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Abstract

This paper refines the framework of ‘Formal Methods in Conformance Testing’ by introducing
probabilities for concepts which have a stochastic nature. Test execution is refined into test
runs, where each test run is considered as a stochastic process that returns a possible observa-
tion with a certain probability. This implies that not every possible observation that could be
made, will actually be made. The development process of an implementation from a specifica-
tion is also viewed as a stochastic process that may result in a specific implementation with a
certain probability. Together with a weight assignment on implementations this introduces a
valuation measure on implementations. The test run probabilities and the valuation measures
are integrated in generalized definitions of soundness and exhaustiveness, which can be used
to compare test suites with respect to their ability to accept correct, and to reject erroneous
implementations.

Keywords

Conformance testing, test framework, test selection, formal methods, probabilities.

1 INTRODUCTION

Conformance testing is a way to assess the correctness of an implementation with respect to
its specification by means of performing experiments on the implementation and observing its
responses. In case the specification is given as a formal description we need formal definitions of
testing concepts, such as correctness of an implementation with respect to a formal specification,
a test purpose, a sound test case, test execution, test generation, etc. Currently, the standardiza-
tion group on ‘Formal Methods in Conformance Testing’ (ISO/IEC JTC 1/SC 21/WG 7 project
54, ITU-T SG 10/Q 8) develops a framework for conformance testing based on formal methods
defining these concepts [ISO96]. The framework defines terminology, abstract concepts, and
minimal requirements on, and relations between these concepts. Since it is defined at a high
level of abstraction, e.g., it abstracts from specific test generation algorithms, even from a spe-
cific formal description technique, use of the framework requires instantiating these concepts
with specific choices for test generation algorithms, for the formal description technique, etc.

This paper builds on the framework of ‘Formal Methods in Conformance Testing’. Its goal
is to refine this framework by adding probabilities for those concepts which have a stochastic



nature. The refinement concerns the testing process; probabilistic extensions of specification
languages or models are not considered. The first addition is to consider test execution in a
probabilistic setting. In the framework, test execution of a test case against an implementation
under test is assumed to yield a unique observation. This assumption is replaced by refining
test execution into a number of test runs. Each test run yields an observation of the implemen-
tation, but a number of test runs does not necessarily yield all possible observations [LS89]. A
probability distribution is added to express which observations are likely to be obtained.

A second refinement of the framework concerns the extension of the soundness and the
exhaustiveness of a test suite. Soundness refers to the property of a test suite to accept all con-
forming implementations, and exhaustiveness indicates that all nonconforming implementations
are rejected [ISO96]. These predicates are generalized to measures in the vein of [BTV91, Bri93],
which take into account the probability of the occurrence of implementations, the gravity of er-
rors in implementations, and the above mentioned probability on observations made during test
runs. It is indicated how these soundness and exhaustiveness measures can then be used to
compare test suites, in order to select a good, or the best one.

The outline of this paper is as follows. In section 2 an overview of the framework ‘Formal
Methods in Conformance Testing’ is given, as far as it is relevant for this paper, and some of the
assumptions underlying this framework are discussed. Section 3 refines test execution into test
runs, and it adds probabilities to the observations. In section 4 a valuation on implementations
is defined, which assigns a value based on their probability of occurrence and on their weight.
Section 5 uses the probability on test-run observations and the valuation on implementations
to define soundness and exhaustiveness as two measures on test suites. Comparison of test
suites based on these measures is briefly discussed. In section 6 the concepts are illustrated for
labelled transition systems with inputs and outputs; this section may be read in parallel with
the sections 2 till 5. Section 7 presents concluding remarks and items for further work.

2 FORMAL METHODS IN CONFORMANCE TESTING

The emerging international standard ‘Formal Methods in Conformance Testing’ defines a frame-
work for the use of formal methods in conformance testing [ISO96]. It is intended to guide the
testing process of an implementation with respect to a formal specification. In this section the
main concepts of [ISO96], such as conformance, testing, and conformance testing, are presented,
as far as they are needed for the subsequent sections. They are followed by a discussion of some
of the explicit and implicit assumptions on which the framework is based.

Conformance The definition of conformance concerns implementations under test (IUT ) and
specifications, so a universe of implementations IMPS , and a universe of formal specifications
SPECS are assumed. Implementations are concrete, informal objects, such as pieces of hard-
ware, or pieces of software. In order to reason formally about them, it is assumed that each
implementation IUT ∈ IMPS can be modelled by a formal object iIUT in a formalism MODS ,
which is referred to as the universe of models. This hypothesis is referred to as the test assump-
tion. Note that a model iIUT is only assumed to exist; it is not known apriori.

Conformance is expressed by means of an implementation relation imp ⊆ MODS ×SPECS .
Implementation IUT ∈ IMPS is considered imp-correct with respect to s ∈ SPECS if the model
iIUT ∈ MODS of IUT is imp-related to s: iIUT imp s. We use Is =def {i ∈ MODS | i imp s}
for the set of imp-correct implementations, and Is =def MODS\Is for its complement.



Testing The behaviour of concrete implementations is investigated by performing experiments
on the implementations and observing the reactions that the implementations produce to these
experiments. Such experiments are called tests, and they are formally specified as elements
of a universe of test cases TESTS . A set of test cases is called a test suite. The process
of running a test against a concrete implementation is called test execution. Test execution
leads to an observation in a domain of observations OBS . To each observation a verdict is
assigned by a verdict assignment function verd t : OBS → {pass, fail}. It is said that a concrete
implementation IUT ∈ IMPS passes a test suite T ⊆ TESTS if the test execution of all its
test cases lead to an observation with verdict pass:

IUT passes T =def ∀t ∈ T : IUT passes t
IUT passes t =def test execution of t against IUT gives σ ∈ OBS ,

such that verd t(σ) = pass

(1)

An implementation fails test suite T if it does not pass: IUT fails T =def ¬(IUT passes T ).
The interpretation of test execution, i.e., of IUT passes T , is given by modelling the process

of test execution on models of implementations. By comparing the concrete observations made
of IUT with the calculated observations of the model of test execution, conclusions can be drawn
about the model iIUT , in particular, a set of candidate models for iIUT can be calculated. Let
test execution be modelled as a function exec : TESTS × MODS → OBS , such that for each
test case t ∈ TESTS and each model i ∈ MODS , exec(t, i) calculates the observation in OBS
that results from executing t with the model i. If exec indeed faithfully models concrete test
execution, then it can be concluded from successful test execution, IUT passes t, that the model
of IUT is in the subset Pt of models for which a pass-verdict is calculated:

let Pt =def { i ∈ MODS | verd t(exec(t, i)) = pass }
then IUT passes t ⇐⇒ iIUT ∈ Pt

(2)

and moreover for a test suite T :

let PT =def

⋂

t∈T Pt

then IUT passes T ⇐⇒ iIUT ∈ PT
(3)

In this way, for each test suite T , the universe of models of implementations MODS is partitioned
into models in PT , which model passing implementations, and models not in PT . The set PT is
called the formal test purpose of T .

Conformance testing In order to judge whether a concrete implementation IUT conforms
to its specification s ∈ SPECS by means of testing, the notion of conformance, i.e., the set
Is, and test execution, i.e., the set PT (3), have to be linked, so that from test execution an
indication can be obtained whether iIUT ∈ Is, i.e., whether IUT conforms. A test suite is com-
plete if it can distinguish exactly between all conforming and non-conforming implementations:
Is = PT . Unfortunately, this is a very strong requirement for practical testing: complete test
suites are usually infinite, and consequently not practically executable. Hence, [ISO96] poses a
weaker requirement on test suites: they shall be sound, which means that at least all correct
implementations (and possibly some incorrect implementations) will pass them:

∀i ∈ MODS : i imp s =⇒ i ∈ PT (4)

In case all incorrect implementations (and possibly some correct ones) do not pass the execution
of test suite T , the test suite is called exhaustive:

∀i ∈ MODS : i imp s ⇐= i ∈ PT (5)



To quantify the error-detecting capability of a sound test suite a coverage measure can be defined,
which expresses the extent to which a sound test suite is exhaustive (P(TESTS ) is the powerset
of TESTS , i.e., the set of sets of test cases, so the set of test suites):

cov : P(TESTS ) −→ [0, 1] satisfying PT1
⊇ PT2

=⇒ cov(T1) ≤ cov (T2) (6)

Assumptions In the definition of the formal testing framework of [ISO96] some explicit and
implicit assumptions are made. The first assumption, which is explicitly stated, is the test
assumption: any concrete implementation IUT can be modelled by an iIUT ∈ MODS . In
order to do any formal reasoning about implementations the existence of such a model should
be assumed. However, the test assumption is unclear about unicity of iIUT , i.e., about fully-
abstractness with respect to observable behaviour, and about consequences of non-unicity.

A second assumption has to do with practical test execution. Execution of one single test
case usually consists of several test runs, where each test run consists of applying the test case
once to the implementation under test. Due to nondeterminism in the implementation under
test each test run may lead to a different outcome, and the outcomes of several, independent
test runs make up one observation. Let the class of possible test-run outcomes be O, then an
observation is a set of outcomes: OBS = P(O). Now exec : TESTS×MODS → P(O) calculates
all possible test outcomes of given t and i. However, in the concrete test execution of t against an
IUT it is difficult, or impossible, to be sure that all possible outcomes have really been obtained.
Concrete test execution consists of performing a finite number of test runs, during which certain
nondeterministic behaviours of the implementation may never be encountered. After any finite
number of test runs it cannot be known whether all possible outcomes have been obtained or
not. Consequently, if concrete test execution gives us an observation O ⊆ O, we cannot conclude
that O = exec(t, iIUT ) as above, and in [ISO96], but only that O ⊆ exec(t, iIUT ).

But even the conclusion O ⊆ exec(t, iIUT ) is not always valid; it depends on another assump-
tion, viz. that the concrete observations obtained from test runs are always those which can be
calculated from the model of test execution. This only holds if we assume that test cases are
correctly implemented, i.e., that each test case is a valid model of its own implementation, and
that exec correctly models the concrete observations that can be made during test runs. If the
first assumption cannot be assumed to hold then we should verify or test the implementations of
our test cases, for which we would have to derive and implement test cases again, which should
also be tested, etc. Usually this assumption can be made since test cases are assumed to be
an order of magnitude simpler than the implementations that are the aim of our testing. The
second assumption requires an accurate modelling of the concrete test execution process, for any
test case and any IUT , by means of the function exec, which is not always easy. Consider as an
example the observation of a time-out. Time-outs are used to detect that an implementation
does not react to a given stimulus. However, if no real-time requirements are specified for the
reaction, then the time-out value should theoretically be infinite, which is practically infeasible.
So it might be that a time-out is observed where only the implementation under test is slow.
The observation of this time-out will usually not be modelled in exec, where the theoretically
infinite timer is considered.

In the probabilistic additions to the formal framework in the next sections we will not
challenge the test assumption, but we will reconsider the assumption that all test-run outcomes
can be obtained during test execution: we decompose test execution into test runs, taking
into account that during concrete test execution some outcomes might be missed; this will be
discussed in section 3. Implemented test cases and test execution are, without change, assumed
to be correctly modelled by test cases and a function exec, respectively.



3 TEST EXECUTION AS PROBABILISTIC TEST RUNS

It was argued in section 2 that the application of a single test case to a concrete implementation
usually consists of multiple test runs, where the outcome of each test run may be different, due
to nondeterminism in the implementation itself (e.g., a gambling machine modelling the tossing
of a coin), or due to nondeterminism introduced by interaction of the implementation with its
environment (e.g., a fileserver writing a file to disk that is nondeterministically interrupted by
the operating system when the disk is full). Each time a test-run experiment is repeated, it may
result in another outcome, and it is never known when all possible outcomes of the IUT have
been obtained. Consequently, test execution results in a set of test-run outcomes, where some
outcomes might be more likely to occur than others. This leads to considering the occurrence
of an outcome as a stochastic experiment, in which a single outcome from the set of possible
outcomes is drawn. The probability of an outcome to occur can be thought of as depending on
the frequency with which the implementation resolves the nondeterministic choices leading to
the different outcomes.

Let O be the class of outcomes, and let test execution be correctly modelled by exec :
TESTS × MODS → P(O) (cf. section 2), then in each test run of test case t against imple-
mentation IUT , modelled by i, an outcome σ from sample set exec(t, i) is drawn, where each
outcome in exec(t, i) has a nonzero probability to occur. This can be described by viewing
a test-run as a stochastic experiment that produces an outcome σ(t, i) that takes its value in
exec(t, i). Consequently, for every t and i a probability distribution P t,i

o : P(exec(t, i)) → [0, 1]
is assumed, indicating the probability that testing implementation i with test t leads to an
outcome in O ⊆ exec(t, i), viz.

P t,i
o (O) =def Pr{σ(t, i) ∈ O} (7)

Note that the distribution of the random variable σ(t, i) depends on the implementation i and
test t; for each i and t, σ(t, i) may have another distribution.

Instead of combining outcomes into one observation O ⊆ O, and then assigning the verdict
verd t(O), we will assign verdicts to the outcomes, and then combine these outcome-verdicts into
one verdict for the observation. The verdict for the observation will be pass if all outcome-
verdicts are pass. Note that by combining outcome-verdicts into an observation-verdict instead
of combining outcomes into an observation, we loose some observation power, e.g., consider a
system which shall produce either always x or always y. Two test runs yield the outcomes x
and y, respectively. Since they are both valid outcomes the test-run verdicts assigned will be
both pass, whereas the verdict assigned to the observation {x, y} would be fail.

Let vt : O → {pass, fail} be a verdict assignment to outcomes, then the probability mea-
sure P t,i

o can be used to induce a probability measure on sets of verdicts in {pass, fail}. As
each outcome σ ∈ exec(t, i) uniquely leads to a verdict vt(σ) this holds in particular for the
outcome σ(t, i). As σ(t, i) is stochastically determined, it follows that the verdict assignment
vt is a stochastic function, and hence a probability distribution P t,i

v : P({pass, fail}) → [0, 1] is
obtained. The probability that a test run of t with i results in verdict pass is the cumulative
probability that an outcome in exec(t, i) occurs that leads to a pass-verdict:

P t,i
v ({pass}) =def Pr{vt(σ(t, i)) = pass} = P t,i

o ({σ | vt(σ) = pass, σ ∈ exec(t, i)}) (8)

A straightforward extension of the measure P t,i
v on test-run verdicts to test-case and test-

suite execution verdicts can be given. To integrate test-case and test-suite execution we consider
a test suite as a multi-set of test cases rather than a set as in section 2. Multiple test runs of
a single test case t can then be represented by multiple occurrences of that test case in the



multi-set, written as tn, so a test suite specifies the test cases it contains together with the
number of test runs for each test case. For test suite 〈t1, . . . , tn〉 we have the random variables
〈σ1(t1, i), . . . , σn(tn, i)〉, where each σk(tk, i) (1 ≤ k ≤ n) takes its value in exec(tk, i) according
to the probability distribution P tk ,i

o . According to (1,3) a test suite is passed by i if all the test
cases in the test suite are passed. Analogously, the probability that implementation i passes
test suite T = 〈t1, . . . , tn〉 equals the probability that all tests t1, . . . , tn are passed by i:

P T,i
v ({pass}) =def Pr{vt1(σ1(t1, i)) = pass, . . . , vtn(σn(tn, i)) = pass} (9)

Under the assumption that the random variables σ1(t1, i), . . . , σn(tn, i) are independent, that is,
the outcome of a test run does not depend on previous (or future) test runs, it follows that

P T,i
v ({pass}) =

n
∏

k=1

Pr{vtk(σk(tk, i)) = pass} =
n

∏

k=1

P tk ,i
v ({pass}) (10)

The probability to fail T immediately follows: P T,i
v ({fail}) =def 1−P T,i

v ({pass}). It is evident
that P T,i

v denotes a probability measure on P({pass, fail}), which has the obvious property,
expressed in the next proposition, that for non-zero probability of fail in a test run, test case
execution will finally result in fail if enough test runs are performed.

Proposition 1 If P t,i
v ({pass}) < 1 then limn→∞ P tn,i

v ({pass}) = 0 2
4 A VALUATION ON IMPLEMENTATIONS

By considering test runs as stochastic experiments, section 3 formalized the notion of passing a
test suite in the form of the probability that that test suite is passed, when a particular model
of an implementation i ∈ MODS is given. However, in testing we do not have one particular,
given model, but we need to reason about classes of possible models. Some of these possible
models are more likely to occur than others, and some are more important than others.

In this section we define a valuation measure on models of implementations. This valuation
assigns a value to a set of models of implementations, i.e., to subsets of MODS . This value gives
an indication about the importance of the subset as a possible class of correct implementations
with respect to a particular specification s and implementation relation imp. The valuation is
defined analogous to [Bri93] as a measure-theoretic integral, which takes into account both the
likeliness of occurrence of the implementations and the importance of the individual implemen-
tations, expressed by a probability and a weight on models of implementations, respectively.

Weight of implementations An implementation relation distinguishes between correct and
incorrect models of implementations. However, to express the importance of each implementa-
tion, more discriminating power has to be added. This is done by assigning a weight to each
implementation.

Let s ∈ SPECS be a specification, and imp ⊆ MODS ×SPECS an implementation relation,
then a function w : MODS → IR\{0} is a weight assignment function on MODS with respect to
s and imp, if for all i ∈ MODS :

w(i) > 0 ⇐⇒ i imp s (11)

A weight assignment assigns a positive real number to each conforming implementation,
and a negative number to each erroneous implementation. For conforming implementations the



weight can express that one implementation is better than another; negative weights express the
gravity of errors in erroneous implementations: if w(i1) < w(i2) < 0 then both i1 and i2 are not
correct, but the errors of i1 are more severe than those of i2. Note that the weight is defined
with respect to a specification s and an implementation relation imp: it assigns a weight to
each implementation as a candidate for an implementation of the particular s and imp.

Probability on implementations Given a specification s ∈ S and an implementation rela-
tion imp implementers will start developing a concrete implementation IUT ∈ IMPS . Many
different implementations, modelled by different models, may occur as the result of the imple-
mentation process, some of them conforming, and others nonconforming. Not every possible
implementation will have the same chance to occur as the result of implementing a given speci-
fication, e.g., when designing a coffee machine which is supposed to serve coffee and tea it is less
likely to end up with a completely different kind of machine (e.g., a gambling machine) than
to end up with a slightly different, but possibly incorrect, coffee machine. Moreover, assuming
that an implementer can make several independent mistakes with non-zero probability it is less
likely for the implementer to make all possible mistakes than to make only a small number of
mistakes.

Similar to [Bri93] we view the design and implementation process of a complex system as
a stochastic experiment that draws a concrete implementation IUT modelled by the stochastic
function i ∈ MODS from the sample set of all possible implementations MODS according to a
certain probability distribution. Let MODS be discrete, and let the probability density function
be given by ps, i.e., ps(i) denotes the probability that implementation i occurs as the result of
the design and implementation process, then

Ps(I) =def

∑

i∈I

ps(i) (12)

denotes the probability that the activity of implementing specification s produces an implemen-
tation that is modelled by a member of I.

Valuation Using the probability density ps and the weight assignment w it is possible to
define a valuation on discrete sets of implementations, which captures the importance of a set
of implementations in terms of their weight and their probability of occurrence:

µ(I) =def

∑

i∈I

w(i) ps(i) (13)

The expression µ(I) denotes the value of implementations in I ⊆ MODS . It expresses, in some
sense, the aggregate correctness of the candidate implementations in I with respect to the given
s and imp. Note that correct implementations may compensate incorrect implementations (and
vice versa). Consequently,

∑

i∈I w(i) ps(i) < 0 does not imply that the probability of obtaining
an erroneous implementation in I is high: the negative value might occur because of one unlikely,
but very negatively weighted erroneous implementation. The expectation value of the weight of
an arbitrarily designed implementation in MODS is expressed by

∑

i∈MODS w(i) ps(i).
Although in most practical cases it suffices to consider the valuation as a, possibly infinite,

summation, it is more abstract and general to rewrite (12) and (13) as measure-theoretic in-
tegrals, which also encompass continuous domains of implementations. Consider a probability
measure Ps on sets of implementations I ⊆ MODS defined by

Ps(I) =def Pr{i ∈ I} (14)



then, under sufficient assumptions of neatness of the underlying sets (they should be Borel), the
valuation µ can be expressed as the measure-theoretic integral

µ(I) =def

∫

I
w(i) dPs (15)

Proposition 2

1.
∫

∅ w(i) dPs = 0

2. If Is 6= ∅ then
∫

Is
w(i) dPs > 0

3. If Is 6= ∅ then
∫

Is
w(i) dPs < 0 2

5 COMPARING TEST SUITES

The purpose of conformance testing is to increase the confidence in the correct functioning of an
implementation by detecting whether it conforms to its specification or not. Test-suite execution
is expected to reject, i.e., yield the verdict fail with, nonconforming implementations, and to
accept, i.e., yield the verdict pass with, conforming ones. Since a perfect test suite exactly
doing this is not likely to be encountered in practice (cf. section 2), a method for comparing
the quality of test suites is needed in order to select the best test suite for a given conformance
testing problem. A comparison of test suites can be made if a quantitative measure can be
assigned to each test suite. Such a measure should quantify the ability of a test suite to reject
nonconforming implementations and to accept conforming ones, and it should take into account
the probability of occurrence of implementations (a test suite that detects errors which are very
likely to occur has higher quality), the weight of implementations (a test suite that detects a
nonconforming implementation with severe errors, i.e., with very negative weight, has higher
quality), and the probability that an erroneous implementation indeed yields the verdict fail (a
test suite that rejects an erroneous implementation with higher probability has higher quality).

Soundness and exhaustiveness The probability of occurrence of implementations was ex-
pressed by the probability measure Ps on sets of implementations (14), and the probability that
an implementation i yields the verdict pass with test suite T was expressed by the probability
measure P T,i

v (9,10). Under the assumption that the probability of occurrence of implementa-
tions (the measure Ps) is independent of the probability of yielding pass (the measure P T,i

v ) we
can integrate these measures to obtain the probability measure on MODS × {pass, fail}:

πT (I, V ) =def

∫

I

∫

V

dP T,i
v dPs (16)

πT (I, V ) expresses the probability that an implementation i ∈ I ⊆ MODS occurs, and that
i, when tested with T , yields a verdict in V ⊆ {pass, fail}. So, πT (I, {pass}) denotes the
probability that an implementation i ∈ I occurs which passes test suite T . Note that the
integrals cannot be interchanged, since the inner integral depends on i ∈ I.

Taking also the weight of implementations (section 4) into account we obtain analogously
the valuation measure λ:

λT (I, V ) =def

∫

I

∫

V
w(i) dP T,i

v dPs (17)



Given a test suite T , the valuation λ assigns a value to each pair of I ⊆ MODS and V ⊆
{pass, fail}. Of course, the interesting values of λ are the combinations of conforming and
nonconforming implementations with the verdicts pass and fail:

V = {pass} V = {fail}

I = Is λT (Is, {pass}) λT (Is, {fail})
I = Is λT (Is, {pass}) λT (Is, {fail})

For a good test suite, i.e., one with a large ability to reject nonconforming implementations
and to accept conforming ones, the values λT (Is, {pass}) and λT (Is, {fail}) are optimized, or,
equivalently, the values λT (Is, {fail}) and λT (Is, {pass}) are minimized.

We define two measures on test suites, soundness snd , quantifying the ability to accept
conforming implementations, and exhaustiveness exh, quantifying the ability to reject noncon-
forming implementations, by normalization of the valuation λ with respect to all conforming
implementations, and all nonconforming implementations, respectively. The soundness of test
suite T with respect to Is ⊆ MODS and weight assignment w is

snd(T ) =def

λT (Is, {pass})

λT (Is, {pass, fail})
(18)

Similarly, the exhaustiveness of test suite T with respect to Is and w is

exh(T ) =def

λT (Is, {fail})

λT (Is, {pass, fail})
(19)

Of course, these definitions are only valid if λT (Is, {pass, fail}) 6= 0 and λT (Is, {pass, fail}) 6= 0,
but these requirements are easily satisfied, since they correspond to the existence of conforming
and nonconforming implementations, respectively. If they would not exist, there were no need
for testing at all.

Proposition 3

1. 0 ≤ snd(T ) ≤ 1

2. 0 ≤ exh(T ) ≤ 1

3. T is sound following (4) if and only if snd(T ) = 1

4. T is exhaustive following (5) if and only if exh(T ) = 1

5. T is complete if and only if snd(T ) = 1 and exh(T ) = 1 2
As noticed in section 4 it mostly suffices to consider summations instead of integrals. Let

pT,i
v be the density function corresponding to P T,i

v , i.e., pT,i
v (v) = P T,i

v ({v}), then we can use

λT (I, V ) =
∑

i∈I

∑

v∈V

w(i) pT,i
v (v) ps(i) (20)



Comparison In the approach of section 2 [ISO96], test suites are compared using the coverage
function, which is defined to quantify the extent to which sound test suites are exhaustive.
Moreover, test suites are trivially compared with their soundness: test suites which are not
sound are simply not considered, i.e., they are worse than any sound test suite. So, in fact, test
suites are ordered lexicographically with the pair 〈soundness , coverage〉, where soundness can
only take two possible values, viz. sound or not sound.

The two measures snd (18) and exh (19) generalize the original definitions in (4) and (5):
soundness and exhaustiveness are not logical properties anymore, but they are continuous mea-
sures on test suites with values between 0 and 1. Similar as above we can now consider an
ordering on pairs of the form

〈snd(T ), exh(T )〉 (21)

for comparing test suites. The rôle of exh(T) is analogous to the coverage function above: it
defines a measure of the extent to which a test suite is exhaustive. And indeed, it can be
shown that exh is a coverage satisfying (6), if exec faithfully models concrete test execution (cf.
section 2), i.e., if P T,i

v ({pass}) = 1 ⇔ i ∈ PT and P T,i
v ({pass}) = 0 ⇔ i 6∈ PT . If this assumption

does not hold then exh is not a coverage, and it is difficult to define one which satisfies (6).
There are various ways to compare test suites by ordering pairs of the form 〈snd(T ), exh(T )〉:

the lexicographical ordering, projections on one of the constituents, addition, vector addition
or multiplication of both constituents, comparing the maxima or minima, etc. The actual way
of ordering the tuples (21) will depend on the application. In testing the software of a nuclear
power plant the exhaustiveness will be the most important: not finding an error if there is one
has much more disastrous consequences than finding an error where there is none. If, on the
other hand, testing is expensive, then detecting errors where there are none is costly, and should
be avoided: soundness will prevail.

6 PROBABILISTIC TESTING WITH INPUTS AND OUTPUTS

In this section we instantiate the framework discussed in the previous sections and illustrate
its applicability by a running example. The structure of this section follows the structure
of the framework. First, we present some elementary notation for the description of system
behaviour as labelled transition systems. Next, we instantiate the universes SPECS, MODS and
TESTS as (restricted sets of) labelled transition systems. Then the concepts of conformance and
testing (section 2) are instantiated in such a way that they are applicable for the systems under
consideration, followed by the concepts defined in section 4 (valuation on implementations).
Finally, we discuss how section 5 (comparison) can be instantiated.

Preliminary definitions The behaviour of systems is modelled by means of labelled transi-
tion systems. We use the standard definitions of labelled transition systems as can be found in,
e.g., [Tre95]: a transition system p is a quadruple p = 〈S,L,→, s0〉, where S is a (countable) set
of states, L is a (countable) set of observable actions, →⊆ S×(L∪{τ})×S is a set of transitions,
and s0 ∈ S is the initial state. The special action τ 6∈ L denotes the unobservable action. The
universe of labelled transition systems over L is denoted by LTS(L). A trace σ is a sequence of
observable actions (σ ∈ L∗), and =⇒ denotes the transition relation between states s, s′ when
performing trace σ, i.e., s

σ
=⇒ s′ indicates that s′ can be reached by performing the observable

sequence of actions σ ∈ L∗. Furthermore, we define the set of traces by traces(s) =def {σ ∈
L∗ | ∃s′ : s

σ
=⇒ s′}, the set of reachable states from s by der(s) =def {s

′ | ∃s′ : s
σ

=⇒ s′}, the set



of initial observable actions from S′ ⊆ S by init(S′) =def {x ∈ L | ∃s′ ∈ S′, s ∈ S : s′
x

=⇒ s}, the
set of reachable states after σ ∈ L∗ by s after σ =def {s

′ | s
σ

=⇒ s′}, and a boolean predicate on

states, s after σ refuses A =def ∃s′ : s
σ

=⇒ s′ and ∀x ∈ A : s′
x

=6⇒ , where A ⊆ L. As usual, we
will not distinguish between a labelled transition system and its initial state.

Specifications We instantiate the formalism SPECS with the set of all labelled transition
systems over L, that is, we take SPECS = LTS(L). Figure 1 depicts a specification s ∈ LTS(L)
for L = {sh, cb, tb, cof, tea}. Here, it is assumed that sh models the insertion of a shilling, cb and
tb model the pressing of a coffee button and a tea button, respectively, and cof and tea model
the provision of coffee and tea, respectively.

Models of implementations As many systems communicate by means of clearly distinguish-
able input actions and output actions [Pha94, Tre95], we assume that the set of actions L that
a system can perform can be partitioned in a set of input actions LI and a set of output actions
LU . Furthermore, (viz. [Pha94, Tre95]) we assume that implementations, unlike specifications,
never can refuse any input in each reachable state, i.e.,

∀p′ ∈ der(p),∀a ∈ LI : p′
a

=⇒ (22)

Such systems are called input-output transition systems, and the universe of such systems is
denoted by IOTS(LI , LU ). We take MODS = IOTS(LI , LU ). Note that IOTS(LI , LU ) ⊆
LTS(LI ∪ LU ), thus all input-output transition systems are also labelled transition systems.
Figure 1 shows implementations i1, . . . , i4 for LI = {sh, cb, tb} and LU = {cof, tea}.

Tests A test t over LU and LI is a 6-tuple 〈S,LU , LI ,→, νt, s0〉, where 〈S,LI ∪ LU ,→, s0〉 ∈
LTS(LI ∪ LU ) is a deterministic, finite-behaviour labelled transition system over LU and LI ,
and νt : der(s0) → {pass, fail} is a function assigning verdicts to the reachable states of t.
When a test is run against an implementation, it is either able to receive all outputs from the
implementation, or provide a single input to the implementation, or deadlock. That is, any test
satisfies

∀s′ ∈ der(s0) : init(s′) = {a} ⊆ LI or init(s′) = LU or init(s′) = ∅ (23)

The universe of tests over LI and LU is denoted by T (LI , LU ). We take TESTS = T (LI , LU ).
Cf. section 3, a test suite is modelled as a multiset of tests. Figure 1 shows tests t1, t2, t3 for
LI = {sh, cb, tb} and LU = {cof, tea}.

Implementation relation An implementation relation is a relation between the set of speci-
fications SPECS and the set of models of implementations MODS (section 2). In [Tre95] a family
of implementation relations ioconfF (for F ⊆ (LI ∪ LU )∗) is defined that are applicable to the
kind of systems we are considering. Informally, an implementation i is a correct implementation
with respect to specification s and implementation relation ioconfF if for every trace σ ∈ F each
output, or absence of outputs, that the implementation i can perform after having performed
sequence σ is specified by s. Let i ∈ IOTS(LI , LU ), s ∈ LTS(LI ∪ LU) and F ⊆ (LI ∪ LU)∗,
then

i ioconfF s =def ∀σ ∈ F : out(i after σ) ⊆ out(s after σ) (24)

where out(p after σ) =def (init(p after σ)∩LU )∪{δ | p after σ refuses LU} for σ ∈ traces(p),
and out(p after σ) =def ∅ otherwise. Here, the special action δ 6∈ LI ∪ LU models absence of
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Figure 1: Examples of specifications, implementations and tests.

output actions. If out(i after σ) ⊆ out(s after σ) then we write i |=s σ (and i 6|=s σ for its
negation, in which case we say that i has fault σ with respect to s).

Example 4 For specification s (figure 1) we instantiate the implementation relation imp

(section 2) with ioconf{ǫ,sh.cb}. For implementation i1 we have out(i1 after ǫ) = {δ} ⊆
{δ} = out(s after ǫ), and out(i1 after sh.cb) = {cof} ⊆ {cof} = out(s after ǫ). Hence
i1 ioconf{ǫ,sh.cb} s. However, out(i2 after sh.cb) = {cof, tea} 6⊆ {cof} = out(s after sh.cb),
i.e. not (i2 ioconf{ǫ,sh.cb} s). Here, i1 is a correct implementation (i1 ∈ Is), and i2, i3, i4 are

incorrect (i2, i3, i4 ∈ Is). 2
Test execution The running of test t ∈ T (LI , LU ) against implementation i ∈ IOTS(LI , LU )
is modelled by the LOTOS synchronization operator ||. The execution of a test against an
implementation returns a set of observations that may occur, defined by

exec(t, i) =def {σ ∈ (LI ∪ LU )∗ | (t||i) after σ refuses (LI ∪ LU )} (25)

(viz. the deadlock traces of (i||t)). The set exec(t, i) denotes the set of possible test run outcomes.

Verdict assignment To each set of observations O ⊆ exec(t, iIUT ) that can be made when
a test t ∈ T (LI , LU ) is executed against implementation IUT a verdict has to be assigned (cf.
(1)). We instantiate the verdict assignment function by

verdt(O) =def

{

pass if ∀σ ∈ O : vt(σ) = pass

fail if ∃σ ∈ O : vt(σ) = fail
(26)

where vt denotes the verdict assignment on outcomes σ ∈ exec(t, i) given by

vt(σ) =

{

pass if νt(t after σ) = pass

fail if νt(t after σ) = fail
(27)

i.e., the verdict pass is assigned to a set of outcomes O if and only if each individual test outcome
leads to a pass-state in test t.



Example 5 Consider test t2 and implementation i2, then there are two possible test out-
comes: exec(t2, i2) = {sh.cb.cof, sh.cb.tea}. Each outcome leads to a different verdict (viz. (27))
vt2(sh.cb.cof) = νt2(t2 after sh.cb.cof) = pass and vt2(sh.cb.tea) = νt2(t2 after sh.cb.tea) =
fail. Consequently, if test execution gives us an observation O = {sh.cb.cof} then (according to
(26)) verdt2(O) = pass, whereas if test execution gives us observation O = {sh.cb.cof, sh.cb.tea}
then (according to (26)) verdt2(O) = fail. 2
Probabilistic test runs If test execution is considered as probabilistic test runs (section
3), a probability distribution P t,i

o is assumed. Consequently, according to (8) a probability
distribution P t,i

v on verdicts follows. For simplicity we assume that the probability distribution
P t,i

v is given for t ∈ T (LI , LU ) and i ∈ IOTS(LI , LU ). In the next table the set exec(t, i)
for t ∈ {t1, . . . , t3} (figure 1) and i ∈ {i1, . . . , i4} (figure 1), together with the set of verdicts
{vt(σ) | σ ∈ exec(t, i)} is given. For each set of verdicts consisting of more than one element,
the probability P t,i

v ({v}) on the occurrence of v is assumed to be known, and denoted behind
the verdict. If the set of verdicts contains one element v, then evidently P t,i

v ({v}) = 1.

t1 t2 t3
i1 exec {ǫ} {sh.cb.cof} {tb}

verd {pass} {pass} {pass}
i2 exec {ǫ} {sh.cb.cof, sh.cb.tea} {tb}

verd {pass} {pass(1/4), fail(3/4)} {pass}
i3 exec {cof} {sh.cb.cof} {tb.tea}

verd {fail} {pass} {fail}
i4 exec {cof, tea} {sh.cb.cof, sh.cb.tea} {tb.cof, tb.tea}

verd {fail} {pass(1/4), fail(3/4)} {pass(2/5), fail(3/5)}

Example 6 The probability that implementation i4 passes test case t2 is 1/4, (P t2,i4
v ({pass})

= 1/4), and the probability that i4 passes test case t3 is 2/5 (P t3,i4
v ({pass}) = 2/5). Under the

assumption that the outcome of tests does not depend on the outcome of previous (or future)

tests, the probability that i4 passes test suite 〈t2, t3〉 is given by (10): P
〈t2,t3〉,i4
v ({pass}) =

1/4 × 2/5 = 1/10, and consequently P
〈t2,t3〉,i4
v ({fail}) = 9/10. 2

Weight of implementations A weight assignment (11) quantifies the (in)correctness of im-
plementations and can be obtained from weighing the faults that an implementation possesses.
The function w : IOTS(LI , LU ) → IR\{0} defined by

w(i) =

{

1 if i ioconfF s
∑

σ∈F{|g(σ) | i 6|=s σ|} otherwise
(28)

where g : F → IR<0, and {| · |} denotes a multiset, is a weight assignment function (according
to (11)) on IOTS(LI , LU ). The function g expresses the gravity of violating i |=s σ. Note
that the function w is not able to discriminate between correct implementations (all correct
implementations are assigned the same value) and that implementations possessing the same
faults are assigned the same (negative) weights.



Probability of implementations Let pσ be the probability that an arbitrary implementation
i has fault σ ∈ F , i.e. i 6|=s σ, then (under the assumption that all faults are independent)

ps(i) =
∏

σ ∈ F
i |=s σ

(1 − pσ) ×
∏

σ ∈ F
i 6|=s σ

pσ (29)

is a probability density function on IOTS(LI , LU ). As implementations (dis)satisfying the
same requirements are assigned equal probability, ps can be considered as a probability density
function on classes of implementations having the same faults. We shall assume that i1, . . . , i4
are representative members of their classes, i.e., it suffices to consider MODS = {i1, . . . , i4}.

Valuation on implementations Following (13) we can compute the valuation for the set
of (in)correct implementations by taking the weights of implementations using (28), and the
distribution of the implementations using (29).

Example 7 Let g(ǫ) = −5 and g(sh.cb) = −3 then it follows: w(i1) = 1, w(i2) = −3, w(i3) =
−5 and w(i4) = −3 + −5 = −8. Implementation i4 violates both requirements imposed by
ioconf{ǫ,sh.cb} and is therefore considered worse compared to all other implementations. Fur-
thermore, assume the probability for arbitrary implementation i to violate the requirement i |=s ǫ
equals 1/3 (i.e. pǫ = 1/3), and the probability to violate the requirement i |=s sh.cb equals 2/5.
Then it follows ps(i1) = (1 − 1/3) × (1 − 2/5) = 2/5, ps(i2) = (1 − 1/3) × 2/5 = 4/15, ps(i3) =
1/3 × (1 − 2/5) = 1/5, and ps(i4) = 1/3 × 2/5 = 2/15. From (13) µ({i1}) = 1 × 2/5 = 2/5 and
µ({i2, i3, i4}) = −43/15. Thus, µ({i1, i2, i3, i4}) = µ({i1}) + µ({i2, i3, i4}) = −37/15. 2
Comparison In the following table we denote the values of snd(T ) (18) and exh(T ) (19) for
some specific T

T λT (Is, {pass}) λT (Is, {fail}) snd(T ) exh(T )

〈t1〉 2/5 −31/15 1 31/43
〈t2〉 2/5 −21/15 1 21/43
〈t3〉 2/5 −41/25 1 123/215

〈t1, t1〉 2/5 −31/15 1 31/43
〈t1, t2〉 2/5 −40/15 1 40/43

Example 8 Using (20) it follows λT (Is, {pass, fail}) = 2/5 and λT (Is, {pass, fail}) = −43/15
for all test suites T . For test suite T = 〈t1, t2〉 it follows λT (Is, {pass}) = 1 × 12 × 2/5 = 2/5,
thus (18) snd(T ) = 1. Furthermore, λT (Is, {fail}) = −3 × (1 − 1 · (1/4)) × 4/15 + −5× (1 − 0 ·
1)×1/5+−8× (1−0 · (1/4))×2/15 = −40/15. From (19) it follows exh(T ) = 40/43. Moreover,
snd(〈tn2 , t3〉) = 1, and exh(〈tn2 , t3〉) is computed by

−3 × (1 − (1/4)n ·1) × 4/15− 5 × (1 − 1n ·0) × 1/5− 8 × (1 − (1/4)n ·2/5)× 2/15

−3 × 4/15 + −5 × 1/5 + −8× 2/15

For n → ∞ this yields limn→∞ exh(〈tn2 , t3〉) = 1, hence, following proposition (3.5), test suite
〈tn2 , t3〉 approaches a complete test suite if t2 is executed infinitely many times for ioconf{ǫ,sh.cb}

with respect to specification s.
Another question might be how often t2 has to be executed in the test suite 〈tn2 , t3〉 to reach

larger exhaustiveness than 〈t1, t2〉. This can be calculated by solving the equation exh(〈tn2 , t3〉) >
exh(〈t1, t2〉) = 40/43: this gives n > 1, thus, test suite 〈t2, t2, t3〉 has larger exhaustiveness in
rejecting erroneous implementations than test suite 〈t1, t2〉. 2



7 CONCLUSIONS

In this paper a probabilistic refinement of [ISO96] with respect to the execution of tests was
discussed. In particular, the usually made assumption that every possible outcome that can
occur when executing tests against an implementation will be observed (as in, e.g., [ISO96,
DNH84]), has been relaxed; it was assumed that outcomes can occur with a certain probability
distribution on the set of possible outcomes exec(t, i). This induced a probability distribution
on the acceptance or rejection of implementations by test suites.

Furthermore, the notion of correctness has been extended by assigning weights to implemen-
tations in order to not only distinguish between correct and incorrect implementations, but also
discriminate between different (correct or incorrect) ones by means of their weight (e.g., with
respect to the severeness of faults that they possess). Together with a probability distribution
on the occurrence of implementations that indicates the probability that a particular (set of)
implementation(s) can occur as the result of building a concrete implementation, a valuation
on implementations has been obtained. Using such valuations it has been shown that one can
quantify the expected correctness value of (sets of) implementations.

By having combined both the probability for a test suite to accept or reject implementations,
and the valuation on implementations, normalized measures were obtained, that quantify the
extent to which a test suite is able to detect incorrect implementations (19), and the extent
to which a test suite is able accept correct implementations (18). Such measures were used to
compare, and thus select, test suites with respect to their ability to detect most of the frequently
occurring implementations with severe errors, and accept most of the frequently occurring correct
systems.

Further work In this paper only one of the assumptions underlying [ISO96] is relaxed. How-
ever, [ISO96] states many more assumptions, as stated in section 2, such as the test assumption,
the assumption that test cases are correctly implemented, and the assumption that the function
exec correctly models the process of concrete test execution. Similar as has been done in this
paper, one can investigate the consequences when these assumption are relaxed, too.

One of the difficult points in the presented approach is how to obtain the necessary distribu-
tions and weight functions. Section 6 gave some possible directions for obtaining them; another
way is to use fault domains or fault models. As is indicated in [BDD+92, Bri93] the valuation
on implementations (section 4) may be obtained by classifying implementations with respect to
a (finite) set of faults or fault models that implementations may possess. In this way the set of
implementations MODS is partitioned into classes, such that each class contains all implemen-
tations possessing a specific combination of faults. By assigning weights to faults (e.g., by the
method proposed by [ACV93]), and assigning probabilities to the occurrence of faults, valuations
over classes of implementations can be obtained in a similar way as [BTV91, Bri93]. It needs
to be studied how such a partitioning over faults can be used to obtain realistic valuations on
implementations.

The applicability of statistical techniques in the current probabilistic extension needs to be
investigated. Often the exact distribution with which implementations pass or fail a test is not
known apriori because some characteristic parameters of the distribution are not known. In
order to estimate the (partially) unknown distribution a sample of the phenomenon under study
is taken, and this is used to estimate the unknown parameter(s). Also, the integration of the
theory of testing statistical hypotheses such as the acceptance or rejection of the null-hypothesis
(H0 : the system under test is incorrect) and the alternative hypothesis (H1 : the system under
test is correct) and the probabilistic interpretation of test runs as discussed in this paper needs



to be explored, in order to ensure that a system is sufficiently tested before considered correct.
In this paper a method is described to obtain a coverage measure before actually executing

any test at all. That is, the measures soundness (18) and exhaustiveness (19) can be obtained
apriori to the actual test execution process (under the assumption that all relevant parameters,
such as distributions Ps and P i,T

v are known in advance). However, one can also measure the
assessed soundness (or exhaustiveness) that is obtained after really having executed test suite
T . Such measures are called the aposteriori measures. The relation between these two measures
has to be investigated, in order to decide whether or not to reject an implementation if the
assessed measures are not sufficiently close to the apriori values.

A final remark concerns the continuing discussion about the verdict inconclusive in formal
testing. Purely semantically, inconclusive is equivalent to pass: there is no reason to reject
the implementation. However, intuitively inconclusive refers to not reaching a particular test
purpose, if such a test purpose is given apriori. The exact position of inconclusive, especially
in the context of uncertainty and probability of this paper, remains for further study.
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