Top N optimization issues in MM databases

H.E. Blok
h.e.blok@cs.utwente.nl
Faculty of Computer Science, University of Twente

PO BOX 217, NL 7500 AE, Enschede, The Netherlands

1 Introduction

In multi media (MM) DBMSs the usual way of operation in case of a MM retrieval query is to compute
some ranking based on statistics and distances in feature spaces. The MM objects are then sorted by
descending relevance relative to the given query. Since users are limited in their capabilities of reviewing
all objects in that ranked list only a reasonable top of say IV objects is returned.

However, this can turn out to be a quite time consuming process. The first reason is that the number of
objects (i.e. documents) in the DBMS is usually very large (10° or even more). From the information
retrieval field it is known that usually half of all objects (e.g. documents) contains at least one query
term; so, even considering only these objects might be very time consuming. The same may hold for MM
in general.

The problem of top N MM query optimization is to find techniques to limit the set of objects taken into
consideration during the ranking process as much and as soon as possible. My main research interest is
to chart what requirements a DBMS has to fulfill to facilitate optimization of integrated top N queries
on several content and alpha numerical types.

Within the scope of this research I plan to implement a general optimizer architecture for Moa [BWKOS,
VW99, the extensible, structured object algebra being developed by our group. Within the accompanying
architecture [VB98, Vri98] of Moa I will implement some of the top N query optimization techniques known
in literature and introduce new data base optimizer concepts to suit MM querying. If this succeeds and
results in relatively good performance, this research will (partially) fulfill the promise that Moa is an
exception to the rule that content querying in a DBMS performs badly.

2 State of the Art

In the information retrieval (IR) field several interesting ideas have been investigated to speed up pro-
cessing top N retrieval queries. Most of these ideas are based on the theoretically well founded work of
[FM, Fag98, Fag99]. The basic idea in this work is that one can take advantage of lists being ordered
when processing top N like operations by maintaining the proper upper and lower bound administration
while computing the required results. This allows for ending the processing as soon as it is certain that
the required top N answers have been computed. Combined with the knowledge that terms in natural
language have a Zipf distribution this principle was exploited by [Bro95] using the INQUERY system
[CCH92]. Two types of techniques exist: unsafe techniques that speed up the process but might lower
the answer quality (e.g. precision and/or recall) and safe techniques that do increase speed, although
often much less, but maintain answer quality compared to the unoptimized case.

In the database research field also some work has been done on top N query optimization by [SSM96,
CK98, DR99]. Here the ordering of elements is also exploited to stop processing earlier when only a top
N of best answers is required. However, these techniques have not been implemented in many systems
yet, and are also still very primitive. Furthermore, modern day DBMSs still have trouble with handling
extensions during query optimization. Although the E-ADT approach of PREDATOR, [SP97] does solve a
lot, I will argue that it still does not solve a crucial problem, one that arises in MM querying in particular.

Finally, the complete integration of content based retrieval, MM retrieval in particular, and database

technology still lacks. Most MM DBMSs either are mediator systems like Garlic [HKWY97], or are not
able to handle the content in any other way than BLOBs, or do not function efficiently enough to be able
to compete with custom build retrieval systems like INQUERY.

3 Approach

To achieve the aforementioned main goal of developing an optimizer architecture for Moa, I distinguish
three sub problems. Each of these three corresponds to one of the basic steps that I plan to take as the
guideline for my top N query optimization research (see also [BVB99)]):

Step 1: fragmentation of the data This step has to do with the physical layout of the data. Since
databases preferably operate set-based in contrast with the element-at-a-time operation of most IR
systems, IR technology and optimization techniques are not directly applicable in a content based
retrieval DBMS. However, some basic principles can be adapted quite easily, like the utilization of
the fact that text data is Zipf distributed. This means that the least frequently occurring terms are
the most interesting ones while the most frequently occurring/least interesting terms take up most
of the storage/memory space. To take advantage of this effect I horizontally fragmented the most
important vectors in the database. By processing only a small portion of the data of approximately
5% of the unfragmented size, containing the 95% most interesting terms, I was able to speed up
query processing on the FT collection of TREC with at least 60% (see also [VH99]). The answer
quality dropped more than 30% due to the unsafe nature of this technique. To solve this problem
I inserted a check early in the query plan that is able to detect when the answer quality would be
better when the other fragment would be used. This allows query processing to switch accordingly
in time. This improved the answer quality significantly but lowered the speed also quite a lot.
Currently I'm working on recoding the second fragment and plan to introduce a non-dense index in
the system to speed up processing the large fragment. This even will allow for extra computations
while still decreasing execution time, bringing the answer quality nearer to or even on the same
level as in the unfragmented case. For the case of non-text content data we are yet not aware of a
special distribution of the data (such as Zipf for text). Maybe such a distribution can be ’learned’
by the system by means of profiling, although the thus found distribution most likely will not be
independent from the data set. Finally, introducing special top N operators, which can be seen as
special select operators, will allow optimal utilization of the new structure of the data at the query
language level.

Step 2: inter object optimizer framework This step deals with the requirements at the logical level.
Top N operators such as introduced in the previous step must be used in the right place in the
query evaluation plan to achieve the best performance. Current query optimizers are not able to
support this due to the fact that they are still not very well suited to reason over operators defined
in extensions, in particular distinct ones. Note, however, that systems like PREDATOR [SP97] do
have a notion of intra-object optimization.

Here follows a small example to make this a little more clear:

Example 1 Let’s look at a system that has a LIST and a BAG structure, both defined as objects by
separate extensions (ADTs/data blades/data cartridges). Also, let’s assume that both have a select
operator that behaves in the usual way, and takes an upper and lower bound to select a range of
values. For example select([1,2,3,4,4,5],2,4) selects all elements from the list [1,2,3,4,4,5] with
values ranging from 2 up to and including 4. This will result in the list [2,3,4,4].

Besides the select, LIST also provides a projecttobag operator which produces a BAG containing
all the elements of the LIST the operator acts on. For example projecttobag([1,2,3,4,4,5]) results
in the bag {1,2,3,4,4,5}.

Now, consider the expression select(projecttobag([1,2,3,4,4,5]),2,4). Current optimizer technol-
ogy, including the E-ADT system of PREDATOR, cannot optimize this expression. However, it is
obvious that projecttobag(select([1,2,3,4,4,5],2,4)) produces exactly the same answer but can be
executed more efficient than the original expression. The second expression can be evaluated even
more efficiently when the system is aware of the ordering of the elements, which in case of a list is
well defined, but formally does not exist for a bag.

Ranking of documents in a list results often in similar nested operators/structures which are typi-
cally defined in different extensions. However, as argued before, ranking a list of documents is the
core business of content based retrieval DBMSs. The special kind of optimization that deals with
two distinct extensions/structures, which I call inter-object optimization, has not been shown in
literature before but can be quite interesting as briefly shown above. Fortunately Moa provides
some very good facilities to build such a new type of optimizer layer. This optimizer is conceptually
located between the high level, general algebraic logical optimizer and the extension specific opti-
mizer parts, which I call the intra-object optimizers. The last optimizer part I plan to implement
like E-ADTs as described in [SP97]. The new inter-object optimizer layer will be responsible for
coordinating optimization between operators on distinct extensions.

Step 3: the costs of real MM This last step utilizes knowledge of the first step and the facilities of
the second step to introduce a notion of costs into the optimization process. Using Moa, we have
the means to handle all types of data in one algebra, that does not need any delegation of work to
external sub systems. This allows us to keep the cost model much simpler, which clearly has a lot
of advantages. This centralized, but still highly flexible approach (due to the flexible nature of our
system), shows very interesting opportunities in our opinion.

The goal of my research is to obtain a running optimizer tuned and tested for top N MM queries. I plan
to address the three aforementioned subjects in the order as mentioned.

4 Concluding Remarks

The technology I present here is completely new or is placed in a completely different context than it
used to be in till now. Hopefully this contributes to a renewed faith in the use of database technology
for MM retrieval and IR in particular, in contrast with the current common opinion that DBMSs are not
suitable for content based querying.

References

[Bro95) Eric W. Brown, Ezecution Performance Issues in Full-Text Information Retrieval, Ph.D.
Thesis/Technical Report 95-81, University of Massachusetts, Amherst, okt 1995.

[BVB99] H.E. Blok, A.P. de Vries, and H.M. Blanken, Top N MM query optimization: The best of both
IR and DB worlds, Conferentie Informatiewetenschap 1999 [Eng.: Information Science Con-
ference 1999] (P. De Bra and L. Hardman, eds.), Werkgemeenschap Informatiewetenschap,
nov 1999.

[BWK98] Peter A. Boncz, Annita N. Wilschut, and Martin L. Kersten, Flattening an Object Algebra
to Provide Performance, 14th International Conference on Data Engineering, February 23-
27, 1998, Orlando, Florida, IEEE Transactions on Knowledge and Data Engineering, IEEE
Computer Society, feb 1998.

[CCH92] J.P. Callan, W.B. Croft, and S.M. Harding, The INQUERY Retrieval System, 3rd Interna-
tional Conference on Database and Expert Systems Applications, 1992, pp. 78-83.

[CK98] Michael J. Carey and Donald Kossmann, Reducing the Braking Distance of an SQL Query
Engine, 24th VLDB Conference, New York, USA, 1998, VLDB, 1998, pp. 158-169.

[DRI9] Donko Donjerkovic and Raghu Ramakrishnan, Probabilistic Optimization of Top N Queries,
Technical Report CR-TR-99-1395, Department of Computer Sciences, University of
Wisconsin-Madison, 1999.

[Fag98] Ronald Fagin, Fuzzy Queries in Multimedia Database Systems, Proceedings of the 1998 ACM
SIGMOD International Conference on Principles of Database Systems, Seattle, USA, Sigmod
Record, ACM SIGMOD, ACM, 1998, pp. 1-10.

[Fag99]

[FM]

[HKWY97]

[SP97]

[SSMO96]

[VBOS]

[VH99]

[Vriog]

[VW99]

Ronald Fagin, Combining fuzzy information from multiple systems, Journal on Computer
and System Sciences 58 (1999), no. 1, 83-99, Special issue for selected papers from the 1996
ACM SIGMOD PODS Conference.

Ronald Fagin and Yoélle S. Maarek, Allowing users to weight search terms, Retrieved from
authors website.

Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang, Optimizing Queries
across Diverse Data Sources, 23th VLDB Conference, Athens, Greece, 1997, VLDB, 1997.

Praveen Seshradri and Mark Paskin, PREDATOR: An OR-DBMS with Enhanced Data
Types, Proceedings of the 1997 ACM SIGMOD International Conference on the Manage-
ment of Data, Sigmod Record, ACM SIGMOD, ACM, 1997, pp. 568-571.

David Simmen, Eugene Shekita, and Timothy Malkemus, Fundamental Techniques for Order
Optimization, Proceedings of the 1996 ACM SIGMOD International Conference on the Man-
agement of Data, Montreal, Canada, Sigmod Record, ACM SIGMOD, ACM, 1996, pp. 57-67.

Arjen P. de Vries and Henk M. Blanken, Database technology and the management of multi-
media data in mifIRor, Proceedings of SPIE, Boston, November, 1998, Multimedia Storage
and Archiving Systems III, vol. 3527, nov 1998.

A.P. de Vries and D. Hiemstra, The mifIRor DBMS at TREC, Proceedings of the Seventh
Text Retrieval Conference TREC-8 (Gaithersburg, Maryland), nov 1999, To appear.

Arjen P. de Vries, mifIRor: Multimedia Query Processing in FExtensible Databases, 14th
Twente Workshop on Language Technology, Language Technology in Multimedia Information
Retrieval (Enschede, The Netherlands), University of Twente, dec 1998, pp. 37-47.

Arjen P. de Vries and Annita N. Wilschut, On the Integration of IR and Databases, 8th IFTP
2.6 Working Conference on Data Semantics 8, 1999.

