
1

Monitoring Extensions for Component-Based Distributed Software

Nikolay K. Diakov, Marten van Sinderen, Dick Quartel
Centre for Telematics and Information Technology, University of Twente, The Netherlands

{diakov, sinderen, quartel}@cs.utwente.nl

Abstract

This paper defines a generic class of monitoring
extensions to component-based distributed enterprise
software. Introducing a monitoring extension to a
legacy application system can be very cost-ineffective.
In this paper, we identify the minimum support for
application monitoring within the generic components
of a distributed system, necessary for rapid
development of new monitoring extensions.
Furthermore, this paper offers an approach for design
and implementation of monitoring extensions at
reduced cost. A framework of basic facilities
supporting the monitoring extensions is presented.
These facilities handle different aspects critical to the
monitoring process, such as ordering of the generated
monitoring events, decoupling of the application
components from the components of the monitoring
extensions, delivery of the monitoring events to
multiple consumers, etc.

The work presented in this paper is being validated
in the prototype of a large distributed system, where a
specific monitoring extension is built as a tool for
debugging and testing the application behaviour.

1. Introduction

Nowadays, most consumer products are composed
of building blocks, or modules, that are supplied by
different manufacturers. Combining diverse modules
together is impossible without the compatibility
requirements outlined in international or company
standards for a family of products. The electronic
household appliances and computer hardware are good
examples of the extensive experience of the industry in
this area, producing compatible and reusable hardware
modules. The benefits from reusability and
compatibility are obvious as markets become wider or
integrate, demand for new up-to-date products grows
and new technology solutions emerge at fast rates. The
experience from the consumer products industries is
quickly entering the dynamic world of software
industry, resulting into a move towards development
of new solutions for component-based software design
and implementation.

There are numerous definitions of what a software
component is. We choose a definition inspired by [5]
where a software component is a binary unit of

independent production, acquisition, and deployment
that interacts to form a functioning system.

Software components introduce a new abstraction
in the software process, which entails the binary
representation of components, deployment and
instantiation schemes, etc.

Usage of software components in a distributed
environment for development of complex applications
is widely offered on the market, e.g., by products
called application servers [9,10]. Distributed
environments introduce additional complexity and
unpredictability to the software applications, as
network latencies, software incompatibilities and other
problems may seriously influence the behaviour of a
distributed application. Monitoring software have
widely been used for solving some of these problems
by providing: quick response to events in the
distributed environment (load balancing, fault
tolerance), analysis of recorded logs (performance,
replica deployment), debugging and testing [1], etc.

In this paper we assume that monitoring software is
always present or introduced together with the
components of a distributed application, with the goal
of exposing application behaviour through a standard
configurable framework. The paper has the following
objectives: (1) Identify the minimum but sufficient
support for monitoring within the generic components
of the distributed system. This support is necessary for
rapid development of event-driven monitoring
extensions, which typically concentrate functionality
that interprets information about the dynamic
behaviour of a distributed application. (2) Offer an
approach for design and implementation of monitoring
extensions at reduced cost. A framework of basic
facilities supporting the monitoring extensions is
presented. These facilities handle different aspects
critical to the monitoring process, such as the ordering
of the generated monitoring events, decoupling of the
application components from the components of the
monitoring extensions, and delivery of the monitoring
events to multiple consumers.

The remainder of this paper is organised as
follows. Section 2 outlines a high-level application
model necessary for the definition of monitoring
extensions. Section 3 defines the architecture of a
monitoring extension. Section 4 explains our
prototyping efforts carried out in two research projects.
Section 5 makes an overview of related work. Section
6 presents conclusions and intentions for future work.

2

2. Generic Application Model

The component-based applications may have
arbitrary complexity and often use additional software
technologies, like specific middleware for distribution,
and transaction monitors. In order to design our
framework for monitoring extensions we need to have
a generic perception of what a distributed component-
based application is.

Application components

Middleware

Figure 1. Application components
communicating through middleware.

A component-based distributed application consists
of software components that are the units of
distribution. We assume that the application follows a
pattern of a component model. At this level we can
stay independent from a particular component model
as we need the notions only of architectural concepts
standard to all component model. Such concepts
include common communication contracts (CORBA,
DCOM, EJB 1.1 interfaces), lifecycle of a component
(instantiation, migration, replication, suspend/resume,
destruction, etc), components as black-boxes, and
finder facilities (naming/directory services).

The components are entities communicating
through interaction contracts [2]. The communication
is handled from the middleware layer (Figure 1) where
aspects like component location, OS and
implementation language specifics, are taken care of
transparently to the developers and their application
specific code.

Components of a new extension

Application components

Middleware

Figure 2. Introducing a new extension to an
existing application.

Any enterprise-wide application becomes a legacy
system immediately after its release. Object-oriented
and component technologies have been some of the
tools that give strong support for a successful solution
to this problem, by providing reusability,

configurability, version control, etc. Nevertheless,
depending on the functional requirements, a new
software extension to a legacy system may require
changes and even replacement of application
components, which often leads to high development
costs.

This paper is targeted to a class of software
extensions that perform observations over the
behaviour of the application components in the
distributed application. We classify these software
extension as monitoring extensions (see Figure 2). If
generic monitoring support is introduced into every
original application component, the developer of the
monitoring extensions does not need to change the
existing application in order to implement the
observation functionality of this extension.

An example of a monitoring extension is a
distributed testing tool that generates message
sequence diagrams. These diagrams describe all
remote invocations between application components,
and their ordering, for the purpose of error discovery
or conformance analysis [2]. Another example is an
accounting module for online services, where the
usage of particular application components (service
components) is charged according to particular
policies.

In order to provide a relevant solution for generic
monitoring extensions, we need to analyse what would
make a monitoring framework a desirable solution.

2.1 Monitoring requirements

Let’s assume that a legacy application is modified
to facilitate a monitoring extension. Typically such an
extension needs information about component state
and about communication between components. State
and communication do not exhaust the interest for
information but we consider these two as most
important.

In general, two types of monitoring approaches are
distinguished, namely the event-driven approach and
the time-driven approach [15]. Our monitoring
framework adopts an event-driven approach, since we
are interested in the behaviour of components in a
distributed application.

When component-based software is built from
components, exposing internal component state is
normally done through component interfaces,
component events and properties, which is decided at
design time for each component. A monitoring
extension can make perfect use of component events
and properties, however, component interfaces are just
APIs and have not been designed for emitting
notifications to yet non-existing applications.
Consequently, developers have to open the source
code and add the required notifications manually. This
approach can be very expensive in terms of time and
man power, and the probability for introduction of
errors is high.

3

Our monitoring framework uses a different
approach in which each application component
contains some generic monitoring functionality. This
functionality enables component interfaces to be
observed, elements of these interfaces (typically its
operations) to be intercepted and monitoring events to
be generated for all interested parties in the system,
without altering the application components.
Furthermore, the monitoring framework should satisfy
the following requirements.

Accuracy. The granularity and frequency of the
generated monitoring events is defined at the level of
the computational model of the middleware being used
by the application programmer. Our event-driven
monitoring framework allows observations on all
programming elements (interfaces, their operations,
operation parameters and results, exceptions) used to
implement applications and components. Time-driven
monitoring is possible, since monitoring extension
may request measurements on a time basis.

Consistency. Components that process monitoring
events (called consumers) should be able to restore the
order in which these events were generated. Because
of the innate concurrency of a distributed environment,
delays on communication networks and differences in
operating systems on the separate computing nodes,
the order in which monitoring events arrive at the
consumer might not be the same as the order in which
they were generated. Under such conditions, software
extensions sensitive to the ordering of monitoring
events will not function properly and perform
unsatisfactory. Tackling this problem for every new
extension results in significant overhead and therefore
the monitoring framework should provide consumers
with a consistent view on the ordering of monitoring
events.

Scalability. A scalable legacy application may not
scale anymore after applying a monitoring extension,
because each producer of monitoring events may have
to send these events to many different consumers.
Since the development of a proprietary event
notification scheme may involve a considerable
amount of work, the monitoring framework supports
scalable monitoring extensions by employing a
notification service to decouple event producers and
event consumers.

Applicability. The success of the monitoring
framework depends largely on how easy it can be
incorporated, managed and used during the
development process. The framework should relieve
the application developer from many (generic)
monitoring issues, by providing proper tool support
and adequate software libraries. Other important issues
are performance and flexibility in terms of static
(compile-time) versus dynamic (run-time)
configurability of the monitoring framework.
Interception of an operation at an interface costs CPU
time for calling the notification handler. Transmitting
unnecessary data over the network, encapsulated in the

event, may cause bandwidth problems. A flexible
generic monitoring framework allows reconfiguration
of the set of events that will be generated and sent,
based on the interest of the event consumers. The
format of the basic information model of the captured
events should be extendible and rich.

2.2 Framework and facilities

We propose a monitoring framework that
incorporates basic monitoring support in every legacy
application component, provides certain facilities to
assist the proper operation of the framework and
allows rapid development of monitoring extensions for
the observed application.

Application components

Middleware

Components of a new extension

Basic monitoring support

Figure 3. Two of the basic types of actors in
the proposed framework: basic monitoring

support and the components of the new
extension.

The basic support for monitoring application
components is implemented by a slim software library
bound with every application component, which
produces notifications in the form of monitoring events
(Figure 3). The components of the monitoring
extension are the event consumers that show their
interest in specific events of the monitoring framework
by initiating dynamic reconfiguration on the
monitoring support to the application components (see
3.2).

2.2.1 Monitoring support in the generic application
components

The programming model of most contemporary
middleware employs specific mediator (proxy) objects
that are responsible for the communication specifics
(Figure 4). In CORBA these objects are the stub at the
caller and the skeleton at the interface implementation.
Since the proxy objects participate in every remote
invocation they can be reconfigured to notify the
monitoring support in the application component,
about the ongoing remote invocation. The monitoring
support is then responsible for generation and emission
of an event encapsulating all the necessary information
according to the information model. Details about an

4

implementation of the monitoring support can be
found in [2].

Applicat ion component

Monitoring support

Middleware specific proxy objects

Figure 4. Inside the application component.

The monitoring events related to remote
invocations we call interaction events. The frequency
and granularity of the interaction events follows
closely the computational model of the middleware
and enforces the accuracy requirement.

Other type of monitoring events are lifecycle
events that reflect the dynamics of the component
instance, an aspect of the component model. For
example, instantiation and destruction are basic
notifications that produce lifecycle events.

For applying time-driven monitoring, the
developers have to define their custom event type
support. Time-driven monitoring is usually tightly
related to particular functional requirements and falls
out of the scope of this paper.

The monitoring support framework is flexible and
allows installation of new event type support.
Nevertheless, adding this new functionality may need
augmentation of the source code of the application
component. In this case, the software developer can
still benefit from the monitoring framework, as it
provides consistency and takes care of event filtering
and delivery.

Meeting the applicability requirement is a serious
challenge. The monitoring support in every application
component must allow dynamic reconfiguration of the
set of generated events. This can be achieved through a
generic monitoring interface on each application
object. Special event filters can be passed to the
monitoring support in the application component.
These filters encapsulate the interest of the event
consumers for particular monitoring events. If we
specialise further using the CORBA middleware
technology, the standard Notification service already
provides such type of event filters. The COM+ events
model also allows implementation of producers that
announce their interest for particular events by
querying the COM+ catalogue.

Filtering at the source of events can be very useful
for lowering the CPU utilisation and network traffic at

the physical nodes where the application components
are running. An alternative approach is to use filtering
in the facility responsible for delivering the events to
the event consumers, however in this case the network
load between the application objects and the event
facility can become very high.

2.2.2 Framework and Facilities

The monitoring framework provides the facilities
and configurations that glue together the components
of the legacy application and the monitoring
extensions.

Application components

Middleware

Components of a new extension

Legacy components

Event channels

Framework
configurator

Development
tools

Event filters

Events

Figure 5. The elements of the monitoring
framework.

The monitoring facilities can be found as
extensions to the middleware. The whole set of
development tools for automating the development of
application objects with monitoring support is a
monitoring facility. The framework configurator is a
monitoring facility responsible for deployment and
initialisation of the monitoring framework. It is used
mainly during system startup. The event channels are
provided by an event dispatching facility like the
CORBA notification service. Where the middleware
does not offer such service, this facility has to be
additionally implemented.

A typical scenario of adding a monitoring
extension to a legacy application includes several step:

1. Development of the software extension
according to the monitoring API and using
development tool facilities;

2. Using the framework configurator facility, the
event channels necessary for the operation of
the monitoring extension are deployed;

3. Having the legacy application running, the
monitoring extension is started and it registers
to the event channels and passes its event
filters to the event dispatching facility. The
event dispatching facility pushes the necessary
filters to the corresponding application
components;

4. The monitoring support in the application
components is reconfigured to emit events

5

matching the criteria delivered with the event
filters;

5. Events start flowing from the application
components to the event channels where
events are multi-casted to all interested
monitoring extensions;

6. The monitoring extension starts analysing the
arriving events, and performs activities
specific to its mission tasks.

3. Monitoring Extensions

The monitoring extensions to a legacy application,
concentrate mainly observation and analysis
functionality. The information these software
extensions are gathering can be categorised by
business domain. For example, an accounting
extension requires information about starting and
stopping accountable sessions, accounting policies,
etc. In the domain of software testing and debugging,
the terminology is different, where remote invocations
and parameter values are important, together with
concurrency information (e.g., thread identifications,
timestamp of occurrence).

The application components emit monitoring
events that are received at the monitoring extension.
The number and variety of the generated events can be
dynamically adjusted by using the facilities of the
monitoring framework.

3.1.1 Basic information model

An essential monitoring requirement is the richness
of the basic information model of observed
information.

Logical Clock
NTP Timestamp
Trail Label

Time
<fixed>

source_id
source_type
node_id
container_id
process_id

Address
<fixed>

Information (determined by event type)
<dynamic>

interface_id
interface_type
operation_id
parameters

announcement_id

...others
Interaction Events Life-Cycle Events

Figure 6. The format of the monitoring
event.

The monitoring event is a persistent object that
contains a number of data fields. Its information model
consists of three groups of fields: time, address, and
information (Figure 6). The time group contains
information about the time when the event occurred
and the order and causality relation of the particular
event with the other events in the system. The address
group contains a set of fields with information about
the source of the event. The information group
contains variable fields, depending on the supported
event type. For example, an interaction event captures
information about interface (interaction contract) id

and type, operation name, and parameter values, while
a lifecycle event contains details about the creation,
suspend/resume, or destruction of a component
instance.

The time and address data fields in the monitoring
event are fixed. These fields encapsulate all necessary
information to cover the consistency requirement and
define the exact location of occurrence of the event in
the monitored application regarding ’space’ and ’time’.
The set of information fields is variable and reflects
the event type. Our framework supports installation of
new event types in the legacy application components.
Since this is a static configuration process, the
component instances may have to be restarted and in
some cases recompiled. By implementing event types,
the developers of monitoring extensions may use the
features of the monitoring framework, and at the same
time have the freedom of a proprietary
implementation.

3.2 Monitors

We suggest that observation functionality (i.e.,
collecting and processing observations) is concentrated
in a separate component. The part of the monitoring
extension that encapsulates the observation
functionality we call a monitor (Figure 7). The monitor
can be plugged into the monitoring framework and
start receiving notifications.

Application components

Monitor

OtherOther

The components of a new extension

Legacy components

Figure 7. Structure of a monitoring
extension.

Several monitors can operate on the same legacy
application. Although each of the monitors can
configure the application components to issue different
sets of events, conflicts will not arise as the basic
monitoring support within each legacy component can
handle multiple dynamic configurations at the same
time. For example, when Event Filters together with a
CORBA Notification Service are used for specifying
interest in particular events, the legacy application
components can combine different event filters, in
order to update its set of currently generated events.

3.3 Design guidelines

The developer of a monitoring extension using our
monitoring framework, can benefit from some design
guidelines we have composed during our research.

6

source_id
source_ty pe
timestamp
logicalclock
interface
.....

Basic Information Model

S
ta

ti
c

M
ap

pi
ng

policy
session
customer
....

Domain Information Model

Figure 8. Static mapping from basic to
domain specific terminology.

The main task of a monitoring extension is to
somehow interpret the notifications coming from the
components of the legacy application. Since each
software application solves a task in a particular
business domain (e.g. accounting, software testing,
security), there is a set of the domain terminology
associated. The first step of identification of the
terminology is part of most software development
processes, thus we will not further discuss it. The
second step is to define events in the domain language,
that directly relate to the observation process. For
example, starting an accounting session can be a
domain specific event. These events form a domain
information model specific to the particular monitoring
extension. The next step is to define a static mapping
from the basic information model of the monitoring
framework into the domain information model. Static
mapping means that the rules for translation of events
from the basic model into events of the domain model
are specific to the domain at hand. An example of such
a mapping is the translation of a monitoring event
indicating the start a of a specific application
component into a "start account session" event in the
accounting domain.

Once the static mapping is done, the
implementation of the monitoring extension is
straightforward, by implementing the event handlers
and the state machine that represent the logic of the
particular problem solution.

We have justified this approach in an experiment
with our prototype, where a management monitoring
application has been implemented, that shows the
dynamic deployment diagram of the high-level
compound component of a TINA-based distributed
platform for online services [7].

4. Prototype

The FRIENDS (FRamework Integrated
ENgineering and Deployment of Services) project [7]
defines and implements an architectural framework

that supports service development, deployment, and
usage in an integrated way, based on analyses of the
needs of service developers, service providers, and
service users. The FRIENDS platform architecture is
based on the Telecommunications Information
Networking Architecture (TINA).

For the purposes of the FRIENDS software
platform, the Distributed Software Component (DSC)
framework [3, 4] has been developed. The DSC
framework encapsulates a component model similar to
the CORBA Components model, which builds on top
of the CORBA middleware architecture and basic
services.

The basic monitoring support is integrated in the
generic DSC components. An event dispatcher
(DSCMonitor) has been implemented that takes care of
the event delivery. In the next release of the
monitoring framework, DSCMonitor will be replaced
by a Notification service.

The FRIENDS services platfrom has been
implemented with generic DSC components, this way
the monitoring framework becomes available for
usage.

We have built a number of monitoring extensions
to the FRIENDS service platform.

• A debugging and testing extension that
observes the interactions between the
components of the FRIENDS platform and
produces accurate visual message sequence
diagrams of the actual execution (Figure 9)..
The domain mapping for this monitoring
extension, for example, maps simple outgoing
and incoming communication events (depicted
as circles) to messages (depicted as arrows)
exchanged between two component instances

• A persistent storage system that has the task to
log all events to a database. In this case, no
mapping is necessary.

• A topology viewer of the dynamic instances of
the high level TINA components. This
extension maps the interactions between
instances of the software components, to the
messages passed between abstract TINA
components (Figure 10). The translation is
done towards the TINA architecture domain
terminology, and a graphical representation
has been offered to the user.

7

Figure 9. Message sequence diagram.

The graphical user interface of the debugging and
testing extension (Figure 9) visualises a message
sequence diagram of the concurrent execution of a
distributed application. The horizontal axis shows
component instances and the vertical axis shows the
time order of the events. This tool provides support for
visual analyses of the communication behaviour of a
distributed system, where the number of concurrent
component interactions may be very large.

Figure 10. Dynamic deployment graph

Figure 10 depicts the visual user interface of a tool
that shows a graph, where nodes represent TINA-
compliant entities and arrows represent the
communication activity between two entities. TINA
entities may contain several instances of software
components and an arrow between two entities reflects
that remote invocations are performed. This
monitoring extension is able to animate the activities,
by highlighting entities currently involved in the
communication process, and showing solid directed
arrows to represent ongoing invocations between
entities.

Technical information about the software solutions
for these applications can be found in [2].

5. Related work

The research outlined in this paper is a
generalisation of the work done in [2], where a
framework for debugging and testing distributed

applications has been designed and implemented. This
framework fulfils the consistency and partially the
accuracy requirements. With the ongoing
generalisation of the framework, the debugging and
testing becomes a monitoring extension to a legacy
application. For the purposes of testing, the event
filters mask the full set of events, whereas the
debugging monitors analyse these events and visualise
the flow of control through the legacy application.

In [11], a multi-layer monitoring framework called
MIMO is proposed that supports distributed
environment by introducing observation software at
the middleware level. The MIMO framework offers
tools for automating software development. Under
certain conditions, MIMO can be used for building
monitoring extensions for legacy systems.

In contrast to our approach, MIMO leaves the
consistency of the events outside the scope of the
monitoring framework. Furthermore, it only considers
tools that correspond to monitoring extensions in our
set-up and does not provide guidelines for tool
construction. The implementation of the MIMO
framework involves wrapping of the interfaces of the
request broker, which may conflict with several
CORBA implementations due to usage of non-
standardised interfaces on the ORB. In our approach
we choose to perform tool-supported modification on
the proxy objects (Java portable stubs and skeletons) in
order to introduce in a standard way the hooks
necessary for the functioning of the monitoring support
in each application object. Our framework supports the
level of application components with a clear notion of
a component model involved. The monitoring support
can be extended with support for different event types,
that make use of the basic features of the original
framework.

Reflective middleware can offer useful support for
the implementation of a monitoring system. A good
example is dynamicTAO [13] that is built around a
CORBA compliant request broker. It is able to
maintain and expose the configuration of its highly
customisable internal engine. One of the example
configuration implementations for dynamicTAO
introduces monitoring functionality.

DynamicTAO keeps consistency of its internal state
with respect to dynamic reconfiguration. As a part of
the ORB, the monitoring support ensures order of the
monitoring records (events) inside the ORB, however,
the monitoring support does not offer consistency of
the event model with respect to the events generated
from a large distributed system that runs several ORB
instances.

In [8], a method is described for run-time
monitoring of distributed applications that supports a
software development process. The approach provides
consistent event model. The level of granularity is the
CORBA object, whereas our monitoring framework
enhances this approach with introduction of the
component abstraction. The configuration of the

8

monitoring code in [8] can be dynamic and supported
by tools. By applying a notification service, our
approach introduces an additional scheme for
decoupling event sources from event consumers.
Additionally, our monitoring framework supports
several event types and support for different ORB
implementations.

6. Conclusion and future work

The monitoring framework we propose supports
the quick and cost-effective development of
monitoring extensions to component-based distributed
applications. We have implemented several monitoring
extensions to proof the applicability and usefulness of
the framework.

The testing and debugging monitoring extension is
used in the FRIENDS project for software verification
and run-time error discovery. The dynamic
deployment graph monitoring extension has been
implemented in a week time following our design
guidelines.

Work on our monitoring framework will continue
in several directions.

The current framework provides means for partial
capturing of causality. In order to improve the
opportunities for performing formal analysis on the
event traces, we need to extend the causality support in
the monitoring framework. Provided a formal model of
the behaviour of a distributed system is available,
conformance testing can be done assisted by a tool.
For this purpose, a mapping has to be defined from the
execution model of the monitoring system to the
formal model describing the system behaviour [12].

We plan to perform tests to measure the impact of
the monitoring framework on the overall system
performance.

We continue our implementation effort to cover
several middleware technologies (CORBA, COM+) as
well as the most widely used component models
(CORBA Components, COM+, EJB 1.1).

The COM+ event model allows implementation of
our monitoring framework for COM+. A standard tool
[14] uses the COM+ metric API tocapture traces of
communication and lifecycle events for COM+
objects. Our framework can be integrated with the
existing COM+ facilities to provide additional
consistency of the event system, scalability for
monitoring extensions and filtering at the event source.

References

1. Diakov, N.K., Batteram, H. J., Zandbelt, H., Sinderen,
M. J., "Monitoring of Distributed Component
Interactions", RM’2000 Workshop on Reflective
Middleware, 2000, NY, USA,
http://www.comp.lancs.ac.uk/computing/rm2000/papers
/8-awentenkov.pdf.

2. Diakov, N.K., Batteram, H. J., Zandbelt, H., Sinderen,
M. J., " Design and Implementation of a Framework for

Monitoring Distributed Component Interactions",
submitted to IDMS’2000, Workshop on Interactive
Distributed Multimedia Systems and
Telecommunication Services, 2000, Enschede, NL.

3. Batteram, H.J., and H.P. Idzenga, “A Generic Software
Component Framework for Distributed Communication
Architectures,” ECSCW’97 Workshop on Object
Oriented Groupware Platforms, 1997, Lancaster UK,
pp. 68-73.

4. Bakker, J.L., and H.J. Batteram, "Design and evaluation
of the Distributed Software Component Framework for
Distributed Communication Architectures",
Proceedings of the 2nd international Workshop on
Enterprise Distributed Object Computing (EDOC'98),
pp. 282–288, San Diego (USA), November 3–5, 1998.

5. Szypersrki, C., Component Software: Beyond Object
Oriented Programming, Addison-Wesley, 1998.

6. CORBA Component Model RFP, orbos/97-06-12,
Revised Submission, February 2000.

7. The FRIENDS project, see http://friends.gigaport.nl/
8. Logean, X., Dietrich, F., Karamyan, H. and

Koppenhoefer, S., "Run-time Monitoring of Distributed
Applications", Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware'98), pp. 459-473,
Hudson River Valley, New York, USA, 3-7 April 2000.

9. BEA WebLogic Commerce Server,
http://www.beasys.com/

10. Inprise Application Server,
http://www.inprise.com/appserver/

11. Rackl, G., Lindermeier, M., Rudorfer, M., Süss, B.
“MIMO --- An Infrastructure for Monitoring and
Managing Distributed Middleware Environments”,
Middleware 2000 --- IFIP/ACM International
Conference on Distributed Systems Platforms, volume
1795 of Lecture Notes in Computer Science, pages 71-
87. Springer, April 2000.

12. Quartel, D.A.C., M.J. van Sinderen, and L. Ferreira
Pires, "A model-based approach to service creation", In:
Proceedings of the Seventh IEEE Computer Society
Workshop on Future Trends of Distributed Computing
Systems, IEEE Computer Society, 1999, pp 102-110.

13. Kon, F., Román, M., Ping Liu, Mao, J., Yamane, T.,
Magalhães, L.C., Campbell, R.H., "Monitoring,
Security, and Dynamic Configuration with the
dynamicTAO Reflective ORB", IFIP/ACM
International Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware'2000). New York. April 3-7, 2000

14. Visual Studio Analyzer Framework,
http://msdn.microsoft.com/library/devprods/vs6/vstudio
/vstool2/veconvisualstudioanalyzerconcepts.htm

15. Monsouri-Samani, M., Sloman M., "Monitoring
Distributed Systems", Chapter 12 of "Network and
Distributed Systems Management", pp 303-344,
Addison Wesley, 1994

