
Mapping and Scheduling of Directed Acyclic Graphs on
An FPFA Tile

Yuanqing Guo Gerard J.M. Smit
University of Twente, Department of Computer Science

P.O. Box 217, 7500AE Enschede, The Netherlands
Phone: +31 (0)53 4894178 Fax: +31 (0)53 4894590

E-mail: {yguo, smit}@cs.utwente.nl

Abstract—An architecture for a hand-held multimedia de-
vice requires components that are energy-efficient, flexible,
and provide high performance. In the CHAMELEON [4]
project we develop a coarse grained reconfigurable device
for DSP-like algorithms, the so-called Field Programmable
Function Array (FPFA). The FPFA devices are reminiscent
to FPGAs, but with a matrix of Processing Parts (PP) in-
stead of CLBs. The design of the FPFA focuses on: (1)
Keeping each PP small to maximize the number of PPs that
can fit on a chip; (2) Providing sufficient flexibility; (3) Low
energy consumption; (4) Exploiting the maximum amount
of parallelism; (5) A strong support tool for FPFA-based
applications. The challenge in providing compiler support
for the FPFA-based design stems from the flexibility of the
FPFA structure. If we do not use the characteristics of the
FPFA structure properly, the advantages of an FPFA may
become its disadvantages. The GECKO1project focuses on
this problem. In this paper, we present a mapping and
scheduling scheme for applications running on one FPFA
tile. Applications are written in C and C code is translated
to a Directed Acyclic Graphs (DAG) [4]. This scheme can
map a DAG directly onto the reconfigurable PPs of an FPFA
tile. It tries to achieve low power consumption by exploit-
ing locality of reference and high performance by exploiting
maximum parallelism.

Keywords—FPFA, Directed Acyclic Graph, Parallel Com-
piler

I. INTRODUCTION

The emergence of high capacity reconfigurable devices
is igniting a revolution in general-purpose processing. Re-
configurable computing systems combine programmable
hardware with programmable processors to capitalize on
the strengths of hardware and software. Today, the
most common devices used for reconfigurable computing
are Field Programmable Gate Arrays (PFGAs). FPGAs
present the abstraction of gate arrays allowing developers
to manipulate flip-flops, small amounts of memory, and

1This research is supported by the Dutch organization for Scientific
Research NWO, the Dutch Ministry of Economic Affaires and the tech-
nology foundation STW.

logic gates. Although less efficient than ASICs (Applica-
tion Specific Integrated Circuits), reconfigurable devices,
such as FPGAs can be used for implementing customized
circuits. Besides ASICs and FPGAs, an architecture for a
hand-held multimedia device should also contain devices
that are energy-efficient, flexible and course grained. The
latter can be achieved by a reconfigurable device that pro-
vides these properties for a specific application domain.
Field Programmable Function Array (FPFA) developed in
the CHAMELEON project, is such a device in the Digi-
tal Signal Processing (DSP) domain. The FPFA devices
are reminiscent to FPGAs, but with a matrix of Processing
Parts (PP) instead of CLBs (Configurable Logic Blocks).
The general philosophy is to build an architecture based on
replicating a simple processing part (PP), each with its own
instruction stream. The focus is on keeping each PP small
to maximize the number of PPs that can fit on a chip, im-
proving the chip’s clock-speed, energy consumption and
the amount of parallelism it can exploit. Low power is
mainly achieved by exploiting locality of reference. High
performance is obtained by exploiting parallelism.

Only when the FPFA structure is used properly the
strong points can be embodied, which is done during the
application design period. Otherwise the advantages of
FPFA can become its disadvantages. On the other hand,
fully implementing the characteristics of FPFA is not a
trivial matter.

An urgent necessity has arisen for support tool devel-
opment to automate the design process and achieve opti-
mal exploitation of the architectural features of the system.
In the GECKO project, an FPFA oriented compiler is be-
ing developed to do this job. The compiler is capable of
implementing programs written in a high-level language,
such as C/C++ or Java, directly into an array of reconfig-
urable hardware modules on a single chip. This is done in
two steps: Firstly the high-level language is transformed
into control data flow graph (CDFG); secondly this control
data flow graph is mapped to FPFA. In this paper only the
second step is considered, and a kind of simpler CDFGs,

PROCEEDINGS OF THE 3D PROGRESS WORKSHOP ON EMBEDDED SYSTEMS

© PROGRESS/STW 2002, ISBN 90-73461-34-0 OCTOBRE 24, 2002 JAARBEURS UTRECHT NL

Directed Acyclic Graph (DAG) is employed.
In Section II the structure and characteristics of the

FPFA will be introduced. Section III gives the general idea
of the FPFA mapping. Section IV, V and VI will deal with
the scheduling and mapping scheme in detail. Section VII
provides some simulation results and finally the conclu-
sions are given in section VIII.

II. THE FPFA STRUCTURE

Many DSP-like algorithms (like FIR and FFT) call
for a word level reconfigurable data-path. In the
CHAMELEON project, a word-level reconfigurable data-
path is defined, the FPFA. It consists of multiple intercon-
nected processor tiles (see Figure 1). Within a tile multiple
data streams can be processed in parallel. Multiple proces-
sors can coexist in parallel on different tiles.

.....

.....

.....

.....

...
..

...
..

...
..

Fig. 1. FPFA architecture

An FPFA processor tile consists of five identical PPs,
which share a control unit (see Figure 2). An individual

Tile

Control

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

MB

GB

LB

Fig. 2. Processor tile

PP contains an arithmetic and logic unit (ALU), four input
register banks named Ra, Rb, Rc, Rd and two memories
called MEM1 and MEM2. Each register bank consists of
four registers. Each memory has 512 entries. A crossbar-
switch makes flexible routing between the ALUs, registers
and memories possible. The crossbar enables an ALU to
write back their result to any register or memory within a
tile. An ALU can only use the data from its local registers
as inputs.

The execution time on the data-path is a very important
factor for executing speed, which can be summarized in
Table I. We see that the data in REGs can not be moved

to other REGs or MEMs directly. If such kind of move-
ments are needed, we can let the variables pass local ALUs
first, then the results of the ALUs are put to proper storage
places.

Path Number of
clock cycles

MEM
crossbar
−→ REG 1

MEM
crossbar
−→ MEM 1

REG−→MEM not allowed
REG−→REG not allowed

REG−→ALUidle

crossbar
−→ REG 1

REG−→ALUidle

crossbar
−→ MEM 1

TABLE I
EXECUTION TIME ON DATA-PATH

The main architectural issues of the FPFA that are rel-
evant for scheduling and mapping are summarized as fol-
lowing:
• The size of a memory is 512.
• Each register bank includes 4 registers.
• Only one datum can be read from or written from a
memory within one clock cycle.
• The crossbar has limited number of buses.
• The execution time of the data-path is fixed.

III. GENERAL FRAMEWORK OF MAPPING AND

SCHEDULING

In this paper, we take a Directed Acyclic Graph (DAG)
as the input. The translation of high level language state-
ments (c/c++) to a control data flow graph (CDFG) is intro-
duced in [4]. In this paper we restrict our graph to DAGs.

Before trying to find a good support tool, we need to
answer one question first: what a good solution is. The
answer goes back to the motivation of the FPFA design
– speed and energy efficiency. High speed means that
an FPFA device will execute an application programme
within as few as possible clock cycles. Multiple PPs bring
the possibility of exploiting the parallelism for this goal.
Energy efficiency is implemented by locality of reference.
However, sometimes certain conflicts between the reduc-
tion of clock cycles and locality of reference can appear,
i.e., the mapping and scheduling scheme with locality of
reference takes longer execution time. We choose the num-
ber of clock cycles as a more important criterion mainly
because performance is a more important concern in most
cases.

The problem of scheduling DAGs on an FPFA tile looks
similar to the task scheduling problem on multiprocessors.

58

Both structures have multi-functional units for task execu-
tions. The solutions to both problems are taking speed as
one of their evaluation criteria. These similarities give us
the possibility to borrow some ideas from the task schedul-
ing problem of multiprocessors systems. Kim and Browne
[8] considered linear clustering which is an important spe-
cial case of clustering. Sarkar [3] presents a clustering al-
gorithm based on a scheduling algorithm on unbounded
number of processors. Wu and Gajski [7] developed a pro-
gramming aid for hypercube architectures using schedul-
ing techniques. Yang and Gerasoulis [6] have proposed
a fast and accurate heuristic algorithm, the Dominant Se-
quence Clustering. However, these algorithm cannot be
used to the FPFA oriented scheduling problem directly.
Compared with a processor in multiprocessor system, the
concept of an PP in an FPFA tile has weaker meaning: (1)
In our FPFA, the connections among different PPs of one
FPFA tile are tighter than those between two multiproces-
sors; (2) There is no extra time consumption in data com-
munication between two PPs of an FPFA tile. Actually an
FPFA tile is more like one processor with 5 ALUs rather
than five processors. Due to these differences the solution
to task scheduling on multiprocessor will not fit the prob-
lem about task scheduling on one FPFA tile.

The procedure of mapping task graph to an FPFA tile
has NP complexity just like the task scheduling problem
on multiprocessors [5] system. To simplify the problem,
on the basis of the two-phased decomposition of multipro-
cessor scheduling introduced by Sarkar [3], we build our
work on three-phase decomposition:
1 Task clustering and ALU data-path mapping,
2 Scheduling the clusters on the 5 physical ALUs of an
FPFA tile,
3 Resource allocation.
In the clustering phase we assume that the task graph is
partitioned and mapped to an unbounded number of fully
connected ALUs, which can perform inter-ALU commu-
nication simultaneously. This clustering and mapping
scheme is based on the ALU data-path of our FPFA. The
objective of the mapping is the same as the overall objec-
tive, minimization of the net execution time, i.e., finding
the shortest critical path. In this phase, one design goal of
FPFA, parallelism, is partly implemented. We say ”partly”
because the clustering algorithm does not consider the lim-
itation of resources. In the second and third phases the
graph derived from the first phase is mapped onto the given
resource-constrained architecture. In the cluster schedul-
ing phase, the graph obtained from the clustering phase
is scheduled according to the number of ALUs (in our
case 5). This scheduling, together with clustering phase,
reaches the goal of parallelism. In the resource allocation

phase, the scheduled graph is mapped to resources where
locality of reference is exploited. The separation of clus-
ter scheduling and resource allocation will not result in too
much performance loss in that the five ALUs are tightly
connected. In section IV, the first phase will be introduced.
Cluster scheduling is given in section V. We will address
resource allocation phase in section VI.

IV. CLUSTERING AND DATA-PATH MAPPING

The input for clustering and data-path mapping is an
acyclic directed task graph [5]. Under the assumption of
an unbounded number of ALUs of a completely connected
architecture, clustering is to put in one cluster as much
computations as possible that can be executed in one clock
cycle by one ALU. Goals of clustering are 1) minimiza-
tion of the number of ALUs required and 2) minimization
of the length of the critical path of the dataflow graph. We
take the first goal as the more important one.

*
 +
 +

*

e

+
*

f
 c
 d
 a
 b
 g
h

0

max

1

min
 +

+

out1
out2

Clu0

Clu1

Clu2

Clu3
 Clu4

INPUT

OUTPUT

(a) Clustering scheme

Clu3

e
 f
 d
 a
 b
 g
h

0

1

out1
out2

Clu4

Clu2

Clu1
Clu0

2

c

Level0

Level1

Level2

OUTPUT

INPUT

(b) Clustering output

Fig. 3. Clustering scheme and Output

59

Every time we define one cluster, the possible configura-
tions of data-path have been determined. Each configura-
tion has fixed input and output ports, fixed function blocks
and fixed control signals. The partition with one or more
clusters that can not be mapped to the ALU data-path is a
failed partition. For this reason the procedure of clustering
should be combined with ALU data-path mapping.

Figure 3(a) gives an example of task graph where circles
represent operands (values) and rectangles refer to opera-
tions (tasks). Initial input data, denoted by INPUTs, are
the inputs from outside. Final output data, denoted by
OUTPUTs, are the final results of an application program.
Other operands are intermediate values. In Figure 3(a),
there are eight INPUTs called ”a”, ”b”, ”c”, ”d”, ”e”, ”f”,
”g” and ”h”, two OUTPUTs named ”OUT1” and ”OUT2”
and two intermediate nodes denoted by ”0” and ”1” re-
spectively.

In this paper, we are not going to focus on the cluster-
ing algorithm which is postponed to be addressed in future
work. Here a simple example is given to demonstrate the
main concept of clustering and data path mapping. Figure
3(a) shows the cluster scheme of a DAG. The clustering re-
sult is given in Figure 3(b), where level is defined as such
that all clusters in each level can be executed in one clock
cycle.

V. SCHEDULING OF CLUSTERS

In a clustered graph, the longest path is referred to
as critical path. For instance, in Figure 3(b) there
are two critical paths, ”Clu4”→”Clu2”→”Clu0” and
”Clu4”→”Clu2”→”Clu1”. The optimal execution time
that can be achieved by scheduling and mapping is the
length of the critical path plus one, where the extra clock
cycle is for loading the inputs for the clusters in the first
level. If the architecture has an unbounded number of
ALUs with full connectivity as the assumption in the clus-
tering phase, a level of clustered graph can be executed
within each clock cycle. Thus the best scheduling and
mapping speed is achieved. However the limitation of
resources prevents us from achieving this speed. The re-
source limitation can be divided into three categories:
1 The number of ALUs.
2 The size of storage spaces.
3 The limitation of crossbar and the number of writing and
reading ports of memories and registers.
Item 1 and 2 are dealt with in the cluster scheduling phase.
The resource allocation phase takes care of both item 2 and
item 3 (see section VI).

In a clustered graph, the clusters that do not belong to
any critical path can be moved up and down within the
range where the dependence relations among the tasks are

satisfied. In Figure 3(b), the cluster ”Clu3” is such kind
of cluster. There clusters are denoted as movable clusters.
If we move ”Clu3” from Level 0 to Level 1, the graph is
still correct. If there are more than 5 clusters at some level,
adjustments of some tasks could be done, but this cannot
always solve the problems. For instance, if at some level
more than 5 clusters are on the critical paths (see Figure
4(a)), an extra clock cycle or more have to be inserted (see
Figure 4(b)).

Clu1
 Clu2
 Clu3
 Clu4
 Clu5
 Clu6

Clu8
 Clu9

Clu10

Clu0

Clu7

Level0

Level1

Level2

Level3

(a) More than 5 ALUs cannot be
scheduled in one level

Clu1
 Clu2
 Clu3
 Clu4
 Clu5

Clu6

Clu8
 Clu9

Clu10

Clu0

Clu7

Level0

Level1

Level2

Level3

Level4

(b) Insert a new level

Fig. 4. Insert a new level when necessary

In order to to deal with the second kind of limitation,
storage size, it is desirable to store as few as possible data
in the system. Still the attention is paid on the clusters
that are not on the critical paths (movable clusters). We
apply the following heuristics for movable clusters. If the
number of released memory spaces, after execution of a
cluster, is larger than the number of new generated data,
the cluster should be run as soon as possible. Otherwise,
that cluster should be run as late as possible. In short, as
few as possible data should be kept.

After the scheduling phase, the scheduled graph satis-
fies: (a) There are no more than five clusters at each level;
(b) The storage space needed by the system is as small as
possible.

60

VI. RESOURCE ALLOCATION

After scheduling, the relative executing order of clusters
has been determined. However, the clusters at some level
might not be executed immediately due to the limitation of
resources. The resource allocation phase has to deal with
this problem. The main challenge in this phase is moving
of data, which is necessary for preparing inputs for ALUs
and storing outputs of ALUs. The movements are arranged
under the limitation of the size of register banks and mem-
ories, the number of buses and the number of reading and
writing ports of memories and register banks. If all the
inputs of an ALU are not prepared, the execution of the
ALU is delayed as extra clock cycles are needed for data
movements.

Data movements are motivated by ALU data-paths
which are determined by the tasks of a cluster. Once an
ALU data-path is fixed, the input register bank for an in-
put datum is fixed, and the output port of a result datum
is fixed as well. If an ALU needs an input while the in-
put is not in the proper register bank, the datum should be
moved. The source of the movement is the current address
of this datum and the sink of the movement is its corre-
sponding register bank. When a value is the computing
result of an ALU, a datum movement should also be done
to store this datum into a storage unit. In this case, the
source of the movement is the output port of the ALU and
the sink is a memory or register banks. Anyhow, the goal
of resource allocation phase is to minimize the number of
inserted clock cycles.

Some decisions should be made during resource alloca-
tion phase:

• Choosing memories for the initial inputs (INPUT);
• Choosing an ALU unit for each cluster;
• Defining the data movements of each clock cycle, in-
cluding the information of source (memory, register, or
ALU output port), sink (memory or register) and crossbar
(local bus or global bus).

A. General rules of resource allocation

A good resource allocation scheme should take the
whole structure of the FPFA into account. From the ex-
ample shown in Figure 5, we can understand the structure
of an FPFA tile and see how the characteristics of the tile
affect the resource allocation. In the example, four inputs
are needed by ALU0: ”In1”, ”In2”, ”In3” and ”In4”. They
must be fed into ALU0 by register bank Ra, Rb, Rc and
Rd respectively. This is determined by the ALU data-path
mapping (see section IV). ”In1” is at the proper register
bank, so it can be used by ALU0 directly. ”In2” should
be fed into ALU0 through register bank Rb. Since ”In2”

ALU0

MEM

ALU1

MEM

In1

In2
 In3

In4

(a) Initial State

ALU0

MEM

ALU1

MEM

In1

In2
 In3

In4

(b) Step 1

ALU0

MEM

ALU1

MEM

In1

In2

Out

(c) Step 2

Fig. 5. DifferentVariablePosition

is located in local memory, before being used, it has to
be moved from memory to register bank Rb. According
to Table I, this kind of movement takes one clock cycle
and needs the help of the crossbar. The local memory bus
can do this job here. Unlike ”In2”, ”In3” is in the mem-
ory of ALU1. The movement needs the help of the global
bus. ”In4” is staying at an improper register bank. Accord-
ing to Table I, REG→REG is not possible. The datum in
ALU1’s register bank Rb can only be moved to ALU0’s
Rd through ALU1. Compared with the situation of ”In1”,
preparing ”In4” for ALU0 takes one more clock cycle and
needs the help of an ALU and crossbar.

The positions of inputs to an ALU can be a proper reg-
ister, a local memory, a non-local memory or an improper
register which are represented by ”In1”, ”In2”, ”In3” and
”In4” respectively. The conclusions from this example is
summarized as following:

1 As ”In1”, an input staying at proper register can be used
directly which is the desired situation during mapping.
2 ”In2” represents the inputs that are at the local memo-
ries relative to the ALUs that are going to use the data.
The movement of such kind of data only needs the local
memory bus and it consumes less energy than non-local
memory. If the arrangement of case 1 is not possible, this
is our second choice. Sometimes this scheme can bring
some trouble as well. One reason is the memory size.
Each memory has only 512 entries. When local memories
are full, non-local memories have to be used. The second

61

reason is the writing and reading ports. Each memory has
only one writing port and one reading port. One datum can
be read from or written to a memory in each step. As a re-
sult, conflicts might happen between locality of reference
and speed. For example, if ”In3” of Figure 5 is put in the
same local memory as ”In2”, (see Figure 6), it will cost
one extra step to load ”In2” and ”In3”. As already men-
tioned in section III, speed is a more important criterion,
so it is better to put ”In3” at some non-local memory.

MEM

ALU1

MEM

In1

In2

In3

In4

ALU0

(a) Initial State

ALU0

MEM

ALU1

MEM

In1
 In4

In2

In3

(b) Step 1

ALU0

MEM

ALU1

MEM

In1

In3

In4

In2

In3

(c) Step 2

ALU0

MEM

ALU1

MEM

In1

In2

Out

(d) Step 3

Fig. 6. Two inputs are at the same local memory.

3 When locality of reference brings lower speed, or when
the local memory is full, we should try to put a datum
into non-local memory like ”In3”. The movement of a
data from a non-local memory to a register bank con-
sumes more energy than from a local memory. However,
as shown in Figure 5 and Figure 6, sometimes putting a
datum at non-local memory is a better choice.
4 Situations like ”In4” waste energy and resources. They
should be avoided.

These conclusions reflect the spirit of FPFA design –
speed and locality reference. We treat them as the general
principle throughout the procedure of resource allocation.
Based on the general principle some rules for making each
decision will be given in the following subsections.

B. Rules for controlling the lifetime of data

Due to the limitation of storage spaces, it is preferable
to release the storage space as soon as possible. The start-
ing point of an initial input’s (INPUT) lifetime is the ini-

tial step. The INPUT stays in a memory in the beginning.
An intermediate value’s lifetime starts when it is computed
and stored to a memory, a register or more than one place.
Once a datum is moved from one storage unit to another,
a decision needs to be made whether the old storage space
can be released or not. The lifetime of a datum is closely
related to the ALU which compute the datum (determine
the starting point of the lifetime) and the last ALUs which
will use the datum (determine the ending point of the life-
time). For simplicity in description, we give a name to the
cluster which computes a datum ”a”, PreCluster of ”a”,
and a name to the clusters which are going to use a datum
”a”, PostCluster of ”a”. An intermediate value only has
one PreCluster, but it can have more PostClusters. That is
the case when the datum will be used as inputs by more
clusters. Among all the PostClusters, the one with the
smallest level number is called the FirstPostCluster and the
one with largest level number is called the LastPostCluster.
In Figure 3(b), the PreCluster of datum ”0” is ”Clu4”. ”0”
has two PostClusters: FirstPostCluster ”Clu2” and Last-
PostCluster ”Clu1”. Vertical distance is an concept on the
scheduled clustered graph. The vertical distance of two
clusters is the absolute difference between the level num-
bers of these two clusters on the scheduled clustered graph.
Some rules regarding saving intermediate results and re-
leasing storage spaces are as follows:

B.1 Save an intermediate result

The movements of an intermediate datum ”a” are deter-
mined by its storage place and the corresponding ALUs’
position of the PreCluster and PostClusters. It is better to
choose the proper storage place according to the mapped
positions of the PreCluster and PostClusters. There are
three possible choices:

Choice 1 Put ”a” to memory first. Before execution of
a PostCluster, move it to the proper register. The proper
register refers to the register bank from which the datum
should be fed into ALU. This is determined by data-path
mapping (see section IV).
Choice 2 Put ”a” to a proper register directly.
Choice 3 Put ”a” to more than one place at the same time.

If ”a” has only one PostCluster and the vertical distance
between its PostCluster and PreCluster is small, it is better
to take choice 2 instead of choice 1. Firstly, choice 2 is
more energy efficient than choice 1; secondly, choice 2 is
faster than choice 1. Since ”a” will be used soon, if it is not
ready before being used, extra clock cycles will be needed
to load the datum. Therefore more attention should be paid
on the speed when vertical distance between PostCluster
and FirstPreALU is small.

62

If ”a” has only one PostCluster but the vertical distance
between its PostCluster and its PreCluster is large, taking
choice 2 results in ”a” staying at a register for a long pe-
riod. As there are only four registers in each register bank,
it is not wise to let a datum stay there for too long time.
While the lower speed of choice 1 unlikely brings delay
due to the large vertical distance, in this case taking choice
1 is preferable.

When ”a” has more PostClusters, and there exist Post-
Clusters that are far from its PreCluster in vertical distance,
for the same reason as described in previous paragraph, ”a”
should be put into a memory. At the same time if there are
some PostClusters with short vertical distances from the
PreCluster, these PostClusters are treated separately, i.e.,
”a” will be put into proper register banks corresponding to
the PostClusters simultaneously. As in Figure 7, ”a” is the
result of an ALU. It is written to different places using one
global bus. If two PostClusters require ”a” to appear at the
same register bank, the movement is done only once.

Tile

Control

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

ALU

Ra
Rb
Rc
Rd

MEM1
MEM2

MB

GB

LB

"a"

Fig. 7. Write a datum to more than one place simultaneously.

B.2 Release storage spaces

When a datum is moved from a memory to a register,
a check should be done whether the old copy is necessary
to be kept in the memory or not. The space is released
when the movement to the proper register bank of each
PostCluster has been arranged.

In most cases, the register keeping a datum can be re-
leased after the datum is fed into ALU. An exeption is that
there is another PostCluster which shares the copy of the
datum and has not been executed. This is true when the
proper registers defined by two PostClusters are the same
one, and the vertical distance of the two PostClusters are
small.

C. Rules for allocating ALUs and INPUTs

The graph after clustering and scheduling phase con-
tains less than five clusters at each level. There are
5 × 4 × 3 × 2 × 1 = 120 possible solutions to assign
the clusters of each level to five ALUs. A good ALU al-
location scheme requires less global data movements and

brings less troubles in preparing inputs for all the ALUs.
Figure 8 shows the effects of different assignments on data
movements. There are two clusters in a level. ”Cluster a”
takes ”In a1” and ”In a2”as its inputs, and ”Cluster b”
takes ”In b1” and ”In b2” as its inputs. According to the
assignment in 8(a), all the data are local with respect to the
ALU which uses them. However according to another as-
signment shown in Figure 8(b), no inputs are local to their
ALUs. The movements of all the inputs to proper registers
need the participation of global bus. The second mapping
scheme, on the one hand, takes more energy consumption;
One the other hand, the speed may be affected under the
constraints of the limited number of global buses. In Fig-
ure 8(b), there are 3 free global buses left. The moving
of ”In b2” cannot be finished within the same clock cycle,
which brings the necessity to insert an extra clock cycle.

ALU0

MEM

ALU1

MEM

In_a1

In_a2
 In_b1
 In_b2

cluster_a
 cluster_b

(a) Assignment 1

ALU0

MEM

ALU1

MEM

In_a1

In_a2
 In_b1
 In_b2

cluster_b
 cluster_a

(b) Assignment 2

Fig. 8. The effects of Different ALU Assignments

The outputs of one clock cycle are the inputs for the fol-
lowing clock cycles. ALUs allocation scheme has effect
on the nature of both inputs and outputs: the movements
of some inputs can change from global to local, or vice
versa, so do the movements of outputs. To find the best
global choice is another NP complexity problem. For sim-
plification, we will do it in a forward way. The allocation
scheme only takes care of the locality and loading diffi-
culty of its own inputs at each step. The effects of the
assignment on the following steps are not taken into ac-
count. It is up to the following steps to care about their
inputs. Some negative effects from the previous steps can
be deduced by permuting the ALUs of the following steps.
In other words, the positions of all the inputs of a level
determine the ALUs allocation of the corresponding clock
cycle.

In the following part, the attention is paid to the ALUs
allocation of one clock cycle which is called the current
clock cycle. The corresponding level of the current clock
cycle on the scheduled clustered graph is called the current
level. As mentioned above, the allocation of ALUs will
be done in a forward way, so we suppose the clusters at

63

the previous levels (the level above the current level) have
already been mapped to ALUs while the executing ALUs
of the clusters at the following levels are not determined
yet. According to the general rules, some basic points can
help us in making choice:
Case 1 As we mentioned in subsection VI-B, if an input
of the current level has small vertical distance between
its PreCluster and the current level, it will be saved into
the proper register directly. Since ALUs have no output
registers, the saving procedure has to be taken at the step
where the PreCluster is executed. In this case, assigning
the intermediate value’s PostCluster to the same ALU as
its PreCluster can make the movement of that saving pro-
cedure local.
Case 2 If the intermediate input’s vertical distance be-
tween its PreCluster and current level is large, according
to subsection VI-B, the datum should be moved to a mem-
ory immediately after the execution of PreCluster, and then
moved to proper register before the current step. When the
ALUs of current step are allocated, the storage place of
the immediate value inside memory is known. According
to this input, it is preferable to map its PostCluster to the
ALU which belongs to the same PP as the storage memory
of this input.
Case 3 If all the inputs are INPUTs or if there are several
available mappings, proper ALU allocation is done on the
basis of proper choice of storage places of INPUTs.

To choose memory places for ”INPUT”s and intermedi-
ate data we should take into account several aspects of the
system.
• Locality of reference.
• The limitation of memory space. The memories with
more free space are preferable.
• Recent reading frequency. This refers to the frequency
of reading data from a memory during several last clock
cycles. Only one datum can be read from a memory each
step. If a memory’s reading port is always busy, execution
of an ALU can be delayed due to the movements of some
inputs. This is to avoid the situation of ”In2” and ”In3” in
Figure 6.

All the possible 120 permutations can be checked to find
the best allocation. For simplicity, the clusters can be as-
signed to ALUs one by one by sacrificing some perfor-
mance.

D. Rules for using the crossbar

According to the functionality, the data movements
through the crossbar can be divided into three groups: (a)
Preparing inputs for ALUs, (b) Saving outputs of ALUs,
(c) Combination of (a) and (b), as the case 1 in subsec-
tion VI-C. Saving an ALU output must be done at the

clock cycle within which the output is computed. Prepar-
ing an input should be done before it is used. However,
if it is prepared too early, the input will occupy the reg-
ister for a too long time. A proper solution in practise is
starting to prepare an input 4 clock cycles before the clock
cycle it is used. If the outputs are not moved to registers
or memories immediately after generated by ALUs, they
will be lost. For this reason the movements in type (b) and
type (c) have the priority to use the crossbar. When the
resources have spare capacity left after the movements of
the outputs, type (a) movements will be considered. Now
the conceptions used for describing the vertical distance,
”large” and ”small”, become clear as well. The vertical
distance is ”large” when it is larger than four, otherwise, it
is ”small”.

E. The Heuristic Algorithm

The algorithm implementing all the rules described
above is actually a heuristic algorithm. The pseudocode
for this algorithm is listed in Figure 9. The clusters in

1
 function
 ResourseAllocation(G)

2 {

3
 for
each level in G

4
 do

5 Allocate(level);

6 }

7
 function
 Allocate(currentLevel)

8 {

9 Allocate ALUs of the current clock cycle and put

10 INPUTs into memories;

11
 for
 each output whose PostCluster has vertical

12 distance larger than 4

13
 do

14 store the output to a memory;

15
 for
 each input
 of current level

16
 do

17 try to move it to proper register at the clock

18 cycle which is four steps before; If failed,

19 do it three steps before; then two steps

20 before; one step before.

21
 if
 some inputs are not moved successfully

22
 then
 insert one or more clock cycles before

23 the current one to load inputs

24 }

Fig. 9. Pseudocode of the heuristic resource allocation algo-
rithm

the DAG graph are allocated level by level (lines 1-6).
For each level, firstly, the ALUs and INPUTs are allo-
cated (lines 9-10) according to the rules in subsection VI-
C. Secondly, in terms of the priority of using the crossbar
(see subsection VI-D), all the outputs are stored (lines 12-
14) following the rules in subsection VI-B.1, and then the
rest resources are used to load inputs (lines 15-20) for the
following steps, where the problem on releasing storage

64

spaces should be considered based on the rules in subsec-
tion VI-B.2. In Figure 9, we cannot directly see the codes
for saving the outputs whose PostClusters have smaller
vertical distance (≤ 4) because the saving and loading pro-
cedures in this case are combined (see case 1 in subsection
VI-C). Finally, extra clock cycles are inserted if necessary
(lines 21-23).

VII. SIMULATION

We run the resource allocation algorithm on the clus-
tered data flow graph shown by Figure 3(b). On this
simple graph, there exits no level with more than five
ALUs, which makes cluster scheduling an unnecessary
phase. Following all the rules mentioned above, a map-
ping scheme with 4 decoding clock cycles and 4 times
global movements comes out. For comparison, both ran-
dom ALUs allocation scheme and random variable alloca-
tion scheme are tested for 40 times. Figure 10 gives the
simulation results, where the number in the grid refers to
the times, among the 40 tests, of the needed number of
execution clock cycles and the frequency of used global
buses. The blue number and the red number correspond
to the random ALUs allocation scheme and the random
variable allocation scheme respectively. The best solution
among all the experiments is the one with 4 clock cycles
and 4 global buses, which is reached by applying the rules
in section VI as well.

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

Global

Bus

Step Number

16

0

1

2

3

4

5

6

10

4
 6
4

12
 13

7
 8

2

12
14
1

4

1

1

Fig. 10. Simulation Results

VIII. CONCLUSION

In this paper we present a scheme to mapping a CDFG to
one FPFA tile. The procedure of mapping is divided into
three phases: clustering, scheduling and resource alloca-
tion. Some rules for resource allocation are given by thor-
ough analysis and summarization, the validity of which is
proved by the simulation result. High performance and low

power consumption are achieved by exploiting maximum
parallelism and locality of reference respectively. In con-
clusion, using this mapping scheme the potential advan-
tages of FPFA are fully exploited. To date, the work does
not deal with the issue of CDFG with loops and branches,
which will be done in the future work.

REFERENCES

[1] Heysters P.M. et.al, ”Exploring Energy-Efficient Reconfigurable
Architectures for DSP Algorithms”, Proceedings PROGRESS
2000 workshop, pp. 43-52, ISBN 90-73461-25-1, Utrecht, The
Netherlands, October 2000.

[2] Jing-Chiou Liou, Michael A. Palis, ”An Efficient Task Clustering
Heuristic for Scheduling DAGs on Multiprocessors”, 8th Sympo-
sium on Parallel and Distributed Processing, Workshop on Re-
source Management in Computer Systems and Networks, New
Orleans, Louisiana, October 1996.

[3] Vivek Sarkar. Clustering and Scheduling Parallel Programs
for Multiprocessors. Research Monographs in Parallel and Dis-
tributed Computing. MIT Press, Cambridge, Massachusetts,
1989.

[4] Gerard J.M. Smit, Paul J.M. Havinga, Lodewijk T. Smit, Paul
M. Heysters, Michel A.J. Rosien: ”Dynamic Reconfiguration in
Mobile Systems” accepted for publication in the 12th Interna-
tional Conference on Field Programmable Logic and Application
(FPL2002), september 2002.

[5] Hesham EL-Rewini, Theodore Gyle Lewis, Hesham H. Ali, Task
scheduling in parallel and distributed systems, PTR Prentice Hall,
1994.

[6] Tao Yang; Apostolos Gerasoulis, ”DSC: scheduling parallel tasks
on an unbounded number of processors”, IEEE Transactions on
Parallel and Distributed Systems, Volume:5 Issue:9, Sept. 1994
Page(s): 951-967.

[7] M.Y.Wu and D.Gajski, A programming aid for hybercube archi-
tecture, Journal of Supercomputing, 2, 1988, 349-372.

[8] S.J.Kim and J.C.Browne, A General Approach to Mapping of
parallel Computation upon Multiprocessor Architectures, Inter-
national Conference on Parallel Processing, vol 3, 1988, pp.1-8.

65

	Contents

