
ON THE COVERING OF LEFT

RECURSIVE GRAMMARS,

A. NIJHOLT

Free University

Department of Mathematics

Amsterdam, The Netherlands

ABSTRACT.

In this paper we show that

on the elimination of left

free grmar are not valid

some prevailing ideas

recursion in a context-

An algorithm and a

proof are given to show that every proper context-

free grammar is covered by a non–left–recursive

grmar.

Keywords: cover, left-recursion, context-free

grammar, parsing.

1. INTRODUCTION.

There exists a well-known method for elimi-

nating left recursion in a context-free grammar,

The motivation for eliminating left recursion is

for example that certain parsing algorithms do

not work for left–recursive grammars.

However with this usual method the parses of the

original grammar cannot, in general, be recon-

structed in a simple WWJ from the parses of the

non–left-recursive grammar “obtained by this

method. That is, the new grammar does not cover

the original grammar.

There has been some research on the covering of

grammars by grammars which are in a certain nor-

mal form. In general the possibility to cover a

grammar depends on the definition of cover which

is used. Examples of those definitions can be

found in [I,P.2761, [2] and [31, and we will

discuss them as far as necessary for our purposes

in the next section.

In [1] en [2] some remarks can be found from which

one could conclude that elimination of left

recursion changes the structure of a grammar in

such a way that there is no covering grammar.

However, in our opin<.on, and not only in the case

of elimination of left recursion, the relation

between changes of structure (whatever is meant by

structure) and covers is not so close as suggested.

This point is also discussed, though rather infor-

mally, in the next section. In the case of’ elimi-

nation of left recursion we show in section 3 that

this can be done in such a way that the grammar

obtained covers the original grammar.

In the remainder of this introduction we give some

definitions and notational conventions. In section

2 we discuss the definition of cover and the usual

algorithm for eliminating left recursion. In

section 3 we give our algorithm for eliminating

left recursion, which is j“ust a slight variation

of the usual method, and prove its correctness and

its covering property. Moreover we give an example

of the use of this algorithm and we conclude in

section 4 with a result which was inspired by a

more practical consideration of the elimination

of left recursion.

Preliminaries .

We review some basic concepts concerning formal

grammars. This material can also be found in [11.

DEFINITION 1.1. A context–free–grammar (cfg for

short) is a four-tuple G = (N,X,P,S), where N is

the alphabet of nontenninazs, Z is the alphabet

of terminals, N n I = @ (the empty set),

N U ~ =V, S e N, and the set of productions P is

a finite subset of N x V*.



Instead of writing (A,a) < k’, we write A + a in P.

Let u, v c V*, then u -v holds if there exist

x, y, w < V* and A e N such that u = xAy, v = ~

andA+wisinP, If X<E* we write u = v and if
* k

Ycil we write u = v.

The reflexive-transitive closures on V* of these

relations are written as & , =& and ~ respec-
k

tively, while the transitive closures are written
+

as &, s and&.
,?, r

The set L(G) = {x < Z* / S ~ x} is the bz.guage

generated by G. If U. === u, = U2 = . . . B Ur,

then this sequence is called a derivation of Ur

from Uo. If instead of a the relation ~ or the
E

relation ~ is used, then this sequence is said to

be a leftm;st derivation or a rightmost derivation

respectively. If in a leftmost or a rightmost deri–

vation of Ur from Uo, for each O < i < r, Ui+, is

obtained from Ui by applying production

IIi = Ai + yi then, in the case of a leftmost deri–

vation the sequence HOH, . . . ~r_l is said to be a

Left parse of u r from Uo, and in the case of a

rightmost derivation the sequence Hr_,Hr_2 . . . no

is said to be a right parse

If U. = S then each Ui, o 5

sentential form. A cfg G is

of Ur to Uo.

i<r, is called a

said to be ambiguous

if there is w c L(G) such that w has at least two

left parses.

A nonterminal A is said to left–derive x, where
+

Xcv, ifA~ xct for some a e V*,

DEFINITION 1.2, Let Z, and E2 be alphabets. A

function f from Xl into Z; is extended to a homo-

morphism from Z; into Z; by the conditions

f(E) = E and f(a1a2. ..an) = f(a1)f(a2) . ..f(an).

where E is the empty string and ai, 1 s i < n, is

in Z
1“

The homomorphism f is called fine if, for

each a e I ,, f(a) e X2 U {S}.

DEFINITION 1.3. A cfg G = (N, Z, P, S) is said to

be reduced if each element of V appears in some

sentential form and each nonterminal of G can derive

a string of terminals. Cfg G is said to be c?ycle–

free if there is no derivation of the form A ~ A,

f’or any A e N.

G is said to be E-free if there

of the fbrmA + E, where A # S,

are no productions

in P. In the sequel

we will only consider grammars which are reduced

md cycle–f~ee. A cfg G is said to be px~oper i.f it

is reduced, cycle–free and c-free.

A nonterminal A is said to be left-recursiva if

A & A@ for sone ~ e V*. A cf’g G is said to be

left recursive if G has at least one left–recur-

sive nonterminal.

A cfg G is said to be in Greibach normal J“orm

(CNF) if G has only productions of the form A + aa,

*
where a c Z and a c N , or S+ E.

2. ELIMINATION OF LEI?T RECURSIOrl,

First we give the usual method for elimina-

ting left recursion. Our starting-point is a proper

grammar G = (N, X, P, S), where N = {Al, A~, . . ..An}.
<.

ALGORITHM

(1)

(2)

(3)

(4)

(5)

Seti=l.

Let the Ai–productions be

Ai+Aiml l...l Aiaml~,16216p .16p

where no ~., 1 5 j s p, begins with A if
J k

k<i.

Replace these productions by

Ai+ 61162]... l~pl~lcil...l~pci> and

Ci+m,l-oolmmla,cil--olamci‘here
Ci is a new non?zerminal.

If i = n, then halt. Otherwise, set i = i + 1

andj=l.

Replace each production of the form Ai+Aja

by the productions Ai + ~lal...l~mti, where

Aj + ~ll...l~mare all the Aj-productions.

If j = i-1 go to step (2). Otherwise set

j =j + 1 andgo to step (4).

In general we want to compare the parses of the

original grammar G with the parses of a grammar G!

obtained from G by transformation. Therefore we

give a definition which can be found in [11. We

assume that the productions of each grammar are

numbered for identification.

We identify these numbers with the productions.

DEFINITION 2.1. Let G = (N, Z, P, S) and

G’ = (N’, X,P’, S’) be two cfg’s such that L(G) =

L(G’ ). In the following two conditions x and y are

87



variables with domain {left, right}. Let w ● L(G’)

and let h : P’* +P* be a homomorphism such that

(i) if T* is an x-parse for w with respect to G’

then h(m’) is a y-parse for w with respect

to G, and

(ii) if IT is a y-parse for wwith respect to G

then there exists r’ such that h(?rl) = ?r and

7’ is an x–parse of w with respect to G’ .

If in (i) and (ii) both x and y are replaced by

‘left! , then G’ is said to ~eft-cover G. If both x

and y are replaced by ‘right’ then we say that G’

right–covers G.

If x is replaced by ‘left’ and y is replaced by

‘right’ then we say that G’ left–to-right-covers G.

The definiton of (complete) cover given in [2] can

shown to be equivalent to the definition of right

cover given here if the cover–homomorphism h is

fine.

EXAMPLE .

G’ with the only production 1. S’ + ab right–covers

G with productions 1. S+aBand2. B+b.The

cover–homomorphism h is defined by h(1) = 21.

G’ cannot cover G with a cover-homomorphism which

is fine. In this paper we will only make use of a

fine homomorphism. Therefore the definition of

right cover used here and the definition of

complete cover in [2] are equivalent. Now we can

ask whether it is possible that a grammar Gf

obtained after eliminating left recursion from a

cfg G, covers G. Therefore we consider the follow–

ing two grammars, G1 and G’ (only the productions

are displayed).

G1 with productions G’ with productions

1. S+so 1. ~+o 5. C+o

2. S+sl 2. S+l 6. C+l

3. S+o 3. S+oc 7. C+oc

4. S+l 4. S+lc /3. c+lc

G’ is obtained from G, by eliminating left recursion

according to the ususal algorithm. It can easily

be verified that G’ neither left–covers nor right-

covers G
1“

In this case we have G’ left-to-right-

covers G ,, but that is not true in general which

can be seen by eliminating left recursion from the

grammar G2 with the following productions:

1. S+Aa 5. A+Ao

2. S+Ab 6, A+A1

3. S+o 7. A+o

4. S+l 8. A+l

Now consider the grammar G; with productions

1. S+c (&) 5. D+o (1)

2. S+cs’ (&) 6. D+l (2)

3. S’+D (E) 7. C+o (3)

4. S’+DS’ (&) 8. C+l (4)

In this case we have G; right-covers G,, where the

cover-homomorphism h is defined by h(1) = h(2) =

h(3) = h(4) = & andh(5) = 1, h(6) = 2, h(7) = 3

and h(8) = 4, which was already indicated between

parentheses after each production displayed above.

G; is not left–recursive and in the following

section we shall show that this is not by accident.

Notice that the parse trees of G; do not differ

very much of the parse trees of G! . The parse trees

have the same skeleton, However G’ is in Greibach

normal form while G; is not. This will turn out to

be essential.

At this moment it is necessary to look at some re–

marks in the literature.

First we quote from [2, p.679I.

“We would like to say G! covers G if given a parser

for G’ one can construct a parser for G. The

motivation for this is that parsers typically

handle grammars in some normal form. Presented with

an arbitrary grmar G it may be possible to trans-

form it into a grammar G T which is in this normal

form. In what cases can a parser for G’ be used to

produce a parser for G? For example, simple top-

down parsers will not tolerate left-recursive

rules which allow A ~ Ax for some nonterminal A

and string x. However, given a grammar G there is

a grammar G’ equivalent to G which has no such

left-recursive rules. Can one construct a parser

for G given a parser for G’? We shall prove that

the answer is no, given our definition of

covering”.

However the ‘proof’ is introduced with the follow-

ing remark [2, p.6861.

88



“We now embark. on the proof of another negative

result by exhibiting a grammar which cannot be co-

vered by any grammar in Greibach form,

Thus the elimination of left recursive changes the

structure of a grammar sufficiently that it cannot

have a covering grammar,”

And then a proof is given that cfg G1 we dis–

played above cannot be right-covered by a cf& in

CNF. To us it is not clear why one can conclude

from this that the elimination of left recursion

plays such an important role. We can find the same

conception in [11 from which we quote (p.283):

“We should observe that the condition of cycle

freedom plus no c-productions is not really very

restrictive.

Every context-free language without E has such a

grammar, and moreover, any context-free grammar

can be made cycle-free and c-free by simple

transformations (...). What is more, if the origi–

nal grammar is unambiguous then the modified

grammar left and right–covers it. Non–left

recursion is a more stringent condition in this

sense. While every context-free language has a

non–left–recursive grammar, there may be no non–

left-recursive covering grmar.”

We do not know whether the first part of these

remarks (elimination of s-productions) is correct,

however for the second part (elimination of left

recursion) in [1] the reader is referred to the

cfg G
1

which we already discussed above and which

is on the contrary a grammar for which we can find

a non-left-recursive covering grammar. In the

next section we shall show that this remark is

not correct.

3. ON THE COVERING OF LEFT-RECURSIVE GRAMMARS.

In this section we give, and prove the

correctness of, an algorithm for the elimination

of left recursion in a cfg such that the cfg ob-

tained right-covers the original grammar.

ALGORITHM 3.1. Elimination of left recursion

Input. A proper cfg G = (N, Z, P, S), G is left-

recursive.

(Output. A no~–left-recursive cfg G’ which ri&ht-

covers G.

L!ethod. The following notations are used. Let

N = {A ,A
1 2’””

.,Ar}. The notation (j): An+P (k),

means that the production j = An+p is mapped on

a production k of grammar G.

Initially we have for each production

(k): A.n+p (k). This notation, if necessary, is

extended to

(jl,jg, . . ..j p) :An+P11P21. ..lPD (’K

or we say that the productions (jl

mapped on the productions (k, ,k2,.

of the k.’s, 1 < i S p, may be E),
L

(1) Set i = 1

(2) Let the Ai productions

Ai+Aia11Aia21 . ..lAiam

(i1,i2, . . ..im. ,,o,im+n

be

,ka, . . ..kp)

32,..., jp) are

.,kp). (Some

. . .B1162 Bn

where each B,i,

1 < j s n, begins with a terminal or some

Ak such that k > i. Ifm= o, go to step (3).

Replace these Ai-productions by

Ai+Ci I C.A’
11

DiA;

a21 ““” am

621 . . . an

(s, s)

E,E)

i“ ,,12, . . ..im )

i“ ,1 m+2,. ..,1 )m+ 1 m+n

where C: ,D: and A: are newly introduced. . .
nonterminals .

(3) If i = r, let G’ be the resulting grammar,

and halt. Otherwise, set i = i + 1 andj = 1.

(4) Let Ai+Ajy11Ajy21,..l Ajy2 (r1,r2,...,rq)

be all Ai–productions of which the right–

hand sides begin with nonterminal A.. We

distinguish between two cases (a) a;d (b).

(a). Qj is defined.

Suppose we have Aj–productions

j JJ “’s)
A.+C IC.A!

J

and Cj-productions

cj+x16, 1x~6*l-. -lxp6p
(S, ,S2,. ..,SP)

where X
!2,’

1 < 1 <p, may be a terminal or a

nonterminal.

Replace each production Ai+A.y ~ ~ (ik)>

1 5 k 5 q, by

Ai+x7H;yklX2H:yk] . ..]XpHfyk (rk,rk,. ..,rk)

89



and add productions, for 1 S k 5 p,

H!’ + Q~A! (E)
J JJ

H! + Q;
J

(E)

Q;+ ~k (sL)

where H; and Q:, 1 s !l < p, are

newly introduced nonterminals.

(b). ~j is not defined.

Suppose we have Aj–productions

A. +X16, 1X2~21. ..lxp6p (S1>S2>. ..,SP)
J

where X9, 1 5 9. 5 p, may be a terminal or a
.

nonterminal . Replace each production

~ ~ (rk),A, +A.y I<k<q, by
1

Ai+x1H~yklx2H~ykl . ..lXpH~k (rk,rk, . . ..rk)

and add productions, for 1 S L 2 p,

H!+ fik (Sk)
J

!.
where H:, 1 SI$p, is a newly introduced

J
nonterminal.

(5) Ifj = i - 1, go

j = j + 1 andgo

End of the algorithm.

to step (2). Otherwise set

to step (4).

To prove the correctness of this algorithm we need
*

some additional notations. Let a c V then we have

L(a) is the language generated from a

s(u) is a sentence in L(a)

rs(a) is a right parse of s(a) to a

R(a) is the set of right parses of sentences in

L(u) to a.

EXAMPLE .

Let G be cfg with

1. S * AbC

2. A+a

then R(aC) = {43n

productions

3< C+ac

40 C+d

nzo}, R(AbC) = R(A)R(C), and

if s(bC) = band for a certain n, n ~ o, then

rs(bC) = 43n for this sentence. Notice that since

in general G may be ambiguous (that is, one

sentence may have more than one right parse),

rs(a) is a set of right parses. However, the proof

is such that without loss of generality we may

assume that rs(a) is the representation of one of

the right parses in rs(d.) and therefore we can

handle rs(a) as a string.

In the parse trees we display we will, if possible,

use

A A

I
or

A
where

a B cl a = x,x2. ..xn,

rather than

A ‘r A
‘1 x2 x B Xl X2 x

2 n

THEOREM 301.

Euery proper, Left recursive context-free grmar

is right–covered by a non-left–recursive eontext-

free grammar.

Proof. Let G = (N, I, P, S) be a proper, left–

recursive cfg. We use the notations given above

and in algorithm 3.1., hence N = {A1,A2, . . ..Ar}.

The cfg obtained after applying algorithm 3.1. is

G’=(N’, Z,P’, S). We have to show L(G’) = L(p),

G’ right–covers G and G’ is non-left–recursive.

In the algorithm a sequence of grammars is obtained

in the following way. The algorithm starts with

cfg G
11

= G, hence i = 1 in the algorithm. Step (2)

produces cfg G2,, hence i = 2 and j = 1 in the

algorithm. Step (4) is applied and gives cfg G22.

For i = 2 step (2) is again applied and cfg G is
31

obtained. For i = 3 and j = 1 step (4) is applied,

result G32, and for i = 3 and j = 2 step (4) is

once more applied and cfg G
33

is obtained. The

algorithm halts if Grr has been reached.

Hence, each G. i>l, is constructed from G
11’ kk ‘

wherek=i -1, by applying step (2) of the algo-

rithm. Each Gik, i > 1 and 1 < k 5 i, is construc-

ted from G. . , where j = k – 1, by applying step

(4) of the’~lgorithm.

CLAIM 1.

The transitions from Gkk to Gil by step (2), where

i = k + 1, and from Gij to Gik by step (4), uhere

k = j + 1 and 1 c k s i, are Language–and cover–

preserving.

Proof of Claim 1.

Notice that initially we start with L(GT1) = L(G)

and G ,1 right–covers G = G,,, and since the cover–

relation is transitive we can obtain ’G’ (= Grr)

right-covers G (= Gil).

First we are concerned with step (2), transition

of G
kk

to G. , i = k+ 1. In G we have
11 kk

90



productions Ai+Aicxl/Aia2\... Aiaml(31~21. ..l@
n

which we label with a
1’ a2’ ““”’ am and

b
l’b2’ ““”’bno In Gil

we obtain the productions

(c ,, C2): Ai+C i I CiA;

(dl, d2): A;+Di I DiA~

(a;, a;, . . . . a;): Di+a

(b;, b;, ... ,b’): C.+6
n 1

lcx2/...lclm

1621...lf3n

We can verify that this transformation is language-

preserving by comparing trees in Gkk and in Gil

with roots Ai and noticing that, since Ci, Di and

A; are new nonterminals which can only be derived

from Ai, these trees can be considered independent-

ly from the rest of a parse tree.

A ,AA,

A ““3
A. ‘a

,liDfiA,

/l ‘2
lYi aul ‘a~;D$A!

al ;:

6L
U2

~’

U3
parse tree in Gkk

parse tree in Gil

(i=k+l)

Suppose we have a sentence w in L(A,), then this

sentence has the form w = S(6L) S(aul) s(au2) . . .

S(aup), where 1 S L s n, the a-indices are

between 1 and m, and in a leftmost derivation

p + 1 successive Ai–productions (p 2 O) have been

used. Let p > 0, then in G
kk

a right parse for w

to Ai is of the form

rs(~j)bk rs(aul)aul rs(au2)au2 . . . rs(u ~p)a
UP

and in G. we obtain for the right parse the form
11

rs(~L)b~ rs(aul)a~l rs(au2) a;2 O*O

rs(aup)a’ d1(d2)p-1 C2.
UP

Hence, Gil right-covers Gkk with cover–homomor-

phism h, if we define

h(b~)=bfl, l~lsn

h(a~)=a8,1Sfl Sm

h(cl) = h(c2) = h(dl) = h(d2) = c,

where h(cl) = E can be verified by considering

the case p = O. Each other production of Gil is

mapped on itself by h.

Now we treat the transition of a cfg Gij by step

(4) of the algorithmto a cfg Git, where t = j + 1.

In Gij the productions Ai+Ajy11Ajy21 . ..lAjyq are

labeled with y,, y2, . . . . yq. We first consider

case (a) of the algorithm, Hence we have in Gij the

productions

(cl, C2): Aj+C. lC.A!
JJJ

(d,, d2): A;+Dj/DjA;

(al, a2, . . ..am). Dj+u1/a21...lam

t)
(b1,b2, . . .,bn): Cj+611621...16n

t) Notice that the values of m, n and q depend on

i and j of the algorithm. Since our notation

will be clear we omit indices.

In Git we obtain by step (4a), for each production

(Yk):Ai+AjYk , where 1 5 k < q, the productions

Ai+X,H;yklX2H;ykl . ..lXnH.yk, which we label with

‘k 1

( Cj

( e~

(b;

Yk2> . ..YYkn. We also obtain productions

: H;+Q~A!
JJ

If we observe the parse tree’s

respect to G. . and G. it is
lJ lt ‘

consider sub-trees with roots

for sentences with

again sufficient to

A . .
1

A.

in G.
lJ in G.

lt

For every combination of i and j (1 < i s r and

I < j < i), step (4a) is done once at most. It

91



will be clear from the possible parse trees in G. .
lJ

It that the transformation in step (ha) isand G.

language preserving. To observe the cover-property

we only consider the ~ase that in the figures

given above A~+C~A~ is used. The case A; + C; can

be treated

If we have

form w = s

of w to A.
1

J dd dd

similarly.

a sentence w in L(Ai) then it is of the

Xl) S(di) S(A~) S(yk) and a right parse

with respect to G. . is of the form
IJ

rs(XL) rs(6L) bk rs (A;) c * rs(Yk) Yk

and a right parse of w to Ai with respect to Git

is

rs(XL) rs(dL) b~ rs(A~) c~ rs(Yk) Ykl

Now it is clear that we can define the cover– homo

morphism h, such that Git right–covers G. ., where
lJ

h(b~) = b
!,’

I<k<n

h(ep) = c,, I<k<n

h(c~) = C
2’

l<,Q,<n

h(yki) = Yk> 1 s k < nand 1 <k 5 q.

Each other production of Git is mapped on itself

by h. The definition h(ei) = c1 can be verified by

considering the case A.+C.. Now we consider case

(b). Hence Cj is not d~fin~d. Suppose we have the

following Aj–productions in G. .:
lJ

‘j+xl~llxzazl-..]x a

P P“

We label these productions with bl, b2, . . ..b
P“

For Git we obtain by step (4b) for each production

(yk): Ai+AjYk , where 1 < k < q, the productions

(with labels Ykl, yk2, . . ..ykp)

Ai+X1H;yklX2H;ykl . . . I XpH~yk, and we obtain also

the productions (b~): H~+6
t’

I < 1 <p.

Now, in the same way as was done in case (a) one

can verify that, to obtain a cover-homomorphism

one has to define h(b~) = b~, 1 < i? < p,

h(ykfl) = Yk> 1 < E <p and 1 <k< q,

and each other production of G. has to be mapped
It

on itself by h. Since now we can conclude that

step (2) and step (4) are language- and cover-

preserving we conclude G’ right–covers G. Notice

that with algorithm 3.1. we obtain immediately

the cover-homomorphism for G’ and G, since every

production obtained after a transformation is

immediately related to the production of grmar G,

as indicated between parentheses after each

production in the algorithm.

CLAIM 2,

G’ is non-left–recursive.

Proof of Claim 2.

First we notice that, since 6L obtained in step

(4) of the algorithm may be the empty string, G’

does not have to be proper. We make the following

observations.

OBSERVATION 1. Let L(Ai) and L’(Ai) denote the

languages obtained from Ai in G and G’ respec-

tively. The transformations on the productions in

step (2) and in step (4) are such that for each i

we have L(Ai) = LT(Ai). Since G is a proper grammar

we have in G’ Ai %E and Ci~ E, for each A.
1

and Ci.

OBSERVATION 2. For each D. , introduced in step (2),
1

we have Di % E. To show this we first prove the

following property. Suppose we are in algorithm

3.1, at the moment we want to do step (2) for non-

terminal Ai. Let Ai+ ~yk be a production in Gii,

where i 5 k. Then we have the following property:

if yk ~cinG. then Ai ~
%

in G.
li’

The proof of this property is by induction on i.

Basis. Leti=l, then A+
1 .%yk’

for k 2 1, is also

a production in G. IfTk_ c, then since G is

proper ‘e ‘ave ‘1+%’ ‘ence ‘1 ‘%”

Induction. Suppose this property holds for all p

such that p < i. We prove that we may conclude that

we may conclude that this property also holds for

i. Consicler Ai+Akyk, where i S k, in Gii. If

A, +Akyk is also in G, then we have Ai L
1

~inG

*
if y -E.

Now~ssume Ai+I$yk is not in G. Hence this pro-

duction is constructed in step (4) of the algorithm

and therefore it is of the form

H. H 6. wheren <k.
*)Ai+~Hjn . . . J2j1 ~J

To obtain this production we started with a

production Ai+Ajldi in G, where i > ,jl, and in

*) Notice that the use of indices here is some-

what different of the use in the algorithm.

If they are not necessary we omit the upper-

indices of the nonterminals H and Q (see step

(4)). By ji is meant j with index i.

92



step ~4) we used successively the productions **)

Aj1+Aj2-~1> A..+A. ~
J~ J32’ ““”’

Ajn+ \yn of

G. , G. G.
Jl, jl J~Yj~’ ““”’

respectively.
Jn, jn

According to step (4) we have jp < jq if p < q,

and thus by the induction hypothesis A. & A
JR J(~+l)

for 1 : k s n and A = A.
*

k J(n+l)’ Ify.l=s’

1 S ~ < n. Therefore we have Ai AA
k

in G ir

&i =Eandallyi &E, I<i<nandthis
.

completes the proof of the property.

NOW let k = i in this property, then if Di &E

in G. and hence in G! , we obtain A. =&. A. in
1+1,1 1 1

G, which contradicts the fact that G is a proper

context-free grammar.

OBSERVATIOIJ 3. For each Ai we have Ai is not left–

recursive . We prove this also by induction, Con–

sider the following two properties of the

algorithm.

(~.1) After step (2) is executed for i, all Ai-

productions begin with either

(a) a terminal or a nonterminal Ak, k > i, or

(b) Ciand the Ci-productiions begin with a

terminal or with a nonterminal \,k>i.

(4.2) After step (4) is executed for i and j, all

Ai-productions begin with a terminal or with

a nonterminal A
k’

fork>j.

Recall that N = {Al, A2, ..,,A }. In the proof m
r

is the number of A<-productions of which the

right–hand sides begin with Ai (see step (2) of

algorithm 3,1).

We define the score of an instance of (4.1) to be

r.i. The score of an instance of (.4.2) is

r.(i-1) + j, where 1 S j < i. We prove (4,1) and

(4.2) by induction on the score of an instance of

these statements.

Basis, For i = 1 we only have instance (4.1). The

transformation in step (2) is indeed such that,

if m = O, all Ai-productions begin with a

terminal or with a nonterminal Ak, for k > i. And

if m > 0 then the Ci-productions begin with a

**) For convenience we give the productions in

G. G. etc. , instead of the even–
Jl,jl’ J2,j2

tually ultimate productions
A. +C. and C.

Jl Jl J1
+Aj2y1 etc.

te;minal or a nonterminal Ak, for k > i.

Induction.

(1) Assume (4,1) and (1+.2) for scores less than

s, andletiandjbe such that O~j<i <r

and r.(i-1) + j = s. Since r.j < s all

Aj–productions begin with either

(a) a terminal or A k, fork>j, or

(b) Cj and the Cj-productions begin with a

terminal or A~, fork>j.

Since the transformation in step-_(4) is

such that each new Ai–production begins

with the begin-symbol of an Aj- (or Cj–)

production and, if this symbol is a non-

terminal ~thenk > j, we see that each

Ai-production begins with a terminal or a

nonterminal~, fork > j.

(2) Assume (4.1) and (4.2) for scores less than

s, and let i be such that i.r = s. Since

(i-1).r + j < s we have that all Ai-product-

ions.begin with a terminal or a nonterm;nal

A k, fork>j, hence for k 2 i, If in step

(’2) m = O we have that all Ai-productions

begin with a terminal or a nonterminal A
k’

fork > i, If m > 0 we see that after the

transformation all Ci–productions begin with

the first symbol of the Ai-productions which

begin with a terminal or with a nonterminal

A~, for k ~ i.

This completes the proof that each Ai is not

left-recursive .

OBSERVATION 4. From the two properties in observa-

tion 3 it is clear that, fdr each i, A. cannot
1

left–derive a nonterminal H., O S j < r. From
J

observation 1 and 2 it follows that, for each i,

neither Ci nor Pi can derive c. Moreover D.
1

cannmt left–derive H. ,
J

O S j < r, since this would

mean there is a nonterminal A
k’

O s k < r, which

can left-derive H. .
J

Nonterminal A; can only tie introduced in a

derivation by the productions Ai+C.A! A! +D.A!
11’1 11

or Hi+Q.A!. Productions with left-hand side A!
11 1

~. Since Ci ~c andare A~+DiA~ and A;+D.

Di ~E the only possibility for A: to be left-

recursive is that A; can left–derive H. and

Qi &E. However, then also D. can le;t-derive H.,
1 1

which is not true. Therefore, for each i, A: and

93



also Di are not left-recursive. Easily can be

verified that, for each i, Ci is not left-recursive.

OBSERVATION 5. For each i we have Hi and Qi are

not left–recursive (we omit again the upper

indices). The proof of this statement is by in-

duction on i. First we assume that the d’s in step

(4) are not equal to E,

Basis’. Let j be the smallest integer such that H.
J

is defined. Let Aj +X6 (if’m= O in step (2)) or

A.+C and Cj+X6 (ifm > 0 in step (2)), thenwe
Ji

obtain Hj+d or Hj +QjlQjA~ and Qj+6 respectively.

Since there are no other nonterminals H I<pSr,
P’

defined before, 6 can only begin with a terminal

or a nonterminal A
k’

1 s k s r. A nonterminal A
k

cannot left-derive a nonterminal H 1 <p < r.
P’

Induction. We prove that Hi cannot left–derive a

nonterminal H if p > i. Therefore we assume that
P’

the nonterminals H for t < i,
t’

cannot left-

derive a nonterminal 3 if p > t.
P

Suppose Hi is introduced for an Ak–production,

that is, in step (4) we transformed a production

Ak+A y (where q < i) of G, and after all steps

(4) f~r this production have been executed the

result is A +XHiy’ where X is a terminal or a
k

nonterminal \ fork > k. The last production

which was applied in step (.4) is then of the form

A.+X3 (or Ai+Ci
1

and Ci+X6). Moreover we obtain

the production Hi+& or Hi+QiA~lQi and Qi+ 6.

If 6 begins with a terminal or a nonterminal A
k’

1 S k < r, then, since A
k

cannot left-derive a

nonterminal H 1 <p < ~, Hi is not left-recur–
P’

sive. The other possibility is that 6 begins

with a nonterminal H where p < i. Then by the
P’

induction hypothesis H cannot left-derive H. .
P 1

This completes the proof of the induction step.

Now assume 6 = E. Then we can have

H. &QiA~ >A!. However A; cannot left-
1 1

derive Hi. It is easily possible to give a

proof of this statement analogous to the proof

given above, where instead of the 6’s of step (4)

we have to consider the U’S of step (2).

Since the nonterminals H. are not left–recursive
1

we immediately obtain that the nonterminals Qi are

not left–recursive. This completes the proof of

observation 5.

Since we must conclude that all the nonterminals

are non-left-recursive we have finished the proof

of claim 2 and therefore of theorem 3.1.0

Before closing this section we give an example of

an application of algorithm 3.1 . We use a grammar

which was also used in [1 , p.157]. The cover-

homomorphism of G’ to G is obtained between paren-

theses after each production. Hence, we immediately

relate every production obtained in the transfor–

mation, to a production of the original grammar G.

EXAMPLE 3.1

Consider the cfg G with productions

1.
‘1 + ‘2*3

(1) 5. A3+A A
12

(5)

2. Al+a (2) 6.
‘3+ ‘3*3

(6)

3.
‘2+ ‘3A1

(3) 7. A3+a (7)

4. A2+A1b (4)

We follow the steps of the algorithm.

(1)

(2)

(3)

(4)

(2)

(3)

(4)

(5)

(4)

i=l

AI+A2A3+ (1,2) remains unaltered

i =2, j = 1

Replace A2+A1b (4), where A1+A2A3\a (1,2)

by A2+A2H;b (4)

A2 + aH~b (4)

H&
3

(1)

+ (2)

Replace A2+A2H~b I aH~b \ A3A1

by A2+C2 I C2A; (E,E)

A;+D2 I D2A; (E

D2+H;b (4

fJ2+aH~b\A A (4
31

i =3, j = 1

Re@xeA3+A1A2 (5),

(4,4,3)

by A3+A2H;A2 (5)

2
‘3+aHlA2

(5)

j=2

Replace A3+A2H~A2 (5),

(E,c)

and C2+ aH~bl A3A1 (4,3

11

by ‘3+ A3H2H1A2
(5)

E)

3)

where A1+A2A31a (1,2)

where A2’+C21C2A~

94



* *aH2HlA

3 112
(5)

H;+ Q;A’
2

(e)

H;+ Q; (E)

Q;+A1 (3)

H;+ Q~; (s)

H;+ Q; (E)

Q; +W~b (4)

(2) Replace

A3+A3H;H; A21A3A31aH;H; A21aH;A21a (5,6,5,5,7)

by A3+C31C3A+ (E,E)

A>+D IDA!
333

(E,c)

D3+H~H\A21A3 (5,6)

c3+~H~H\A2]aH~21a (5,5,7)

The resulting w=mmar G’ (see below) has 26 pro-

ductions while the original grammar had 7 product-

ions, The usual method yields 22 productions. The

usual method was given in section 2. The cfg G!

has the following productions:

A,+A2A3ja

A2+C21C2A;

A~+D21D2A~

D2+H\b

C2+aH~blA3A1

H~+A
3

Hf+E

A3+C~CA!
333

A;+D IDA’
333

D3+H;H;A21A3

C3+aH~H~A21aH~A21 a

H;+ Q;A;lQ;

H;+ Q;A;IQ$

Q;+ Al

Q;+ H%

(1,2)

(E,&)

(:E,E)

(4)

(4,3)

(1)

(2)

(E,E)

(E,E)

(5,6)

(5,5,7)

(E,E)

(E,E)

(3)

(4)

Notice that G’ is not proper since H~+E.

4. LEFT-TO-RIGHT COVER

In the preceding section we saw that each

left-recursive grammar G can be right-covered by

a non-left–recursive grammar G’. If we look at the

parsing problem then we want to eliminate left–

recursion since a certain top–down parsing method

will not work for a left–recursive grammar. We

want to make the grammar fitting for this top-down

parsing method, and this means in general for a

parsing method which produces left parses.

However our algori~hm is only concerned with right

parses. Fortunately we can give the following

theorem, This theorem can also be found in [3] in

a slightly different form.

THEOREM 4.1.

Let cfg G’ right-cover G, then there is a cfg G“,

such that G“ left–to–right covers G.

Proof, Let G’ = (N’, X, P’, S’) right–cover

G = (N, Z, P, S) by cover-homomorphism h. We

construct a new grammar G“ = (N”, 1, P“, S“),

s “ = S! and where N“ = N’ u{Rill SiS lP’l} and

each R. is not already in N1 .
1

P “ = PI UP2, where

P, = {(i’): A+uRil (i): A+ctXi is inP’}

Pn = (i”): R,+X, l(i’): A+uR, is inP.}.
L

If T’ is a

there is a

w which is

occurrence

A

1

1 ~, L 1

parse tree of G’ for a sentence

and

w then

corresponding parse tree T“ of G“ for

obtained from T’ by replacing each

of a subtree T: in T! of the form

by a subtree T;

Ax of T“ of the form AR
a IY,

r
xi

These occurrences of subtrees in T’ and T“ of

these forms are said to be corresponding. In T;

the productions (i’): A+aRi and (i”): Ri+X.
1

are said to be connected. Notice, that if rr is a

parse of w with respect to T’ and r“ is a parse

of w with respect to T“ then for each occurrence

of i in T’ there is only one corresponding pair i’

and if’ in T“. Similarly, for each occurrence of

i’ in m“ there is only one connected occur~ence of

,!
1.

Now the proof is rather simple. Let T’ be a parse

tree of G’ for w and T“ its corresponding parse

95



tree of G“. A left parse ‘n” for w with respect to

T“ in which productions i’ and j’ occur can be

written in one of the following forms:

all . Tr”Z . ..i’. ..j!. ..i”’. ,.i” . . ..or

b“. v“? . ..i’. ..i’’. ..j ’.. .j’’ . . . .

or symmetric cases {first j’ ), where i’ and i“ are

connected and j! and j“ are connected. For these

cases the right parses with respect to T! can be

written as:

a’. m! : . ..j. ..i... (for case a“.), and

b’. T’ . ..i. ..j... (for case b“.),

where i corresponds to the connected pair i’ and i“

and j corresponds to the connected pair j ‘ and j“.

For i’ #j’ a form

c“. n“ Z ., .i’. ..j ’. ..i’’. ..j’’. . .

cannot occur in a left parse. For i’ = j’ there

are no problems as can be seen in what follows.

Since the order in which i“ and j“ appear in n“

is the same as the order in which i and j appear

in Tr’ we can define a homomorphism h’ such that,

for each i’ and i“ , h’(i”) = i andh’ (i’) = E

and then G“ left–to–right covers G’ with cover–

homomorphism h’. The composition of h’ and h

gives

right

f(i’)

Since

G’ is

the cover-homomorphism f of G“ left-to-

covers G, that is, f(i”) = h(h’ (i”)) and

= E for each pair i“ and i’ in P“, D

in this theorem G“ is not left-recursive if

not left–recursive a top-down parsing method

can be used for G“ and the left parses with

respect to G“ can be mapped on the right parses

with respect to G.

5. CONCLIJSIONS.

We showed that some remarks concerning left

recursion in the literature are not true. An algo-

rithm was given to transform a left–recursive

grammar G to an non-left-recursive grammar G’ such

that G’ right–covers G. We showed that the use of

right parses in this algorithm is not restrictive

in a practical situation in which we want to eli-

minate left-recursion to have the possibility to

apply a top-down parsing method which yields left

parses .

There are some problems we did not consider. Can

the elimination of &–productions be done in such a

way that the result is a covering grammar?

According to some remarks in [11, that we gave in

section 2, we can conclude that if a cfg is

ambiguous then elimination of E–productions can

not lead in general to a covering grammar, and if

a cfg is unambiguous then there is a covering

grammar. However, the following grammar with

productions S+LSO/LSl10/l and L+& is not

ambiguous and we conjecture that this grmar is

not right-covered by an &-free grammar. Further–

more we can ask to prove the conjecture that

grmar G1 of section 2 cannot be right-covered by

a cfg in GNF even if we do not restrict ourselves

to a fine cover-homomorphism.

ACKNOWLEDGEMENT

I am grateful to prof. L.A.M. Verbeek for some

helpful comments. The research reported in this

paper has been carried out at the Twente University

of Technology,

I thank ms. Marja Verburg for her beautiful and

careful typing of the manuscript.

REFERENCES.

1, Aho A.V. and Unman J.D., “The theow o.f

2. Gray J.

3. Nijholt

parsing, trans2aiion and com~ilkg”,
Vol. I and II, Prentice Hall,
Englwood Cliffs, 1972 and 1973.

and Harrison M.A., “On the covering
and reduction problems for context-
j%e grammars”, J. Assoc. Comput.
Mach. 19, (1972), No.4, 675 - 698.

A “On the covering of parsable
g&nmars”, to appear in J. Comp .
Syst. Sei.

96


