
1

Monitoring of Distributed Component Interactions

Nikolay K. Diakov
CTIT

P.O. Box 217, 7500 AE
Enschede

The Netherlands
Tel.: +31-53-4893747
Fax: +31-53-4894524
diakov@ctit.utwente.nl

Harold J. Batteram
Lucent Technologies

P.O. Box 18, 1270 AA
Huizen

The Netherlands
Tel.: +31-35-6871378
Fax: +31-35-6875954
batteram@lucent.com

Hans Zandbelt
Telematica Instituut

P.O. Box 589, 7500 AE
Enschede

The Netherlands
Tel.: +31-53-4850445
Fax: +31-53-4850400

zandbelt@telin.nl

Marten J. van Sinderen
CTIT

P.O. Box 217, 7500 AE
Enschede

The Netherlands
Tel.: +31-53-4893677
Fax: +31-53-4894524
sinderen@ctit.utwente.nl

1. Background

Distributed applications are becoming one of the
major types of software used nowadays. At the
same time, the fast-paced software market
demands for rapid development of distributed
applications. This leads to reshaping of the
software development methodology towards the
usage of off-the-shelf components for quick
assembly of applications of arbitrary complexity.
Unfortunately, ability for quick manufacturing of
software using assembly and configuration of
available components does not guarantee
correctness of the solution nor quality of the
product.
One way to enhance quality is through thorough
testing. However, testing of applications that run
in a distributed environment is not an easy task.
Distributed computing environments usually
require several physical machines with different
hardware configurations, having installed
different operating systems and middleware
software, and different characteristics of the
network connections between them. Thus, testing
in distributed environments can be very different
from the single-computer case (see [2]).
In order to contribute to solutions in this area, we
set ourselves the following goals:
1. Provide a basic monitoring framework for

dynamic analysis of distributed component
applications, enabling tracing of flows of
control through the system as it executes in a
normal mode.

2. Integrate the monitoring into the development
process, so that the developer is not burdened
with monitoring issues.

3. Prove that the approach is realistic by
implementing a prototype and suggest
particular technology solutions.

2. Problem analysis

Our major assumption is that the targeted family
of applications is built from units of distribution
called components [1] that communicate with
each other through well-defined interfaces. When
we started this work, we had a distributed
software component framework [6] available,
with component model (similar to the CORBA
component model [5]), allowing design and
development of distributed components.
As a first approach we consider components as a
black-box, and observable events happening to a
component to be its lifecycle events (create,
destroy, suspend, resume, etc) and its interaction
events. This set of events forms the information
model of the investigated monitoring scheme.
Components interact with other components
through the CORBA DPE in a synchronous and
asynchronous manner. In CORBA terms, an
interaction is a procedure call to a CORBA object
implementing an IDL interface. An invocation
consists of transmission of request objects
encapsulating operation names, parameters,
results and other information.
A flow of control is a sequence of component
interactions that share common context. In order
to construct a flow of control two separate
problems have to be solved:
• Sending context from one component to

another, in a generic way;
• Propagating context through the custom

component implementation, in a generic way;

3. Use of reflective technology

The demand for generality naturally brought our
attention to reflective technology. Reflective
technology would allow us to isolate the
monitoring specific code into separate facilities
and libraries, that will leave component



2

developers free of concerns about the monitoring
during design and implementation phases. In our
approach we investigated three technologies:
• CORBA Interceptors;
• Reflection on the thread model through Java;
• CORBA Portable Object Adapter (POA);

CORBA provides the interceptor mechanism that
reflects on the invocation model. Our monitoring
scheme uses interceptors(message and process
level) that provide low-level access to the
CORBA request/reply.
The Java 2 platform offers a simple API for
reflection on the thread model [7] that allows
propagation of per-thread context through a Java
application in a generic way.
POA standardises the way CORBA IDL interface
implementations are being executed, which is
essential to a reflective approach.

4. Solutions

At some point before the actual execution of a
CORBA request (or reply) we need to insert the
monitoring context into the message. This
information is essential to the ordering of events
and the tracking of control flows. In a similar way
we need to analyse the monitoring context that
was propagated back from serving to calling
object at the return of the request.
In order to achieve our goals in tracking the flow
of control we need a generic way for ‘peeking’
into the black box of the component
implementation at run-time. We use this generic
scheme for passing context information that will
help reconstructing causal relations between
component interactions.
We rely on the CORBA Portable Object Adapter
(POA) while assuming consistency of the
execution of interface implementations, e.g. no
collocated call optimisations for components
sharing the same ORB instance. Furthermore, we
need to be able to tag threads of execution that are
currently processing the code of a particular
component, with information about the request.
Typical example of thread dependency is the
‘forks’ in the execution of the current Thread. We
track ‘forks’ using the Java 2 API for passing the
thread context between the child and parent
threads. Another example of context exchange
between threads is a synchronisation point. The
later is not yet supported in our solution because
Java does not provide reflective interfaces for
managing its synchronisation scheme.

5. Current prototype status

The latest release of the prototype includes fully
functional component monitor that delivers a
comprehensive visual representation of
component interaction events in form of message
sequence charts. This format has been specially
extended for depicting run-time events.
Interactive interface offers the tester option to
assign trail labels to component interaction points
thus labelling the flow of control passing through
this interaction point.

6. Conclusions

We have described a generic monitoring approach
that can be used to enhance the quality of
distributed component software. The generality of
the approach is achieved through using reflective
technology, i.e. CORBA Interceptors, CORBA
POA and Java 2 features.
A drawback of using interceptors is the fact that
their interfaces have not been standardised so far.
However, the process of standardisation is
ongoing and has recently resulted in an OMG
Joint Revised Submission called Portable
Interceptors [4].
Although the Java 2 API enables discovery of
‘forks’ in the execution, we find it lacking
functionality for the purpose of discovering
synchronisation points (e.g., ‘joins’) within
multithreaded components.

Acknowledgements

This work has been partially supported by the
research projects FRIENDS and AMIDST [3].

References

1. Szypersrki, C., Component Software: Beyond Object
Oriented Programming, Addison-Wesley, 1998.

2. Krawczyk, H., Wiszniewski, B., "Analysis and Testing
of Distributed Software Applications", Research Studies
Press Ltd., Baldock, Hertfordshire, England, 1998

3. The AMIDST web site: http://amidst.ctit.utwente.nl/
4. Portable Interceptors Specification (orbos/99-12-02),

http://www.omg.org/
5. CORBA Components resource page:

http://www.omg.org/techprocess/meetings/schedule/CO
RBA_Component_Model_RFP.html

6. Bakker, J.L., and H.J. Batteram, "Design and evaluation
of the Distributed Software Component Framework for
Distributed Communication Architectures", Proceedings
of the 2nd Intl. Workshop on Enterprise Distributed
Object Computing (EDOC'98), Nov. 1998, pp. 282–288.

7. http://java.sun.com/products//jdk/1.2/docs/api/java/lang/
InheritableThreadLocal.html


