+1}$ is obtained from u_{i} by applying production $\Pi_{i}=A_{i} \rightarrow y_{i}$ then, in the case of a leftmost derivation the sequence $\Pi_{0} \Pi_{1} \ldots \Pi_{r-1}$ is said to be a Zeft parse of u_{r} from u_{o}, and in the case of a rightmost derivation the sequence $\Pi_{r-1} \Pi_{r-2} \cdots \Pi_{0}$ is said to be a right parse of u_{r} to u_{0}.

If $u_{o}=S$ then each $u_{i}, 0 \leq i \leq r$, is called a sentential form. A cfg G is said to be ambiguous if there is $w \in L(G)$ such that w has at least two left parses.
A nonterminal A is said to left-derive x, where $x \in V$, if $A \xlongequal{+} x \alpha$ for some $\alpha \in V^{*}$.

DEFINITION 1.2. Let Σ_{1} and Σ_{2} be alphabets. A function f from Σ_{1} into Σ_{2}^{*} is extended to a homomorphism from Σ_{1}^{*} into Σ_{2}^{*} by the conditions $f(\varepsilon)=\varepsilon$ and $f\left(a_{1} a_{2} \ldots a_{n}\right)=f\left(a_{1}\right) f\left(a_{2}\right) \ldots f\left(a_{n}\right)$, where ε is the empty string and $a_{i}, 1 \leq i \leq n$, is in Σ_{1}. The homomorphism f is called fine if, for each $a \in \Sigma_{1}, f(a) \in \Sigma_{2} \cup\{\varepsilon\}$.

DEFTNTTION 1.3. A cfig $G=\left(N, \sum, P, S\right)$ is said to be reduced if each element of V appears in some sentential form and each nonterminal of G can derive a string of terminals. Cfg G is said to be cyolefree if there is no derivation of the form $A \xlongequal{+} A$, for any $A \in N$.
G is said to be ε-free if there are no productions of the form $A \rightarrow \varepsilon$, where $A \neq S$, in P. In the sequel
we will only consider grammars which are reduced and cycle-free. A cfg G is said to be proper if it is reduced, cycle-free and ε-free. A nonterminal A is said to be left-recursive if $A \Longrightarrow A B$ for some $B=V^{*}$. A cfeg is said to be left recursive if f_{s} has at least one left-recursive nonterminal.
A cfg G is said to be in Greibach normal form (GNF) if G has only productions of the form $A \rightarrow a \alpha$, where a $\in \sum$ and $\alpha \in \mathbb{N}^{*}$, or $S \rightarrow \varepsilon$.

2. ELIMINATION OF LEFT RECURSION.

First we give the usual method for eliminating left recursion. Our starting-point is a proper grammar $G=(\mathbb{N}, \Sigma, E, S)$, where $\mathbb{N}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. ALGORITHM
(1) Set $i=1$.
(2) Let the A_{i}-productions be
$A_{i} \rightarrow A_{i} \alpha_{1}|\ldots| A_{i} \alpha_{m}\left|B_{1}\right| B_{2}|\ldots| \beta_{p}$
where no $\beta_{j}, 1 \leq j \leq p$, begins with A_{k} if $k<i$.

Replace these productions by
$A_{i} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots\left|\beta_{p}\right| \beta_{1} C_{i}|\ldots| \beta_{p} C_{i}$, and
$c_{i} \rightarrow \alpha_{1}|\ldots| \alpha_{m}\left|\alpha_{1} c_{i}\right| \ldots \mid \alpha_{m} C_{i}$ where
c_{i} is a new nonterminal.
(3) If $i=n$, then halt. Otherwise, set $i=i+1$ and $j=1$.
(4) Replace each production of the form $A_{i} \rightarrow A_{j} \alpha$ by the productions $A_{i} \rightarrow \beta_{1} \alpha|\ldots| \beta_{m} \alpha$, where $A_{j} \rightarrow \beta_{1}|\ldots| \beta_{m}$ are all the A_{j}-productions.
(5) If $j=i-1$ go to step (2). Otherwise set $j=j+1$ and go to step (4).

In general we want to compare the parses of the original grammar G with the parses of a grammar G ' obtained from G by transformation. Therefore we give a definition which can be found in [1]. We assume that the productions of each grammar are numbered for identification.
We identify these numbers with the productions.

DEFINITION 2.1. Let $G=(N, \Sigma, P, S)$ and $G^{\prime}=\left(N^{\prime}, \Sigma, P^{\prime}, S^{\prime}\right)$ be two efg's such that $L(G)=$ $\mathrm{L}\left(\mathrm{G}^{\prime}\right)$. In the following two conditions x and y are
variables with domain \{left, right\}. Let $w \in L\left(G^{\prime}\right)$ and let $h: P^{\prime *} \rightarrow P^{*}$ be a homomorphism such that
(i) if π^{\prime} is an x-parse for with respect to G^{\prime} then $h\left(\pi^{\prime}\right)$ is a y-parse for w with respect to G, and
(ii) if π is a y-parse for w with respect to G then there exists π^{\prime} such that $h\left(\pi^{\prime}\right)=\pi$ and π^{\prime} is an x-parse of w with respect to G^{\prime}. If in (i) and (ii) both x and y are replaced by 'left', then G ' is said to left-cover G. If both x and y are replaced by 'right' then we say that G ' right-covers G.
If x is replaced by 'left' and y is replaced by 'right' then we say that G ' left-to-right-covers G.

The definiton of (complete) cover given in [2] can shown to be equivalent to the definition of right cover given here if the cover-homomorphism h is fine.
EXAMPLE.
G^{\prime} with the only production $1 . S^{\prime} \rightarrow a b$ right-covers G with productions 1. $S \rightarrow a B$ and $2 . B \rightarrow b$. The cover-homomorphism h is defined by $h(1)=21$. G ' cannot cover G with a cover-homomorphism which is fine. In this paper we will only make use of a fine homomorphism. Therefore the definition of right cover used here and the definition of complete cover in [2] are equivalent. Now we can ask whether it is possible that a grammar G^{\prime} obtained after eliminating left recursion from a cfg G, covers G. Therefore we consider the following two grammars, G_{1} and G^{\prime} (only the productions are displayed).

G_{1} with productions

G' with productions

1. $S \rightarrow$ So
2. $\mathrm{S} \rightarrow 0$ 5. $\mathrm{C} \rightarrow 0$
3. $\mathrm{S} \rightarrow \mathrm{S} 1$
4. $S \rightarrow 1$
5. $\mathrm{C} \rightarrow 1$
6. $S \rightarrow 0$
7. $\mathrm{S} \rightarrow \mathrm{OC}$
8. $\mathrm{C} \rightarrow \mathrm{OC}$
9. $S \rightarrow 1$
10. $\mathrm{S} \rightarrow 1 \mathrm{C}$
11. $\mathrm{C} \rightarrow 1 \mathrm{C}$
G^{\prime} is obtained from G_{1} by eliminating left recursion according to the ususal algorithm. It can easily be verified that G ' neither left-covers nor rightcovers G_{1}. In this case we have G^{\prime} left-to-rightcovers G_{1}, but that is not true in general which can be seen by eliminating left recursion from the grammar G_{2} with the following productions:

1. $\mathrm{S} \rightarrow \mathrm{Aa}$	5. $\mathrm{A} \rightarrow \mathrm{AO}$
2. $\mathrm{S} \rightarrow \mathrm{Ab}$	6. A $\rightarrow \mathrm{A} 1$
3. $\mathrm{S} \rightarrow 0$	7. A $\rightarrow 0$
4. $\mathrm{S} \rightarrow 1$	8. $\mathrm{A} \rightarrow 1$

Now consider the grammar G_{1}^{\prime} with productions

1. $S \rightarrow C$	(ε)	5. $D \rightarrow 0$	(1)
2. $S^{\prime} \rightarrow C S^{\prime}$	(ε)	6. $D \rightarrow 1$	(2)
3. $S^{\prime} \rightarrow D$	(ε)	7. $C \rightarrow 0$	(3)
4. $S^{\prime} \rightarrow D S^{\prime}$	(ε)	8. $C \rightarrow 1$	(4)

In this case we have G_{1}^{\prime} right-covers G_{1}, where the cover-homomorphism h is defined by $h(1)=h(2)=$ $h(3)=h(4)=\varepsilon$ and $h(5)=1, h(6)=2, h(7)=3$ and $h(8)=4$, which was already indicated between parentheses after each production displayed above. G_{i}^{\prime} is not left-recursive and in the following section we shall show that this is not by accident. Notice that the parse trees of G_{1}^{1} do not differ very much of the parse trees of G^{\prime}. The parse trees have the same skeleton. However G' is in Greibach normal form while G_{1}^{\prime} is not. This will turn out to be essential.

At this moment it is necessary to look at some remarks in the literature.
First we quote from [2, p.679].
"We would like to say G ' covers G if given a parser for G^{\prime} one can construct a parser for G. The motivation for this is that parsers typically handle grammars in some normal form. Presented with an arbitrary grammar G it may be possible to transform it into a grammar G^{\prime} which is in this normal form. In what cases can a parser for G ' be used to produce a parser for G ? For example, simple topdown parsers will not tolerate left-recursive rules which allow $A \xlongequal{+} A x$ for some nonterminal A and string x. However, given a grammar G there is a grammar G ' equivalent to G which has no such left-recursive rules. Can one construct a parser for G given a parser for G'? We shall prove that the answer is no, given our definition of covering".

However the 'proof' is introduced with the following remark [2, p.686].
"We now embark on the proof of another negative result by exhibiting a grammar which cannot be covered by any grammar in Greibach form.

Thus the elimination of lef't recursive changes the structure of a grammar sufficiently that it cannot have a covering grammar."

And then a proof is given that $c f g G_{1}$ we displayed above cannot be right-covered by a cfg in GNF. To us it is not clear why one can conclude from this that the elimination of left recursion plays such an important role. We can find the same conception in [1] from which we quote (p.283):
"We should observe that the condition of cycle freedom plus no e-productions is not really very restrictive.

Every context-free language without ε has such a grammar, and moreover, any context-free grammar can be made cycle-free and ε-free by simple transformations (...). What is more, if the original grammar is unambiguous then the modified grammar left and right-covers it. Non-left recursion is a more stringent condition in this sense. While every context-free language has a non-left-recursive grammar, there may be no non-left-recursive covering grammar."

We do not know whether the first part of these remarks (elimination of ε-productions) is correct, however for the second part (elimination of left recursion) in [1] the reader is referred to the cfg G_{1} which we already discussed above and which is on the contrary a grammar for which we can find a non-left-recursive covering grammar. In the next section we shall show that this remark is not correct.
3. ON THE COVERING OF LEFT-RECURSIVE GRAMMARS.

In this section we give, and prove the correctness of, an algorithm for the elimination of left recursion in a cfg such that the cfg obtained right-covers the original grammar.

ALGORITHM 3.1. Elimination of left recursion Input. A proper cfg $G=(N, \Sigma, P, S)$, G is left-
recursive.
Output. A nor-left-recursive cfg G^{\prime} which rightcovers G.

Method. The following notations are used. Let $N=\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$. The notation (j): $A_{n} \rightarrow p(k)$, means that the production $j=A_{n} \rightarrow \rho$ is mapped on a production k of grammar G.

Initially we have for each production
(k): $A_{n} \rightarrow \rho(k)$. Ihis notation, if necessary, is extended to
$\left(j_{1}, j_{2}, \ldots, j_{p}\right): A_{n} \rightarrow \rho_{1}\left|p_{2}\right| \ldots \mid \rho_{p}\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ or we say that the productions $\left(j_{1}, j_{2}, \ldots, j_{p}\right)$ are mapped on the productions $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$. (Some of the k_{i} 's, $1 \leq i \leq p$, may be ε).
(1) Set $i=1$
(2) Let the A productions be
$A_{i} \rightarrow A_{i} \alpha_{1}\left|\hat{A}_{i} \alpha_{2}\right| \ldots\left|A_{i} \alpha_{m}\right| \beta_{1}\left|\beta_{2}\right| \cdots \mid \beta_{n}$
$\left(i_{1}, i_{2}, \ldots, i_{m}, \ldots, i_{m+n}\right)$ where each β_{j},
$1 \leq j \leq n$, begins with a terminal or some
A_{k} such that $k>i$. If $m=0$, go to step (3).
Replace these A_{i}-productions by
$A_{i} \rightarrow C_{i} \mid C_{i} A_{i}^{\prime} \quad(\varepsilon, \varepsilon)$
$A_{i}^{\prime} \rightarrow D_{i} \mid D_{i} A_{i}^{\prime} \quad(\varepsilon, \varepsilon)$
$D_{i} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}\left(i_{1}, i_{2}, \ldots, i_{m}\right)$
$C_{i} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \alpha_{n}\left(i_{m+1}, i_{m+2}, \ldots, i_{m+n}\right)$
where C_{i}, D_{i} and A_{i} are newly introduced nonterminals.
(3) If $i=r$, let $G{ }^{\prime}$ be the resulting grammar, and halt. Otherwise, set $i=i+1$ and $j=1$.
(4) Let $A_{i} \rightarrow A_{j} \gamma_{1}\left|A_{j} \gamma_{2}\right| \ldots \mid A_{j} \gamma_{2} \quad\left(r_{1}, r_{2}, \ldots, r_{q}\right)$ be all A_{i}-productions of which the righthand sides begin with nonterminal A_{j}. We distinguish between two cases (a) and (b).
(a). \underline{C}_{j} is defined.

Suppose we have A_{j}-productions
$A_{j} \rightarrow C_{j} \mid C_{j} A_{j}^{\prime} \quad(\varepsilon, \varepsilon)$
and C_{j}-productions
$C_{j} \rightarrow X_{1} \delta_{1}\left|X_{2} \delta_{2}\right| \ldots \mid X_{p} \delta_{p} \quad\left(s_{1}, s_{2}, \ldots, s_{p}\right)$
where $X_{\ell}, 1 \leq 1 \leq p$, may be a terminal or a nonterminal.
Replace each production $A_{i} \rightarrow A_{j} \gamma_{k}\left(i_{k}\right)$,
$1 \leq k \leq q$, by
$A_{i} \rightarrow X_{1} H_{j}^{1} \gamma_{k}\left|X_{2} H_{j}^{2} Y_{k}\right| \ldots \mid X_{p} H_{j}^{p} \gamma_{k}\left(r_{k}, r_{k}, \ldots, r_{k}\right)$
and add productions, for $1 \leq \ell \leq p$,

$H_{j}^{l} \rightarrow Q_{j}^{l}$
$Q_{j}^{\ell} \rightarrow \delta_{\ell} \quad\left(s_{l}\right)$
where H_{j}^{ℓ} and $Q_{j}^{\ell}, 1 \leq \ell \leq p$, are newly introduced nonterminals.
(b). C is not defined.

Suppose we have A.-productions
$A_{j} \rightarrow X_{1} \delta_{1}\left|x_{2} \delta_{2}\right| \ldots X_{p} \delta_{p} \quad\left(s_{1}, s_{2}, \ldots, s_{p}\right)$
where $X_{\ell}, 1 \leq \ell \leq p$, may be a terminal or a nonterminal. Replace each production
$A_{i} \rightarrow A_{j} Y_{k}\left(r_{k}\right), \quad 1 \leq k \leq q$, by
$A_{i} \rightarrow X_{1} H_{j}^{1} \gamma_{k}\left|X_{2} H_{j}^{2} \gamma_{k}\right| \ldots \mid X_{p} H_{j}^{P} \gamma_{k} \quad\left(r_{k}, r_{k}, \ldots, r_{k}\right)$
and add productions, for $1 \leq \ell \leq p$,
$H_{j}^{\ell} \rightarrow \delta_{\ell}\left(s_{\ell}\right)$
where H_{j}^{ℓ}, $1 \leq \ell \leq p$, is a newly introduced nonterminal.
If $j=i-1$, go to step (2). Otherwise set $j=j+1$ and go to step (4).

End of the algorithm.

To prove the correctness of this algorithm we need some additional notations. Let $\alpha \in V^{*}$ then we have
$L(\alpha)$ is the language generated from α
$s(\alpha)$ is a sentence in $L(\alpha)$
$r s(\alpha)$ is a right parse of $s(\alpha)$ to α
$R(\alpha)$ is the set of right parses of sentences in $L(\alpha)$ to α.

EXAMPIE.

Let G be cfg with productions

1. $\mathrm{S} \rightarrow \mathrm{AbC}$
2. $A \rightarrow a$
3. $C \rightarrow a C$
4. $C \rightarrow d$
then $R(a C)=\left\{43^{n} \mid n \geq 0\right\}, R(A b C)=R(A) R(C)$, and if $s(b C)=b a^{n_{d}}$ for a certain $n, n \geq o$, then $r s(b c)=43^{n}$ for this sentence. Notice that since in general G may be ambiguous (that is, one sentence may have more than one right parse), rs (α) is a set of right parses. However, the proof is such that without loss of generality we may assume that $\operatorname{rs}(\alpha)$ is the representation of one of the right parses in $r s(\alpha)$ and therefore we can handle $r s(\alpha)$ as a string.

In the parse trees we display we will, if possible, use
$\left.\right|_{\alpha} ^{A}$
or

where $\alpha=X_{1} X_{2} \ldots X_{n}$,
rather than

THEOREM 3.1.
Every proper, left recursive context-free gramanar is right-covered by a non-left-recursive contextfree grammar.
Proof. Let $G=(N, \Sigma, P, S)$ be a proper, leftrecursive cfg. We use the notations given above and in algorithm 3.1. , hence $N=\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$. The cfg obtained after applying algorithm 3.1. is $G^{\prime}=\left(N^{\prime}, \Sigma, P^{\prime}, S\right)$. We have to show $L\left(G^{\prime}\right)=L(G)$, G^{\prime} right-covers G and G^{\prime} is non-left-recursive. In the algorithm a sequence of grammars is obtained in the following way. The algorithm starts with cfg $G_{11}=G$, hence $i=1$ in the algorithm. Step (2) produces cfg G_{21}, hence $i=2$ and $j=1$ in the algorithm. Step (4) is applied and gives cfg G_{22}. For $i=2$ step (2) is again applied and $\operatorname{cfg} G_{31}$ is obtained. For $i=3$ and $j=1$ step (4) is applied, result G_{32}, and for $i=3$ and $j=2$ step (4) is once more applied and $c f g G_{33}$ is obtained. The algorithm halts if $G_{r r}$ has been reached. Hence, each $G_{i 1}, i>1$, is constructed from $G_{k k}$, where $k=i-1$, by applying step (2) of the algorithm. Each $G_{i k}$, $i>1$ and $1<k \leq i$, is constructed from $G_{i j}$, where $j=k-1$, by applying step (4) of the algorithm.

CLATM 1.

The transitions from $G_{k k}$ to $G_{i 1}$ by step (2), where $i=k+1$, and from $G_{i j}$ to $G_{i k}$ by step (4), where $k=j+1$ and $1<k \leq i$, are Zanguage-and coverpreserving.

Proof of Claim 1.

Notice that initially we start with $L\left(G_{11}\right)=L(G)$ and G_{11} right-covers $G=G_{11}$, and since the coverrelation is transitive we can obtain ' $G^{\prime}\left(=G_{r r}\right)$ right-covers $G\left(=G_{11}\right)$.
First we are concerned with step (2), transition of $G_{k k}$ to $G_{i 1}$, $i=k+1$. In $G_{k k}$ we have
productions $A_{i} \rightarrow A_{i} \alpha_{1}\left|A_{i} \alpha_{2}\right| \ldots A_{i} \alpha_{m}\left|\beta_{1}\right| \beta_{2}|\ldots| \beta_{n}$ which we label with $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$. In $G_{i .1}$ we obtain the productions $\left(c_{1}, c_{2}\right): A_{i} \rightarrow C_{i} \mid C_{i} A_{i}$
$\left(d_{1}, d_{2}\right): A_{i}^{\prime} \rightarrow D_{i} \mid D_{i} A_{i}$
$\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{m}^{\prime}\right): D_{i} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}$
$\left(b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right): c_{i} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}$
We can verify that this transformation is languagepreserving by comparing trees in $G_{k k}$ and in $G_{i 1}$ with roots A_{i} and noticing that, since C_{i}, D_{i} and A_{i}^{\prime} are new nonterminals which can only be derived from A_{i}, these trees can be considered independentIy from the rest of a parse tree.

parse tree in $G_{k k}$

parse tree in $\mathrm{G}_{\mathrm{i} 1}$

$$
(i=k+1)
$$

Suppose we have a sentence w in $L\left(A_{i}\right)$, then this sentence has the form $w=s\left(\beta_{\ell}\right) s\left(\alpha_{u 1}\right) s\left(\alpha_{u 2}\right) \ldots$ $s\left(\alpha_{u p}\right)$, where $1 \leq \ell \leq n$, the α-indices are between 1 and m, and in a leftmost derivation $p+1$ successive A_{i}-productions ($p \geq 0$) have been used. Let $p>0$, then in $G_{k k}$ a right parse for w to A_{i} is of the form
$\operatorname{rs}\left(\beta_{\ell}\right) b_{\ell} \operatorname{rs}\left(\alpha_{u 1}\right) a_{u 1} \operatorname{rs}\left(\alpha_{u 2}\right) a_{u 2} \ldots \operatorname{rs}\left(\alpha_{u p}\right) a_{u p}$ and in $G_{i 1}$ we obtain for the right parse the form $\operatorname{rs}\left(\beta_{\ell}\right) b_{l}^{\prime} \operatorname{rs}\left(\alpha_{u 1}\right) a_{u 1}^{\prime} \operatorname{rs}\left(\alpha_{u 2}\right) a_{u 2}^{\prime} \ldots$

$$
\operatorname{rs}\left(\alpha_{u p}\right) a_{u p}^{\prime} \alpha_{1}\left(\alpha_{2}\right)^{p-1} c_{2}
$$

Hence, $G_{i 1}$ right-covers $G_{k k}$ with cover-homomorphism h, if we define
$h\left(b_{\ell}^{\prime}\right)=b_{\ell}, 1 \leq \ell \leq n$
$h\left(a_{\ell}^{\prime}\right)=a_{\ell}, \quad 1 \leq \ell \leq m$
$h\left(c_{1}\right)=h\left(c_{2}\right)=h\left(d_{1}\right)=h\left(d_{2}\right)=\varepsilon$,
where $h\left(c_{1}\right)=\varepsilon$ can be verified by considering the case $p=0$. Each other production of $G_{i 1}$ is mapped on itself by h.

Now we treat the transition of a cfg $G_{i j}$ by step (4) of the algorithm to a cfig $G_{i t}$, where $t=j+T$. In $G_{i j}$ the productions $A_{i} \rightarrow A_{j} \gamma_{1}\left|A_{j} \gamma_{2}\right| \ldots \mid A_{j} \gamma_{q}$ are labeled with $y_{1}, y_{2}, \ldots, y_{q}$. We first consider case (a) of the algorithm. Hence we have in $G_{i j}$ the productions
$\left(c_{1}, c_{2}\right): A_{j} \rightarrow C_{j} \mid C_{j} A_{j}$
$\left(a_{1}, a_{2}\right): A_{j}!\rightarrow D_{j} \mid D_{j} A_{j}$
$\left(a_{1}, a_{2}, \ldots, a_{m}\right): D_{j} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{m}$
$\left(b_{1}, b_{2}, \ldots, b_{n}\right): c_{j} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}$
t) Notice that the values of m, n and q depend on i and j of the algorithm. Since our notation will be clear we omit indices.
In $G_{i t}$ we obtain by step (4a), for each production $\left(y_{k}\right): A_{j} \rightarrow A_{j} Y_{k}$, where $1 \leq k \leq q$, the productions $A_{i} \rightarrow X_{1} H_{j}^{1} Y_{k}\left|X_{2} H_{j}^{2} Y_{k}\right| \ldots \mid X_{n} H_{j}^{n} Y_{k}$, which we label with $y_{k 1}, y_{k 2}, \ldots, y_{k n}$. We also obtain productions $\left(c_{l}^{\prime}\right): H_{j}^{\ell} \rightarrow Q_{j}^{\ell} A_{j}^{\prime} \quad 1 \leq \ell \leq n$
$\left(e_{\ell}\right): H^{\ell} \rightarrow Q_{j}^{\ell} \quad 1 \leq \ell \leq n$
$\left(b_{\ell}^{\prime}\right): Q_{j}^{\ell} \rightarrow \delta_{\ell} \quad 1 \leq \ell \leq n$

If we observe the parse trees for sentences with respect to $G_{i j}$ and $G_{i t}$, it is again sufficient to consider sub-trees with roots A_{i}.

For every combination of i and $j(1 \leq i \leq r$ and $1 \leq j<i$), step (4a) is done once at most. It
will be clear from the possible parse trees in $G_{i j}$ and $G_{i t}$ that the transformation in step (4a) is language preserving. To observe the cover-property we only consider the case that in the figures
given above $A_{j} \rightarrow C_{j} A_{j}$ is used. The case $A_{j} \rightarrow C_{j}$ can be treated similarly.
If we have a sentence w in $I\left(A_{i}\right)$ then it is of the form $w=s\left(X_{\ell}\right) s\left(\delta_{\ell}\right) s\left(A_{j}^{\prime}\right) s\left(\gamma_{K}\right)$ and a right parse of w to A_{i} with respect to $G_{i j}$ is of the form
$\operatorname{rs}\left(X_{\ell}\right) \operatorname{rs}\left(\delta_{\ell}\right) b_{\ell} \operatorname{rs}\left(A_{j}^{j}\right) c_{2} \operatorname{rs}\left(Y_{k}\right) y_{k}$
and a right parse of w to A_{i} with respect to $G_{i t}$ is
$\operatorname{rs}\left(X_{\ell}\right) \operatorname{rs}\left(\delta_{\ell}\right) b_{\ell}^{\prime} \operatorname{rs}\left(A_{j}^{\prime}\right) c_{\ell}^{\prime} \operatorname{rs}\left(\gamma_{k}\right) y_{k \ell}$
Now it is clear that we can define the cover- homomorphism h, such that $G_{i t}$ right-covers $G_{i j}$, where
$h\left(b_{\ell}^{\prime}\right)=b_{\ell}, \quad 1 \leq \ell \leq n$
$h\left(e_{\ell}\right)=c_{1}, \quad 1 \leq \ell \leq n$
$h\left(c_{\ell}^{\prime}\right)=c_{2}, \quad 1 \leq \ell \leq n$
$h\left(y_{k \ell}\right)=y_{k}, \quad 1 \leq \ell \leq n$ and $1 \leq k \leq q$.

Each other production of $G_{i t}$ is mapped on itself by h. The definition $h\left(e_{\ell}\right)=c_{1}$ can be verified by considering the case $A_{j} \rightarrow C_{j}$. Now we consider case (b). Hence C_{j} is not defined. Suppose we have the following A_{j}-productions in $G_{i, j}$:
$A_{j} \rightarrow X_{1} \delta_{1}\left|X_{2} \delta_{2}\right| \ldots \mid X_{p} \delta_{p}$.
We label these productions with $b_{1}, b_{2}, \ldots, b_{p}$. For $G_{i t}$ we obtain by step (4b) for each production $\left(y_{k}\right): A_{i} \rightarrow A_{j} \gamma_{k}$, where $1 \leq k \leq q$, the productions (with labels $\mathrm{y}_{\mathrm{k} 1}, \mathrm{y}_{\mathrm{k} 2}, \ldots, \mathrm{y}_{\mathrm{kp}}$)
$A_{i} \rightarrow X_{1} H_{j}^{\top} Y_{k}\left|X_{2} H_{j}^{2} Y_{k}\right| \ldots \mid X_{P} H_{j}^{P} Y_{k}$, and we obtain also the productions $\left(b_{\ell}^{\prime}\right): H_{j}^{\ell} \rightarrow \delta_{\ell}, 1 \leq \ell \leq p$.
Now, in the same way as was done in case (a) one can verify that, to obtain a cover-homomorphism one has to define $h\left(b_{\ell}^{\prime}\right)=b_{\ell}, 1 \leq \ell \leq p$, $h\left(y_{k \ell}\right)=y_{k}, 1 \leq \ell \leq p$ and $1 \leq k \leq q$, and each other production of $G_{i t}$ has to be mapped on itself by h. Since now we can conclude that step (2) and step (4) are language- and coverpreserving we conclude G^{1} right-covers G. Notice that with algorithm 3.1. We obtain immediately the cover-homomorphism for G ' and G, since every production obtained after a transformation is
immediately related to the production of grammar G, as indicated between parentheses after each production in the algorithm.

CLATM 2 .
G' is non-left-recursive.
Proof of Claim 2.
First we notice that, since δ_{ℓ} obtained in step (4) of the algorithm may be the empty string, G' does not have to be proper. We make the following observations.

OBSERVATION 1. Let $L\left(A_{i}\right)$ and $L^{\prime}\left(A_{i}\right)$ denote the languages obtained from A_{i} in G and G^{\prime} respectively. The transformations on the productions in step (2) and in step (4) are such that for each i we have $L\left(A_{i}\right)=L^{\prime}\left(A_{i}\right)$. Since G is a proper grammar we have in $G^{\prime} A_{i} \stackrel{*}{\Longrightarrow} \varepsilon$ and $C_{i} \stackrel{*}{\Rightarrow} \varepsilon$, for each A_{i} and C_{i}.
OBSERVATION 2. For each D_{i}, introduced in step (2), we have $D_{i} \stackrel{\star}{\Longrightarrow} \varepsilon$. To show this we first prove the following property. Suppose we are in algorithm 3.1. at the moment we want to do step (2) for nonterminal A_{i}. Let $A_{i} \rightarrow A_{k} Y_{k}$ be a production in $G_{i i}$, where $i \leq k$. Then we have the following property: if $\gamma_{k} \stackrel{\star}{\Longrightarrow} \varepsilon$ in $G_{i i}$, then $A_{i} \xlongequal{+} A_{k}$ in G. The proof of this property is by induction on i. Basis. Let $i=1$, then $A_{1} \rightarrow A_{k} \gamma_{k}$, for $k \geq 1$, is also a production in G. If $\gamma_{k} \xlongequal{*} \varepsilon$, then since G is proper we have $A_{1} \rightarrow A_{k}$, hence $A_{1} \xlongequal{+} A_{k}$.
Induction. Suppose this property holds for all p such that $p<i$. We prove that we may conclude that we may conclude that this property also holds for i. Consider $A_{i} \rightarrow A_{k} \gamma_{k}$, where $i \leq k$, in $G_{i j}$. If $A_{i} \rightarrow A_{k} \gamma_{k}$ is also in G, then we have $A_{i} \xlongequal{+} A_{k}$ in G if $\gamma_{k} \stackrel{*}{\Longrightarrow} \varepsilon$.
Now assume $A_{i} \rightarrow A_{K} \gamma_{k}$ is not in G. Hence this production is constructed in step (4) of the algorithm and therefore it is of the form
$A_{i} \rightarrow A_{k} H_{j n} \cdots H_{j 2} H_{j 1} \delta_{i}$, where $n<k$. *)
To obtain this production we started with a production $A_{i} \rightarrow A_{j 1} \delta_{i}$ in G, where $i>j 1$, and in

[^0]step (4) we used successively the productions **)
$A_{j 1} \rightarrow A_{j 2} Y_{1}, A_{j 2} \rightarrow A_{j 3} Y_{2}, \ldots, A_{j n} \rightarrow A_{k} Y_{n}$ of
$G_{j 1, j 1}, G_{j, j, j 2}, \ldots, G_{j n, j n}$ respectively.
According to step (4) we have jp < jq if $p<q$, and thus by the induction hypothesis $A_{j \ell} \xlongequal{\Longrightarrow} A_{j}(\ell+1)$ for $\uparrow=\ell \leq n$ and $A_{k}=A_{j(n+1)}$, if $\gamma_{\ell} \stackrel{*}{\Longrightarrow} \varepsilon$, $1 \leq \ell \leq n$. Therefore we have $A_{i} \xlongequal{+} A_{k}$ in G if $\delta_{i}=\varepsilon$ and all $Y_{i} \xlongequal{*} \varepsilon, 1 \leq i^{1} \leq n$ and this completes the proof of the property.
Now let $k=i$ in this property, then if $D_{i} \xlongequal{+} \varepsilon$ in $G_{i+1,1}$ and hence in G^{\prime}, we obtain $A_{i} \xlongequal{+} A_{i}$ in G, which contradicts the fact that G is a proper context-free grammar.

OBSERVATION 3. For each A_{i} we have A_{i} is not leftrecursive. We prove this also by induction. Consider the following two properties of the algorithm.
(4.1) After step (2) is executed for i, all $A_{i}-$ productions begin with either
(a) a terminal or a nonterminal $A_{k}, k>i$, or (b) C_{i}, and the C_{i}-productions begin with a terminal or with a nonterminal $A_{k}, k>i$. (4.2) After step (4) is executed for i and j, all A_{i}-productions begin with a terminal or with a nonterminal A_{k}, for $k>j$.

Kecall that $\mathbb{N}=\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$. In the proof m is the number of A_{i}-productions of which the right-hand sides begin with A_{i} (see step (2) of algorithm 3.1).
We define the score of an instance of (4.1) to be r.i. The score of an instance of (4.2) is $r .(i-1)+j$, where $1 \leq j<i$. We prove (4.1) and (4.2) by induction on the score of an instance of these statements.
Basis. For $i=1$ we only have instance (4.1). The transformation in step (2) is indeed such that, if $m=0$, all A_{i}-productions begin with a terminal or with a nonterminal A, for $k>i$. And if $m>0$ then the C_{i}-productions begin with a

[^1]terminal or a nonterminal A_{Y}, for $k>i$. Induction.
(1) Assume (4.1) and (4.2) for scores less than s, and let i and j be such that $0<j<i \leq r$ and $r .(i-1)+j=s$. Since $r . j<s$ all A_{j}-productions begin with either
(a) a terminal or A_{k}, for $k>j$, or
(b) C_{j} and the C_{j}-productions begin with a terminal or A_{k}, for $k>j$.
Since the transformation in step (4) is such that each new A_{i}-production begins with the begin-symbol of an $A_{j}-$ (or $C_{j}-$) production and, if this symbol is a nonterminal A_{k} then $k>j$, we see that each A_{i}-production begins with a terminal or a nonterminal A_{k}, for $k>j$.
(2) Assume (4.1) and (4.2) for scores less than s, and let i be such that i.r $=s$. Since (i-1).r $+j<s$ we have that all A_{i}-product-ions-begin with a terminal or a nonterminal A_{k}, for $k>j$, hence for $k \geq i$. If in step (2) $m=0$ we have that all A_{i}-productions begin with a terminal or a nonterminal A_{k}, for $k>i$. If $m>0$ we see that after the transformation all C_{i}-productions begin with the first symbol of the A_{i}-productions which begin with a terminal or with a nonterminal A_{k}, for k, i.
This completes the proof that each A_{i} is not left-recursive.

OBSERVATION 4. From the two properties in observation 3 it is clear that, for each i, A_{i} cannot left-derive a nonterminal $H_{j}, 0 \leq j<r$. From observation 1 and 2 it follows that, for each i, neither C_{i} nor D_{i} can derive ε. Moreover D_{i} cannat left-derive $H_{j}, 0 \leq j<r$, since this would mean there is a nonterminal $A_{k}, 0 \leq k \leq r$, which can left-derive H_{j}.
Nonterminal A! can only be introduced in a derivation by the productions $A_{i} \rightarrow C_{i} A_{i}, A_{i} \rightarrow D_{i} A_{i}$ or $H_{i} \rightarrow Q_{i} A_{i}$. Productions with left-hand side A_{i} are $A_{i}^{\prime} \rightarrow D_{i} A_{i}^{\prime}$ and $A_{i}^{\prime} \rightarrow D_{i}$. Since $C_{i} \stackrel{*}{\Rightarrow} \varepsilon$ and $D_{i} \stackrel{*}{\Longrightarrow} \varepsilon$ the only possibility for A_{i} to be leftrecursive is that A_{i} can left-derive H_{i} and $Q_{i} \xlongequal{*} \varepsilon$. However, then also D_{i} can left-derive H_{i}, which is not true. Therefore, for each i, A_{i} and
also D_{i} are not left-recursive. Easily can be verified that, for each i, C_{i} is not left-recursive.

OBSERVATION 5. For each i we have H_{i} and Q_{i} are not left-recursive (we omit again the upper indices). The proof of this statement is by induction on i. First we assume that the δ 's in step (4) are not equal to ε.

Basis: Let j be the smallest integer such that H_{j} is defined. Let $A_{j} \rightarrow X \delta(i f m=0$ in $\operatorname{step}(2))$ or $A_{j} \rightarrow C_{j}$ and $C_{j} \rightarrow X \delta($ if $m>0$ in step (2)), then we obtain $H_{j} \rightarrow \delta$ or $H_{j} \rightarrow Q_{j} \mid Q_{j} A_{j}^{\prime}$ and $Q_{j} \rightarrow \delta$ respectively. Since there are no other nonterminals $H_{p}, 1 \leq p \leq r$, defined before, δ can only begin with a terminal or a nonterminal $A_{k}, 1 \leq k \leq r$. A nonterminal A_{k} eannot left-derive a nonterminal $H_{p}, 1 \leq p \leq r$. Induction. We prove that H_{i} cannot left-derive a nonterminal H_{p}, if $p \geq i$. Therefore we assume that the nonterminals H_{t}, for $t<i$, cannot leftderive a nonterminal H_{p} if $p \geq t$.
Suppose H_{i} is introduced for an A_{l}-production, that is, in step (4) we transformed a production $A_{\ell} \rightarrow A_{q} Y$ (where $q<\ell$) of G, and after all steps (4) for this production have been executed the result is $A_{\ell} \rightarrow X H_{i} Y^{\prime}$ where X is a terminal or a nonterminal A_{k} for $k \geq \ell$. The last production which was applied in step (4) is then of the form $A_{i} \rightarrow X \delta\left(\right.$ or $A_{i} \rightarrow C_{i}$ and $\left.C_{i} \rightarrow X \delta\right)$. Moreover we obtain the production $H_{i} \rightarrow \delta$ or $H_{i} \rightarrow Q_{i} A_{i} \mid Q_{i}$ and $Q_{i} \rightarrow \delta$. If δ begins with a terminal or a nonterminal A_{k}, $1 \leq k \leq r$, then, since A_{k} cannot left-derive a nonterminal $H_{p}, 1 \leq p \leq r, H_{i}$ is not left-recursive. The other possibility is that δ begins with a nonterminal H_{p}, where $p<i$. Then by the induction hypothesis H_{p} cannot left-derive H_{i}. This completes the proof of the induction step. Now assume $\delta=\varepsilon$. Then we can have $H_{i} \xlongequal{+} Q_{i} A_{i}^{\prime} \stackrel{+}{\Longrightarrow} A_{i}^{\prime}$. However A_{i}^{\prime} cannot leftderive H_{i}. It is easily possible to give a proof of this statement analogous to the proof given above, where instead of the δ 's of step (4) we have to consider the α 's of step (2). Since the nonterminals H_{i} are not left-recursive we immediately obtain that the nonterminals Q_{i} are not left-recursive. This completes the proof of observation 5 .
Since we must conclude that all the nonterminals
are non-left-recursive we have finished the proof of claim 2 and therefore of theorem 3.1. \square Before closing this section we give an example of an application of algorithm 3.1. We use a grammar which was also used in $[1, p .157]$. The coverhomomorphism of G^{\prime} to G is obtained between parentheses after each production. Hence, we immediately relate every production obtained in the transformation, to a production of the original grammar G.

EXAMPLE 3.1

Consider the cfg G with productions

1. $A_{1}+A_{2} A_{3}$
2. $\quad A_{3}+A_{1} A_{2}$
3. $A_{1} \rightarrow a$
4. $A_{3} \rightarrow A_{3} A_{3}$
5. $A_{2} \rightarrow A_{3} A_{1}$
6. $\quad A_{3} \rightarrow a$
7. $\quad A_{2} \rightarrow A_{1} b$

We follow the steps of the algorithm.
(1) $\quad i=1$
(2) $A_{1}+A_{2} A_{3} \mid a(1,2)$ remains unaltered
(3) $i=2, j=1$
(4) Replace $A_{2} \rightarrow A_{1} b(4)$, where $A_{1} \rightarrow A_{2} A_{3} \mid a(1,2)$ by $A_{2} \rightarrow A_{2} H_{1}^{1} b$
$\mathrm{A}_{2} \rightarrow \mathrm{aH}_{1}^{2} \mathrm{~b}$
$\mathrm{H}_{1}^{1}+\mathrm{A}_{3}$
$\mathrm{H}_{1}^{2} \rightarrow \varepsilon$
(2) Replace $A_{2} \rightarrow A_{2} H_{1}^{1} b\left|a H_{1}^{2} b\right| A_{3} A_{1} \quad(4,4,3)$ by $\mathrm{A}_{2} \rightarrow \mathrm{C}_{2} \mid \mathrm{C}_{2} \mathrm{~A}_{2}^{1} \quad(\varepsilon, \varepsilon)$ $A_{2}^{\prime} \rightarrow D_{2} \mid D_{2} A_{2}^{\prime} \quad(\varepsilon, \varepsilon)$ $D_{2}+H_{1}^{1} b$

$$
\begin{equation*}
\mathrm{C}_{2} \rightarrow \mathrm{aH}_{1}^{2} \mathrm{~b} \mid \mathrm{A}_{3} \mathrm{~A}_{1} \tag{4}
\end{equation*}
$$

(3) $\quad i=3, j=1$

Replace $A_{3} \rightarrow A_{1} A^{\prime}$
(5), where $A_{1} \rightarrow A_{2} A_{3} \mid a(1,2)$
by $A_{3} \rightarrow A_{2} H_{1}^{1} A_{2}$

$$
\begin{equation*}
A_{3} \rightarrow a H_{1}^{2} A_{2} \tag{5}
\end{equation*}
$$

(5) $j=2$
(4) Replace $A_{3} \rightarrow A_{2} H_{1}^{1} A_{2}$ (5), where $A_{2}^{\prime} \rightarrow C_{2} \mid C_{2} A_{2}^{\prime}$ $(\varepsilon, \varepsilon)$
and $\mathrm{C}_{2} \rightarrow \mathrm{aH}_{1}^{2} \mathrm{~b} \mid \mathrm{A}_{3} \mathrm{~A}_{1} \quad(4,3)$
by $A_{3} \rightarrow A_{3} H_{2}^{1} H_{1}^{1} A_{2}$

$$
\begin{align*}
& \mathrm{A}_{3} \rightarrow \mathrm{aH}_{1}^{2} H_{1}^{1} A_{2} \\
& H_{2}^{1} \rightarrow Q_{2}^{1} A_{2}^{1} \tag{}\\
& H_{2}^{1} \rightarrow Q_{2}^{1} \\
& Q_{2}^{1} \rightarrow A_{1} \tag{3}\\
& H_{2}^{2} \rightarrow Q_{2}^{2} A_{2}^{1} \\
& H_{2}^{2} \rightarrow Q_{2}^{2} \\
& Q_{2}^{2} \rightarrow H_{1}^{2} \mathrm{~b} \tag{4}
\end{align*}
$$

(2) Replace

$$
\begin{aligned}
& A_{3} \rightarrow A_{3} H_{2}^{1} H_{1}^{1} A_{2}\left|A_{3} A_{3}\right| a H_{2}^{2} H_{1}^{1} A_{2}\left|a H_{1}^{2} A_{2}\right| a(5,6,5,5,7) \\
& \text { by } \quad A_{3} \rightarrow C_{3} \mid C_{3} A_{3}^{1} \quad(\varepsilon, \varepsilon) \\
& \\
& \\
& A_{3}^{1} \rightarrow D_{3} \mid D_{3} A_{3}^{\prime} \quad(\varepsilon, \varepsilon) \\
& \\
& D_{3} \rightarrow H_{2}^{1} H_{1}^{1} A_{2} \mid A_{3} \quad(5,6) \\
& \\
& \quad C_{3}+a H_{2}^{2} H_{1}^{1} A_{2}\left|a H_{1}^{2} A_{2}\right| a \quad(5,5,7)
\end{aligned}
$$

The resulting grammar G' (see below) has 26 productions while the original grammar had 7 productions. The usual method yields 22 productions. The usual method was given in section 2 . The efg G' has the following productions:

$A_{1} \rightarrow A_{2} A_{3} \mid a$	$(1,2)$
$A_{2} \rightarrow C_{2} \mid C_{2} A_{2}^{\prime}$	$(\varepsilon, \varepsilon)$
$A_{2}^{\prime} \rightarrow D_{2} \mid D_{2} A_{2}^{\prime}$	$(\varepsilon, \varepsilon)$
$D_{2} \rightarrow H_{1}^{1} b$	(4)
$C_{2} \rightarrow H_{1}^{2} b \mid A_{3} A_{1}$	$(4,3)$
$H_{1}^{1} \rightarrow A_{3}$	(1)
$H_{1}^{2} \rightarrow \varepsilon$	(ε)
$A_{3} \rightarrow C_{3} \mid C_{3} A_{3}^{\prime}$	$(\varepsilon, \varepsilon)$
$A_{3}^{\prime} \rightarrow D_{3} \mid D_{3} A_{3}^{\prime}$	$(5,6)$
$D_{3} \rightarrow H_{2}^{1} H_{1}^{1} A_{2} \mid A_{3}$	$(5,5,7)$
$C_{3} \rightarrow H_{2}^{2} H_{1}^{1} A_{2}\left\|a H_{1}^{2} A_{2}\right\| a$	$(\varepsilon, \varepsilon)$
$H_{2}^{1} \rightarrow Q_{2}^{1} A_{2}^{\prime} \mid Q_{2}^{1}$	$(\varepsilon, \varepsilon)$
$H_{2}^{2} \rightarrow Q_{2}^{2} A_{2}^{1} \mid Q_{2}^{2}$	(3)
$Q_{2}^{1} \rightarrow A_{1}$	(4)
$Q_{2}^{2} \rightarrow H_{1}^{2} b$	(2)

Notice that G^{\prime} is not proper since $H_{1}^{2} \rightarrow \varepsilon$.
4. LEFT-TO-RIGHT COVER

In the preceding section we saw that each left-recursive grammar G can be right-covered by a non-left-recursive grammar G^{\prime}. If we look at the parsing problem then we want to eliminate leftrecursion since a certain top-down parsing method will not work for a left-recursive grammar. We want to make the grammar fitting for this top-down parsing method, and this means in general for a parsing method which produces left parses. However our algorithm is only concerned with right parses. Fortunately we can give the following theorem. This theorem can also be found in [3] in a slightly different form.

THEOREM 4.1.
Let cfg G^{\prime} right-cover G, then there is a cfg $G^{\prime \prime}$, such that $G^{\prime \prime}$ left-to-right covers G.

Proof. Let $G^{\prime}=\left(N^{\prime}, \Sigma, P^{\prime}, S^{\prime}\right)$ right-cover $G=(N, \Sigma, P, S)$ by cover-homomorphism h. We construct a new grammar $G^{\prime \prime}=\left(N^{\prime \prime}, \Sigma, P^{\prime \prime}, S^{\prime \prime}\right)$, $S^{\prime \prime}=S^{\prime}$ and where $\mathbb{N}^{\prime \prime}=\mathbb{N}^{\prime} \cup\left\{R_{i}\left|1 \leq i \leq\left|P^{\prime}\right|\right\}\right.$ and each R_{i} is not already in N^{\prime}. $P^{\prime \prime}=P_{1} \cup P_{2}$, where
$P_{1}=\left\{\left(i^{\prime}\right): A \rightarrow \alpha R_{i} \mid(i): A \rightarrow \alpha X_{i}\right.$ is in $\left.P^{\prime}\right\}$ and $P_{2}=\left(i^{\prime \prime}\right): R_{i} \rightarrow X_{i} \mid\left(i^{\prime}\right): A \rightarrow \alpha R_{i}$ is in $\left.P_{1}\right\}$. If T^{\prime} is a parse tree of G^{\prime} for a sentence w then there is a corresponding parse tree $T^{\prime \prime}$ of $G^{\prime \prime}$ for W which is obtained from T ' by replacing each occurrence of a subtree T_{0}^{\prime} in T^{\prime} of the form
 by a subtree T"' of $\mathrm{T}^{\prime \prime}$ of the form

These occurrences of subtrees in T^{\prime} and $T^{\prime \prime}$ of these forms are said to be corresponding. In $T_{0}^{\prime \prime}$ the productions (i^{\prime}): $A \rightarrow \alpha R_{i}$ and $\left(i^{\prime \prime}\right): R_{i} \rightarrow X_{i}$ are said to be connected. Notice, that if π^{\prime} is a parse of w with respect to $T^{\prime \prime}$ and $\pi^{\prime \prime}$ is a parse of w with respect to $\mathrm{T}^{\prime \prime}$ then for each occurrence of i in π^{\prime} there is only one corresponding pair i^{\prime} and $i^{\prime \prime}$ in $\pi^{\prime \prime}$. Similarly, for each occurrence of i^{\prime} in $\pi^{\prime \prime}$ there is only one connected occurnence of i".
Now the proof is rather simple. Let T^{\prime} be a parse tree of G ' for w and $T^{\prime \prime}$ its corresponding parse
tree of $G^{\prime \prime}$. A left parse $\pi^{\prime \prime}$ for w with respect to r"' in which productions i^{\prime} and j^{\prime} occur can be written in one of the following forms:

$$
\begin{array}{ll}
a^{\prime \prime} . & \pi^{\prime \prime} \equiv \ldots i^{\prime} \ldots j^{\prime} \ldots j^{\prime \prime} \ldots i^{\prime \prime} \ldots \text { or } \\
b^{\prime \prime} . & \pi^{\prime \prime} \equiv \ldots i^{\prime} \ldots i^{\prime \prime} \ldots j^{\prime} \ldots j^{\prime \prime} \ldots,
\end{array}
$$

or symmetric cases (first j^{\prime}), where i^{\prime} and $i^{\prime \prime}$ are connected and j^{\prime} and $j^{\prime \prime}$ are connected. For these cases the right parses with respect to T^{\prime} can be written as:

$$
\begin{array}{lll}
a^{\prime} . & \pi^{\prime} \equiv \ldots j \ldots i \ldots & \text { (for case } \left.a^{\prime \prime} .\right), \text { and } \\
b^{\prime} . & \pi^{\prime} \quad \ldots i \ldots j \ldots & \text { (for case } \left.b^{\prime \prime} .\right),
\end{array}
$$

where i corresponds to the connected pair i^{\prime} and $i^{\prime \prime}$ and j corresponds to the connected pair j^{\prime} and $j^{\prime \prime}$. For $i^{\prime} \neq j$ ' a form

$$
\text { c". } \quad \pi " \equiv \ldots i^{\prime \prime} \ldots j^{\prime} \ldots i^{\prime \prime} \ldots j^{\prime \prime} . .
$$

cannot occur in a left parse. For $i^{\prime}=j$ there are no problems as can be seen in what follows. since the order in which $i^{\prime \prime}$ and $j^{\prime \prime}$ appear in $\pi "$ is the same as the order in which i and j appear in π^{\prime} we can define a homomorphism h^{\prime} such that, for each i^{\prime} and $i^{\prime \prime}, h^{\prime}\left(i^{\prime \prime}\right)=i$ and $h^{\prime}(i \prime)=\varepsilon$ and then $G^{\prime \prime}$ left-to-right covers G^{\prime} with coverhomomorphism h^{\prime}. The composition of h^{\prime} and h gives the cover-homomorphism f of $G^{\prime \prime}$ left-toright covers G, that is, $f\left(i^{\prime \prime}\right)=h\left(h^{\prime}\left(i^{\prime \prime}\right)\right)$ and $f\left(i^{\prime}\right)=\varepsilon$ for each pair $i^{\prime \prime}$ and i^{\prime} in $P^{\prime \prime}$. \square

Since in this theorem $G^{\prime \prime}$ is not left-recursive if G^{\prime} is not left-recursive a top-down parsing method can be used for $G^{\prime \prime}$ and the left parses with respect to $G^{\prime \prime}$ can be mapped on the right parses with respect to G.
5. CONCLUSIONS.

[^2]the elimination of ε-productions be done in such a way that the result is a covering grammar? According to some remarks in [1], that we gave in section 2, we can conclude that if a cfg is ambiguous then elimination of ε-productions can not lead in general to a covering grammar, and if a cfg is unambiguous then there is a covering grammar. However, the following grammar with productions $S \rightarrow$ LSO $|L S 1| 0 \mid 1$ and $L \rightarrow \varepsilon$ is not ambiguous and we conjecture that this grammar is not right-covered by an ε-free grammar. Furthermore we can ask to prove the conjecture that grammar G_{1} of section 2 cannot be right-covered by a cfg in GNF even if we do not restrict ourselves to a fine cover-homomorphism.

ACKNOWLEDGEMENT

I am grateful to prof. L.A.M. Verbeek for some helpful comments. The research reported in this paper has been carried out at the Twente University of Technology.
I thank ms. Marja Verburg for her beautiful and careful typing of the manuscript.

REFERENCES.

1. Aho A.V. and Ullman J.D., "The theory of parsing, translation and compiling", Vol. I and II, Prentice Hall, Englewood Cliffs, 1972 and 1973.
2. Gray J. and Harrison M.A., "On the covering and reduction problems for contextfree grammars", J. Assoc. Comput. Mach. 19, (1972), No.4, 675-698.
3. Nijholt A., "On the covering of parsable grarmars", to appear in J. Comp. Syst. Sci.

[^0]: *) Notice that the use of indices here is somewhat different of the use in the algorithm. If they are not necessary we omit the upperindices of the nonterminals H and Q (see step (4)). By $j i$ is meant j with index i.

[^1]: **) For convenience we give the productions in $G_{j 1, j 1}, G_{j 2, j 2}$ etc., instead of the eventually ultimate produotions $A_{j 1} \rightarrow C_{j 1}$ and $C_{j 1} \rightarrow A_{j 2} \gamma_{1}$ etc.

[^2]: We showed that some remarks concerning left recursion in the literature are not true. An algorithm was given to transform a left-recursive grammar G to an non-left-recursive grammar G^{\prime} such that G^{\prime} right-covers G. We showed that the use of right parses in this algorithm is not restrictive in a practical situation in which we want to eliminate left-recursion to have the possibility to apply a top-down parsing method which yields left parses.

 There are some problems we did not consider. Can

