
Compensation methods to support generic graph editing: A case study

in automated verification of schema requirements for an advanced

transaction model

Susan Even∗ and David Spelt

Centre for Telematics and Information Technology

University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

{seven,spelt}@cs.utwente.nl

Compensation plays an important role in advanced transaction models, cooperative work,
and workflow systems. However, compensation operations are often simply written as a

−1 in
transaction model literature. This notation ignores any operation parameters, results, and
side effects. A schema designer intending to use an advanced transaction model is expected
(required) to write correct method code. However, in the days of cut-and-paste, this is
much easier said than done. In this paper, we demonstrate the feasibility of using an off-
the-shelf theorem prover (also called a proof assistant) to perform automated verification
of compensation requirements for an OODB schema. We report on the results of a case
study in verification for a particular advanced transaction model that supports cooperative
applications. The case study is based on an OODB schema that provides generic graph editing
functionality for the creation, insertion, and manipulation of nodes and links.

1 Introduction

Traditional transaction models provide a basic mechanism to manage the concurrent access of
a database. However, traditional models are inadequate for modern applications of database
technology, such as cooperative work and workflow [Elm92, Özsu94, VWP+97]. For this reason,
so-called advanced transaction models have been developed in the past decade. These models
often rely on a notion of compensation, where for each operation, an “inverse” operation has to
be provided (see, for example, [CD97, MR97]). The intension is that a compensation operation
semantically undoes the effects of the original operation—it does not merely restore a previous
state. Although the correctness of compensation operations is often assumed, little attention has
been devoted to the actual definition and verification of these operations.

Nine years ago, Korth et al presented a formal approach to recovery by compensating trans-
actions [KLS90]. Their ideas have been incorporated in numerous transaction models since then,
including the one we consider in this paper ([KTWK97]). They gave three guidelines for the
specification of compensating transactions. The first of their guidelines, so-called ‘Constraint 1’,
is of interest to us here. Informally, this constraint asserts that if a transaction T (considered as a
function on the database state) is immediately followed by a compensation CT , then the composed
function ‘T followed by CT ’ should be an identity mapping. After this constraint is introduced
in [KLS90], it is assumed to hold for all compensating transactions in the later sections of their
paper. Our work provides tool support for the verification of such a constraint, at the method
level, where a transaction is seen as a sequence of method invocations.

We demonstrate the feasibility of using an off-the-shelf theorem prover to automate the verifi-
cation of compensation requirements. The analysis is based on the semantics of OODB methods
with respect to a formal model of a persistent object store. We translate imperative method

∗Research supported by SION, Stichting Informatica Onderzoek Nederland.



code to purely functional definitions in higher-order logic (HOL), which can be reasoned about
using a theorem prover. In [SE99], we have shown how the Isabelle theorem prover ([Isa]) can
be used to automatically verify that a given method preserves the integrity constraints specified
for a schema. In this paper, we investigate the verification of compensation in the same formal
framework. We consider compensation in the context of a particular advanced transaction model,
namely the CoAct model [RKT+95, KTWK97]. A case study is used to illustrate the verification
of compensation requirements for this transaction model.

Compensation and commutativity requirements of CoAct. The CoAct model is used
to support cooperative applications [RKT+95, KTWK97]. Each user has a private workspace,
with an associated workspace history. Transaction management support encompasses the private
workspaces as well as a common workspace. The model makes use of three semantics-based trans-
action management ideas: backward commutativity [Wei88], compensation [KLS90], and forward
commutativity [Wei88, LMWF94]. Each of these places requirements on the semantics of the
operations of the database schema.

Backward commutativity (failure to backward commute) is used to identify operations that
depend on each other, for the calculation of consistent units of work (closed subhistories); it con-
cerns operations in the same workspace history [RKT+95, WK96]. Compensation also addresses
a single workspace history. Conceptually, the compensation operation is executed immediately
after the operation it compensates. If interim operations have been executed after the to-be-
compensated-for operation, these operations must backward commute with (i.e., be independent
of) it ([Wei88]). This means that the interim operations can be moved “backwards” in the history,
ahead of the to-be-compensated operation, with the result that the undo operation is executed
immediately after it. This is illustrated in Figure 1. The history reordering is conceptual only.

b1 b3 b4 b2 UNDO_b2

b1 b3 b2 b4 UNDO_b2

b1 b2 b3 b4 UNDO_b2

(okay if b4 backward commutes with b2. . .)

(okay if b3 backward commutes with b2. . .)

Figure 1. History-based Compensation

The backward commutativity requirement guarantees that the reordered history is equivalent to
the actual execution history.

Forward commutativity (failure to forward commute) is used to identify conflicts between
operations in different histories when work is exchanged between users. A consistent unit of work
from one workspace history (a subhistory of interdependent operations) can be exported to another
workspace history by first conceptually “moving” the to-be-exported operations backward in the
history. The operations (which can successfully be applied to the initial workspace state) are then
conceptually “moved forward” in the destination workspace history, provided the operations of
the two histories forward commute. The operations in the exported subhistory are put at the
end of the destination workspace history by the transaction manager. Details of the CoAct merge
algorithm are found in [WK96].

The CoAct transaction model assumes that all semantics requirements on the operations
(namely, the backward commutativity relations, compensation operations, and forward commuta-
tivity relations) are provided by the database schema designer. The correctness of this information



is also the responsibility of the schema designer. The aim of our research is to provide a reasoning
tool that can be used to help verify the semantics requirements on a database schema. In this
paper, we look at compensation.

Advanced transaction models are not supported by ODMG. In the ODMG Object
Database Standard, methods are applied to persistent objects within a transaction [CB97]. The
changes are made persistent either at transaction commit, or at a checkpoint within the trans-
action. A checkpoint is said to be equivalent to a commit, followed immediately by a begin;
a subsequent abort of the transaction can not rollback the checkpoint. This corresponds to the
traditional ACID transaction properties recognised in the literature. The notion of transaction
offered in the ODMG language bindings contrasts sharply with the needs of transaction models for
cooperative applications, for which transaction management support is needed at the data opera-
tion (method) level. This mismatch is best illustrated by the explanation of the relation between
threads and transactions in the C++ language binding: “if threads use separate transactions, the
database system maintains ACID transaction properties just as if the threads were in separate
address spaces. Programmers must not pass objects from one thread to another running under a
different transaction; ODMG does not define the results of doing this.” In short, in the case of
advanced applications, the standard asserts that concurrency control is the responsibility of the
application code. This is at odds with the view that concurrency control is something provided
by a database system, and it restricts the granularity of transaction management to the level of
begin, commit, abort primitives.

2 An example database schema

A characteristic of the CoAct transaction model is that high-level transactions are constructed
dynamically, by selecting and executing atomic operations. It is these atomic operations that
must be described in the database schema, as methods. We use a language called OASIS for
this. Our intention in designing this language has been to work with a subset of real-life OO
database language (namely, O2C [BDK92]) that includes “enough” interesting features to be able
to describe interesting examples, yet at the same time can be mapped to higher-order logic—the
language of the theorem prover. The design of OASIS has also been based on the ODMG standard
[CB97].

OASIS includes specification facilities for abstract and concrete classes, object creation, generic
container types (namely, set<β>), heterogeneous collections (of objects, not values), single inher-
itance of structure and methods, and late binding, plus facilities for the specification of integrity
constraints, queries (read-only methods), and transactions.1 Object equivalence is by object iden-
tity; this amounts to an equality test on oids. Some OO features are not supported in the OASIS
language: there is no subtyping on primitive types, and there is no subtyping on records (i.e., no
subtyping on ‘struct’ types). The subtype relation is that induced by the class inheritance hier-
archy. We do not consider relationships ([CB97]), although some relationships can be expressed
as constraints, using quantifiers (see [SE99] for examples of OASIS constraints).

We now look at an example OASIS schema specification, with operations for editing a generic
graph structure. The example is representative of the core functionality of the SEPIA cooperative
authoring system [KAN94]. Class declarations for the schema are given below:

abstract class Element {

attribute string name;

attribute int position;

abstract boolean isConnectedTo(Element n);

string changeNameTo(string s);

};

1Linguistically, transactions in OASIS are specified just like methods, but they do not have a receiver object.



abstract class Node extends Element {

attribute set<Link> incomingLinks;

attribute set<Link> outgoingLinks;

boolean addIncomingLink(Link k);

};

class ANode extends Node {

attribute set<AtomicContents> content;

};

class CNode extends Node {

attribute int size;

attribute set<Element> elements;

Link createLinkIn(Node a, Node b, string s, int p);

boolean removeNodeOrLink(Element n);

};

class Link extends Element {

attribute Node from;

attribute Node to;

Link(string s, int p, Node a, Node b) { name = s; position = p; from = a; to = b };

};

class AtomicContents {

attribute string referenceDirectory;

attribute string showStatement;

attribute string URL;

};

name set<CNode> cnodes;

name set<Link> links;

name set<ANode> anodes;

Class Element is abstract. It declares an abstract method isConnectedTo, which has different
implementations for classes Node and Link (see Figure 2). Atomic nodes (class ANode) contain
the hypermedia data of the document; composite nodes (class CNode) contain atomic nodes, links,
and other composite nodes as elements. The schema serves to structure a hypermedia document.
For this reason, the class hierarchy ends at the AtomicContents class, which is used for application-
specific kinds and formats of media, such as text documents, audio, and graphics. Objects of the
AtomicContents class maintain e.g., a file-system handle to the hypermedia object, along with
system commands (represented as strings) for displaying and editing the object. Three persistent
roots are specified, which serve as extents for classes CNodes, Links, and ANodes.

Methods and compensation operations. Method bodies are defined using an imperative
command language, which includes attribute update, object creation (with constructors), se-
quential composition, conditional branch, bounded collection iteration [Qia90, Qia91], and non-
recursive update method call. Database methods are not designed to perform complex compu-
tations; these are done in the application programs that invoke them. This has advantages for
verification, since we avoid some general purpose programming constructs that are difficult to
reason about mechanically, such as recursion and unbounded iteration (albeit with a tradeoff of
expressive power).

There is no explicit deletion operation in OASIS; persistence by reachability is used (as in O2
[BDK92]), where references are broken using nil values. The language of expressions is side-effect-
free OQL [CB97]. Methods can update (objects reachable via) parameters and persistent roots,
as well as (via) the receiver object’s attributes. Object parameters are passed by oid. Objects
are not encapsulated.

Figure 2 gives definitions for the methods declared in the schema, plus definitions for four



compensation methods. The abstract method isConnectedTo has different implementations in
Link and Node. The boolean tests in the method bodies rely on the subtyping on objects induced
by the inheritance hierarchy. For example, the test ‘n in incomingLinks’ relies on the fact
that set<Link> is a subtype of set<Element>. Method isConnectedTo is invoked by method
removeNodeOrLink, within an iteration over Elements; late binding determines the actual imple-
mentation that is used.

The compensation methods are applied by the CoAct transaction management software to
undo the effects of an operation with the same name (i.e., changeNameTo, addIncomingLink,
createLinkIn, or removeNodeOrLink) in a workspace history. In general, the transaction model
assumes that for each method M, a compensation method UNDO_M is to be specified by the schema
designer. The signature of the compensation method UNDO_M is derived from the signature of M:
the parameters of the method UNDO_M are the same as for method M, plus an additional parameter,
which corresponds to the result returned by M. If the effects of M are to be compensated, UNDO_M
is invoked with the same parameter values, plus the value returned by M [EFK+96]. Observe that
care was taken when defining the original methods so as to allow us to define the UNDO methods.
For example, the addIncomingLink method calculates whether the method will succeed in doing
anything, using the condition ‘k == nil or k in incomingLinks’. Although it is true that if
the new link ‘k’ is already in the set of incomingLinks, its insertion into the set will not cause the
set contents to change, the test becomes important when the UNDO addIncomingLink is executed:
a previously existing link in the set should not be deleted by mistake (actually the same link,
inserted by a earlier invocation of the addIncomingLink method). It is subtle issues such as this
that make a proof tool a valuable aid to the specifier.

Some kinds of operation, such as input and output operations, can not be compensated, because
they involve interaction with an external environment. For the SEPIA application on which our
case study is based, this amounts to operations that implement the graphical user interface.

To prove that one method compensates another, we make use of the fact that the UNDO
method is applied (by the transaction manager) immediately after the original method. Proof
goals are discussed in Section 4. The next section discusses details of our formal model.

3 Modelling the schema in higher-order logic

To be able to reason about methods, we translate the imperative code to functions in higher-
order logic (HOL), in a format used by the Isabelle system. For the translation, we make use of
data types that are predefined by Isabelle. These meet the demands of object-oriented database
programming to a large extent; complex values are already supported by the system (e.g., a set of
lists of integer values). The only thing that is missing is a model of a persistent object store (i.e.,
with object identifiers).

There are two essential ingredients in the formal model we use for a database schema: a
generic model of objects, and a database-specific object type, which follows the inheritance relation
established by the schema. These are explained below.

The generic object store. The object store maps object identifiers to storage cells. In HOL,
it is represented as a (partial) function type that is parameterised with a type variable. This type
variable gets instantiated with a schema-specific object type. In HOL, the object store type is
written as: oid ⇒ β option. The ‘option’ type constructor in the codomain includes the cases
‘None’ (to represent undefined results) and ‘Some v’ (to represent defined results, where the actual
value v is supplied as an argument). For our example schema, the type variable β gets instantiated
with the type object shown below. Generic operations for retrieval and update are defined on
the object store. Using Isabelle, we have proved a number of theorems about these operations.
The theorems are used as rewrite rules during proofs.

Type-tagged object values. The type variable β that appears in the generic object store
type is instantiated with database-specific information obtained from the schema. To describe



string Element::changeNameTo(string s) {

var oldName:string { oldName = name; name = s } returns (oldName) };

void Element::UNDO_changeNameTo(string s, string rtn) { name = rtn };

boolean Link::isConnectedTo(Element n) { (from == n) or (to == n) };

boolean Node::isConnectedTo(Element n) {

(n in incomingLinks) or (n in outgoingLinks) };

boolean Node::addIncomingLink(Link k) {

if k == nil or k in incomingLinks then { skip } returns (false)

else { incomingLinks += set(k) } returns (true) };

void Node::UNDO_addIncomingLink(Link k, boolean rtn) {

if (rtn) then incomingLinks -= set(k) else skip };

Link CNode::createLinkIn(Node a, Node b, string s, int p) {

var n:Link {

if (a in elements and b in elements) then {

n = new Link(s,p,a,b); elements += set(n); links += set(n) } returns (n)

else { skip } returns (nil) } };

void CNode::UNDO_createLinkIn(Node a, Node b, string s, int p, Link rtn) {

if (rtn!=nil) then { elements -= set(rtn); links -= set(rtn) } else skip };

boolean CNode::removeNodeOrLink(Element n) {

if (n != nil) and (n in elements) and

(forall x in elements : not(x.isConnectedTo(n))) then {

elements -= set(n) } returns (true)

else { skip } returns (false) };

void CNode::UNDO_removeNodeOrLink(Element n, boolean rtn) {

if (rtn) then { elements += set(n) } else skip };

Figure 2. Example (UNDO) Operations for the SEPIA Schema



the domain of object values, we use a variant type. Cases are introduced for each of the concrete
classes in the database schema. The class names are used as the type constructors. For the
example schema, the following object type is obtained:

datatype object = ANode string int (oid set) (oid set) (oid set)

| CNode string int (oid set) (oid set) int (oid set)

| Link string int oid oid

| AtomicContents string string string

The abstract classes of the schema (Element and Node) are not listed in the type, since instances of
these classes can not be created. Structural information for an object (attribute values) is supplied
as an argument to its data type constructor. This information includes all attributes inherited
from superclasses. Class references in compound objects appear as “pointer” references in the
form of oid-values. This accommodates object sharing and heterogeneous sets: representations of
objects from different classes can be grouped in one and the same set, since they all have the same
Isabelle type oid. The constructors of type object provide run-time type information. Type
decisions are encoded using case splits to examine the type tag (for details, see [SE99]).

Methods as functions on the database state. Methods are represented as functions in
HOL. These representations are automatically generated by a schema translator, which has been
implemented in ML. A method maps an input object store, persistent roots, an oid (the this

parameter), actual parameter values and any required new oids to a tuple. This tuple includes
components for the modifications to the object store, the persistent roots, and the method pa-
rameters. The modifications to the object store are described by a delta value, given as the first
component of the tuple. A delta value describes tentative changes to the object store [DHR96],
and corresponds to a “difference” between database states. A delta value can include changes to
multiple objects (methods in our language can update objects other than the receiver). We use
the symbol ∆ as an abbreviation in later examples. The smash operator of the generic object
theory is used to “commit” the delta value changes of a method to the object store. For example,
the expression ‘(smash os ∆)’ commits the changes in ∆.

Updates to persistent roots and parameters are by value-result: modifications to the roots
and parameters are returned as Some-tagged values, where the value represents the updated root
or parameter; ‘None’ is returned as a result if no modifications are made. (Recall that the HOL
‘option β’ type is generic.) The return value of the method application is given in the last position
of the tuple.

The schema translation is analogous to a semantics mapping, where the output is HOL nota-
tion. However, because the HOL notation is only intended to be reasoned about by the Isabelle
system, some aspects of the mapping are declarative in nature. For example, the “newness” of
new oids only needs to be asserted as an assumption in proofs; new oid values do not need to
be computed. The schema translator has been implemented in ML to automatically generate the
database-specific Isabelle theory file for an input schema.

4 Compensation analysis using the Isabelle theorem prover

The definition of a compensation method gives rise to a proof obligation, which can be verified using
Isabelle. Consider a method M with n input parameters. Informally, we have to prove that for an
arbitrary database state DB, receiver object o, and input parameter values v1 · · · vn, it is the case
that o.M(v1, . . . , vn) executed in state DB, immediately followed by o.UNDO M(v1, . . . , vn, r) results
in the same old state DB, where r is the value returned by M. Notice that the proof obligation
involves a universal quantification over all possible database states, receiver object, and parameter
values. Based on the representation of methods in HOL, such a requirement can be entered as a
proof goal in Isabelle. Our tool uses Isabelle’s automated proof procedures to verify such goals.



Compensation in terms of the formal model. To prove that one operation compensates
another, we must show that any changes to the object store posed by the first are undone when the
operations are composed. We construct proof goals for the database schema by specifying boolean-
valued expressions about method applications with respect to the input object store, the persistent
roots, and the parameter values. To express what we mean by a compensation requirement for
method UNDO M with respect to method M, consider the following applications (and results) of the
two methods:

let (∆, v′1, . . . , v
′

n
, r) = M os v1 · · · vn

let (∆′, v′′1 , . . . , v′′
n
, r′) = UNDO M (smash os ∆) v1 · · · vn r

The UNDO method is applied to the same arguments as the original method, with the exception
of the object store argument; it is also applied to the return value of M. The delta value ∆ contains
the (tentative) changes to the database state made by method M. These changes are combined
with the original object store in order to evaluate method UNDO M. The operator smash is used to
hide (override) any bindings for the same objects in its first argument (i.e., it applies the changes
to the database state). The above notation omits changes to the persistent roots. For our example
schema, values v1, v2, and v3 are actually case expressions that check for changes to the persistent
roots; they pass on either the initial value or the modified value.

As can be seen above, method UNDO M is applied to an M-modified object store; it returns a
delta value ∆′ that contains its (tentative) changes to the database state. For compensation,
we want to prove that the original object store os is equivalent in some sense to the object
store obtained after the changes proposed by both methods are applied (i.e., we want to show
os ≡ smash (smash os ∆) ∆′).

A compensation proof goal is universally quantified over the defined objects in the initial object
store. For these objects, Isabelle reasons about the equivalence of each object’s value in the original
and updated object stores. The equivalence is not equality. The initial proof goals that must be
entered to the Isabelle system are quite large. We have defined an ML function to automate their
generation for a particular schema. To do this, the user types in a command such as the following:

- start_proof(undo_method_goal("CNode","removeNodeOrLink"));

The generated goal corresponds to the let-expression form shown above, but includes additional
parameters for the persistent roots. It also includes an assumption about the “definedness” of
nested object identifiers in the initial object store, and assumptions about the “freshness” of any
new oids needed for object creation.

Automated proof procedure. The analysis tool implements an automated proof strategy. This
is essentially the same strategy we have previously used for verifying consistency requirements (i.e.,
that a method preserves a number of static integrity constraints), and on which we have reported
elsewhere [SE99]. The proof strategy is based on the standard machinery provided by the Isabelle
theorem prover, which uses a combination of term rewriting and natural deduction [Pau94]. The
standard machinery of the theorem prover supports the common data types in programming
languages (e.g., int, bool, list, set, tuple). As shown in Section 3, these data types are used
to represent similar data types of our database language. Thus, we get most of the automated
reasoning for free. For example, the set membership operation in the database language is mapped
to the predefined set membership operation in HOL; Isabelle already installs a number of theorems
to reason about set membership.

The extensions we have made primarily deal with our theory of objects, which supplements
the standard data types. This demonstrates the advantage of using an extensible theorem prover,
such as Isabelle; the new theory can be easily integrated. At present, the generic object theory is
632 lines of Isabelle/HOL code; it contains 49 theorems. Most of these theorems are equivalence
theorems that are used by Isabelle for term-rewriting purposes.

Automated theorem proving is inherently limited. The proof search may fail because of unde-
cidability. Any subgoals that cannot be solved automatically are returned by the proof procedure
and can be examined interactively in Isabelle.



Practical results. Our example database schema for the case study currently includes 6 class
definitions, 27 method definitions (9 of which are UNDO methods), and 5 integrity constraints.2

The Isabelle theory and ML files generated for this schema comprise 162 lines of HOL-code. All
compensation requirements of our case study could be proved automatically by Isabelle. Table 1
gives experimental results for verifying the compensation methods of the example schema. The

Class Method Compensation Proof Time

Element changeNameTo UNDO changeNameTo 5.25s.
ANode createAtomicContentIn UNDO createAtomicContentIn 22.39s.
ANode removeAtomicContent UNDO removeAtomicContent 15.29s.
Node addIncomingLink UNDO addIncomingLink 7.42s.
Node addOutgoingLink UNDO addOutgoingLink 7.55s.
CNode createANodeIn UNDO createANodeIn 81.72s.
CNode createCNodeIn UNDO createCNodeIn 85.34s.
CNode createLinkIn UNDO createLinkIn 107.25s.
CNode removeNodeOrLink UNDO removeNodeOrLink 14.17s.

Table 1. Experimental Results for Method Compensation

proof times are in seconds, with Isabelle running on a SUN 296 MHz Ultra-SPARC-II, under So-
laris. The times indicate that the proof strategy is reasonably efficient (although Isabelle performs
up to a few hundred proof steps per second).

5 Related work and extensions

Our verification framework is inspired by the pioneering work of Sheard and Stemple ([SS89]),
which applies automated theorem proving techniques to the verification of transaction safety in
the context of relational databases. Our work address a number of issues that do not arise in
relational databases, such as object sharing, object creation, inheritance, and heterogeneity. Ben-
zaken et al have studied the problem of method safety for object-oriented databases [BS97]. They
apply a technique based on abstract interpretation. To verify that a method satisfies a particular
constraint, a sufficient precondition is derived, for which automated verification is attempted using
a theorem prover. This limits their approach to safety analysis. In this paper, we have shown that
our formal framework can also be used to prove compensation requirements of method code.

Ammann et al apply formal methods to the semantic-based decomposition of transactions
[AJR97]. In their work, the Z specification language ([Spi92]) is used to formally define trans-
actions. They focus on decomposing a transaction into steps that preserve certain properties,
including database integrity constraints and a compensation property. The analyses and proofs
in [AJR97] are done by hand, for the specific example schema used in the paper. The observation
is made that for real life applications “it will be necessary to automate to the extent possible the
process of discharging the proof obligations.” Chkliaev et al use the PVS system ([PVS]) to obtain
mechanised support for the verification of concurrency control protocols, such as two-phase lock-
ing (2PL) [CHvdS99]. The atomic operations they consider are limited to read and write actions
on a database. The traditional notion of R-W and W-W conflict is used. Our approach could
possibly be used in combination with theirs, as a building block to support the verification of
semantics-based concurrency control protocols, and multilevel transaction management [Özsu94].

Support for the verification of compensation requirements provides an important first step to
support advanced transaction models at the schema design level. As discussed in the introduction,
compensation should be combined with backward commutativity in order to support cooperative

2Only parts of the SEPIA schema are shown in this paper.



work, because intermittent operations might be executed before a compensation operation is at-
tempted. Since the verification of consistency and compensation requirements has proven feasible
in our framework, we are currently working to generalise the techniques to support the verification
of commutativity requirements, both backward and forward.

We have demonstrated the feasibility of our approach for one particular case study. The obvious
question is whether the approach scales up to different, and larger examples. The example methods
in our case study cover a diversity of object-oriented language features. However, the analysis of
methods consisting of 15 to 20 lines of code obviously increases the size of proof goals manipulated
by the theorem prover. The time required to find a proof becomes a limiting factor in the utility
of the analysis tool. This requires further investigation.

The OASIS database language has been purposefully designed such that it covers the data
types already provided by the standard distribution of the Isabelle/HOL theorem prover. The
extensions we made to the theorem prover address mainly the development of a theory of objects
in HOL. Our goal has been to demonstrate the feasibility of using a theorem prover for the
automated analysis of database methods, not to do research in mathematics. The development of
new data type theories is actively addressed by the theorem-prover community, and as new theories
become available, they can be readily integrated in our tool, because of its orthogonal design (this
amounts to extending the parser and schema translator with additional rules). Some important
database language features are not yet fully covered by the theorem prover, and for this reason,
they are not yet available in OASIS. This includes bags and aggregate operations on collections
(e.g., sum, count, average). At present, only set and list collection types are directly supported in
HOL. A theory of bags—multisets—is under development [Isa], but it is still preliminary.

6 Conclusions

In this paper, we have discussed the use of a theorem prover to verify compensation requirements
for an object-oriented database schema. The analysis technique is based on the semantics of
the database operations, with respect to a formal model of memory that reflects the type-tagged
storage structure of an implementation. Issues such as object creation, inheritance, and late
binding of methods (all of which are linked to run-time type information) are accommodated by
the formal model. The tool is built using the Isabelle automated theorem prover [Pau94]. Our
tool was initially developed to verify consistency requirements. In [SE99], we have shown that
the tool can be used to verify that a method preserves a number of static integrity constraints.
The compensation analysis discussed in this paper uses the same automated proof procedure,
which is largely based on standard machinery provided by the Isabelle theorem prover. Our work
demonstrates that different requirements on the semantics of update operations can be verified
within a single formal framework.

We suspect that it is not possible to characterise the kinds of method code for which the
analysis can be performed automatically (e.g., “methods with conditionals work” or “only updating
the receiver object works”). This situation arises because of incompleteness.3 If the automated
proof procedure does not find a proof, it returns the goals it can not solve. In these cases,
human interaction is needed in order to (try to) complete the proof. Unfortunately, interactive
proof requires detailed knowledge of both the theorem prover and the semantic embedding of the
database language in HOL. An unprovable goal typically corresponds to an error in the database
schema, but identifying such an error, and the subsequent correction of the code, requires human
intelligence and skill (just as for a pencil and paper proof). The theorem prover works as a proof
assistant. It can most effectively be used to identify those compensation methods that are correct,
and further, to identify those compensation methods that might not be correct. For the latter, the
specifier must study and revise the method code, and attempt the proof again.

3The compensation problem is, in general, undecidable. See, for example, [BGL96] and [IDR96], for analogous
foundational results on transaction safety and commutativity analysis.



References

[AJR97] Paul Ammann, Sushil Jajodia, and Indrakshi Ray. Applying formal methods to
semantic-based decomposition of transactions. ACM Transactions on Database Sys-
tems, 22(2):215–254, June 1997.

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-oriented
Database System: The Story of O2. Morgan Kaufmann, 1992.

[BGL96] M. Benedikt, T. Griffin, and L. Libkin. Verifiable properties of database transactions.
In Proceedings of Principles of Database Systems (PODS), pages 117–127, 1996.

[BS97] V. Benzaken and X. Schaefer. Static integrity constraint management in object-
oriented database programming languages via predicate transformers. In Proceedings
of ECOOP, volume 1241 of LNCS, pages 60–85. Springer-Verlag, 1997.

[CB97] R. G. G. Cattell and Douglas K. Barry, editors. The Object Database Standard: ODMG
2.0. Morgan Kaufmann Publishers, San Francisco, California, 1997.

[CD97] Q. Chen and U. Dayal. Failure handling for transaction hierarchies. In Proceedings of
ICDE, pages 245–254, Birmingham, U.K., April 1997.

[CHvdS99] Dmitri Chkliaev, Jozef Hooman, and Peter van der Stok. Serializability preserving ex-
tensions of concurrency control protocols. In Andrei Ershov International Conference
on Perspectives of Systems Informatics, Lecture Notes in Computer Science, Novosi-
birsk, 1999. Springer-Verlag. To appear.

[DHR96] M. Doherty, R. Hull, and M. Rupawalla. Structures for manipulating proposed updates
in object-oriented databases. In ACM SIGMOD Symposium on the Management of
Data, pages 306–317, June 1996.

[EFK+96] S. Even, F. Faase, H. Kaijanranta, J. Klingemann, A. Lehtola, O. Pihlajamaa,
T. Tesch, and J. Wäsch. Deliverable VII.1: Design of the TransCoop Demonstra-
tor System. Report TC/REP/GMD/D7-1/704, Esprit Project No. 8012, 1996.

[Elm92] Ahmed K. Elmagarmid, editor. Database Transaction Models for Advanced Applica-
tions. Morgan Kaufmann Publishers, 1992.

[IDR96] O. Ibarra, P. Diniz, and M. Rinard. On the complexity of commutativity analysis. In
International Computing and Combinatorics Conference, 1996.

[Isa] Isabelle. http://www.cl.cam.ac.uk/Research/HVG/isabelle.html.

[KAN94] W. Klas, K. Aberer, and E. J. Neuhold. Object-Oriented Modelling for Hypermedia
Systems Using the VODAK Modelling Language (VML). In Advances in Object-
Oriented Database Systems, volume 130 of Computer and Systems Sciences, pages
389–443. Springer-Verlag, 1994.

[KLS90] Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. A formal approach to
recovery by compensating transactions. In Proceedings of the 16th VLDB Conference,
pages 95–106, Brisbane, Australia, 1990.

[KTWK97] Justus Klingemann, Thomas Tesch, Jürgen Wäsch, and Wolfgang Klas. The
TransCoop Transaction Model. In Transaction Management Support for Cooperative
Applications, chapter 7, pages 149–172. Kluwer Academic Publishers, 1997.

[LMWF94] Nancy Lynch, Michael Merrit, William Weihl, and Alan Fekete. Atomic Transactions.
Morgan Kaufmann Publishers, 1994.



[MR97] Cris Pedregal Martin and Krithi Ramamritham. Delegation: Efficiently rewriting
history. In Proceedings of ICDE, pages 266–275, Birmingham, U.K., April 1997.

[Özsu94] M. Tamer Özsu. Transaction models and transaction management in object-oriented
database management systems. In Advances in Object-Oriented Database Systems,
volume 130 of Computer and Systems Sciences, pages 147–184. Springer-Verlag, 1994.

[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer-Verlag, 1994.

[PVS] PVS World Wide Web page: http://www.csl.sri.com/pvs/overview.html.

[Qia90] Xiaolei Qian. An axiom system for database transactions. Information Processing
Letters, 36(4):183–189, November 1990.

[Qia91] Xiaolei Qian. The expressive power of the bounded-iteration construct. Acta Infor-
matica, 28(7):631–656, October 1991.

[RKT+95] Marek Rusinkiewicz, Wolfgang Klas, Thomas Tesch, Jürgen Wäsch, and Peter Muth.
Towards a cooperative transaction model—The Cooperative Activity Model. In Pro-
ceedings of the 21st VLDB Conference, Zurich, Switzerland, September 1995.

[SE99] David Spelt and Susan Even. A theorem prover-based analysis tool for object-oriented
databases. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’99), number 1579 in LNCS, pages 375–389. Springer-Verlag, 1999.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual, Second edition. Prentice Hall
International, 1992.

[SS89] Tim Sheard and David Stemple. Automatic verification of database transaction safety.
ACM Transactions on Database Systems, 14(3):322–368, September 1989.

[VWP+97] Jari Veijalainen, Jürgen Wäsch, Juha Puustjärvi, Henry Tirri, and Olli Pihlajamaa.
Transaction Models in Cooperative Work—An Overview. In Transaction Manage-
ment Support for Cooperative Applications, chapter 3, pages 27–58. Kluwer Academic
Publishers, 1997.

[Wei88] William E. Weihl. Commutativity-based concurrency control for abstract data types.
IEEE Transactions on Computers, 37(12):1488–1505, December 1988.

[WK96] Jürgen Wäsch and Wolfgang Klas. History merging as a mechanism for concurrency
control in cooperative environments. In IEEE Workshop on Research Issues in Data
Engineering: Interoperability of Nontraditional Database Systems, pages 76–85, 1996.


